
QorIQ LS1046A Security (SEC)
Reference Manual

Document Number: LS1046ASECRM
Rev. 0, 05/2017

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Overview of SEC (security engine) functionality

Chapter 2
Feature summary

Chapter 3
SEC implementation

3.1 SEC submodules... 75

3.2 Cryptographic engines implemented in SEC..75

Chapter 4
SEC modes of operation

4.1 Security Monitor (SecMon) security states...77

4.1.1 The effect of security state on volatile keys...78

4.1.2 The effect of security state on non-volatile keys... 79

4.2 Keys available in different security modes...79

4.2.1 Keys available in trusted mode.. 79

4.2.2 Keys available in secure mode...80

4.2.3 Keys available in non-secure mode... 80

4.2.4 Keys available in fail mode..81

Chapter 5
SEC hardware functional description

5.1 System Bus Interfaces...84

5.1.1 AXI master (DMA) interface...84

5.1.1.1 DMA read-safe transactions...84

5.1.1.2 DMA interface write-safe transactions.. 85

5.1.1.3 DMA write-efficient transactions.. 85

5.1.1.4 DMA bursts that may read past the end of data structures.. 86

5.1.2 Register interface (IP bus)..87

5.2 SEC service interface concepts...88

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 3

Section number Title Page

5.2.1 SEC descriptors..88

5.2.2 Job termination status/error codes..90

5.2.3 Frames and flows... 95

5.2.4 Frame descriptors and frames.. 96

5.2.5 Frame descriptor flow and flow context.. 96

5.2.6 Buffer allocation, release, and reuse.. 97

5.2.7 User data access control and isolation... 97

5.3 Service interfaces.. 98

5.3.1 Job Ring interface.. 99

5.3.1.1 Configuring and managing the input/output rings, overview.. 99

5.3.1.2 Managing the input rings... 101

5.3.1.3 Managing the output rings... 102

5.3.1.4 Controlling access to job rings...103

5.3.1.5 Order of job completion...103

5.3.1.6 Initializing job rings... 104

5.3.1.7 Job Ring Registers... 104

5.3.1.8 Asserting job ring interrupts.. 104

5.3.2 Queue Manager Interface (QI)...105

5.3.2.1 Requesting and receiving frame descriptors from QMan.. 106

5.3.2.2 Building job descriptors for QI jobs.. 107

5.3.2.3 Controlling QI access to frame queues and data..107

5.3.2.4 Tracking the completion order of QI jobs..108

5.3.2.5 Initializing the Queue Manager Interface.. 108

5.3.2.6 Done/error notification for QI jobs.. 109

5.3.3 Register-based service interface...109

5.4 Job scheduling...111

5.4.1 Job scheduling - default algorithm...111

5.4.2 Job scheduling - DECO-specific jobs.. 114

5.5 Job execution hardware...115

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

4 NXP Semiconductors

Section number Title Page

5.5.1 Descriptor controller (DECO) and cryptographic control block (CCB)..115

5.5.1.1 Alignment blocks... 116

5.5.2 Cryptographic hardware accelerators (CHAs) (overview).. 117

Chapter 6
Frame queues, frame descriptors, and buffers

6.1 Frame queues.. 119

6.1.1 Dequeue response.. 120

6.1.1.1 Context_A field (preheader).. 121

6.2 Frame descriptors..123

6.2.1 Processing simple frame jobs...124

6.2.2 Processing compound frame jobs.. 125

6.2.3 Frame descriptor error handling...126

6.2.4 Job descriptor construction from frame descriptor.. 127

Chapter 7
Descriptors and descriptor commands

7.1 Job descriptors.. 131

7.2 Trusted descriptors..133

7.3 Shared descriptors...135

7.3.1 Executing shared descriptors in proper order.. 136

7.3.2 Specifying different types of shared descriptor sharing...138

7.3.2.1 Error sharing.. 139

7.3.3 Changing shared descriptors.. 139

7.4 Using in-line descriptors...140

7.5 Using replacement job descriptors..141

7.6 Scatter/gather tables (SGTs)... 143

7.7 Using descriptor commands..144

7.7.1 Command execution order... 145

7.7.1.1 Executing commands when SHR = 0.. 147

7.7.1.2 Executing commands when SHR = 1.. 148

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 5

Section number Title Page

7.7.1.3 Executing commands when REO = 0.. 148

7.7.1.4 Executing commands when REO = 1.. 149

7.7.1.5 Executing additional HEADER commands...150

7.7.1.6 Jumping to another job descriptor..151

7.7.2 Command properties.. 152

7.7.2.1 Blocking commands...152

7.7.2.2 Load/store checkpoint.. 152

7.7.2.3 Done checkpoint.. 152

7.7.3 Command types..153

7.7.4 SEQ vs non-SEQ commands... 154

7.7.4.1 Creating a sequence... 155

7.7.4.2 Using sequences for fixed and variable length data...156

7.7.4.3 Transferring meta data... 157

7.7.4.4 Rewinding a sequence..158

7.7.5 Information FIFO entries... 158

7.7.6 Output FIFO Operation..159

7.7.7 Output Checksum logic..161

7.7.8 Cryptographic class..162

7.7.9 Address pointers...163

7.8 HEADER command..164

7.9 KEY commands..169

7.10 LOAD commands... 173

7.11 FIFO LOAD command...186

7.11.1 Bit length data.. 189

7.11.2 FIFO LOAD input data type ... 190

7.12 ECPARAM command.. 192

7.13 STORE command... 196

7.14 FIFO STORE command... 204

7.15 MOVE, MOVEB, MOVEDW, and MOVE_LEN commands... 210

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

6 NXP Semiconductors

Section number Title Page

7.16 ALGORITHM OPERATION command.. 219

7.17 PROTOCOL OPERATION commands... 226

7.18 PKHA OPERATION command... 245

7.18.1 PKHA OPERATION: clear memory function...247

7.18.2 PKHA OPERATION: Arithmetic Functions...248

7.18.3 PKHA OPERATION: copy memory functions... 255

7.18.4 PKHA OPERATION: Elliptic Curve Functions..257

7.19 SIGNATURE command... 260

7.20 JUMP (HALT) command... 263

7.20.1 Jump type... 264

7.20.1.1 Local conditional jump.. 264

7.20.1.2 Local conditional increment/decrement jump..265

7.20.1.3 Non-local conditional jump... 265

7.20.1.4 Conditional halt..266

7.20.1.5 Conditional halt with user-specified status.. 266

7.20.1.6 Conditional subroutine call.. 267

7.20.1.7 Conditional subroutine return.. 267

7.20.2 Test type...268

7.20.3 JSL and TEST CONDITION fields... 269

7.20.4 JUMP command format... 270

7.21 MATH and MATHI Commands...273

7.22 SEQ IN PTR command...280

7.23 SEQ OUT PTR command...283

Chapter 8
Public Key Cryptography Operations

8.1 Conformance considerations...287

8.2 Discrete-log key-pair generation...288

8.2.1 Inputs to the discrete-log key-pair generation function... 289

8.2.2 Assumptions of the discrete-log key-pair generation function.. 289

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 7

Section number Title Page

8.2.3 Outputs from the discrete-log key-pair generation function..289

8.2.4 Operation of the discrete-log key-pair generation function... 289

8.2.5 Notes associated with the discrete-log key-pair generation function ..290

8.3 Using the Diffie_Hellman function.. 294

8.3.1 Diffie_Hellman requirements.. 294

8.3.2 Inputs to the Diffie-Hellman function..294

8.3.3 Assumptions of the Diffie-Hellman function...295

8.3.4 Outputs from the Diffie-Hellman function.. 295

8.3.5 Operation of the Diffie-Hellman function... 295

8.3.6 Notes associated with the Diffie-Hellman function...295

8.4 Generating DSA and ECDSA signatures..296

8.4.1 Inputs to the DSA and ECDSA signature generation function..297

8.4.2 Assumptions of the DSA and ECDSA signature generation function...297

8.4.3 Outputs from the DSA and ECDSA signature generation function...297

8.4.4 Operation of the DSA and ECDSA signature generation function ...298

8.4.5 Notes associated with the DSA and ECDSA Signature Generation function..298

8.5 Verifying DSA and ECDSA signatures..301

8.5.1 Inputs to the DSA and ECDSA signature verification function.. 302

8.5.2 Assumptions of the DSA and ECDSA signature verification function... 302

8.5.3 Outputs from the DSA and ECDSA signature verification function... 302

8.5.4 Operation of the DSA and ECDSA signature verification function ... 302

8.5.5 Notes associated with the DSA and ECDSA Signature Verification function ... 303

8.6 RSA Finalize Key Generation (RFKG).. 306

8.7 Implementation of the RSA encrypt operation... 307

8.8 Implementation of the RSA decrypt operation... 309

Chapter 9
Protocol acceleration

9.1 IPsec ESP encapsulation and decapsulation overview... 317

9.1.1 IPsec ESP encapsulation and decapsulation mode support... 319

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

8 NXP Semiconductors

Section number Title Page

9.1.2 IPsec ESP error codes.. 319

9.1.3 Programming for IPsec ... 320

9.1.3.1 PDB format for IPsec ESP Transport (and Legacy Tunnel) encapsulation...........................321

9.1.3.2 Common PDB format descriptions for IPsec ESP Transport (and Legacy Tunnel)

decapsulation..324

9.1.3.3 Overriding ESP Transport (and legacy Tunnel) PDB content with the DECO Protocol

Override Register... 327

9.1.3.4 PDB format for IPsec ESP Tunnel encapsulation ...328

9.1.3.5 Common PDB format descriptions for IPsec ESP Tunnel decapsulation............................. 331

9.1.3.6 Overriding ESP Tunnel PDB content with the DECO Protocol Override Register.............. 334

9.1.3.7 IPsec ESP encapsulation CBC-specific PDB segment format descriptions.......................... 336

9.1.3.8 IPsec ESP encapsulation AES-CTR-specific PDB segment format descriptions..................336

9.1.3.9 IPsec ESP encapsulation AES-CCM-specific PDB segment format descriptions................ 337

9.1.3.10 IPsec ESP encapsulation AES-GCM-specific PDB segment format descriptions................ 337

9.1.3.11 IPsec ESP decapsulation CBC-specific PDB segment format descriptions.......................... 338

9.1.3.12 IPsec ESP decapsulation AES-CTR-specific PDB segment format descriptions..................338

9.1.3.13 IPsec ESP decapsulation AES-CCM-specific PDB segment format descriptions................ 339

9.1.3.14 IPsec ESP decapsulation AES-GCM-specific PDB segment format descriptions................ 339

9.1.4 IPsec ESP Transport (and Legacy Tunnel) encapsulation overview... 340

9.1.4.1 Encapsulating the IP header in tunnel mode..341

9.1.4.2 Encapsulating the IP header in transport mode..341

9.1.4.3 Process for IPsec ESP Transport (and Legacy Tunnel) encapsulation.................................. 341

9.1.5 IPsec ESP Cryptographic Encapsulation... 343

9.1.5.1 Process for IPsec encapsulation when using AES-CBC or DES-CBC..................................343

9.1.5.2 Process for IPsec encapsulation when using AES-CTR.. 344

9.1.5.3 Process for IPsec encapsulation when using AES-CCM... 346

9.1.5.4 Process for IPsec encapsulation when using AES-GCM...348

9.1.6 IPsec ESP Transport (and Legacy Tunnel) decapsulation procedure overview.. 349

9.1.6.1 IPsec ESP Transport Mode outer IP header decapsulation procedure...................................351

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 9

Section number Title Page

9.1.6.2 IPsec ESP Transport (and Legacy Tunnel) outer IP header decapsulation procedure

(tunnel mode)... 351

9.1.7 IPsec ESP Cryptographic Decapsulation... 352

9.1.7.1 IPsec decapsulation procedure when using AES-CBC or DES-CBC....................................352

9.1.7.2 Process for IPsec decapsulation when using AES-CTR.. 354

9.1.7.3 Process for IPsec decapsulation when using AES-CCM... 355

9.1.7.4 Process for IPsec decapsulation when using AES-GCM...356

9.1.7.5 Use of SPI and the sequence number in decapsulation..357

9.1.7.6 Optional use of ESN in ESP decapsulation... 358

9.1.7.7 Anti-replay checking in IPsec ESP decapsulation... 358

9.1.7.7.1 When anti-replay checking is enabled.. 359

9.1.7.7.2 When anti-replay checking is disabled... 359

9.1.7.8 ICV checking during IPsec ESP decapsulation... 360

9.1.8 IPsec ESP Tunnel encapsulation overview..360

9.1.8.1 Handling the Outer IP Header during ESP Tunnel encapsulation... 360

9.1.8.2 Outer IP Header handling with UDP-encapsulated-ESP... 362

9.1.8.3 ESP Tunnel Outer IP Header manipulation... 362

9.1.8.4 ESP Tunnel handling of Next Header..363

9.1.9 IPsec ESP tunnel decapsulation overview... 363

9.1.9.1 Input material preceding the outer IP header... 364

9.1.9.2 Handling the Outer IP Header during ESP Tunnel decapsulation... 364

9.1.9.3 Manipulation of the Inner IP Header during ESP Tunnel decapsulation...............................365

9.1.9.4 Decapsulation Output Frame Length... 366

9.2 SSL/TLS/DTLS record encapsulation and decapsulation overview.. 366

9.2.1 Programming and processing details common to all versions of SSL, TLS, and DTLS...........................367

9.2.1.1 PDB use and format for SSL, TLS, and DTLS encapsulation and decapsulation.................368

9.2.1.1.1 PDB for SSL, TLS, and DTLS when a Block Cipher is used............................ 368

9.2.1.1.2 PDB for SSL, TLS, and DTLS when AES-Counter mode is used.....................369

9.2.1.1.3 PDB for TLS and DTLS when AES-GCM is used...370

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

10 NXP Semiconductors

Section number Title Page

9.2.1.1.4 PDB for TLS and DTLS when AES-CCM is used...371

9.2.1.1.5 Programming the Options byte with the PDB for SSL, TLS and DTLS............372

9.2.1.2 Overriding the PDB for SSL, TLS, and DTLS Encapsulation.. 374

9.2.1.3 Computing the pre-encrypted record length during decapsulation..375

9.2.1.4 SSL, TLS, DTLS Decapsulation Output frame options...376

9.2.1.5 SSL / TLS / DTLS error codes...378

9.2.2 Process for SSL 3.0 and TLS 1.0 record encapsulation...378

9.2.2.1 Differences between SSL 3.0 and TLS 1.0 (record encapsulation)....................................... 379

9.2.2.2 Processing SSL 3.0 and TLS 1.0 record encapsulation with block ciphers...........................380

9.2.3 Process for SSL 3.0 and TLS 1.0 record decapsulation...381

9.2.3.1 SSL 3.0 and TLS 1.0 Record Decapsulation for block ciphers... 382

9.2.3.2 Differences between SSL 3.0 and TLS 1.0 (record decapsulation)....................................... 382

9.2.4 Process for TLS 1.1 and TLS 1.2 record encapsulation...383

9.2.4.1 Differences between TLS 1.0, TLS 1.1, and TLS 1.2 Record Encapsulation....................... 384

9.2.4.2 Support for IV generation in TLS 1.1 and TLS 1.2 record encapsulation.............................384

9.2.4.3 Processing TLS 1.1 and TLS 1.2 record encapsulation with block ciphers (AES or DES).. 386

9.2.4.4 Processing TLS 1.1 and TLS 1.2 record encapsulation with stream ciphers.........................387

9.2.4.5 Processing TLS 1.1 and TLS 1.2 record encapsulation with AEAD ciphers........................ 388

9.2.5 Process for TLS 1.1 and TLS 1.2 record decapsulation...389

9.2.5.1 Decapsulation of TLS 1.1 and TLS 1.2 records when a stream cipher is used......................390

9.2.5.2 Decapsulation of TLS 1.1 and TLS 1.2 records when a block cipher is used....................... 392

9.2.5.3 Decapsulation of TLS 1.2 records when an AEAD is used... 393

9.2.6 Process for DTLS record encapsulation...394

9.2.6.1 Differences between DTLS and TLS...395

9.2.6.2 Process of DTLS Record Encapsulation when using a Block Cipher................................... 395

9.2.6.3 Process of DTLS Record Encapsulation when using a Stream Cipher..................................397

9.2.6.4 DTLS 1.2 Record Encapsulation when using an AEAD Cipher... 398

9.2.7 Process for DTLS record decapsulation...399

9.2.7.1 Differences between DTLS and TLS...400

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 11

Section number Title Page

9.2.7.2 Process of DTLS Record Decapsulation when using a Block Cipher................................... 400

9.2.7.3 Process of DTLS Record Decapsulation when using a Stream Cipher................................. 402

9.2.7.4 DTLS 1.2 Record Decapsulation when using an AEAD Cipher... 403

9.3 SRTP packet encapsulation and decapsulation...405

9.3.1 Building the initial counter value (Counter IV)... 406

9.3.2 Building the AEAD Nonce.. 406

9.3.3 Constructing the AESA context from the SRTP AEAD Nonce for AES-CCM mode..............................407

9.3.4 SRTP encapsulation... 408

9.3.4.1 Process for SRTP encapsulation.. 409

9.3.4.2 Handling the optional MKI.. 410

9.3.4.3 SRTP encapsulation PDB format descriptions.. 410

9.3.4.4 SRTP encapsulation error conditions...411

9.3.5 SRTP decapsulation overview... 411

9.3.5.1 Process for SRTP decapsulation.. 412

9.3.5.2 SRTP decapsulation PDB format descriptions.. 413

9.3.5.3 SRTP decapsulation error conditions...415

9.4 IEEE 802.1AE MACsec encapsulation and decapsulation overview...415

9.4.1 Process for 802.1AE MACsec encapsulation.. 416

9.4.1.1 Using the frame check sequence (FCS)... 418

9.4.1.2 Additional notes for GMAC support... 419

9.4.2 MACsec encapsulation PDB format descriptions..420

9.4.3 Process for 802.1AE MACSec decapsulation..421

9.4.3.1 Automatically switching between two keys...423

9.4.3.2 Additional notes for GMAC support (decapsulation)..424

9.4.4 MACsec decapsulation PDB format descriptions..424

9.5 IEEE 802.11-2012 WPA2 MPDU encapsulation and decapsulation .. 425

9.5.1 Processing Common to WPA2 Encapsulation and Decapsulation.. 426

9.5.1.1 Constructing the AAD for WPA2 encapsulation and decapsulation..................................... 426

9.5.1.2 Constructing the CCMP Nonce for WPA2 encapsulation and decapsulation....................... 427

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

12 NXP Semiconductors

Section number Title Page

9.5.1.3 Constructing the AESA context for WPA2 CCMP encapsulation and decapsulation.......... 427

9.5.2 Process for WPA2 encapsulation...428

9.5.2.1 Constructing the CCMP header for WPA2 encapsulation...429

9.5.2.2 WPA2 Payload Encapsulation... 430

9.5.2.3 Computing the FCS for WPA2 encapsulation... 430

9.5.2.4 WPA2 encapsulation PDB format descriptions... 430

9.5.2.5 WPA2 encapsulation error conditions... 432

9.5.3 Process for WPA2 decapsulation...432

9.5.3.1 WPA2 Decapsulation Anti-replay checking.. 433

9.5.3.2 Using automatic key-switching..434

9.5.3.3 WPA2 decapsulation PDB format descriptions... 434

9.5.3.4 WPA2 decapsulation error conditions... 435

9.6 IEEE 802.16 WiMAX encapsulation and decapsulation overview.. 436

9.6.1 Process for IEEE 802.16 WiMAX encapsulation..437

9.6.2 IEEE 802.16 WiMAX encapsulation PDB format descriptions.. 439

9.6.3 WiMax encapsulation error conditions.. 440

9.6.4 Procedure for IEEE 802.16 WiMAX decapsulation..440

9.6.4.1 Transforming the GMH (WiMAX decapsulation)...442

9.6.4.2 Automatic key switching (WiMAX decapsulation)...443

9.6.5 IEEE 802.16 WiMAX decapsulation PDB format descriptions.. 443

9.6.6 WiMAX decapsulation error conditions.. 444

9.7 Anti-Replay built-in checking...444

9.8 Process for 3G double-CRC encapsulation and decapsulation...447

9.8.1 3G double-CRC encapsulation process..448

9.8.1.1 Calculating the 7-bit CRC of the PDU header for encapsulation.. 448

9.8.1.2 Calculating the 11-bit CRC of the PDU header for encapsulation.. 449

9.8.1.3 Calculating the 16-bit payload CRC for encapsulation... 450

9.8.2 3G double-CRC encapsulation PDB format descriptions..450

9.8.3 3G double-CRC decapsulation process..450

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 13

Section number Title Page

9.8.3.1 Calculating the 7-bit CRC of the PDU header for decapsulation.. 451

9.8.3.2 Calculating the 11-bit CRC of the PDU header for decapsulation.. 451

9.8.3.3 Calculating the 16-bit payload CRC for decapsulation... 452

9.8.4 3G double-CRC decapsulation PDB format descriptions..452

9.9 3G RLC PDU Encapsulation and Decapsulation overview..453

9.9.1 3G RLC PDU encapsulation overview.. 453

9.9.2 Process for 3G RLC PDU encapsulation... 454

9.9.3 3G RLC PDU encapsulation PDB format descriptions... 455

9.9.4 3G RLC PDU decapsulation overview.. 456

9.9.5 Process for 3G RLC PDU decapsulation... 457

9.9.6 3G RLC PDU decapsulation PDB format descriptions... 458

9.9.7 Overriding the PDB for 3G RLC PDU encapsulation and decapsulation... 458

9.10 LTE PDCP PDU encapsulation and decapsulation overview...459

9.10.1 LTE PDCP PDU IV generation... 460

9.10.2 LTE PDCP PDU encapsulation process for confidentiality only.. 463

9.10.3 LTE PDCP PDU encapsulation for confidentiality and integrity.. 465

9.10.4 LTE PDCP PDU decapsulation process for confidentiality only.. 466

9.10.5 LTE PDCP PDU decapsulation for confidentiality and integrity.. 467

9.10.6 LTE PDCP shared descriptor PDB format descriptions.. 469

9.10.7 Overriding the PDB for LTE PDCP encapsulation and decapsulation..469

Chapter 10
Key agreement functions

10.1 IKEv2 PRF overview..471

10.1.1 Using IKE PRF to generate SKEYSEED.. 472

10.1.2 Using IKE PRF+ to generate keying material for the IKEv2 SA.. 472

10.1.3 Using IKE PRF+ to generate Child SA key material...473

10.1.4 Restrictions on programming control blocks... 473

10.1.5 IKE PRF PDB format descriptions.. 474

10.1.6 Implementation details for IKE PRF function... 477

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

14 NXP Semiconductors

Section number Title Page

10.1.7 Implementation Details for IKE PRF+ function.. 478

10.2 SSL/TLS/DTLS pseudo-random functions (PRF)..479

10.2.1 SSL 3.0 PRF overview...479

10.2.1.1 SSL 3.0 PRF definitions...480

10.2.2 Process for SSL 3.0 PRF..481

10.2.3 SSL 3.0 PRF PDB format descriptions..481

10.2.4 TLS 1.0/TLS 1.1/DTLS PRF overview... 484

10.2.4.1 TLS PRF RFC definitions..486

10.2.5 Process for TLS 1.0, TLS 1.1, DTLS PRF.. 487

10.2.5.1 How TLS uses PRF material..487

10.2.5.2 Concatenating input material into one input string (TLS 1.0/1.1/DTLS)..............................488

10.2.6 TLS 1.0, TLS 1.1, DTLS PRF PDB format descriptions...489

10.2.7 TLS 1.2 PRF overview...492

10.2.8 Process for TLS 1.2 PRF..493

10.2.8.1 Concantenating input material into one input string (TLS 1.2)... 494

10.2.8.2 How TLS uses PRF material (TLS 1.2)...494

10.2.9 TLS 1.2 PRF PDB format descriptions..495

10.3 Implementation of the derived key protocol...497

10.3.1 Using DKP with HMAC keys..498

10.3.2 Implementation of the Blob Protocol...499

Chapter 11
Cryptographic hardware accelerators (CHAs)

11.1 Public-key hardware accelerator (PKHA) functionality...502

11.1.1 Modular math...503

11.1.2 About Montgomery values...503

11.1.3 Non-modular Math...505

11.1.4 Elliptic-Curve Math... 505

11.1.4.1 Point math over a prime field (Fp)...506

11.1.4.2 Point math over a binary field (F2m)...507

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 15

Section number Title Page

11.1.4.3 About Jacobian projective coordinates.. 508

11.1.4.4 About the Point at Infinity... 509

11.1.5 PKHA Mode Register.. 509

11.1.6 PKHA functions...509

11.1.6.1 Clear Memory (CLEAR_MEMORY) function... 510

11.1.6.2 Integer Modular Addition (MOD_ADD) function.. 512

11.1.6.3 Integer Modular Subtraction (MOD_SUB_1) function... 512

11.1.6.4 Integer Modular Subtraction (MOD_SUB_2) function... 513

11.1.6.5 Integer Modular Multiplication (MOD_MUL)..513

11.1.6.6 Integer Modular Multiplication with Montgomery Inputs (MOD_MUL_IM)......................514

11.1.6.7 Integer Modular Multiplication with Montgomery Inputs and Outputs

(MOD_MUL_IM_OM) Function.. 515

11.1.6.8 Integer Modular Exponentiation (MOD_EXP and MOD_EXP_TEQ)................................. 515

11.1.6.9 Integer Modular Exponentiation, Montgomery Input (MOD_EXP_IM and

MOD_EXP_IM_TEQ) Function..516

11.1.6.10 Integer Simultaneous Modular Exponentiation (MOD_SML_EXP).....................................517

11.1.6.11 Integer Modular Square (MOD_SQR and MOD_SQR_TEQ).. 518

11.1.6.12 Integer Modular Square, Montgomery inputs (MOD_SQR_IM and

MOD_SQR_IM_TEQ)...518

11.1.6.13 Integer Modular Square, Montgomery inputs and outputs (MOD_SQR_IM_OM and

MOD_SQR_IM_OM_TEQ).. 519

11.1.6.14 Integer Modular Cube (MOD_CUBE and MOD_CUBE_TEQ)...520

11.1.6.15 Integer Modular Cube, Montgomery input (MOD_CUBE_IM and

MOD_CUBE_IM_TEQ)..520

11.1.6.16 Integer Modular Cube, Montgomery input and output (MOD_CUBE_IM_OM and

MOD_CUBE_IM_OM_TEQ)... 521

11.1.6.17 Integer Modular Square Root (MOD_SQRT)... 522

11.1.6.18 Integer Modulo Reduction (MOD_AMODN)... 523

11.1.6.19 Integer Modular Inversion (MOD_INV)... 523

11.1.6.20 Integer Montgomery Factor Computation (MOD_R2)..524

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

16 NXP Semiconductors

Section number Title Page

11.1.6.21 Integer Greatest Common Divisor (MOD_GCD)..524

11.1.6.22 Miller_Rabin Primality Test (PRIME_TEST)...525

11.1.6.23 Binary Polynomial (F2m) Addition (F2M_ADD) function...525

11.1.6.24 Binary Polynomial (F2m) Modular Multiplication (F2M_MUL)... 526

11.1.6.25 Binary Polynomial (F2m) Modular Multiplication with Montgomery Inputs

(F2M_MUL_IM) Function.. 527

11.1.6.26 Binary Polynomial (F2m) Modular Multiplication with Montgomery Inputs and Outputs

(F2M_MUL_IM_OM) Function..528

11.1.6.27 Binary Polynomial (F2m) Modular Exponentiation (F2M_EXP and F2M_EXP_TEQ)...... 528

11.1.6.28 Binary Polynomial (F2m) Simultaneous Modular Exponentiation (F2M_SML_EXP)........ 529

11.1.6.29 Binary Polynomial (F2m) Modular Square (F2M_SQR and F2M_SQR_TEQ)................... 530

11.1.6.30 Binary Polynomial (F2m) Modular Square, Montgomery Input (F2M_SQR_IM and

F2M_SQR_IM_TEQ).. 531

11.1.6.31 Binary Polynomial (F2m) Modular Square, Montgomery Input and Output

(F2M_SQR_IM_OM and F2M_SQR_IM_OM_TEQ)..531

11.1.6.32 Binary Polynomial (F2m) Modular Cube (F2M_CUBE and F2M_CUBE_TEQ)................ 532

11.1.6.33 Binary Polynomial (F2m) Modular Cube, Montgomery Input (F2M_CUBE_IM and

F2M_CUBE_IM_TEQ)... 533

11.1.6.34 Binary Polynomial (F2m) Modular Cube, Montgomery Input and Output

(F2M_CUBE_IM_OM and F2M_CUBE_IM_OM_TEQ)..534

11.1.6.35 Binary Polynomial (F2m) Modulo Reduction (F2M_AMODN)...534

11.1.6.36 Binary Polynomial (F2m) Modular Inversion (F2M_INV)...535

11.1.6.37 Binary Polynomial (F2m) R2 Mod N (F2M_R2) Function...536

11.1.6.38 Binary Polynomial (F2m) Greatest Common Divisor (F2M_GCD) Function...................... 536

11.1.6.39 ECC Fp Point Add, Affine Coordinates (ECC_MOD_ADD) Function................................537

11.1.6.40 ECC Fp Point Add, Affine Coordinates, R2 Mod N Input (ECC_MOD_ADD_R2)

Function... 537

11.1.6.41 ECC Fp Point Double, Affine Coordinates (ECC_MOD_DBL) Function............................538

11.1.6.42 ECC Fp Point Multiply, Affine Coordinates (ECC_MOD_MUL and

ECC_MOD_MUL_TEQ) Function... 539

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 17

Section number Title Page

11.1.6.43 ECC Fp Point Multiply, R2 Mod N Input, Affine Coordinates (ECC_MOD_MUL_R2

and ECC_MOD_MUL_R2_TEQ) Function..540

11.1.6.44 ECC Fp Check Point (ECC_MOD_CHECK_POINT) Function...541

11.1.6.45 ECC Fp Check Point, R2 Mod N Input, Affine Coordinates

(ECC_MOD_CHECK_POINT_R2) Function...542

11.1.6.46 ECC F2m Point Add, Affine Coordinates (ECC_F2M_ADD) Function.............................. 543

11.1.6.47 ECC F2m Point Add, Affine Coordinates, R2 Mod N Input (ECC_F2M_ADD_R2)

Function... 544

11.1.6.48 ECC F2m Point Double - Affine Coordinates (ECC_F2M_DBL) Function.........................545

11.1.6.49 ECC F2m Point Multiply, Affine Coordinates (ECC_F2M_MUL and

ECC_F2M_MUL_TEQ) Function...546

11.1.6.50 ECC F2m Point Multiply, R2 Mod N Input, Affine Coordinates (ECC_F2M_MUL_R2

and ECC_F2M_MUL_R2_TEQ) Function... 547

11.1.6.51 ECC F2m Check Point (ECC_F2M_CHECK_POINT) Function... 548

11.1.6.52 ECC F2m Check Point, R2 (ECC_F2M_CHECK_POINT_R2) Function............................549

11.1.6.53 ECM Modular Multiplication (ECM_MOD_MUL and ECM_MOD_MUL_TEQ)

Function... 550

11.1.6.54 ECM Fp Point Multiply, R2 Mod N Input, Affine Coordinates (ECM_MOD_MUL_R2

and ECM_MOD_MUL_R2_TEQ) Function... 551

11.1.6.55 ECT Modular Multiplication (ECT_MOD_MUL and ECT_MOD_MUL_TEQ) Function. 552

11.1.6.56 ECT Fp Point Multiply, R2 Mod N Input, Affine Coordinates (ECT_MOD_MUL_R2 and

ECT_MOD_MUL_R2_TEQ) Function...553

11.1.6.57 ECT Fp Point Add, Affine Coordinates (ECT_MOD_ADD) Function................................ 555

11.1.6.58 ECT Fp Point Add, Affine Coordinates, R2 Mod N Input (ECT_MOD_ADD_R2)

Function... 555

11.1.6.59 ECT Fp Check Point (ECT_MOD_CHECK_POINT) Function... 556

11.1.6.60 ECT Fp Check Point, R2 (ECT_MOD_CHECK_POINT_R2) Function..............................557

11.1.6.61 Copy memory, N-Size and Source-Size (COPY_NSZ and COPY_SSZ)............................. 558

11.1.6.62 Right Shift A (R_SHIFT) function.. 559

11.1.6.63 Compare A B (COMPARE) function.. 559

11.1.6.64 Evaluate A (EVALUATE) function.. 560

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

18 NXP Semiconductors

Section number Title Page

11.1.7 Special values for common ECC domains...561

11.2 Kasumi f8 and f9 hardware accelerator(KFHA) functionality... 580

11.2.1 KFHA use of the Mode Register..580

11.2.2 KFHA use of the Context Register.. 581

11.2.3 KFHA use of the Key Register.. 582

11.2.4 KFHA use of the Data Size Register... 582

11.2.5 KFHA error conditions.. 582

11.3 Data encryption standard accelerator (DES) functionality... 583

11.3.1 DESA use of the Mode Register.. 583

11.3.2 DESA use of the Key Register...584

11.3.3 DESA use of the Key Size Register...584

11.3.4 DESA use of the Data Size Register..584

11.3.5 DESA Context Register... 585

11.3.6 Save and store operations in DESA context data...585

11.4 Cyclic-redundancy check accelerator (CRCA) functionality... 585

11.4.1 CRCA modes of operation...586

11.4.2 CRCA use of the Mode Register..586

11.4.3 CRCA Key Register...588

11.4.4 CRCA Key Size Register...588

11.4.5 CRCA Data Size Register.. 588

11.4.6 CRCA Context Register...588

11.4.7 Save and restore operations in CRCA context data... 589

11.5 Random-number generator (RNG) functionality..589

11.5.1 RNG features summary..589

11.5.2 RNG functional description .. 590

11.5.2.1 RNG state handles..590

11.5.2.2 RNG NIST certification... 590

11.5.3 RNG operations..592

11.5.4 RNG use of the Key Registers... 593

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 19

Section number Title Page

11.5.5 RNG use of the Context Register...593

11.5.6 RNG use of the Data Size Register..594

11.6 SNOW 3G f8 accelerator functionality...594

11.6.1 Differences between SNOW 3G f8 and SNOW 3G f9..594

11.6.2 SNOW 3G f8 use of the Mode Register.. 595

11.6.3 SNOW 3G f8 use of the Context Register... 596

11.6.4 SNOW 3G f8 use of the Data Size Register.. 596

11.6.5 SNOW 3G f8 use of the Key Register... 597

11.6.6 SNOW 3G f8 use of the Key Size Register... 597

11.7 SNOW 3G f9 accelerator functionality...597

11.7.1 SNOW 3G f9 use of the Mode Register.. 598

11.7.2 SNOW 3G f9 use of the Context Register... 599

11.7.3 SNOW 3G f9 use of the Data Size Register.. 600

11.7.4 SNOW 3G f9 use of the Key Register... 600

11.7.5 SNOW 3G f9 use of the Key Size Register... 601

11.7.6 SNOW 3G f9 use of ICV check...601

11.8 Message digest hardware accelerator (MDHA) functionality.. 601

11.8.1 MDHA use of the Mode Register.. 602

11.8.2 MDHA use of the Key Register...603

11.8.2.1 Using the MDHA Key Register with normal keys.. 603

11.8.2.2 Using the MDHA Key Register with IPAD/OPAD "split keys"... 603

11.8.2.2.1 Definition and function of IPAD/OPAD split keys.. 604

11.8.2.2.2 Process flow of using the Key Register with split keys......................................604

11.8.2.2.3 Using padding with the split key type to align with storage...............................604

11.8.2.2.4 Length of a split key... 604

11.8.2.2.5 Loading/storing a split key with a key command... 604

11.8.2.2.6 Loading/storing a split key with a FIFO STORE command...............................605

11.8.2.2.7 Sizes of split keys..605

11.8.2.2.8 Constructing an HMAC-SHA-1 split key in memory.. 605

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

20 NXP Semiconductors

Section number Title Page

11.8.2.3 MDHA use of the Key Size Register... 606

11.8.3 MDHA use of the Data Size Register.. 606

11.8.4 MDHA use of the Context Register...607

11.8.5 Save and restore operations in MDHA context data..607

11.9 AES accelerator (AESA) functionality...607

11.9.1 Differences between the AES encrypt and decrypt keys... 607

11.9.2 AESA as both Class 1 and Class 2 CHA... 608

11.9.3 AESA modes of operation... 609

11.9.4 AESA use of registers.. 610

11.9.5 AESA use of the parity bit... 611

11.9.6 AES ECB mode... 611

11.9.6.1 AES ECB mode use of the Mode Register.. 611

11.9.6.2 AES ECB mode use of the Context Register...612

11.9.6.3 AES ECB Mode use of the Data Size Register ...612

11.9.6.4 AES ECB Mode use of the Key Register.. 612

11.9.6.5 AES ECB Mode use of the Key Size Register...612

11.9.7 AES CBC, OFB, CFB128 modes.. 613

11.9.7.1 AES CBC, OFB, and CFB128 modes use of the Mode Register.. 613

11.9.7.2 AES CBC, OFB, and CFB128 modes use of the Context Register....................................... 614

11.9.7.3 AES CBC, OFB, and CFB128 modes use of the Data Size Register.................................... 614

11.9.7.4 AES CBC, OFB, and CFB128 modes use of the Key Register... 615

11.9.7.5 AES CBC, OFB, and CFB128 modes use of the Key Size Register..................................... 615

11.9.8 AES CTR mode... 615

11.9.8.1 AES CTR mode use of the Mode Register.. 615

11.9.8.2 AES CTR mode use of the Context Register...616

11.9.8.3 AES CTR mode use of the Data Size Register.. 616

11.9.8.4 AES CTR mode use of the Key Register...616

11.9.8.5 AES CTR mode use of the Key Size Register... 617

11.9.9 AES XTS mode..617

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 21

Section number Title Page

11.9.9.1 AES XTS mode use of the Mode Register.. 617

11.9.9.2 AES XTS mode use of the Context Register... 617

11.9.9.3 AES XTS mode use of the Data Size Register.. 618

11.9.9.4 AES XTS mode use of the Key Register... 618

11.9.9.5 AES XTS mode use of the Key Size Register... 619

11.9.10 AES XCBC-MAC and CMAC modes...619

11.9.10.1 AES XCBC-MAC and CMAC modes use of the Mode Register..619

11.9.10.2 AES XCBC-MAC and CMAC Modes use of the Context Register......................................621

11.9.10.3 AES XCBC-MAC and CMAC modes use of the Class 1 ICV Size Register....................... 621

11.9.10.4 AES XCBC-MAC and CMAC modes use of the Data Size Register................................... 622

11.9.10.5 AES XCBC-MAC and CMAC modes use of the Key Register.. 622

11.9.10.6 AES XCBC-MAC and CMAC modes use of the Key Size Register.................................... 622

11.9.10.7 ICV checking in AES XCBC-MAC and CMAC modes... 622

11.9.11 AESA CCM mode... 623

11.9.11.1 Generation encryption..623

11.9.11.2 Decryption verification.. 623

11.9.11.3 AES CCM mode use of the Mode Register... 624

11.9.11.4 AES CCM mode use of the Context Register..625

11.9.11.5 AES CCM mode use of the Data Size Register... 626

11.9.11.6 AES CCM mode use of the Key Register..626

11.9.11.7 AES CCM mode use of the Key Size Register..626

11.9.11.8 AES CCM mode use of the ICV check..627

11.9.12 AES GCM mode.. 627

11.9.12.1 GMAC..628

11.9.12.2 GCM data types... 628

11.9.12.3 IV processing... 628

11.9.12.4 GCM initialization... 628

11.9.12.5 AES GCM mode use of the Mode Register...628

11.9.12.6 AES GCM mode use of the Context Register..630

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

22 NXP Semiconductors

Section number Title Page

11.9.12.7 AES GCM Mode use of the Data Size Register.. 630

11.9.12.8 AES GCM mode use of the Class 1 IV Size Register... 631

11.9.12.9 AES GCM mode use of the AAD Size Register..631

11.9.12.10 AES GCM mode use of the Class 1 ICV Size Register...631

11.9.12.11 AES GCM mode use of the Key Register..631

11.9.12.12 AES GCM mode use of the Key Size Register..631

11.9.12.13 AES GCM mode use of the ICV check... 632

11.9.13 AESA optimization modes...632

11.9.13.1 CTR-XCBC and CTR-CMAC modes data format.. 632

11.9.13.2 CTR-XCBC and CTR-CMAC modes message format... 632

11.9.13.3 CTR-CMAC-LTE for LTE PDCP control-plane processing...633

11.9.13.4 Authentication-only data..633

11.9.13.5 AES optimization modes use of the Mode Register.. 633

11.9.13.6 AES optimization modes use of the Context Register...635

11.9.13.7 AES optimization modes use of the Data Size Register.. 638

11.9.13.8 AES optimization modes use of the AAD Size Register... 639

11.9.13.9 AES optimization modes use of the Class 1 ICV Size Register.. 639

11.9.13.10 AES optimization modes use of the Class 1 Key Register.. 640

11.9.13.11 AES optimization modes use of the Class 2 Key Register.. 640

11.9.13.12 AES optimization modes use of the Class 1 Key Size Register.. 640

11.9.13.13 AES optimization modes use of the Class 2 Key Size Register.. 641

11.9.13.14 AES optimization modes use of the ICV check...641

11.9.13.15 AES optimization modes error conditions... 641

11.10 ZUC encryption accelerator (ZUCE) functionality.. 643

11.10.1 Differences between ZUCE and ZUCA...643

11.10.2 ZUCE use of the Mode Register.. 644

11.10.3 ZUCE use of the Context Register...644

11.10.4 ZUCE use of the Data Size Register..645

11.10.5 ZUCE use of the Key Register...645

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 23

Section number Title Page

11.10.6 ZUCE use of the Key Size Register ..646

11.11 ZUC authentication accelerator (ZUCA) functionality.. 646

11.11.1 ZUCA use of the Mode Register..646

11.11.2 ZUCA use of the Context Register.. 647

11.11.3 ZUCA use of the Data Size Register... 649

11.11.4 ZUCA use of the Key Register.. 649

11.11.5 ZUCA use of the Key Size Register.. 649

11.11.6 ZUCA use of ICV checking...649

Chapter 12
Trust Architecture modules

12.1 Run-time integrity checker (RTIC)...651

12.1.1 RTIC modes of operation...651

12.1.2 RTIC initialization and operation.. 651

12.1.3 RTIC use of the Throttle Register..652

12.1.4 RTIC use of command, configuration, and status registers... 652

12.1.5 Initializing RTIC.. 653

12.1.6 RTIC Memory Block Address/Length Registers...653

12.2 SEC virtualization and security domain identifiers (SDIDs)..654

12.2.1 Virtualization... 654

12.2.2 Security domain identifiers (SDIDs)..654

12.2.3 TrustZone SecureWorld...655

12.3 Special-purpose cryptographic keys... 655

12.3.1 Initializing and clearing black and trusted descriptor keys..656

12.3.2 Black keys and JDKEK/TDKEK...656

12.3.3 Trusted descriptors and TDSK...656

12.3.4 Master key and blobs... 656

12.4 Black keys...657

12.4.1 Black key encapsulation schemes.. 657

12.4.2 Differences between black and red keys..657

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

24 NXP Semiconductors

Section number Title Page

12.4.3 Loading red keys..658

12.4.4 Loading black keys.. 658

12.4.5 Avoiding errors when loading red and black keys...658

12.4.6 Encapsulating and decapsulating black keys... 659

12.4.7 Types of black keys and their use.. 660

12.4.8 Types of blobs for key storage...661

12.5 Trusted descriptors..662

12.5.1 Why trusted descriptors are needed... 662

12.5.2 Trusted-descriptor key types and uses... 662

12.5.3 Trusted descriptors encrypting/decrypting black keys...663

12.5.4 Trusted-descriptor blob types and uses..663

12.5.5 Configuring the system to create trusted descriptors properly.. 663

12.5.6 Creating trusted descriptors... 664

12.5.6.1 Trusted descriptors and descriptor-header bits.. 664

12.5.6.2 Trusted-descriptor execution considerations... 665

12.6 Blobs... 666

12.6.1 Blob protocol..666

12.6.2 Why blobs are needed.. 667

12.6.3 Blob conformance considerations..667

12.6.4 Encapsulating and decapsulating blobs..669

12.6.5 Blob types.. 669

12.6.5.1 Blob types differentiated by format... 670

12.6.5.2 Blob types differentiated by content.. 671

12.6.5.2.1 Red blobs (for general data)..671

12.6.5.2.2 Black blobs (for cryptographic keys)..671

12.6.5.2.3 Enforcing blob content type..672

12.6.5.3 Blob types differentiated by security state...672

12.6.6 Blob encapsulation...673

12.6.7 Blob decapsulation...674

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 25

Section number Title Page

12.7 Critical security parameters.. 675

12.8 Manufacturing-protection chip-authentication process.. 675

12.8.1 Providing data to the manufacturing-protection authentication process..677

12.8.1.1 Providing data to the MPPrivK-generation function... 677

12.8.1.2 Providing data to the MPPubK-generation function..677

12.8.1.3 Providing data to the MPSign function..678

12.8.1.4 Role of the ROM-resident secure boot firmware...678

12.8.2 MPPrivK-generation function..679

12.8.2.1 Differences between the MPPrivK-generation function and the DL KEY PAIR GEN

function.. 679

12.8.2.2 MPPrivK-generation function parameters and operation.. 679

12.8.2.3 Protocol data block (PDB) for the MPPrivK-generation function...680

12.8.3 MPPubK-generation function.. 681

12.8.3.1 Differences between the MPPubK-generation function and the DL KEY PAIR GEN

function.. 681

12.8.3.2 MPPubK-generation function parameters and operation...682

12.8.3.3 Protocol data block (PDB) for the MPPubK-generation function... 682

12.8.3.4 Running the MPPubK generation function at the OEM's facility..683

12.8.4 MPSign function.. 683

12.8.4.1 MPSign function parameters and operation...684

12.8.4.2 Protocol data block (PDB) MPSign function...685

Chapter 13
SEC register descriptions

13.1 SEC Memory map...689

13.2 Master Configuration Register (MCFGR)..737

13.2.1 Offset..737

13.2.2 Function... 737

13.2.3 Diagram..737

13.2.4 Fields..738

13.3 Security Configuration Register (SCFGR)... 741

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

26 NXP Semiconductors

Section number Title Page

13.3.1 Offset..741

13.3.2 Function... 742

13.3.3 Diagram..743

13.3.4 Fields..744

13.4 Job Ring a ICID Register - most significant half (JR0ICID_MS - JR3ICID_MS).. 745

13.4.1 Offset..745

13.4.2 Function... 745

13.4.3 Diagram..746

13.4.4 Fields..746

13.5 Job Ring a ICID Register - least significant half (JR0ICID_LS - JR3ICID_LS)...747

13.5.1 Offset..747

13.5.2 Function... 747

13.5.3 Diagram..748

13.5.4 Fields..748

13.6 Queue Manager Interface SDID Register (QISDID)..749

13.6.1 Offset..749

13.6.2 Function... 749

13.6.3 Diagram..749

13.6.4 Fields..750

13.7 Debug Control Register (DEBUGCTL)... 750

13.7.1 Offset..750

13.7.2 Function... 750

13.7.3 Diagram..751

13.7.4 Fields..751

13.8 Job Ring Start Register (JRSTARTR).. 751

13.8.1 Offset..752

13.8.2 Function... 752

13.8.3 Diagram..752

13.8.4 Fields..752

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 27

Section number Title Page

13.9 RTIC ICID Register for Block a - most significant half (RTICAICID_MS - RTICDICID_MS)..............................753

13.9.1 Offset..754

13.9.2 Function... 754

13.9.3 Diagram..754

13.9.4 Fields..754

13.10 RTIC ICID Register for Block a - least significant half (RTICAICID_LS - RTICDICID_LS)................................ 755

13.10.1 Offset..755

13.10.2 Function... 755

13.10.3 Diagram..755

13.10.4 Fields..756

13.11 DECO Request Source Register (DECORSR)... 756

13.11.1 Offset..756

13.11.2 Function... 756

13.11.3 Diagram..757

13.11.4 Fields..757

13.12 DECO Request Register (DECORR)..757

13.12.1 Offset..758

13.12.2 Function... 758

13.12.3 Diagram..758

13.12.4 Fields..759

13.13 DECOa ICID Register - most significant half (DECO0ICID_MS - DECO2ICID_MS)... 759

13.13.1 Offset..760

13.13.2 Function... 760

13.13.3 Diagram..760

13.13.4 Fields..760

13.14 DECOa ICID Register - least significant half (DECO0ICID_LS - DECO2ICID_LS).. 761

13.14.1 Offset..761

13.14.2 Function... 761

13.14.3 Diagram..761

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

28 NXP Semiconductors

Section number Title Page

13.14.4 Fields..762

13.15 DECO Availability Register (DAR)... 762

13.15.1 Offset..762

13.15.2 Function... 763

13.15.3 Diagram..763

13.15.4 Fields..763

13.16 DECO Reset Register (DRR)..764

13.16.1 Offset..764

13.16.2 Function... 764

13.16.3 Diagram..764

13.16.4 Fields..764

13.17 DMA Control Register (DMAC - DMA_CTRL)... 765

13.17.1 Offset..765

13.17.2 Function... 765

13.17.3 Diagram..765

13.17.4 Fields..766

13.18 Peak Bandwidth Smoothing Limit Register (PBSL).. 766

13.18.1 Offset..766

13.18.2 Function... 766

13.18.3 Diagram..767

13.18.4 Fields..767

13.19 DMA0_AIDL_MAP_MS (DMA0_AIDL_MAP_MS).. 767

13.19.1 Offset..767

13.19.2 Function... 767

13.19.3 Diagram..768

13.19.4 Fields..769

13.20 DMA0_AIDL_MAP_LS (DMA0_AIDL_MAP_LS).. 769

13.20.1 Offset..769

13.20.2 Function... 769

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 29

Section number Title Page

13.20.3 Diagram..770

13.20.4 Fields..770

13.21 DMA0_AIDM_MAP_MS (DMA0_AIDM_MAP_MS)..770

13.21.1 Offset..771

13.21.2 Function... 771

13.21.3 Diagram..771

13.21.4 Fields..771

13.22 DMA0_AIDM_MAP_LS (DMA0_AIDM_MAP_LS).. 772

13.22.1 Offset..772

13.22.2 Function... 772

13.22.3 Diagram..772

13.22.4 Fields..773

13.23 DMA0 AXI ID Enable Register (DMA0_AID_ENB)... 773

13.23.1 Offset..773

13.23.2 Function... 773

13.23.3 Diagram..774

13.23.4 Fields..774

13.24 DMA0 AXI Read Timing Check Register (DMA0_ARD_TC)... 775

13.24.1 Offset..775

13.24.2 Function... 776

13.24.3 Diagram..776

13.24.4 Fields..777

13.25 DMA0 Read Timing Check Latency Register (DMA0_ARD_LAT)...778

13.25.1 Offset..778

13.25.2 Function... 778

13.25.3 Diagram..779

13.25.4 Fields..779

13.26 DMA0 AXI Write Timing Check Register (DMA0_AWR_TC)... 779

13.26.1 Offset..779

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

30 NXP Semiconductors

Section number Title Page

13.26.2 Function... 780

13.26.3 Diagram..780

13.26.4 Fields..781

13.27 DMA0 Write Timing Check Latency Register (DMA0_AWR_LAT)...782

13.27.1 Offset..782

13.27.2 Function... 782

13.27.3 Diagram..783

13.27.4 Fields..783

13.28 Manufacturing Protection Private Key Register (MPPKR0 - MPPKR63)...783

13.28.1 Offset..783

13.28.2 Function... 783

13.28.3 Diagram..784

13.28.4 Fields..784

13.29 Manufacturing Protection Message Register (MPMR0 - MPMR31)... 784

13.29.1 Offset..784

13.29.2 Function... 785

13.29.3 Diagram..785

13.29.4 Fields..785

13.30 Manufacturing Protection Test Register (MPTESTR0 - MPTESTR31).. 785

13.30.1 Offset..785

13.30.2 Function... 786

13.30.3 Diagram..786

13.30.4 Fields..786

13.31 Job Descriptor Key Encryption Key Register (JDKEKR0 - JDKEKR7)... 786

13.31.1 Offset..786

13.31.2 Function... 787

13.31.3 Diagram..787

13.31.4 Fields..788

13.32 Trusted Descriptor Key Encryption Key Register (TDKEKR0 - TDKEKR7)...788

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 31

Section number Title Page

13.32.1 Offset..788

13.32.2 Function... 788

13.32.3 Diagram..788

13.32.4 Fields..789

13.33 Trusted Descriptor Signing Key Register (TDSKR0 - TDSKR7)..789

13.33.1 Offset..789

13.33.2 Function... 789

13.33.3 Diagram..790

13.33.4 Fields..790

13.34 Secure Key Nonce Register (SKNR)..790

13.34.1 Offset..790

13.34.2 Function... 790

13.34.3 Diagram..791

13.34.4 Fields..791

13.35 DMA Status Register (DMA_STA)..792

13.35.1 Offset..792

13.35.2 Diagram..792

13.35.3 Fields..792

13.36 DMA_X_AID_7_4_MAP (DMA_X_AID_7_4_MAP)...793

13.36.1 Offset..793

13.36.2 Function... 793

13.36.3 Diagram..794

13.36.4 Fields..794

13.37 DMA_X_AID_3_0_MAP (DMA_X_AID_3_0_MAP)...795

13.37.1 Offset..795

13.37.2 Function... 795

13.37.3 Diagram..795

13.37.4 Fields..796

13.38 DMA_X_AID_15_12_MAP (DMA_X_AID_15_12_MAP)...796

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

32 NXP Semiconductors

Section number Title Page

13.38.1 Offset..796

13.38.2 Function... 796

13.38.3 Diagram..797

13.38.4 Fields..797

13.39 DMA_X_AID_11_8_MAP (DMA_X_AID_11_8_MAP)...797

13.39.1 Offset..798

13.39.2 Function... 798

13.39.3 Diagram..798

13.39.4 Fields..798

13.40 DMA_X AXI ID Map Enable Register (DMA_X_AID_15_0_EN)..799

13.40.1 Offset..799

13.40.2 Function... 799

13.40.3 Diagram..799

13.40.4 Fields..800

13.41 DMA_X AXI Read Timing Check Control Register (DMA_X_ARTC_CTL)... 801

13.41.1 Offset..801

13.41.2 Function... 801

13.41.3 Diagram..802

13.41.4 Fields..802

13.42 DMA_X AXI Read Timing Check Late Count Register (DMA_X_ARTC_LC).. 803

13.42.1 Offset..803

13.42.2 Function... 803

13.42.3 Diagram..804

13.42.4 Fields..804

13.43 DMA_X AXI Read Timing Check Sample Count Register (DMA_X_ARTC_SC)... 805

13.43.1 Offset..805

13.43.2 Function... 805

13.43.3 Diagram..806

13.43.4 Fields..806

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 33

Section number Title Page

13.44 DMA_X Read Timing Check Latency Register (DMA_X_ARTC_LAT)...806

13.44.1 Offset..806

13.44.2 Function... 806

13.44.3 Diagram..807

13.44.4 Fields..807

13.45 DMA_X AXI Write Timing Check Control Register (DMA_X_AWTC_CTL)... 807

13.45.1 Offset..808

13.45.2 Function... 808

13.45.3 Diagram..808

13.45.4 Fields..809

13.46 DMA_X AXI Write Timing Check Late Count Register (DMA_X_AWTC_LC).. 810

13.46.1 Offset..810

13.46.2 Function... 810

13.46.3 Diagram..811

13.46.4 Fields..811

13.47 DMA_X AXI Write Timing Check Sample Count Register (DMA_X_AWTC_SC)... 811

13.47.1 Offset..811

13.47.2 Function... 811

13.47.3 Diagram..812

13.47.4 Fields..812

13.48 DMA_X Write Timing Check Latency Register (DMA_X_AWTC_LAT)...813

13.48.1 Offset..813

13.48.2 Function... 813

13.48.3 Diagram..813

13.48.4 Fields..814

13.49 RNG TRNG Miscellaneous Control Register (RTMCTL)...814

13.49.1 Offset..814

13.49.2 Function... 814

13.49.3 Diagram..815

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

34 NXP Semiconductors

Section number Title Page

13.49.4 Fields..815

13.50 RNG TRNG Statistical Check Miscellaneous Register (RTSCMISC).. 816

13.50.1 Offset..817

13.50.2 Function... 817

13.50.3 Diagram..817

13.50.4 Fields..817

13.51 RNG TRNG Poker Range Register (RTPKRRNG)... 818

13.51.1 Offset..818

13.51.2 Function... 818

13.51.3 Diagram..818

13.51.4 Fields..819

13.52 RNG TRNG Poker Square Calculation Result Register (RTPKRSQ)... 819

13.52.1 Offset..819

13.52.2 Function... 819

13.52.3 Diagram..819

13.52.4 Fields..820

13.53 RNG TRNG Poker Maximum Limit Register (RTPKRMAX).. 820

13.53.1 Offset..820

13.53.2 Function... 820

13.53.3 Diagram..821

13.53.4 Fields..821

13.54 RNG TRNG Seed Control Register (RTSDCTL).. 821

13.54.1 Offset..821

13.54.2 Function... 822

13.54.3 Diagram..822

13.54.4 Fields..822

13.55 RNG TRNG Total Samples Register (RTTOTSAM)...822

13.55.1 Offset..823

13.55.2 Function... 823

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 35

Section number Title Page

13.55.3 Diagram..823

13.55.4 Fields..823

13.56 RNG TRNG Sparse Bit Limit Register (RTSBLIM)... 824

13.56.1 Offset..824

13.56.2 Function... 824

13.56.3 Diagram..824

13.56.4 Fields..824

13.57 RNG TRNG Frequency Count Minimum Limit Register (RTFRQMIN)..825

13.57.1 Offset..825

13.57.2 Function... 825

13.57.3 Diagram..825

13.57.4 Fields..826

13.58 RNG TRNG Frequency Count Register (RTFRQCNT)...826

13.58.1 Offset..826

13.58.2 Function... 826

13.58.3 Diagram..826

13.58.4 Fields..827

13.59 RNG TRNG Frequency Count Maximum Limit Register (RTFRQMAX)..827

13.59.1 Offset..827

13.59.2 Function... 827

13.59.3 Diagram..828

13.59.4 Fields..828

13.60 RNG TRNG Statistical Check Monobit Count Register (RTSCMC).. 828

13.60.1 Offset..828

13.60.2 Function... 829

13.60.3 Diagram..829

13.60.4 Fields..829

13.61 RNG TRNG Statistical Check Monobit Limit Register (RTSCML)... 830

13.61.1 Offset..830

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

36 NXP Semiconductors

Section number Title Page

13.61.2 Function... 830

13.61.3 Diagram..830

13.61.4 Fields..830

13.62 RNG TRNG Statistical Check Run Length 1 Count Register (RTSCR1C)... 831

13.62.1 Offset..831

13.62.2 Function... 831

13.62.3 Diagram..831

13.62.4 Fields..832

13.63 RNG TRNG Statistical Check Run Length 1 Limit Register (RTSCR1L).. 832

13.63.1 Offset..832

13.63.2 Function... 833

13.63.3 Diagram..833

13.63.4 Fields..833

13.64 RNG TRNG Statistical Check Run Length 2 Count Register (RTSCR2C)... 834

13.64.1 Offset..834

13.64.2 Function... 834

13.64.3 Diagram..834

13.64.4 Fields..835

13.65 RNG TRNG Statistical Check Run Length 2 Limit Register (RTSCR2L).. 835

13.65.1 Offset..835

13.65.2 Function... 836

13.65.3 Diagram..836

13.65.4 Fields..836

13.66 RNG TRNG Statistical Check Run Length 3 Limit Register (RTSCR3L).. 837

13.66.1 Offset..837

13.66.2 Function... 837

13.66.3 Diagram..837

13.66.4 Fields..838

13.67 RNG TRNG Statistical Check Run Length 3 Count Register (RTSCR3C)... 838

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 37

Section number Title Page

13.67.1 Offset..838

13.67.2 Function... 838

13.67.3 Diagram..839

13.67.4 Fields..839

13.68 RNG TRNG Statistical Check Run Length 4 Limit Register (RTSCR4L).. 839

13.68.1 Offset..840

13.68.2 Function... 840

13.68.3 Diagram..840

13.68.4 Fields..840

13.69 RNG TRNG Statistical Check Run Length 4 Count Register (RTSCR4C)... 841

13.69.1 Offset..841

13.69.2 Function... 841

13.69.3 Diagram..841

13.69.4 Fields..842

13.70 RNG TRNG Statistical Check Run Length 5 Count Register (RTSCR5C)... 842

13.70.1 Offset..842

13.70.2 Function... 842

13.70.3 Diagram..843

13.70.4 Fields..843

13.71 RNG TRNG Statistical Check Run Length 5 Limit Register (RTSCR5L).. 843

13.71.1 Offset..844

13.71.2 Function... 844

13.71.3 Diagram..844

13.71.4 Fields..844

13.72 RNG TRNG Statistical Check Run Length 6+ Limit Register (RTSCR6PL)..845

13.72.1 Offset..845

13.72.2 Function... 845

13.72.3 Diagram..845

13.72.4 Fields..846

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

38 NXP Semiconductors

Section number Title Page

13.73 RNG TRNG Statistical Check Run Length 6+ Count Register (RTSCR6PC)...846

13.73.1 Offset..846

13.73.2 Function... 846

13.73.3 Diagram..847

13.73.4 Fields..847

13.74 RNG TRNG Status Register (RTSTATUS)... 847

13.74.1 Offset..848

13.74.2 Function... 848

13.74.3 Diagram..848

13.74.4 Fields..849

13.75 RNG TRNG Entropy Read Register (RTENT0 - RTENT15).. 850

13.75.1 Offset..850

13.75.2 Function... 850

13.75.3 Diagram..851

13.75.4 Fields..851

13.76 RNG TRNG Statistical Check Poker Count 1 and 0 Register (RTPKRCNT10)... 851

13.76.1 Offset..851

13.76.2 Function... 851

13.76.3 Diagram..852

13.76.4 Fields..852

13.77 RNG TRNG Statistical Check Poker Count 3 and 2 Register (RTPKRCNT32)... 852

13.77.1 Offset..852

13.77.2 Function... 853

13.77.3 Diagram..853

13.77.4 Fields..853

13.78 RNG TRNG Statistical Check Poker Count 5 and 4 Register (RTPKRCNT54)... 853

13.78.1 Offset..854

13.78.2 Function... 854

13.78.3 Diagram..854

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 39

Section number Title Page

13.78.4 Fields..854

13.79 RNG TRNG Statistical Check Poker Count 7 and 6 Register (RTPKRCNT76)... 855

13.79.1 Offset..855

13.79.2 Function... 855

13.79.3 Diagram..855

13.79.4 Fields..855

13.80 RNG TRNG Statistical Check Poker Count 9 and 8 Register (RTPKRCNT98)... 856

13.80.1 Offset..856

13.80.2 Function... 856

13.80.3 Diagram..856

13.80.4 Fields..856

13.81 RNG TRNG Statistical Check Poker Count B and A Register (RTPKRCNTBA).. 857

13.81.1 Offset..857

13.81.2 Function... 857

13.81.3 Diagram..857

13.81.4 Fields..858

13.82 RNG TRNG Statistical Check Poker Count D and C Register (RTPKRCNTDC).. 858

13.82.1 Offset..858

13.82.2 Function... 858

13.82.3 Diagram..859

13.82.4 Fields..859

13.83 RNG TRNG Statistical Check Poker Count F and E Register (RTPKRCNTFE).. 859

13.83.1 Offset..859

13.83.2 Function... 860

13.83.3 Diagram..860

13.83.4 Fields..860

13.84 RNG DRNG Status Register (RDSTA)..860

13.84.1 Offset..861

13.84.2 Function... 861

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

40 NXP Semiconductors

Section number Title Page

13.84.3 Diagram..861

13.84.4 Fields..861

13.85 RNG DRNG State Handle 0 Reseed Interval Register (RDINT0)... 862

13.85.1 Offset..862

13.85.2 Function... 862

13.85.3 Diagram..863

13.85.4 Fields..863

13.86 RNG DRNG State Handle 1 Reseed Interval Register (RDINT1)... 863

13.86.1 Offset..863

13.86.2 Function... 864

13.86.3 Diagram..864

13.86.4 Fields..864

13.87 RNG DRNG Hash Control Register (RDHCNTL).. 865

13.87.1 Offset..865

13.87.2 Function... 865

13.87.3 Diagram..865

13.87.4 Fields..865

13.88 RNG DRNG Hash Digest Register (RDHDIG)..866

13.88.1 Offset..866

13.88.2 Function... 866

13.88.3 Diagram..866

13.88.4 Fields..867

13.89 RNG DRNG Hash Buffer Register (RDHBUF)...867

13.89.1 Offset..867

13.89.2 Function... 867

13.89.3 Diagram..867

13.89.4 Fields..868

13.90 Recoverable Error Indication Status (REIS)...868

13.90.1 Offset..868

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 41

Section number Title Page

13.90.2 Function... 868

13.90.3 Diagram..868

13.90.4 Fields..869

13.91 Recoverable Error Indication Halt (REIH)... 869

13.91.1 Offset..869

13.91.2 Function... 870

13.91.3 Diagram..870

13.91.4 Fields..870

13.92 SEC Version ID Register, most-significant half (SECVID_MS)...871

13.92.1 Offset..871

13.92.2 Function... 872

13.92.3 Diagram..872

13.92.4 Fields..872

13.93 SEC Version ID Register, least-significant half (SECVID_LS).. 873

13.93.1 Offset..873

13.93.2 Function... 873

13.93.3 Diagram..873

13.93.4 Fields..874

13.94 Holding Tank 0 Job Descriptor Address (HT0_JD_ADDR)..874

13.94.1 Offset..874

13.94.2 Function... 874

13.94.3 Diagram..875

13.94.4 Fields..875

13.95 Holding Tank 0 Shared Descriptor Address (HT0_SD_ADDR)..876

13.95.1 Offset..876

13.95.2 Function... 876

13.95.3 Diagram..876

13.95.4 Fields..877

13.96 Holding Tank 0 Job Queue Control, most-significant half (HT0_JQ_CTRL_MS)... 877

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

42 NXP Semiconductors

Section number Title Page

13.96.1 Offset..877

13.96.2 Function... 878

13.96.3 Diagram..878

13.96.4 Fields..878

13.97 Holding Tank 0 Job Queue Control, least-significant half (HT0_JQ_CTRL_LS)...880

13.97.1 Offset..880

13.97.2 Function... 880

13.97.3 Diagram..881

13.97.4 Fields..881

13.98 Holding Tank Status (HT0_STATUS)... 881

13.98.1 Offset..881

13.98.2 Function... 882

13.98.3 Diagram..882

13.98.4 Fields..882

13.99 Job Queue Debug Select Register (JQ_DEBUG_SEL)..883

13.99.1 Offset..883

13.99.2 Function... 883

13.99.3 Diagram..884

13.99.4 Fields..884

13.100 Job Ring Job IDs in Use Register, least-significant half (JRJIDU_LS)... 884

13.100.1 Offset..884

13.100.2 Function... 885

13.100.3 Diagram..885

13.100.4 Fields..885

13.101 Job Ring Job-Done Job ID FIFO BC (JRJDJIFBC)... 886

13.101.1 Offset..886

13.101.2 Function... 886

13.101.3 Diagram..887

13.101.4 Fields..887

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 43

Section number Title Page

13.102 Job Ring Job-Done Job ID FIFO (JRJDJIF)...887

13.102.1 Offset..887

13.102.2 Diagram..888

13.102.3 Fields..888

13.103 Job Ring Job-Done Source 1 (JRJDS1)..888

13.103.1 Offset..888

13.103.2 Function... 889

13.103.3 Diagram..889

13.103.4 Fields..889

13.104 Job Ring Job-Done Descriptor Address 0 Register (JRJDDA).. 889

13.104.1 Offset..889

13.104.2 Function... 890

13.104.3 Diagram..890

13.104.4 Fields..891

13.105 Performance Counter, Number of Requests Dequeued (PC_REQ_DEQ)... 891

13.105.1 Offset..891

13.105.2 Function... 892

13.105.3 Diagram..892

13.105.4 Fields..893

13.106 Performance Counter, Number of Outbound Encrypt Requests (PC_OB_ENC_REQ)...893

13.106.1 Offset..893

13.106.2 Function... 894

13.106.3 Diagram..894

13.106.4 Fields..895

13.107 Performance Counter, Number of Inbound Decrypt Requests (PC_IB_DEC_REQ)...895

13.107.1 Offset..895

13.107.2 Function... 896

13.107.3 Diagram..897

13.107.4 Fields..897

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

44 NXP Semiconductors

Section number Title Page

13.108 Performance Counter, Number of Outbound Bytes Encrypted (PC_OB_ENCRYPT)..897

13.108.1 Offset..898

13.108.2 Function... 898

13.108.3 Diagram..899

13.108.4 Fields..899

13.109 Performance Counter, Number of Outbound Bytes Protected (PC_OB_PROTECT)..900

13.109.1 Offset..900

13.109.2 Function... 900

13.109.3 Diagram..901

13.109.4 Fields..901

13.110 Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_DECRYPT)..902

13.110.1 Offset..902

13.110.2 Function... 903

13.110.3 Diagram..903

13.110.4 Fields..904

13.111 Performance Counter, Number of Inbound Bytes Validated. (PC_IB_VALIDATED)... 904

13.111.1 Offset..904

13.111.2 Function... 905

13.111.3 Diagram..906

13.111.4 Fields..906

13.112 CHA Revision Number Register, most-significant half (CRNR_MS)...907

13.112.1 Offset..907

13.112.2 Function... 907

13.112.3 Diagram..907

13.112.4 Fields..908

13.113 CHA Revision Number Register, least-significant half (CRNR_LS).. 908

13.113.1 Offset..908

13.113.2 Function... 909

13.113.3 Diagram..909

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 45

Section number Title Page

13.113.4 Fields..909

13.114 Compile Time Parameters Register, most-significant half (CTPR_MS)..910

13.114.1 Offset..910

13.114.2 Function... 911

13.114.3 Diagram..911

13.114.4 Fields..911

13.115 Compile Time Parameters Register, least-significant half (CTPR_LS)... 913

13.115.1 Offset..913

13.115.2 Function... 914

13.115.3 Diagram..914

13.115.4 Fields..914

13.116 Fault Address Register (FAR).. 915

13.116.1 Offset..915

13.116.2 Function... 916

13.116.3 Diagram..917

13.116.4 Fields..917

13.117 Fault Address ICID Register (FAICID)..917

13.117.1 Offset..917

13.117.2 Function... 918

13.117.3 Diagram..918

13.117.4 Fields..919

13.118 Fault Address Detail Register (FADR)...919

13.118.1 Offset..919

13.118.2 Function... 919

13.118.3 Diagram..920

13.118.4 Fields..920

13.119 SEC Status Register (SSTA)...921

13.119.1 Offset..921

13.119.2 Function... 921

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

46 NXP Semiconductors

Section number Title Page

13.119.3 Diagram..922

13.119.4 Fields..922

13.120 RTIC Version ID Register (RVID)...923

13.120.1 Offset..923

13.120.2 Function... 923

13.120.3 Diagram..924

13.120.4 Fields..924

13.121 CHA Cluster Block Version ID Register (CCBVID)... 925

13.121.1 Offset..925

13.121.2 Function... 925

13.121.3 Diagram..925

13.121.4 Fields..926

13.122 CHA Version ID Register, most-significant half (CHAVID_MS)...926

13.122.1 Offset..926

13.122.2 Function... 927

13.122.3 Diagram..927

13.122.4 Fields..927

13.123 CHA Version ID Register, least-significant half (CHAVID_LS).. 928

13.123.1 Offset..928

13.123.2 Function... 928

13.123.3 Diagram..929

13.123.4 Fields..929

13.124 CHA Number Register, most-significant half (CHANUM_MS)... 930

13.124.1 Offset..930

13.124.2 Function... 930

13.124.3 Diagram..931

13.124.4 Fields..931

13.125 CHA Number Register, least-significant half (CHANUM_LS)...932

13.125.1 Offset..932

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 47

Section number Title Page

13.125.2 Function... 932

13.125.3 Diagram..932

13.125.4 Fields..933

13.126 Input Ring Base Address Register for Job Ring a (IRBAR_JR0 - IRBAR_JR3).. 933

13.126.1 Offset..933

13.126.2 Function... 933

13.126.3 Diagram..934

13.126.4 Fields..935

13.127 Input Ring Size Register for Job Ring a (IRSR_JR0 - IRSR_JR3).. 935

13.127.1 Offset..935

13.127.2 Function... 935

13.127.3 Diagram..936

13.127.4 Fields..936

13.128 Input Ring Slots Available Register for Job Ring a (IRSAR_JR0 - IRSAR_JR3)...936

13.128.1 Offset..936

13.128.2 Function... 937

13.128.3 Diagram..937

13.128.4 Fields..937

13.129 Input Ring Jobs Added Register for Job Ringa (IRJAR_JR0 - IRJAR_JR3)...938

13.129.1 Offset..938

13.129.2 Function... 938

13.129.3 Diagram..939

13.129.4 Fields..939

13.130 Output Ring Base Address Register for Job Ring a (ORBAR_JR0 - ORBAR_JR3)...939

13.130.1 Offset..939

13.130.2 Function... 939

13.130.3 Diagram..940

13.130.4 Fields..941

13.131 Output Ring Size Register for Job Ring a (ORSR_JR0 - ORSR_JR3).. 941

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

48 NXP Semiconductors

Section number Title Page

13.131.1 Offset..941

13.131.2 Function... 942

13.131.3 Diagram..942

13.131.4 Fields..943

13.132 Output Ring Jobs Removed Register for Job Ring a (ORJRR_JR0 - ORJRR_JR3)..943

13.132.1 Offset..943

13.132.2 Function... 943

13.132.3 Diagram..944

13.132.4 Fields..944

13.133 Output Ring Slots Full Register for Job Ring a (ORSFR_JR0 - ORSFR_JR3)... 945

13.133.1 Offset..945

13.133.2 Function... 945

13.133.3 Diagram..945

13.133.4 Fields..946

13.134 Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 - JRSTAR_JR3)...946

13.134.1 Offset..946

13.134.2 Function... 946

13.134.3 Diagram..947

13.134.4 Fields..947

13.135 Job Ring Interrupt Status Register for Job Ring a (JRINTR_JR0 - JRINTR_JR3)..948

13.135.1 Offset..948

13.135.2 Function... 948

13.135.3 Diagram..948

13.135.4 Fields..949

13.136 Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_MS - JRCFGR_JR3_MS). 950

13.136.1 Offset..950

13.136.2 Function... 951

13.136.3 Diagram..952

13.136.4 Fields..952

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 49

Section number Title Page

13.137 Job Ring Configuration Register for Job Ring a, least-significant half (JRCFGR_JR0_LS - JRCFGR_JR3_LS)....957

13.137.1 Offset..957

13.137.2 Function... 957

13.137.3 Diagram..957

13.137.4 Fields..957

13.138 Input Ring Read Index Register for Job Ring a (IRRIR_JR0 - IRRIR_JR3)... 958

13.138.1 Offset..958

13.138.2 Function... 958

13.138.3 Diagram..959

13.138.4 Fields..959

13.139 Output Ring Write Index Register for Job Ring a (ORWIR_JR0 - ORWIR_JR3).. 960

13.139.1 Offset..960

13.139.2 Function... 960

13.139.3 Diagram..960

13.139.4 Fields..961

13.140 Job Ring Command Register for Job Ring a (JRCR_JR0 - JRCR_JR3)..961

13.140.1 Offset..961

13.140.2 Function... 961

13.140.3 Diagram..963

13.140.4 Fields..963

13.141 Job Ring a Address-Array Valid Register (JR0AAV - JR3AAV)..964

13.141.1 Offset..964

13.141.2 Function... 964

13.141.3 Diagram..964

13.141.4 Fields..965

13.142 Job Ring a Address-Array Address b Register (JR0AAA0 - JR3AAA7).. 966

13.142.1 Offset..966

13.142.2 Function... 966

13.142.3 Diagram..966

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

50 NXP Semiconductors

Section number Title Page

13.142.4 Fields..967

13.143 Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0 - REIR0JR3)...967

13.143.1 Offset..967

13.143.2 Function... 968

13.143.3 Diagram..968

13.143.4 Fields..968

13.144 Recoverable Error Indication Record 2 for Job Ring a (REIR2JR0 - REIR2JR3)...969

13.144.1 Offset..969

13.144.2 Function... 969

13.144.3 Diagram..969

13.144.4 Fields..970

13.145 Recoverable Error Indication Record 4 for Job Ring a (REIR4JR0 - REIR4JR3)...970

13.145.1 Offset..970

13.145.2 Function... 971

13.145.3 Diagram..971

13.145.4 Fields..971

13.146 Recoverable Error Indication Record 5 for Job Ring a (REIR5JR0 - REIR5JR3)...972

13.146.1 Offset..972

13.146.2 Function... 972

13.146.3 Diagram..972

13.146.4 Fields..972

13.147 RTIC Status Register (RSTA).. 973

13.147.1 Offset..973

13.147.2 Function... 973

13.147.3 Diagram..973

13.147.4 Fields..974

13.148 RTIC Command Register (RCMD)..976

13.148.1 Offset..976

13.148.2 Function... 976

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 51

Section number Title Page

13.148.3 Diagram..976

13.148.4 Fields..976

13.149 RTIC Control Register (RCTL)..977

13.149.1 Offset..977

13.149.2 Function... 978

13.149.3 Diagram..978

13.149.4 Fields..978

13.150 RTIC Throttle Register (RTHR)...980

13.150.1 Offset..980

13.150.2 Function... 980

13.150.3 Diagram..980

13.150.4 Fields..981

13.151 RTIC Watchdog Timer (RWDOG).. 981

13.151.1 Offset..981

13.151.2 Function... 981

13.151.3 Diagram..982

13.151.4 Fields..982

13.152 RTIC Endian Register (REND).. 983

13.152.1 Offset..983

13.152.2 Function... 983

13.152.3 Diagram..983

13.152.4 Fields..983

13.153 RTIC Memory Block a Address b Register (RMAA0 - RMDA1)...985

13.153.1 Offset..985

13.153.2 Function... 985

13.153.3 Diagram..985

13.153.4 Fields..986

13.154 RTIC Memory Block a Length b Register (RMAL0 - RMDL1)..986

13.154.1 Offset..986

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

52 NXP Semiconductors

Section number Title Page

13.154.2 Function... 987

13.154.3 Diagram..987

13.154.4 Fields..988

13.155 RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)...988

13.155.1 Offset..988

13.155.2 Function... 999

13.155.3 Diagram..999

13.155.4 Fields..1000

13.156 Recoverable Error Indication Record 0 for RTIC (REIR0RTIC)...1000

13.156.1 Offset..1000

13.156.2 Function... 1000

13.156.3 Diagram..1001

13.156.4 Fields..1001

13.157 Recoverable Error Indication Record 2 for RTIC (REIR2RTIC)...1001

13.157.1 Offset..1001

13.157.2 Function... 1002

13.157.3 Diagram..1002

13.157.4 Fields..1002

13.158 Recoverable Error Indication Record 4 for RTIC (REIR4RTIC)...1003

13.158.1 Offset..1003

13.158.2 Function... 1003

13.158.3 Diagram..1003

13.158.4 Fields..1003

13.159 Recoverable Error Indication Record 5 for RTIC (REIR5RTIC)...1004

13.159.1 Offset..1004

13.159.2 Function... 1004

13.159.3 Diagram..1004

13.159.4 Fields..1005

13.160 Queue Interface Control Register, most-significant (QICTL_MS).. 1005

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 53

Section number Title Page

13.160.1 Offset..1005

13.160.2 Function... 1006

13.160.3 Diagram..1006

13.160.4 Fields..1006

13.161 Queue Interface Control Register, least-significant (QICTL_LS)..1010

13.161.1 Offset..1010

13.161.2 Function... 1010

13.161.3 Diagram..1010

13.161.4 Fields..1011

13.162 Queue Interface Status Register (QISTA).. 1011

13.162.1 Offset..1012

13.162.2 Function... 1012

13.162.3 Diagram..1012

13.162.4 Fields..1012

13.163 Queue Interface Dequeue Configuration Register, most-significant half (QIDQC_MS)...1013

13.163.1 Offset..1013

13.163.2 Function... 1014

13.163.3 Diagram..1014

13.163.4 Fields..1014

13.164 Queue Interface Dequeue Configuration Register, least-significant half (QIDQC_LS).. 1015

13.164.1 Offset..1015

13.164.2 Function... 1015

13.164.3 Diagram..1015

13.164.4 Fields..1016

13.165 Queue Interface Enqueue Configuration Register, most-significant half (QIEQC_MS)... 1016

13.165.1 Offset..1016

13.165.2 Function... 1016

13.165.3 Diagram..1016

13.165.4 Fields..1017

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

54 NXP Semiconductors

Section number Title Page

13.166 Queue Interface Enqueue Configuration Register, least-significant half (QIEQC_LS)...1017

13.166.1 Offset..1017

13.166.2 Function... 1017

13.166.3 Diagram..1018

13.166.4 Fields..1018

13.167 Queue Interface ICID Configuration Register, most-significant half (QIIC_MS)... 1018

13.167.1 Offset..1018

13.167.2 Function... 1018

13.167.3 Diagram..1019

13.167.4 Fields..1019

13.168 Queue Interface ICID Configuration Register, least-significant half (QIIC_LS)...1019

13.168.1 Offset..1019

13.168.2 Function... 1020

13.168.3 Diagram..1020

13.168.4 Fields..1020

13.169 Queue Interface Descriptor Word 0 Register (QIDESC0)... 1021

13.169.1 Offset..1021

13.169.2 Function... 1021

13.169.3 Diagram..1021

13.169.4 Fields..1022

13.170 Queue Interface Descriptor Word a Registers (QIDESC1 - QIDESC12).. 1022

13.170.1 Offset..1022

13.170.2 Diagram..1022

13.170.3 Fields..1022

13.171 Queue Interface Compound Frame Scatter/Gather Table Registers (QICFOFH_MS - QICFIFL_LS)..................... 1023

13.171.1 Offset..1023

13.171.2 Function... 1023

13.171.3 Diagram..1023

13.171.4 Fields..1024

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 55

Section number Title Page

13.172 Queue Interface Job ID Valid Register (QIJIDVALID)...1024

13.172.1 Offset..1024

13.172.2 Function... 1024

13.172.3 Diagram..1025

13.172.4 Fields..1026

13.173 Queue Interface Job ID Job Ready Register (QIJIDRDY)...1026

13.173.1 Offset..1027

13.173.2 Diagram..1027

13.173.3 Fields..1027

13.174 Recoverable Error Indication Record 0 for the Queue Interface (REIR0QI)... 1028

13.174.1 Offset..1028

13.174.2 Function... 1028

13.174.3 Diagram..1028

13.174.4 Fields..1029

13.175 Recoverable Error Indication Record 1 for the Queue Interface (REIR1QI)... 1029

13.175.1 Offset..1029

13.175.2 Function... 1030

13.175.3 Diagram..1030

13.175.4 Fields..1030

13.176 Recoverable Error Indication Record 2 for the Queue Interface (REIR2QI)... 1030

13.176.1 Offset..1031

13.176.2 Function... 1031

13.176.3 Diagram..1031

13.176.4 Fields..1031

13.177 Recoverable Error Indication Record 4 for the Queue Interface (REIR4QI)... 1032

13.177.1 Offset..1032

13.177.2 Function... 1032

13.177.3 Diagram..1032

13.177.4 Fields..1032

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

56 NXP Semiconductors

Section number Title Page

13.178 Recoverable Error Indication Record 5 for the Queue Interface (REIR5QI)... 1033

13.178.1 Offset..1033

13.178.2 Function... 1033

13.178.3 Diagram..1033

13.178.4 Fields..1034

13.179 CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG - C2C1MR_RNG)..1034

13.179.1 Offset..1034

13.179.2 Function... 1035

13.179.3 Diagram..1035

13.179.4 Fields..1035

13.180 CCB a Class 1 Mode Register Format for Public Key Algorithms (C0C1MR_PK - C2C1MR_PK)........................1038

13.180.1 Offset..1038

13.180.2 Function... 1038

13.180.3 Diagram..1039

13.180.4 Fields..1039

13.181 CCB a Class 1 Mode Register Format for Non-Public Key Algorithms (C0C1MR_NPK - C2C1MR_NPK)..........1040

13.181.1 Offset..1040

13.181.2 Function... 1040

13.181.3 Diagram..1041

13.181.4 Fields..1041

13.182 CCB a Class 1 Key Size Register (C0C1KSR - C2C1KSR)..1044

13.182.1 Offset..1044

13.182.2 Function... 1045

13.182.3 Diagram..1045

13.182.4 Fields..1045

13.183 CCB a Class 1 Data Size Register (C0C1DSR - C2C1DSR)... 1046

13.183.1 Offset..1046

13.183.2 Function... 1046

13.183.3 Diagram..1046

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 57

Section number Title Page

13.183.4 Fields..1047

13.184 CCB a Class 1 ICV Size Register (C0C1ICVSR - C2C1ICVSR)..1047

13.184.1 Offset..1048

13.184.2 Function... 1048

13.184.3 Diagram..1048

13.184.4 Fields..1048

13.185 CCB a CHA Control Register (C0CCTRL - C2CCTRL)...1049

13.185.1 Offset..1049

13.185.2 Function... 1049

13.185.3 Diagram..1049

13.185.4 Fields..1050

13.186 CCB a Interrupt Control Register (C0ICTL - C2ICTL)... 1052

13.186.1 Offset..1052

13.186.2 Function... 1052

13.186.3 Diagram..1052

13.186.4 Fields..1053

13.187 CCB a Clear Written Register (C0CWR - C2CWR)..1057

13.187.1 Offset..1057

13.187.2 Function... 1057

13.187.3 Diagram..1057

13.187.4 Fields..1057

13.188 CCB a Status and Error Register, most-significant half (C0CSTA_MS - C2CSTA_MS)...1059

13.188.1 Offset..1059

13.188.2 Function... 1059

13.188.3 Diagram..1060

13.188.4 Fields..1060

13.189 CCB a Status and Error Register, least-significant half (C0CSTA_LS - C2CSTA_LS)..1061

13.189.1 Offset..1061

13.189.2 Function... 1061

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

58 NXP Semiconductors

Section number Title Page

13.189.3 Diagram..1061

13.189.4 Fields..1062

13.190 CCB a AAD Size Register (C0AADSZR - C2AADSZR)..1064

13.190.1 Offset..1064

13.190.2 Function... 1064

13.190.3 Diagram..1064

13.190.4 Fields..1065

13.191 Class 1 IV Size Register (C0C1IVSZR - C2C1IVSZR)...1065

13.191.1 Offset..1065

13.191.2 Function... 1065

13.191.3 Diagram..1065

13.191.4 Fields..1066

13.192 PKHA A Size Register (C0PKASZR - C2PKASZR)...1066

13.192.1 Offset..1066

13.192.2 Function... 1066

13.192.3 Diagram..1067

13.192.4 Fields..1067

13.193 PKHA B Size Register (C0PKBSZR - C2PKBSZR)... 1067

13.193.1 Offset..1067

13.193.2 Function... 1068

13.193.3 Diagram..1068

13.193.4 Fields..1068

13.194 PKHA N Size Register (C0PKNSZR - C2PKNSZR)...1068

13.194.1 Offset..1068

13.194.2 Function... 1069

13.194.3 Diagram..1069

13.194.4 Fields..1069

13.195 PKHA E Size Register (C0PKESZR - C2PKESZR)..1070

13.195.1 Offset..1070

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 59

Section number Title Page

13.195.2 Function... 1070

13.195.3 Diagram..1070

13.195.4 Fields..1070

13.196 CCB a Class 1 Context Register Word b (C0C1CTXR0 - C2C1CTXR15)...1071

13.196.1 Offset..1071

13.196.2 Function... 1071

13.196.3 Diagram..1072

13.196.4 Fields..1073

13.197 CCB a Class 1 Key Registers Word b (C0C1KR0 - C2C1KR7)..1073

13.197.1 Offset..1073

13.197.2 Function... 1073

13.197.3 Diagram..1074

13.197.4 Fields..1075

13.198 CCB a Class 2 Mode Register (C0C2MR - C2C2MR).. 1075

13.198.1 Offset..1075

13.198.2 Function... 1075

13.198.3 Diagram..1075

13.198.4 Fields..1076

13.199 CCB a Class 2 Key Size Register (C0C2KSR - C2C2KSR)..1077

13.199.1 Offset..1077

13.199.2 Function... 1077

13.199.3 Diagram..1078

13.199.4 Fields..1078

13.200 CCB a Class 2 Data Size Register (C0C2DSR - C2C2DSR)... 1078

13.200.1 Offset..1078

13.200.2 Function... 1079

13.200.3 Diagram..1079

13.200.4 Fields..1080

13.201 CCB a Class 2 ICV Size Register (C0C2ICVSZR - C2C2ICVSZR)...1080

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

60 NXP Semiconductors

Section number Title Page

13.201.1 Offset..1081

13.201.2 Function... 1081

13.201.3 Diagram..1081

13.201.4 Fields..1081

13.202 CCB a Class 2 Context Register Word b (C0C2CTXR0 - C2C2CTXR17)...1082

13.202.1 Offset..1082

13.202.2 Function... 1082

13.202.3 Diagram..1083

13.202.4 Fields..1083

13.203 CCB a Class 2 Key Register Word b (C0C2KEYR0 - C2C2KEYR31)...1083

13.203.1 Offset..1083

13.203.2 Function... 1083

13.203.3 Diagram..1084

13.203.4 Fields..1084

13.204 CCB a FIFO Status (C0FIFOSTA - C2FIFOSTA).. 1084

13.204.1 Offset..1084

13.204.2 Function... 1085

13.204.3 Diagram..1085

13.204.4 Fields..1085

13.205 CCB a iNformation FIFO When STYPE Is Not 10 (C0NFIFO - C2NFIFO).. 1086

13.205.1 Offset..1086

13.205.2 Function... 1086

13.205.3 Diagram..1087

13.205.4 Fields..1087

13.206 CCB a iNformation FIFO When STYPE Is 10 (C0NFIFO_2 - C2NFIFO_2)... 1090

13.206.1 Offset..1090

13.206.2 Function... 1090

13.206.3 Diagram..1090

13.206.4 Fields..1090

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 61

Section number Title Page

13.207 CCB a Input Data FIFO (C0IFIFO - C2IFIFO)..1092

13.207.1 Offset..1092

13.207.2 Function... 1093

13.207.3 Diagram..1093

13.207.4 Fields..1093

13.208 CCB a Output Data FIFO (C0OFIFO - C2OFIFO)..1094

13.208.1 Offset..1094

13.208.2 Function... 1094

13.208.3 Diagram..1095

13.208.4 Fields..1095

13.209 DECOa Job Queue Control Register, most-significant half (D0JQCR_MS - D2JQCR_MS)................................... 1096

13.209.1 Offset..1096

13.209.2 Function... 1096

13.209.3 Diagram..1096

13.209.4 Fields..1097

13.210 DECOa Job Queue Control Register, least-significant half (D0JQCR_LS - D2JQCR_LS)......................................1098

13.210.1 Offset..1098

13.210.2 Function... 1099

13.210.3 Diagram..1099

13.210.4 Fields..1099

13.211 DECOa Descriptor Address Register (D0DAR - D2DAR)..1099

13.211.1 Offset..1099

13.211.2 Function... 1100

13.211.3 Diagram..1100

13.211.4 Fields..1100

13.212 DECOa Operation Status Register, most-significant half (D0OPSTA_MS - D2OPSTA_MS).................................1101

13.212.1 Offset..1101

13.212.2 Function... 1101

13.212.3 Diagram..1101

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

62 NXP Semiconductors

Section number Title Page

13.212.4 Fields..1102

13.213 DECOa Operation Status Register, least-significant half (D0OPSTA_LS - D2OPSTA_LS)....................................1103

13.213.1 Offset..1103

13.213.2 Function... 1103

13.213.3 Diagram..1104

13.213.4 Fields..1104

13.214 DECOa Checksum Register (D0CKSUMR - D2CKSUMR)... 1104

13.214.1 Offset..1104

13.214.2 Function... 1105

13.214.3 Diagram..1105

13.214.4 Fields..1105

13.215 DECOa SDID / Trusted ICID Status Register (D0SDIDSR - D2SDIDSR)...1106

13.215.1 Offset..1106

13.215.2 Function... 1106

13.215.3 Diagram..1106

13.215.4 Fields..1106

13.216 DECOa ICID Status Register (D0ISR - D2ISR).. 1107

13.216.1 Offset..1107

13.216.2 Function... 1107

13.216.3 Diagram..1107

13.216.4 Fields..1108

13.217 DECOa Math Register b_MS (D0MTH0_MS - D2MTH7_MS)... 1108

13.217.1 Offset..1108

13.217.2 Function... 1109

13.217.3 Diagram..1109

13.217.4 Fields..1109

13.218 DECOa Math Register b_LS (D0MTH0_LS - D2MTH7_LS)...1109

13.218.1 Offset..1109

13.218.2 Function... 1110

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 63

Section number Title Page

13.218.3 Diagram..1110

13.218.4 Fields..1110

13.219 DECOa Gather Table Register b Word 0 (D0GTR0_0 - D2GTR3_0)...1110

13.219.1 Offset..1110

13.219.2 Function... 1111

13.219.3 Diagram..1111

13.219.4 Fields..1111

13.220 DECOa Gather Table Register b Word 1 (D0GTR0_1 - D2GTR3_1)...1111

13.220.1 Offset..1111

13.220.2 Diagram..1112

13.220.3 Fields..1112

13.221 DECOa Gather Table Register b Word 2 (D0GTR0_2 - D2GTR3_2)...1112

13.221.1 Offset..1112

13.221.2 Diagram..1113

13.221.3 Fields..1113

13.222 DECOa Gather Table Register b Word 3 (D0GTR0_3 - D2GTR3_3)...1113

13.222.1 Offset..1113

13.222.2 Diagram..1114

13.222.3 Fields..1114

13.223 DECOa Scatter Table Register b Word 0 (D0STR0_0 - D2STR3_0)..1114

13.223.1 Offset..1114

13.223.2 Diagram..1115

13.223.3 Fields..1115

13.224 DECOa Scatter Table Register b Word 1 (D0STR0_1 - D2STR3_1)..1115

13.224.1 Offset..1115

13.224.2 Diagram..1116

13.224.3 Fields..1116

13.225 DECOa Scatter Table Register b Word 2 (D0STR0_2 - D2STR3_2)..1116

13.225.1 Offset..1116

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

64 NXP Semiconductors

Section number Title Page

13.225.2 Diagram..1116

13.225.3 Fields..1117

13.226 DECOa Scatter Table Register b Word 3 (D0STR0_3 - D2STR3_3)..1117

13.226.1 Offset..1117

13.226.2 Diagram..1117

13.226.3 Fields..1118

13.227 DECOa Descriptor Buffer Word b (D0DESB0 - D2DESB63).. 1118

13.227.1 Offset..1118

13.227.2 Function... 1118

13.227.3 Diagram..1119

13.227.4 Fields..1119

13.228 DECOa Debug Job (D0DJR - D2DJR)...1120

13.228.1 Offset..1120

13.228.2 Function... 1120

13.228.3 Diagram..1120

13.228.4 Fields..1121

13.229 DECOa Debug DECO (D0DDR - D2DDR)...1122

13.229.1 Offset..1122

13.229.2 Function... 1122

13.229.3 Diagram..1123

13.229.4 Fields..1123

13.230 DECOa Debug Job Pointer (D0DJP - D2DJP)... 1125

13.230.1 Offset..1125

13.230.2 Function... 1125

13.230.3 Diagram..1125

13.230.4 Fields..1126

13.231 DECOa Debug Shared Pointer (D0SDP - D2SDP).. 1126

13.231.1 Offset..1126

13.231.2 Function... 1127

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 65

Section number Title Page

13.231.3 Diagram..1127

13.231.4 Fields..1127

13.232 DECOa Debug_ICID, most-significant half (D0DIR_MS - D2DIR_MS)...1128

13.232.1 Offset..1128

13.232.2 Function... 1128

13.232.3 Diagram..1128

13.232.4 Fields..1129

13.233 Sequence Output Length Register (SOL0 - SOL2).. 1129

13.233.1 Offset..1129

13.233.2 Function... 1130

13.233.3 Diagram..1130

13.233.4 Fields..1130

13.234 Variable Sequence Output Length Register (VSOL0 - VSOL2)..1130

13.234.1 Offset..1130

13.234.2 Function... 1131

13.234.3 Diagram..1131

13.234.4 Fields..1131

13.235 Sequence Input Length Register (SIL0 - SIL2).. 1132

13.235.1 Offset..1132

13.235.2 Function... 1132

13.235.3 Diagram..1132

13.235.4 Fields..1133

13.236 Variable Sequence Input Length Register (VSIL0 - VSIL2)..1133

13.236.1 Offset..1133

13.236.2 Function... 1133

13.236.3 Diagram..1134

13.236.4 Fields..1134

13.237 Protocol Override Register (D0POVRD - D2POVRD)..1134

13.237.1 Offset..1134

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

66 NXP Semiconductors

Section number Title Page

13.237.2 Function... 1135

13.237.3 Diagram..1135

13.237.4 Fields..1135

13.238 Variable Sequence Output Length Register; Upper 32 bits (UVSOL0 - UVSOL2).. 1136

13.238.1 Offset..1136

13.238.2 Function... 1136

13.238.3 Diagram..1136

13.238.4 Fields..1137

13.239 Variable Sequence Input Length Register; Upper 32 bits (UVSIL0 - UVSIL2)..1137

13.239.1 Offset..1137

13.239.2 Function... 1137

13.239.3 Diagram..1137

13.239.4 Fields..1138

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 67

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

68 NXP Semiconductors

Chapter 1
Overview of SEC (security engine) functionality
SEC is the chip's cryptographic acceleration and offloading hardware. It combines
functions previously implemented in separate modules to create a modular and scalable
acceleration and assurance engine. It implements block encryption algorithms, stream
cipher algorithms, hashing algorithms, public key algorithms, run-time integrity
checking, and a hardware random number generator. SEC performs higher-level
cryptographic operations than previous cryptographic accelerators. This provides
significant improvement to system-level performance. SEC includes the following
interfaces:

• Register interface for the processor to write configuration and command information,
and to read status information

• DMA interface that allows SEC to read/write data from external memory
• Queue Manager interface that allows SEC to accept jobs directly from the Queue

Manager module

• Job Queue Controller with 4 job rings
• 3 Descriptor Controllers (DECOs):

• Responsible for executing descriptors and managing sequencing of keys,
context, and data through the various CHAs

• Responsible for performing header and trailer processing as defined by the
descriptor

• Run-Time Integrity Checker (RTIC)
• Crypto Hardware Accelerators (CHAs)

• Public Key Hardware Accelerator (PKHA)
• A Random Number Generator (RNG)
• 3 Advanced Encryption Standard Hardware Accelerators (AESA)
• 3 Message Digest Hardware Accelerators (MDHA)
• SNOW 3G f9 Hardware Accelerator (SNOW f9)
• SNOW 3G f8 Hardware Accelerator (SNOW f8)
• ZUC Encryption Hardware Accelerator (ZUCE)
• ZUC Authentication Hardware Accelerator (ZUCA)
• 3 Data Encryption Standard Hardware Accelerators (DESA)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 69

• 3 Cyclic-Redundancy Check Hardware Accelerators (CRCA)
• Kasumi f8 and f9 Hardware Accelerator (KFHA)

This figure shows the block diagram for SEC.

XBAR

RNG

Memory Bus

DMA

Secure Key
 Module

Master
Key

Security
State

 (from
SecMon)

to DECO
blob logic

Queue Manager IF (QI)

Queue Manager

DECO
CCB

AESAMDHA

DESA

DECO/CCB tile 0

Job Queue Controller

RTICHT0

PKHA

HT2. . .
JR0

JR3

. . .

SNOWf9

SNOWf8

ZUCA

ZUCE

KFHA

. . .

3 DECO/CCB Tiles

DECO/CCB tile 2

DECO
CCB

AESAMDHA

DESA

Slave Bus Interface

Register Interface

to / from
CCSR registers

none

ls1046a

Figure 1-1. SEC block diagram

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

70 NXP Semiconductors

Chapter 2
Feature summary
SEC includes the following features:

• Offloading of cryptographic functions via a programmable job descriptor language
• Job descriptors can contain multiple function commands.
• Job descriptors can be chained to additional job descriptors.
• Job descriptors can be submitted via 4 separate hardware-implemented job rings.
• Job descriptors can be submitted via Data Path Acceleration Architecture

(DPAA) Queue Manager portals.
• 32-bit register bus interface
• 1 128-bit DMA interface

• Automatic byte, half-word, word and double-word ordering of data read/written
• Scatter/gather support for data

• Special-purpose cryptographic keys
• Black keys

• Keys stored in memory in encrypted form and decrypted on-the-fly when
used

• AES_ECB or AES_CCM encryption using a 256-bit key
• Export and import of cryptographic blobs

• Data encapsulated in a cryptographic data structure for storage in non-
volatile memory

• AES_CCM encryption using a 256-bit key
• Each blob encrypted using its own randomly generated blob key.
• Blob key encrypted using a non-volatile blob key encryption key
• Blob key encryption key derived from non-volatile master key input
• Separate blob key encryption keys for trusted mode, secure mode, and non-

secure mode
• Public key cryptography

• Modular Arithmetic
• Addition, subtraction, multiplication, exponentiation, reduction, inversion,

greatest common denominator
• Both integer and binary polynomial functions
• Modulus size up to 4096 bits

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 71

• Arithmetic operations performed with 32-bit-digit arithmetic unit
• Timing-equalized and normal versions of modular exponentiation

• DSA
• DSA sign and verify
• Verify with private key
• DSA key generation
• Non-timing-equalized versions of private-key operations
• Timing-equalized version signing and key generation
• Non-timing-equalized versions of sign and key generation

• Diffie-Hellman
• Diffie-Hellman (DH) key agreement
• Key generation
• Timing-equalized versions of key agreement and key generation
• Non-timing-equalized versions of key agreement and key generation

• RSA
• Modulus size up to 4096 bits
• Public and Private Key operations
• Private keys in (n,d), (p,q,d), or 5-part (p,q,dp,dq,c) forms
• Private Key operations (decrypt, sign) timing equalized to thwart side

channel attack
• Non-timing-equalized versions of private-key operations

• Primality testing
• Maximum size 4096 bits

• Elliptic curve cryptography
• Point add, point double, point multiply
• Point validation (is point on curve)
• Timing-equalized and normal versions point multiplication
• Public Key validation
• Both prime field and binary polynomial field functions
• Elliptic curve digital signature algorithm (ECDSA) sign and verify
• ECDSA verify with private key
• Elliptic curve Diffie-Hellman key agreement
• ECDSA and ECDH key generation
• Modulus size up to 1024 bits
• Timing-equalized versions of ECDSA sign and key generation
• Non-timing-equalized versions of sign and key generation

• Cryptographic authentication
• Hashing algorithms

• MD5
• SHA-1
• SHA-224

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

72 NXP Semiconductors

• SHA-256
• SHA-384
• SHA-512
• SHA-512/224
• SHA-512/256

• Message authentication codes (MAC)
• HMAC-all hashing algorithms
• SSL 3.0 MAC (SMAC-MD5, SHA-1 only)
• AES-CMAC
• AES-XCBC-MAC
• Kasumi f9
• SNOW 3G f9
• ZUC authentication

• Auto padding
• ICV checking

• Authenticated encryption algorithms
• AES-CCM (counter with CBC-MAC)
• AES-GCM (Galois counter mode)

• Symmetric key block ciphers
• AES (128-bit, 192-bit or 256-bit keys)
• DES (64-bit keys, including key parity)
• 3DES (128-bit or 192-bit keys, including key parity)
• Kasumi f8 with support for 3g, ECSD/EDGE, and GSM
• SNOW 3G f8
• ZUC encryption
• Cipher modes

• ECB, CBC, CFB, OFB for all block ciphers
• CTR and XTS for AES

• Random-number generation
• Entropy is generated via an independent free running ring oscillator
• For lower-power consumption, oscillator is off when not generating entropy
• NIST-compliant, pseudo random-number generator seeded using hardware-

generated entropy
• Run-time integrity checking

• SHA-256 message authentication
• SHA-512 message authentication
• Segmented data-gathering to support non-contiguous data blocks in memory
• Support for up to four independent memory blocks

• Advanced protocol support
• IPsec
• SSL/TLS

Chapter 2 Feature summary

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 73

• DTLS
• SRTP
• IEEE 802.11-2012 WPA2 MPDU for WiFi
• IEEE 802.16 WiMAX
• IEEE 802.1AE MacSec/LinkSec
• Support for protocol-specific padding
• 3GPP Release 11 (LTE) PDCP layer protocol

• Extensive virtualization features
• Job rings can be time-shared by multiple security domains
• Black keys are cryptographically separated per security domain
• Blobs are cryptographically separated per security domain
• Trusted descriptors are cryptographically separated per security domain

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

74 NXP Semiconductors

Chapter 3
SEC implementation
SEC provides platform assurance by working with security monitor (SecMon), which is a
companion logic block that tracks the security state of the chip. SEC is programmed
using SEC job descriptors (not to be confused with frame descriptors (FDs)) that indicate
the operations to be performed and that point to the message and associated data. SEC
incorporates a DMA engine to fetch the descriptors, read the message data, and write the
results of the operations. The DMA engine provides a scatter/gather capability so that
SEC can read and write data scattered in memory. SEC may be configured by means of
software for dynamic changes in byte ordering. The default configuration for this version
of SEC is big-endian mode.

3.1 SEC submodules
The SEC core contains the following submodules:

• Master bus interface
• Register bus interface
• Job queue controller (JQC)
• Queue Manager Interface (QI)
• Run-Time Integrity Checker (RTIC)
• Descriptor Controllers (DECOs)
• Cryptographic control blocks (CCBs)
• Multiple cryptographic hardware accelerators (CHAs)

JQC fetches descriptors that tell SEC which cryptographic operations to perform and on
what data to operate. DECO decodes descriptors and executes the commands within
them. For those descriptor commands that use CHAs, DECO communicates with the
CHAs by means of the CCB.

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 75

3.2 Cryptographic engines implemented in SEC
The cryptographic engines provided are:

• Public key hardware accelerator (PKHA)
• Data encryption standard (DES) accelerator (DESA)
• Advanced encryption standard (AES) accelerator (AESA)
• Message digest (hashing) hardware accelerator (MDHA)
• Random-number generator (RNG)
• SNOW 3G f8 (SNOW encryption algorithm) Hardware Accelerator (SNOWf8)
• SNOW 3G f9 (SNOW authentication algorithm) Hardware Accelerator (SNOWf9)
• Cyclic redundancy check accelerator (CRCA)
• Kasumi f8 and f9 (Kasumi encryption and authentication) hardware accelerator

(KFHA)
• ZUC encryption algorithm hardware accelerator (ZUCE)
• ZUC authentication hardware accelerator (ZUCA)

Cryptographic engines implemented in SEC

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

76 NXP Semiconductors

Chapter 4
SEC modes of operation
SEC can operate in the following security modes:

• Trusted
• Secure
• Non-secure
• Fail

SecMon controls these modes based on SecMon's current security state (that is, init,
check, trusted, secure, non-secure, and fail). The primary difference between these modes
is that they make different cryptographic keys available. Within each mode there are keys
that are volatile (that is, a different key value is used for each power-on session) and keys
that are non-volatile (that is, the same key value is available during each power-on
session).

4.1 Security Monitor (SecMon) security states
The current security mode can be identified in the SEC status register's MOO field.

This figure shows an overview of the SecMon security state transitions. Note that SEC
can detect certain security alarm conditions and can signal an alarm to SecMon.
Depending upon the settings and configuration of SecMon, this may cause the SecMon
security state machine to transition to fail state, which would then put SEC into its fail
mode.

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 77

 Asserts
fail mode

 Asserts
non-secure mode

 Asserts
Secure Mode

 Software-instantiated

 Can be locked out

 Asserts
trusted mode

 Secure
state

 Fail
state

 Non-
secure
state

 lnit
state

 Trusted
state

 Check
state

After successful completion of various

 hardware and software security checks
 Upon reset of SOC

 Software- instantiated

 assert
Non-secure Mode

 Upon failure of any of various
 hardware and software security checks

 Asserts
Non-secure mode

 Upon failure of any of various

hardware security checks

Figure 4-1. SecMon security state machine diagram

4.1.1 The effect of security state on volatile keys

SEC implements three 256-bit volatile cryptographic keys. At each power up, boot code
must test and instantiate the RNG. After instantiation, (or as part of RNG instantiation),
the three volatile secret keys must be generated. These values are stored within secure
key registers in SEC. The values are zeroized when SEC transitions to fail mode (in other
words, when the SecMon's security state machine transitions to fail state).

The available volatile keys, (which are located in SEC's secure key module), are as
follows:

• Job descriptor key encryption key (JDKEK) - used by job descriptors for encrypting
black keys (encrypted keys)

• Trusted descriptor key encryption key (TDKEK) - used by trusted descriptors for
encrypting black keys

• Trusted descriptor signing key (TDSK) - used to authenticate trusted descriptors
(digitally signed job descriptors)

Note that the JDKEK, the TDKEK, and the TDSK are all available for use by SEC in
trusted mode, secure mode, and non-secure mode1, but this does not cause any security
issue. The reason that this is not a security issue is that the trusted mode and secure mode

1. The JDKEK, TDKEK, and TDSK are readable and writable while in non-secure mode to facilitate hardware testing.

Security Monitor (SecMon) security states

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

78 NXP Semiconductors

are intended to use the same values for these keys, and these key values will be different
when in non-secure mode (which is not allowed to obtain the trusted/secure state mode
values of these keys). The reason that SEC cannot obtain the trusted/secure state mode
values of these keys when in non-secure mode is that new values for these keys are
generated by SEC's hardware RNG at each POR, and these keys are zeroized when
entering fail mode. As shown in Figure 4-1, the only paths from trusted state or secure
state to non-secure state pass through fail state or through a hardware reset, and in each
case the keys will be cleared. The only path from non-secure state to either trusted state
or secure state is through a hardware reset, which clears the keys. Consequently, when
operating in non-secure mode SEC does not have access to previous trusted mode/secure
mode values of these keys.

4.1.2 The effect of security state on non-volatile keys

Data that must be retained when the system is powered off must be stored in external
non-volatile storage. Some of this data is disclosure-sensitive (such as data rights
management keys) and must be protected even when the system is powered off. SEC
implements non-volatile cryptographic keys that can be used to encrypt sensitive data
during one power-on cycle, and then decrypt it during a subsequent power-on cycle.
These non-volatile keys (blob key encryption keys) are derived from the master key input
that SEC receives from SecMon.

When SEC is operating in trusted mode or secure mode, SEC derives blob key encryption
keys (BKEKs) from its master key input. When SEC is operating in non-secure mode or
fail mode, BKEKs are derived from the non-volatile test key, a hardwired constant used
for known-answer testing.

4.2 Keys available in different security modes
The primary difference between SEC's security modes is that different cryptographic
keys available are available in the different modes. See each mode's section for the
description of the mode's special keys.

4.2.1 Keys available in trusted mode

While in trusted mode, SEC can use special keys as listed in this table.

Chapter 4 SEC modes of operation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 79

Table 4-1. Special keys used in trusted mode

Key Characteristic(s) Function(s)

Job descriptor key
encryption key

• At POR, a new value (shared with secure
mode but not shared with non-secure mode)
should be generated from the RNG after
instantiation

• Zeroized when entering fail mode

Used for automatic key encryption and
decryption when executing Job Descriptors,
Trusted Descriptors and Shared Descriptors

Trusted descriptor key
encryption key

Can be used for automatic key encryption and
decryption when executing trusted
descriptors, including shared descriptors
referenced by trusted descriptors.

Trusted descriptor
signing key

Used for signing, verifying and re-signing
Trusted Descriptors

Master key derivation key Non-volatile, shared with secure mode, but uses a
different key derivation function input to generate
keys not shared with trusted mode, non-secure
mode or fail mode

Used for blob encapsulation or decapsulation
operations

4.2.2 Keys available in secure mode

While in secure mode, SEC can use special keys as listed in this table.

Table 4-2. Special keys used in secure mode

Key Characteristic(s) Function(s)

Job descriptor key
encryption key

• At POR a new value (shared with trusted
mode but not shared with non-secure
mode) should be generated from the RNG
after instantiation

• Zeroized when entering fail mode

Used for automatic key encryption and
decryption when executing job descriptors,
trusted descriptors and shared descriptors

Trusted descriptor key
encryption key

Can be used for automatic key encryption and
decryption when executing trusted descriptors,
including shared descriptors referenced by
trusted descriptors

Trusted descriptor
signing key

Used for signing, verifying and re-signing
Trusted Descriptors

Master key derivation key Non-volatile, shared with trusted mode, but uses
a different key derivation function input to
generate keys not shared with trusted mode,
non-secure mode or fail mode

Used for blob encapsulation or decapsulation
operations

4.2.3 Keys available in non-secure mode

In non-secure mode a fixed default key with a known value is used in place of the master
key derivation key. This allows the cryptographic blob mechanism to be tested using
known test results. The volatile key registers are read and write accessible until they are
locked, which allows testing using known test results. While in non-secure mode SEC
can use special keys as listed below.

Keys available in different security modes

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

80 NXP Semiconductors

Table 4-3. Special keys used in non-secure mode

Key Characteristic(s) Function(s)

Job descriptor key
encryption key

• At POR, a new value (not shared with
trusted mode or secure mode) should be
generated from the RNG after instantiation

• Zeroized when entering fail mode

• Can be read and overwritten for testing
• Used for automatic key encryption and

decryption when executing job
descriptors, trusted descriptors, and
shared descriptors

Trusted descriptor key
encryption key

• Can be read and overwritten for testing
• Can be used for automatic key encryption

and decryption when executing trusted
descriptors, including shared descriptors
referenced by a trusted descriptors

Trusted descriptor
signing key

• Can be read and overwritten for testing
• Used for testing the signing, verifying and

re-signing of trusted descriptors

Master key derivation key Non-volatile, fixed, and not shared with trusted
mode or secure mode

Used for testing blob encapsulation or
decapsulation operations

4.2.4 Keys available in fail mode

When SEC transitions to fail mode, SEC clears all registers that could potentially hold
sensitive data2. Because of this, cryptographic operations that are in progress when the
transition occurs will likely not produce the correct result. If this is the case, the operation
completes with an error indication.

Although SEC cleans up ongoing operations after a transition to fail mode, SEC is not
intended to continue operating in this mode. After removing all causes for entering the
fail mode, software can initiate a transition from fail mode to non-secure mode by
commanding the SecMon security state machine to transition from fail state to non-secure
state (unless this transition has previously been locked out via software). However, since
all key registers were cleared when SEC entered fail mode, the only useful actions that
can be performed after the transition to non-secure mode would be those required to
investigate the cause of the transition to Fail mode.

Note that it is not possible to transition from fail mode back to secure mode or trusted
mode.

2. The registers that are cleared include the class 1 and class 2 key registers, the class 1 and class 2 context registers, the
math registers, the JDKEK, TDKEK and TDSK registers, the PKHA E memory, the input data FIFO, the output data FIFO,
and the descriptor buffer.

Chapter 4 SEC modes of operation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 81

Keys available in different security modes

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

82 NXP Semiconductors

Chapter 5
SEC hardware functional description
As shown in Figure 1-1, SEC functionality is aligned with several major subcomponents.
This table describes these subcomponents.

Table 5-1. SEC subcomponents

Description Cross-reference(s)

Interfaces

Register interface

Used for access to configuration, control, status and
debugging registers

Register interface (IP bus)

Job execution interfaces

Job Ring Interface (JR) Job Ring interface

Queue Manager Interface (QI) Queue Manager Interface (QI)

Job Queue Controller

Schedules tasks for the descriptor processor Job scheduling

Descriptor processor

Descriptor controller (DECO) Descriptors and descriptor commands

Cryptographic control block (CCB) Descriptor controller (DECO) and cryptographic control block
(CCB)

Cryptographic hardware accelerators (CHAs)

Public key hardware accelerator (PKHA) Public-key hardware accelerator (PKHA) functionality

Kasumi f8 and f9 hardware accelerator (KFHA) Kasumi f8 and f9 hardware accelerator(KFHA) functionality

DES and 3DES hardware accelerator (DESA) Data encryption standard accelerator (DES) functionality

CRC hardware accelerator (CRCA) Cyclic-redundancy check accelerator (CRCA) functionality

Random Number Generator (RNG) Random-number generator (RNG) functionality

SNOW f8 Hardware Accelerator (SNOWf8) SNOW 3G f8 accelerator functionality

SNOW f9 Hardware Accelerator (SNOWf9 SNOW 3G f9 accelerator functionality

Message Digest Hardware Accelerator (MDHA) Message digest hardware accelerator (MDHA) functionality

AES Hardware Acclerator (AESA) AES accelerator (AESA) functionality

ZUC encryption hardware accelerator (ZUCE) ZUC encryption accelerator (ZUCE) functionality

ZUC authentication hardware accelerator (ZUCA) ZUC authentication accelerator (ZUCA) functionality

Trust Architecture modules

Run-time integrity checker (RTIC) Run-time integrity checker (RTIC)

Table continues on the next page...

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 83

Table 5-1. SEC subcomponents (continued)

Description Cross-reference(s)

Secure key module Black keys

Blobs

Trusted descriptors

5.1 System Bus Interfaces
SEC is connected to a SoC-wide bus for access to SEC registers. See Register interface
(IP bus). An AXI master interface connects to the SoC bus fabric for DMA access to
system memory.

5.1.1 AXI master (DMA) interface

DMA access to system memory is implemented through an AXI master interface. SEC
DMA always asserts normal (AKA user) mode rather than privileged (AKA supervisor)
mode, and always asserts data access rather than instruction access (i.e. fetch). SEC
DMA can be configured to assert either TrustZone SecureWorld or TrustZone
NonSecureWorld for different bus transactions. SEC DMA can be configured to assert
specified ICID values for various bus transactions. For high throughput this interface
utilizes a 128-bit data bus.

The AXI master interface configuration defaults are chosen to enhance performance
where possible, however ideal configuration for performance is not the default and
should not be assumed for any application. The DMA reads and writes data in data-bus-
aligned bursts, whenever possible. The LARGE_BURST field default value is '0' but
better performance will be achieved with a value of '1' (See the Master Configuration
Register (MCFGR)) Other notable, performance enhancements include the use of read-
safe, write-safe, and write-efficient transactions, described in the following sections.

5.1.1.1 DMA read-safe transactions

A read-safe transaction may read data preceding and/or following the target bytes to align
the starting and ending byte addresses to data bus or burst address boundaries, even if not
all of the data read is needed. This improves performance because the bus system is
optimized for address-aligned transactions.

System Bus Interfaces

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

84 NXP Semiconductors

NOTE
When reading hardware registers, it is not always safe to read
extra bytes beyond the limits of the register due to potential side
effects. For example, a register at an adjacent address might
automatically clear itself when its contents are read. Although
SEC's DMA would not normally be directed to read hardware
registers, read-safe operation can be disabled if necessary (see
the RSE field in the DMA Control Register).

5.1.1.2 DMA interface write-safe transactions

A write-safe transaction is similar to a read-safe transaction in that it accesses a set of
memory locations even if not all of those locations need to be accessed. In the case of
write-safe transactions, SEC writes zeros to addresses past the targeted locations up to the
next data bus or burst address boundary, depending upon the offset within the cache line.
This improves performance because the bus system is optimized for cacheline-aligned
transactions.

SEC's DMA uses write-safe transactions only when the following conditions are all met:

• A SEQ STORE or SEQ FIFO STORE command is being executed.
• A SEQ OUT PTR command defined the sequence.
• The EWS (Enable Write-Safe) bit was set in the SEQ OUT PTR command.
• The total number of bytes written does not exceed the available buffer space.

Note that even when performing a write-safe transaction, SEC's DMA does not write
more bytes than was specified by the LENGTH field of the SEQ OUT PTR command
(plus any extensions to the length specified by SEQ OUT PTR commands with the PRE
bit set). If a SEQ OUT PTR command with the REW (Rewind) field set to 10b or 11b has
been executed, write-safe transactions are not performed unless output length counting
has been re-enabled via the DECO Control Register. Note that write-safe transactions can
be disabled if necessary (see WSE field in the DMA Control Register).

5.1.1.3 DMA write-efficient transactions

In addition to “write-safe” transactions, the DMA interface also allows “write-efficient”
transactions to be used for updating Descriptors in memory. Most of the built-in protocols
utilize a Protocol Data Block (PDB) that is located within the Job Descriptor or Shared
Descriptor that contains the PROTOCOL OPERATION command. The PDB specifies
various options, but may also contain protocol state information (such as sequence
numbers) that must be updated for each protocol data unit that is processed. Any updates

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 85

that were made to portions of the PDB while the Descriptor was executing must be
written back to the Descriptor in memory once the Descriptor terminates so that the new
state information is available for subsequent executions of the same Descriptor. These
write-back operations are more efficient if the write transaction is aligned to data bus and
burst address boundaries. Write-efficient bus transactions (specified by STORE
command SRC values 45h and 46h) will write out more of the Descriptor Buffer than just
the updated portions of the Descriptor if this is both possible and more efficient.
Extending (either toward the beginning or toward the end, or both) the portion of the
Descriptor Buffer to be written out is considered possible if the extended portion contains
only the Shared Descriptor or only the Job Descriptor that must be updated. Extending
the portion of the Descriptor Buffer to be written out is considered efficient if this causes
the write transaction to be aligned to address boundaries that minimizes the number of
bus transactions. If extending the portion to be written is not possible or not efficient,
then the bus transactions associated with STORE commands using SRC values 45h and
46h will be identical to bus transactions associated with SRC values 41h and 42h.

 Data bus or burst
address boundary

 Data bus or burst
address boundary

 Read-safe bus transaction Write-safe bus transaction Write-efficient bus transaction

 Data ignored
after reading

 Data ignored
after reading

 Output
buffer

 Descriptor
in

memory

 Data that must
be read Data

actually read

 Data that must
be written

 Data that must
be updated

 Additional words of
descriptor written
back to memory

 Additional 0s written

Input Buffer

or
Descriptor

 Data bus or burst
address boundary

 Data bus or burst
address boundary

 Data bus or burst
address boundary

 Data bus or burst
address boundary

 Additional words of
descriptor written
back to memory

Figure 5-1. Read-Safe, Write-Safe and Write-Efficient Bus Transactions

5.1.1.4 DMA bursts that may read past the end of data structures

SEC DMA accesses do not read a full burst if the read would need to cross a 4 Kbyte
address boundary. SEC also does not read a full burst from a job ring input or output ring
if it would need to read past the end of the ring. However, as illustrated in the figure
below, SEC may read past the end of a descriptor or scatter/gather table (SGT) when
fetching them because it does not know the length of the descriptor or SGT before issuing
the read transaction.

System Bus Interfaces

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

86 NXP Semiconductors

 Segment

 4 Kbyte address
boundary

 DMA may read
past end of segment,
causing segmentation

fault

 4 Kbyte
address boundary

 Length of
read burst

(See
NORMAL_BURST

or
LARGE_BURST
in Master Config

register)

 Segment

 Descriptor

 DESCLEN

 Length of
descriptor
determined
by DESCLEN
field

 Scatter/gather table

 Length of
S/G table
determined
by F bit in
SGT entry

 F

Figure 5-2. DMA may read past end of descriptor or SGT

5.1.2 Register interface (IP bus)

SEC's register interface (32-bit IP bus) is used to read and write registers within SEC for
the following purposes:

Table 5-2. Summary of register interface uses

Purpose For more information, see

During chip initialization time

To configure SEC, including initialization of the Job Rings and
Queue Manager Interface.

• Initializing job rings
• Initializing the Queue Manager Interface

Change the default settings for SEC's AXI DMA interface Master Configuration Register (MCFGR) in the memory map

Configure RTIC Initializing RTIC

During normal steady-state operations

Manage SEC's job ring interface Job Ring interface

During hardware and software debugging

Read status registers and single-step descriptor commands • Register-based service interface
• SEC Status Register
• RNG TRNG Status Register
• RNG DRNG Status Register
• Holding Tank Status Register
• Secure Memory Status Register

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 87

Table 5-2. Summary of register interface uses

Purpose For more information, see

• Job Ring Output Status Register
• Job Ring Interrupt Status Register
• CCB Interrupt Status Register
• CCB Status and Error Register
• CCB FIFO Status
• DECO Operation Status Register

NOTE
Accesses to registers other than the DECO and CCB registers
must use full-word (32-bit) reads or writes. Reads and writes to
the DECO and CCB registers permit byte access.

5.2 SEC service interface concepts
SEC delivers cryptographic services through a set of interfaces optimized for different
use models (see Service interfaces). All service interfaces share a number of common
objects and concepts, which are explained in more detail in the subsections below.

5.2.1 SEC descriptors

SEC provides cryptographic services by executing a series of commands specified in
SEC descriptors. Each SEC descriptor is formed from SEC commands and embedded
data. The set of available commands includes conditional branches, loops, subroutine
calls, or jumps to other descriptors, as well as mathematical, cryptographic and data move
operations. Except as specified by the branch and call commands, the commands within
SEC descriptors normally execute in sequence until the descriptor has completed (or has
been aborted due to external management action). Descriptors cannot change their own
execution priority or directly affect the scheduling of other descriptors, but SEC
descriptors do have mechanisms to ensure coherency of data shared between descriptors.

SEC descriptors access input, output, and control data by means of memory addresses
and job-specific memory access control attributes, or, for jobs submitted via job rings,
job-ring-specific memory access control attributes. Descriptors cannot change their
memory access control attributes, but they can dynamically select 1 or 2 attribute sets
from predefined configurations. SEC descriptors also cannot allocate or release buffers
to/from buffer pools.

SEC implements different types of descriptors to address specific processing needs:

SEC service interface concepts

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

88 NXP Semiconductors

• Job Descriptor (JD) (see Job descriptors)

Every SEC job is defined by at least one JD. The JD may be provided by the SEC
service user directly via the register-based service interface or via the job ring-based
service interface, or the JD may be created internally within SEC in response to a
service request from the Queue Manager Interface (QI) or the Run-Time Integrity
Checker (RTIC). It is also possible for a JD to invoke a Shared Descriptor (SD) or to
jump to another JD, which allows a job to consist of an arbitrarily large number of
commands and data objects.

• Shared Descriptor (SD) (see Shared descriptors)

SDs provide a mechanism to group and reuse instructions and data that are common
in the processing of more than one related job, e.g., processing protocol data units of
a network connection. A key feature of SDs is to select and coordinate sharing of the
descriptor information between multiple DECOs. Using SDs may also increase
performance by improving the probability of finding an SD within SEC that has
already been read for a preceding job requiring the same processing.

• Trusted Descriptor (TD) (see Trusted descriptors)

TDs are essentially the same as JDs, but they are cryptographically signed. When a
TD is presented for execution, SEC first checks the signature and executes the TD
only if the signature is correct. TDs are intended to ensure that special access
privileges are usable only by descriptors that are known to employ those privileges
properly. TDs would be created by trusted software (such as secure boot software or
a hypervisor), and then cryptographically signed to ensure that they were not altered
by untrusted software.

• Inline Job Descriptor (IJD) (see Using in-line descriptors)

IJDs are simply JDs that are made available to SEC through the input data stream.
JDs submitted via job rings may direct SEC to execute commands from an IJD at any
time using the SEQ IN PTR command with the INL option selected. QI-generated
JDs imply the service user's intent to execute an IJD from the absence of an SD
specification (SD length is set to 0). In this case SEC is directed to execute
commands from an IJD starting at the first byte of the input data stream and
immediately after output and input data stream addresses are defined in the internally
generated JD. IJDs are primarily intended to simplify the processing of one-off jobs
and job variations.

• Replacement Job Descriptor (RJD and CRJD) (see Using replacement job
descriptors)

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 89

RJDs and Control RJDs (CRJDs) are intended to support job processing variations or
updates of immediate or state data defined in SDs. Both kind of RJDs replace the JD
that invoked them and can be executed either before or after the execution of the SD.
Thus RJDs and CRJDs provide the capability to permanently update or temporarily
change the processing defined by SDs. RJDs may be supplied with 2 methods: The
normal RJD is supplied inline (like the IJD) embedded in the input data stream.
Alternatively, a CRJD associated with a specific SD may be utilized. A CRJD must
be located in memory immediately following the SD. The execution of an RJD is
initiated with the SEQ IN PTR command by setting the RJD control bit. A CRJD
requires to additionally set the CTRL bit. Note, first generation DPAA SoC products,
such as this one, cannot initiate the execution of a CRJD through QI; only jobs
submitted through job rings can.

5.2.2 Job termination status/error codes

SEC reports the termination status of all jobs, allowing software to determine whether the
descriptor completed normally, with warnings, or with an error. The reporting mechanism
always involves writing a job termination status word to memory. Depending on the
selected service interface, SEC may also update service interface status registers.

An all-zero status indicates that the job completed without warnings or errors. If a
warning or an error was encountered, the code in the source field of the status word
indicates which component within SEC detected the condition. The remaining status
word coding provides additional component-specific detail.

For jobs submitted through the Job Ring interface the job termination status is written to
the Job Ring Output Status register and to the output ring in the word following the
pointer to the completed job descriptor. The job termination status can be read from the
Job Ring Output Status register, but because the termination status of each newly
completed job will overwrite the previous job's termination status this mechanism is
primarily intended to support debug and ring management (for executing single jobs or
after the ring is halted). A selection of severe error conditions (potentially indicating
malicious users or software instability) is stored together with additional error and/or
access violation attributes in job-ring specific recoverable error record registers.

For jobs submitted through the Queue Manager Interface (QI) the job completion status is
written to the STATUS/CMD field in the response/output frame descriptor returned to the
user. If QI detects an error, the status word's source field is set to 5. QI-detected error
conditions are presented in 1-hot encoded format. This information is also latched in the
QI Status register. Software can read this register and obtain the accumulated status of all
jobs processed since the last time the QI Status register was read.

SEC service interface concepts

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

90 NXP Semiconductors

Table 5-3. Job termination status word

bits 31-28

Source

bits 27-0

Source-specific error or warning codes

0h

(None)
0000000h - No errors or warnings

bits 31-28

Source

bit 27

(JMP)

bit 26

(MLK)

bits 25-16

Reserved

bits 15-8

(DESC INDEX)

bits 7-4

(CHAID)

bits 3-0

(ERRID)

2h

(CCB)

See
footnote 1

See
footnote 2

0000h The number of
words from the start
of the descriptor
where the error was
detected. In some
cases this value may
be off by one or
more words due to
timing issues.

0h - CCB

1h - AESA (all modes of
AES)

2h - DESA (DES and
3DES)

4h - MDHA (MD5, SHA-1,
SHA-224, SHA-256,
SHA-384, SHA-512,
SHA-512/224,
SHA-512/256)

5h - RNG

6h - SNOWf8 (SNOW
encrypt/decrypt)

7h - KFHA f8/9 Kasumi
encrypt/decrypt and
authentication)

8h - PKHA (all public key
operations)

9h - CRCA (CRC
processing)

Ah - SNOWf9 (SNOW
authentication)

Bh - ZUCE (ZUC encrypt/
decrypt)

Ch - ZUCA (ZUC
authentication)

0h - No error

1h - Mode error

2h - Data size error

3h - Key size error

3h - (RNG) Instantiate error

4h - (RNG) Not instantiated
error

4h - (PKHA) A size error

5h - (RNG) Test instantiate
error

5h - (PKHA) B size error

6h - (RNG) Prediction
resistance error

6h - Data out-of-sequence
error

6h - (PKHA) "c" is zero for
ECC F2M

7h - (RNG) Prediction
resistance & test request
error

7h - (PKHA) Divide by 0
error

8h - (PKHA) Modulus even
error

9h - (DES) key parity error

9h - (RNG) Secure Key
Generation error

Ah - ICV check failed

Bh - Hardware error

Ch - (AESA) CCM AAD
size error

Ch - (RNG) Continuous
check error

Ch - Invalid key write

Table continues on the next page...

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 91

Table 5-3. Job termination status word (continued)
Dh - (CCB) Class 1 or class
2 CHA is not reset, or, a
second CHA of the same
class is selected prior to
resetting the first selection

Eh - (CCB) Invalid CHA
combination selected

Fh - (CCB) Invalid CHA

bits 31-28

Source

bit 27

(JMP)

bit 26

(MLK)

bits 25-16

Reserved

bits 15-8

(DESC INDEX)

bits 7-0

User-defined value

3h

(Jump
Halt User
Status)

See
footnote 1

See
footnote 2

0000h The number of
words from the start
of the descriptor
where the JUMP
HALT Command
was encountered.

The value in the LOCAL OFFSET field of the JUMP
command is written into these bits of the termination
status word. The user is free to assign any interpretation
to these bits, such as using them to distinguish among
different instances of the JUMP command.

bits 31-28

Source

bit 27

(JMP)

bit 26

(MLK)

bits 25-16

Reserved

bits 15-8

(DESC INDEX)

bits 7-0

Error Code

4h

(DECO)

See
footnote 1

See
footnote 2

0000h The number of
words from the start
of the descriptor
where the error was
detected. In some
cases this value may
be off by one or
more words due to
timing issues.

00h - No error

01h - SGT length error (The descriptor is trying to read
more data than is contained in the SGT table.)

02h - Unused SGT entry error (Extension bit set in
unused SGT entry.)

03h - Job Ring Control Error (There is a bad value in the
Job Ring Control register.)

04h - Invalid Descriptor Command

06h - Invalid KEY Command

07h - Invalid LOAD Command

08h - Invalid STORE Command

09h - Invalid OPERATION Command

0Ah - Invalid FIFO LOAD Command

0Bh - Invalid FIFO STORE Command

0Ch - Invalid MOVE/MOVE_LEN Command

0Dh - Invalid JUMP Command (a non-local JUMP
Command is invalid because the target is not a Job
Header Command, or the jump is from a TD to a JD, or
because the target descriptor contains an SD)

0Eh - Invalid MATH Command

0Fh - Invalid SIGNATURE Command

10h - Invalid Sequence Command (A SEQ IN PTR or
SEQ OUT PTR Command is invalid or a SEQ KEY, SEQ
LOAD, SEQ FIFO LOAD, or SEQ FIFO STORE
decremented the input or Output Sequence length below
0. This error may result if a built-in PROTOCOL
Command has encountered a malformed PDU.)

Table continues on the next page...

SEC service interface concepts

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

92 NXP Semiconductors

Table 5-3. Job termination status word
11h - Skip data type invalid (The type must be Eh or Fh.)

12h - Shared Descriptor Header Error

13h - Header Error (Invalid length or parity, or certain
other problems.)

14h - Burster Error (Burster has gotten into an illegal
state.)

15h: Context Register Length Error. The descriptor is
trying to read or write past the end of the Context
Register. A SEQ LOAD or SEQ STORE with the VLF bit
set was executed with too large a length in the variable
length register (VSOL for SEQ STORE or VSIL for SEQ
LOAD).

16h - DMA Error

1Ah - Job failed due to job ring reset or RTIC error

1Bh - Job failed due to transition to Fail Mode

1Ch - DECO Watchdog timer timeout error

1Dh - Error when copying key from another DECO (other
DECO's key registers were locked)

1Eh - Error when copying data from another DECO
(other DECO had unmasked descriptor error)

1Fh - ICID mismatch error (DECO was trying to share
from itself or from another DECO but the two Non-SEQ
ICID values didn't match or the "shared from" DECO's
Descriptor required that the SEQ ICID and TZ/SDID
values be the same but they aren't.)

20h - DECO has completed a reset initiated via the DRR
register

21h - Nonce error (When using EKT (CCM) key
encryption option in the FIFO STORE Command, the
Nonce counter reached its maximum value and this
encryption mode can no longer be used.)

22h - Leading meta data is too large for rewind operation

23h - Read Input Frame error (A read input frame was
attempted, but the protocol executed does not support it
or a SEQ IN PTR command has not been executed.)

24h - JDKEK, TDKEK or TDSK was needed, but value
has not yet been initialized.

25h - Error while prefetching

26h - A job has DECO select value for a different DECO

27h - Rewind input frame attempted but input buffers
already released

30h - DWORD load error

31h - DWORD store error

32h - Invalid PKCURVE Command

33h - Burster buffer reuse error (address or length went
negative)

Table continues on the next page...

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 93

Table 5-3. Job termination status word (continued)
80h - DNR (do not run) error (A Job Descriptor or Shared
Descriptor had the DNR bit set.)

81h - undefined protocol command

82h - invalid setting in PDB

83h - Anti-replay LATE error

84h - Anti-replay REPLAY error

85h - Sequence number overflow

86h - Invalid signature

87h - DSA Sign Illegal test descriptor

88h - Protocol Format Error (A protocol has seen an
error in the format of data received. When running RSA,
this means that formatting with random padding was
used, and did not follow the form: 00h, 02h, 8-to-N bytes
of non-zero pad, 00h, F data.)

89h - Protocol size error

8Ah - Key not written before start of protocol

8Bh - IPsec decap CE DROP (ECN issue) error

8Ch - RFKG P & Q upper 100 bits the same

8Dh - RFKG computed D too small

8Eh - RFKG PDB and computed N sizes differ

C1h - Undefined Blob mode

C4h - Black Blob key or input size error

C5h - Invalid key destination in blob command

C8h - Trusted/Secure mode error in blob command

CAh - LTE C-plane ICV error

F0h - Warning: Descriptor completed normally, but IPsec
TTL or hop limit field either came in as 0, or was
decremented to 0

F1h - Warning: Descriptor completed normally, but HFN
matches or exceeds the Threshold

F2h - Warning: IPsec padding check error found

FFh - Warning: Output frame length rollover

bits 31-28

Source

bits 27-9

Reserved

bits 8-0

Error Code

5h

(QI)

0000h Bit 8 - TBTSERR: Table buffer too small error

Bit 7 - TBPDERR: Table buffer pool depletion error

Bit 6 - OFTLERR: Output Frame too large error

Bit 5 - CFWRERR: Compound Frame write error

Bit 4 - BTSERR: Buffer too small error

Bit 3 - BPDERR: Buffer pool depletion error

Bit 2 - OFWRERR: Output Frame write error

Table continues on the next page...

SEC service interface concepts

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

94 NXP Semiconductors

Table 5-3. Job termination status word (continued)
Bit 1 - CFRDERR: Compound Frame read error

Bit 0 - PHRDERR: Preheader read error

bits 31-28

Source

bits 27-12

Reserved

bits 11-8

NADDR

bits 7-0

Error code

6h

(Job Ring)

0000h Number of descriptor
addresses requested
for error code 1Eh,

otherwise 0h

00h - No error

1Eh - Error reading the Descriptor address

1Fh - Error reading the Descriptor

bits 31-28

Source

bit 27

(JMP)

bit 26

(MLK)

bits 25-16

Reserved

bits 15-8

(DESC INDEX)

bits 7-0

(COND)

7h

(Jump
Halt with
Condition
Codes)

See
footnote 1

See
footnote 2

0000h The number of
words from the start
of the descriptor
where the JUMP
HALT Command
was encountered.

PKHA/Math condition codes field from JUMP HALT
Command.

1. If JMP = 1, the descriptor made a jump to another descriptor. When this bit is 1, the DESC INDEX field will contain the
index into the descriptor that was jumped to rather than into the original descriptor.

2. Memory Leak. If MLK=1 a memory leak has occurred due to an error that prevents user requested buffer releases, i.e., this
condition can only be detected for jobs generated by QI.

5.2.3 Frames and flows

SEC borrows the term ‘frame’ from network protocols. A frame simply refers to some
number of sequential bytes that are usually, but not necessarily, part of a segmented byte
stream and delimited by implicit or explicit start and end markers. Explicit markers are
formed by so-called protocol headers and/or trailers of protocol-specific length including
a possible length of 0. Implicit markers are out-of-band information defining where frame
data starts and ends. For SEC the meaning of a frame is generalized to also include
designated space into which SEC-generated frame data can be stored, as well as data that
is completely unrelated to networking protocols, e.g., a piece of program code that needs
to be cryptographically signed or a sequence of SEC-generated random data.

While frames define a logical sequence of bytes, the frame data itself does not need to be
necessarily stored in a single, contiguous region of memory (also referred to as a buffer).
Segmented, multi-buffer frames can be formed by utilizing scatter/gather tables (stored in
additional buffers) where table entries are used to keep track of frame segment address,
offset, length, and other segment attributes. For details see Scatter/gather tables (SGTs).

A SEC flow simply refers to a sequence of two or more frames requiring the same kind
of processing. Whether the frame data is stored in single buffer frames, multi-buffer
frames, or a mix of both is irrelevant. The key criteria of a flow is that all frames are
processed in the same fashion. Some flows require that the frames be processed in a

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 95

specific order. By using shared descriptors, SEC can control the order in which frames
are processed and delivered to the service user by selecting an appropriate sharing type.
For details see Shared descriptors.

5.2.4 Frame descriptors and frames

A Frame Descriptor (FD) is a standardized Data Path Acceleration Architecture (DPAA)
data structure used to pass information between services users and service providers. The
FD may convey input and/or output data, output data buffers, how input data should be or
has been processed, and a number of controls to support FD queuing options, congestion
and buffer management, and tracing of FDs for debug and performance analysis. For a
detailed generic description of FDs see the DPAA overview chapter of your SoC
reference manual.

As described in Frames and flows, a frame refers to a defined sequence of bytes and a
SEC FD may convey 0, 1, or 2 frame definitions. A frame in an FD is either defining
input data to be consumed, output buffer(s) to be filled, output data that has been
produced, or combinations thereof. The frame specific information of the FD may refer to
a single or a multi-buffer frame structure and identifies command options a recipient may
need to process the frame data or status information on how the data was processed.

The Queue Manager Interface of SEC support 3 different types of FDs:

• FDs with no input or output frame specification
• Simple frame input or output FDs
• Compound (input/output) FDs

and 2 types of frames:

• Single buffer frames
• Multi-buffer frames

For detailed information on SEC FDs see Frame descriptors

5.2.5 Frame descriptor flow and flow context

For SEC services provided through QI, a flow refers to two or more Frame Descriptors
(FDs) utilizing the same context to process frames. Whether FDs are providing one or
two frames (or no frame at all) or whether the frame data is stored in one or multiple
buffers is irrelevant. The key criteria of such flows is that all FDs of the flow are
processed with the same SEC descriptor(s) and flow context data or controls.

SEC service interface concepts

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

96 NXP Semiconductors

A SEC flow context consists of one or more data structures used to define flow specific
frame processing parameters. In all use cases a preheader precedes an optional, but
usually present, Shared Descriptor (SD). A SEC flow context defines information in the
following categories:

• Data and job processing attributes to optimize frame data access and job scheduling
• Input buffer release and output buffer allocation controls
• An optional, but usually present SD and the SD length (0 if SD is not present)

For detailed information on SEC preheaders see Context_A field (preheader).

5.2.6 Buffer allocation, release, and reuse

One of the key functions of the SEC preheader is to define how frame input and output
buffers are managed. In combination with frame descriptor attributes, SEC provides the
following options:

• SEC service users may use compound frame descriptors to provide both input and
output frames. This enables the user to fully control both the input and the output
buffer structures (and bypass any SEC buffer management limitations). Note, this
approach may also be utilized to reuse part or all of the input buffers as output
buffers. In this case it is the user's responsibility to provide enough output buffer
space to hold the output data produced by the requested SEC service and ensure that
SEC output does not destroy any input data needed to produce the output data before
it can be consumed by SEC.

• SEC service users may use preheader parameter settings and configure SEC buffer
management to optionally release input buffers to their associated buffer pool,
allocate output buffers from up to two user-defined buffer pools, and form a variety
of output frame structures. In this use case it is the user's responsibility to maintain a
sufficient amount of output buffers in the utilized buffer pool(s).

For detailed information on SEC buffer management options see Context_A field
(preheader).

5.2.7 User data access control and isolation

SEC supports user data access control and SEC-service user isolation through its ability
to use service interface-specific Isolation Context Identifiers (ICIDs) to tag all related
memory transactions. The ICID tag is utilized by the SMMU as a Stream ID to select

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 97

table entries that define system software enforced address validity checking, optional
address and attribute translation as well as other SMMU functions. For details see the
SMMU chapter of your SoC reference manual.

SEC can be configured to assign different tags for sequentially accessed data (typically
input/output data) and for non-sequentially accessed data (typically control or context
data) when performing associated memory accesses. Control data refers to any SEC
instructions or data utilized to process an input data stream in order to produce an output
data stream or to just output status (e.g., an indication that the signature of some input
data is correct). Depending on the selected service interface and user application, access
to SEC-utilized memory is managed by up to two ICIDs.

When accessing memory the RTIC service interface utilizes only one ICID per memory
block, while the job ring and register service interfaces may utilize up to two different
ICIDs defined by a trusted management entity in interface-specific SEC registers.

The SEC Queue Manager service Interface (QI) supports use of up to two ICIDs. The
ICID value is conveyed to SEC by QMan and expanded to up to two ICIDs utilizing SEC
mask and base registers configured by a trusted management entity.

The SEC QI receives the ICID information for up to 3 Frame Descriptors from a single
queue in the so-called dequeue summary information. The ICID always originate from
the Queue Manager's access control attributes, which are configured by a trusted
management entity.

5.3 Service interfaces
SEC services may be invoked via the following types of service interfaces:

• A Register-based service interface
• A Job Ring interface
• A Queue Manager Interface (QI)
• A Run-time integrity checker (RTIC)

The register-based interface is primarily intended for management entities to use for
simple one-off jobs during startup, run-time testing of SEC functionality, or debugging
SEC descriptors. It is not intended for repetitive or high throughput activities.

The job ring interface provides single user/driver job queuing, job completion interrupt
services, and support for dynamic service interface virtualization via a software
management entity. SEC implements 4 job ring interfaces that can be independently
assigned (and re-assigned) to different users. This service interface type is primarily

Service interfaces

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

98 NXP Semiconductors

intended to be (at least temporarily) assigned to either the ARM TrustZone (TZ), system
management entities or application entities. Note that creating trusted descriptors can
only be accomplished via the job ring interface.

QI provides efficient sharing of SEC service for all users having access to a Queue
Manager portal and an assigned frame queue pair linking the portal to SEC. Once these
conditions are met a bi-directional data path is enabled for service requests and responses
between a user and SEC. In this use mode the Queue Manager provides access attributes
for input, output, and control (context) data associated with the service request and
response. The user's service request identifies the data including details about data buffer
locations and how the data is to be processed.

Jobs can also be internally initiated by SEC's RTIC submodule. RTIC is typically
configured at startup (and optionally reconfigured thereafter) by a trusted or privileged
management entity, and then operates autonomously, periodically submitting specialized
SEC descriptors to the job queue controller.

5.3.1 Job Ring interface

The Job Ring interface is a software job programming interface. For each job submitted
to SEC, software must create a job descriptor that explicitly describes the data to be
processed and the keys and context to be used for the processing (see Job descriptors). In
most high-speed networking products the QI submits the majority of job descriptors
executed by SEC (see Queue Manager Interface (QI)), but the Job Ring interface may be
used to create security associations and perform other one-time cryptographic operations.

SEC implements 4 Job Ring interfaces. Each Job Ring interface provides an input ring
for job descriptors and an output ring for results. This queuing mechanism allows
software to schedule multiple SEC jobs for execution and then retrieve the results as
convenient. The input rings and output rings are implemented as circular buffers (also
called rings) that are located in system memory.

The entries in the input rings are pointers to job descriptors that are located elsewhere in
memory (see Address pointers). Each entry in an output ring consists of a pointer to a job
descriptor followed by a job termination status word (see Job termination status/error
codes). They may also be followed by a word containing the number of bytes written by
SEQ STORE and SEQ FIFO STORE commands during the descriptor's execution (see
INCL_SEQ_OUT field in the Job Ring Configuration Register). The job descriptor
pointers in the output rings allow software to correlate result status with the particular job
descriptor that SEC executed to produce that result.

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 99

5.3.1.1 Configuring and managing the input/output rings, overview

Software configures the input and output rings and then manages them jointly with SEC.
The following table describes the uses of the input and output ring registers:

Table 5-4. Input/output ring registers

Register Description

Input/Output Ring Base Address
Register

Describes the base address of the ring buffer, which must be a multiple of four bytes

Input/Output Ring Size Register Describes the size of the ring buffer measured in the number of entries

Input Ring Jobs Added/Output
Ring Jobs Removed Register

Tells SEC how many jobs software placed in the input ring or removed from the output
ring

Input Ring Slots Available/Output
Ring Slots Full Register

Tells software how many spaces are available to add jobs to the input ring or how many
jobs are in the output ring ready for software processing

Input Ring Read Index Points to the head of the queue within the input ring, that is, where SEC finds the next job
descriptor to read from the job ring

Output Ring Write Index Points to the tail of the queue within the output ring, that is, where SEC places the results
of the next completed job descriptor for that job ring

Job Ring Configuration Register Used to configure job ring interrupts, set endianness overrides, and select whether the
optional sequence out length word appears in Output Ring entries

Figure 5-3 shows an example input ring and output ring. The physical ring buffers are
shown in the boxes on the right. The logical queues located within these ring buffers are
shown in shaded boxes to the left. Each input ring entry consists of a pointer to a job
descriptor. Each output ring entry consists of a pointer to a job descriptor followed by a
32-bit word indicating the job completion status.

In this example, jobs 10 through 15 are in the input ring waiting for SEC to process them.
The results for jobs 4 through 8 are in the output ring, waiting for software to retrieve
them. SEC has removed job 9 from the input ring, but has not yet written the results to
the output ring. Old entries that have not yet been overwritten are shown in italics.

Note that job 7 completed ahead of job 6. In versions of SEC that implement more than
one DECO, it is possible for jobs submitted through the same job ring to complete out of
order. See Order of job completion.

Service interfaces

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

100 NXP Semiconductors

 To Hardware

 Queue of jobs
within

input ring

 Job 10

 Job 11

 Job 12

 Job 13

 Job 14

 Job 15

 Head

 Tail

 From Software

 Job 10

 Job 11

 Job 12

 Job 13

 Job 14

 Job 15

 Job 9

 Job 6

 Job 7

 Job 8

 Address of Descriptor

 Input Ring Base Address

 Input Ring Read Index

 (configured
by software)

 (written by hardware)

 Input Ring Slots Available
 (written by hardware)

 Input Ring Jobs Added
 (written by software)

 Input Ring Write Index
(variable maintained by software,

not visible to hardware)

 Input Ring Size (configured
by software)

 Descriptor

 .
 . .
 .

 To Software

 Queue of results
within

Output ring

 Results for Job 4

 Results for Job 5

 Results for Job 7

 Results for Job 6

 Results for Job 8

 Head

 Tail

 From Hardware

 Results for Job 8

 Results for Job 1

 Results for Job 2

 Results for Job 3

 Results for Job 6

 Results for Job 4

 Results for Job 5

 Results for Job 7

 Address of Descriptor

 Output Ring Base Address

 Output Ring Write Index

 (configured
by software)

 (written by hardware)

 Output Ring Slots Full
 (written by hardware)

 Output Ring Jobs Removed
 (written by software)

 Output Ring (variable maintained by software
Read Index not visible to hardware)

 Output Ring Size (configured
by software)

 Descriptor

 .
 . .
 .

 Output Ring

 Job Termination
Status/Error

 Output Sequence Length
(opt)

 Input Ring

Figure 5-3. Input and output ring example

5.3.1.2 Managing the input rings

For the input ring, software is the producer, meaning that software

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 101

• Writes descriptor addresses into the job descriptor queue within the input ring.
• Writes the number of new jobs to the Input Ring Jobs Added Register

The address added to the input ring must point directly to the start of a job descriptor, not
to a scatter/gather table. A job descriptor queue entry is determined by the size of a
pointer, as specified in the PS field of the MCFGR Register (one word for 32-bit pointers,
two words for 40-bit pointers). (See Address pointers.) Software maintains its own write
pointer for the input ring, and SEC does not have direct access to that pointer.

For the input ring, SEC is the consumer, meaning that it increments the Input Ring Slots
Available Register upon pulling descriptor addresses out of the queue. When software
writes a new value to the Input Ring Jobs Added Register, SEC decrements the Input
Ring Slots Available Register by the value that was written by software. SEC maintains a
read index that it increments as it reads jobs from the input ring.

5.3.1.3 Managing the output rings

For the output ring, the roles are reversed from the input ring. SEC is the producer and
software is the consumer.

• When SEC adds completed jobs to the output ring within the job ring, it increments
the Output Ring Slots Full Register, which tells software how many results are
available for software to retrieve. An interrupt may or may not be generated,
depending upon the job ring configuration at the time (for more details, see Asserting
job ring interrupts).

• When software removes jobs from the output ring for processing, it writes the
number of jobs removed to the Output Ring Jobs Removed Register. SEC
decrements the output ring slots full value by the new value that software wrote to
the Output Ring Jobs Removed Register.

Note that each entry in the output ring consists of a job descriptor address and a job
termination status word. See Job termination status/error codes for the format of this
status word. Therefore, the size of an entry in the output ring is the size of a pointer plus
one word for status, plus an optional word containing the output sequence length. SEC
maintains an output ring write index that it increments as it places completed jobs and
status into the output ring. Software can read this register to determine the current tail of
the output ring.

Note that it is possible for a bus error to occur when the job queue controller is writing
the completion status to the output ring. This results in an error code type 1 indication for
that particular job ring. The correct response to any job ring error code 1 indication is to
perform a job ring reset (See Job Ring Command Register RESET field), a software SEC
reset or a power on reset. If a job ring reset is performed, it will clear all registers for that

Service interfaces

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

102 NXP Semiconductors

particular job ring except the REIR, IRBAR, IRSR, ORBAR, ORSR, and JRCFGR
registers. The REIR registers should be manually reset after a job ring reset. The IRBAR,
IRSR, ORBAR, ORSR, and JRCFGR registers can be reprogrammed or not, as
appropriate, after a job ring reset.

5.3.1.4 Controlling access to job rings

Access to a job ring can be restricted to a particular software entity because each job
ring's registers are in a separate register address page. An OS or a hypervisor can enforce
the restrictions by means of a memory management unit.

A process with permission to access a particular job ring's registers can:

• Schedule jobs for SEC by writing the address of a job descriptor or trusted descriptor
at the tail of the queue within the input ring.

• Retrieve job completion status by reading the entry at the head of the queue within
the corresponding output ring.

Each job ring can be configured so that SEC's DMA asserts different ICID values when
executing jobs on behalf of that job ring. This allows slave devices or chip-level memory
management units to make memory access control decisions based upon the job ring
from which the job was initiated.

5.3.1.5 Order of job completion

Job descriptors submitted through different job rings are not guaranteed to complete in
the order they were submitted by software, even if they reference the same shared
descriptor and use SERIAL or WAIT sharing. (See Shared descriptors for details about
shared descriptors and sharing concepts).

As shown in the example in Figure 5-3, it is possible for results to be written into the
output ring in a different order than the order in which the corresponding jobs appear in
the input ring (see jobs 6 and 7, where 7 is a short job submitted after 6, which requires
more processing time). Because jobs are assigned to DECOs as the DECOs become
available, successive job descriptors generally execute in parallel in different DECOs.
Therefore, the order of job completion is affected by the time required to process the
data, the presence of a shared descriptor, and the sharing mode.

The only way to guarantee that jobs input on a single job ring complete in the order they
were added to the input ring is to both:

• Have those jobs reference a shared descriptor
• Set the SERIAL sharing bits in the descriptor headers.

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 103

Note that the majority of the processing information can be included in the job descriptor
with the shared descriptor enforcing serialized processing.

WAIT sharing can be used if all that is required is to guarantee that certain commands in
one job are complete before another job is started. Types of sharing and impact on job
completion ordering are further described in Specifying different types of shared
descriptor sharing.

5.3.1.6 Initializing job rings

Minimal configuration for SEC operation using the job ring interface requires initializing
at least one job ring by specifying the base addresses for the input ring and output ring
and the size of these rings (see the Input Ring Base Address Register (IRBAR), the
Output Ring Base Address Register (ORBAR), the Input Ring Size Register (IRSR), and
the Output Ring Size Register (ORSR)). Most cases (with the possible exception of
debugging with test data in use) also require specifying the ICID values associated with
the job ring (see the JRaICID register). These values should be configured by a trusted
SoC / ring management entity. The job Rings can also be configured for endianness and
for whether to include the optional sequence out length word in the Output Ring entries
(see Job Ring Configuration Register (JRCFGR)).

5.3.1.7 Job Ring Registers

If the Job Ring is allocated to TrustZone SecureWorld, the Job Ring registers associated
with this ring can be written only via a TrustZone secure bus transaction. Nonsecure
writes to Job Ring registers owned by Trustzone SecureWorld will be ignored.

When virtualization is enabled (VIRT_EN=1 in the Security Configuration register), the
Job Ring registers in pages 1...4 can be written only if the corresponding Job Ring has
been "started", that is, the JRSTARTR[Start_JR] bit for that Job Ring is 1. Conversely,
the Job Ring configuration registers in page 0 (for example, the JRaICID register) can be
written only if the Start_JR bit for that Job Ring is 0. The Job Ring registers are reset
when the Job Ring is stopped and virtualization is enabled, in order to prepare the Job
Ring for a new owner. The input ring slots available, input ring read index, output ring
slots full and output ring write index registers are read-only when virtualization is
disabled. These registers are writable when virtualization is enabled.

For the job ring register descriptions, see IRBAR and the following register descriptions.

Service interfaces

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

104 NXP Semiconductors

5.3.1.8 Asserting job ring interrupts

Each job ring interface asserts an interrupt request on a separate interrupt request line to
notify the driver software that job results are available from that job ring. Note that the
software context switch overhead could have a severe performance impact if interrupts
were asserted for every job completion. Therefore, SEC supports a configurable interface
that allows the driver to specify how full the output ring can be before SEC generates a
job completion interrupt request. To prevent any job from waiting too long for software
completion processing, the driver can also specify a time out value. This value allows
SEC to generate an interrupt if job results are available and too much time has elapsed
since software last removed any completed jobs from the output ring. These values are
programmed via fields described in the Job Ring Configuration Register (JRCFGR).

The job ring interrupt does not clear automatically when jobs are removed from the
output ring. Software must clear the interrupts by writing to the Job Ring Interrupt Status
Register. Note that one or more additional jobs can complete while software is clearing
the interrupt. Depending on the interrupt coalescing settings, an additional interrupt may
immediately be generated for these newly completed jobs.

5.3.2 Queue Manager Interface (QI)

QI is a high performance, flow-oriented job execution interface used in devices
implementing the Data Path Acceleration Architecture (DPAA). Once initialized and
enabled, QI performs the following functions:

• Request and receive (dequeue) frame descriptors from QMan for processing
• Acquire buffers from the Buffer Manager (BMan) for output data (optional)
• Prepare data for processing by assembling a job descriptor
• Pass the job descriptor to the job queue controller for job scheduling
• Receive job completion status from a descriptor controller (DECO)
• Release input frame buffers (optional)
• Send (enqueue) frame descriptors with processing results to QMan

In contrast to the job ring interface, which requires the dedication of a job ring to a
relatively small group of select users, all users can be given access to a shared SEC by
providing services via DPAA frame descriptors exchanged with SEC in queues. Frame
queues are initialized with a pointer to a preheader typically followed by an optional but
usually present shared descriptor that may supply session keys, context, and other
processing instructions. Every frame descriptor enqueued to SEC is processed according
to the information in the preheader and the shared descriptor. For more information, see
Context_A field (preheader) and Shared descriptors.

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 105

From an application software perspective, mapping a security processing flow to a frame
queue and linking the frame queue to the preheader/shared descriptor is an infrequent
occurrence, corresponding to establishment or refresh of a security session, e.g. an
Internet Key Exchange (IKE) establishing an IPsec tunnel. The enqueuing of frame
descriptors to the right frame queue, SEC's dequeue and processing of the data associated
with those frame descriptors, and SEC's return of the frame descriptors to software
corresponds to a data path.

Refer to the DPAA overview chapter of your SoC reference manual for a comprehensive
explanation of frame queues and frame descriptors. Refer to the DPAA reference manual
for your SoC to see a detailed description of Queue Manager and Buffer Manager. For an
abbreviated discussion of these topics relevant to SEC, see Frame queues, frame
descriptors, and buffers.

QI is usually configured and enabled during system initialization, but can be stopped,
resumed, and (re-)configured later. The specific mandatory configuration steps are
described in Initializing the Queue Manager Interface.

5.3.2.1 Requesting and receiving frame descriptors from QMan

In response to each dequeue command, QMan sends QI one to three frame descriptors
from a selected frame queue. The number of requested frame descriptors is determined by
QI's configuration (see the Queue Interface Dequeue Configuration Register (QIDQC)
for details). However, it is the QMan programming that controls the choice of frame
queues and frame descriptors in response to the dequeue request, not the configuration of
the QI.

The QI uses a QMan mechanism called subportals to ensure that QMan selects frame
descriptors from different frame queues. Each dequeue command specifies a subportal
ID. When issuing these commands QI uses as many subportal IDs as the number of job
queue holding tanks. This allows SEC to process frames from more than one queue
simultaneously, increasing opportunities for parallel processing. If jobs from a few frame
queues were to fill up all available job slots QI might not be able to fill all the holding
tanks in the job queue controller, possibly resulting in idle DECO resources and
decreased throughput. To avoid this condition QI limits the number of outstanding
dequeue requests for any subportal to one, and it does not issue a request for a subportal
if the number of jobs from the subportal equals or exceeds the threshold defined by the
SPFCNT field in the QIDQC register.

In response to each dequeue request, QMan sends QI one to three frame descriptors and
summary information applying to all dequeued frames:

• Number of Frames dequeued

Service interfaces

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

106 NXP Semiconductors

• Frame queue ID for enqueuing processing results (Context B field, bits 32-63 of the
summary information)

• Memory address of the preheader (Context A field, bits 64-127 of the summary
information)

5.3.2.2 Building job descriptors for QI jobs

QI uses the QMan dequeue summary information and the frame descriptors to build an
internal job descriptor for each job. The summary information is primarily used to direct
responses and provide frame processing control and context data structures. For most
purposes, SEC hardware does not distinguish between job descriptors created by software
and submitted to SEC through the job ring interface and job descriptors created by QI
using dequeue information. The term Job Descriptor (JD) is used generically when
describing processing instructions or embedded data utilized by SEC to process jobs.

Information for each job, including the input and output frame addresses, is stored in job
buffers internal to QI. Job buffers are used to save all data needed to build a job
descriptor, maintain processing status, track job order, and eventually return (enqueue)
output to QMan.

On every cycle QI performs the following:

1. Searches its list of jobs waiting for transfer to the job queue controller
2. Determines each job's eligibility for transfer
3. Assigns selection priorities based on several criteria
4. Selects the next job, if any, for transfer

Priorities are assigned to eligible jobs to maximize sharing and throughput. QI builds the
job descriptor for the selected job and notifies the job queue controller that the job is
ready for transfer into an available holding tank.

5.3.2.3 Controlling QI access to frame queues and data

The use of frame queues in DPAA allows a large number of user software processes to
share SEC. Users are prevented from directly accessing each other's private memory
space through proper configuration of the CPU MMUs. When processing a job on behalf
of a user process, SEC is prevented from accessing the private memory of other processes
by means of the System Memory Management Unit (SMMU) and one or more ICID
values assigned to each job. A general description of ICID usage in DPAA can be found
in the DPAA overview chapter of your SoC reference manual.

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 107

The frame descriptor dequeued from QMan specifies an ICID, which in turn is used by
QI to derive a SEQ and a non-SEQ ICID used to access input/output or control data.
Depending on the ICID value and the QI ICID register configuration, SEQ and non-SEQ
ICID values may be determined to be either the same or different. Control data includes
the preheader and the optional but usually present shared descriptor. When QI reads the
preheader, it uses the non-SEQ ICID whereas if the frame descriptor is a compound
frame descriptor, QI reads and writes the compound frame list table using the SEQ ICID.
The two ICIDs are passed with the job from QI to the job queue controller and DECO so
that the appropriate ICID can be used by those processors for their memory accesses.

For information on how to configure ICIDs, passed to QI in the frame descriptor, see the
QMan chapter in the DPAA reference manual. See the DECO ICID Status Register
(DxISR) and the QI ICID Configuration Register (QIICR) for a description of how SEQ
and non-SEQ ICID values are derived. SEQ and non-SEQ commands are explained in
SEQ vs non-SEQ commands.

5.3.2.4 Tracking the completion order of QI jobs

QI uses ordered lists to track the dequeue order of jobs with the same preheader address.
When job processing is done, QI uses the lists to enqueue jobs with the same preheader
address in the same order they were dequeued.

When a DECO notifies the QI that a job has finished, QI checks the appropriate list to
determine whether the job is the oldest job with that preheader address. If so, QI
enqueues the job's frame descriptor. Otherwise the enqueue is delayed to maintain order.
Under normal operating conditions (except system error or invalid queue IDs) QMan will
not reject SEC enqueues.

See the Queue Manager section of the reference manual for a discussion of the hardwired
settings of the SEC Direct Connect portal (DCP). QMan must be configured by software
to select an error queue to store frames of SEC's rejected enqueues.

5.3.2.5 Initializing the Queue Manager Interface

Configuring and enabling QI requires initializing:

• Queue Interface ICID Configuration Registers
• Queue Interface Dequeue and Enqueue Configuration Registers (optional)
• Queue Interface Control Register (at a minimum enable dequeues)

Additional QI registers are accessible through the SEC register interface to assist with
debugging.

Service interfaces

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

108 NXP Semiconductors

Note that in addition to the SEC QI configuration, at least two frame queues must be
initialized in QMan so that software can enqueue frame descriptors to SEC, and SEC can
enqueue results back to software.

5.3.2.6 Done/error notification for QI jobs

There are no SEC interrupts associated with QI. QI is utilized through QMan portals and
queues. For all jobs handled by QI, completion and error status is indicated in the 32-bit
STATUS/CMD field of the response frame descriptor SEC sends to QMan. The most-
significant four bits of this field identify where the error was detected within SEC. For
example, the value '5' indicates that QI detected the error and '4' indicates that DECO
detected the error. The remaining bits provide more specific status details. See Table 5-3
for a complete list and formatting of error codes.

5.3.3 Register-based service interface

It is possible to use the register interface to perform entire cryptographic operations. For
the purposes of debugging descriptors, it is possible to execute descriptors one descriptor
at a time, or even one descriptor command at a time. 1 This method bypasses all job
scheduling performed by the job queue controller. Software can perform CHA operations
by writing and reading registers in the CCB directly, without using a Job Ring or the QI
to run descriptors. When descriptors or commands are executed in this mode, software
can examine the content of most DECO and CCB registers after each descriptor or
descriptor command completes. This can assist with debugging hardware and descriptor
programs.

To execute descriptors or commands in this fashion, software must request direct use of a
DECO by writing into the DECO REQ register. But before requesting a DECO, software
must specify the SDID and ICID values that will be used when executing descriptors
under direct software control. When virtualization is disabled these values are specified
via the DECO ICID Register for the selected DECO. When virtualization is enabled, the
DECO Request Source register is used to select a particular Job Ring to act as the source
for the ICID and SDID values. The DECO Request Source register must be written prior
to writing the RQDn bit in the DECO REQ register.

To use the register-based job service interface, the DECO must be programmed in proper
order so that a descriptor runs correctly. The steps are:

1. Specify the ICID and SDID values using the DECO Request Source register or
appropriate DECO ICID Register

1. Note that trusted descriptors cannot be executed via the register-based service interface.

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 109

2. Set the RQDn bit in the DECO Request Register. This RQDn bit must remain
asserted during the entire time that software wants to access that DECO/CCB block
directly. This indicates to the job queue controller that it should not assign any jobs
to the requested DECO block. After the job queue controller sees the RQDn bit set to
1, it waits for the corresponding DECO block to complete any pending tasks.

3. Wait for the DENn bit in the DECO Request Register to be set to 1. The job queue
controller sets the DENn bit to 1 when the DECO block becomes available. When
this bit is set, software can use the DECO/CCB block by submitting descriptors by
means of SEC's register interface.

4. Write at least the first burst of a descriptor into the descriptor buffer. If there is a
shared descriptor, offset the descriptor into the descriptor buffer by the length of the
shared descriptor.

5. Write the address of the descriptor into the DECO Descriptor Address Register so
DECO knows where to find the descriptor. This is only required if the WHL bit (see
the next step) is not set or if the descriptor attempts to do a STORE of type 41h or
45h to write back part, or all, of the descriptor to memory.

6. Write the Job Queue Control Register. If fewer than 4 words are in the first burst, the
FOUR bit must be 0. If the entire descriptor has already been loaded, set the WHL
bit. If the WHL bit in the DECO Job Queue Control Register is not set, DECO
attempts to fetch the rest of the descriptor from memory regardless of whether
portions of the descriptor beyond the first burst were already written to the descriptor
buffer. SHR_FROM is not used in this format and will not be checked.

7. Wait until the DECO is done. To determine whether DECO is done, read the VALID
and DECO_STATE fields in the DECOa DBG_DBG_REG register. While the job is
running, VALID will be 1 and DECO state will change values as the descriptor is
processed. If DECO_STATE is Dh, then an error occurred. Read other fields and
registers to determine the cause of the error. Note that VALID will likely remain
asserted in the event of an error. If DECO_STATE is 0h and VALID is 0, then the
job finished normally.

8. Read registers of interest.
9. Done or start over.

10. When software is finished using the DECO/CCB block, it must clear the RQDn bit
so that the DECO is available to the job queue controller for normal processing. The
job queue controller then de-asserts the DENn bit, which resets the DECO and CCB.

Note that there are restrictions imposed when executing a descriptor under software
control:

• The special cryptographic keys used to encrypt or decrypt Black Keys are not
available, so Black Keys cannot be used.

• The master cryptographic key used to encrypt or decrypt Blobs is not available, so
Blobs cannot be used.

Service interfaces

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

110 NXP Semiconductors

• Sharing of Shared Descriptors is not permitted.
• Trusted Descriptors are not allowed.
• When virtualization is enabled, a Job Ring source must be selected in the DECO

Request Source Register before executing any job under direct software control. All
jobs running under direct software control will then utilize the ICID and SDID values
for the Job Ring selected in the DECO Request Source Register. When virtualization
is disabled, any job under direct software control will utilize the ICID and SDID
values specified in the DECO ICID register, and the SRC field in the Job Queue
Control Register must be programmed to indicate the job is running on behalf of one
of the Job Rings. Jobs cannot be executed under direct software control if those jobs
appear to be from other possible SEC sources, such as:

• QI
• RTIC

The normal use case for the register based service interface is to debug descriptors. When
such a descriptor is run through the interface and the descriptor encounters an error, once
analysis of the error is done, the only way to recover is to release the DECO. The user
can recover by releasing the DECO or by writing a 1 to the STEP bit in the DECO Job
Queue Control Register. The second method allows another descriptor to be loaded and
run as described above.

5.4 Job scheduling
The job queue controller is the job scheduler within SEC. The default job scheduling
algorithm operates as follows. The job queue controller pulls jobs to be sent to the
holding tanks in round-robin fashion from the Job Rings, then from QI, and then from
RTIC.

5.4.1 Job scheduling - default algorithm

Each time that the Job Ring's turn comes up in rotation and there is a job available in that
Job Ring's input queue, a job is selected from that Job Ring. But because SEC buffers
input ring entries for efficiency, several jobs may be scheduled from one Job Ring before
a job is scheduled from the next Job Ring. Eventually all Job Rings will be serviced.

Each time that the QI's turn comes up in rotation and there is a QI job that can be
processed, one QI job will be selected for transfer to JQ. QI selects that job from its list of
jobs waiting for transfer using several criteria to determine eligibility and priority. QI

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 111

builds its list of jobs eligible for transfer by dequeuing a number of jobs from one
subportal and then switching to a different subportal for the next dequeue. This prevents
starving any subportal.

This selection method favors jobs with the potential for sharing. The priority of a QI job
will be reduced if the job uses CRID to specify that it requires a critical resource that
cannot be used by all DECOs in parallel and all of those resources are already in use,
unless there is already a job from this flow in a DECO (see Context_A field
(preheader)). A selection priority is calculated for each job waiting for transfer to the job
queue controller, in decreasing order of priority:

1. Job is not the first job of a dequeue and another job from the same flow is currently
in a DECO.

2. Job is first of a dequeue and another job from the same flow is currently in a DECO.
3. No job from the same flow is currently in a DECO and either CRID is not set or the

critical resource is available.
4. No job from the same flow is currently in a DECO, CRID is set, and the critical

resource is not available.

Note that RTIC requests at most one job at a time.

The following figure illustrates the algorithm for selecting a job for an available holding
tank.

 Job Ring Job

 round-robin
scheduling

(0 or more jobs
per Job Ring)

 0 or more jobs

 Job Ring 0 Job Ring n

 Holding Tank

 RTIC Job

 0..1 jobs 0..1 jobs

 round-robin
scheduling

(at most one job per turn)

 SD-optimization
scheduling

then round-robin
scheduling

to prevent starvation Queue Manager
Interface Job

 Sub-portal 0 Sub-portal n

 0..SPFCNT jobs

 0..1 jobs

 0..SPFCNT jobs

 0 or more jobs

Figure 5-4. Selecting job for available holding tank

The job queue controller prefetches some or all of the selected job descriptor and possibly
the shared descriptor (if any, and it is not already in a DECO) and places them in a buffer
referred to as a holding tank. After a job has been put in a holding tank, it is then eligible

Job scheduling

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

112 NXP Semiconductors

for dispatching to a DECO. If the job source is the QI the holding tank also fetches up to
two bursts' worth of input frame data (up to the second burst boundary). SEC generally
implements the same number of holding tanks as DECOs.

This prefetching of the job descriptor allows the job queue controller to take shared
descriptors into consideration when allocating jobs to DECOs. SEC attempts to dispatch
jobs to available DECOs as efficiently as possible. If (1) a job descriptor with a shared
descriptor is currently executing in DECO n, (2) this descriptor can be shared, and (3)
there is another job descriptor in a holding tank that references the same shared
descriptor, the job descriptor in the holding tank is marked as pending for DECO n.

The following figure illustrates the SEC's dispatching algorithm, which favors reuse of
already fetched descriptors but avoids starving Job Rings or QI queues. Note that when
using the default scheduling method, the job source (QI, RTIC, Job Ring) is not
considered when deciding which holding tank job should be assigned to the available
DECO.

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 113

 DECO is available
 and needs a job

 Do all DECOs
have a pending

job?

 YES

 Is the oldest
holding tank

pending?

 Case 2a: Signal DECOs to stop
sharing when share limit is
reached. Available DECO gets
its oldest pending job

 NO Is there a pending
job for the

available DECO?

 NO

 Is there a new
job in a holding

tank?

 NO

 YES

 YES

 NO

 YES

 NO

 Note: * Non-serial means that the job is either share
ALWAYS, or it is share WAIT and the other

 DECO's descriptor has marked it as OK to share.

 Case 2b: Available
DECO gets its oldest
pending job

 All jobs are serial,
don't assign a job
to DECO now

 Is there a
pending non-serial* job

for a different DECO in a
holding tank?

 Case 1a : Available
DECO get its oldest
pending job

 Case 1b : Available
DECO gets the
oldest new job

 Case 1c : Available
DECO gets the
oldest non-serial job

 YES

Figure 5-5. Job queue controller's job scheduling algorithm

This approach gives preference to serial sharing whenever doing so does not cause a job
to remain indefinitely in a holding tank. Serial sharing occurs in cases 1a, 2a, and 2b in
the algorithm described above. Serial sharing is the most efficient since the information
that the new job shares with the previous job is already in the DECO. Jobs are shared
between DECOs (case 1c) only when the available DECO has no pending job and there
are no non-pending jobs in the holding tanks. This is done because sharing between
DECOs is less efficient than sharing serially, since the shared information must be copied
to the available DECO.

Job scheduling

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

114 NXP Semiconductors

5.4.2 Job scheduling - DECO-specific jobs

If there is more than one DECO it is possible to specify that a job should be run in a
specific DECO by using the job header extension word. This can be used to support
hardware testing. Once a DECO-specific job enters a holding tank, it remains there until
the specified DECO becomes available, with the following exception. If the DECO-
specific job contains a shared descriptor, specifies serial sharing, and the shared
descriptor currently resides in a DECO other than the specified DECO, the DECO-
specific job runs serially in the DECO that already contains the shared descriptor,
resulting in a DECO-select error job termination code.

NOTE
DECO-specific jobs can create a deadlock in SEC when they
are used as part of a flow. Therefore, it is strongly
recommended that DECO-specific jobs should not be used in a
flow.

5.5 Job execution hardware
The following modules in SEC execute cryptographic acceleration jobs:

• Descriptor controller/cryptographic control block
• Cryptographic hardware accelerators

5.5.1 Descriptor controller (DECO) and cryptographic control
block (CCB)

The descriptor controller (DECO) is responsible for executing SEC job descriptors. After
the job descriptor and any shared descriptor referenced by that job descriptor are loaded,
DECO begins processing. Each DECO has a dedicated CCB (cryptographic control
block) that it uses to access any cryptographic hardware accelerators (CHAs) needed to
perform cryptographic functions.

When executing a descriptor, DECO activates the DMA controller to read the required
inputs, and uses the CCB to dispatch the job to the appropriate CHAs. As data is
produced by the CHAs, DECO activates the DMA to write the results and job completion
status information out to the locations specified in the descriptor. When a descriptor
finishes, either successfully or with errors, DECO informs the job source (Job Ring
interface, QI or RTIC), which then takes appropriate action.

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 115

The CCB contains all the hardware necessary to control the various CHAs included in
SEC. Every CCB has access to every type of CHA so that every DECO/CCB pair can
perform all functions that can be performed by SEC. Note that there may be fewer
instances of a CHA than there are CCBs. In such cases, a CCB may have to wait until the
CHA it wants is available before proceeding. Arbitration for shared CHAs is
automatically handled by SEC in all operating modes.

The hardware inside the DECO/CCB includes the input FIFO, output FIFO, information
FIFO (NFIFO), mode registers, context registers, key registers, descriptor buffer, math
registers, scatter/gather tables, alignment blocks and interconnects. DECO/CCB uses all
of this hardware to process descriptors.

5.5.1.1 Alignment blocks

SEC 's internal data pathways and cryptographic engines generally operate on 64-bit data,
but the information that SEC obtains from memory need not be aligned to 64-bit
boundaries. To concatenate and left-align information passed to certain destinations
within SEC, SEC architecture includes three alignment blocks:

• Class 1 alignment block
• Class 2 alignment block
• DECO alignment block

Note that even if the data is aligned in memory, the alignment blocks may still need to
align some portions of the data because a subset of the data may be passed to more than
one destination, and the subset may need to be aligned separately for each destination.

The following figure illustrates the interconnections of one of the alignment blocks. All
three alignment blocks have the inputs shown in the figure. The Class 1 alignment block
contains a nibble shift register, which allows the Class 1 alignment block to handle data
that needs to be shifted by a nibble. The only other difference between the alignment
blocks is the consumer (Class 1 CHA, Class 2 CHA, or DECO).

The entry pulled from the NFIFO tells the NFIFO controller the data source that will be
used with the alignment block, and whether the alignment block will be flushed when the
data transfer is complete. The alignment blocks normally transfer eight bytes of data at a
time to the consumer. When the amount of data needed by the consumer is not a multiple
of eight bytes, a "flush" flag or "last" flag is required to transfer the last one to seven
bytes from the alignment block to the consumer.

Job execution hardware

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

116 NXP Semiconductors

 Auxiliary
Data
FIFO

 Input
Data
FIFO

 Padding
Block

 Output
Data
FIFO

 Information
FIFO

(NFIFO)

 Alignment
Block

 Consumer

NFIFO
Controller

Figure 5-6. Alignment block interconnections

All data entering Class 1 CHAs first passes through the Class 1 alignment block, which
ensures that the data presented to the Class 1 CHA is properly concatentated and left-
aligned. Note that the Class 1 alignment block can also serve as the source for a MOVE
command (see Table 7-33, SRC value 9h and AUXLS = 1).

Similarly, all data entering Class 2 CHAs first passes through the Class 2 alignment
block, which ensures that the data presented to the Class 2 CHA is properly concatentated
and left-aligned. The Class 2 alignment block can also serve as a source for the MOVE
command (see Table 7-33, SRC value 9h and AUXLS = 0).

The third alignment block is the DECO alignment block, which can be used as a data
source for a MATH command (see MATH and MATHI Commands, SRC0 and SRC1
fields) and as a data source for a MOVE command (see Table 7-33, SRC field).

Note that the only way to put data into an alignment block is with an info FIFO entry.
Therefore, when using an alignment block as the data source for a MOVE command, the
data source for the alignment block must have been specified with an info FIFO entry.
This info FIFO entry may be automatically or manually generated. In order to use data
stored in the input FIFO, that data must be passed through one of the alignment blocks.
The only other way to take data out of the input FIFO is by resetting the input FIFO
which also resets the alignment blocks.

5.5.2 Cryptographic hardware accelerators (CHAs) (overview)

SEC contains multiple cryptographic hardware accelerators (CHAs), each of which
accelerates an encryption (Class 1) algorithm or message integrity (Class 2) algorithm.

Chapter 5 SEC hardware functional description

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 117

• PKHA (public key hardware accelerator), see Public-key hardware accelerator
(PKHA) functionality.

• DESA (DES accelerator), see Data encryption standard accelerator (DES)
functionality.

• AESA (AES accelerator), see AES accelerator (AESA) functionality.
• MDHA (message digest hardware accelerator), see Message digest hardware

accelerator (MDHA) functionality.
• RNG (random number generator), see Random-number generator (RNG)

functionality.
• STHA f8 (SNOW 3G f8 hardware accelerator), see SNOW 3G f8 accelerator

functionality.
• STHA f9 (SNOW 3G f9 hardware accelerator), see SNOW 3G f9 accelerator

functionality.
• CRCA (cyclic redundancy check accelerator), see Cyclic-redundancy check

accelerator (CRCA) functionality.
• KFHA f8/f9 (Kasumi hardware accelerator), see Kasumi f8 and f9 hardware

accelerator(KFHA) functionality.
• ZUCE (ZUC encryption hardware accelerator), see ZUC encryption accelerator

(ZUCE) functionality
• ZUCA (ZUC authentication hardware accelerator), see ZUC authentication

accelerator (ZUCA) functionality

Job execution hardware

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

118 NXP Semiconductors

Chapter 6
Frame queues, frame descriptors, and buffers
Frame queues (FQs), frame descriptors (FDs), and (managed) frame buffers are concepts
introduced in the DPAA overview chapter of your SoC reference manual and described
in detail in the Queue Manager (QMan) and Buffer Manager (BMan) chapters of the
DPAA reference manual.

As a component of DPAA, SEC interacts with QMan to dequeue and enqueue FDs, and
with BMan to obtain and release managed buffers. These interactions and the processing
required to turn FDs into SEC job descriptors are primarily handled by SEC's QMan
Interface (QI), allowing the inner portions of SEC (the job queue and descriptor
controllers) to be mostly ignorant of DPAA data structures and related processing
requirements.

This section provides a functional overview of SEC's usage of FQs and FDs, including
related interactions with QMan and BMan.

6.1 Frame queues
A pair of frame queues is used to submit jobs to SEC via QI and return results back to the
service user. From SEC's perspective, a frame queue and a job ring are similar: each is a
source of input and a destination for output. The major difference (besides the hardware/
software interface) is the ability to efficiently share SEC services for multiple users and
to support the optional use of BMan managed buffers.

A SEC job ring is a highly constrained hardware resource that can only be efficiently
operated by a single owner, i.e., job requests from multiple users must either be
coordinated by the job ring owner (e.g., an OS driver) while users (e.g., OS kernel
threads) share common memory access rights (tied to the job ring configuration), or
management software must grant full or temporary ownership of a job ring to individual
users (e.g., a user process or thread) and memory access rights are (re-)configured by the
management software on a per user basis.

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 119

The SEC QI on the other hand can receive frame descriptors and queue-specific user
resource access rights (the basis for QI generated job descriptors) from millions of queues
thus eliminating the need for control software to manage SEC service access for many
users dynamically. Instead, control software configures queues (and associated user
resource access rights) and assigns those queues to specific users thus enabling SEC to
receive user-specific access rights as well as other processing parameters when one or
more frame descriptors are de-queued from the user's queue for processing.

Besides access rights, software initializing SEC frame queues is required to define the
Context_A and Context_B parameters in the Frame Queue Descriptor (FQD) which is
utilized by QMan to enqueue, store, and dequeue frame descriptors destined to DPAA
accelerators like SEC and return results back to a user. For SEC the Context_A parameter
is used to define a pointer to the SEC preheader. The preheader address is passed to SEC
during frame dequeue and points to the initial portion of a set of data structures utilized
by SEC to process all frames arriving on the queue managed with this FQD. Context_B is
used to convey the response/output frame queue ID utilized by the service user to receive
SEC results.

6.1.1 Dequeue response

Each time SEC's QI dequeues work (in the form of 1-3 frame descriptors) from a frame
queue, it also receives dequeue summary information from the QMan's Frame Queue
Descriptor (FQD) in the response to a dequeue command issued by SEC. FQDs are
initialized by management software during the creation of frame queues. The first word
of the dequeue response of QMan, called the summary information, includes the
following fields of interest to SEC:

• Number of Frames dequeued

The number of dequeued frames is used by QI to determine for how many frames the
dequeue summary information applies.

• Dequeue Context_A (address of preheader)

Dequeue context A is used to convey a memory address to the SEC preheader. The
memory content identified by the preheader provides information for SEC to
determine whether and how to allocate output frames and the presence and size of an
optional shared descriptor. For details of the preheader format see Context_A field
(preheader).

• Dequeue Context_B (Response/output frame queue ID)

Frame queues

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

120 NXP Semiconductors

Dequeue context B is used to convey the frame queue ID to be used for enqueuing
the frame descriptor returning SEC processing results.

For a generic description of the details on all dequeue summary information fields see the
QMan chapter in the reference manual of your SoC.

6.1.1.1 Context_A field (preheader)

Management software populates this field in the FQD linked to SEC's Queue Manager
(QMan) portal. QMan in turn delivers the Context_A field content in the dequeue
summary information to SEC, which in turn interprets Context_A as an address to the
SEC preheader.

The data stored in the preheader has the following uses:

• If an output frame is required and not already provided, the preheader provides QI
with the information needed to create a frame for storing SEC output data.

• The preheader specifies whether a shared descriptor is defined for processing the
associated frames.

• If defined, the shared descriptor follows the preheader in memory (preheader
address + 8B).

• If not defined, an in-line job descriptor must be included at the beginning of the
input frame or no processing will be performed and the job will be terminated
with an error status code. See Using in-line descriptors for more details about in-
line job descriptors.

The following figure and table show the preheader format.

Table 6-1. Preheader format

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

RSLS EWS RSV CRID Reserved TBPSIZ

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

TBPID Reserved SDLEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DIFREL Reser
ved

FSGT LONG OFFSET ABS ADDBUF POOLID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

POOL_BUF_SIZE

Chapter 6 Frame queues, frame descriptors, and buffers

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 121

Table 6-2. Preheader field descriptions

Field Description

63

RSLS

Require SEQ ICIDs be the same

When sharing takes place, if this bit is set the two jobs must be using the same SEQ ICID. If this bit is set
and the SEQ ICIDs don't match, an error is reported and the second descriptor (the descriptor that would
have received the shared data) is not executed.

62

EWS

Enable Write Safe

Enable write-safe for SEQ stores to the output frame for this job.

61-60 Reserved

59-56

CRID

Critical resource ID

If a non-zero critical resource ID is programmed in this field, QI checks availability of the resource when
selecting the next job for transfer to the job queue. If all instances of the critical resource are in use by jobs
from other flows, the selection priority of jobs from this flow is lowered.

55-51 Reserved

50-48

TBPSIZ

Table Buffer Pool Buffer Size. If not zero, this field specifies the size of buffers in TBPID.

000 alternate Buffer Pool disabled

001 alternate Buffer Pool buffers are 64B (4 entries)

010 alternate Buffer Pool buffers are 128B (8 entries)

011 alternate Buffer Pool buffers are 256B (16 entries)

100 alternate Buffer Pool buffers are 512B (32 entries)

101 alternate Buffer Pool buffers are 1024B (64 entries)

110 alternate Buffer Pool buffers are 2048B (128 entries)

111 alternate Buffer Pool buffers are 4096B (256 entries)

47-40

TBPID

Table Buffer Pool ID. If TBPSIZ is non-zero, buffers from this buffer pool are to be used for creation of new
Scatter-Gather Tables. The buffers referenced by this pool ID must be 64-byte aligned.

39-38 Reserved

37-32

SDLEN

Length of shared descriptor, in 32-bit words, following the preheader.

If 0, there is no shared descriptor following the preheader. In that case, a job descriptor is included at the
beginning of the input frame.

31

DIFREL

Disable Input Frame Release. This causes QI to create a compound frame for enqueuing both the input and
output frames.

30 Reserved

29

FSGT

This bit is used to force QI to build the output frame with a scatter/gather table, even if a single buffer would
suffice to hold the output data. Note that this bit is ignored if an output frame is provided to QI via a
Compound Frame.

• If set, QI creates an output frame with a scatter/gather table.
• If cleared, QI uses a scatter/gather table only if multiple buffers are required.

28

LONG

If set, QI uses the long buffer format for the output frame and associated frame descriptor. The long format
frame descriptor provides 29 bits for frame length and no bits for offset.

If cleared, QI uses the short buffer format: 20 bits of length, 9 bits of offset. Note that if LONG is set, the
OFFSET field is ignored.

NOTE: This bit is ignored if a compound frame provides the output frame is provided to QI.

Table continues on the next page...

Frame queues

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

122 NXP Semiconductors

Table 6-2. Preheader field descriptions (continued)

Field Description

27-26

OFFSET

This field is used to indicate if an offset should be placed in the first buffer of the output frame and, if so,
how much offset. Note that this bit is ignored if a compound frame provides the output frame to SEC. It is up
to software to ensure that sufficient space will be available in the output frame, including the space required
for the offset. Software must also ensure that the offset is at least one byte less than
POOL_BUFFER_SIZE. Note that if LONG is set, the OFFSET field is ignored.

00: No offset.

01: Add an offset equivalent to 1 burst (64 bytes).

10: Add an offset equivalent to 2 bursts.

11: Add an offset equivalent to 3 bursts.

25

ABS

This bit specifies whether the number of buffers allocated is an absolute number or a relative number. Note
that this bit is ignored if the Output Frame is provided to QI by means of a compound frame.

ABS = 0 means calculate the number of buffers required for the input data (the integer greater than or equal
to Input Length/POOL SIZE), add ADDBUF (0 or 1) to this number, and obtain that number of buffers from
pool POOL ID.

ABS =1 means obtain the number of buffers in ADDBUF (0 or 1) from the pool POOL ID.

24

ADDBUF

Indicates whether to allocate an additional buffer to what is otherwise required by FSGT and ABS. Note that
this bit is ignored if the output frame is provided to QI by means of a compound frame.

• If ABS is cleared, ADD BUF specifies whether to add a buffer to the number of buffers required to
hold the input data.

• If ABS is set, ADD BUF specifies whether to allocate a buffer or not.

23-16

POOLID

This is the ID number of the pool from which to obtain output buffers. Note that this bit is ignored if the
output frame is provided to QI by means of a compound frame.

15-0

POOL_BUFFE
R_SIZE

This is the pool buffer size. In order to be able to represent all values from 1 to 64k in 16 bits,
POOL_BUFFER_SIZE = 0 is taken to mean 64k. (This is possible because a size of 0 makes no sense.)
Also note that the LSB is assumed to be 0 so that only even buffer sizes are supported: 2, 4, 8, etc.

NOTE: This bit is ignored if a compound frame provides the output frame to SEC.

Most of the preheader fields are used to provide the Queue Manager Interface with
instructions for building an output frame, if needed, and selecting the format for the
associated frame descriptor. These fields are discussed further in Frame descriptors.

6.2 Frame descriptors
A frame is some number of bytes of space or information stored in memory and
represents room for or the actual data of a single message, packet, or protocol data unit.
This space or data can be located in one or more buffers in memory. Multi-buffer frames
use one or more tables, called scatter/gather tables, to keep track of buffer order,
addresses, and associated information.

Chapter 6 Frame queues, frame descriptors, and buffers

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 123

A Frame Descriptor (FD) is a standardized DPAA data structure that defines a frame's
starting address in memory, data length, and other frame attributes. The FD is a vehicle to
transfer frames between the QMan and SEC's QI through use of a QMan hardware portal
that provides frame dequeue and enqueue services.

Note that FDs should not be confused with the job and shared descriptors used by SEC to
describe a sequence of operations to be performed by SEC.

The FD includes a format field that describes the format of the corresponding frame.
There are two major frame formats: simple and compound.

• A simple frame FD describes a single frame that may define the input to or the output
of SEC data processing. Note, the simple frame format is also used for FDs that do
not convey a frame.

• A compound frame FD describes two frames, one for input and another for output,
using a two-entry scatter/gather table.

When QI dequeues a job with a compound frame FD, it enqueues the processed job with
the same compound frame FD. When QI obtains a simple frame FD, it may enqueue the
processed job with a new simple frame FD for the output frame or with a new compound
frame FD that describes both the input and output frames. The preheader defined in
Context_A of the dequeue summary specifies how to use frame data buffers for result
return.

6.2.1 Processing simple frame jobs

Simple frame subformats include short, long, single buffer, and multi-buffer.

• Short frames support a 20b data length and a 9b offset field.
• Long frames support a 29b data length and no offset.
• Single buffer frames contain an address that points directly to a single buffer that

contains the data to be processed by SEC as part of a job.
• Multi-buffer frames contain an address that points to a scatter/gather table (SGT).

The entries of the SGT may be marked as unused (by setting the address, length, and
BPID fields to 0), may point to single buffers, or may point to an SGT extension.

The rules for SEC processing of jobs dequeued as simple frames are:

• Unless the Preheader ABS = 1 and ADDBUF = 0, the QI builds an output frame.
• If the Preheader DIFREL = 0, input frame buffers are released to BMan. If

DIFREL=1, the QI builds a compound frame scatter/gather table to enqueue the input
frame with the output frame.

Frame descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

124 NXP Semiconductors

• The Preheader tells the QI how to create the output frame descriptor. The preheader
ABS and ADDBUF fields address this situation. The combined values of ABS and
ADDBUF are interpreted as follows:

• {ABS, ADDBUF} = 00b: Request the number of buffers required to hold the
input data. If TBPSIZ=0, all buffers are acquired from POOLID. If TBPSIZ!=0,
the output frame scatter/gather table, if needed, is acquired from TBPID and the
data buffers from POOLID.

• {ABS, ADDBUF} = 01b: Request the number of buffers required to hold the
input data, plus one more buffer. If TBPSIZ=0, all buffers are acquired from
POOLID. If TBPSIZ!=0, the output frame scatter/gather table, if needed, is
acquired from TBPID and the data buffers from POOLID.

• {ABS, ADDBUF} = 10b: Do not request buffers for output.
• {ABS, ADDBUF} = 11b: Request one buffer for output from POOLID.
• If the number of buffers prescribed by ABS and ADDBUF is one and FSGT is

set, one more buffer is added for an output frame scatter/gather table. That table
buffer is acquired from POOLID or TBPID, depending on TBPSIZ.

• If the Preheader DIFREL=1, TBPSIZ and TBPID tell the QI to acquire a buffer for a
compound frame scatter/gather table. If TBPSIZ=0, the buffer is acquired from
buffer pool POOLID. If TPBSIZ !=0, scatter/gather table buffers are acquired from
buffer pool TBPID.

• If BMan is unable to provide all of the buffers requested for a job, SEC terminates
the job with an error. See Frame descriptor error handling for more details.

• POOL_BUFFER_SIZE field tells SEC the size of the buffers in buffer pool
POOLID. This allows SEC to determine when its output will fit in a single buffer, or
if a multi-buffer frame is needed.

• TBPSIZ tells SEC the size of buffers in buffer pool TBPID.

6.2.2 Processing compound frame jobs

Although the software overhead of using compound frames is somewhat higher than
using simple frames, compound frames preserve the input frame instead of requiring that
SEC releases the input frame buffers. This is useful for multi-cast and retransmission
scenarios in which the original data needs to be retained for some interval even after a
successful encrypt/decrypt operation.

Compound frames are used to convey an input frame and, optionally, an output frame to
SEC. If the output frame is included, SEC does not need to interact with BMan at all. If
the output frame is not included, SEC may need to build the output frame, depending on
preheader setting.

Chapter 6 Frame queues, frame descriptors, and buffers

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 125

The FD for a compound frame points to a two-entry SGT, where the first entry provides
address, length, and offset information for output data, and the second entry provides the
same information for the input. Other than its explicit ordering of output/input, the
compound frame's SGT has the same format as the SGT used by multi-buffer frames;
each entry may point directly to a buffer or to a secondary SGT. (For more information
on compound frames see the DPAA overview chapter in the reference manual.)

The rules for SEC processing of compound frame jobs are:

• SEC never releases input frame buffers back to BMan. Software may need to do this
using the input frame description in the compound SGT

• In the compound frame's SGT, the following combinations are possible:
• Output frame address = X, Input frame address = Y. The output is written to the

frame supplied output frame is large enough to hold SEC's output.
• Output frame address = Y, Input frame address = Y. The output overwrites the

input data buffers. Software must ensure that the data to be read in has, in fact,
been read in before it is overwritten. For example, the descriptor could output
some sort of header before reading the input frame. As a result, the header could
overwrite the input frame before the input frame is read. One easy way to avoid
this is to use a nonzero offset for the input frame but have the output frame use a
smaller offset. Note that software must also ensure that the total size of the
supplied input buffer(s) is large enough to hold SEC's output.

• Output frame = Unspecified, Input address = Y. A unspecified frame is indicated
by an unused SGT entry (an entry in which the Address, Length, and BPID fields
are all zero). SEC obtains output buffers from BMan as prescribed by the
preheader. Although the length field of the output FD entry in the compound
frame is 30 bits, QI limits the output frame length to fit the length field of a
frame descriptor, 20 or 29 bits depending on the frame format. Likewise, QI
limits the output frame offset to 9 bits, even though the SGT entry allows 13 bits.

6.2.3 Frame descriptor error handling

SEC can experience errors while accessing preheaders and compound frames, allocating
new frames for output, processing input and output frame data, and generating response
FDs, as well as updating compound frame SGTs. Allocation errors may be due to buffer
pool depletion in BMan. As explained in earlier chapters, SEC reports errors using the
FD STATUS/CMD field. For a full list of detected error conditions see Job termination
status/error codes.

Some errors are detected during QI's preparation of a job for processing, including
memory access and buffer pool depletion errors. When these errors occur, QI sets the Do
Not Run (DNR) bit in the job descriptor HEADER command to instruct DECO not to

Frame descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

126 NXP Semiconductors

execute shared descriptor commands. When DECO gets the job, it may only release input
buffers (if RBS is set in the SEQ IN PTR command), and, if present, DECO will read the
shared descriptor and check whether to propagate and update the DNR setting in the
shared descriptor HEADER command if the PD bit is set in the shared descriptor. In
either case, no additional job processing occurs and QI reports the detected error.

If SEC processing requires only a single output buffer and the buffer could not be
acquired (BMan reports pool depletion), QI will respond by returning the input frame to
the service user with a buffer pool depletion error status in the STATUS/CMD field of
the FD.

When multiple output buffers are required (or if the service user requested the
unconditional generation of an SGT), QI checks whether the buffers in the buffer pool
assigned to provide SGT buffers are large enough to accommodate the required number
of SGT entries. If not, no buffers will be acquired and QI will return the input frame to
the service user with a table buffer too small error status in the STATUS/CMD field of
the FD.

Further multi-buffer frame error handling depends on whether part of the additional
frame data buffers were acquired and associated SGT entries were already written to
memory when the error condition is detected. If no part of the SGT has been written to
memory, all buffers acquired for output are released and the input frame will be returned
to the service user with the detected error condition reported in the STATUS/CMD field
of the FD. If part of the SGT entries have already been written, that partially generated
SGT buffer and the associated data buffers will not be released, the last utilized SGT
entry will be rewritten to set the F (final) bit, and the partially generated (and empty)
frame will be passed to the service user with LENGTH set to 0 and a non-0 status
reporting the detected error condition. Any buffers acquired from BMan that have not yet
been added as entries to the partially generated SGT buffer are released back to BMan.

Note that all QI detected frame write errors indicate that some or all of the content of the
service user received multi-buffer or compound frame SGT is at least partially invalid,
associated buffer attributes (including the buffer address) need to be treated as suspect,
and thus the information conveyed by such FDs is merely useful for debug and analysis.

6.2.4 Job descriptor construction from frame descriptor

QI builds an internal SEC Job Descriptor (JD) to process service requests conveyed via
DPAA Frame Descriptors (FDs). The precise length of the generated JD depends on the
utilized memory address size and the inclusion of an optional load command. If SEC is
configured to use 32-bit addresses, the generated JD is 8 words long without the load
command or 10 words long with it. If addresses are greater than 32 bits, the JD is 11

Chapter 6 Frame queues, frame descriptors, and buffers

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 127

words long without the load command or 13 words long with it. Note that the sum total of
words for the internally generated JD and an optional (but usually present) Shared
Descriptor (SD) must not exceed 64 words, i.e., the maximum size of an SD utilized by
QI depends on the size of the internally generated JD, but it is always safe to limit the SD
length utilized with QI to 51 words or less.

The internally generated JD is constructed from the following DECO commands:

HEADER

Shared Descriptor Pointer (1 word for 32-bit addressing, 2 words otherwise) (See Address pointers.)

SEQ OUT PTR

Output Pointer (1 word for 32-bit addressing, 2 words otherwise)

Output Length

SEQ IN PTR

Input Pointer (1 word for 32-bit addressing, 2 words otherwise)

Input Length

LOAD immediate (optional)

Immediate data value (FD CMD field) to be written to DPOVRD Register (optional)

If there is no SD (the Preheader defines SDLEN as 0), the START WORD field in the
HEADER command is set to 2 or 3 to skip over the 1 or 2 words reserved for the SD
pointer.

The STATUS/CMD field in the FD allows software to modify the processing of
individual frames while retaining the performance advantages of enqueuing to a frame
queue for flow-based processing. The three most significant bits of the STATUS/CMD
field of the FD are interpreted as follows:

Table 6-3. SEC Frame Descriptor Command (CMD) Field Options

3 MS bits of CMD Field Append Load Immediate
Command

Set Non-Seq ICID equal to
Seq ICID

Replace Job Descriptor

000b

001b •

010b •

011b • •

10xb •

11xb • •

If the STATUS/CMD field has the value 1xxb, QI adds a LOAD Immediate command to
the end of the internally generated JD, followed by the contents of the STATUS/CMD
field. The full 32 bits of the STATUS/CMD field are loaded to the DECO Protocol

Frame descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

128 NXP Semiconductors

Override Register (DPOVRD). The effect of loading specific values into DPOVRD
depends on the selected protocol and is described in detail in the protocol section of this
document.

If the STATUS/CMD field has the value x1xb, QI sets the Non-SEQ ICID equal to the
SEQ ICID for the job. See the DECO ICID Status Register (DxISR) and the Queue
Interface ICID Configuration Register (QIICR) for more information on ICIDs assigned
to each job. Controlling QI access to frame queues and data also discusses ICID usage by
SEC.

If the STATUS/CMD field has the value 0x1b, QI sets the RJD bit in the SEQ IN PTR
command, which tells DECO to replace the internally constructed JD with an RJD
fetched from the beginning of the input frame. Note that if a DECO Protocol Override is
required, the user must place the LOAD Immediate command in the RJD. In addition, the
service user must assure that the sum total of words for the SD and the RJD does not
exceed 64 words.

If there is no SD (SDLEN=0), QI sets the INL bit in the SEQ IN PTR command, which
tells DECO to execute an inline descriptor fetched from the beginning of the input data
stream immediately after the SEQ IN PTR command is executed, i.e., any set DECO
Protocol Override option will have no effect because the associated LOAD Immediate
following the SEQ IN PTR command will not be executed. If needed, the LOAD
Immediate command must be placed in the inline descriptor.

Chapter 6 Frame queues, frame descriptors, and buffers

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 129

Frame descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

130 NXP Semiconductors

Chapter 7
Descriptors and descriptor commands
Software's primary interaction with SEC is through the submission of descriptors. To
make SEC flexible, the descriptor is a program that controls SEC's operation. It is
therefore up to the user to provide meaningful descriptors for execution. Descriptors are
submitted to SEC in order to process a job, where a job can specify a variety of functions
supported by SEC, from initialization of a security parameter, to generation of a random
number, to encryption or signing of data, or full security protocol encapsulation of a
packet.

Descriptors consist of commands that are executed in sequence, although conditional and
unconditional jumps are available to alter the sequence. The size of a single descriptor is
limited to 64 32-bit words, but it is possible to jump from one descriptor to another so
that, in effect, much larger descriptors can be created. Only the first of these descriptors
has to be submitted by means of the job ring or the queue interface; the rest are
automatically fetched and executed by SEC.

Job descriptors, trusted descriptors, and shared descriptors can be modified and written
back to memory. This is usually done when the processing of a data block is dependent
on the result of processing of the prior data block. Such dependencies exist for
information such as sequence numbers, counter values, and cryptographic state. Write
backs are performed using descriptor commands. Hardware does not make independent
decisions regarding the fields that should be written back.

Note that to correctly use sharing flows (wait or serial) in SEC, if one job in the flow
updates the PDB in memory, all jobs in that flow must update the PDB in memory even if
the PDB did not change for that particular packet. If all jobs in the flow update the PDB,
SEC will ensure that subsequent jobs do not read the PDB from memory until all updates
from prior jobs are complete.

When a job is submitted via the queue interface, the interface automatically creates a job
descriptor. This job descriptor is built based on information provided via the submission.
See Job descriptor construction from frame descriptor.

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 131

7.1 Job descriptors
NOTE

The term 'job descriptor' refers to both control structures
created by software and submitted to a job ring and to
equivalent control structures created by QI based on frame
descriptor information.

A job descriptor (JD) is a control structure that causes SEC to execute a single job. Given
a pointer to a job descriptor, the job queue controller will fetch from that address to the
next burst boundary. If this is less than the number of bytes required to load an entire,
maximum size, Job HEADER command, then the job queue controller will fetch the
remaining required bytes. If the address size is 32 bits, then the maximum Job HEADER
size is 12 bytes. If the address size is greater than 32 bits, then the maximum Job
HEADER size is 16 bytes.

NOTE
As stated above, the first read is at least to the next burst
boundary even though the descriptor may not be that long. It is
up to the user to ensure that reading beyond the end of the job
descriptor to the burst boundary will not result in any memory
access errors.

If a second read is required to read the entire Job HEADER command, the second read is
done from the first burst boundary to the second burst boundary. Note that these reads are
all done with a single request and that request may be split under some conditions. Once
these first words of the job descriptor are received, the job queue controller makes a
decision. If there is a DECO available into which this job may be placed, the job is placed
into the DECO for execution. If no such DECO is available, or if the job can't be placed
into the DECO due to sharing constraints, the job queue controller will fetch the rest of
the job descriptor if the previous reads did not already accomplish this. In addition, if
there is a shared descriptor, the job queue controller will also fetch the shared descriptor
unless it can be shared and is already present for another job. Once these reads have
completed, the job will be eligible for placement into a DECO for execution. By
prefetching all of this material, the job queue controller saves the DECO from taking the
time to do so, thereby signficantly improving performance. If the job queue controller is
fetching a shared descriptor, it will also attempt to prefetch the input frame for QI jobs. In
the case where the input frame is a single buffer, the job queue controller will prefetch up
to 128 bytes from the input frame, but no more than the length of the input frame. In the
case where the input frame is a scatter/gather table, the job queue controller will prefetch
the first 4 entries of the table. If the input frame is scattered and the output frame is also
scattered, the job queue controller will prefetch the first 4 entries of the output table as
well. Once these reads have completed, the job will be eligible for placement into a

Job descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

132 NXP Semiconductors

DECO. Software-generated job descriptors contain the lengths and pointers (see Address
pointers) of the data to be operated on, and either directly embed security keys and
context or explicitly point to these keys and context. Keys and context can also be
referenced indirectly by pointing to a shared descriptor (SD) that either contains keys and
context, or includes pointers to keys and context. A job descriptor can include a shared
descriptor by reference, but a shared descriptor cannot include a job descriptor.

Job descriptors use the descriptor commands defined in Using descriptor commands. A
job descriptor always begins with a HEADER command. A job descriptor without a
shared descriptor typically includes:

• Commands that specify the inputs (such as keys, IV, or data) to a cryptographic
operation and where to place them

• Commands that specify where to place the output(s) of the operation
• One or more OPERATION commands that specify the cryptographic work to be

done

The job descriptor may also contain MATH commands that perform various calculations
and conditional JUMP commands that branch based upon the results of those
calculations.

If the job descriptor references a shared descriptor, the memory address pointer to the
shared descriptor immediately follows the job descriptor HEADER. In this case the
OPERATION command and certain inputs (such as the key) are normally specified in the
shared descriptor. The job descriptor typically specifies the location of the memory
buffers for the input and output data. In this case, the job HEADER command has the
REO (Reverse Execution Order) bit set so that the job descriptor commands execute first
(to specify the input and output data buffers), followed by the shared descriptor
commands (to specify the operations to be performed on these data buffers). (see
Command execution order)

Because the length of the job descriptor is contained in the job HEADER command, no
special termination command is required. When execution reaches the command which
extends to the end of the job descriptor, DECO knows that the execution of the job
descriptor has completed. Note that this endpoint is marked and does not change unless a
new descriptor is loaded. Therefore, even if new descriptor material is loaded over the
original material via MOVE or LOAD commands, the endpoint will not change and
DECO will end execution of the job descriptor there. An error will be generated if DECO
detects that the endpoint is inside a command. (For example, an error will be generated if
the endpoint is between the words of a 2-word command.)

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 133

7.2 Trusted descriptors
A trusted descriptor is a job descriptor (possibly including a shared descriptor) that is
integrity-checked at run time and is executed only if the check passes. This provides a
mechanism to ensure that particularly sensitive operations are performed only by
descriptors that were created by trusted software. Trusted descriptors have the following
privileges not available to ordinary job descriptors:

• Access to trusted descriptor-only black keys (See Black keys)
• Access to trusted descriptor-only blobs (See Blobs)

Trusted descriptors allow trusted software to extend these privileges to untrusted software
in a carefully controlled fashion. The trusted software can generate trusted descriptors
that access specific privileged data objects in specific ways on behalf of specific
requestors and deny access to other data objects, access modes, or requesters. Note that
each Trusted Descriptor is associated with a particular SDID, and will run only if it is
executed with the same SDID as the job ring in which the Trusted Descriptor was
created. (The signature over the Trusted Descriptor will not validate if the SDID is
different.) The Trusted Descriptor can be run in the job ring in which it was created, or
another job ring, or can be run from the QI, as long as the SDID is correct. The only
exception to this is Trusted Descriptors created in a job ring owned by TrustZone
SecureWorld. These "TrustZone Trusted Descriptors" can be run in any job ring or can
be run from the QI and will assert the SecureWorld signal when accessing memory. Note
that the address pointers used in TrustZone Trusted Descriptors use physical addresses
rather than intermediate physical addresses.

Trusted descriptors must be created, and are usually run, via jobs submitted via a Job
Ring. To run a trusted job via QI, one of three indirect methods must be used. The first
method is to have the specified shared descriptor JUMP to the trusted descriptor. The
second method is to submit an inline descriptor that is a trusted descriptor. Note that
neither of the first two methods allows the trusted descriptor to have a shared descriptor.
The third method is to use a replacment job descriptor or a control replacement job
descritor, which can have a shared descriptor.

Any descriptor can jump to a trusted descriptor via any of the various means: CRJD,
RJD, nonlocal JUMP, or inline descriptor. However, while a trusted descriptor may use
any of those means to jump, the target of such a jump must be another trusted descriptor.
Otherwise, an error will be generated.

NOTE
In order to use the derived key protocol (DKP) in a trusted
descriptor, the input and output for the protocol must both be
via the sequence pointers. That is, the option selected must be

Trusted descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

134 NXP Semiconductors

from SEQ IN PTR to SEQ OUT PTR. There are no restrictions
for other protocols.

7.3 Shared descriptors
Because descriptors can hold a lot of information required to process a job for a particular
flow, they can be large, particularly if efficiency is maximized by placing the keys and
other information within the descriptor rather than referencing them with pointers. To
save overhead, SEC supports a shared descriptor mechanism. A shared descriptor is
fetched once and held internally while it is used by several different related jobs. The
keys and context information can also be shared among multiple descriptors. This saves
bandwidth and latency, particularly when black keys are in use.

A shared descriptor (SD) is constructed with the expectation that it will be used for
multiple jobs. The general usage model is to have a shared descriptor for each security
session (for example, unidirectional IPsec tunnel). Every time a job related to that
security session is required, SEC obtains job-specific information about the data (length,
pointer) from the job descriptor and obtains its session context from the shared descriptor.
Shared descriptors can store session state and can include commands to update this
session state as needed. Shared descriptors are well suited for complex operations, as the
software overhead of creating the shared descriptor is amortized over many individual
jobs.

In order to optimize performance when a job descriptor references a shared descriptor,
use the following guidelines. The job descriptor should only contain commands specific
to one job in the sequence of jobs for which the shared descriptor will be used. Such
commands include where to find the input data and where to place the output data. In
addition, occasional tasks such as executing an RJD or overriding the normal operation of
the shared descriptor would also be found here. The shared descriptor should contain all
of the generic, flow-specific, commands. That is, references to keys, context, state,
operations, etc. This is exactly the type of job descriptor automatically created by the QI.

Job descriptors indicate the presence of an associated shared descriptor by setting the
SHR bit in the job descriptor HEADER command. Software creates shared descriptors
using the same command set as all other types of descriptors. A shared descriptor always
starts with a shared descriptor HEADER.

The following restrictions are specific to shared descriptors:

• A shared descriptor cannot have its own shared descriptor.
• A shared descriptor can be, at most, sixty-two 32-bit words if pointers are 32 bits

and, at most, sixty-one 32-bit words if pointers are larger than 32 bits. This limit is

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 135

imposed because the job descriptor and the shared descriptor must both fit into the
64-word descriptor buffer (see Figure 7-2), and the minimum job descriptor consists
of a one-word job descriptor HEADER and a pointer to the shared descriptor (See
Address pointers). Note that larger jobs can be created by JUMPing to another job
descriptor.

• Some bits in the shared descriptor HEADER and the job descriptor HEADER
commands differ.

• The creation of a trusted descriptor involves signing the entire job descriptor,
including a referenced shared descriptor, if any. As a result, shared descriptors are
signed as part of the job descriptor when creating trusted descriptors. Therefore the
final signature is never part of a shared descriptor. Note that the REO bit cannot be
set in a trusted descriptor.

The following figure illustrates two descriptors that reference the same shared descriptor.

Job Descriptor or Trusted Descriptor

Job Descriptor or Trusted Descriptor

Shared Descriptor

Immediate Data

Encrypted Key

Pointer to Scatter/Gather Table

Shared descriptors

are prohibited from

referencing another

shared descriptor

.

.

.

Figure 7-1. Two descriptors referencing the same shared descriptor

7.3.1 Executing shared descriptors in proper order

SEC provides mechanisms that can be used to ensure that jobs referencing the same
shared descriptor execute in proper order. A shared descriptor may need to modify keys
embedded within the descriptor, or particular fields of a protocol data block within the
descriptor before a subsequent job uses the shared descriptor. Use the STORE command
to update the shared descriptor. Note that to correctly use sharing flows (wait or serial), if
one job in the flow updates the PDB in memory, all jobs in that flow must update the
PDB in memory even if the PDB did not change for that particular packet. If all jobs in
the flow update the PDB, SEC will ensure that subsequent jobs do not read the PDB from
memory until all updates from prior jobs are complete.

Shared descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

136 NXP Semiconductors

NOTE
If a NEVER share shared descriptor is modified during
execution, and that modification is not written back to memory,
the modification will NOT be seen by any other job which uses
that shared descriptor. If a NEVER share shared descriptor is
modified during execution, and if memory is updated with that
change, subsequent jobs which reference that shared descriptor
might have already fetched the original version or, if fetched
during the update, might have a corrupted version of the shared
descriptor. Therefore, it is up to the user to ensure that no jobs
which use a NEVER share shared descriptor are in flight when
the shared descriptor is updated. Clearly, NEVER share shared
descriptors are not meant to be updated.

When a shared descriptor uses sequences, the sequence definitions should be in the job
descriptor because the definitions can change from job descriptor to job descriptor. In
such cases, set the REO bit in the job descriptor header. Note that setting the REO bit in
the job descriptor header tells SEC to execute the job descriptor before the shared
descriptor.

The sharing type may be changed to NEVER via a write to the DECO Control Register.
Doing so prevents the descriptor from being shared from the DECO. The descriptor could
be shared following a subsequent read from memory or from another DECO if that
DECO has already gotten a copy of the descriptor. If the descriptor is being shared at the
time the DECO Control Register is written to set the sharing type to NEVER, the
descriptor will be shared.

SERIAL sharing can only take place by sharing the shared descriptor executing in a
DECO with the next job to execute in that same DECO. For the same SERIAL shared
descriptor to execute in a different DECO, it must be refetched from memory because it
could not be shared with its prior execution.

A WAIT shared descriptor may be shared into the same, or a different, DECO. However,
any instance of a WAIT shared descriptor may only be shared once. For example, if there
are 3 jobs, X, Y, and Z, to be executed using the WAIT shared descriptor, once X has
shared to Y, X can't share to Z. So, the sharing would be from X to Y, and then Y to Z. In
other words, the WAIT shared descriptor may be shared many times, but each job
descriptor can share it only once.

An ALWAYS shared descriptor may be shared as many times as necessary from the
same job descriptor. This is because ALWAYS shared descriptors are stateless so that the
order in which they are shared is not important. In the example above, X could share to
both Y and Z.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 137

7.3.2 Specifying different types of shared descriptor sharing

If two jobs are to be processed for the same data flow, they can share flow-specific data
by referencing the same shared descriptor, which would be written to either reference or
embed the flow-specific data. Sharing can be in parallel. i.e. two or more DECOs
processing jobs using the same shared descriptor at the same time, or sharing can be
sequential, i.e. a single DECO uses the same shared descriptor to process several jobs in a
row without refetching the shared descriptor. "Self sharing" occurs when a descriptor is
shared back into the same DECO. This can happen with "WAIT", "SERIAL", and
"ALWAYS" sharing.

SEC distinguishes shared descriptors from each other by the address and ICID used to
fetch the shared descriptor.

To share shared descriptors, the SHARE bits in the job descriptor header, and sometimes
in the shared descriptor header itself, must be set. This lets SEC know under which
circumstances the shared descriptors can be shared.

The following table shows the sharing possibilities supported by the HEADER command.
The full details of the Shared Descriptor HEADER command can be found in HEADER
command.

Table 7-1. Interpretation of the SHARE fields

SHARE
Name

Job
Descriptor

SHARE
(binary)

Shared
Descriptor

SHARE
(binary)

Description

NEVER 000 00 Never share the shared descriptor. Descriptors can execute in parallel, so no
dependencies are allowed between them. Fetching the shared descriptor is
repeated.

WAIT 001 00 Share the shared descriptor once set up has completed and processing has
begun. Sharing can begin after a LOAD Command (or a PROTOCOL
OPERATION) has set the OK to Share bit. Class 1 and Class 2 Key Registers
are shared if valid.

SERIAL 010 00 Share once the descriptor has completed. The descriptor with which this should
be shared will execute in the same DECO/CCB. Class 1 and Class 2 Key
Registers are shared, if valid. Context may optionally be shared.

ALWAYS 011 00 Always share the shared descriptor, but keys are not shared. No dependencies
can exist between the descriptors.

DEFER 100 00: NEVER

01: WAIT

10: SERIAL

11: ALWAYS

Use the value of the SHARE bits in the shared descriptor to determine the type of
sharing.

All other combinations are reserved

Shared descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

138 NXP Semiconductors

7.3.2.1 Error sharing

Shared descriptors can be marked as:

• NEVER
• WAIT
• SERIAL
• ALWAYS

When the job descriptor or shared descriptor is marked SERIAL or NEVER, no sharing
can take place between DECOs. In the SERIAL case, only one DECO at a time is
allowed to have a copy of the shared descriptor. In the NEVER case, each DECO
receives a new version of the shared descriptor read from memory each time it runs a job
referencing that shared descriptor. Note that the shared descriptor being marked as
NEVER indicates that it is stateless (contains no information requiring update upon
completion of a job). If a DECO reports an error while using the shared descriptor, there
is no need to report that error to any other DECOs using an independent copy of the
shared descriptor.

In cases where shared descriptor sharing occurs between DECOs, the first DECO to fetch
the shared descriptor is the supplier DECO, and other DECOs using shared descriptor
information from the supplier DECO's descriptor buffer are the consumer DECOs.

When the descriptor is shared between two jobs which run sequentially in the same
DECO, no errors can be propagated.

In the ALWAYS case, errors do not propagate from supplier to consumers. If a supplier
DECO has already started sharing the shared descriptor when an error occurs, the
consumer DECO's job can complete normally regardless of the presence of an error in the
supplier DECO.

In the WAIT case, an error in the supplier DECO can propagate to the consumer DECO
while the shared descriptor and keys, if any, are being shared, causing both jobs to
terminate with errors. The DECO Control Register can be written with value 0200h (that
is, OFFSET = 02h and LENGTH = 00h) to enable error propagation, or 0300h (that is,
OFFSET = 03h and LENGTH = 00h) to block error propagation (see value 06h, class 11
in Table 7-18). Using either of these values sets "OK to share" and tells the supplier
DECO to propagate its shared descriptor and keys to the consumer DECO. Once the
shared descriptor and keys (if any) have been copied to the consumer DECO, errors in the
supplier DECO no longer affect the consumer DECO.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 139

7.3.3 Changing shared descriptors

The best shared descriptors are independent, meaning that they do not need to be
modified by software for each job descriptor with which they are used. (Note that this is a
different topic than shared descriptors which update themselves.) Shared descriptors are
more easily used the more generic they are. However, shared descriptors may have to be
changed on occasion; for example, when there is a key change. Replacement job
descriptors (see Using replacement job descriptors) can be used for such changes to avoid
requiring software to make the change.

7.4 Using in-line descriptors
In the typical use case, the shared descriptor contains the main processing sequence.
However, by setting the INL bit in a SEQ IN PTR command and providing appropriate
address and length information, SEC is directed to an in-line descriptor, which is a job
descriptor that software prepends to the data defined by an input sequence. (For more
information about the SEQ IN PTR command, see SEQ vs non-SEQ commands and SEQ
IN PTR command.)

Note that shared descriptors can point to in-line descriptors, but in-line descriptors cannot
point to shared descriptors. This means that the in-line descriptor is loaded at the start of
the descriptor buffer, overwriting as much shared descriptor, if one is present, and job
descriptor, as needed. This means the shared descriptor will no longer be executable by
this job and will no longer be shareable. Note that an in-line descriptor may be scattered
by means of an SGT.

If SEC services are accessed via the Queue Manager, in-line descriptors are a method for
instructing SEC to perform special processing on frames in a given flow. This is done by
setting the shared descriptor length field to 0 in the preheader for the flow. In that case,
QI will build the job descriptor for those frames with INL set in the SEQ IN PTR
command.

Prepending the in-line descriptor to the input data can be accomplished in two ways:
• Exploiting empty space in the buffer provided by the upstream frame producer
• Creating the in-line descriptor in a new buffer, which is then placed at the head of the

scatter/gather list for a multi-buffer frame descriptor.

Once the inline descriptor has been loaded, the detection of an error will result in a bit in
the completion status being set which indicates that a non-local jump was taken. There is
no indication of how many non-local jumps were made. For job ring jobs, the original job
descriptor address is placed in the appropriate output ring.

Using in-line descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

140 NXP Semiconductors

Once an inline descriptor has been loaded, use of the STORE convenience sources for
updating the job descriptor (41h and 45h) will result in an error.

In some cases, an inline descriptor will be used when a shared descriptor had been shared
from a prior job. In such cases, it may be desirable to treat the job as if it had not been
shared. This may be accomplished by writing to the CDS bit in the Clear Written
Register.

7.5 Using replacement job descriptors
A replacement job descriptor (RJD) is an in-line descriptor that:

• Replaces the job descriptor that invoked the replacement descriptor. If SEC services
are accessed via the Queue Manager, the internal job descriptor generated by the
Queue Manager Interface (QI) is replaced.

• Does not replace the existing shared descriptor

To invoke the replacement job descriptor, execute a SEQ IN PTR with RJD = 1. This
immediately executes the replacement job descriptor. Note that the replacement job
descriptor must be at the start of the input sequence data at the time that this SEQ IN PTR
command is executed.

The replacement job descriptor can modify the shared descriptor before allowing it to
execute. This allows operations such as changing the keys and resetting the sequence
number within a shared descriptor, such as for an IPSEC PROTOCOL OPERATION),
without having to interrupt the flow of packets. However, because the shared descriptor
has already been loaded, the length and address of the shared descriptor must not be
modified. Note that when there is no shared descriptor, there is no difference between an
in-line descriptor and a replacement job descriptor.

When using the replacement job descriptor capability, the current job descriptor can be
replaced with any job descriptor. Other data, including an input frame, can follow the
replacement job descriptor in the input sequence data. For example, an IPSec flow can
modify the keys or sequence number and then immediately process the packet which
follows the replacement job descriptor.

If there is a JUMP HALT command in the replacement job descriptor, the job terminates
without executing the shared descriptor. Otherwise, if the job descriptor has the REO bit
set (jobs from QI always do), once the replacement job descriptor has finished, execution
continues with the shared descriptor so that data can be processed. If the shared
descriptor will process data during this job, before beginning that processing make sure
that all the updates made to the shared descriptor have completed both internally and

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 141

externally (that is, the update to the descriptor buffer has completed and the update to the
shared descriptor in memory has completed). This is discussed in the following two
paragraphs.

The replacement job descriptor can insert new values in the shared descriptor with either
the MOVE command or the LOAD command. The MOVE command's default behavior
is to schedule the MOVE operation as soon as possible and then allow the next command
to execute. As a result, the MOVE happens in parallel with subsequent commands. Be
aware that the MOVE command can take multiple cycles to complete, and it is possible
that shared descriptor commands may be executed before the MOVE completes. This
could result in the intended updates not being used. If there is a chance that this may
occur, use the WC bit in the MOVE command to ensure correct operation. See MOVE,
MOVEB, MOVEDW, and MOVE_LEN commands for additional details about the
MOVE command.

If using the LOAD command to modify the shared descriptor, the replacement job
descriptor should use the JUMP command, waiting for the NIP (No Input Pending) bit to
evaluate true before proceeding. Note that the replacement job descriptor can also be used
to transfer data to other destinations, such as memory, context registers, or Math
registers. It is the replacement job descriptor's responsibility to ensure that any and all of
these transfers have completed before the shared descriptor uses the new data.

Replacement job descriptors can be trusted descriptors, and they must be trusted if the
current descriptor is a trusted descriptor. Although trusted descriptors cannot be run
directly through QI, trusted descriptors can be indirectly executed using a replacement
job descriptor.

Once an RJD has been loaded, use of the STORE convenience sources for updating the
job descriptor (41h and 45h) will result in an error.

The detection of an error will result in a bit in the completion status being set which
indicates that a non-local jump was taken. There is no indication of how many non-local
jumps were made. For job ring jobs, the original job descriptor address is placed in the
appropriate output ring.

In some cases, an RJD descriptor will be used when a shared descriptor had been shared
from a prior job. In such cases, it may be desirable to treat the job as if it had not been
shared. This may be accomplished by writing to the CDS bit in the Clear Written
Register.

Due to features of the AES encryption algorithm, special handling may be required when
using a replacement job descriptor to update a key in a shared descriptor. AES encryption
requires each block of data to be processed in a series of cryptographic rounds, and the
AES key is successively modified at each round. When decrypting, the AES CHA must
start with the fully modified form of the key (also called a decryption key or decap key)

Using replacement job descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

142 NXP Semiconductors

and reverse the modifications at each round, eventually ending up with the original
encryption key. If the descriptor was shared, AES will have left the decryption key in the
key register. However, when using a replacement job descriptor to update a key in a
shared descriptor, the updated key is usually an encryption key (also called an encap
key). To resolve this problem, use the LOAD command to clear the fact that the shared
descriptor was, in fact, shared. That way, AES will expect the encryption key and will
automatically generate the decryption key. This avoids having to generate the decryption
key as part of the RJD.

7.6 Scatter/gather tables (SGTs)
When submitting jobs to SEC, software can create job descriptors or frame descriptors
with address/length entries that point directly to data or indirectly to data by means of
scatter/gather tables. An SGT consists of one or more SGT entries. The final entry in the
SGT is marked by setting the F (Final) bit in an SGT entry.

Each of the SGT entries occupies four 32-bit words, as seen in Table 7-2. Note that an
SGT entry with Length = 0 is legal. When this is the setting, no data will be read from or
written to the buffer pointed to by the Address Pointer. If Length = 0, BPID = 0, and
Address Pointer = 0, this is considered an unused SGT entry and no buffer release actions
for such entries will take place.

An entry can point to another SGT that contains additional entries by setting the E
(Extension) bit in the entry. When the E bit is set, SEC fetches SGT entries from the new
SGT and ignores any remaining entries in the old SGT.

NOTE
An SGT with the E bit set in the first entry is considered
malformed.

NOTE
SGT entries are read from memory four entries at a time. If the
number of entries in the table is not a multiple of four, then the
read of the entries will go beyond the end of the table. The user
is responsible for ensuring that such reads beyond the end of the
table do not result in memory access errors.

The following table shows the SGT entry format.

Table 7-2. Scatter/gather table entry format

word 0 Reserved [24 bits] (must be 0) Address Pointer [MS 8 bits]

word 1 Address Pointer [LS 32 bits]

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 143

Table 7-2. Scatter/gather table entry format (continued)

word 2 E [1b] F [1b] Length [30 bits]

word 3 Reserved [8 bits]

(must be 0)

BPID [8 bits] Reserved [3
bits]

(must be 0)

Offset [13 bits]

Table 7-3. Scatter/gather table field descriptions

Field Description

Offset Offset (measured in bytes) into memory where significant data is to be found. The use of an offset
permits reuse of a memory buffer without recalculating the address.

BPID Buffer Pool ID. Indicates the identifier of the buffer pool that owns the buffer referred to by the
address pointer

Length Length of significant data in buffer, measured in bytes

F Final Bit. If set to 1, this is the last entry in the scatter/gather table.

E Extension bit. If set to 1, the address pointer points to a scatter/gather table entry instead of a
memory buffer. In this case the Length and Offset fields are ignored, and this entry is regarded as
the last entry of the current scatter/gather table even if the F bit is 0. The next table entry is taken
from the scatter/gather table pointed to by the address pointer.

NOTE: It is an error to set the E bit if the SGT entry is unused (i.e. Length, BPID and Address
Pointer all 0s).

Address Pointer Pointer to memory buffer or discontinuous scatter/gather table entry, depending on the E bit.

Reserved Field not currently defined. Leave these bits 0 to ensure forward compatibility.

QI jobs use only 29 or 20 bits of the length field and 9 bits of the offset field. If the offset
is 0, 29 bits of length can be used. These restrictions are made to ensure that a scatter/
gather table entry can be coded in a frame descriptor format.

7.7 Using descriptor commands
Descriptors contain one or more commands that tell SEC what operations to perform, as
well as what data on which to operate. Commands can also be used to enforce data type
separation. For example, specifying that input data be treated as a cryptographic key
forces SEC to treat it exclusively as a key and prevents the key from being written back
out into memory in unencrypted form.

SEC permits a great deal of flexibility in composing descriptors, but it is highly
recommended that descriptors be modeled after the examples provided in the reference
software. Some sequences of commands or combinations of command options may
produce unexpected results.

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

144 NXP Semiconductors

7.7.1 Command execution order

NOTE
In the following discussion, the term "Job Descriptor" should be
taken to include both job descriptors and trusted descriptors.

Before a job descriptor begins execution, the portion of the job descriptor contained in
the holding tank is loaded into the descriptor buffer. This includes the job descriptor's
HEADER command (see HEADER command), which is the first command executed.
Once the remainder of the job descriptor has finished loading, the next command to
execute depends upon three fields in the HEADER: SHR, REO, and START INDEX.

The following figure shows the layouts for job descriptors depending on whether SHR =
0 or 1.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 145

Job Descr
HEADER

START
INDEX SHR=0 DESCLEN.

Optional Data

. . .

Optional Data

. . .

Job Descriptor Command

Job Descriptor Command

Job Descriptor Command

Shared Descr
HEADER

START
INDEX SC DESCLEN.

Optional Data

. . .

Optional Data

. . .

Shared Descriptor Command

Shared Descriptor Command

Shared Descriptor Command

Descriptor Buffer Descriptor Buffer

. . .

Job Descriptor Command

Job Descriptor Command

Job Descriptor Command

Job Descr
HEADER

SHARED
DESC
LENGTH

SHR=1 DESCLEN.

Pointer to Shared Descriptor in Memory

Figure 7-2. Job descriptor layout in descriptor buffer

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

146 NXP Semiconductors

7.7.1.1 Executing commands when SHR = 0

When SHR = 0, the job descriptor does not reference a shared descriptor. Therefore, the
HEADER's START INDEX field specifies the position of the next command that will
execute within the job descriptor. If the START INDEX value is 0, the next command to
execute is the command immediately following the HEADER command. Any other value
causes a jump to the position indicated by the START INDEX field. Note that within a
protocol job descriptor, the START INDEX value is used to skip over the PDB, if any.
Before the job descriptor continues execution, the remainder of the job descriptor is
fetched from memory and loaded into the DECO's descriptor buffer. The left half of
Figure 7-2 shows the layout of a job descriptor that does not reference a shared
descriptor.

Commands execute in the order in which they appear in the descriptor buffer until one of
the following is executed:

• The last command in the job descriptor
• A JUMP command when the JUMP is taken (see JUMP (HALT) command)
• An in-line descriptor (see Using in-line descriptors)
• A replacement job descriptor (see Using replacement job descriptors)

When JUMP commands are executed, the behavior is as follows:

• If DECO executes an unconditional halt type of JUMP or a conditional halt type
whose tested condition evaluates to true, execution of the job descriptor terminates.

• If DECO executes a JUMP whose type is conditional halt, local conditional jump,
non-local conditional jump, conditional subroutine call, or conditional subroutine
return and the tested condition evaluates to false, execution continues with the
command following the JUMP.

• If the JUMP type is local or non-local jump or conditional subroutine call and the
tested condition evaluates as true, the command indicated by the LOCAL OFFSET
field (for local jumps) or by the Pointer Field (for non-local jumps) is the next
command to execute.

• If the jump is local, the target of the JUMP should be within the current job
descriptor. If the target is beyond the end of the current job descriptor, it is up to
the programmer to ensure there is executable code at the target and that the
descriptor will be able to terminate properly. One common method for proper
termination is to use a JUMP HALT command.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 147

• If the jump is non-local, the target of the JUMP must be the start of a job
descriptor.

• If the JUMP type is conditional subroutine return and the tested condition
evaluates as true, the next command to execute is the command following the
most recently executed conditional subroutine call.

7.7.1.2 Executing commands when SHR = 1

As described in Executing commands when SHR = 0, the portion of the job descriptor
(including the HEADER command) contained in the holding tank is loaded into the
descriptor buffer. When SHR = 1, the job descriptor references a shared descriptor (see
Shared descriptors).

In this case, instead of a START INDEX field, the job descriptor HEADER contains a
SHR DESCR LENGTH field. This field specifies the length of the shared descriptor,
which allows DECO to leave enough space for the shared descriptor when the job
descriptor is loaded into the descriptor buffer. The right side of Figure 7-2 shows the
layout of a job descriptor that references a shared descriptor.

A pointer to the shared descriptor's location in memory appears in the word (or two
words) immediately following the job descriptor HEADER. Note that the job descriptor
HEADER may occupy two words in addition to the shared descriptor address (see EXT
field in HEADER command). The pointer, together with the ICID that was used when
fetching the descriptor, is used to determine if the shared descriptor is already resident in
the same or another DECO and is therefore a candidate for sharing. If the shared
descriptor is not resident or cannot be shared, the shared descriptor is fetched from
memory using the pointer as the starting address. If the shared descriptor is available
from another DECO, processing cannot continue until the shared descriptor (and the
keys, if the keys are to be copied) has been copied from the other DECO. Processing
cannot continue until the entire shared descriptor is present. The START INDEX field
within the shared descriptor's HEADER specifies the position of the next command that
will execute within the shared descriptor once the shared descriptor begins execution. If
either the shared or job descriptor contain a PROTOCOL OPERATION command, the
START INDEX value in the shared descriptor is used to skip over the PDB, if any. Note
that when a shared descriptor is present, the PDB is always in the shared descriptor even
if the PROTOCOL OPERATION is in the job descriptor.

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

148 NXP Semiconductors

7.7.1.3 Executing commands when REO = 0

If the job descriptor references a shared descriptor, the REO bit in the HEADER
command determines the next command to be executed. 1 When REO = 0, DECO
executes the shared descriptor before the remainder of the job descriptor, as illustrated on
the left of Figure 7-3. After the job descriptor HEADER executes, the HEADER
command within the shared descriptor (2.0 in the diagram) is the next command to
execute. The commands within the shared descriptor then execute. Once the shared
descriptor starts executing, any job descriptor HEADER command will be treated as a
no-op until a new job descriptor is loaded.

The shared descriptor ceases executing when any of the following occurs:

• an in-line job descriptor is executed
• a replacement job descriptor is executed
• a JUMP HALT command is executed
• a non-local JUMP is executed
• or the shared descriptor "falls through" to the job descriptor

Since the shared descriptor immediately precedes the job descriptor in the descriptor
buffer (see right side of Figure 7-2), unless the last command of the shared descriptor
causes a jump, the shared descriptor may complete by simply "falling through" to the job
descriptor. Once the shared descriptor completes, DECO executes the job descriptor,
starting with the job descriptor HEADER, which will be treated as a no-op. Execution
will continue with the next command of the job descriptor. Execution will end following
execution of the last command in the job descriptor unless the last command is a taken
JUMP.

Once the shared descriptor HEADER command has been executed, any further shared
descriptor HEADER commands will be used as absolute, unconditional, jump commands
if the START INDEX field is nonzero. The START INDEX field will be used to
determine the target. Note that, unlike the JUMP command, the START INDEX is the
value of the target index, not a relative index. No other fields in the shared descriptor
HEADER command will cause an action to take place although error conditions may be
triggered. If a subsequent execution of a shared descriptor HEADER command is done
where the START INDEX is zero, then the shared descriptor HEADER command will be
treated as a no-op.

It is important to note the difference in how subsequent job descriptor HEADER
commands are handled when REO=0 and REO=1.

1. Note that the REO bit cannot be set in a trusted descriptor.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 149

7.7.1.4 Executing commands when REO = 1

When REO is 1, DECO executes the job descriptor before the shared descriptor, as
illustrated in the diagram on the right of Figure 7-3. In this case, the job descriptor
command (if any) that immediately follows the shared descriptor pointer (1.1 in the
diagram), or the extended HEADER word if it is present, executes immediately after the
job descriptor HEADER. After the job descriptor completes, DECO then executes the
shared descriptor commands, starting with the shared descriptor HEADER (2.0 in the
diagram).

Execution of a subsequent job descriptor HEADER, other than one reached via a non-
local JUMP, an RJD or inline descriptor, will terminate execution normally. Upon
execution of the command which ended the job descriptor, no matter how many times
this occurs, with the exception of taken JUMPs, execution will continue with the
command at the start of the descriptor buffer. After the first execution of the shared
descriptor HEADER, subsequent executions can be used as absolute, unconditional,
jumps in the same manner as subsequent shared descriptor HEADER commands are used
when REO=0.

 REO=0 Job Desc
HEADER

 Pointer to shared descriptor location in memory

 Optional data
e.g. Protocol Data Block

Command 1

 Shared
 Descriptor

 Job Descriptor with a shared descriptor
when REO = 0

 2.0

 2.1

 2.n

 1.0 3.0

 3.m

 Shared Desc
HEADER PD

 REO=1 Job Desc
HEADER

 Pointer to shared descriptor location in memory

 Optional data
e.g. Protocol Data Block

 Job Descriptor with a shared descriptor
when REO = 1

 1.0

 1.m

 Shared Desc
HEADER PD

 1.1
 When Job

Descriptor
ends

 Job
 Descriptor

Command 2

Command n

Command 1

Command m

Command 1

Command 2

Command n

 2.0

 2.1

 2.n

 Shared
 Descriptor

 Job
 Descriptor

Command 1

Command m

 . . .

 . . .

 . . .

 . . .

Figure 7-3. Order of command execution if a shared descriptor is referenced

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

150 NXP Semiconductors

7.7.1.5 Executing additional HEADER commands

A job descriptor must start with a job descriptor header, and a shared descriptor must start
with a shared descriptor header. These are typically the only HEADER commands within
a descriptor, but it is possible for the descriptor to have additional HEADER commands.

No error is generated if a job descriptor or shared descriptor executes additional shared
descriptor HEADER commands. These are essentially no-ops, with one exception. If
START INDEX is non-zero, the Shared Descriptor HEADER command causes a jump to
that position within the descriptor buffer. That is, the Shared Descriptor HEADER
command executes as if it is an unconditional JUMP to an absolute index. Note that this
is different from the JUMP command, which uses relative addressing. The first shared
descriptor HEADER command is the one that is treated as real. All subsequent shared
descriptor HEADER commands executed, including the first one if executed again, are
no-ops (other than an absolute jump if the START INDEX is nonzero).

NOTE
It is an error to execute a shared descriptor HEADER command
in a job descriptor when there is no shared descriptor (when
SHR= 0).

If a job descriptor does not reference a shared descriptor, any additional job descriptor
HEADER commands that it executes (for example, by jumping back to the beginning of
the job descriptor) are treated as jumps to an absolute address within the descriptor
buffer. If a job descriptor does reference a shared descriptor, any additional job descriptor
HEADER commands that it executes are treated as no-ops. Executing a job descriptor
HEADER command within a shared descriptor terminates the shared descriptor if the
shared descriptor runs after the job descriptor runs (that is, REO = 1), but the job
descriptor header acts as a no-op if the shared descriptor runs before the job descriptor
runs (that is, REO = 0).

7.7.1.6 Jumping to another job descriptor

Note that either a job descriptor or a shared descriptor can execute a non-local JUMP to a
job descriptor. In these cases, the current job descriptor or shared descriptor terminates,
and the new job descriptor is fetched into the descriptor buffer and executes. Note that
this new job descriptor is not permitted to reference a shared descriptor, but can also
execute a non-local JUMP to another job descriptor. This mechanism allows the
construction of jobs that are larger than the descriptor buffer. Once the entire chain of job
descriptors terminates, a single job termination status word (see Job termination status/
error codes) is returned. The return status is as if the original job descriptor had
completed. That is, for job ring jobs, the original job descriptor address is placed in the

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 151

appropriate output ring. If an error is detected following a jump to another descriptor, a
bit in the status indicates that a non-local jump was taken. Note that there is no indication
of how many non-local jumps were made.

7.7.2 Command properties

Three properties determine how SEC handles each command:

• Blocking
• Load/store checkpoint
• Done checkpoint

7.7.2.1 Blocking commands

A blocking command must complete before the next command can begin. Note that the
completion is from the standpoint of the DECO. If the command requires a read and the
DECO has scheduled the read, the next command can begin even if the read has not
completed.

Many commands are blocking commands. The notable exceptions are commands that
perform LOADs, STOREs, MOVEs and OPERATION algorithm commands. (That is,
not PROTOCOL or PKHA OPERATIONS, which are blocking.) Note that setting the
WC bit in any of the MOVE commands cause the command to become blocking.

7.7.2.2 Load/store checkpoint

If a command is a load/store checkpoint, it must wait for certain prior LOADs and/or
STOREs to complete before it can start. This property ensures that LOADs, STOREs,
and other commands occur in proper order.

7.7.2.3 Done checkpoint

If a command is a done checkpoint, it must wait until all current cryptographic activity
associated with the descriptor is done. The CHAs signal done once their computation has
completed. Note that this is different from the descriptor being done, since not all loads
and stores may have completed. It merely indicates that the CHAs in use have completed
their current tasks. Note that done checkpoints can be for only Class 1, or only Class 2, or
both Class 1 and Class2.

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

152 NXP Semiconductors

7.7.3 Command types

The following is a list of commands that are supported in SEC along with their blocking
and checkpoint properties.

Table 7-4. List of command types

Command name CTYPE Blocking Load/store checkpoint Done
checkpoint

See section/page

KEY

(& SEQ KEY)

00000

(00001)

Yes, if not
immediate
or if
encrypted

Load/Store, if not
immediate or if encrypted

Yes KEY commands

LOAD

(& SEQ LOAD)

00010

(00011)

No Load, for some
destinations

No LOAD commands

FIFO LOAD

(& SEQ FIFO LOAD)

00100

(00101)

No Load, if immediate and
another FIFO LOAD is
pending or if not
immediate and an
immediate FIFO LOAD or
MOVE to the input FIFO is
pending

No FIFO LOAD command

STORE

(& SEQ STORE)

01010

(01011)

No if storing the checksum or
if storing a scatter/gather
table and that table is still
being loaded

If from a
Context
Register the
correspondi
ng CHA
must be
done

STORE command

FIFO STORE

(& SEQ FIFO STORE)

01100

(01101)

No Load checkpoint if
encrypting

Yes if
encrypting

FIFO STORE command

MOVE

(& MOVE_LEN)

(& MOVEB)

(& MOVEW)

01111

(01110)

Yes, if WC
set

Load or Store depending
on type of MOVE. It is a
checkpoint if the CCB
DMA is being used for a
prior MOVE or for moving
IMM data for KEY, LOAD,
or FIFO LOAD commands.

If from a
Context
Register the
correspondi
ng CHA
must be
done

MOVE, MOVEB,
MOVEDW, and
MOVE_LEN commands

OPERATION

(ALGORITHM
OPERATION)

(PROTOCOL
OPERATION)

(PKHA OPERATION)

10000 Yes, if
PKHA or
protocol

For PKHA No ALGORITHM
OPERATION command

PROTOCOL OPERATION
commands

PKHA OPERATION
command

SIGNATURE 10010 Yes, when
verifying or
re-signing

Yes if recomputing
signature following
execution; no pending
reads or writes.

No SIGNATURE command

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 153

Table 7-4. List of command types (continued)

Command name CTYPE Blocking Load/store checkpoint Done
checkpoint

See section/page

JUMP 10100 Yes Checkpoint based upon
condition bits

If Class bit
or bits are
set

JUMP (HALT) command

MATH and MATHI 10101

11101

Yes Will wait for data if SRC1
is Input or Output Data
FIFO and data is not yet
available

No MATH and MATHI
Commands

Job descriptor HEADER

Shared Descriptor
HEADER

10110

10111

Yes N/A N/A HEADER command

ECPARAM 11100 No Load if an immediate FIFO
LOAD or MOVE to the
input FIFO is pending

No see ECPARAM command

SEQ IN PTR 11110 Yes Yes if there is a pending
gather table read. For QI
jobs, then also yes if buffer
releasing remains to be
done for a prior SEQ IN
PTR command.

No SEQ IN PTR command

SEQ OUT PTR 11111 Yes Yes if there is a pending
scatter table read.

No SEQ OUT PTR command

7.7.4 SEQ vs non-SEQ commands

SEC can process networking protocol packets that consist of separate fields, such as
headers, sequence numbers, AADs, payloads, and ICVs. (A complete discussion of
network security protocol packet formats is beyond the scope of this document. However,
examples using the protocols that SEC supports can be found in Protocol acceleration.)
To help process such packets efficiently, SEC provides sequence (SEQ) versions of the
following descriptor commands:

• KEY
• LOAD
• STORE
• FIFO LOAD
• FIFO STORE

SEQ and non-SEQ versions of descriptor commands have nearly identical functions, with
the major distinction being that the SEQ versions do not require pointers because SEC
uses sequence addresses that were defined by previously executed SEQ IN PTR or SEQ
OUT PTR commands. Another difference is that SEQ commands (with the exception of
SEQ STORE) do not have immediate data modes.

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

154 NXP Semiconductors

For jobs submitted by means of the job ring interface, each job ring can be configured via
the INCL_SEQ_OUT field in each Job Ring Configuration Register to output an
additional word in each entry of the Output Ring that indicates the length of the output
sequence (that is, the number of bytes output via SEQ commands).

7.7.4.1 Creating a sequence

Sequences are generally associated with shared descriptors (see Shared descriptors)
which support a one-time definition of a set of commands to be performed on each packet
in a flow. The address and length of the input and output packets are usually specified in
a job descriptor (see Job descriptors) that references a shared descriptor containing SEQ-
version commands to indicate how to process the data. The shared descriptor is analogous
to a subroutine, and the job descriptor is analogous to a software program supplying
arguments and then calling that subroutine.

The job descriptor uses the following commands to provide information about the data to
be processed by the sequence:

• A SEQ IN PTR command to specify the length and address of the data to be
processed (see SEQ IN PTR command).

• A SEQ OUT PTR command to specify the length and address of the buffer for the
output data (see SEQ OUT PTR command).

The SEQ IN PTR and SEQ OUT PTR commands each have an SGF field which, when
set to 1, allows sequence input and/or output areas to be defined by means of scatter/
gather tables.

The SEQ IN PTR command is used to create an input sequence. The SEQ OUT PTR is
used to create an output sequence. Once the input and/or output sequence pointers have
been set, subsequent SEQ commands indicate how to process the packet. The length of
the sequence may be extended by issuing additional SEQ IN PTR and SEQ OUT PTR
commands with the PRE bit set (see Table 7-97 and Table 7-99) or by using MATH or
MATHI commands to add length directly. DECO tracks how far into the output sequence
DECO has progressed, and this information is used if a rewind is needed so that a second
pass can be made over the sequence (see RTO field and SOP field in the SEQ IN PTR
command and REW field in the SEQ OUT PTR command).

An input sequence ends when any of the following occurs:

• All specified input data is consumed (unless a rewind is then done).
• A new input sequence is started.
• An error occurs.

An output sequence ends when any of the following occurs:

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 155

• All specified output space is consumed (unless a rewind is then done).
• A new output sequence is started.
• An error occurs.

There can be at most one scatter/gather table active for input and at most one scatter/
gather table active for output in the DECO at any time. Note that non-sequential
commands can be executed within the same descriptor while a sequence is running.
However, an input gather table can be in use by either an input sequence or by non-SEQ
KEY, LOAD, or FIFO LOAD commands, but not both. Likewise, an output scatter table
can be in use by either an output sequence or by non-SEQ STORE or FIFO STORE
commands, but not both.

To accelerate performance, SEC caches gather table and scatter table entries in registers
(see the Gather Table Register (DxGTR) and Scatter Table Register (DxSTR)).

NOTE
If a scatter/gather table is being used for an input or output
sequence, and a non-SEQ command references a second scatter/
gather table for input or output data, entries from the second
scatter/gather table overwrite the entries from the initial scatter/
gather table. This can result in the input/output sequence
referencing the wrong data. (The opposite case is not a
problem. For example, a non-SEQ LOAD command which
references a scatter/gather table followed by a SEQ IN PTR
which references a scatter/gather table won't be an issue since
the LOAD has to complete the use of its scatter/gather table
before the SEQ IN PTR command can execute.)

NOTE
Hardware does not flag overwriting the scatter/gather table as
an error. The descriptor programmer must ensure this does not
happen.

7.7.4.2 Using sequences for fixed and variable length data

Some SEQ commands act on fixed length data (for example, keys, IVs, or packet header
fields) whereas other SEQ commands act on data that changes length from packet to
packet, such as packet payload. The VLF bit found in all SEQ commands indicates
whether the data associated with the SEQ command is a constant length or whether the
length is to be found in the corresponding variable length registers (VSIL and VSOL).

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

156 NXP Semiconductors

Note that the VSIL and VSOL are not accessible through the register bus, but rather they
are read from or written to by means of the MATH or MATHI Command (see Table
7-93). This allows commands within the descriptor to calculate variable lengths. Given a
total packet length (from an internally or externally generated job descriptor), the
descriptor can calculate the variable length portion of a job and load it into the Variable
Length Registers to be referenced by subsequent SEQ commands (by setting the VLF
bit).

7.7.4.3 Transferring meta data

When processing data, SEC typically uses the DMA to read input data and write output
data. Because SEC is primarily intended to accelerate cryptographic operations, the
output data is normally different from the input data. However, it is possible to use SEC's
external DMA to transfer data from an input buffer to an output buffer without modifying
the data (that is, the identity transformation, also called null encryption), typically to
either:

• Benefit from SEC's scatter/gather capabilities
• Transfer meta data in conjunction with cryptographic processing

The latter case is often useful because the meta data may describe the type, the source,
the destination, the classification, the priority and/or the amount of the cryptographic
data. If this meta data appears ahead of the cryptographically processed data, it is called
'leading meta data'. If it appears after, it is called 'trailing meta data'.

Three different tasks must be scheduled in order to transfer meta data from input to
output without modification:

• Data must be read. Most often, the data is read into the input data FIFO. FIFO LOAD
and SEQ FIFO LOAD are the most common methods for getting data into the input
FIFO.

• Data must be stored. Most often, the data is stored from the output FIFO. FIFO
STORE and SEQ FIFO STORE are the most common methods for storing data from
the output FIFO.

• If the data is brought into the input data FIFO, it must be moved, via one of the
MOVE commands, to the output FIFO.

While it is possible to transfer meta data without going through the input FIFO and
output FIFO, such transfer methods are discouraged as timing can be complex.
Furthermore, meta data is most often used with sequences so that multiple pointers don't
have to be specified.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 157

It is possible to accomplish two or three of the above tasks using a single command. This
command is the SEQ FIFO STORE command with the meta data Output Data Type, 3Eh.
Depending on how the auxiliary bits are set, this type of SEQ FIFO STORE will adjust
the various lengths and obtain the data either from the input frame or from the input data
FIFO.

The above procdures work for leading meta data. To handle trailing meta data for a
sequence, start by subtracting the length of the meta data from the Sequence Input Length
Register. Then, process the input frame. Once the processing is complete, add the length
of the meta data back to the Sequence Input Length Register and handle the meta data.
(Note that if using SEQ FIFO STORE with meta data Output Data Type, you don't need
to add the length back into the register.)

7.7.4.4 Rewinding a sequence

Note that it is possible to rewind a sequence to make an additional pass over the input and
output data (see RTO field and SOP field in SEQ IN PTR command and REW field in
SEQ OUT PTR command). A rewind can fill in data that was skipped over in a previous
pass. For example, a rewind may be necessary if a field contains a hash value that is
computed over data that appears later in the output data.

The following built-in protocol operations perform rewinds:
• TLS Decapsulation rewinds the input frame.
• IPSec Decapsulation rewinds the output frame.
• DCRC Encapsulation and Decapsulation rewind the output frame.

Note that owing to hardware limitations, the amount of leading meta data is limited to 215

bytes when using any of these built-in protocols.

An error will be generated if the SEQ IN PTR command is used to rewind the input
frame after buffers have been released.

7.7.5 Information FIFO entries

Each CCB has an iNformation FIFO (NFIFO). The NFIFO holds entries that describe the
corresponding data to obtain from the input data FIFO, the output data FIFO, the
auxiliary data FIFO, or the padding module. (The padding module provides a means for
generating different types of padding and random numbers.) The data is obtained from
each source in the order in which the NFIFO entries are loaded. Note that a single entry is
able to describe the same (in-snooping) or different (out-snooping) sources for the class 1
and class 2 alignment blocks.

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

158 NXP Semiconductors

Typically, a command which loads data to the input data FIFO or pulls data through one
of the alignment blocks will result in SEC automatically generating the proper NFIFO
entries to handle that data. However, that functionality can be overridden to allow the
descriptor to directly specify the NFIFO entries. Entries can be placed into the NFIFO via
a LOAD Immediate command with a DST value of 7Ah or 70h through 75h.

7.7.6 Output FIFO Operation

There are three ways to get data into the output FIFO: a LOAD IMM to the output FIFO,
a move command where the destination is the output FIFO, and CHAs pushing their
results into the output FIFO. It is up to the descriptor writer to ensure that there are no
collisions of data from these sources. If such a collision does occur, an error will be
generated.

The output FIFO does not track valid bytes. Therefore, it is up to the descriptor writer to
know which bytes in the output FIFO are valid. For example, if you push 3 bytes into the
output FIFO followed by 5 more bytes, these 8 bytes are not contiguous. The first three
bytes are in one dword and the other 5 bytes are in a second dword. However, the output
FIFO always stores 8 bytes per push. When a LOAD IMM to the output FIFO is done,
the specified number of bytes are left aligned and any other bytes are written as provided.
That is, if the immediate data is to be one byte, 55h, but the 4-byte value provided is
55443322h, then all four bytes are written to the output FIFO along with 4 more bytes of
0. Moves to the output FIFO will have similar results. However, if a CHA is pushing 3
bytes into the output FIFO, those bytes will be left aligned and the other 5 bytes will be 0.

The output FIFO provides data through two access points. The first is for the external
DMA and the second is shared by three consumers: the CCB DMA, DECO access via the
MATH command, and the NFIFO. The two access points have separate indices into the
output FIFO so each can track separately allowing consumption of data at different rates.
The following list illustrates how these indices work.

• If the current NFIFO entry is not pulling data from the output FIFO, then whenever
the external DMA pops an entry off the output FIFO, the two indices increment.

• If the CCB DMA pops an entry off the output FIFO, both indices will increment.
• If the DECO pops an entry off the output FIFO via the MATH command, both

indices will increment.
• If the current NFIFO entry is pulling data from the output FIFO, then the two indices

will track separately if the NFIFO entry is not STYPE=01 and AST=1. This is a
critical point to understand: since the indices are tracking separately, if one of the
consumers, either the NFIFO or the external DMA, falls far enough behind the other,
the output FIFO can fill and operations will stall until the lagging consumer catches
up. If the NFIFO is consuming data but there are no FIFO STOREs to advance the

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 159

external DMA pointer, then the NFIFO can only consume as much data as the output
FIFO can hold before a hang will result.

• If the current NFIFO entry has STYPE=01 and AST=1, the indices will both
increment when the NFIFO pops entries from the output FIFO. This scenario is
useful when all of the data being pushed into the output FIFO is to be consumed via
one of the alignment blocks.

There are two ways to alter the behavior of the output FIFO via descriptor control. The
first is the means to set the index shared by the CCB DMA, DECO, and the NFIFO to
have the same value as the index used for the external DMA. This is done via a LOAD
IMM to the DECO control register. The second method is to reset the output FIFO, which
clears the data in the FIFO and resets both indices. The reset can also be done via a
LOAD IMM to the DECO control register. Another means of resetting the output FIFO is
via a LOAD IMM to the Clear Written register.

Another way to alter access to the output FIFO is via the ofifo offset. This value is
tracked by DECO as a means of remembering where the last access left off. For example,
if a SEQ FIFO STORE of 3 bytes is done, what happens to the other 5 bytes in the output
FIFO entry? Both the NFIFO entry and the FIFO STORE commands allow the descriptor
to have these remaining bytes retained or discarded. If the OC bit in the NFIFO entry is
set when the NFIFO is pulling data from the output FIFO, the remaining bytes are
retained. A subsequent access via DECO, the CCB DMA, or the NFIFO will be able to
obtain this data. However, the descriptor writer will be responsible for shifting the data as
needed to get to the remaining bytes if the access is done via the DECO or the CCB
DMA since only the NFIFO will be tracking where it left off.

If the CONT bit in the FIFO STORE command is set, the remaining bytes are also
retained when the the external DMA reads the specified number of bytes. In this case, it
is DECO which tracks how many remaining bytes there are so that the subsequent FIFO
STORE command will start where the prior one left off. The move commands will also
use the ofifo offset, so that it can also start with the remaining data. However, the CCB
DMA will always pop entries from which it takes data so that it is not possible for the
CCB DMA to leave any trailing bytes in the output FIFO. Please see the section for the
move commands for important information on how this works.

In order to provide greater control of access to the output FIFO, the value of the ofifo
offset can be changed via a LOAD IMM to the DECO control register. This feature can
be useful in several scenrios:

• If there are 7, or fewer, bytes of interest in the current output FIFO entry, and this
data needs to be stored to memory and used within DECO but snooping is not
convenient, the descriptor could do a FIFO STORE with the CONT bit set, and then
do a move from the output FIFO to another destination in DECO or the CCB. (If the

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

160 NXP Semiconductors

original ofifo offset was nonzero, the sum of the original ofifo offset and the number
of bytes of interest must be less than 8.

• In order to do a single FIFO STORE of data that was sent to the output FIFO via
separate methods, e.g. a LOAD IMM to the output FIFO followed by data from a
CHA, the data must be contiguous in the output FIFO. For example, a LOAD IMM
to the output FIFO of 3 bytes followed by data from the CHA would have a 5-byte
gap between the loaded data and the CHA data. This could be solved by shifting the
load data 5 bytes to the right and then doing a LOAD IMM of 8 bytes with those 3
bytes of interest right aligned. But now there are 5 "garbage" bytes at the start of the
output FIFO data. These can be skipped over by setting the ofifo offset to 5. Now, a
single FIFO STORE can be done with a length of the number of bytes pushed by the
CHA plus 3.

• The ofifo offset can also be set to a smaller value than it currently contains. This can
allow the same data to be stored twice, although the limit is back to the start of the
current entry.

7.7.7 Output Checksum logic

Normally, all data written out through a SEQ STORE or SEQ FIFO STORE command
has a checksum computed upon it.

The checksum computed is a sixteen-bit ones complement modular sum checksum,
compatible with UDP and TCP. RFC 793 uses this description: "The checksum field is
the 16 bit one's complement of the one's complement sum of all 16-bit words in the
header and text. If a segment contains an odd number of header and text octets to be
checksummed, the last octet is padded on the right with zeros to form a 16-bit word for
checksum purposes."

By default, all bytes written through a SEQ STORE or SEQ FIFO STORE command are
included in the computation. The SEQ FIFO STORE command has special output data
types (not available to FIFO STORE) to enable (output data type 31h) or disable (output
data type 30h) the checksum logic. The first time the enable is invoked, the contents of
the DECO checksum register are cleared so that the checksum appears to have started
with the enable. An enabling or disabling SEQ FIFO STORE may be used with a zero
length to simply "turn on" or "turn off" the checksum computation without actually
writing any contents of the output FIFO to memory.

If the data is stored via multiple SEQ STORE and/or SEQ FIFO STORE commands, each
store command will result in a data segment of a specified number of bytes being added
to the checksum. If, for one such segment, the last byte ends at an odd boundary, the next
data to be checked will start on the odd boundary. In other words, the checksum is

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 161

computed as if all of the segments to be checked are concatenated. This is true even if
there are checksum-disabled bytes between two checksum-enabled segments. If the final
length of the data is odd, then the checksum is computed as if a zero byte was appended.

The contents of the checksum computation register can be written at any time by
performing a STORE or SEQ STORE of the DCHKSM register.

The checksum computation logic is present in part to enable UDP-encapsulated-ESP as
part of IPsec ESP Tunnel encapsulation. See section Outer IP Header handling with
UDP-encapsulated-ESP for details on ESP Tunnel support for UDP-encapsulated-ESP.
When ESP Tunnel performs UDP-encapsulated-ESP, the checksum logic controls are
overridden in order to perform the proper UDP checksum computation. The checksum
result can be written out using any of the methods above, but that value will duplicate the
UDP checksum included in the UDP header. The IPsec ESP tunnel protocol, if NAT and
NUC are both set, enable and disable the checksum logic as needed. Otherwise, the IPsec
ESP tunnel protocol, and all other protocols including IPsec ESP Transport (and legacy
tunnel) neither enable nor disable the checksum logic.

NOTE
In some instances, a protocol may write out more data past the
end of the output frame. In the case of IPsec ESP Transport
Decapsulation and IPSEC ESP Tunnel Decapsulation, this is
because the protocol doesn't determine the end of the
decapsulated payload until decrypting the Pad Length byte
found in the ESP trailer. For all instances when this occurs, the
computation of the checksum will include all the bytes actually
written out to memory, even if the output frame length is
subsequently adjusted to hide them.

7.7.8 Cryptographic class

SEC divides cryptographic algorithms into two different classes for the purpose of
selecting CHAs. Some key and data movement commands must have a CLASS value
associated with them so they are delivered to the proper CHA.

The following table shows the class for each cryptographic algorithm.

Table 7-5. Classes of the cryptographic algorithms

Class Algorithm

Class 1 AES (all modes)1, DES, 3DES, Kasumi, SNOW f8, ZUCE, Public Key, RNG

Class 2 SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256, SNOW f9, CRC,
ZUCA AES authentication modes, MD5

Using descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

162 NXP Semiconductors

1. Note that AES optimization modes (such as, modes that combine encryption and authentication) require that the
authentication key be present in the Class 2 Key Register, and the encryption/decryption key be present in the Class 1 Key
Register.

NOTE
A descriptor that requests both a Class 1 CHA and a Class 2
CHA must request the Class 2 CHA first. Otherwise, in
versions of SEC that implement more than one DECO a
deadlock situation could occur as follows:

• Descriptor x executing in DECO x acquires CHA 1 and
then requests CHA 2.

• Descriptor y in DECO y acquires CHA 2 and then requests
CHA 1.

• Descriptor x and descriptor y wait until both CHAs are
available, but neither will release the CHA that it currently
has.

If descriptors always acquire CHAs in the same order, this
deadlock situation is avoided. The required order is Class 2
first, then Class 1. An error is generated if a Class 2 CHA is
selected after a Class 1 CHA.

Note that software written for versions of SEC that implement
only one DECO must still follow this practice to ensure that the
software is portable to versions of SEC that implement two or
more DECOs.

When specifying classes in commands, a two-bit field is used to specify class as follows:

Table 7-6. Class field

Class Value Meaning for LOAD and STORE Commands Meaning for Other Commands

00 CCB class independent None, sequence data skipped for SEQ FIFO LOAD
command.

01 CCB Class 1 Class 1

10 CCB Class 2 Class 2

11 DECO Both Class 1 and Class 2

7.7.9 Address pointers

Many of the descriptor commands and several data structures used by SEC include
Pointer fields. If PS = 0 in the Master Configuration Register, all address pointers used by
SEC will be 32-bits in length. If PS = 1 in the Master Configuration Register, all pointers

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 163

used by SEC will be 40 bits in length, laid out as shown in Table 7-7 when the
endianness is in the default configuration. The default endianness configuration can be
overridden for each individual Job Ring via the PEO bit in the Job Ring Configuration
Register (JRCFGR). The default endianness configuration can be overridden for RTIC
via the REPO bit in the RTIC Endian Register (REND). When the endianness is
overridden, the two portions of the 40-bit address appear in the opposite order from that
shown below.

When operating in little-endian mode, it is important to remember that the least
significant word of two-word addresses appears prior to the most significant word in all
locations. If the descriptor needs to manipulate such addresses, the MOVEW command
can be used to move the address to a Math Register such that it arrives as an 8-byte
integer ready for manipulation. The MOVEW command can then be used to move the
address back Note also that the same endianess controls which govern the order of the
address words also govern whether 8-byte immediate values for the MATH command are
word swapped when the LENGTH field is specified as 9.

Table 7-7. Format of 40-bit pointers

Dword at
address X

24 bits ignored most-significant 8 bits of
40-bit address

Dword at
address X

+4

least-significant 32 bits of 40-bit address

7.8 HEADER command
Every descriptor begins with a HEADER command, which provides basic information
about the descriptor itself, such as length, ability of DECOs to share the descriptor, and
whether errors are propagated when the descriptor is shared.

Job descriptor and shared descriptor HEADER commands share a base format, but some
fields are specific to descriptor type. The formats of the Job Descriptor Header Command
and Shared Descriptor Header Command are shown in the diagrams below, and the fields
of both are described in detail below each format diagram.

Table 7-8. Job descriptor header command format

31-27 26 25 24 23 22 21-16

CTYPE = 10110 EXT RSd DNR ONE Reser
ved

START INDEX / SHR DESCR LENGTH

15 14-13 12 11 10-8 7 6-0

Table continues on the next page...

HEADER command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

164 NXP Semiconductors

Table 7-8. Job descriptor header command format (continued)

ZRO TDES SHR REO SHARE Reser
ved

DESCLEN

Optional additional words of HEADER command:

If SHR = 1, a one or two word pointer to a shared descriptor is located immediately after the HEADER.

If EXT = 1, a job descriptor header extension is located immediately after the HEADER or, if SHR = 1, immediately after the
shared descriptor pointer. (see Job descriptor header extension format, below)

Table 7-9. Job descriptor header field descriptions

Job
descriptor

header fields

Description

31-27

CTYPE

Command type

10110 Job descriptor header

26

EXT

Extended Job Descriptor HEADER

If EXT=0 : There is no extended HEADER word.

If EXT=1 : The HEADER command contains an extended HEADER word, as illustrated in the format diagram
below. Note that if there is no shared descriptor a HEADER error (13h) is generated if EXT=1 and START
INDEX=1.

25

RSI

Requires SEQ ICID to be the same. This bit is used to ensure that ICID-based access control cannot be
bypassed by sharing shared descriptors.If RSd=0 the ICIDs of two job descriptors do not have to match in
order for them to share the same shared descriptor. If RSd=0 the ICIDs of two job descriptors do have to
match in order for them to share the same shared descriptor.

24

DNR

Do Not Run

If DNR=0 : Normal execution of the job descriptor.

If DNR=1 : Do Not Run the job descriptor. There was a problem upstream so this descriptor should not be
executed. This allows the job to be passed through the hardware and software pipeline to a point where the
problem might be corrected by software and the job resubmitted.

NOTE: If this bit is found in a job descriptor header, SEC still fetches any associated shared descriptor. If
the shared descriptor header's PD bit is set and the DNR bit is not set, SEC updates the shared
descriptor header's DNR bit. As a result, future job descriptors that use this shared descriptor do not
run. Once software clears the DNR bit in the shared descriptor, any new job descriptors that use this
shared descriptor run normally. In addition, when the DNR bit is set and the input frame buffers were
to be released, DECO will release them.

23

ONE

One

The ONE bit is always 1. This bit is used in combination with the ZRO bit to verify that the endianness of the
header is correct. This is necessary because SEC is used in chips with both big-endian and little-endian
processors.

22 Reserved

21-16

START
INDEX/ SHR

DESCR
LENGTH

Start Index or Shared Descriptor Length

If SHR = 0, this is the START INDEX field

Start Index specifies the position of the word in the descriptor buffer where execution of the job descriptor
should continue following execution of the job descriptor HEADER. That is, DECO should jump to the
specified word to continue processing. Note that if there is a HEADER extension word (EXT=1) the START
INDEX must not be 1, else a 13h (header) error will result.

If SHR = 1, this is SHR DESCR LENGTH field

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 165

Table 7-9. Job descriptor header field descriptions (continued)

Job
descriptor

header fields

Description

The Shared Descriptor Length specifies the length of the Shared Descriptor (in 32-bit words).

15

ZRO

Zero

The ZRO bit is always 0. This bit is used in combination with the ONE bit to verify that the endianness of the
header is correct. This is necessary as SEC is used in NXP product lines with both big-endian and little-
endian processors.

14-13

TDES

Trusted Descriptor

If TDES=00b : This is a normal job descriptor, that is, not a trusted descriptor. However, if the AMTD bit is set
in the JRaICID register this descriptor can be run as a trusted descriptor by setting the FTD bit in the
extended header word. In that case, no SIGNATURE command is required and no signature will be
generated or verified. Note that if FTD=1 in the extended header word then TDES must be 00b. An error will
be generated if this is not the case.

If TDES=01b : This is a TrustZone SecureWorld trusted descriptor - a special trusted descriptor created by
TrustZone SecureWorld.

If TDES=10b : This is a TrustZone non-SecureWorld Trusted descriptor, that is, a Trusted Descriptor created
by TrustZone non-SecureWorld.

If TDES=11b : This is a candidate trusted descriptor, that is, a descriptor that will be made into a trusted
descriptor by appending a signature to it. Note that an error will be generated if AMTD=0 in the job ring's ICID
register. The DESCLEN field must account for the eight 32-bit words of signature which will be added.

See the discussion Trusted descriptors for an explanation of trusted descriptors.

12

SHR

Shared Descriptor (SHR) flag

If SHR=0 : This job descriptor does not have a shared descriptor and so does not include a shared descriptor
pointer.

If SHR=1 : This descriptor has a shared descriptor that is pointed to by the next word or words.

SHR controls how START INDEX / SHR DESCR LENGTH is used.

11

REO

Reverse Execution Order (REO). Note that this bit is ignored if SHR = 0 (that is, no shared descriptor).

If REO=0 : The shared descriptor is executed prior to the remainder of the job descriptor.

If REO=1 : The job descriptor will be executed prior to the shared descriptor. Setting REO=1 in a trusted
descriptor results in an error.

10-8

SHARE

Share State (SHARE)

This defines if, and when, the shared descriptor of this descriptor can be shared with another job descriptor.
(See Table 7-1.) Also see Specifying different types of shared descriptor sharing for further information.

7 Reserved

6-0

DESCLEN

Descriptor Length

This field represents the total length in 4-byte words of the descriptor. A descriptor length of 0 is undefined.
The header word is included in the length. Note that the size of the descriptor buffer is 64 words, so that is
the maximum size of a single job descriptor with no shared descriptor.

Table 7-10. Job descriptor header extension format

31-16

Reserved

15-9 8 7 6 5 4 3 2 1 0

Table continues on the next page...

HEADER command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

166 NXP Semiconductors

Table 7-10. Job descriptor header extension format (continued)

Reserved FTD DSELECTV
ALID

Reserved DECO_SELECT

Table 7-11. Job descriptor header extension field descriptions

Field Description

31-9 Reserved.

8

FTD

Fake Trusted Descriptor. Treat the current descriptor as a trusted descriptor but do not check the signature. If
the descriptor is run in a job ring owned by TrustZone SecureWorld, the descriptor will be treated as a
TrustZone SecureWorld Trusted Descriptor, otherwise the descriptor will be treated as a TrustZone non-
SecureWorld Trusted Descriptor. Note that an error will be generated if FTD=1 and the source job ring's
JRaICID register AMTD=0 (that is, the extended header says to run the descriptor as a trusted descriptor, but
the job ring is not allowed to make trusted descriptors). In order to use FTD, the TDES field in the first word of
the header command must be 00b. An error will be generated if this is not the case.

If FTD=1, no SIGNATURE commands are required. If any SIGNATURE skip commands are present they will
be treated as no-ops. If a final SIGNATURE command is present, it will be treated as the end of the descriptor.

7

DSELECT
VALID

DECO_SELECT field is valid.

If DSELECTVALID=0 : Any DECO can run the job. The DECO_SELECT field is ignored.

If DSELECTVALID=1 : The job must be run in the DECO specified in the DECO_SELECT field. If the number
specifies an unimplemented DECO, DECO error 026h will be generated.

6-4 Reserved

3-0

DECO_
SELECT

DECO Select

If DSELECTVALID = 1, the job is run in the DECO specified in the DECO_SELECT field. If the number
specifies an unimplemented DECO, an error will be generated, however only the bits that are actually
implemented in the DECO_SELECT field are considered. Note that the size of the DECO_SELECT field
depends on the number of DECOs that are implemented in SEC:

• 15-8 DECOs, DECO Select field is 4 bits
• 7-4 DECOs, DECO Select field is 3 bits
• 3-2 DECOs, DECO Select field is 2 bits
• 2-1 DECOs, DECO Select field is 1 bit

Note that for programming consistency, a one-DECO version of SEC has a one-bit DECO_SELECT field. The
unimplemented bits are reserved. They should be written as 0s for compatibility across different versions of
SEC.

NOTE: DECO-specific jobs have the possibility to create a deadlock in SEC when they are used as part of a
flow. Therefore, it is strongly recommended that DECO-specific jobs either not be part of a flow or all
the jobs in the flow be assigned to the same DECO.

Table 7-12. Shared descriptor header format

31-27 26 25 24 23 22 21-16

CTYPE = 10111 Reser
ved

RIF DNR ONE Reser
ved

START INDEX

15 14 13 12 11 10 9-8 7-6 5-0

ZRO Reser
ved

CIF SC PD Reser
ved

SHARE Reserved DESCLEN

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 167

Table 7-13. Shared descriptor header field descriptions

Shared
descriptor

header fields

Description

31-27

CTYPE

Command type

10111 Shared descriptor

26 Reserved

25

RIF

Read Input Frame

As soon as possible, DECO should read the entire input frame as defined in a SEQ IN PTR command in the
job descriptor. The length of the input frame is placed in the VSIL Register. The data is read into the input
data FIFO. This is the equivalent of a SEQ FIFO LOAD of the entire input frame without an NFIFO entry or
any data size registers being written.

This bit is intended to allow DECO to issue reads from the SEQ IN PTR as soon as possible, thereby
reducing processing latency. However, there are contraindications to its use:

• If the descriptor contains any LOAD or KEY command that is not immediate.
• If the descriptor contains a KEY command that loads an encrypted key. The Derived Key PROTOCOL

OPERATION command is not included in this restriction.
• If the descriptor contains a SEQ IN PTR with RTO (Restore Input Sequence) set
• If the descriptor contains a PROTOCOL OPERATION comamnd specifying SSL / TLS Decapsulation
• If the descriptor contains a PROTOCOL OPERATION command specifying IPsec ESP Tunnel mode

encapsulation and PDB Options field OIHI=10 (specifying inclusion of an Outer IP Header referenced
by the PDB).

• If the descriptor contains a PROTOCOL OPERATION command specifying LTE Control Plane
encapsulation or LTE Data Plane encapsulation for RN with either SNOW or ZUC for the confidentiality
algorithm and AES for the integrity algorithm.

• If the descriptor contains a PROTOCOL Operation command specifying either Blob encapsulation or
Blob decapsulation.

There are restrictions with the use of RIF with Public Key Cryptography operations and PRFs: RIF may be
used, but only if all the input FIFO is drained by other descriptor commands before the PROTOCOL
COMMAND is encountered.

24

DNR

Do Not Run

0 Normal execution

1 Do Not Run. There was a problem upstream so this descriptor should not be executed.

NOTE: If this bit is found in a job descriptor header, SEC still fetches any associated shared descriptor. If
the shared descriptor header's PD bit is set and the DNR bit is not set, SEC updates the shared
descriptor header's DNR bit. As a result, future job descriptors that use this shared descriptor do not
run. Once software clears the DNR bit in the shared descriptor, any new job descriptors that use this
shared descriptor run normally. In addition, when the DNR bit is set and the input frame buffers
were to be released, DECO will release them.

23

ONE

One

The ONE bit is always 1. This bit is used in combination with the ZRO bit to verify that the endianness of the
header is correct. This is necessary because SEC is used in chips with both big-endian and little-endian
processors.

22 Reserved

21-16

START INDEX

This is the START INDEX field, which specifies the index of the word in the descriptor buffer where execution
of the shared descriptor should start. This allows protocol or other information to be jumped over.

15

ZRO

Zero

Table continues on the next page...

HEADER command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

168 NXP Semiconductors

Table 7-13. Shared descriptor header field descriptions (continued)

Shared
descriptor

header fields

Description

The ZRO bit is always 0. This bit is used in combination with the ONE bit to verify that the endianness of the
header is correct. This is necessary as SEC is used in NXP product lines with both big-endian and little-
endian processors.

14 Reserved

13

CIF

Clear Input FIFO (CIF)

If set, the input FIFO and the NFIFO entries are reset between self-shared descriptors. That is, these are
reset if the next job to be run within the same DECO has the same shared descriptor as the previous job run
in that same DECO. (The Input FIFO and NFIFO are always reset between descriptors that don't share the
same shared descriptor.)

12

SC

Save Context (SC)

After this descriptor completes, if Serial-Sharing is selected, and if sharing of the shared descriptor occurs
within the same DECO (self-sharing):

0 The context registers are cleared.

1 The context registers are maintained and used by the subsequent descriptor.

Save Context is intended to allow multiple subsequent shared descriptors to maintain cryptographic context
when a cryptographic operation is split between multiple jobs.

11

PD

Propagate DNR (PD)

If the job descriptor's DNR bit is set and this bit is set, set the DNR bit of the shared descriptor header if it is
not already set.

10 Reserved.

9-8

SHARE

Share State (SHARE)

This defines if, and when, the shared descriptor of this descriptor can be shared with another job descriptor.
(See Table 7-1.) Also see Specifying different types of shared descriptor sharing" for further information.

7-6 Reserved

5-0

DESCLEN

Descriptor Length

This field represents the total length in 4-byte words of the shared descriptor. A shared descriptor length of 0
is undefined. The header word is included in the length. Note that the size of the shared descriptor buffer is
64 words, so the maximum size of a shared descriptor is 62 words (assuming that the pointer size is 32 bits
and the job descriptor consists of only the Job HEADER command and the pointer to the shared descriptor).

If the SHR bit in a job descriptor header command is set, a pointer to the shared
descriptor immediately follows the header.

7.9 KEY commands
NOTE

In the following discussion, the term 'KEY command' refers to
both the SEQ and non-SEQ forms of the command.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 169

KEY commands are used to load keys into one of SEC's key registers: Class 1 or Class 2
Key Register or PKHA E-Memory. The SEQ KEY command is identical to the KEY
command except that no address is specified and the VLF bit replaces the SGT bit and
the AIDF bit replaces the IMM bit.

If the key to be loaded into a key register is encrypted, SEC can be told to automatically
decrypt it as it is loaded into the key register. The MOVE command, LOAD command
and KEY command can all be used to load a Red Key into a key register, but only the
KEY command can be used to load a Black Key. Note that Black Keys can be loaded
only into PKHA E-Memory or key registers because only KEY commands decrypt Black
Keys, and these registers are the only possible destinations for KEY commands.

If the KEY command is loading a Black Key, the Class 2 key must be loaded prior to the
Class 1 key as the loading of encrypted keys has side effects on the Class 1 Key Register.

If ENC is set (that is, a Black Key is being loaded), the KEY command has significant
side effects, including clearing the following:

• Input Data FIFO
• Output Data FIFO
• Class 1 Key Register
• Class 1 Data Size Registers
• Class 1 Mode Register
• Class 1 Context (if EKT is also set)

As a result, the only commands that should precede loading a Black Key are:

• JUMP
• SEQ IN PTR
• SEQ OUT PTR
• LOADs to registers not mentioned above.
• MOVEs to or from registers not mentioned above.

NOTE
The KEY command is blocking under the following
circumstances:

1. Decrypting a black key.
2. Loading a red key that is NOT immediate.
3. CHAs are not done.
4. The data must pass through the input FIFO and there are

info FIFO entries in the way.
5. The data must be read into the data FIFO and there is other

data in the input data FIFO that is in the way. (This does
not apply to SEQ KEY AIDF.)

KEY commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

170 NXP Semiconductors

6. The CCB DMA is required but is busy.
7. The hardware which schedules external reads is required

but is busy.

Table 7-14. KEY command format

31–27 26–25 24 23 22 21 20 19–18 17–16

CTYPE = 00000 or 00001 CLASS SGF
or

VLF

IMM
or

AIDF

ENC NWB EKT Reserved KDEST

15 14 13–10 9–0

TK PTS Reserved LENGTH

Additional words of KEY command:

Pointer (one or two words) or Value (if immediate, one or more words)

Table 7-15. KEY command field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=00000b : KEY command

If CTYPE=00001b : SEQ KEY command

26-25

CLASS

Class. This defines whether this key is for a Class 1 or Class 2 algorithm.

If CLASS=00b : Reserved

If CLASS=01b : Class 1 Key

If CLASS=10b : Class 2 Key

If CLASS=11b : Reserved

NOTE: Class must be set to Class 1 if the key DEST field is set to 01b. Class must be set to Class 2 if the key
DEST field is set to 11b.

24

SGF or
VLF

Scatter/Gather Table Flag (SGF) or Variable Length Flag (VLF)

If CTYPE = 00000b (KEY), this bit is the Scatter/Gather table Flag (SGF).

If SGF=0: Pointer points to actual data.

If SGF=1: Pointer points to a scatter/gather table.

NOTE: It is an error for this bit to be set if the IMM bit is set.

If CTYPE = 00001b (SEQ KEY), this bit is the Variable Length Flag (VLF).

If VLF=0: The number of bytes of data to be loaded into the key register is specified by the LENGTH field.

If VLF=1: The number of bytes of data to be loaded into the key register is specified by the value in the VSIL
register.

23

IMM or
AIDF

Immediate Flag (IMM) or Already in Input Data FIFO (AIDF)

If CTYPE = 00000 (KEY), this bit is the IMM flag.

If IMM=0 : The key value is found at the location pointed to by the pointer in the next word (32-bit pointers) or next
dword (> 32-bit pointers).

If IMM=1 : The key value follows as part of the descriptor, using as much space as defined by the LENGTH field
and then rounded up to the nearest 4-byte word.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 171

Table 7-15. KEY command field descriptions (continued)

Field Description

NOTE: PKHA E-Register values can be very large and may not fit within the descriptor buffer.

If the SGF bit is set, It is an error for the IMM bit to be set.

If CTYPE = 00001b (SEQ KEY), this bit is the AIDF flag.

If AIDF=0 : Read the Input Data Sequence data and load it into the specified destination.

If AIDF=1 : Do not read the Input Data Sequence data since it is already in the Input Data FIFO, but load the data
in the Input Data FIFO into the specified destination. It is an error for ENC and AIDF to both be 1.

22

ENC

Key is encrypted

If ENC = 0 : The key is assumed to be in plaintext and is loaded into the destination register without decryption.

If ENC = 1 : SEC automatically decrypts the key (using the JDKEK, or if this is a trusted descriptor, using the
TDKEK if TK = 1) before putting it in the key register. Decrypting a key requires using the AESA, the input and
output data FIFOs, Class 1 Mode register, Key Size, context, and key registers. Therefore, Class 2 Black Keys (if
any) must be loaded prior to loading the Class 1 register, and Class 1 Black Keys must be loaded prior to loading
any of the resources noted above.

21

NWB

No Write Back

If NWB=0 : Note that it is not usually possible to write a key back out to memory as plaintext, but if NWB=0 the key
can be written out as a Black Key by using the FIFO STORE command.

If NWB=1 : Prevents the key that is loaded into the key register from being written back out to memory.

NWB applies to all key locations: Class 1 Key Register, Class 2 Key Register, and PKHA E Memory. Setting this
bit sets the key register's NWB flag. The No Write Back setting lasts until the end of the descriptor (or sequence of
shared descriptors) or until the corresponding key register or CHA is cleared/reset.

20

EKT

Encrypted Key Type

The EKT bit determines which decryption mode is used when a Black Key (ENC = 1) is loaded.

If EKT=0 : The Black Key is decrypted using AES-ECB.

If EKT=1 : The Black Key is decrypted using AES-CCM.

A Black Key encrypted with AES-ECB must be decrypted with AES_ECB, and a Black Key encrypted with AES-
CCM must be decrypted with AES_CCM. If the wrong mode is selected it is possible that no error will be issued
but the value loaded into the key register will be incorrect.

Note that an error status is generated if EKT=1 and ENC=0.

19-18 Reserved

17-16

KDEST

Key Destination

If KDEST=00b : The key is loaded into the Key Register (either Class 1 or Class 2 as specified in the CLASS field)

If KDEST=01b : The key is loaded into the PKHA E-Memory. This key destination requires CLASS = 01b (Class 1
key).

If KDEST=11b : The key is regarded as an MDHA Split Key, and is loaded into the Class 2 Key Register. An
MDHA split key is the concatenation of the IPAD material followed by the OPAD material. Split keys offer higher
performance for HMACs. Note that MDHA IPAD/OPAD values are considered keys and are decrypted to the Class
2 Key Register. This key destination requires CLASS = 10b (Class 2 key).

All other values are reserved.

15

TK

Trusted Key

This bit is used only by trusted descriptors. If not a trusted descriptor, setting TK = 1 and ENC = 1 is an error. If the
ENC bit is not set, this bit is ignored.

If TK=0 : Use the Job Descriptor Key Encryption Key (JDKEK) to decrypt the key that is to be loaded into a key
register.

Table continues on the next page...

KEY commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

172 NXP Semiconductors

Table 7-15. KEY command field descriptions (continued)

Field Description

If TK=1 : A trusted descriptor wants to use the Trusted Descriptor Key Encryption Key (TDKEK) to decrypt the key
that is to be loaded into a key register.

14

PTS

Plaintext Store

If PTS=0: The key loaded cannot later be stored in plaintext form.

If PTS=1: The key loaded can later be stored in plaintext form using a FIFO STORE or SEQ FIFO STORE
command. Note the following restrictions:

The Class 2 Key register can be stored in plaintext form if a split key was loaded into it with a KEY command with
PTS=1 or if a key is loaded into the Class 2 Key register with a KEY command with PTS=1 and the MDHA is run in
INIT mode to create a split key.

An error is generated

• if PTS=1 & ENC=1.
• if PTS=1 & NWB=1.
• if PTS=1 & KDEST=01b (PKHA E-Memory).
• if a non-split key is stored from the Class 2 Key register after the Class 2 Key register was loaded with a KEY

command with PTS=1.
• if the Class 1 Key register is stored after the Class 1 Key register was loaded using a KEY command with

PTS=1.

13-10 Reserved

9-0

LENGTH

Key Length

This field defines the length of the key in bytes. If the key is encrypted, this is the decrypted length of the key
material only. The built-in key decryption operation produces output whose length is as specified in the LENGTH
field. ECB encrypted keys are padded to 16-byte boundaries, so the KEY command reads enough input to read
the entire encrypted key. CCM-encrypted keys have a 6-byte nonce, a 6-byte MAC, and padding of up to 7 bytes.
The length is checked to ensure it is not too large for the specified destination.

Additional words of KEY command:

POINTE
R

If IMM = 0, this field is a pointer to the key to be loaded.

If IMM = 1, this field is not present.

NOTE: This field is not present for SEQ KEY Commands.

7.10 LOAD commands
NOTE

In the following discussion, the term 'LOAD command' refers
to both the SEQ and non-SEQ forms of the command.

LOAD commands are used to load values into registers, either directly from the
descriptor (a LOAD IMMEDIATE command contains constant data within the
command) or from a memory location addressed by a pointer within the command. The
SEQ LOAD command is identical to the LOAD command except that no address is
specified, the VLF bit replaces the SGF bit, and the immediate bit cannot be set. See SEQ
vs non-SEQ commands. (Note that while SEQ KEY and SEQ FIFO LOAD have an
AIDF bit, SEQ LOAD does not.)

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 173

When reading from an external address, the LOAD command, whether SEQ or non-SEQ,
uses hardware within DECO to schedule DMA transactions. This command will block
until that hardware is available. For LOAD IMM, if the DMA hardware is required but is
in use, the command will block until the DMA hardware becomes available. (The
command may block for other reasons as well, as documented in a following table.) Once
the command is handed off to the responsible hardware, descriptor execution will
continue with the next command. Therefore, the requested data may not be present for
some time. It is up to the descriptor writer to ensure that the data arrives prior to
attempting to use it. Paying attention to the blocking nature just discussed is critical in
order to avoid hanging descriptors.

The definitions of the OFFSET and LENGTH fields in the LOAD command can depend
on the CLASS and destination (DST) fields. The first table below shows the LOAD
command fields, the second table defines the fields, and the third table defines the legal
destinations and how each destination affects the other fields.

Table 7-16. LOAD command format

31–27 26-25 24 23 22–16

CTYPE = 00010 or 00011 CLASS SGF
or

VLF

IMM DST

15–8 7–0

OFFSET LENGTH

Additional words of LOAD command:

Pointer (one or two words, see Address pointers) or Value (if immediate, one or more words)

Table 7-17. LOAD command field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=00010b : LOAD command

If CTYPE=00011b : SEQ LOAD command

26-25

CLASS

Class. The algorithm class of the data to be loaded.

If CLASS=00b : Load class-independent objects in CCB.

If CLASS=01b : Load Class 1 objects in CCB.

If CLASS=10b : Load Class 2 objects in CCB.

If CLASS=11b : Load objects in DECO.

24

SGF or VLF

Scatter/Gather Table Flag (SGF) or Variable Length Flag (VLF) flag. Meaning depends on CTYPE.

If CTYPE = 00010 (LOAD), this bit is the Scatter/Gather table Flag (SGF).

If SGF=0 : The pointer points to actual data.

If SGF=1 : The pointer points to a scatter/gather table.

NOTE: If the IMM bit is set, it is an error for this bit to be set.

Table continues on the next page...

LOAD commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

174 NXP Semiconductors

Table 7-17. LOAD command field descriptions (continued)

Field Description

If CTYPE = 00011 (SEQ LOAD), this bit is the Variable Length Flag (VLF).

If VLF=0 : The LENGTH field indicates the length of the data.

If VLF=1 : The length of the data is variable. SEC uses the length in the Variable Sequence In Length register
rather than the value in the LENGTH field. However, an error will be generated if the values in the VSIL register
and OFFSET field are not a valid combination as indicated in table Table 7-18.

23

IMM

Immediate Flag

If CTYPE = 00010 (LOAD)

If IMM=0, the data to be loaded is found at the location pointed to by the address pointer.

If IMM=1, the data to be loaded follows as part of the descriptor, using as much space as defined by the
LENGTH field and then rounded up to the nearest 4-byte word.

NOTE: If the SGF bit is set, it is an error for this bit to be set.

If CTYPE = 00011 (SEQ LOAD)

IMM must be set to 0. Setting IMM to 1 generates an automatic error.

22-16

DST

The DST value defines the destination register, such as CONTEXT, ICV, or IV. See Table 7-18 for a list of
supported destinations.

15-8

OFFSET

OFFSET defines the start point for writing within the destination. The destination DST determines whether the
length is specified in bytes or words. See Table 7-18 for details.

7-0

LENGTH

Length of the data. The value in the DST field determines whether the length is specified in bytes or words. See
Table 7-18 for details.

Additional words of LOAD command:

31-0

POINTER/
VALUE

Address pointer if IMM = 0 or the immediate value if IMM = 1. Note that the immediate value occupies as many
words as required to fit the number of bytes specified in the LENGTH field. Data is left aligned.

NOTE: This field is present only for LOAD Commands (that is, not for SEQ LOAD Commands).

SEC can accomplish the data transfer associated with a LOAD immediate command in
two different ways:

• Using a direct (non-DMA) path to the register, referred to as a direct immediate load
• Using SEC's internal-transfer DMA

SEC automatically selects the appropriate transfer mechanism as follows:

• SEC selects the direct immediate load data path (the first bullet above) if the
restrictions are met because this is the fastest of the transfer mechanisms (see
following paragraph).

• If the data length or offset restrictions are not met, SEC automatically selects the
internal-transfer DMA data path (the second bullet above).

The direct immediate load is the most efficient of the transfer mechanisms, but it has the
following restrictions:

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 175

• It can transfer only 4 or 8 bytes, unless the destination is the input Data FIFO, the
Auxiliary Data FIFO, or the output Data FIFO, in which case the length must be no
more than 8 bytes.

• The sum of the data length and the offset cannot be larger than 8, meaning the legal
combinations of length and offset are either

• 4 bytes with an offset of 0 or 4
• 8 bytes with an offset of 0
• 4 bytes with any multiple of a 4-byte offset if the destination is a context register
• 8 bytes with any multiple of an 8-byte offset if the destination is a context

register

As shown in Table 7-18, some registers can be loaded only with a LOAD IMM
command. These registers always use the direct immediate load data path. Other registers
can be loaded using either the LOAD or LOAD IMM form of the command.

As shown in Table 7-18, some LOAD destinations are control data registers and other
destinations are message data registers. Data loaded into or stored from control data
registers is regarded as word-oriented data, whereas data loaded into or stored from
message data registers is regarded as byte strings.

To facilitate operation in chips with different endianness configurations, the following
data-swapping operations can be configured:

• byte-swapping
• half-word swapping
• word-swapping
• double-word swapping

and these swapping operations for control data registers can be configured independently
from the swapping for message data registers.

The same swapping operations can be configured independently for:
• each job ring (see the Job Ring Configuration Register (JRCFGR))
• the Queue Manager Interface (see the Queue Interface Control Register (QICTL))

NOTE
For those destinations that allow immediate loads with a
nonzero offset, the combination of offset=0 length=4 is
equivalent to the combination of offset=4 length=4. This has
been done to maintain backward compatibility. Both of these
combinations will load the right-most word of the destination.
Therefore, in order to load the left-most word of the destination,
the combination must be offset=0 length=8. This is ONLY the
case when IMM=1 and, therefore, does not affect the SEQ
LOAD command. When IMM=0, offset=0 length=4 will load

LOAD commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

176 NXP Semiconductors

the left-most word of the destination while offset=4 length=4
will load the right-most word. This behavior does not affect any
other commands.

Table 7-18. LOAD command DST, LENGTH, and OFFSET field values

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

01 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes C1KSR Class 1 Key Size
Register

The key size registers are
normally written with the KEY
command. Once KEY SIZE is
written, the user cannot modify
the key or key size until the key
is cleared.

10 C2KSR Class 2 Key Size
Register

02 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes C1DSR Class 1 Data Size
Register

Writes to the data size registers
block if there are any
outstanding context loads since
a write to a data size register
indicates that the corresponding
context is in place and ready.

10 C2DSR Class 2 Data Size
Register

03 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes C1ICVS Class 1 ICV Size
Register

10 C2ICVS Class 2 ICV Size
Register

04 11 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes ISR DECO ICID Status
Register

05 11 Control See below Yes DCTRL2 DECO Control
Register 2

See notes below.

The DECO Control Register 2 is used to control the operation of DECO by means of a 1-
word command that uses the LOAD command fields that normally represent OFFSET and
LENGTH. This LOAD must be IMMEDIATE, which means that this DEST cannot be used
with SEQ LOAD. The OFFSET and LENGTH fields are redefined as follows:

LENGTH[5]: If data for this job was prefetched by the JQ, invalidate the prefetched data so
that subsequent reads of that data come from memory rather than the prefetch buffers.
This is useful when the descriptor needs to modify the data and then rewinds the input
frame.

LENGTH[4]: Transfer the value in the output frame tracking length register to the Variable
Sequence Output Length Register.

LENGTH[0]: Set bit 5 of the PM EVENT Bus entry for this DECO for one clock.

All other bits of OFFSET and LENGTH are reserved and must be 0.

06 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes CCTRL CHA Control
Register

11 Control See below Yes DCTRL DECO Control
Register

See notes below.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 177

Table 7-18. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

The DECO Control Register is used to control the operation of DECO by means of a 1-
word command that uses the LOAD command fields that normally represent OFFSET and
LENGTH. This LOAD must be IMMEDIATE, which means that this DEST cannot be used
with SEQ LOAD. The OFFSET and LENGTH fields are redefined as follows:

OFFSET[7:6]: ICID Select for non-sequence operations (KEY, LOAD, FIFO STORE)

00 no change

01 SEQ ICID

10 Non-SEQ ICID (default)

11 trusted ICID (error if descriptor not trusted)

OFFSET[5:4]: ICID Select for sequence operations (SEQ KEY, SEQ LOAD, SEQ FIFO
STORE)

00 no change

01 SEQ ICID (default)

10 non-SEQ ICID

11 trusted ICID (error if descriptor not trusted)

OFFSET[3]: Disable Automatic NFIFO Entries (If disable and enable are both set, disable
dominates)

OFFSET[2]: Enable Automatic NFIFO Entries

OFFSET[1:0]: Change Share Type

00 no change

01 NEVER share

10 OK to share, do propagate errors

11 OK to share, don't propagate errors

LENGTH[7]: Turn On Output Sequence Length Counting (turned off by doing sequence
output pointer rewind)

LENGTH[6]: Reset CHA pointer in Output Data FIFO

LENGTH[5]: Reset Output Data FIFO

LENGTH[4]: Process the Output Data FIFO Offset Field (automatically stalls if write burster
is busy)

LENGTH[3]: Reserved

LENGTH[2:0]: Output Data FIFO Offset

07 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes ICTRL IRQ Control Register -

Table continues on the next page...

LOAD commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

178 NXP Semiconductors

Table 7-18. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

11 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes DPOVRD DECO Protocol
Override Register

If bit 31 = 1 the value loaded into
DPOVRD overrides the default
values in some protocol PDB
fields. See individual protocol
sections for usage details.

If bit 31 = 0, DPOVRD is not
used as an override by the built-
in protocols.

The other bits are defined on a
protocol by protocol basis.

This register may be used as a
source or destination by MATH
and MATHI commands.

08 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes CLRW Clear Written
Register

LOAD to the Clear Written
Register will block if there are
outstanding loads to a Context
Register and the Class 1 Key
Register is to be cleared.

11 Control 0-64/

0-7 bytes

No MATH0
W

DECO Math Register
0 (Words)

1, 2

09 11 Control 0-56/

0-7 bytes

No MATH1
W

DECO Math Register
1 (Words)

1, 2

0A 11 Control 0-48/

0-7 bytes

No MATH2
W

DECO Math Register
2 (Words)

1, 2

00 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes CISEL CHA Instance Select
Register

-

0B 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes AADSZ AAD Size Register -

11 Control 0-40/

0-7 bytes

No MATH3
W

DECO Math Register
3 (Words)

1, 2

0C 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes C1IVSZ Class 1 IV Size
Register

-

0C 11 Control 0-32/

0-7 bytes

No MATH4
W

DECO Math Register
4 (Words)

1, 2

0D 11 Control 0-24/

0-7 bytes

No MATH5
W

DECO Math Register
5 (Words)

1, 2

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 179

Table 7-18. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

0E 11 Control 0-16/

0-7 bytes

No MATH6
W

DECO Math Register
6 (Words)

1, 2

0F 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes ALTDS1 Alternate Data Size
Class 1 Register

(aliased to the Class
1 Data Size Register)

The ALTDS1 destination can be
used only with a LOAD
Immediate command. Writes to
the ALTDS1 block if there are
any outstanding context loads
since a write to a data size
register indicates that the
corresponding context is in place
and ready. The alternate
address for the Class 1 Data
Size register limits handling of
the data type "Special
Authentication Data" as
authentication/protection to the
performance counters.

0F 11 Control 0-8/

0-7 bytes

No MATH7
W

DECO Math Register
7 (Words)

1, 2

10 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes PKASZ PKHA A Size
Register

This holds the size of the data in
the PKHA A RAM.

The descriptor writer must
ensure that any bits written to
this register above the width of
the register are 0.

11 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes PKBSZ PKHA B Size
Register

This holds the size of the data in
the PKHA B RAM.

The descriptor writer must
ensure that any bits written to
this register above the width of
the register are 0.

12 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes PKNSZ PKHA N Size
Register

This holds the size of the data in
the PKHA N RAM.

The descriptor writer must
ensure that any bits written to
this register above the width of
the register are 0.

13 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

Yes PKESZ PKHA E Size
Register

This holds the size of the data in
the PKHA E RAM.

The descriptor writer must
ensure that any bits written to
this register above the width of
the register are 0.

Table continues on the next page...

LOAD commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

180 NXP Semiconductors

Table 7-18. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

20 01 Message 0-128/

0-128
bytes

No CTX1 Class 1 Context
Register

A LOAD IMM to a context
register blocks if there are any
outstanding external loads to
either context register.

A non_IMM LOAD to a context
register blocks if the CCB DMA
is writing to either context
register.

10 Message 0-128/

0-128
bytes

No CTX2 Class 2 Context
Register

30 11 Control 0-64/

0 bytes

No MATH0D
W

DECO Math Register
0 (Double Word)

1, 3

31 11 Control 0-56/

0 bytes

No MATH1D
W

DECO Math Register
1 (Double Word)

1, 3

32 11 Control 0-48/

0 bytes

No MATH2D
W

DECO Math Register
2 (Double Word)

1, 3

33 11 Control 0-40/

0 bytes

No MATH3D
W

DECO Math Register
3 (Double Word)

1, 3

34 11 Control 0-32/

0 bytes

No MATH4D
W

DECO Math Register
4 (Double Word)

1, 3

35 11 Control 0-24/

0 bytes

No MATH5D
W

DECO Math Register
5 (Double Word)

1, 3

36 11 Control 0-16/

0 bytes

No MATH6D
W

DECO Math Register
6 (Double Word)

1, 3

37 11 Control 0-8/

0 bytes

No MATH7D
W

DECO Math Register
7 (Double Word)

1, 3

38 11 Control 0-64/

0-7 bytes

No MATH0B DECO Math Register
0 (Bytes)

1, 4

39 11 Control 0-56/

0-7 bytes

No MATH1B DECO Math Register
1 (Bytes)

1, 4

3A 11 Control 0-48/

0-7 bytes

No MATH2B DECO Math Register
2 (Bytes)

1, 4

3B 11 Control 0-40/

0-7 bytes

No MATH3B DECO Math Register
3 (Bytes)

1, 4

3C 11 Control 0-32/

0-7 bytes

No MATH4B DECO Math Register
4 (Bytes)

1, 4

3D 11 Control 0-24/

0-7 bytes

No MATH5B DECO Math Register
5 (Bytes)

1, 4

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 181

Table 7-18. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

3E 11 Control 0-16/

0-7 bytes

No MATH6B DECO Math Register
6 (Bytes)

1, 4

3F 11 Control 0-8/

0-7 bytes

No MATH7B DECO Math Register
7 (Bytes)

1, 4

40 01 Message 0-96/0-95
bytes

No KEY1 Class 1 Key Register The key registers are normally
written by the KEY Command,
but can be written by a LOAD
Command using this DST value.
In this case the KEY SIZE
register must be written by a
separate command after the
KEY register has been loaded.

A LOAD IMM to a key register
blocks if there are any
outstanding external loads to
either key register.

A non_IMM LOAD to a key
register blocks if the CCB DMA
is writing to either key register.

10 Message 0-128/

0-127
bytes

No KEY2 Class 2 Key Register

11 Control 1-64/

1-63

No DESC

BUF

DECO descriptor
buffer

See comments below.

For LOADs into the Descriptor Buffer the values in the LENGTH and OFFSET field are
specified in 4-byte words.

An error is generated if the sum of the LENGTH and OFFSET fields is greater than 64. The
OFFSET is used to specify the starting word of the destination within the descriptor buffer.
Note that the OFFSET is relative to the start of the descriptor buffer. For SEQ LOAD, the
data written into the descriptor buffer is read from the current location pointed to by the
input sequence pointer (there is no offset with respect to the source address).

70 00 Control 4 or 8/

0 bytes

Yes NFSL NFIFO and size
register(s)

Using the Immediate data, write
an NFIFO entry and load the
Size register from the DL or PL
field in that NFIFO entry. Also
see note below.

- - - This creates an NFIFO entry from 4 or 8 bytes of IMM data and also writes to one or more
size registers. The entry's DL or PL field is filled in with the same value loaded into the size
register(s). The table below titled "Which Size Registers are loaded" indicates which size
registers are loaded.

71 00 Control 0-7

0 bytes

Yes NFSM NFIFO and size
register(s)

Using the Immediate data write
an NFIFO entry and load the
size register using for PL or DL
the least-significant 32-bits of
the MATH register selected by
means of the three ls bits of the
LENGTH field. Also see note
above.

Table continues on the next page...

LOAD commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

182 NXP Semiconductors

Table 7-18. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

72 00 Control 4 or 8/

0 bytes

Yes NFL NFIFO Using the Immediate data write
an NFIFO entry. This is
equivalent to DST value 7Ah.
Also see note below.

- - - This creates an NFIFO entry from 4 or 8 bytes of IMM data. No size registers are written.

73 00 Control 0-7

0 bytes

Yes NFM NFIFO Using the Immediate data write
an NFIFO entry filling in the DL
or PL field from the least-
significant 32-bits of the MATH
register selected via the three ls
bits of the LENGTH field. Also
see note above.

74 00 Control 4 or 8/

0 bytes

Yes SL Size register(s) With the Immediate data in
NFIFO entry format, load the
size register(s) from the DL or
PL field in the Immediate data
but do not write an entry into the
NFIFO. The table below titled
"Which Size Registers are
loaded" indicates which size
registers are loaded.

75 00 Control 0-7

0 bytes

Yes SM Size register(s) Load the size register(s) from
the value in the MATH register
that is selected by means of the
three ls bits of the LENGTH
field. No NFIFO entry is loaded.
The table below titled "Which
Size Registers are loaded"
indicates which size registers
are loaded.

NOTE: For DST values 70h, 71h, 74h, and 75h, the particular size registers that are loaded depend on the CHAs that are
selected and the DTYPE field of the entry that is written into the NFIFO. The table below titled "Which Size Registers

are loaded" indicates which size registers are loaded.
NOTE: For DST values 70h, 72h, 74h, and 7Ah, the direct destination depends on the value in the LENGTH field. If the

LENGTH is 4, then the direct destination is the NFIFO. However, if the LENGTH field is 8, then the direct destination
is special control hardware which breaks up large lengths so that the maximum length permitted in an NFIFO entry is

not exceeded. This hardware pushes as many entries into the NFIFO as necessary. The special control hardware
will stall if the NFIFO is full, resuming when space becomes available.

NOTE: For DST values 70h-75h and 7Ah, the LOAD will block if the NFIFO is full. In addition, further access to the NFIFO
will block if the hardware which breaks up large entries is in use.

76 00 Message 4/0 bytes

8/0 bytes

4/4 bytes

Yes IDFNS Input Data FIFO
Nibble Shift Register

See notes below.

Inserts the rightmost 4 bits of the immediate value into the input to the Class 1 Alignment
Block, which causes the remainder of the input data to be shifted by one nibble. This nibble
alignment continues until the L1 bit or F1 bit in an NFIFO entry is encountered. Thereafter,
input to the Class 1 Alignment Block will not be nibble shifted unless the IDFNSR is written

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 183

Table 7-18. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

again. Any nibble remaining in the shift register will remain there once the last or flush is
seen. This means that if there are N bytes of data, to get the last nibble out requires NFIFO
entries totaling N+1 bytes.

77 00 Message 4/0 bytes

8/0 bytes

4/4 bytes

Yes ODFNS Output Data FIFO
Nibble Shift Register

See notes below.

Inserts the rightmost 4 bits of the immediate value into the output from a Class 1 CHA, so
subsequent data from that Class 1 CHA is now shifted one nibble. Data from other sources
(such as MOVE Command or LOAD IMM to the Output Data FIFO) will not be
concatenated correctly. This nibble alignment continues until the CHA Done signal is
asserted. Thereafter, output from a second operation, even from the same CHA, is not
nibble shifted unless the ODFNSR is written again. Any valid nibble remaining is always
pushed into the output FIFO following the assertion of CHA Done.

78 00 Message 1-8/0 bytes Yes AUXDAT
A

Auxiliary Data FIFO See notes below.

This DST value can be used to provide data to the Auxiliary Data FIFO. Each LOAD IMM
command can load 1-8 left-aligned bytes. Byte swapping is done automatically if the
endianness settings require it. The LOAD IMM to AUXDATA will stall if there is no room left
in the AUXDATA buffer. The AUXDATA path should be treated in the same way as the
input DATA FIFO. If NFIFO entries are not used properly, execution will hang if more
LOADs are done to the AUXDATA buffer but room can't be created by draining that buffer
via NFIFO entries and the corresponding alignment block being drained by CHAs or the
MOVE command. Note that data can also be supplied to the Auxiliary Data FIFO by using
a MOVE command.

7A 00 Control 4/0 bytes

8/0 bytes
**

Yes NFIFO NFIFO See notes below.

The NFIFO is normally written by means of the FIFO LOAD command, but the NFIFO can
be written using this DST value with a LOAD Immediate command.

** If LENGTH = 8, the LOAD command is interpreted as follows:

word 1: LOAD IMM, LENGTH = 8, DST = 7Ah

word 2: bits [31:12] contain the NFIFO entry if not padding type, else bits [31:10] contain
the NFIFO entry

word 3: Extended Length (DECO creates as many NFIFO entries as needed to satisfy the
Extended Length - see the notes above)

7C 00 Message 1-8/0 bytes Yes IFIFO Input Data FIFO See notes below

The input data FIFO is normally written by means of the FIFO LOAD command, but the
Input Data FIFO can be written using this DST value with a LOAD Immediate Command.
The data must be left-aligned and byte swapping will be done if the endianess settings
require it. This LOAD will block if there is no more room in the input data FIFO or if there is
other data heading to the input data FIFO. Care should be take since this block could turn
into a hang if the LOAD is unable to proceed.

Table continues on the next page...

LOAD commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

184 NXP Semiconductors

Table 7-18. LOAD command DST, LENGTH, and OFFSET field values (continued)

DST
value

(hex)

Class

(binary)

Control
data/

message
data

Legal
values in
LENGTH/
OFFSET

fields

Must use
IMM?

Tag Internal register Comment

7E 00 Message 1-8/0 bytes Yes OFIFO Output Data FIFO Must use a LOAD Immediate
command. The data must be
left-aligned and byte swapping
will be done if the endianess
settings require it. This LOAD
will block if there is no more
room in the output data FIFO. It
is up to the descriptor writer to
ensure that this LOAD will not
collide with a move to the output
FIFO or a push to the output
FIFO by one of the C1 CHAs.
Care should be take since this
block could turn into a hang if
the LOAD is unable to proceed.

All combinations of value and class that do not appear in this table are reserved

1. May be affected by protocols. Note that using the LOAD command to place values in the math registers does not update
the MATH status bits (see MNV, MN, MC and MZ). Because the math registers are in contiguous addresses, it is possible
to load more than one math register simultaneously. A LOAD IMM to a math register blocks if there are any outstanding
external loads to any math register. A non_IMM LOAD to a math register blocks if the CCB DMA is writing to any math
register.

2. When this destination is used, the data loaded into the Math register will be treated as words.
3. When this destination is used, the data loaded into the Math register will be treated as double words. Offset must be 0.

Word swapping will be handled the same as address pointers. It is recommended that only full double words be loaded.
4. When this destination is used, the data loaded into the Math register will be treated as bytes.

The following table details which size registers are written when loading NFIFO entries
when one, or more, size registers are also written. (DST values 70h, 71h, 74h, and 75h.)
An entry of "None/Reserved" means that no size register will be written and NXP
reserves the right to assign that DTYPE to some size register in the future. Therefore,
such DTYPEs should not be used as they could break compatibility.

Table 7-19. Which Size Registers Are Loaded

DTYPE

(hex)

If PKHA selected If Class 1 CHA selected, but not PKHA If Class 2 CHA selected

0 PKHA A Size None/Reserved Class 2 Data Size

1 PKHA A Size AAD Size and Class 1 Data Size Class 2 Data Size

2 PKHA A Size IV Size and Class 1 Data Size Class 2 Data Size

3 PKHA A Size AAD Size and Class 1 Data Size

(but data only counts as Auth data)

Class 2 Data Size

4 PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 185

Table 7-19. Which Size Registers Are Loaded (continued)

DTYPE

(hex)

If PKHA selected If Class 1 CHA selected, but not PKHA If Class 2 CHA selected

5 PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

6 PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

7 PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

8 PKHA N Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

9 PKHA E Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

A None/Reserved ICV Size If PKHA selected: Class 2 ICV Size

If PKHA not selected: if both Class 1 and
Class 2 CHAs selected, Class 2 Data Size
else Class 2 ICV Size

B None/Reserved None/Reserved None/Reserved

C PKHA A Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

D PKHA B Size None/Reserved If PKHA selected, Class 2 Data Size else
None/Reserved

E None/Reserved None/Reserved None/Reserved

F None/Reserved Class 1 Data Size Class 2 Data Size

7.11 FIFO LOAD command
NOTE

In the following discussion, the term 'FIFO LOAD command'
refers to both the SEQ and non-SEQ forms of the command.

FIFO LOAD commands are used to load message data, PKHA data (other than for the E
Memory), IV, AAD, ICV, and bit-length message data into the input data FIFO. The SEQ
FIFO LOAD command is identical to the FIFO LOAD command except that no address
is specified, the command contains an AIDF bit in place of the IMM bit, and the VLF bit
instead of the SGF bit. See SEQ vs non-SEQ commands.

As the only destination is the input data FIFO, this command does not include a DST
field. The FIFO INPUT DATA TYPE is used to indicate what type of data is being
loaded and whether the length is specified in bits or bytes. The length of data other than
message data is measured in bytes. The length of message data can be specified in either

FIFO LOAD command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

186 NXP Semiconductors

bits or bytes (see Table 7-23). If automatic info FIFO entries are enabled, the FIFO
LOAD command writes the appropriate size register(s) and the required info FIFO entry
for the specified input data type. This command will block for a variety of reasons:

1. FIFO LOAD IMM will block if the input FIFO is full.
2. FIFO LOAD IMM will block if the DMA is required to move the data but the DMA

is busy.
3. If a DMA transaction is required, the FIFO LOAD command will block if the

hardware which schedules DMA transactions is in use.
4. If there are external reads destined for the input data FIFO, FIFO LOAD IMM will

block until that data arrives.
5. The FIFO LOAD command uses the same logic as the LOAD command does when

loading NFIFO entries with LENGTH=8. If an NFIFO entry is required and this
logic is busy, the command will block.

6. A SEQ FIFO LOAD SKIP will block if there is a buffer release pending. Once the
pending release completes, the command will proceed.

Table 7-20. FIFO LOAD command format

31–27 26–25 24 23 22 21–16

CTYPE = 00100 or 00101 CLASS SGF
or VLF

IMM or
AIDF

EXT INPUT DATA TYPE

15–0

LENGTH

Additional words of FIFO LOAD command:

Pointer (one or two words, see Address pointers) or Value (if immediate, one or more words)

EXT LENGTH (two words, present if EXT=1)

Table 7-21. FIFO LOAD command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=00100b : FIFO LOAD command

If CTYPE=00101b : SEQ FIFO LOAD command

26-25

CLASS

Class. Cryptographic algorithm class.

If CLASS=00b : Used for SEQ FIFO LOAD only. Skips the specified length in memory without scheduling any
read transactions and no data is actually read. However, Scatter/Gather Table entries will be read as needed.
FIFO INPUT DATA TYPE field is ignored. No info FIFO entry is generated.

If CLASS=01b : Load FIFO with data for a Class 1 CHA.

If CLASS=10b : Load FIFO with data for a Class 2 CHA.

If CLASS=11b : Load FIFO with data for both Class 1 and Class 2 CHAs (both In Snoop and Out Snoop; the
INPUT DATA TYPE will distinguish between them).

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 187

Table 7-21. FIFO LOAD command field descriptions (continued)

Field Description

NOTE: The CLASS field must be non-zero for FIFO LOAD commands because the 00b case indicates
skipping, which is illegal for FIFO LOAD. This is true even when automatic information FIFO entries are
disabled.

24

SGF or VLF

Scatter/Gather Table Flag (SGF) or Variable Length Flag (VLF).

If CTYPE = 00100b (FIFO LOAD), this bit is the Scatter/Gather table Flag (SGF).

If SGF=0, the pointer points to actual data.

If SGF=1, the pointer points to a Scatter/Gather Table.

NOTE: If the IMM bit is set, it is an error for this bit to be set.

If CTYPE = 00101b (SEQ FIFO LOAD), this bit is the Variable Length Flag (VLF).

If VLF=0, the LENGTH field indicates the length of the data.

If VLF=1, the length is variable. SEC uses the length in the Variable Sequence In Length register and ignores
the LENGTH field.

NOTE: It is an error to set VLF = 1 when the EXT bit = 1.

23

IMM or
AIDF

Immediate Flag(IMM) or Already in Input Data FIFO (AIDF)

If CTYPE = 00100 (FIFO LOAD), this bit is the Immediate Flag (IMM).

If IMM=0, the data begins at the location pointed to by the Pointer field.

If IMM=1, the data follows as part of the descriptor, using as much space as defined by the LENGTH field and
then rounded up to the nearest 4-byte word.

NOTE: It is an error if this bit is set when SGF = 1 or EXT = 1.

If CTYPE = 00101 (SEQ FIFO LOAD), this is the Already in Data FIFO (AIDF) bit.

If AIDF is 0, SEC will read the input sequence data from memory.

If AIDF is 1, SEC will not read the input sequence data (because it is already in the Input Data FIFO). This form
is convenient since the NFIFO and Data Size Registers will be loaded automatically if Automatic Info FIFO
Entries is enabled. As a result, a 1-word command can replace two 2-word commands.

22

EXT

Extended Length

If EXT=0 : Input data length is solely determined by the 16-bit LENGTH field,

If EXT=1 : Input data length is determined by the 32-bit EXTENDED LENGTH. If the INPUT DATA TYPE
indicates a bit length, then the EXTENDED LENGTH field contains the number of full bytes and the right 3 bits
of the LENGTH field, if nonzero, indicate the number of valid bits in the last byte. See Bit length data.

NOTE: It is an error if this bit is set when IMM is also set.

21-16

INPUT
DATA
TYPE

FIFO input data type

See Table 7-23 for a description of the supported types. When automatic information FIFO entries are disabled,
(SEQ) FIFO LOAD Commands ignore the FIFO INPUT DATA TYPE field.

15-0

LENGTH

Length of data

If EXT = 0 : LENGTH = number of bytes of input data, or for bit length message data, the number of bits of input
data.

If EXT = 1 : The EXT LENGTH field indicates the number of full bytes of data. The LENGTH field is ignored
(unless if FIFO INPUT DATA TYPE = bit length, in which case the least-significant 3 bits of the LENGTH field
indicate the number of valid bits in an additional byte of data).

See Bit length data.

Additional words of FIFO LOAD command:

Table continues on the next page...

FIFO LOAD command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

188 NXP Semiconductors

Table 7-21. FIFO LOAD command field descriptions (continued)

Field Description

POINTER If IMM = 0, this field is a pointer to the data to be loaded.

If IMM = 1, this field is not present.

NOTE: This field is not present for SEQ FIFO LOAD Commands.

31-0

EXT
LENGTH

For EXT = 0, this field not present.

For EXT = 1, EXTENDED LENGTH specifies number of full bytes of data to load. For bit-length data, the least-
significant 3 bits of the LENGTH field indicate the number of valid bits in an additional byte of data. See Bit
length data.

7.11.1 Bit length data

If the INPUT DATA TYPE indicates that the input data type being loaded is bit-length
message data, the LENGTH field is defined as a bit count, as shown in the "Number of
Bits" row in the following figure. This can also be interpreted as a "Number of Full Bytes
field" in bits positions 15-3, and a "Number of Additional Valid Bits" field in bit
positions 2-0. These additional valid bits are in the next byte after the number of full
bytes, starting with the bit on the left. For example, if the LENGTH field is 0101h, SEC
loads 33 bytes, with only the leftmost bit of the 33rd byte valid. Note that the entire 33rd
byte is read and it is up to the consumer of that last byte to know that only the specified
number of bits in the last byte are valid.

The Number of Additional Valid Bits is placed in the NUMBITS field of the Class 1
and/or Class 2 Data Size Register. The NUMBITS field is not visible to any functional
logic in SEC other than a subset of the CHAs. (The NUMBITS field may be read via
SkyBlue or a store of the Data Size Registers.) The CHAs which receive the NUMBITS
field are:

• KFHA
• SNOW F8 and SNOW F9
• ZUCA and ZUCE
• AESA, which will error if it sees a nonzero NUMBITS field.

The following CHAs do not receive the NUMBITS field:
• PKHA
• DES
• CRCA
• MDHA
• RNG

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 189

It is possible to use a nonzero NUMBITS field with a CHA which does not receive the
NUMBITS field. To do this, add 1 more to the proper Data Size Register. However, note
that the remaining bits in the last byte will be whatever values they were at the source of
that byte. That is, the remaining bits are not masked to 0.

It is not possible for SEC to automatically concatenate two separate bit fields. For
example, if an NFIFO entry for 3 bits is followed by an entry for 5 bits, these entries will
NOT result in a one-byte entry. To achieve such concatenation, use the shift operations in
the MATH command.

When using automatic NFIFO entries with the FIFO LOAD command to specify bit
lengths, C1 must always have Flush or Last set and C2 must always have Last set. Failure
to set the Last and Flush bits as stated will result in an error. When manually generating
NFIFO entries, no error will be generated if the Flush or Last bits are not set as
suggested. However, as stated above, each incomplete byte's remaining bits will have
whatever values they had at the source.

If the FIFO LOAD command is used to generate the NFIFO entry, the number of bytes
specified in the LENGTH field for the NFIFO entry will be the number of full bytes if the
NUMBITS field is zero, and the number of full bytes plus one if the NUMBITS field is
nonzero. This ensures that the CHA will consume the last, partial, byte. If the descriptor
writer is manually generating the NFIFO entries, care must be taken to handle the length
properly.

Table 7-22. Specifying data with residual bit length

15–0

Number of Bits

Alternate interpretation:

15–3 2–0

Number of Full Bytes Number of Additional
Valid Bits

If the input data's bit length is equal to or greater than 216, set the EXT bit and use the
EXTENDED LENGTH field to specify the number of full bytes. The upper 13 bits of
LENGTH must be zero, with the rightmost 3 bits specifying the number of additional
valid bits as before.

FIFO LOAD command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

190 NXP Semiconductors

7.11.2 FIFO LOAD input data type

Table 7-23 contains an enumeration of the various built-in input data FIFO data types.
This field is ignored if neither of the Class bits are set. Only message data can have a bit
length (as opposed to a byte length), and such message data must always have Flush or
Last set.

Note that the NFIFO source type is not needed, as it is always inferred from the FIFO
LOAD input data type. The length for the NFIFO entry is the amount of data being
placed in the data FIFO. (One is added to the length in the case of bit-length data if the
number of bits in the last byte is nonzero.) Also, the Last and Flush bits are always sent
as 0 except with the last byte of data, in which case the values shown in the table are sent.

Note also that data should not be left in the Input Data FIFO with the expectation that it
will be shared with a subsequent shared descriptor executing in the same DECO. This
may cause data to be lost if the next shared job executes in a different DECO.

With the exception of IV and AAD, the FIFO LOAD command does not do any padding.
This is because all algorithmic padding requires a pad length or a special last byte, which
means that at least one byte of padding is required. Therefore, the padding can be sent
using a padding NFIFO entry.

Table 7-23. FIFO LOAD input data type field

FIFO Input Type Field Bit # Meaning

21 20 19 18 17 16

00b PKHA PKHA Register Load

All values not specified below are reserved. This data is always flushed. An error is
asserted if the length is larger than fits in the PKHA RAM.

NOTE: Loading quadrants of a given PKHA register with different-sized values may
cause invalid data to be loaded into the quadrants. To avoid this issue, make
sure that all quadrants of a given register have the same size values by left-filling
short values with zero. If it is necessary to load different-sized values in
quadrants of the same register, insert a JUMP command between quadrant
loads (which will wait for automatic information FIFO entries to be processed):
jump jsl = 1, type = 0, cond = nifp, local offset = 1.

NOTE: The PKHA E RAM can not be loaded via the FIFO LOAD command using
automatic NFIFO entries. Use the KEY command or get the data into the input
data FIFO without an automatic NFIFO entry and then manually create an NFIFO
entry and write the PKHA E Size register.

0 0 0 0 PKHA A0

0 0 0 1 PKHA A1

0 0 1 0 PKHA A2

0 0 1 1 PKHA A3

0 1 0 0 PKHA B0

0 1 0 1 PKHA B1

0 1 1 0 PKHA B2

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 191

Table 7-23. FIFO LOAD input data type field (continued)

FIFO Input Type Field Bit # Meaning

21 20 19 18 17 16

0 1 1 1 PKHA B3

1 0 0 0 PKHA N

1 1 0 0 PKHA A

1 1 0 1 PKHA B

00b 1 1 1 1 Place the data into the input Data FIFO but do not generate an NFIFO entry and do not
write any size registers, even if automatic NFIFO entries are enabled.

010b LC2 LC1 FC1 Message Data

011b LC2 LC1 FC1 Message Data for Class 1 out-snooped to Class 2

100b LC2 LC1 FC1 IV. If Last or Flush for Class 1 is set, Class 1 is padded to 16-byte boundary with 0. No
padding is done for Class2. No padding is done for Class 1 if the data naturally ends on a
16-byte boundary.

101b 1 LC1 FC1 Bit-length message data. Last of Class 2 treated as set even if not set in the command;
either Flush or Last for Class 1 must be set

110b LC2 LC1 FC1 AAD. If Last or Flush for Class 1 is set. Class 1 is padded to a 16-byte boundary with 0.
No padding is done for Class 2. It is an error if Class 2 is specified and Class 1 is not.

111b LC2 LC1 FC1 ICV

If CLASS 1 is asserted, LC1 means the data defined in the current NFIFO entry is the last data. When LC1 = 1, the last byte
of the specified length is made available from the Class 1 Alignment Block even if that last byte does not complete an 8-byte
entry. If CLASS 1 is negated, LC1 is ignored.

If CLASS 2 is asserted, LC2 means the data defined in the current NFIFO entry is the last data. When LC2 = 1, the last byte
of the specified length is made available from the Class 2 Alignment Block even if that last byte does not complete an 8-byte
entry. If CLASS 2 is negated, LC2 is ignored

If CLASS 1 is asserted, FC1 means the data defined in the current NFIFO entry is the last data of this type. When FC1 = 1,
the last byte of the specified length is made available from the Class 1 Alignment Block even if that last byte does not
complete an 8-byte entry. If CLASS 1 is negated, FC1 is ignored.

Note that the difference between LC1 and FC1 is only important when the data is going to a CHA. If the data is to be
consumed by the CCB DMA, then FC1 should be used as LC1 may confuse a CHA. Similarly, LC2 should not be used if the
data will be consumed by the CCB DMA. In such cases, it is better to use a manual NFIFO entry with the FC2 bit set.

All values not specified are reserved.

7.12 ECPARAM command
The ECPARAM command is used to load one parameter from a set of built-in elliptic
curve parameters into one of the PKHA registers. This command will block until any data
already in transit to the Input Data FIFO has been received.

The DEST value 1111b is used to leave the selected parameter in the Input Data FIFO.
No NFIFO entry is generated. If automatic NFIFO entries have been disabled, the
ECPARAM command will leave the parameter in the Input Data FIFO and no NFIFO
entry is generated. Note that when no NFIFO entry is generated, no PKHA size register is

ECPARAM command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

192 NXP Semiconductors

written. Furthermore, the descriptor writer is responsible for the NFIFO entry to get this
parameter to its final destination.3, 4 In all other legal cases, the ECPARAM command
will result in loading the parameter into the selected PKHA register by automatically
creating the NFIFO entry and automatically writing the correct PKHA size register with
the correct value.

Table 7-24. ECPARAM command, format

31–27 26-20 19–16

CTYPE = 11100 0100000 DEST

15 14-8 7–4 3–0

Reser
ved

DOMAIN Reserved PARAMETER

Table 7-25. ECPARAM command, field descriptions

Field Description

31-27

CTYPE

Command type

IF CTYPE=11100b : ECPARAM command

26-20 0100000b. This particular 7-bit value is mandatory. Any other value will generate an error.

19-16

DEST

Destination. This field specifies which PKHA register to load:

0000b - PKHA A0

0001b - PKHA A1

0010b - PKHA A2

0011b - PKHA A3

0100b - PKHA B0

0101b - PKHA B1

0110b - PKHA B2

0111b - PKHA B3

1000b - PKHA N

1100b - PKHA A

1101b - PKHA B

1111b - Input Data FIFO--This parameter passes through the Input Data FIFO. It is up to the descriptor
writer to ensure that any data already in the Input Data FIFO already has corresponding NFIFO entries.

All other values are reserved.

15 Reserved

14-8 Elliptic Curve Domain. This field selects one of the built-in elliptic curve domains:

Table continues on the next page...

3. This parameter passes through the Input Data FIFO. It is up to the descriptor writer to ensure that any data already in the
Input Data FIFO already has corresponding NFIFO entries.

4. If parameters of different sizes are to be loaded into different quadrants of the same PKHA register, then it is up to the
user to ensure that the first parameter is completely loaded before executing the second ECPARAM command. This is
because the same size register is used and can't be changed for the second parameter until the first has been
successfully loaded.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 193

Table 7-25. ECPARAM command, field descriptions

Field Description

DOMAIN DOMAIN ECC Domain Selected

0h P-192

1h P-224

2h P-256

3h P-384

4h P-521

5h brainpoolP160r1

6h brainpoolP160t1

7h brainpoolP192r1

8h brainpoolP192t1

9h brainpoolP224r1

Ah brainpoolP224t1

Bh brainpoolP256r1

Ch brainpoolP256t1

Dh brainpoolP320r1

Eh brainpoolP320t1

Fh brainpoolP384r1

10h brainpoolP384t1

11h brainpoolP512r1

12h brainpoolP512t1

13h prime192v2

14h prime192v3

15h prime239v1

16h prime239v2

17h prime239v3

18h secp112r1

19h wtls8

1Ah wtls9

1Bh secp160k1

1Ch secp160r1

1Dh secp160r2

1Eh secp192k1

1Fh secp224k1

20h secp256k1

40h B-163

41h B-233

42h B-283

43h B-409

44h B-571

Table continues on the next page...

ECPARAM command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

194 NXP Semiconductors

Table 7-25. ECPARAM command, field descriptions (continued)

Field Description

45h K-163

46h K-233

47h K-283

48h K-409

49h K-571

4Ah wtls1

4Bh sect113r1

4Ch c2pnb163v1

4Dh c2pnb163v2

4Eh c2pnb163v3

4Fh sect163r1

50h sect193r1

51h sect193r2

52h sect239k1

53h Oakley3a

54h Oakley4a

All values not specified are reserved.

7-4 Reserved

3-0

PARAMETER

Elliptic Curve Parameter. This field specifies which elliptic curve parameter is to be loaded into the PKHA
register specified by DEST.

PARAMETER EC Domain Parameter Selected

0h q

1h r fn1

2h Gx

3h Gy

4h a

5h b

6h R2mod q

7h R2mod r fn1

8h c fn2

9h k fn1

All values not specified are reserved.

fn1: The "r", "R2mod r" and "k" parameters are not valid for either OAKLEY domain.

fn2: The "C" parameter is not valid for Fp domains (i.e. DOMAIN < 40h).

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 195

7.13 STORE command
NOTE

In the following discussion, the term 'STORE command' refers
to both the SEQ and non-SEQ forms of the command.

STORE commands are used to read data from various registers and write them to a
system address. The SEQ STORE command is identical to the STORE command except
that no address is specified and the VLF bit replaces the SGF bit. See SEQ vs non-SEQ
commands.

The definitions of the OFFSET and LENGTH fields in the STORE command can depend
on the CLASS and source (SRC) fields. Table 7-26 shows the command fields, and Table
7-28 defines OFFSET and LENGTH as well as additional behaviors of the command.

As shown in the following table, STORE data sources can be both control and message
data registers. Data stored from control data registers are regarded as word-oriented data,
whereas data stored from message data registers are regarded as byte strings.

To facilitate operation in chips with different endianness configurations, the following
data-swapping operations can be configured:

• byte-swapping
• half-word swapping
• word-swapping
• double-word swapping

and these swapping operations for control data registers can be configured independently
from the swapping for message data registers.

The same swapping operations can be configured independently for:
• each job ring (see the Job Ring Configuration Register (JRCFGR))
• the Queue Manager Interface (see the Queue Interface Control Register (QICTL))

Table 7-26. STORE command format

31–27 26–25 24 23 22–16

CTYPE = 01010 or 01011 CLASS SGF
or

VLF

IMM SRC

15–8 7–0

OFFSET LENGTH

Additional words of STORE command:

Pointer (one or two words, see Address pointers)

If immediate (IMM = 1), one or more words of data appear here

STORE command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

196 NXP Semiconductors

Table 7-27. STORE command field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=01010b : STORE command

If CTYPE=01011b : SEQ STORE command

26-25

CLASS

Algorithm class of the data object to be stored

See the SRC field for additional explanation. If IMM = 1 a value other than 00b in the CLASS field will cause an
error to be generated.

If IMM = 0, the following definitions are used:

If CLASS=00b : Store class-independent objects from CCB.

If CLASS=01b : Store Class 1 objects from CCB.

If CLASS=10b : Store Class 2 objects from CCB.

If CLASS=11b : Store objects from DECO.

24

SGF or VLF

Scatter/Gather Table Flag (SGF) or Variable Length Flag (VLF).

If CTYPE = 01010b (STORE), this bit is the Scatter/Gather table Flag (SGF).

If SGF=0, the pointer contains the address of the destination for the data to be stored.

If SGF=1, the pointer points to a Scatter/Gather Table, which defines the destinations for the data to be stored.
Note that SGF should not be set to 1 when using SRC values 41h, 42h, 45h, or 46h. Doing so will cause an
error to be generated.

NOTE: If the IMM bit is set, it is an error for the SGF bit to be set.

If CTYPE = 01011b (SEQ STORE), this bit is the Variable Length Flag (VLF).

If VLF=0, the LENGTH field indicates the length of the data.

If VLF=1, the data length is variable. SEC uses the length in the Variable Sequence Out Length register rather
than the value the LENGTH field. However, an error will be generated if the values in the VSOL register and
OFFSET field are not a valid combination as indicated in the table Table 7-28.

23

IMM

Immediate data.

If IMM=0 : Data to be stored is found at the location specified by the SRC field.

If IMM=1 : Data to be stored follows as part of the descriptor, using as much space as defined by the LENGTH
field and then rounded up to the nearest 4-byte word. For SEQ STORE, the data immediately follows the
command; for STORE, the data immediately follows the pointer.

NOTE: It is an error if the IMM bit is set when the SGF bit is set. However, the destination of a SEQ STORE
can have been defined by a Scatter/Gather Table pointed to by the SEQ OUT PTR Command that
initiated the Output Sequence. It is an error if IMM =1 and the OFFSET field is non-zero.

22-16

SRC

SRC value defines the source (e.g. CONTEXT, ICV, IV) of the data to be stored. See Table 7-28 for a list of
supported sources.

If IMM = 1 the data to be stored is located as immediate data within the command. Although the SRC field does
not specify the source of the data, the SRC field still determines whether the immediate data is treated as
message data or control data. When SEC is configured for big endian operation, message data and control data
are treated the same. When SEC is configured for little endian operation, control data is byte swapped within
words as the immediate data is stored into memory but message data is stored as-is, without byte swapping.
SRC = 00h will cause the immediate data to be treated as control data, so when SEC is configured for little-
endian operation the data will be byte-swapped within words before it is written to memory. SRC = 7Eh will
cause the immediate data to be treated as message data, so the data will be written as-is, without byte
swapping. The use of any other SRC value with IMM=1 will cause an error to be generated.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 197

Table 7-27. STORE command field descriptions (continued)

Field Description

15-8

OFFSET

OFFSET defines the start point for reading within the SRC. For example, if the SRC indicates Class 1 context,
the offset can be used to indicate that the data should be read from the fourth byte of context rather than from
the beginning. The offset into the descriptor buffer is specified in 4-byte words, but in all other cases the offset is
specified in bytes. See Table 7-28 for the legal combinations of OFFSET and LENGTH values.

7-0

LENGTH

Length of the data. For the descriptor buffer, the length is specified in 4-byte words, but in all other cases the
length is specified in bytes. See Table 7-28 for the legal combinations of OFFSET and LENGTH values.

Additional words of STORE command:

31-0

POINTER

This field is a pointer to the address in memory where the data is to be stored.

NOTE: This field is not present for any SEQ STORE commands or for STORE commands that store the job
descriptor (41h and 45h) or shared descriptor (42h and 46h) from the descriptor buffer into memory
which use the pointers previously specified for the job and shared descriptors. (Type 40h requires a
pointer for the STORE command.)

31-0

VALUE

If IMM = 1, the value is located here. Enough 4-byte words are used to hold the data of size LENGTH.

Table 7-28. STORE command SRC, OFFSET and LENGTH field values

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

00 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

MODE1 Class 1 Mode
Register

-

10 MODE2 Class 2 Mode
Register

-

11 Control 4/0 bytes

8/0 bytes

4/4 bytes

DJQCR DECO Job Queue
Control Register

-

01 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

KEYS1 Class 1 Key Size
Register

-

10 KEYS2 Class 2 Key Size
Register

11 Control 4/0 bytes

8/0 bytes

4/4 bytes

DDAR DECO Descriptor
Address Register

-

02 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

DATAS1 Class 1 Data Size
Register

-

10 DATAS2 Class 2 Data Size
Register

11 Control 4/0 bytes

8/0 bytes

4/4 bytes

DOPSTAT DECO Operation
Status Register

Storing DOPSTAT captures
the current "math
conditions" (see Table
7-90, TEST CONDITION

Table continues on the next page...

STORE command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

198 NXP Semiconductors

Table 7-28. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

field, TEST CONDITION
bits when JSL = 0) as well
as SEC's current command
index. The status is in the
left four bytes of this
register. The right four
bytes contain the number of
bytes written to the SEQ
OUT PTR address.

03 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

C1ICVS Class 1 ICV Size
Register

-

10 C2ICVS Class 2 ICV Size
Register

03 11 Message 2/0 bytes DCHKSM DECO Checksum An error is generated if
length is not 2 or if offset is
not 0.

04 11 Control 4/0 bytes

8/0 bytes

4/4 bytes

DICID DECO ICID
Register

Consists of the following
fields: CPL/CICID, OPL/
OICID, TZ/SDID, IPL/IICID

06 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

CCTRL CHA Control
Register

-

07 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

ICTRL IRQ Control
Register

-

08 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

CLRW Clear Written
Register

-

11 Control 0-64

0-7 bytes

MATH0W DECO Math
Register 0
(Words)

1, 2

09 00 Control 4/0 bytes

8/0 bytes

4/4 bytes

CSTA CCB Status and
Error Register

-

11 Control 0-56

0-7 bytes

MATH1W DECO Math
Register 1
(Words)

1, 2

0A 11 Control 0-48

0-7 bytes

MATH2W DECO Math
Register 2
(Words)

1, 2

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 199

Table 7-28. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

0B 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

AADSZR AAD Size
Register

1, 2

11 Control 0-40

0-7 bytes

MATH3W DECO Math
Register 3
(Words)

1, 2

0C 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

C1IVSZ Class 1 IV Size
Register

-

0C 11 Control 0-32/

0-7 bytes

MATH4W DECO MATH
Register 4
(Words)

1, 2

0D 11 Control 0-24/

0-7 bytes

MATH5W DECO MATH
Register 5
(Words)

0E 11 Control 0-16/

0-7 bytes

MATH6W DECO Math
Register 6
(Words)

0F 11 Control 0-8/

0-7 bytes

MATH7W DECO Math
Register 7
(Words)

10 11 Control 16/0 bytes

32/0 bytes

48/0 bytes

64/0 bytes

GTR Gather Table
Registers

10 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

PKASZ PKHA A Size
Register

-

11 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

PKBSZ PKHA B Size
Register

-

12 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

PKNSZ PKHA N Size
Register

-

13 01 Control 4/0 bytes

8/0 bytes

4/4 bytes

PKESZ PKHA E Size
Register

-

Table continues on the next page...

STORE command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

200 NXP Semiconductors

Table 7-28. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

20 01 Message 0-128/

0-128 bytes

CTX1 Class 1 Context
Register

A STORE from the Class 1
Context Register will
automatically block until the
Class 1 CHA is done.

10 CTX2 Class 2 Context
Register

A STORE from the Class 2
Context Register will
automatically block until the
Class 2 CHA is done.

20 11 Control 16/0 bytes

32/0 bytes

48/0 bytes

64/0 bytes

STR Scatter Table
Registers

30 11 Control 0-64

0 bytes

MATH0DW DECO Math
Register 0

(Double Word)

1, 3, 2

31 11 Control 0-56

0 bytes

MATH1DW DECO Math
Register 1

(Double Word)

32 11 Control 0-48

0 bytes

MATH2DW DECO Math
Register 2

(Double Word)

33 11 Control 0-40 MATH3DW DECO Math
Register 3

(Double Word)

34 11 Control 0-32/

0 bytes

MATH4DW DECO Math
Register 4

(Double Word)

1, 2

35 11 Control 0-24/

0 bytes

MATH5DW DECO Math
Register 5

(Double Word)

36 11 Control 0-16/

0 bytes

MATH6DW DECO Math
Register 6

(Double Word)

37 11 Control 0-8/

0 bytes

MATH7DW DECO Math
Register 7

(Double Word)

38 11 Control 0-64

0-7 bytes

MATH0B DECO Math
Register 0 (Bytes)

1, 4

39 11 Control 0-56

0-7 bytes

MATH1B DECO Math
Register 1 (Bytes)

3A 11 Control 0-48

0-7 bytes

MATH2B DECO Math
Register 2 (Bytes)

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 201

Table 7-28. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

3B 11 Control 0-40

0-7 bytes

MATH3B DECO Math
Register 3 (Bytes)

3C 11 Control 0-32/

0-7 bytes

MATH4B DECO Math
Register 4 (Bytes)

1, 4

3D 11 Control 0-24/

0-7 bytes

MATH5B DECO Math
Register 5 (Bytes)

3E 11 Control 0-16/

0-7 bytes

MATH6B DECO Math
Register 6 (Bytes)

3F 11 Control 0-8/

0-7 bytes

MATH7B DECO Math
Register 7 (Bytes)

40 01 Message 0-128/0-128
bytes

KEY1 Class 1 Key
Register

If the corresponding Key
Size register has not been
written, the STORE or SEQ
STORE command may be
used to store the key
register into memory. After
the key size has been
written, the key register can
be stored to memory only
via a FIFO STORE or SEQ
FIFO STORE command.

10 Message 0-128/0-128
bytes

KEY2 Class 2 Key
Register

11 Control 0-64/

offset*

words

DESC_BUF DECO descriptor
buffer

See notes below.

This SRC value can be used to store any portion of the descriptor buffer into
memory.

The values in the LENGTH and OFFSET field are specified in 4-byte words.

offset* An error is generated if the sum of the LENGTH and OFFSET fields is
greater than 64. The OFFSET is used to specify the starting word of the source
within the descriptor buffer. Note that the OFFSET is relative to the start of the
descriptor buffer.

41 11 Control 0-64/

offset*

words

DESC_BUF DECO descriptor
buffer

See notes below.

This SRC value is valid only for STORE Commands, not SEQ STORE
Commands. This SRC value is used for writing back modifications to Job
Descriptors (including Trusted Descriptors). This overwrites the descriptor in
memory, using the address from which the descriptor was fetched. Since no
Pointer is used, this is a one-word command. Note that this will result in an error if
the descriptor came in via QI. If an In-line descriptor, a replacement job descriptor,

Table continues on the next page...

STORE command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

202 NXP Semiconductors

Table 7-28. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

or a Non-local JUMP was executed, an error will be generated for a STORE
command with SRC=41h or 45h. Note that SGF should not be set to 1. Doing so
will cause an error to be generated.

The values in the LENGTH and OFFSET field are specified in 4-byte words.

offset* An error is generated if the sum of the LENGTH and OFFSET fields is
greater than 64. The OFFSET is used to specify the starting word of the source
within the descriptor buffer, and the starting word of the destination within the
descriptor in memory. Note that the OFFSET is relative to the start of the Job
Descriptor (or Trusted Descriptor) (which will not be the start of the descriptor
buffer if there is a Shared Descriptor). See Figure 7-2.

42 11 Control 0-64/

offset*

words

DESC_BUF DECO descriptor
buffer

See notes below.

This SRC value is valid only for STORE commands, not SEQ STORE commands.
This SRC value is used for writing back modifications to shared descriptors. This
overwrites the shared descriptor in memory, using the address from which the
shared descriptor was fetched. Note that a STORE with SRC=42h or 46h results
in an error if there is no shared descriptor. Even if there is a shared descriptor in
the original descriptor, an error is generated if there has been a non-local jump to
another descriptor or an in-line descriptor is being executed, and that descriptor
attempts a STORE with SRC=42h or 46h. Note that SGF should not be set to 1 for
SRC values 41h, 42h, 45h or 46h. Doing so will cause an error to be generated.

Since no pointer is used, this is a one-word command. The values in the LENGTH
and OFFSET field are specified in 4-byte words.

To correctly use sharing flows (wait or serial) in SEC, if one job in the flow updates
the PDB in memory, all jobs in that flow must update the PDB in memory even if
the PDB did not change for that particular packet. If all jobs in the flow update the
PDB, SEC will ensure that subsequent jobs do not read the PDB from memory
until all updates from prior jobs are complete.

offset* An error is generated if the sum of the LENGTH and OFFSET fields is
greater than 64. The OFFSET is used to specify the starting word of the source
within the descriptor buffer, and the starting word of the destination within the
descriptor in memory. Note that the OFFSET is relative to the start of the shared
descriptor in both the descriptor buffer and in memory. See Figure 7-2.

45 11 Control 0-64/

offset*

words

DESC_BUF DECO Descriptor
Buffer (Write

Efficient)

This SRC value is used to
write modifications to job
descriptors back to memory
using write-efficient bus
transactions. See notes
below.

45h is the same as 41h, and 46h is the same as 42h, except that these SRC
values cause write-efficient bus transactions (see AXI master (DMA) interface).
Since these bus transactions may write more of the descriptor buffer back to
memory than is specified by OFFSET and LENGTH, these SRC values should be

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 203

Table 7-28. STORE command SRC, OFFSET and LENGTH field values
(continued)

SRC
Value

(hex)

Class

(binary)

Control Data or
Message Data

Legal values in
LENGTH/

OFFSET

Fields

Tag Source Internal
Register

Comment

used only if it is permitted to write back to memory all of the descriptor (See AXI
master (DMA) interface). Note that SGF should not be set to 1. Doing so will cause
an error to be generated.

If write-safe operations are not implemented or not enabled in this version of SEC,
write-efficient operations are also not available, and SRC value 45h operates
exactly as 41h, and SRC value 46h operates exactly as 42h.

46 11 Control 1-64/

offset*

words

DESC_BUF DECO Descriptor
Buffer (Write

Efficient)

This SRC value is used to
write modifications to
shared descriptors back to
memory like SRC=42h, but
using write-efficient bus
transactions. See notes
above for SRC=45h.

All combinations of SRC and CLASS that do not appear in Table 7-28 are reserved.

1. Because the math registers are in contiguous addresses, it is possible to store more than one math register
simultaneously.

2. When this source is used, the data stored from the Math register will be treated as words.
3. When this source is used, the data stored from the Math register will be treated as double words. Offset must be 0. Word

swapping will be handled the same as address pointers.
4. When this source is used, the data stored from the Math register will be treated as bytes.

7.14 FIFO STORE command
NOTE

In the following discussion, FIFO STORE command refers to
both the SEQ and non-SEQ forms of the command.

FIFO STORE commands are used to move data from the output data FIFO to external
memory by means of the DMA. Because the only source is the output data FIFO, this
command does not include a SRC field. The SEQ FIFO STORE command is identical to
the FIFO STORE command except that no address is specified and the SGT bit is
replaced by the VLF bit. See SEQ vs non-SEQ commands.

Note that data output by means of the output data FIFO is considered message data.
Therefore, it is byte-swapped, half-word-swapped, full-word-swapped, and double-word
swapped in accordance with the message data swapping configuration. The swapping can
be configured independently for each job ring and for the Queue Manager Interface (see
the Job Ring Configuration Register (JRCFGR) and the Queue Interface Control Register
(QICTL)).

FIFO STORE command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

204 NXP Semiconductors

The following types of data can be output from the output data FIFO.

• PKHA registers, other than the E-Memory.
• PKHA E Memory. This data is encrypted as a Black Key prior to being written to

memory.
• Class 1 and Class 2 keys.
• RNG data, which can be left in the output data FIFO or stored away.
• Regular data, which is pulled and written as it appears in the output data FIFO. Note

that bit length data stores are not available.
• Data in the input sequence or in the input data FIFO

Note that even though this command is not a store check point, it does not start if a prior
STORE or FIFO STORE of any type has yet to be scheduled. It is a done checkpoint if
asked to encrypt a key because it has to wait until both class CHAs are done. The FIFO
STORE command will block if the internal CCB DMA is not available when storing C1
or C2 keys.

The FIFO LOAD command supports bit length data, (see Bit length data), but the FIFO
STORE command does not support bit lengths.

It is occasionally necessary to skip over portions of the output buffer (meaning to
advance the output sequence pointer without actually writing data) before writing more
output. For instance, in certain networking protocols, portions of the output stream may
depend on out-of-order portions of the input stream. This processing can be done in two
or more passes through the input and output sequences by:

1. Skipping portions of the input and output data in one pass
2. Restoring the sequences for the next pass by means of the RTO bit in the SEQ IN

PTR command and the REW field in the SEQ OUT PTR command
3. Skipping over the portions of the output data that were written in the previous pass

To achieve skipping with SEQ FIFO STORE, use output data type 3Fh. Note that scatter
tables may be read while skipping if the sequence was defined with the SGF bit set in the
SEQ OUT PTR command. However, no data will be written while skipping.

Table 7-29. FIFO STORE command format

31–27 26–25 24 23 22 21–16

CTYPE = 01100 or 01101 AUX SGF or
VLF

CONT EXT OUTPUT DATA TYPE

15–0

LENGTH

Additional words of FIFO STORE command:

Pointer (one or two words, see Address pointers)

EXT LENGTH (Present if EXT = 1) (one word)

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 205

Table 7-30. FIFO STORE command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=01100b : FIFO STORE command

If CTYPE=01101b : SEQ FIFO STORE command

26-25

AUX

Auxiliary control bits. Used only for certain output data type codes. Set AUX = 00 for all other output data type
codes. See Table 7-31.

24

SGF or VLF

Scatter/Gather table Flag (SGF) or Variable Length Flag (VLF). Meaning depends on CTYPE.

If CTYPE = 01100 (FIFO STORE), this bit is the Scatter/Gather table Flag (SGF).

If SGT=0 : The pointer points to actual data.

If SGT=1 : The pointer points to a scatter/gather table.

If CTYPE = 01101 (SEQ FIFO STORE), this bit is the Variable Length Flag (VLF).

If VLF=0 : The number of bytes of data to be stored is specified in the LENGTH (if EXT=0) or EXT LENGTH (if
EXT=1) field.

If VLF=1 : The data length is variable. The number of bytes of data to be stored is specified in the VSOL
register. The LENGTH field is ignored.

NOTE: It is legal to set VLF=1 when storing a key
NOTE: It is illegal to set VLF=1 when EXT=1.

23

CONT

Continue

If CONT=0 : If the FIFO STORE pulls data from the output FIFO and finishes at an alignment other than at the
end of a dword, the remainder of the last dword is popped and discarded. If the read from the output FIFO ends
with the last byte of the dword, that dword is always popped.

If CONT=1 : This is not the last FIFO STORE command for this data. The final dword that contributed data is
not popped if the data did not end at an 8-byte boundary. This is used to prevent data loss when a store leaves
off in the middle of a dword.

NOTE: If this bit is set when there is no remaining data, subsequent operations may not work as expected.

22

EXT

Use Extended Length

If EXT=0 : Output data length is solely determined by the 16-bit LENGTH field in the first word of the command.

If EXT=1 : Output data length is determined by the 32-bit EXT LENGTH field.

NOTE: It is illegal to set VLF=1 when EXT=1.

21-16

Output Data
Type

This field identifies the type of data that the output data FIFO stores. See Table 7-31 for a list of the supported
types.

15-0

LENGTH

The length of the data to be stored.

If EXT=0 : The LENGTH field specifies the number of bytes to store.

If EXT=1 : The EXT FIELD specifies the number of bytes to store. The LENGTH field is ignored.

Additional words of the FIFO STORE command:

POINTER
Address pointer where to store the data in memory.

NOTE: This field is not present for SEQ FIFO STORE commands, nor is it present for FIFO STORE
commands if the data type is for RNG and the data is to be left in the output data FIFO.

EXT
LENGTH

Extended length field.

If EXT=0 : This field is not present. The LENGTH field specifies the number of bytes of data to be stored.

FIFO STORE command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

206 NXP Semiconductors

Table 7-30. FIFO STORE command field descriptions

Field Description

If EXT=1 : The EXT LENGTH field specifies the number of bytes of data to be stored. The LENGTH field in the
first word of the command is ignored.

Table 7-31 lists the various built-in FIFO STORE output data types.

Table 7-31. FIFO STORE output data type field

Bits
21-16

(hex)

Meaning Comment

00 PKHA A0 NOTE: The appropriate size register is automatically
written. A FIFO STORE from a PKHA register
should never be attempted with size greater than
the PKHA register size.

01 PKHA A1

02 PKHA A2

03 PKHA A3

04 PKHA B0

05 PKHA B1

06 PKHA B2

07 PKHA B3

08 PKHA N

0C PKHA A

0D PKHA B

12 PKHA E, AES-CCM encrypted using the job
descriptor key encryption key

13 PKHA E, AES-CCM encrypted using the trusted
descriptor key encryption key.

Available only to trusted descriptors.

14 Key Register AES-CCM encrypted using the job
descriptor key encryption key.

The AUX field determines the source register for the FIFO
STORE.

• AUX = 01 selects the Class 1 Key Register to be
stored.

• AUX = 10 selects the Class 2 Key Register to be
stored.

AUX values 00 and 11 are illegal.

15 Key register, AES-CCM encrypted using the trusted
descriptor key encryption key.

Available only to trusted descriptors. The AUX field
determines the source register for the FIFO STORE.

• AUX = 01 selects the Class 1 Key Register to be
stored.

• AUX = 10 selects the Class 2 Key Register to be
stored.

AUX values 00 and 11 are illegal.

16 Class 2 Key Register MDHA Split Key, AES-CCM
encrypted using the job descriptor key encryption
key.

For performance and security, use of an MDHA split key is
highly recommended. Details about split keys can be found
in Using the MDHA Key Register with IPAD/OPAD "split
keys". The length of such a split key is twice the length of
the chosen MDHA algorithm's running digest (see MDHA

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 207

Table 7-31. FIFO STORE output data type field (continued)

Bits
21-16

(hex)

Meaning Comment

use of the Context Register). If the Class 2 Key register was
loaded with a split key using a KEY command with PTS=1,
or if a key was loaded into the C2 Key register and then the
MDHA was run in INIT mode to create a split key, the C2
Key register will be stored in plaintext form.

17 Class 2 Key Register MDHA Split Key, AES-CCM
encrypted using the trusted descriptor key
encryption key.

Available only to trusted descriptors. The comments for type
16h apply here as well.

22 PKHA E, AES-ECB encrypted using the job
descriptor key encryption key

-

23 PKHA E, AES-ECB encrypted using the trusted
descriptor key encryption key.

Available only to trusted descriptors.

24 Key Register, AES-ECB encrypted using the job
descriptor key encryption key.

The AUX field determines the source register for the FIFO
STORE.

• AUX = 01 selects the Class 1 key register to be
stored.

• AUX = 10 selects the Class 2 key register to be
stored.

AUX values 00 and 11 are illegal.

25 Key Register, AES-ECB encrypted using the trusted
descriptor key encryption key.

Available only to trusted descriptors. The AUX field
determines the source register for the FIFO STORE.

• AUX = 01 selects the Class 1 Key Register to be
stored.

• AUX = 10 selects the Class 2 Key Register to be
stored.

AUX values 00 and 11 are illegal.

26 Class 2 Key Register MDHA split key, AES-ECB
encrypted using the job descriptor key encryption
key.

For performance and security, use of an MDHA split key is
highly recommended. Details on this split key can be found
in Using the MDHA Key Register with IPAD/OPAD "split
keys". The length of such a split key is twice the length of
the chosen MDHA algorithm's running digest (see MDHA
use of the Context Register). If the Class 2 Key register was
loaded with a split key using a KEY command with PTS=1,
or if a key was loaded into the C2 Key register and then the
MDHA was run in INIT mode to create a split key, the C2
Key register will be stored in plaintext form.

27 Class 2 Key Register MDHA split key, AES-ECB
encrypted using the trusted descriptor key
encryption key.

Available only to trusted descriptors. The comments for type
26h apply here as well.

30 Message Data If a type 31h has been used, type 30h disables automatic
checksum calculation. Any current checksum value will
remain. A 0-length command may be used to effect this
change.

31 Message Data The first time this type is used, the running check sum is
cleared. The use of this type enables the check sum
hardware. A 0-length command may be used to effect this
change.

Table continues on the next page...

FIFO STORE command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

208 NXP Semiconductors

Table 7-31. FIFO STORE output data type field (continued)

Bits
21-16

(hex)

Meaning Comment

34 Store the specified amount of data to be obtained
from RNG to memory.

NOTE: The Class 1 Data Size Register is automatically
written and extended lengths are illegal.

The different types of random data that can be generated
are:

• Random data with no restriction
• Nonzero Random data
• Odd Parity Random data.

The Mode Register controls the type of random data. Note
that the RNG must be selected by writing the Mode register.

35 Obtain the specified amount of data from RNG and
leave it in the output data FIFO.

In addition to the comments for type 34h, there is no pointer
and it is illegal to use type 35h with SEQ FIFO STORE.

3E Meta Data For this output data type, CONT and EXT must both be 0.
Either bit set to a 1 generates an error. This type can be
used only with SEQ FIFO STORE; an error is generated if
this output data type is used with FIFO STORE. Length can
be specified in the command (VLF = 0) or in the Variable
Sequence Out Length register (VLF = 1). If VLF = 1, the
length must fit in the lower 16 bits of the VSIL register or an
error is generated.

The AUX bits control the behavior of the SEQ FIFO STORE
command as follows:

00 Use the DECO alignment block to move the specified
number of bytes from the input FIFO to the output FIFO and
store them to the output frame. This variant of the command
is used when handling meta data that has already been
read. An example of this would be for a shared descriptor
where the RIF bit is set.

01 The same as 00, except that the VSIL is decremented by
the specified length. This form should be used when the RIF
bit is set and the VSIL contains the input frame length of the
packet. If the VSIL were not decremented in this case, the
descriptor would have to subtract the meta data length from
the VSIL register before running a protocol.

10 Load the specified number of bytes from the input frame,
as defined by a prior SEQ IN PTR command, to the input
FIFO and decrement the Sequence In Length by this
number of bytes. Move these bytes to the output FIFO by
means of the DECO alignment block and store them to the
output frame. This variant of the command is used when
handling meta data that precedes the packet data.

11 The same as 10, except that the Sequence In Length is
not decremented. This form should be used when moving
meta data that follows the packet data. Normally the length
of trailing meta data has to be subtracted from the input
frame length prior to running a protocol so that the protocol
knows how long the packet is. When using the AUX = 11

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 209

Table 7-31. FIFO STORE output data type field (continued)

Bits
21-16

(hex)

Meaning Comment

variant the descriptor does not have to add the meta data
length back to the Sequence In Length before executing the
SEQ FIFO STORE Meta Data command.

3F Skip Skip over the specified length in memory without using bus
cycles. Permitted to be used only by SEQ FIFO STORE.

NOTE: AUX must be set to 00 except when otherwise specified above. All combinations of output data type and AUX values
not specified are reserved.

7.15 MOVE, MOVEB, MOVEDW, and MOVE_LEN commands
NOTE

In this section "Move Command" is used to refer to the MOVE,
MOVEB, MOVEDW, and MOVE_LEN forms of the
command.

The MOVE command is used to copy data between two resources internal to a DECO/
CCB. This allows data to be put in the proper registers without having to store data to
external memory and then load it.

The OFFSET field is used to define an offset into either the source or destination,
depending on the values in the SRC, DST, and AUX fields (see table Table 7-35). The
MOVE command has a limited number of sources and destinations as indicated in the
SRC and DST field descriptions below.

NOTE
MOVE cautions and restrictions:

• Keys can't be copied from a key register by means of a MOVE command if the
corresponding key size register has been written.

• Observe the cautions noted in the "RJD" field of SEQ IN PTR command if using a
MOVE command in a Replacement Job Descriptor.

• Moves may be checkpoints. For example, a move from the Class 2 Context Register
to the Input Data FIFO for the Class 1 CHA is a Load Checkpoint and is a Done
Checkpoint for the Class 2 CHA.

When moving data to or from the Descriptor Buffer or a MATH register, the MOVEB
command is identical to the MOVE command if byte swapping is not enabled (the norm
for Big-Endian configuration), but, if byte swapping is enabled, MOVEB treats data as
32-bit words in those cases that MOVE treats data as bytes, and MOVEB treats data as

MOVE, MOVEB, MOVEDW, and MOVE_LEN commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

210 NXP Semiconductors

bytes when MOVE treats data as words. The MOVEDW command and the MOVE_LEN
command for dwords always treat data as double words (i.e. 64 bits) and perform word
swapping when SEC is configured to swap dwords. The MOVEDW command and the
MOVE_LEN command for dwords never do byte swapping.

NOTE: For MOVEDW or MOVE_LEN for dwords, with one exception, the offset must
be a multiple of dwords (8 bytes). The one exception is when the offset is into the
descriptor buffer, in which case the offset is allowed to be a multiple of words (4 bytes).
If the source is the output FIFO dword moves will always result in an error if the OFIFO
offset is not zero.

In the MOVE, MOVEB, or MOVEDW command, the LENGTH field specifies the
amount of data to be moved. The MOVE_LEN command is identical to the MOVE,
MOVEB, and MOVEDW commands except that the length of the data being moved is
specified in a MATH register, rather than specified as a constant in the LENGTH field. In
the MOVE_LEN command, the MRSEL (Math Register Select) field, the TYPE field,
and a reserved field replace the MOVE command's LENGTH field.

The AUX field is used to select among a number of different options, depending on the
values in the SRC and DST fields (see the table Table 7-35 below).

The MOVE command will block if the CCB DMA is busy. Other conditions where the
MOVE command will block include:

• The SRC is context and the corresponding class CHA is not done or there is a data in
flight to either context register.

• The SRC is the output FIFO but a request for the external DMA to pull data from the
output FIFO is pending.

• The DST is a context register and there is data in flight to either context register.
• The DST is the input data FIFO but there is data in flight to the input data FIFO.
• The DST is the input data FIFO for either of the C1 or C2 alignment blocks and an

NFIFO entry is to be written and there is a context load pending.
• The DST is the C1 Key Register and a context load is pending and the write is to the

extended key range.

NOTE
For this device, the default is that byte swapping is disabled.
This means that MOVE, MOVEB, and MOVE_LEN (when the
TYPE is 00 or 10) will not swap bytes according to the table
below.

NOTE
For this device, the default is that word swapping is disabled.
This means that MOVEDW and MOVE_LEN (when the TYPE
is 11) will not swap words.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 211

NOTE
This device does not prevent the byte and word swapping
defaults from being overridden. However, care should be used
when changing this behavior.

The output FIFO provides data through two access points. The first is for the external
DMA and the second is shared by three consumers: the CCB DMA, DECO access via the
MATH command, and the NFIFO. The two access points have separate indices into the
output FIFO so each can track separately allowing consumption of data at different rates.
However, the only time these indices track separately is when the NFIFO is consuming
data from the output FIFO. Therefore, when using a move command to extract data from
the output FIFO, it is critical that the descriptor writer know whether the indices are
tracking together and, if not, which index needs to be used to obtain the desired data.
Note that this is an extremely unusual circumstance which most descriptor writers will
seldom, if ever, encounter.

In prior versions of SEC, different entities handled the move from the output FIFO
depending on alignment. If the OFFSET specified was a multiple of words and the
current ofifo offset was 0, then the CCB DMA handled the move. Otherwise, the external
DMA handled the move. The DMA used determined the index that was used to access
the data in the output FIFO. This led to significant confusion about which data was being
read. In this version of SEC, the CCB DMA handles all moves from the output FIFO,
eliminating the confusion. However, it is possible for the descriptor to manipulate the
index.

NOTE
It is possible to make the earlier behavior forward compatible
by careful descriptor construction.

• To ensure that the move reads from the index where the external DMA left off,
perform a LOAD IMM to the DECO Control Register to reset the CHA pointer in the
output FIFO. This has the effect of setting the shared index to the same value as the
index used by the external DMA. While this will lose the current index of the CHA
pointer, the move will get the expected data. (Remember that this is only necessary
when the two indices are different. If the amount snooped and the amount read by the
external DMA are the same, the indices will be the same.)

• To ensure that the move reads from the index where the NFIFO left off, ensure that
the ofifo offset is 0 and that the OFFSET in the move command is 0.

The ofifo offset is used in two ways. First, it is used by DECO to tell the external DMA
where in the 8-byte interface to the output FIFO to start reading. Second, it is used by the
CCB DMA to know where in the 8-byte interface to the output FIFO to start reading.
However, the two DMAs use different indices to access the output FIFO so that the offset
could be referencing different dwords. While those indices are usually synchronized, they

MOVE, MOVEB, MOVEDW, and MOVE_LEN commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

212 NXP Semiconductors

can become different when the NFIFO has pulled data from the output FIFO. It is
therefore critical that the descriptor writer keep track of where each index is when moves
from the output FIFO follow snooping.

Table 7-32. MOVE, MOVEB, MOVEDW, and MOVE_LEN command format

31–27 26–25 24 23–20 19–16

CTYPE = 01111, 00110, 00111 or
01110

AUX WC SRC DST

15–8 7-0

Fields as
they appear

in the
MOVE,

MOVEB, or
MOVEDW
command:

OFFSET LENGTH

15–8 7-6 5-3 2-0

Fields as
they appear

in the
MOVE_LEN
command:

OFFSET TYPE Reserved MRSEL

Table 7-33. MOVE command field descriptions

Field Description

31-27

CTYPE

Command Type

01111 - MOVE. Performs an internal move between two internal DECO/CCB locations. The length of the data is
specified by the value in the LENGTH field. If byte swapping is enabled, MOVE swaps bytes within words in
certain cases (see table Table 7-34).

00111 - MOVEB. When byte swapping is not enabled, the legal MOVEB moves are identical to the
corresponding MOVE moves. However, when byte swapping is enabled, the MOVEB moves byte swap within
words when the corresponding MOVE moves do not swap and vice versa (see table Table 7-34).

00110 - MOVEDW. Move Double Words. Performs an internal move between two internal DECO/CCB locations.
If word swapping is not enabled, the legal MOVEDW moves are identical to the corresponding MOVE moves
when byte swapping is disabled. If word swapping is enabled for the descriptor, the MOVEDW command swaps
the order of the two words in a double word. No byte swapping is done.

01110 - MOVE_LEN. Performs an internal move between two internal DECO/CCB locations. The length of the
data is specified by the value in the MATH register selected by the MRSEL field. Byte or word swapping may be
done based on the endianess settings and the value in the TYPE field.

26-25

AUX

AUX bits are used for some SRC and DST combinations to specify additional options. See table Table 7-35
below.

24

WC

Wait for Completion

0 - Do not Wait for Completion

1 - Wait for Completion. Causes the MOVE command to stall until the move operation completes. This is
necessary when the data to be moved must be in place before a subsequent command executes. While it is
sometimes possible to know a priori that the MOVE command will complete prior to reaching the subsequent
command in question, such completion can not always be guaranteed.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 213

Table 7-33. MOVE command field descriptions (continued)

Field Description

23-20

SRC

Source. This specifies the internal source of data that will be moved. See table Table 7-37 below for additional
information. Note that not all combinations of source and destination are allowed. The tables Table 7-35 and
Table 7-36 indicate which source and destination combinations are permitted.

19-16

DST

Destination. This specifies the internal destination of the data that will be moved. See table Table 7-38 below for
additional information. Note that not all combinations of source and destination are allowed. The tables Table
7-35 and Table 7-36 indicate which source and destination combinations are permitted.

15-8

OFFSET

Offset. (in bytes)

The interpretation of the OFFSET field depends on the source and destination, as shown in table Table 7-36.
The OFFSET is limited to 128 bytes except when the Descriptor Buffer is the source or destination, in which
case the OFFSET may be as large as 255 bytes. For MOVEDW and MOVE_LEN for dwords, the OFFSET must
be a multiple of 8 bytes unless the OFFSET is into the Descriptor Buffer, in which case the OFFSET must be a
multiple of 4 bytes.

7-0

LENGTH

Length for internal move. (in bytes, 128 max) This field appears only in the MOVE, MOVEB, or MOVEDW forms
of the command. In the MOVE_LEN form of the command this field is replaced by reserved bits and the MRSEL
field and TYPE field, as shown below.

Note that in the MOVE_LEN form of the command the LENGTH field is replaced by the following three fields:

7-6 TYPE Type of the data items that are to be moved.

00 - Data is treated the same as in the MOVE command

01 - Data is treated as dwords the same way as in the MOVEDW command

10 - Data is treated as bytes the same way as in the MOVEB command

11 - Reserved and reported as an error

5-3 These bits are reserved in the MOVE_LEN form of the command. These bits, the TYPE field and the MRSEL
field below replace the LENGTH field that appears in the MOVE form of the command.

2-0

MRSEL

MATH Register Select

This field is used only in the MOVE_LEN form of the command. The MRSEL field, TYPE field, and the reserved
bits above replace the LENGTH field that appears in the MOVE, MOVEB, and MOVEDW forms of the
command. The length (in bytes) of the data to be moved is specified in the MATH Register selected by the
MRSEL field. If the move is from the input FIFO or any of the alignment blocks to the output FIFO, bits 15:0 of
the MATH Register are used for the length; otherwise, only bits 7:0 are used. Other bits are simply ignored.

000 - Math Register 0

001 - Math Register 1

010 - Math Register 2

011 - Math Register 3

100 - Math Register 4

101 - Math Register 5

110 - Math Register 6

111 - Math Register 7

Table 7-34. Byte swapping in move commands

When byte swapping is enabled, this table indicates when bytes within a word are swapped. Legend:

M refers to the MOVE command and the MOVE_LEN command when TYPE=00

B refers to the MOVEB command and the MOVE_LEN command when TYPE=10

Table continues on the next page...

MOVE, MOVEB, MOVEDW, and MOVE_LEN commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

214 NXP Semiconductors

Table 7-34. Byte swapping in move commands (continued)
Swap: indicates the move will swap bytes within words

Not: indicates the move will not swap bytes within words

Err: indicates the move command will generate an error

DST →

SRC

↓

0h: C1
Context

1h: C2
Context

2h:
Output

Data
FIFO

3h:
Descript
or

Buffer

4h:
Math 0

5h:
Math 1

6h:
Math 2

7h:
Math 3

8h:
Class 1
Input

Data
FIFO

9h:
Class 2
Input

Data
FIFO

Ah:
Input

Data
FIFO

(no
NFIFO
entries)

Ch:

PKHA A
RAM

(always
flushed)

Dh: C1
Key

Eh: C2
Key

Fh: Aux
Data
FIFO

0h: C1 Context

1h: C2 Context

M:Not

B:Err

M:Swap

B:Not

M:Not

B:Swap

M:Not

B:Err

2h: Output FIFO M:Not

B:Err

M:Err

B:Err

3h: Descr Buffer M:Swap

B:Not

M:Err

B:Err

M:Swap

B:Not

M:Not

B:Swap

M:Swap

B:Not

4h: Math Reg 0

5h: Math Reg 1

6h: Math Reg 2

7h: Math Reg 3

M:Not

B:Swap

8h: DECO Alignment Block
(flushed)

M:Not

B:Err

M:Swap

B:Not

M:Not

B:Swap

M:Err

B:Err

M:Not

B:Err

M:Err

B:Err
9h: Class 1 or Class 2
Alignment Block

Ah: DECO, Class 1 or
Class 2 Alignment Block

Dh: Class 1 Key

Eh: Class 2 Key

M:Not

B:Err

Table 7-35. Usage of the AUX field in move commands

DST →

SRC

↓

0h: C1
Context

1h: C2
Context

2h:
Output

Data
FIFO

3h:
Descriptor

Buffer

4h: Math 0

5h: Math 1

6h: Math 2

7h: Math 3

8h:
Class 1
Input

Data
FIFO

9h:
Class 2
Input

Data
FIFO

Ah:
Input

Data
FIFO

(no
NFIFO
entries)

Ch:

PKHA
A RAM

(autom
atically
flushed)

Dh: C1 Key

Eh: C2 Key

Fh: Aux
Data
FIFO

0h: C1 Context

1h: C2 Context

AUX
selects
offset into
Context
Register

AUX
selects
offset into
Math
Register

AUXMS :
Flush

AUXLS :
Last

AUXLS:
Last

AUXLS=0 :
OFFSET
field into
Context
Reg

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 215

Table 7-35. Usage of the AUX field in move commands (continued)
00: 0 bytes

01: 16
bytes

10: 32
bytes

11: 48
bytes

00: 0 bytes

01: 4 bytes

10: 6 bytes

11: 7 bytes

AUXLS=1 :
OFFSET
into Key
Reg

2h: Output FIFO move
not
allowed

3h: Descr Buffer AUX
selects
offset into
Context
Register

00: 0 bytes

01: 16
bytes

10: 32
bytes

11: 48
bytes

move not
allowed

AUX
selects
offset into
Math
Register

00: 0 bytes

01: 4 bytes

10: 6 bytes

11: 7 bytes

4h: Math Reg 0

5h: Math Reg 1

6h: Math Reg 2

7h: Math Reg 3

AUX
selects
offset into
Math
Register

00: 0
bytes>

01: 4 bytes

10: 6 bytes

11: 7 bytes

AUX
selects
offset into
Math
Register

00: 0 bytes

01: 4 bytes

10: 6 bytes

11: 7 bytes

AUX
selects
offset into
the source
Math
Register

00: 0 bytes

01: 4 bytes

10: 6 bytes

11: 7 bytes

8h: DECO
Alignment Block
(automatically
flushed)

move not allowed move
not
allowed

9h: Class 1 or
Class 2
Alignment Block

AUXMS : Flush

AUXLS =0 : Source is Class 2 Alignment Block

AUXLS =1 : Source is Class 1 Alignment Block

AUXMS :
Flush

AUXLS =0 :
Source is
C2 Align
Block

AUXLS =1 :
Source is
C1 Align
Block

Table continues on the next page...

MOVE, MOVEB, MOVEDW, and MOVE_LEN commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

216 NXP Semiconductors

Table 7-35. Usage of the AUX field in move commands (continued)

Ah: DECO, Class
1 or Class 2
Alignment Block

AUX field selects Alignment Block

00: DECO Alignment Block

01: Class 1 Alignment Block

10: Class 2 Alignment Block

11: error

AUX field
selects
Alignment
Block

00: DECO
Alignment
Block

01: C1 AB

10: C2 AB

11: error

Dh: Class 1 Key

Eh: Class 2 Key

Determines
SRC/DST
offset

AUXMS :
Flush

AUXLS :
Last

AUXLS:
Last

Determines
SRC/DST
offset

Table 7-36. Usage of the OFFSET field in move commands

DST →

SRC

↓

0h: C1
Context

1h: C2
Context

2h: Output

Data FIFO

3h:
Descriptor

Buffer

4h: Math 0

5h: Math 1

6h: Math 2

7h: Math 3

8h:
Class
1 Input

Data
FIFO

9h:
Class
2
Input

Data
FIFO

Ah:
Input

Data
FIFO

(no
NFIFO
entries)

Ch:

PKHA
A RAM

(always
flushed
)

Dh: C1
Key

Eh: C2
Key

Fh: Aux
Data FIFO

0h: C1 Context

1h: C2 Context

OFFSET
field is used
for SRC

OFFSET
field is
used for
SRC

OFFSET
field is
used for
Descriptor
Buffer
(offset
into
Context
Reg is
determine
d by AUX
field)

OFFSET field is used for SRC AUXLS=0:

OFFSET
field is
used for
Context
Reg

AUXLS=1:

OFFSET
field is
used for
Key Reg

OFFSET
field is used
for SRC

2h: Output
FIFO

OFFSET
field is used
for DST

move not
allowed

OFFSET field is used
for DST

Error generated if OFFSET≠0 OFFSET
field is
used for
DST

Error
generated if
OFFSET≠0

3h: Descr
Buffer

OFFSET
field is used
for SRC

(offset into
Context
Reg is
determined
by AUX
field)

OFFSET
field is
used for
SRC

move not
allowed

OFFSET field is used for SRC OFFSET
field is
used for
SRC

OFFSET
field is used
for SRC

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 217

Table 7-36. Usage of the OFFSET field in move commands (continued)

4h: Math Reg 0

5h: Math Reg 1

6h: Math Reg 2

7h: Math Reg 3

OFFSET
field is used
for DST

OFFSET
field is
used for
SRC

OFFSET field is used
for DST

OFFSET field is used for SRC OFFSET
field is
used for
DST

OFFSET
field is used
for SRC

8h: DECO Align
Block (flushed)

OFFSET
field is used
for DST

OFFSET is
ignored in
MOVE_LE
N

In MOVE,
OFFSET
field is
prepended
to the
LENGTH
field to
form a 16-
bit length

OFFSET field is used
for DST

move not allowed OFFSET
field is
used for
DST

move not
allowed

9h: Class 1 or
Class 2
Alignment Block

Ah: DECO,
Class 1 or
Class 2
Alignment Block

Dh: Class 1 Key

Eh: Class 2 Key

AUXLS =0 :
SRC; else
DST

SRC DST SRC SRC AUXLS
=0 : SRC;
else DST

SRC

Table 7-37. Move sources

Value Move Source Notes

0h Class 1 Context Reg —

1h Class 2 Context Reg —

2h Output Data FIFO —

3h Descriptor Buffer —

4h Math Register 0 A MOVE command that reads past the end of MATH Register 3 will continue reading
into Math Registers 4-7

NOTE: Math Registers 4-7 are not available as sources for the MOVE commands.

5h Math Register 1

6h Math Register 2

7h Math Register 3

8h DECO Alignment Block
(always Flushed)

Input to the DECO Alignment Block is specified by an NFIFO entry which is
automatically generated if Automatic NFIFO entries are enabled.

9h Class 1 or Class 2
Alignment Block

The choice between the Class 1 and Class 2 Alignment Blocks is determined by the
least-significant bit of the AUX field:

• ALS = 0 selects C2 Alignment Block
• ALS = 1 selects C1 Alignment Block

Input to the Class 1 or Class 2 Alignment Block is specified by an NFIFO entry which
is automatically generated if Automatic NFIFO entries are enabled.

The most-significant bit of the AUX field must be set (causing a FLUSH) only if the
destination is the Output Data FIFO.

Ah DECO, Class 1 or Class
2 Alignment Block, as
specified via the AUX
field.

no NFIFO entry generated;

AUX = 00b: use DECO Alignment Block

AUX = 01b: use Class 1 Alignment Block

Table continues on the next page...

MOVE, MOVEB, MOVEDW, and MOVE_LEN commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

218 NXP Semiconductors

Table 7-37. Move sources (continued)

Value Move Source Notes

AUX = 10b: use Class 2 Alignment Block

AUX = 11b: error

Dh Class 1 Key Error if C1 Key Size has been written either directly or by the KEY command and not
cleared.

Eh Class 2 Key Error if C2 Key Size has been written either directly or by the KEY command and not
cleared.

All other values are reserved

Table 7-38. Move destinations

Value Move Destination Notes

0h Class 1 Context —

1h Class 2 Context —

2h Output Data FIFO

3h Descriptor Buffer —

4h Math Register 0 —

5h Math Register 1 —

6h Math Register 2 —

7h Math Register 3 —

8h Input Data FIFO (C1) If Automatic NFIFO entries are enabled, the entries are generated for a Class 1 CHA.

9h Input Data FIFO (C2) If Automatic NFIFO entries are enabled, the entries are generated for a Class 2 CHA.

Ah Input Data FIFO No NFIFO entry generated

Ch PKHA A If Automatic NFIFO entries are enabled, the entries are generated for the PKHA A RAM
and the Flush bit is automatically set.

Dh Class 1 Key —

Eh Class 2 Key

Fh Auxiliary Data FIFO Data can be moved to the Auxiliary Data FIFO so that it can later be used as an input to
one or more of the Alignment Blocks. (An NFIFO entry with AST = 1 and STYPE = 00
should be created before the MOVE, else DECO may hang.) Note that a LOAD IMM to
destination 78 can also be used to supply data to the Auxiliary Data FIFO. If multiple
MOVEs and/or MOVEs and LOADs are used to provide data to the Auxiliary Data FIFO,
the MOVE commands may need the WC bit set to ensure that the data is not overwritten.

All other values are reserved

7.16 ALGORITHM OPERATION command
The OPERATION command (CTYPE = 10000) defines the type of cryptographic
operation that SEC performs. Setting OPTYPE = 010 or 100 specifies an ALGORITHM
OPERATION. Setting OPTYPE = 000, 110, or 111 specifies a PROTOCOL
OPERATION (see PROTOCOL OPERATION commands). Setting OPTYPE = 001

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 219

specifies a PKHA OPERATION (see PKHA OPERATION command). The operation
can range from performing a simple operation using a single CHA to performing a
complex operation involving multiple CHAs and multiple steps. More than one
OPERATION command can be used in a descriptor, allowing Class 1 and Class 2
operations to be specified separately. For the ALGORITHM OPERATION command, the
fields of the command are as shown in the following table. Note that bits 23-0 of the
ALGORITHM OPERATION command are automatically written to the appropriate
CHA's mode register.

Table 7-39. ALGORITHM OPERATION command format

31-27 26-24 23-16

CTYPE = 10000b OPTYPE = 010b
or 100b

ALG

15-14 13 12-4 3-2 1 0

format as it
appears for CHAs
other than RNG:

Reserved C2K AAI AS ICV ENC

15-13 12 11 10 9 8 7-6 5-4 3-2 1 0

format as it
appears for RNG:

Reserved SK AI PS OBP NZB Reserved SH AS PR TST

Table 7-40. ALGORITHM OPERATION command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=10000b : OPERATION command; (ALGORITHM OPERATION or PKHA OPERATION or PROTOCOL
OPERATION, as determined by the OPTYPE field)

26-24

OPTYPE

Operation Type

If OPTYPE = 010b or 100b : ALGORITHM OPERATION; The ALG, AAI, AS, ICV, and ENC fields are interpreted
as shown in the field descriptions below.

If OPTYPE = 010b : Class 1 algorithm operation

If OPTYPE = 100b : Class 2 algorithm operation

If OPTYPE = 001b : PKHA OPERATION; The ALG, AAI, AS, ICV, and ENC fields are interpreted as shown in
PKHA OPERATION command.

If OPTYPE = 000b, 011b or 111b : PROTOCOL OPERATION; The ALG, AAI, AS, ICV, and ENC fields are
interpreted as shown in PROTOCOL OPERATION command.

23-16

ALG

Algorithm

This field specifies the algorithm that is to be used for the operations.

• If OPTYPE = 010b (Class 1 algorithm)
• If ALG=10h : AES
• If ALG=20h : DES
• If ALG=21h : 3DES
• If ALG=50h : RNG
• If ALG=60h : SNOW 3G f8
• If ALG=70h : Kasumi f8 or f9

Table continues on the next page...

ALGORITHM OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

220 NXP Semiconductors

Table 7-40. ALGORITHM OPERATION command field descriptions (continued)

Field Description

• If ALG=B0h : ZUC encryption
• All other values are reserved.

• If OPTYPE = 100b (Class 2 algorithm)
• If ALG=10h : AES (only valid for CMAC and XCBC modes)
• If ALG=40h : MD5
• If ALG=41h : SHA-1
• If ALG=42h : SHA-224
• If ALG=43h : SHA-256
• If ALG=44h : SHA-384
• If ALG=45h : SHA-512
• If ALG=46h : SHA-512/224
• If ALG=47h : SHA-512/256
• If ALG=90h : CRC
• If ALG=A0h : SNOW 3G f9
• If ALG=C0h : ZUC authentication
• All other values are reserved.

15-14 Reserved

13

C2K

Class 2 Key

This bit is ignored for all algorithms other than AES.

0: AES uses the Class 1 key for CCM and GCM modes.

1: AES uses the Class 2 key for CCM and GCM modes. Setting this bit = 1 results in a mode error for other AES
modes.

12-4

AAI

Additional Algorithm Information

This field contains additional mode information that is associated with the algorithm that is being executed. See the
tables below for details specific to individual algorithms. See also the section describing the appropriate CHA. Note
that some algorithms do not require additional algorithm information and in those cases this field should be all 0s.

For RNG OPERATION commands the AAI field is interpreted as shown in the shaded SK, AI, PS, OBP, NZ and
SH fields below.

3-2

AS

Algorithm State

This field defines the state of the algorithm that is being executed. This may not be used by every algorithm. For
RNG commands, see the shaded AS field below.

00 Update

01 Initialize

10 Finalize

11 Initialize/finalize

1

ICV

ICV Checking

For the definition of this bit in RNG commands, see the shaded PR field below. This bit selects whether the current
algorithm should compare the known ICV versus the calculated ICV. This bit is ignored by algorithms that do not
support ICV checking.

0

ENC

Encrypt/Decrypt

For the definition of this bit in RNG commands, see the shaded TST field below This bit selects encryption or
decryption. This bit is ignored by all algorithms that do not have distinct encryption and decryption modes.
However, for performance counting to be done correctly, this bit must be set appropriately even if the CHA or
Algorithm does not use it to select cryptographic modes.

0 Decrypt

1 Encrypt

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 221

Table 7-40. ALGORITHM OPERATION command field descriptions (continued)

Field Description

The rows below describe how bits 12-0 are interpreted for RNG commands.

12

SK

(RNG
only)

Secure Key. For RNG OPERATION commands this bit of the AAI field is interpreted as the Secure Key field. If
SK=1 and AS=00 (Generate), the RNG will generate data to be loaded into the JDKEK, TDKEK and TDSK. If a
second Generate command is issued with SK=1, a Secure Key error will result. If SK=0 and AS=00 (Generate),
the RNG will generate data to be stored as directed by the FIFO STORE command. The SK field is ignored if
AS≠00.

11

AI

(RNG
only)

Additional Input Included. For RNG OPERATION commands this bit of the AAI field is interpreted as the Additional
Input Included field. If AS=00 (Generate) and AI=1, the 256 bits of additional data supplied via the Class 1 Context
Register will be used as additional entropy during random number generation. If AS=10 (Reseed) and AI=1, the
additional data supplied via the Class 1 Context register will be used as additional entropy input during the
reseeding operation. The AI field is ignored if AS=01 (Instantiate) or AS=11 (Uninstantiate).

10

PS

(RNG
only)

Personalization String Included. For RNG OPERATION commands this bit of the AAI field is interpreted as the
Personalization String Included field. If AS=01 (Instantiate) and PS=1, a personalization string of 256 bits supplied
via the Class 1 Context register is used as additional "entropy" input during instantiation. Note that the
personalization string does not need to be random. A device-unique value can be used to further guarantee that
no two RNGs are ever instantiated with the same seed value. (Note that the entropy generated by the TRNG
already ensures this with high probability.) The PS field is ignored if AS≠01.

9

OBP

(RNG
only)

Odd Byte Parity. For RNG OPERATION commands this bit of the AAI field is interpreted as the Odd Byte Parity
field. If AS=00 (Generate) and OBP=1, every byte of data generated during random number generation will have
odd parity. That is, the 128 possible bytes values that have odd parity will be generated at random. If AS=00
(Generate) and OBP=0 and NZB=0, all 256 possible byte values will be generated at random. The OBP field is
ignored if AS≠00.

8

NZB

(RNG
only)

NonZero bytes. For RNG OPERATION commands this bit of the AAI field is interpreted as the NonZero Bytes
field. If AS=00 (Generate) and NZB=1, no byte of data generated during random number generation will be 00, but
(if OBP=0) the remaining 255 values will be generated at random. Note that setting NZB=1 has no effect if OBP=1,
since zero bytes are already excluded when odd byte parity is selected. If AS=00 (Generate) and OBP=0 and
NZB=0, all 256 possible byte values will be generated at random. The NZB field is ignored if AS≠00.

7-6

(RNG
only)

Reserved. For RNG commands these bits of the AAI field are reserved.

5-4

SH

(RNG
only)

State Handle. For RNG OPERATION commands these bits of the AAI field are interpreted as the State Handle
field. The command is issued to the State Handle selected via this field. An error will be generated if the selected
state handle is not implemented.

00 State Handle 0

01 State Handle 1

10 Reserved

11 Reserved

3-2

AS

(RNG
only)

Algorithm State. For RNG OPERATION commands these bits select RNG commands as shown in Table 7-48.

1

PR

(RNG
only)

Prediction Resistance. For RNG OPERATION commands this bit is interpreted as shown in Table 7-49.

0 Test Mode Request. For RNG OPERATION commands this bit is interpreted as shown in Table 7-50.

ALGORITHM OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

222 NXP Semiconductors

Table 7-40. ALGORITHM OPERATION command field descriptions

Field Description

TST

(RNG
only)

Table 7-41. AAI Interpretation for AES modes

AAI Interpretation for AES Modes (See AES accelerator (AESA) functionality)

Code Interpretation Code Interpretation

00h CTR (mod 2128) 80h CCM (mod 2128) Note, if
C2K= 0 CCM and GCM
use the key in the Class
1 Key Register. If C2K
= 1 CCM and GCM use
the key in the Class 2
Key Register.

10h CBC 90h GCM (mod 232)

20h ECB A0h CBC_XCBC_MAC

30h CFB B0h CTR_XCBC_MAC

40h OFB C0h CBC_CMAC

50h XTS D0h CTR_CMAC_LTE

60h CMAC E0h CTR_CMAC

70h XCBC-MAC

The codes listed above are mutually exclusive,
which means that they cannot be ORed with

each other.

Note that for AES the MSB of AAI is the DK (Decrypt Key) bit. Setting the DK bit (that is, ORing 100h with any AES code
above) causes the Key Register to be loaded with the AES Decrypt key, rather than the AES Encrypt key. See the discussion
in AES accelerator (AESA) functionality. Note that AES normally acts as a Class 1 CHA, but for CMAC or XCBC-MAC
modes, it can also be used as a Class 2 CHA. When a Class 2 OPERATION command specifies AES with CMAC or XCBC-
MAC, it may be accompanied by a Class 1 OPERATION command specifying AES, if (and only if) the Class 1 OPERATION
command specifies a Confidentiality-only mode. Specifying a Class 2 AES OPERATION command in concert with a Class 1
AES Operation command specifying either CCM or GCM is not permitted and will result in an error. Combo modes
CBC_XCBC_MAC, CTR_XCBC_MAC, CBC_CMAC, CTR_CMAC_LTE, and CTR_CMAC are available for general use, but
were specified for IPsec and LTE protocol use. With the extension to AES permitting simultaneous Class 1 Confidentiality-
only and Class 2 Integrity OPERATION, these Combo modes are no longer recommended and may be deprecated in the
future.

Table 7-42. AAI Interpretation for DES modes

AAI Interpretation for DES modes (See Data encryption standard accelerator (DES) functionality)

Code Interpretation Code Interpretation

10h CBC 30h CFB

20h ECB 40h OFB

The codes listed above are mutually exclusive, which means that they cannot be ORed with each other.

80h ORed with any DES code above: Check odd parity

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 223

Table 7-43. AAI Interpretation for MD5 and SHA modes

AAI Interpretation for MD5, SHA-1, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256 (See Message digest
hardware accelerator (MDHA) functionality)

Code Interpretation Code Interpretation

00h Hash without key 02h SMAC

01h HMAC 04h HMAC with
precomputed IPAD and
OPAD

Table 7-44. AAI Interpretation for CRC modes

AAI Interpretation for CRC modes (See Cyclic-redundancy check accelerator (CRCA) functionality)

Code Interpretation Code Interpretation

01h IEEE 802 10h DIS

02h IETF 3385 20h DOS

04h CUST_POLY 40h DOC

80h IVZ (initial value zero)

CRC codes in the right column can be ORed with CRC codes in the left column to specify DIS, DOS, DOC and IVZ

(See CRCA use of the Mode Register)

Table 7-45. AAI Interpretation for Kasumi modes

AAI Interpretation for Kasumi 3G modes (See Kasumi f8 and f9 hardware accelerator(KFHA) functionality)

Code Interpretation Code Interpretation

C0h Kasumi 3G f8 (encryption/decryption) 10h GSM

C8h Kasumi 3G f9 (authentication) 20h EDGE

Table 7-46. AAI Interpretation for SNOW 3G modes

AAI Interpretation for SNOW 3G modes (See SNOW 3G f8 accelerator functionality and SNOW 3G f9 accelerator
functionality)

Code Interpretation

C0h SNOW 3G f8 (encryption/decryption)

C8h SNOW 3G f9 (authentication)

Table 7-47. AAI Interpretation for ZUC modes

AAI Interpretation for ZUC (See ZUC encryption accelerator (ZUCE) functionality)

Code Interpretation

C0h ZUCE (encryption/decryption)

C8h ZUCA (authentication)

ALGORITHM OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

224 NXP Semiconductors

Table 7-48. AS RNG OPERATION command settings

AS Value State Handle is already instantiated State Handle is NOT already instantiated

00 Generate Generate random data per the mode in which the
state handle was instantiated.

Error

01 Instantiate Error Instantiate the state handle in either test mode or
nondeterministic mode as specified by TST, and
either to support prediction resistance or not to
support prediction resistance as specified by PR.

10 Reseed Reseed the state handle. Error

11 Uninstantiate Uninstantiate the state handle. Error

Table 7-49. PR RNG Operation commands setting

AS Value PR = 0 PR = 1

00 Generate Do NOT reseed prior to generating new random
data. PR bit must be zero.

If the state handle was instantiated to support
prediction resistance, reseed prior to generating
new random data. If the state handle was NOT
instantiated to support prediction resistance,
generate an error.

01 Instantiate Instantiate the state handle to NOT support
prediction resistance

Instantiate the state handle to support prediction
resistance

10 Reseed Reseed the state handle. PR bit must be zero. Reseed the state handle. PR bit is ignored.

11 Uninstantiate Uninstantiate the state handle. PR bit must be
zero.

Uninstantiate the state handle. PR bit is ignored.

Table 7-50. TST RNG OPERATION command settings

AS Value TST = 0 TST = 1

00 Generate • If the selected state handle is in
nondeterministic mode, generate new
random data.

• If the selected state handle is in deterministic
mode, generate a Test error.1

• If the selected state handle is in deterministic
mode, generate new random data.

• If the selected state handle is in
nondeterministic mode, generate a Test
error.

01 Instantiate Instantiate the state handle in normal
(nondeterministic) mode.

Instantiate the state handle in test (deterministic)
mode.

10 Reseed • If the selected state handle is in
nondeterministic mode, reseed the state
handle.

• If the selected state handle is in deterministic
mode, generate a Test error.2

• If the selected state handle is in deterministic
mode, reseed the state handle.

• If the selected state handle is in
nondeterministic mode, generate a Test
error.

11 Uninstantiate • If the selected state handle is in
nondeterministic mode, uninstantiate the
state handle.

• If the selected state handle is in deterministic
mode, generate a Test error.3

• If the selected state handle is in deterministic
mode, uninstantiate the state handle.

• If the selected state handle is in
nondeterministic mode, generate a Test
error.

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in test mode but a Generate
operation requests nondeterministic data from State Handle 0. This permits deterministic testing of the built-in protocols
prior to setting the RNGSH0 bit in the Security Configuration Register. Setting RNGSH0 would normally be performed
during the boot process after testing is complete.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 225

2. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in test mode but a non test
reseed operation is requested State Handle 0. This permits deterministic testing of the built-in protocols prior to setting the
RNGSH0 bit in the Security Configuration Register. Setting RNGSH0 would normally be performed during the boot
process after testing is complete.

3. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in test mode but a non test
uninstantiate operation is requested for State Handle 0. This permits deterministic testing of the built-in protocols prior to
setting the RNGSH0 bit in the Security Configuration Register. Setting RNGSH0 would normally be performed during the
boot process after testing is complete.

7.17 PROTOCOL OPERATION commands
The OPERATION command (CTYPE = 10000) defines the type of cryptographic
operation that SEC performs. The OPERATION command's Protocol OpType takes
advantage of well-known processing steps for standardized security protocols, so that the
user can invoke an existing hard-coded command sequence rather than having to use
SEQ commands to create a complex descriptor.

If the OPTYPE specifies a protocol operation (000, 110, 111), the OPERATION
command fields are as shown in Table 7-52. If OPTYPE specifies an algorithm operation
(OPTYPE = 010: Class 1, OPTYPE = 100: Class 2), see ALGORITHM OPERATION
command. If OPTYPE specifies a PKHA operation (OPTYPE = 001), see PKHA
OPERATION command.

Table 7-51. PROTOCOL OPERATION command format

31-27 26-24 23-16

CTYPE = 10000 OPTYPE = 000, 110,
or 111

PROTID

15-0

PROTINFO

Protocols are used to execute complex built-in functions. Before beginning a protocol
operation, DECO waits for any pending (SEQ) FIFO STORE operations to complete.
When starting the protocol operation, DECO resets the output data FIFO; any data
remaining in the output data FIFO from previous operations is lost. It is the responsibility
of the programmer to ensure that once the protocol starts, no data is pushed into the
output data FIFO as a result of commands executed prior to the protocol operation. It is
the responsibility of the programmer to ensure that once the protocol starts, no data is in,
or will be pushed into, the input data FIFO or information FIFO as a result of commands
executed prior to the protocol operation.

The protocol ID codes and information on PROTINFO encoding are shown in Table
7-53,

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

226 NXP Semiconductors

Table 7-52. PROTOCOL OPERATION command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=10000b : OPERATION command; (ALGORITHM OPERATION or PKHA OPERATION or
PROTOCOL OPERATION, as determined by the OPTYPE field)

26-24

OPTYPE

Operation Type

If OPTYPE = 000b, 110b or 111b : PROTOCOL OPERATION; The OPTYPE field indicates the "directionality"
of the protocol as shown below. The PROTID field is interpreted as shown in the following PROTID field
description table.

If OPTYPE=000b : Unidirectional protocol

If OPTYPE=110b : Decapsulation protocol

If OPTYPE=111b : Encapsulation protocol

If OPTYPE = 010b or 100b : ALGORITHM OPERATION; The ALG, AAI, AS, ICV, and ENC fields are
interpreted as shown in ALGORITHM OPERATION command.

If OPTYPE = 001b : PKHA OPERATION; The ALG, AAI, AS, ICV, and ENC fields are interpreted as shown in
PKHA OPERATION command.

All others: reserved

23-16

PROTID

Protocol Identifier

This field represents the specific protocol that this descriptor is implementing. See Table 7-53 for the complete
description.

PROTINFO

15-0

This value is protocol-dependent.

Table 7-53. PROTID and PROTINFO field description

PROTID
(hex)

Description PROTINFO Information

01 OPTYPE 000: IKE PRF

OPTYPE 11x: IPsec ESP Transport (and
legacy ESP Tunnel)

else Reserved

For IKE PRF and PRF+, the PROTINFO field is defined in
Table 7-56. For further information concerning IKE PRF, refer
to IKEv2 PRF overview.

For IPsec ESP Transport (and legacy Tunnel) and IPsec ESP
Tunnel, the PROTINFO field is defined in Table 7-54. For
further information concerning IPsec ESP Transport (and
legacy Tunnel), IPsec ESP Tunnel, refer to IPsec ESP
encapsulation and decapsulation overview.

02 OPTYPE 000: IKE PRF+

OPTYPE 11x: SRTP

else Reserved

For IKE PRF and PRF+, the PROTINFO field is defined in
Table 7-56. For further information concerning IKE PRF+, refer
to Implementation Details for IKE PRF+ function

For SRTP, the PROTINFO field is defined in Table 7-54. For
further information concerning SRTP, refer to SRTP packet
encapsulation and decapsulation.

03 OPTYPE 11x: MACsec (802.1AE)

else Reserved

For MACsec, use PROTINFO = 0000_0000_0000_0001 to
specify AES_GCM_16. Use PROTINFO =
0000_0000_0000_0002 to specify AES_GCM_32. Use
PROTINFO = 0000_0000_0000_0003 to specify
AES_GCM_16 with extended PN. Use PROTINFO =
0000_0000_0000_0004 to specify AES_GCM_32 with

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 227

Table 7-53. PROTID and PROTINFO field description (continued)

PROTID
(hex)

Description PROTINFO Information

extended PN. For further information concerning MACsec,
refer to IEEE 802.1AE MACsec encapsulation and
decapsulation overview.

04 OPTYPE 11x: IEEE 802.11-2012 WPA2 MPDU
for WiFi

else Reserved

For WPA2, use PROTINFO = 1010_1100_0000_0100 to
specify AES_CCM_8 (CCMP).

For further information concerning WPA2, refer to IEEE
802.11-2012 WPA2 MPDU encapsulation and decapsulation .

05 OPTYPE 11x: WiMAX (802.16)

else Reserved

For WiMAX OFDM, use PROTINFO = 0000_0010_0000_0001
to specify AES_CCM_16 with CRC for OFDM. Use
PROTINFO = 0000_0000_0000_0001 to specify CRC-only for
OFDM. For further information concerning WiMAX refer to
IEEE 802.16 WiMAX encapsulation and decapsulation
overview.

For WiMAX OFDMa, use PROTINFO =
0000_0010_0011_0001 to specify AES_CCM_16 with CRC for
OFDMa. Use PROTINFO = 0000_0000_0011_0001 to specify
CRC-only for OFDMa. For further information concerning
WiMAX refer to IEEE 802.16 WiMAX encapsulation and
decapsulation overview.

08 OPTYPE 000: SSL 3.0 PRF

NOTE: Descriptors that include a TLS PRF
command are limited to 50 words in
length.

OPTYPE 110: SSL3.0 Decapsulation

OPTYPE 111: SSL 3.0 Encapsulation

else Reserved

For the SSL/TLS/DTLS protocol family, the PROTINFO field is
defined in Table 7-55. For information on SSL 3.0 PRF, refer to
Process for SSL 3.0 PRF. For further information concerning
SSL/3.0T record processing, refer to SSL/TLS/DTLS record
encapsulation and decapsulation overview.

09 OPTYPE 000: TLS 1.0 PRF

NOTE: Descriptors that include a TLS PRF
command are limited to 50 words in
length.

OPTYPE 110: TLS 1.0 Decapsulation

OPTYPE 111: TLS 1.0 Encapsulation

else Reserved

For the SSL/TLS/DTLS protocol family, the PROTINFO field is
defined in Table 7-55. For information on TLS 1.0 PRF, refer to
Process for TLS 1.0, TLS 1.1, DTLS PRF. For further
information concerning TLS 1.0 record processing, refer to
SSL/TLS/DTLS record encapsulation and decapsulation
overview.

0A OPTYPE 000: TLS 1.1 PRF

NOTE: Descriptors that include a TLS PRF
command are limited to 50 words in
length.

OPTYPE 110: TLS 1.1 Decapsulation

OPTYPE 111: TLS 1.1 Encapsulation

else Reserved

For the SSL/TLS/DTLS protocol family, the PROTINFO field is
defined in Table 7-55. For information on TLS 1.1 PRF, refer to
Process for TLS 1.0, TLS 1.1, DTLS PRF. For further
information concerning TLS 1.1 record processing, refer to
SSL/TLS/DTLS record encapsulation and decapsulation
overview.

0B OPTYPE 000: TLS 1.2 PRF

using HMAC-SHA-256 except when another
HMAC is expressly stated as shown in Table
7-55

For the SSL/TLS/DTLS protocol family, the PROTINFO field is
defined in Table 7-55. For information on TLS 1.2 PRF, refer to
Process for TLS 1.2 PRF. For further information concerning
TLS 1.2 record processing, refer to SSL/TLS/DTLS record
encapsulation and decapsulation overview.

Table continues on the next page...

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

228 NXP Semiconductors

Table 7-53. PROTID and PROTINFO field description (continued)

PROTID
(hex)

Description PROTINFO Information

NOTE: Descriptors that include a TLS PRF
command are limited to 50 words in
length.

OPTYPE 110: TLS 1.2 Decapsulation

OPTYPE 111: TLS 1.2 Encapsulation

else Reserved

0C OPTYPE 000: DTLS 1.0 PRF

NOTE: Descriptors that include a TLS PRF
command are limited to 50 words in
length.

OPTYPE 110: DTLS 1.0 Decapsulation

OPTYPE 111: DTLS 1.0 Encapsulation

else Reserved

For the SSL/TLS/DTLS protocol family, the PROTINFO field is
defined in Table 7-55. For information on DTLS 1.0 PRF, refer
to Process for TLS 1.0, TLS 1.1, DTLS PRF. For further
information concerning DTLS 1.0 record processing, refer to
SSL/TLS/DTLS record encapsulation and decapsulation
overview.

0D For OPTYPE 110 or 111: Blob For blobs encapsulation or decapsulation, the PROTINFO field
is defined in Table 7-59 and Table 7-60. For further information
concerning blobs, see Blobs.

0F For OPTYPE 110: Anti-Replay Stand-alone Anti-Replay checking always uses a PROTINFO
code of 0000h, and is described in Anti-Replay built-in
checking.

11 OPTYPE 11x: IPsec ESP Tunnel

else Reserved

For IPsec ESP Tunnel, the PROTINFO field is defined in Table
7-54. For further information concerning these protocols, refer
to IPsec ESP encapsulation and decapsulation overview.

12 OPTYPE 000: (EC)DSA Verify with Private Key

else Reserved

For (EC)DSA Verify using Private Key, the PROTINFO field is
defined in Table 7-62. For further information, see Verifying
DSA and ECDSA signatures.

14 OPTYPE 000: DH, DSA, and ECC Key Pair
Generation

OPTYPE 110: MPPubK generation

OPTYPE 111: MPPrivK generation

else Reserved

For Key Pair Generation, MPPubK and MPPrivK, the
PROTINFO field is defined in Table 7-62. For further
information, see Discrete-log key-pair generation

15 OPTYPE 000: (EC)DSA_Sign

OPTYPE 110: MPSign

else Reserved

For (EC)DSA Sign, and MPSign, the PROTINFO field is
defined in Table 7-62. For further information, see Generating
DSA and ECDSA signatures.

16 OPTYPE 000: (EC)DSA_Verify

else Reserved

For (EC)DSA Verify, the PROTINFO field is defined in Table
7-62. For further information, see Verifying DSA and ECDSA
signatures.

17 OPTYPE 000: (EC)Diffie-Hellman

else Reserved

For (EC)Diffie-Hellman, the PROTINFO field is defined in
Table 7-62. For further information, see Using the
Diffie_Hellman function.

18 OPTYPE 000: RSA_Encrypt

else Reserved

For RSA_Encrypt, the PROTINFO field is defined in Table
7-64. For further information concerning RSA Encrypt see
Implementation of the RSA encrypt operation.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 229

Table 7-53. PROTID and PROTINFO field description (continued)

PROTID
(hex)

Description PROTINFO Information

19 OPTYPE 000: RSA_Decrypt

else Reserved

For RSA_Decrypt, the PROTINFO field is defined in Table
7-66. For further information concerning RSA Decrypt see
Implementation of the RSA decrypt operation.

1A OPTYPE 000: RSA_Finish_KeyGen

else Reserved

For RSA_Finish_Keygen, the PROTINFO field is defined in
Table 7-67. See RSA Finalize Key Generation (RFKG) for
further information.

1E OPTYPE 000: EC Public Key Validation

else Reserved

For EC Public Key Validation use bit [0] to select F2m
validation. No other PROTINFO bits are used.

20 OPTYPE 000: Derived Key MD5

else Reserved

For Derived Key MD5, the PROTINFO field is defined in Table
7-58. For further information concerning Derived Key Protocol,
see Implementation of the derived key protocol.

21 OPTYPE 000: Derived Key SHA1

else Reserved

For Derived Key SHA1, the PROTINFO field is defined in
Table 7-58. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

22 OPTYPE 000: Derived Key SHA224

else Reserved

For Derived Key SHA224, the PROTINFO field is defined in
Table 7-58. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

23 OPTYPE 000: Derived Key SHA256

else Reserved

For Derived Key SHA256, the PROTINFO field is defined in
Table 7-58. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

24 OPTYPE 000: Derived Key SHA384

else Reserved

For Derived Key SHA384, the PROTINFO field is defined in
Table 7-58. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

25 OPTYPE 000: Derived Key SHA512

else Reserved

For Derived Key SHA512, the PROTINFO field is defined in
Table 7-58. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol.

2F else Reserved

31 OPTYPE 11x: 3G Double CRC

else Reserved

For 3G Double CRC, the PROTINFO field is defined in Table
7-57

32 OPTYPE 11x: 3G RLC

else Reserved

For 3G RLC, the PROTINFO field is defined in Table 7-57. For
further information concerning 3G RLC, see 3G RLC PDU
Encapsulation and Decapsulation overview.

42 OPTYPE 11x: LTE PDCP User Plane

else Reserved

For LTE PDCP, the PROTINFO field is defined in Table 7-57.
For further information concerning LTE, see 3G RLC PDU
Encapsulation and Decapsulation overview.

43 OPTYPE 11x: LTE PDCP Control Plane -
deprecated in favor of PROTID 44, which
supports mixed cipher suites. PROTID 43 does
not.

else Reserved

For LTE PDCP (PROTID=43h), the PROTINFO field is defined
in Table 7-57. For further information concerning LTE, see LTE
PDCP PDU encapsulation and decapsulation overview

44 OPTYPE 11x: LTE PDCP Control Plane -
supports mixed cipher suites

else Reserved

For LTE Control Plane (PROTID=44h) the PROTINFO field is
interpreted as follows:

(bits 15:8) - Encrypt/
Decrypt Algorithm

(bits 7:0) - Authentication
Algorithm

00h null 00h null

Table continues on the next page...

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

230 NXP Semiconductors

Table 7-53. PROTID and PROTINFO field description (continued)

PROTID
(hex)

Description PROTINFO Information

(bits 15:8) - Encrypt/
Decrypt Algorithm

(bits 7:0) - Authentication
Algorithm

01h SNOW3G 01h SNOW3G

02h AES 02h AES

03h ZUC 03h ZUC

all other values are reserved all other values are reserved

Note: Header meta data is not allowed for the following
combinations:

SNOW3G Encrypt and AES Authentication or ZUC Encrypt
and AES Authentication

Note: Trailing meta data is not allowed for the following
combinations:

SNOW3G Encrypt/Decrypt and AES Authentication or ZUC
Encrypt/Decrypt and AES Authentication

45 OPTYPE 11x: LTE PDCP PDU User Plane for
RN

else Reserved

For 3G RLC, the PROTINFO field is defined as shown in the
table above (PROTID=44). For further information concerning
3G RLC, see 3G RLC PDU Encapsulation and Decapsulation
overview.

60 OPTYPE 000: Derived Key MD5 with RIF

else Reserved

For Derived Key MD5 with RIF, the PROTINFO field is defined
in Table 7-58. For further information concerning Derived Key
Protocol, see Implementation of the derived key protocol. For
further information concerning the RIF option, see Table 7-12.

61 OPTYPE 000: Derived Key SHA1 with RIF

else Reserved

For Derived Key SHA1 with RIF, the PROTINFO field is
defined in Table 7-58. For further information concerning
Derived Key Protocol, see Implementation of the derived key
protocol. For further information concerning the RIF option, see
Table 7-12.

62 OPTYPE 000: Derived Key SHA224 with RIF

else Reserved

For Derived Key SHA224 with RIF, the PROTINFO field is
defined in Table 7-58. For further information concerning
Derived Key Protocol, see Implementation of the derived key
protocol. For further information concerning the RIF option, see
Table 7-12.

63 OPTYPE 000: Derived Key SHA256 with RIF

else Reserved

For Derived Key SHA256 with RIF, the PROTINFO field is
defined in Table 7-58. For further information concerning
Derived Key Protocol, see Implementation of the derived key
protocol. For further information concerning the RIF option, see
Table 7-12.

64 OPTYPE 000: Derived Key SHA384 with RIF

else Reserved

For Derived Key SHA384 with RIF, the PROTINFO field is
defined in Table 7-58. For further information concerning
Derived Key Protocol, see Implementation of the derived key
protocol. For further information concerning the RIF option, see
Table 7-12.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 231

Table 7-53. PROTID and PROTINFO field description (continued)

PROTID
(hex)

Description PROTINFO Information

65 OPTYPE 000: Derived Key SHA512 with RIF

else Reserved

For Derived Key SHA512 with RIF, the PROTINFO field is
defined in Table 7-58. For further information concerning
Derived Key Protocol, see Implementation of the derived key
protocol. For further information concerning the RIF option, see
Table 7-12.

6F else Reserved

All other values reserved.

Table 7-54. PROTINFO definition when used with IPsec or SRTP protocols

PROTINFO

[15:8] (hex)

Encryption algorithm Notes PROTINFO

[7:0] (hex)

Authentication algorithm

01 DES For IPsec ESP
Transport (and legacy
Tunnel), IPsec ESP
Tunnel, any encryption
algorithm at left can be
used with any
authentication algorithm
at right.

For SRTP, these
encryption and
authentication
algorithms are not
permitted (with the
exception of AES-CTR,
see below).

00 NULL authentication, also
used with AES-CCM and
AES-GCM

02 DES (same as above) 01 HMAC_MD5_96

03 3DES 02 HMAC_SHA1_96

0B NULL Encryption 05 AES_XCBC_MAC_96

0C AES-CBC 06 HMAC_MD5_128

0D AES-CTR 07 HMAC_SHA1_160

08 AES-CMAC-96

0C HMAC_SHA2_256_128

0D HMAC_SHA2_384_192

0E HMAC_SHA2_512_256

0D AES-CTR For SRTP, when using
AES_CTR as the
encryption algorithm
HMAC_SHA1_160
must be selected as the
authentication
algorithm.

07 HMAC_SHA1_160

0E AES-CCM-8

For both IPsec and
SRTP, when using the
algorithms at left
PROTINFO[7:0] must
be 00.

00 Authentication is incorporated
into the encryption algorithm.0F AES-CCM-12

10 AES-CCM-16

12 AES-GCM-8

13 AES-GCM-12

14 AES-GCM-16

15 AES-NULL-WITH-GMAC

All other values are reserved.

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

232 NXP Semiconductors

Table 7-55. PROTINFO definition when used with SSL/TLS/DTLS protocol family (including
PRFs)

PROT INFO
[15:0] (hex)

Description PROT INFO
[15:0] (hex)

Description

0000 NULL_TLS. PRF not supported.

0001 NULL_MD5. PRF not supported.

0002 NULL_SHA. PRF not supported.

0003 Reserved. 002F AES_128_CBC_SHA

0004 Reserved. 0030 AES_128_CBC_SHA

0005 Reserved. 0031 AES_128_CBC_SHA

0032 AES_128_CBC_SHA

0008 DES40_CBC_SHA 0033 AES_128_CBC_SHA

0009 DES_CBC_SHA 0034 AES_128_CBC_SHA

000A 3DES_EDE_CBC_SHA 0035 AES_256_CBC_SHA

000B DES40_CBC_SHA 0036 AES_256_CBC_SHA

000C DES_CBC_SHA 0037 AES_256_CBC_SHA

000D 3DES_EDE_CBC_SHA 0038 AES_256_CBC_SHA

000E DES40_CBC_SHA 0039 AES_256_CBC_SHA

000F DES_CBC_SHA 003A AES_256_CBC_SHA

0010 3DES_EDE_CBC_SHA 003B NULL_SHA-256. PRF not supported.

0011 DES40_CBC_SHA 003C AES_128_CBC_SHA-256

0012 DES_CBC_SHA 003D AES_256_CBC_SHA-256

0013 3DES_EDE_CBC_SHA 003E AES_128_CBC_SHA-256

0014 DES40_CBC_SHA 003F AES_128_CBC_SHA-256

0015 DES_CBC_SHA 0040 AES_128_CBC_SHA-256

0016 3DES_EDE_CBC_SHA

0017 Reserved. 0067 AES_128_CBC_SHA-256

0018 Reserved. 0068 AES_256_CBC_SHA-256

0019 DES40_CBC_SHA 0069 AES_256_CBC_SHA-256

001A DES_CBC_SHA 006A AES_256_CBC_SHA-256

001B 3DES_EDE_CBC_SHA 006B AES_256_CBC_SHA-256

006C AES_128_CBC_SHA-256

001E DES_CBC_SHA 006D AES_256_CBC_SHA-256

001F 3DES_EDE_CBC_SHA

0020 Reserved. 008A Reserved.

008B 3DES_EDE_CBC_SHA

0022 DES_CBC_MD5 008C AES_128_CBC_SHA

0023 3DES_EDE_CBC_MD5 008D AES_256_CBC_SHA

0024 Reserved. 008E Reserved.

008F 3DES_EDE_CBC_SHA

0026 DES_CBC_40_SHA

0090 AES_128_CBC_SHA

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 233

Table 7-55. PROTINFO definition when used with SSL/TLS/DTLS protocol family (including
PRFs) (continued)

PROT INFO
[15:0] (hex)

Description PROT INFO
[15:0] (hex)

Description

0028 Reserved. 0091 AES_256_CBC_SHA

0029 DES_CBC_40_MD5 0092 Reserved.

0093 3DES_EDE_CBC_SHA

002B Reserved. 0094 AES_128_CBC_SHA

002C NULL_SHA. PRF not supported. 0095 AES_256_CBC_SHA

002D NULL_SHA. PRF not supported.

002E NULL_SHA. PRF not supported.

009C Encap: AES_128_GCM; PRF: SHA-256

009D Encap: AES_256_GCM; PRF: SHA-384

009E Encap: AES_128_GCM; PRF: SHA-256

009F Encap: AES_256_GCM; PRF: SHA-384

00A0 Encap: AES_128_GCM; PRF: SHA-256

00A1 Encap: AES_256_GCM; PRF: SHA-384

00A2 Encap: AES_128_GCM; PRF: SHA-256

00A3 Encap: AES_256_GCM; PRF: SHA-384

00A4 Encap: AES_128_GCM; PRF: SHA-256

00A5 Encap: AES_256_GCM; PRF: SHA-384

00A6 Encap: AES_128_GCM; PRF: SHA-256

00A7 Encap: AES_256_GCM; PRF: SHA-384

00A8 Encap: AES_128_GCM; PRF: SHA-256

00A9 Encap: AES_256_GCM; PRF: SHA-384 C020 AES_256_CBC_SHA

00AA Encap: AES_128_GCM; PRF: SHA-256 C021 AES_256_CBC_SHA

00AB Encap: AES_256_GCM; PRF: SHA-384 C022 AES_256_CBC_SHA

00AC Encap: AES_128_GCM; PRF: SHA-256 C023 AES_128_CBC_SHA-256

00AD Encap: AES_256_GCM; PRF: SHA-384 C024 AES_256_CBC_SHA-384; PRF (if TLS
1.2): SHA-384

00AE AES-128-CBC_SHA-256 C025 AES_128_CBC_SHA-256

00AF AES-256-CBC_SHA-384; PRF (if TLS
1.2): SHA-384

C026 AES_256_CBC_SHA-384; PRF (if TLS
1.2): SHA-384

00B0 NULL_SHA-256. PRF not supported.

00B1 NULL_SHA-384. PRF not supported. C027 AES_128_CBC_SHA-256

00B2 AES-128-CBC_SHA-256 C028 AES_256_CBC_SHA-384; PRF (if TLS
1.2): SHA-384

00B3 AES-256-CBC_SHA-384; PRF (if TLS
1.2): SHA-384

C029 AES_128_CBC_SHA-256

00B4 NULL_SHA-256. PRF not supported.

00B5 NULL_SHA-384. PRF not supported. C02A AES_256_CBC_SHA-384; PRF (if TLS
1.2): SHA-384

00B6 AES-128-CBC_SHA-256 C02B Encap: AES_128_GCM; PRF: SHA-256

Table continues on the next page...

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

234 NXP Semiconductors

Table 7-55. PROTINFO definition when used with SSL/TLS/DTLS protocol family (including
PRFs) (continued)

PROT INFO
[15:0] (hex)

Description PROT INFO
[15:0] (hex)

Description

00B7 AES-256-CBC_SHA-384; PRF (if TLS
1.2): SHA-384

C02C Encap: AES_256_GCM; PRF: SHA-384

00B8 NULL_SHA-256. PRF not supported.

00B9 NULL_SHA-384. PRF not supported.

C001 NULL_SHA. PRF not supported. C02D Encap: AES_128_GCM; PRF: SHA-256

C002 Reserved. C02E Encap: AES_256_GCM; PRF: SHA-384

C003 3DES_EDE_CBC_SHA C02F Encap: AES_128_GCM; PRF: SHA-256

C004 AES_128_CBC_SHA C030 Encap: AES_256_GCM; PRF: SHA-384

C005 AES_256_CBC_SHA C031 Encap: AES_128_GCM; PRF: SHA-256

C006 NULL_SHA. PRF not supported. C032 Encap: AES_256_GCM; PRF: SHA-384

C007 Reserved. C033 Reserved.

C008 3DES_EDE_CBC_SHA C034 3DES-CBC_SHA

C009 AES_128_CBC_SHA C035 AES_128_CBC_SHA-1

C00A AES_256_CBC_SHA C036 AES_128_CBC_SHA-1

C00B NULL_SHA. PRF not supported. C037 AES_128_CBC_SHA-256

C00C Reserved. C038 AES_256_CBC_SHA-384; PRF (if TLS
1.2): SHA-384

C00D 3DES_EDE_CBC_SHA C039 NULL_SHA. PRF not supported.

C00E AES_128_CBC_SHA C03A NULL_SHA-256. PRF not supported.

C00F AES_256_CBC_SHA C03B NULL_SHA-384. PRF not supported.

C09C AEAD_AES_128_CCM_16.

C09D AEAD_AES_256_CCM_16.

C09E AEAD_AES_128_CCM_16.

C09F AEAD_AES_256_CCM_16.

C010 NULL_SHA. PRF not supported. C0A0 AEAD_AES_128_CCM_8.

C011 Reserved. C0A1 AEAD_AES_256_CCM_8.

C012 3DES_EDE_CBC_SHA C0A2 AEAD_AES_128_CCM_8.

C013 AES_128_CBC_SHA C0A3 AEAD_AES_256_CCM_8.

C014 AES_256_CBC_SHA C0A4 AEAD_AES_128_CCM_16.

C015 NULL_SHA. PRF not supported. C0A5 AEAD_AES_256_CCM_16.

C016 Reserved. C0A6 AEAD_AES_128_CCM_16.

C017 3DES_EDE_CBC_SHA C0A7 AEAD_AES_256_CCM_16.

C018 AES_128_CBC_SHA C0A8 AEAD_AES_128_CCM_8.

C019 AES_256_CBC_SHA C0A9 AEAD_AES_256_CCM_8.

C01A 3DES_EDE_CBC_SHA C0AA AEAD_AES_128_CCM_8.

C01B 3DES_EDE_CBC_SHA C0AB AEAD_AES_256_CCM_8.

C01C 3DES_EDE_CBC_SHA

C01D AES_128_CBC_SHA

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 235

Table 7-55. PROTINFO definition when used with SSL/TLS/DTLS protocol family (including
PRFs) (continued)

PROT INFO
[15:0] (hex)

Description PROT INFO
[15:0] (hex)

Description

C01E AES_128_CBC_SHA

C01F AES_128_CBC_SHA

FF22 NULL_SHA-224. PRF not supported.

FF23 3DES_EDE_CBC_MD5 FF83 AES_128_CBC_SHA-384

PRF (if TLS 1.2): SHA-384

FF84 AES_128_CBC_SHA-224 (not valid for
PRF)

FF30 3DES_EDE_CBC_SHA FF85 AES_128_CBC_SHA-512 (not valid for
PRF)

FF86 AES_128_CBC_SHA-256

FF33 3DES_EDE_CBC_SHA-384; PRF (if TLS
1.2): SHA-384

FF34 3DES_EDE_CBC_SHA-224 (not valid for
PRF)

FF90 AES_192_CBC_SHA

FF35 3DES_EDE_CBC_SHA-512 (not valid for
PRF)

FF36 3DES_EDE_CBC_SHA-256 FF93 AES_192_CBC_SHA-384; PRF (if TLS
1.2): SHA-384

FF94 AES_192_CBC_SHA-224 (not valid for
PRF)

FF51 NULL_SHA-512. PRF not supported. FF95 AES_192_CBC_SHA-512 (not valid for
PRF)

FF96 AES_192_CBC_SHA-256

FF60 AES_256_CBC_SHA

FF63 AES_256_CBC_SHA-384; PRF (if TLS
1.2): SHA-384

FF64 AES_256_CBC_SHA-224 (not valid for
PRF)

FF65 AES_256_CBC_SHA-512 (not valid for
PRF)

FF66 AES_256_CBC_SHA-256

FF70 AES_128_CTR_SHA. Not supported for
PRF.

FFC0 AEAD_AES_128_CCM_8.

FF71 AES_192_CTR_SHA. Not supported for
PRF.

FFC1 AEAD_AES_256_CCM_8.

FF72 AES_256_CTR_SHA. Not supported for
PRF.

FFC2 AEAD_AES_128_CCM_16.

FF73 AES_128_CTR_SHA-224. Not supported
for PRF.

FFC3 AEAD_AES_256_CCM_16.

FF74 AES_192_CTR_SHA-224. Not supported
for PRF.

FFC4 AEAD_AES_128_CCM_8. PRF SHA-384.

Table continues on the next page...

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

236 NXP Semiconductors

Table 7-55. PROTINFO definition when used with SSL/TLS/DTLS protocol family (including
PRFs) (continued)

PROT INFO
[15:0] (hex)

Description PROT INFO
[15:0] (hex)

Description

FF75 AES_256_CTR_SHA-224. Not supported
for PRF.

FFC5 AEAD_AES_256_CCM_8. PRF SHA-384.

FF76 AES_128_CTR_SHA-256. Not supported
for PRF.

FFC6 AEAD_AES_128_CCM_16. PRF
SHA-384.

FF77 AES_192_CTR_SHA-256. Not supported
for PRF.

FFC7 AEAD_AES_256_CCM_16. PRF
SHA-384.

FF78 AES_256_CTR_SHA-256. Not supported
for PRF.

FFC8 AEAD_AES_128_CCM_8. Not supported
for PRF.

FF79 AES_128_CTR_SHA-384. Not supported
for PRF.

FFC9 AEAD_AES_256_CCM_8. Not supported
for PRF.

FF7A AES_192_CTR_SHA-384. Not supported
for PRF.

FFCA AEAD_AES_128_CCM_16. Not
supported for PRF.

FF7B AES_256_CTR_SHA-384. Not supported
for PRF.

FFCB AEAD_AES_256_CCM_16. Not
supported for PRF.

FF7C AES_128_CTR_SHA-512. Not supported
for PRF.

FF7D AES_192_CTR_SHA-512. Not supported
for PRF.

FF7E AES_256_CTR_SHA-512. Not supported
for PRF.

FFFE (SSL, TLS 1.0, TLS 1.1 PRF only):

master secret generation using SHA-1
and MD5

(TLS 1.2 PRF only): master secret
generation using SHA-384

FF80 AES_128_CBC_SHA FFFF (SSL, TLS 1.0, TLS 1.1 PRF only):

master secret generation using SHA-1
and MD5

(TLS 1.2 PRF only): master secret
generation using SHA-256

All other values reserved. Not all codes permitted with all members of TLS family

Table 7-56. PROTINFO definition when used with IKE PRF and IKE PRF+ protocols

PROTINFO

[15:0] (hex)

Description

0100 PRF_HMAC_MD5

0200 PRF_HMAC_SHA1

0400 PRF_AES128_CBC

0500 PRF_HMAC_SHA2_256

0600 PRF_HMAC_SHA2_384

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 237

Table 7-56. PROTINFO definition when used with IKE PRF and IKE PRF+ protocols
(continued)

PROTINFO

[15:0] (hex)

Description

0700 PRF_HMAC_SHA2_512

0800 PRF_AES128_CMAC

All other values reserved.

Table 7-57. PROTINFO definition when used with 3G and LTE (PROTID=43h) protocols

PROTINFO

[15:0] (hex)

Description

0710 3G Double CRC with 7-bit and 16-bit CRCs

0B10 3G Double CRC with 11-bit and 16-bit CRCs

0000 3G RLC with Null encryption

0001 3G RLC with Kasumi encryption

0002 3G RLC with SNOW3G encryption

0000 LTE PDCP with Null encryption and authentication

0001 LTE PDCP with SNOW3G encryption and authentication

0002 LTE PDCP with AES encryption and authentication

All other values reserved.

Table 7-58. PROTINFO definition when used with derived key protocol (DKP) for HMACs

PROTINFO Description

PROTINFO[15:14]

SRC

Input Source Control

00 - IMM - negotiated key is in words immediately following the DKP Operation Command.
This option can only be used with an Immediate Output Destination (OD=00).

01 - SEQ - negotiated key is found in the input frame as defined by the SEQ IN PTR
command.

10 - PTR - the input key is referenced by the address found immediately following the DKP
Operation Command.

11 - SGF - the input key is distributed amongst different memory locations as indicated by
the Scatter/Gather Table address found immediately following the DKP Operation
Command.

PROTINFO[13:12]

DST

Output Destination Control

00 - IMM - resulting derived HMAC "split key" will be written back to the descriptor,
immediately after the KEY command written to the descriptor, consuming as many words
as required. The contents of those words will be overwritten and will not be preserved. The
length of the resulting derived HMAC key is twice the underlying hash context length. See
Table 10-32

Note that IMM is not restricted when used as an Output Destination as it is when used as
an Input Source.

Table continues on the next page...

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

238 NXP Semiconductors

Table 7-58. PROTINFO definition when used with derived key protocol (DKP) for HMACs
(continued)

PROTINFO Description

01 - SEQ - the resulting derived HMAC "split key" will be written to the output frame as
defined by the SEQ OUT PTR command. Note that SEQ is a valid Output Destination only
when SEQ is provided as an Input Source.

10 - PTR - the resulting derived HMAC "split key" will be written back to the memory
location specified by the address found immediately after the DKP Operation Command.
This option is not valid with Input Source options IMM or SGF.

11 - SGF - the resulting derived HMAC "split key" will be written back to memory per the
scatter/gather table found at the address immediately following the DKP operation
command. This option is not valid with Input Source options IMM or PTR.

PROTINFO[11:0]

LEN

Length of the negotiated key provided to the DKP Operation command in bytes.

Table 7-59. PROTINFO format when used with Blob Operations

15-10 9 8 7-4 3 2 1-0

Reserved TK EKT K2KR Reserved Black_Key Blob_
Format

Table 7-60. PROTINFO field descriptions when used with Blob Operations

Field Description

15-10 Reserved.

9

TK

Trusted Key

Used only for trusted descriptors with black blob encapsulation/decapsulation. Ignored otherwise.

0 Use the JDKEK when encrypting or decrypting black keys.

1 Use the TDKEK when encrypting or decrypting black keys.

8

EKT

Encrypted Key Type

Used only for black blob encapsulation/decapsulation. Ignored otherwise. Specifies the encryption/decryption
mode for black keys. Also used when deriving the blob key encryption key. Consequently, the same EKT
setting must be used when decapsulating a black blob as was used when encapsulating that black blob. This
prevents a black key being converted between AES-ECB and AES-CCM by encapsulating it as a blob and
then decapsulating the blob in the other encryption mode.

0 Use AES-ECB mode when encrypting/decrypting black keys.

1 Use AES-CCM mode when encrypting/decrypting black keys.

7-4

K2KR

Key to Key Register

Specifies the destination for the result of black blob decapsulation. Ignored otherwise. Black blob
encapsulation always uses a source from memory. The source and destination for red blob encapsulation
and decapsulation is always memory. (See Blob types differentiated by content)

0000 Memory

0001 Class 1 key register

0011 Class 2 key register

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 239

Table 7-60. PROTINFO field descriptions when used with Blob Operations (continued)

Field Description

0111 Class 2 key register (split key)

1001 PKHA E RAM

All other values are reserved.

3 Reserved.

2

Black_key

0 Red Blob. The data encapsulated into the blob or decapsulated from the blob is treated as plaintext.

1 Black Blob. The data encapsulated into the blob or decapsulated from the blob is treated as a black key
encrypted with the appropriate KEK (JDKEK or TDKEK). For blob encapsulation operations, the input data is
first decrypted using the appropriate KEK and then encrypted using the blob key. For blob decapsulation
operations, the data portion of the blob is decrypted using the blob key. If the resulting plaintext is to be
written into memory rather than into a key register, the plaintext is encrypted using the appropriate KEK.

1-0

Blob_ Format

The format of the blob.

00 Normal Blob. The output is composed of the encrypted blob key, the encrypted data, and MAC tag.

01 Reserved

10 Master Key Verification Blob. This blob type is intended for verifying the master key and the key derivation.
The master key is used for key derivation in the Trusted and Secure security states. The test key is used in
the Nonsecure state. Only the derived blob key encryption key is output. Note that the Blob_Format value is
an input to the BKEK derivation, which ensures that the BKEK value that is exposed in a master key
verification blob is different than the BKEK value used for any other blob format. Furthermore, the use of
SHA-256 in BKEK derivation ensures that the BKEK values used for other blob formats cannot be learned by
analyzing the BKEK values used for master key verification blobs.

11 Test Blob. The non-volatile test key is used for key derivation. The output is composed of the derived blob
key encryption key, the actual blob key, the encrypted blob key, the encrypted data, and MAC tag. Test blobs
can be exported or imported only when SEC is in non-secure mode.

Table 7-61 shows the format of the PROTINFO field for discrete log public key
protocols, including:

• Key pair generation (see Discrete-log key-pair generation)
• DSA sign (see Generating DSA and ECDSA signatures)
• DSA verify (see Verifying DSA and ECDSA signatures)
• Diffie-Hellman (see Using the Diffie_Hellman function).

Table 7-62. describes the bit values of this field.

Table 7-61. PROTINFO format when used with Discrete Log Protocol

1
5

1
4

1
3

12 11 10 9 8 7 6 5 4 3 2 1 0

Format for Sign
function

Reser
ved

SIGN
_

NO_T
EQ

MES_R
EP

HASH SIGN_2
ND_

HALF_
ONLY

SIGN_1
ST_

HALF_
ONLY

EXT_PR
I

TEST ENC_
PRI

ECC/D
L

F2M/F
p

Format for
MPSign
functions

Reser
ved

SIGN
_

MES_R
EP

HASH Reserve
d

Reserve
d

EXT_PR
I

TEST ENC_
PRI

ECC/D
L

F2M/F
p

Table continues on the next page...

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

240 NXP Semiconductors

Table 7-61. PROTINFO format when used with Discrete Log Protocol (continued)
NO_T

EQ

Format for Verify
function

Reserved MES_R
EP

HASH Reserved ECC/D
L

F2M/F
p

Format for
Keypair

Generation
functions

Reserved KPG_I
ETF_D

H

EKT_Z ENC_Z EXT_PR
I

KPG_
NO_TE

Q

ENC_
PRI

ECC/D
L

F2M/F
p

Format for MP
Keypair

Generation
functions

Reserved KPG_
NO_TE

Q

Reserved

Table 7-62. PROTINFO field descriptions when used with Discrete Log Protocol

Field Description

MES_REP Build the message representative from the message

0 Use the message representative that is pointed to by the f
field in the protocol data block.

1 Calculate the message representative from the message
(using a SEQ IN PTR command), and the hash function
specified by the HASH field. The message representative is
calculated using the equivalent of EMSA1 (IEEE-1363).

SIGN_NO_TEQ For Signature Generation (SIGN) protocol and MPSign:
disable Timing Equalization during SIGN.

0 Run SIGN using normal Timing Equalization protection.

1 Run SIGN with NO Timing Equalization protection.

MES_REP For Signature Generation (SIGN) and Verification (VERIFY)
protocols, this field indicates the format of the message.

00 : F input is a message representative.

01 : Calculate the message representative from the message
(using a SEQ IN PTR command), and the hash function
specified by the HASH field. The message representative is
calculated using the equivalent of EMSA1 (IEEE-1363).

10 : F input is a hashed message, with length specified in the
PDB. Protocol will format the message as required.

11 : Reserved.

HASH Hash function used to calculate a message representative
from a message; valid when MES_REP=01.

000 MD5

001 SHA-1

010 SHA-224

011 SHA-256

100 SHA-384

101 SHA-512

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 241

Table 7-62. PROTINFO field descriptions when used with Discrete Log Protocol (continued)

Field Description

KPG_IETF_DH For KPG, this bit enables running IETF_style DH

0 No IETF-style DH.

1 Run KPG with IETF-style Diffie-Hellman.

PRI_VERIFY_NO_TEQ For Signature Verification with Private Key (PRI_VERIFY)
protocol only. Disable Timing Equalization protection.

0 Run PRI_VERIFY with Timing Equalization protection
enabled.

1 Run PRI_VERIFY with Timing Equalization protection
disabled.

SIGN_2ND_HALF_ONLY For Signature Generation (SIGN) protocol only; otherwise
reserved. Run 2nd half (signature "d" generation) only.

0 Run full SIGN or 1st half, depending on
SIGN_1ST_HALF_ONLY setting.

1 Run 2nd half of SIGN only, generating 'd' result. Requires
SIGN_1ST_HALF_ONLY = 0.

SIGN_1ST_HALF_ONLY For Signature Generation (SIGN) protocol only; otherwise
reserved. Run 1st half (signature "c" generation) only.

0 Run full SIGN or 2nd half, depending on
SIGN_2ND_HALF_ONLY setting.

1 Run 1st half of SIGN only, generating 'c' result. Requires
SIGN_2ND_HALF_ONLY = 0.

EKT_Z if ENC_Z=1, Key Encryption type (Used only with DH;
otherwise reserved.)

0 Secret output is encrypted with AES-ECB mode.

1 Secret output is encrypted with AES-CCM mode.

ENC_Z Encrypt the DH shared secret (Used only with DH; otherwise
reserved.)

0 The DH output is public and is unencrypted.

1 The DH output is secret and encrypted.

EXT_PRI if ENC_PRI=1, Encrypted key type for private key

0 Private key is encrypted with AES-ECB mode.

1 Private key is encrypted with AES-CCM mode.

KPG_NO_TEQ KPG_NO_TEQ For KPG, MPPrivK and MPPubK.

0 Key Pair Generation runs with Timing Equalization
protection.

1 Kep Pair Generation runs with Timing Equalization disabled.

TEST TEST

0 Signature generation protects the per message secret.

1 Signature generation outputs the per message secret, to aid
in testing and verification. This is not allowed in trusted or
secure states.

ENC_PRI Encrypted private key

Table continues on the next page...

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

242 NXP Semiconductors

Table 7-62. PROTINFO field descriptions when used with Discrete Log Protocol (continued)

Field Description

0 Private key is not encrypted. ENC_PRI must be 0 if
SIGN_2ND_HALF_ONLY=1.

1 Private key must be decrypted before use (see KEY
command for further information.). For Key Generation, this
causes the Private Key to be encrypted.

ECC/DL Public Key operation type

0 DL: Discrete Log

1 ECC: Elliptic Curve Cryptography

F2M/Fp Finite Field type

0 Fp: Prime Field

1 F2M: Binary field

Table 7-63 shows the format of the PROTINFO field for the RSA encrypt protocol. Table
7-64 describes the bit values.

Table 7-63. PROTINFO format when used with RSA Encrypt Protocol

15-13 12 1-7 6-4 3-2 1-0

Reserved FMT Reserved fff Reserved OP

Table 7-64. PROTINFO field descriptions when used with RSA Encrypt Protocol

Field Description

15-13 Reserved.

12

FMT

Format of data

0 No formatting

1 EME-PKCS1-v1_5 encryption encoding function

11-7 Reserved.

6-4

fff

Encryption type for f

000b f is not encrypted (This is the only value permitted when OP = 00b).

001b f is to be encrypted with the JDKEK using ECB mode.

011b f is to be encrypted with the JDKEK using CCM mode.

101b f is to be encrypted with the TDKEK using ECB mode.

111b f is to be encrypted with the TDKEK using CCM mode.

All other values are reserved.

3-2 Reserved.

1-0

OP

Operation.

00b Public Key n, e, f in - f is a user-supplied value (fff must be 000b)

01b Public Key n, e, f out - f is a random value (f can be encrypted on output, fff can be any non-
reserved value)

All other values are reserved.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 243

Table 7-65 shows the format of the PROTINFO field for the RSA Decrypt Protocol.
Table 7-66 describes the bit values.

Table 7-65. PROTINFO format when used with RSA Decrypt Protocol

15-13 12 11 10-8 7 6-4 3-2 1-0

Reserved FMT Reserved ppp Reserved fff Reserved Key Form

Table 7-66. PROTINFO field descriptions when used with RSA Decrypt Protocol

Field Description

15-13 Reserved.

12

FMT

Format of data

0 No formatting

1 EME-PKCS1-v1_5 encryption decoding function

11 Reserved.

10-8

ppp

Type of private key encryption

000 private key is not encrypted

001b private key components are each encrypted with the JDKEK using ECB mode

011b private key components are each encrypted with the JDKEK using CCM mode

101b private key components are each encrypted with the TDKEK using ECB mode

111b private key components are each encrypted with the TDKEK using CCM mode

All other values are reserved.

7 Reserved.

6-4

fff

Type of encryption for f.

000b f is not to be encrypted

001b f is to be encrypted with the JDKEK using ECB mode

011b f is to be encrypted with the JDKEK using CCM mode

101b f is to be encrypted with the TDKEK using ECB mode

111b f is to be encrypted with the TDKEK using CCM mode

All other values are reserved.

3 No TEQ option. Set to 1 to enable no-TEQ.

2 Reserved.

1-0

Key Form

Form of the Private Key

00b Private Key input in the form #1: n, d

01b Private Key input in the form #2: p, q, d

10b Private Key input in the form #3: p, q, dp, dq, c

All other values are reserved.

PROTOCOL OPERATION commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

244 NXP Semiconductors

Table 7-67. PROTINFO format when used with RSA Finish KeyGen

15-8 7 6 5 4 3 2 1-0

Reserved Reserved ENC_OUT Reserved EKT SKIP_D SKIP_PQ FUNCTION

Table 7-68. PROTINFO field descriptions when used with RSA Finish Keygen Protocol

Field Description

15-8 Reserved.

7 Reserved.

6

ENC_OUT

Encrypt Outputs

0 Do not encrypt generated private key components

1 Encrypt generated private key (ECB mode, unless EKT=1)

(Note that n and d size are not encrypted.)

5

Reserved

Reserved. Must be 0.

4

EKT

Encrypted Key Type

0 Do not use CCM-encryption

1 CCM-encrypt private key components (valid only if PROTOCOL command's ENC bit is 1)

3

SKIP_D

Skip length check of d

0 Check that d is at least one bit longer than 1/2 of the bit length of n.

1 Skip length check of d.

2

SKIP_PQ

Skip check of upper 100 bits of p and q

0 Check upper 100 bits of p and q to see whether |p-q| is too small

1 Do not check upper 100 bits of p and q

1-0

FUNCTION

Function

00 Compute all key components listed in Key Form, including d

01 Compute all key components listed in Key Form except d, which is an input

10 From p, q, e, compute n, d and d size.

11 Reserved

7.18 PKHA OPERATION command
If OPTYPE = 001 (PKHA), the fields are as shown in Table 7-69. This OPTYPE is used
to perform public key operations in the public key hardware accelerator (PKHA). All data
for a PKHA operation must already be in place before the function will begin executing.
Therefore, this operation does not start until all data transactions have completed and the
input data FIFO is empty.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 245

The format of the PKHA MODE field depends on which of the four types of PKHA
functions the OPERATION command specifies:

• Clear memory
• Modular arithmetic
• Elliptic curve
• Copy memory

A detailed description of the PKHA MODE fields is found in Table 7-70. The
OPERATION command does not complete until the PKHA is done.

When the PKHA operation completes without error, DECO clears the DONE flag and the
Mode Register so another operation can be specified.

Table 7-69. PKHA OPERATION command format

31-27 26-24 23-20 19-16

CTYPE = 10000 OPTYPE = 001 ALG = 1000 PKHA_MODE_MS

15-12 11-0

Reserved PKHA_MODE_LS

Table 7-70. PKHA OPERATION command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=10000b : OPERATION command; (ALGORITHM OPERATION or PKHA OPERATION or
PROTOCOL OPERATION, as determined by the OPTYPE field)

26-24

OPTYPE

Operation Type

If OPTYPE = 001b : PKHA OPERATION: The PKHA_MODE fields are interpreted as shown in the
following tables.

If OPTYPE = 010b or 100b : ALGORITHM OPERATION; The ALG, AAI, AS, ICV, and ENC fields are
interpreted as shown in ALGORITHM OPERATION command.

If OPTYPE = 000b, 011b or 111b : PROTOCOL OPERATION; The ALG, AAI, AS, ICV, and ENC fields are
interpreted as shown in PROTOCOL OPERATION command.

23-20

ALG

Algorithm

Set ALG=1000b. All other values are reserved.

19-16

PKHA_MODE_
MS

PKHA Mode

This field contains the value that will be loaded into the upper 4 bits of the PKHA Mode register. Its content
depends on which of the four types of PKHA functions, clear memory, modular arithmetic function, or copy
memory, is specified in the Function field (bits 5-0). The formats for these four types of functions are shown
in the following sections: Clear Memory (CLEAR_MEMORY) function, PKHA OPERATION: Arithmetic
Functions, PKHA OPERATION: Elliptic Curve Functions and PKHA OPERATION: copy memory functions.

15-12 Reserved

11-0

PKHA_MODE_L
S

PKHA Mode

Table continues on the next page...

PKHA OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

246 NXP Semiconductors

Table 7-70. PKHA OPERATION command field descriptions (continued)

Field Description

This field contains the value that will be loaded into the lowest 12 bits of the PKHA Mode register. The
least-significant six bits of this field is interpreted as a Function field, as shown in the row below. The format
of the PKHA_MODE_MS field and the other bits of the PKHA_MODE_LS field depend on the PKHA
function specified in the Function field: clear memory, modular arithmetic function, or copy memory. The
formats for these four types of functions are shown in the following sections: Clear Memory
(CLEAR_MEMORY) function, PKHA OPERATION: Arithmetic Functions, PKHA OPERATION: Elliptic
Curve Functions, and PKHA OPERATION: copy memory functions.

5-0

Function

PKHA function to be performed. (Note that the function is encoded in the least-significant six bits of the
PKHA_MODE_LS field.)

If Function=000001b : Clear Memory. (See Clear Memory (CLEAR_MEMORY) function)

If Function=010000b or 010001b : Copy Memory. (See PKHA OPERATION: copy memory functions)

If Function=001001b, 001010b, 001011b, or 011100b : Elliptic Curve function. (See PKHA OPERATION:
Elliptic Curve Functions)

If Function=000010b - 001111b or 010110b - 011111b : Modular Arithmetic function. (See PKHA
OPERATION: Arithmetic Functions)

All other values of the Function field are reserved.

7.18.1 PKHA OPERATION: clear memory function
Table 7-71. PKHA Mode register format for clear memory function

19 18 17 16 11-10 9 8 7 6 5-0

Aram Bram Eram Nram .
.
.

Reserved Q3 Q2 Q1 Q0 Function

PKHA_MODE_MS PKHA_MODE_LS

If the Function field in PKHA MODE specifies the clear memory function, PKHA
expects to be in the format shown in Table 7-71. The PKHA RAMs to be cleared may be
selected in any combination. Selecting one or more Quadrants for clearing will cause
only the specified quadrants (of the specified RAMs) to be cleared. If no Quadrants are
selected, then the whole RAM will be cleared.

Table 7-72. PKHA mode register field descriptions for clear memory function

Bits Description

19 Aram

This bit selects the A RAM for zeroization.

0: A not selected

1: A selected.

18 Bram

This bit selects the B RAM for zeroization.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 247

Table 7-72. PKHA mode register field descriptions for clear memory function (continued)

Bits Description

0: B not selected

1: B selected

17 Eram

This bit selects the E RAM for zeroization.

0: E not selected

1: E selected

16 Nram

This bit selects the N RAM for zeroization.

0: N not selected

1: N selected

11-10 Reserved

9 Quadrant 3

This bit selects the Quadrant 3 RAM for zeroization.

0: not selected

1: selected. Clearing will be only specified quadrant(s). Not valid if E RAM is selected.

8 Quadrant 2

This bit selects the Quadrant 2 RAM for zeroization.

0: not selected

1: selected. Clearing will be only specified quadrant(s). Not valid if E RAM is selected.

7 Quadrant 1

This bit selects the Quadrant 1 RAM for zeroization.

0: not selected

1: selected. Clearing will be only specified quadrant(s). Not valid is E RAM is selected.

6 Quadrant 0

This bit selects the Quadrant 0 RAM for zeroization.

0: not selected

1: selected. Clearing will be only specified quadrant(s). Not valid if E RAM is selected.

5-0 Function

The Function value for clearmemory is 000001.

7.18.2 PKHA OPERATION: Arithmetic Functions
Table 7-73. PKHA Mode Register Format for Arithmetic Functions

19 18 17 16-12 11 10 9-8 7-6 5-0

inM outM F2m Reser
ved

Reser
ved

Teq OutSel Reserved Function

PKHA_MODE_MS PKHA_MODE_LS

PKHA OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

248 NXP Semiconductors

Table 7-74. PKHA Mode register, format for arithmetic operation

Bits Description

19

inM

Inputs in Montgomery form. Indicates whether the inputs are in Montgomery form.

If inM=0 : Normal value representation

If inM=1 : Montgomery form. (Not valid for all functions.)

18

outM

Outputs in Montgomery form. Indicates whether the outputs are to be left in Montgomery form or
converted to normal values.

If outM=0 : Normal value representation

If outM=1 : Montgomery form. (Not valid for all functions.)

17

F2m

F2m. Indicates whether to use integer or binary polynomial arithmetic in executing the function.

If F2m=0 : Integer

If F2m=1 : Binary polynomial. (Not valid for all functions.)

16-12 Reserved

11 Reserved

10

Teq

Timing Equalized. Indicates that a timing equalized version of the function should be executed.

If Teq=0 : No timing equalization

If Teq=1 : Timing equalization. (Not valid for all functions.)

9-8

OutSel

Output destination select. Indicates which memory should contain the output of the selected function.

If OutSel=00b : B

If OutSel=01b : A

If OutSel=10b : Reserved

If OutSel=11b : Reserved

7-6 Reserved

5-0

Function

Function. Indicates which arithmetic function to execute.

If Function=000010b : Modular Addition (A + B) mod N

If Function=000011b : Modular Subtraction 1 (A - B) mod N

If Function=000100b : Modular Subtraction 2 (B - A) mod N

If Function=000101b : Modular Multiplication (A x B) mod N

If Function=000110b : Modular Exponentiation AE mod N

If Function=000111b : Modular Reduction A mod N

If Function=001000b : Modular Inversion A-1 mod N

If Function=001100b : Montgomery Radix Constant R2 mod N

If Function=001110 : Greatest Common Divisor GCD(A,N)-see note below

If Function=001111 : Miller-Rabin Primality Test -see note below

If Function=010110b : Modular Simultaneous Exponentiation A0E * A2B mod N

If Function=011000b : Modular Double A (A + A) mod N

If Function=011001b : Modular Double B (B + B) mod N

If Function=011010b : Modular Square A (A x A) mod N

If Function=011011b : Modular Cube A (A x A x A) mod N

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 249

Table 7-74. PKHA Mode register, format for arithmetic operation

Bits Description

If Function=011101b : Shift Right A

If Function=011110b : Compare A B

If Function=011111b : Evaluate A

All other values for this field are currently reserved or are Table 7-71,Table 7-78, or Table 7-82.

NOTE: When using the GCD function or any ECC function, a divide-by-zero error occurs if the value of
the most significant digit of N is all zeros.

NOTE: When using the Miller-Rabin primality test function, if the most-significant digit of N is all zeros,
the result is composite regardless of the value of N.

NOTE
Note that the arithmetic functions with outputs going to the A
RAM are identical to those with outputs going to the B RAM.
The only difference is the output destination.

Table 7-75. List of mode values for PKHA Integer Arithmetic Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed description

MOD_ADD Integer Modular
Addition

B 0 00002 Integer Modular Addition
(MOD_ADD) functionA 0 00102

MOD_SUB_1 Integer modular
subtraction (A - B)

B 0 00003 Integer Modular Subtraction
(MOD_SUB_1) functionA 0 00103

MOD_SUB_2 Integer modular
subtraction (B - A)

B 0 00004 Integer Modular Subtraction
(MOD_SUB_2) functionA 0 00104

MOD_MUL

MOD_MUL_TEQ

Integer modular
multiplication

B 0 00005 Integer Modular Multiplication
(MOD_MUL)A 0 00105

Timing equalized
version

B 1 00405

A 1 00505

MOD_MUL_IM

MOD_MUL_IM_TEQ

Integer Modular
Multiplication with
Montgomery Inputs

B 0 80005 Integer Modular Multiplication with
Montgomery Inputs
(MOD_MUL_IM)

A 0 80105

Timing equalized
version

B 1 80405

A 1 80505

MOD_MUL_IM_OM

MOD_MUL_IM_OM_TEQ

Integer Modular
Multiplication with
Montgomery Inputs
and Outputs

B 0 C0005 Integer Modular Multiplication with
Montgomery Inputs and Outputs
(MOD_MUL_IM_OM) Function

A 0 C0105

Timinq equalized
version

B 1 C0405

A 1 C0505

Table continues on the next page...

PKHA OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

250 NXP Semiconductors

Table 7-75. List of mode values for PKHA Integer Arithmetic Functions (continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed description

MOD_EXP

MOD_EXP_TEQ

Integer Modular
Exponentiation

B 0 00006 Integer Modular Exponentiation
(MOD_EXP and MOD_EXP_TEQ)A 0 00106

Timing equalized
version

B 1 00406

A 1 00506

MOD_EXP_IM

MOD_EXP_IM_TEQ

Integer Modular
Exponentiation with
Montgomery Inputs

B 0 80006 Integer Modular Exponentiation,
Montgomery Input (MOD_EXP_IM
and MOD_EXP_IM_TEQ) Function

A 0 80106

Timing equalized
version

B 1 80406

A 1 80506

MOD_AMODN Integer Modular
Reduction

B 0 00007 Integer Modulo Reduction
(MOD_AMODN)A 0 00107

MOD_INV Integer Modular
Inversion

B 0 00008 Integer Modular Inversion
(MOD_INV)A 0 00108

MOD_R2 Integer R2 mod N B 0 0000C Integer Montgomery Factor
Computation (MOD_R2)A 0 0010C

MOD_GCD Integer Greatest
Common Divisor

B 0 0000E Integer Greatest Common Divisor
(MOD_GCD)A 0 0010E

PRIME_TEST Miller_Rabin
primality test

B 0 0000F Miller_Rabin Primality Test
(PRIME_TEST)A 0 0010F

MOD_SML_EXP Integer Modular
Simultaneous
Exponentiation

B 0 00016 Integer Simultaneous Modular
Exponentiation (MOD_SML_EXP)A 0 00116

MOD_SQRT Integer Modular
Square Root

B 0 00017 Integer Modular Square Root
(MOD_SQRT)A 0 20017

MOD_DBL_A Integer Modular
Double A

B 0 20018

A 0 20118

MOD_DBL_B Integer Modular
Double B

B 0 20019

A 0 20119

MOD_SQR

MOD_SQR_TEQ

Integer Modular
Square A

B 0 0001A Integer Modular Square
(MOD_SQR and MOD_SQR_TEQ)A 0 0011A

Timing equalized
version

B 1 0041A

A 1 0051A

MOD_IM_SQR

MOD_IM_SQR_TEQ

Integer Modular
Square A.
Montgomery Input

B 0 8001A Integer Modular Square,
Montgomery inputs (MOD_SQR_IM
and MOD_SQR_IM_TEQ)

A 0 8011A

Timing equalized
version

B 1 8041A

A 1 8051A

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 251

Table 7-75. List of mode values for PKHA Integer Arithmetic Functions (continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed description

MOD_IM_OM_SQR

MOD_IM_OM_SQR_TEQ

Integer Modular
Square A,
Montgomery Input,
Montgomery Output

B 0 C001A Integer Modular Square,
Montgomery inputs and outputs
(MOD_SQR_IM_OM and
MOD_SQR_IM_OM_TEQ)

A 0 C011A

Timing equalized
version

B 1 C041A

A 1 C051A

MOD_CUBE

MOD_CUBE_TEQ

Integer Modular
Cube A

B 0 0001B Integer Modular Cube
(MOD_CUBE and
MOD_CUBE_TEQ)

A 0 0011B

Timing equalized
version

B 1 0041B

A 1 0051B

MOD_CUBE_IM

MOD_CUBE_IM_TEQ

Integer Modular
Cube A,
Montgomery input

B 0 8001B Integer Modular Cube, Montgomery
input (MOD_CUBE_IM and
MOD_CUBE_IM_TEQ)

A 0 8011B

Timing equalized
version

B 1 8041B

A 1 8051B

MOD_CUBE_IM_OM

MOD_CUBE_IM_OM_TEQ

Integer Modular
Cube A,
Montgomery input,
Montgomery output

B 0 C001B Integer Modular Cube, Montgomery
input and output
(MOD_CUBE_IM_OM and
MOD_CUBE_IM_OM_TEQ)

A 0 C011B

Timing equalized
version

B 1 C041B

A 1 C051B

1. PKHA_MODE_MS concatenated with 0000b concatenated with PKHA_MODE_LS

Arithmetic functions on a binary polynomials (characterestic two) (F2M). All operate in
polynomial basis.

Table 7-76. List of mode values for PKHA Binary Polynomial Arithmetic Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

F2M_ADD Binary Polynomial Modular Addition B 0 20002 Binary Polynomial
(F2m) Addition
(F2M_ADD) function

A 0 20102

F2M_MUL

F2M_MUL_TEQ

Binary Polynomial Modular
Multiplication

B 0 20005 Binary Polynomial
(F2m) Modular
Multiplication
(F2M_MUL)

A 0 20105

Timing equalized version B 1 20405

A 1 20505

Table continues on the next page...

PKHA OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

252 NXP Semiconductors

Table 7-76. List of mode values for PKHA Binary Polynomial Arithmetic Functions
(continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

F2M_MUL_IM

F2M_MUL_IM_TEQ

Binary Polynomial Modular
Multiplication with Montgomery
Inputs

B 0 A0005 Binary Polynomial
(F2m) Modular
Multiplication with
Montgomery Inputs
(F2M_MUL_IM)
Function

A 0 A0105

Timing equalized version" B 1 A0405

A 1 A0505

F2M_MUL_IM_OM

F2M_MUL_IM_OM_TEQ

Binary Polynomial Modular
Multiplication with Montgomery
Inputs and Output

B 0 E0005 Binary Polynomial
(F2m) Modular
Multiplication with
Montgomery Inputs
and Outputs
(F2M_MUL_IM_OM)
Function

A 0 E0105

Timing equalized version B 1 E0405

A 1 E0505

F2M_EXP

F2M_EXP_TEQ

Binary Polynomial Modular
Exponentiation

B 0 20006 Binary Polynomial
(F2m) Modular
Exponentiation
(F2M_EXP and
F2M_EXP_TEQ)

A 0 20106

Timing equalized version B 1 20406

A 1 20506

F2M_AMODN Binary Polynomial Modular
Reduction

B 0 20007 Binary Polynomial
(F2m) Modulo
Reduction
(F2M_AMODN)

A 0 20107

F2M_INV Binary Polynomial Modular Inversion B 0 20008 Binary Polynomial
(F2m) Modular
Inversion (F2M_INV)

A 0 20108

F2M_R2 Binary Polynomial R2 mod n B 0 2000C Binary Polynomial
(F2m) R2 Mod N
(F2M_R2) Function

A 0 2010C

F2M_GCD Binary Polynomial Greatest Common
Divisor

B 0 2000E Binary Polynomial
(F2m) Greatest
Common Divisor
(F2M_GCD)
Function

A 0 2010E

F2M_SQR

F2M_SQR_TEQ

Binary Polynomial Modular A Square B 0 2001A

A 0 2011A

Timing equalized version B 1 2041A

A 1 2051A

F2M_IM_SQR

F2M_IM_SQR_TEQ

Binary Polynomial Modular A
Square. Montgomery input

B 0 A001A

A 0 A011A

Timing equalized version B 1 A041A

A 1 A051A

F2M_IM_OM_SQR

F2M_IM_OM_SQR_TEQ

Binary Polynomial Modular Square
A, Montgomery input, Montgomery
output

B 0 E001A

A 0 E011A

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 253

Table 7-76. List of mode values for PKHA Binary Polynomial Arithmetic Functions
(continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

Timing equalized version B 1 E041A

A 1 E051A

F2M_CUBE

F2M_CUBE_TEQ

Binary Polynomial Modular Cube A B 0 2001B

A 0 2011B

Timing equalized version B 1 2041B

A 1 2051B

F2M_CUBE_IM

F2M_CUBE_IM_TEQ

Binary Polynomial Modular Cube A.
Montgomery input

B 0 A001B

A 0 A011B

Timing equalized version B 1 A041B

A 1 A051B

F2M_CUBE_IM_OM

F2M_CUBE_IM_OM_TE
Q

Binary Polynomial Modular Cube A,
Montgomery input, Montgomery
output

B 0 E001B Binary Polynomial
(F2m) Modular Cube,
Montgomery Input
and Output
(F2M_CUBE_IM_O
M and
F2M_CUBE_IM_OM
_TEQ)

A 0 E011B

Timing equalized version B 1 E041B

A 1 E051B

F2M_SML_EXP Binary Polynomial Modular
Simultaneous Exponentiation

B 0 20016 Binary Polynomial
(F2m) Simultaneous
Modular
Exponentiation
(F2M_SML_EXP)

A 0 20116

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

These functions are grouped here because they do not fall into one of the previous
categories of PKHA functions.

Table 7-77. List of mode values for Miscellaneous Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

Shift Right A Right Shift B 0 0001D Right Shift A
(R_SHIFT) functionA 0 0011D

Compare A B Comparison (no
output)

0 0001E Compare A B
(COMPARE)
function

Table continues on the next page...

PKHA OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

254 NXP Semiconductors

Table 7-77. List of mode values for Miscellaneous Functions
(continued)

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

Evaluate A Compute sizes B 0 0001F Evaluate A
(EVALUATE)
function

A 0 0011F

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

7.18.3 PKHA OPERATION: copy memory functions
Table 7-78. PKHA Mode register, format for copy memory functions

19-17 16 11-10 9-8 7-6 5-0

Source Register Destination Register Source

Segment

Destination

Segment

Function

PKHA_MODE_MS PKHA_MODE_LS

Table 7-79. PKHA Mode register, field descriptions for copy memory functions

Bits Description

19-17

Source Register

Source Register. Specifies the register to be copied from.

If Source Register=000 : A

If Source Register=001 : B

If Source Register=011 : N

All other values are currently reserved.

16

Destination
Register

Destination Register. Specifies the register to be copied to.

If Destination Register=000 : A

If Destination Register=001 : B

If Destination Register=010 : E

If Destination Register=011 : N

All other values are currently reserved.

NOTE: The source register and destination register fields must not be the same.

11-10

9-8

Source
Segment

Source Segment. Used when copying a register segment to specify which segment in the source register to
copy from.

If Source Segment=00 : Segment 0

If Source Segment=01 : Segment 1

If Source Segment=10 : Segment 2

If Source Segment=11 : Segment 3

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 255

Table 7-79. PKHA Mode register, field descriptions for copy memory functions (continued)

Bits Description

NOTE: These bits must be zero when E is the destination register.

7-6

Destination
Segment

Destination Segment. Used when copying a register segment to specify which segment in the Destination
Register to copy to.

If Destination Segment=00 : Segment 0

If Destination Segment=01 : Segment 1

If Destination Segment=10 : Segment 2

If Destination Segment=11 : Segment 3

NOTE: These bits must be zero when E is the destination register.

5-0

Function

Function. Indicates which copy function to execute.

If Function=010000 : Copy Memory N-Size (copies the same number of words as are in the modulus.)

If Function=010001 : Copy Memory SRC-Size (copies the number of words specified in the source's size
register)

This table gives the encodings for the PKHA memory-to-memory copy functions. The top encoding in each cell is for Copy
Memory, N-Size, and the bottom encoding is for Copy Memory, Source-Size (Copy memory, N-Size and Source-Size
(COPY_NSZ and COPY_SSZ)).

The encoding is in bits 19-0, including PKHA_MODE (i.e. PKHA_MODE_MS concatenated with 0h concatenated with
PKHA_MODE_LS) and reserved bits. (Hex)

Table 7-80. Mode values for PKHA copy memory functions

Destination Memory

Source Memory A B N E

A 00410

00411

00C10

00C11

00810

00811

B 20010

20011

20C10

20C11

20810

20811

N 60010

60011

60410

60411

60810

60811

This table gives the encodings for the PKHA memory-to-memory copy functions, when segments are involved. The top
encoding in each cell is for Copy Memory, N-Size, and the bottom encoding is for Copy Memory, Source-Size (Copy memory,
N-Size and Source-Size (COPY_NSZ and COPY_SSZ)).

The encoding is in bits 19-0, including PKHA_MODE (i.e. PKHA_MODE_MS concatenated with 0h concatenated with
PKHA_MODE_LS) and reserved bits. (Hex)

Table 7-81. Mode values for PKHA copy memory by segment functions

Destination Quadrant

Source
Quadra

nt

A0 A1 A2 A3 B0 B1 B2 B3 N0 N1 N2 N3

A0 00410 00450 00490 004D0 00C10 00C50 00C90 00CD0

Table continues on the next page...

PKHA OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

256 NXP Semiconductors

Table 7-81. Mode values for PKHA copy memory by segment functions (continued)

Destination Quadrant

Source
Quadra

nt

A0 A1 A2 A3 B0 B1 B2 B3 N0 N1 N2 N3

00411 00451 00491 004D1 00C11 00C51 00C91 00CD1

A1 00510

00511

00550

00551

00590

00591

005D0

005D1

00D10

00D11

00D50

00D51

00D90

00D91

00DD0

00DD1

A2 00610

00611

00650

00651

00690

00691

006D0

006D1

00E10

00E11

00E50

00E51

00E90

00E91

00ED0

00ED1

A3 00710

00711

00750

00751

00790

00791

007D0

007D1

00F10

00F11

00F50

00F51

00F90

00F91

00FD0

00FD1

B0 20010

20011

20050

20051

20090

20091

200D0

200D1

20C10

20C11

20C50

20C51

20C90

20C91

20CD0

20CD1

B1 20110

20111

20150

20151

20190

20191

201D0

201D1

20D10

20D11

20D50

20D51

20D90

20D91

20DD0

20DD1

B2 20210

20211

20250

20251

20290

20291

202D0

202D1

20E10

20E11

20E50

20E51

20E90

20E91

20ED0

20ED1

B3 20310

20311

20350

20351

20390

20391

203D0

203D1

20F10

20F11

20F50

20F51

20F90

20F91

20FD0

20FD1

N0 60010

60011

60050

60051

60090

60091

600D0

600D1

60410

60411

60450

60451

60490

60491

604D0

604D1

N1 60110

60111

60150

60151

60190

60191

601D0

601D1

60510

60511

60550

60551

60590

60591

605D0

605D1

N2 60210

60211

60250

60251

60290

60291

602D0

602D1

60610

60611

60650

60651

60690

60691

606D0

606D1

N3 60310

60311

60350

60351

60390

60391

603D0

603D1

60710

60711

60750

60751

60790

60791

607D0

607D1

7.18.4 PKHA OPERATION: Elliptic Curve Functions

NOTE
Note that the elliptic curve functions with outputs going to the
A RAM are identical to those with outputs going to the B
RAM. The only difference is the output destination.

Table 7-82. PKHA Mode Register Format for Elliptic Curve Functions

19 18 17 16 11 10 9-8 7-6 5-0

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 257

Table 7-82. PKHA Mode Register Format for Elliptic Curve Functions (continued)

Reser
ved

Reser
ved

F2m R2 .
.
.

Reser
ved

Teq OutSel Reserved Function

PKHA_MODE_MS PKHA_MODE_LS

Table 7-83. PKHA Mode register, format for elliptic curve operation

Bits Description

17

F2m

F2m. Indicates whether to use integer or binary polynomial arithmetic in executing the function.

If F2m=0 : Integer (prime) curve

If F2m=1 : Binary polynomial curve. (Not valid for all curve types.)

16

R2

(R2 mod N). Indicates whether the term (R2 mod N) must be supplied as an input or will be calculated by
the routine.

If R2=0 : (R2 mod N) is calculated and applied, if needed

If R2=1 : (R2 mod N) is an input. (Not valid for all functions.)

11

Reserved

Reserved

10

Teq

Timing Equalized. Indicates that a timing equalized version of the function should be executed.

If Teq=0 : No timing equalization

If Teq=1 : Timing equalization. (Not valid for all functions.)

9-8

OutSel

Output destination select. Indicates which memory should contain the output of the selected function.

If OutSel=00b : B

If OutSel=01b : A

If OutSel=10b : Reserved

If OutSel=11b : Reserved

7-6 Reserved

5-0

Function

Function. Indicates which elliptic curve function to execute.

If Function=001001b : ECC Point Add (P1 + P2)

If Function=001010b : ECC Point Double (P2 + P2)

If Function=001011b : ECC Point Multiply (E x P1)

if Function=011100b : ECC Check Point

All other values for this field are currently reserved or are Table 7-71,Table 7-78, or Table 7-73.

Elliptic Curve Functions over a prime field (ECC_MOD), where prime p > 3.

PKHA OPERATION command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

258 NXP Semiconductors

Table 7-84. List of mode values for Prime Field (Fp) Elliptic Curve Arithmetic Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

ECC_MOD_ADD ECC prime field point add - affine
coordinates

B 0 00009 ECC Fp Point Add,
Affine Coordinates
(ECC_MOD_ADD)
Function

A 0 00109

ECC_MOD_ADD_R2 ECC prime field point add - affine
coordinates, R2 input

B 0 10009 ECC Fp Point Add,
Affine Coordinates,
R2 Mod N Input
(ECC_MOD_ADD_R
2) Function

A 0 10109

ECC_MOD_DBL ECC prime field point double - affine
coordinates

B 0 0000A ECC Fp Point
Double, Affine
Coordinates
(ECC_MOD_DBL)
Function

A 0 0010A

ECC_MOD_MUL

ECC_MOD_MUL_TEQ

ECC prime field point multiply - affine
coordinates

B 0 0000B ECC Fp Point
Multiply, Affine
Coordinates
(ECC_MOD_MUL
and
ECC_MOD_MUL_T
EQ) Function

A 0 0010B

Timing equalized version B 1 0040B

A 1 0050B

ECC_MOD_MUL_R2

ECC_MOD_MUL_R2_TE
Q

ECC prime field point multiply - affine
coordinates, r2 mod n input

B 0 1000B ECC Fp Point
Multiply, R2 Mod N
Input, Affine
Coordinates
(ECC_MOD_MUL_R
2 and
ECC_MOD_MUL_R
2_TEQ) Function

A 0 1010B

Timing equalized version B 1 1040B

A 1 1050B

ECC_MOD_CHECK_POI
NT

ECC Prime Field Point Validation B 0 0001C ECC Fp Check Point
(ECC_MOD_CHECK
_POINT) Function

A 0 XXXXX

ECC_MOD_CHECK_POI
NT_R2

ECC Prime Field Point Validation,
R2 input

B 0 1001C ECC Fp Check Point,
R2 Mod N Input,
Affine Coordinates
(ECC_MOD_CHECK
_POINT_R2)
Function

A 0 XXXXX

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

Elliptic Curve Functions over a binary field (ECC_F2M). All operate in polynomial
basis.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 259

Table 7-85. List of mode values for Binary Field (F2m) Elliptic Curve Arithmetic Functions

Function name Brief description Output

reg

Teq Bits 19-0,
including

PKHA_MODE
and reserved

bits1 (Hex)

Detailed
description

ECC_F2M_ADD ECC binary field point add - affine
coordinates

B 0 20009 ECC F2m Point Add,
Affine Coordinates
(ECC_F2M_ADD)
Function

A 0 20109

ECC_F2M_ADD_R2 ECC binary field point add - affine
coordinates, R2 input

B 0 30009 ECC F2m Point Add,
Affine Coordinates,
R2 Mod N Input
(ECC_F2M_ADD_R
2) Function

A 0 30109

ECC_F2M_DBL ECC binary field point double - affine
coordinates

B 0 2000A ECC F2m Point
Double - Affine
Coordinates
(ECC_F2M_DBL)
Function

A 0 2010A

ECC_F2M_MUL

ECC_F2M_MUL_TEQ

ECC binary field point multiply -
affine coordinates

B 0 2000B ECC F2m Point
Multiply, Affine
Coordinates
(ECC_F2M_MUL
and
ECC_F2M_MUL_TE
Q) Function

A 0 2010B

Timing equalized version B 1 2040B

A 1 2050B

ECC_F2M_MUL_R2

ECC_F2M_MUL_R2_TE
Q

ECC binary field point multiply -
affine coordinates, r2 mod n input

B 0 3000B ECC F2m Point
Multiply, R2 Mod N
Input, Affine
Coordinates
(ECC_F2M_MUL_R
2 and
ECC_F2M_MUL_R2
_TEQ) Function

A 0 3010B

Timing equalized version B 1 3040B

A 1 3050B

ECC_F2M_CHECK_POI
NT

ECC Binary Polynomial Point
Validation

B 0 A001C ECC F2m Check
Point
(ECC_F2M_CHECK
_POINT) Function

A 0 XXXXX

ECC_F2M_CHECK_POI
NT_R2

ECC Binary Polynomial Field Point
Validation, R2 input

B 0 B001C ECC F2m Check
Point, R2

(ECC_F2M_CHECK
_POINT_R2)
Function

A 0 XXXXX

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

SIGNATURE command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

260 NXP Semiconductors

7.19 SIGNATURE command
Trusted descriptors end with a SIGNATURE command, which requires the descriptor's
signature (HMAC) to be validated before allowing it to run. SIGNATURE commands
also support regeneration of the signature if the trusted descriptor modifies itself.

Trusted descriptors can be created and signed with a signature (a keyed hash) when
executed from a specially privileged job ring. (See Trusted descriptors.) Trusted
descriptors can be used to integrity protect the descriptor and to bind a key to a
descriptor.

The SIGNATURE command that generates and verifies the keyed hash is always the last
command of a trusted descriptor, although additional SIGNATURE commands can
appear within the descriptor. The signature (HMAC) immediately follows the last
SIGNATURE command in the trusted descriptor. When the descriptor is created:

• Room must be left at the end of the buffer for the 32-byte signature
• The length of the descriptor must include the signature.

DECO does not read the signature when creating the signature, so any initial value can be
placed there.

If a trusted descriptor has a shared descriptor, the shared descriptor is part of the keyed
hash computation. The shared descriptor is hashed first, followed by the descriptor; this is
the order in which they appear in the descriptor buffer. The final hash is the value
computed for both.

NOTE
It is an error for a SIGNATURE command to be in a descriptor
that is not trusted or being made trusted.

NOTE
Because the SIGNATURE command must be the last command
executed in the descriptor, trusted descriptors cannot have the
REO bit set in their header. Doing so results in an error.

SIGNATURE types are available that allow a portion of the following command to not
be included in the keyed hash. This provides flexibility in changing the address or the
immediate data specified by a command. For example, the following command may a
LOAD command, which contains the command word itself followed by a pointer. These
SIGNATURE types would allow the command word to be part of the keyed hash but
would exclude the pointer from the calculation. The writer of the trusted descriptor is
responsible for using these SIGNATURE types only when the skipped information does
not need to be integrity protected, meaning any immediate data or any address is
permissible.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 261

NOTE
Skipping the signature over immediate data would allow a
malicious user to shorten the length of the immediate data and
insert additional commands that would not be included in the
keyed hash. Note that this could be done without altering the
overall length of the descriptor. To prevent this, it is
recommended that the first four bytes of an immediate
command always be protected by the keyed hash. Because the
length of the immediate data is included in the keyed hash, the
length cannot be altered such that additional commands can
substitute for a portion of the immediate data.

Table 7-86. SIGNATURE command format

31–27 26-20 19–16

CTYPE = 10010 Reserved TYPE

15-0

Reserved

Additional words of SIGNATURE command

8 Words to hold the Signature (these are used in types 0000, 0001 and 0010 only)

Table 7-87. SIGNATURE command field descriptions

Field Description

31-27

CTYPE

Command type

IF CTYPE=10010b : Signature command

26-20 Reserved

19-16

TYPE

See Table 7-88

15-0 Reserved

Table 7-88. TYPE field description

Type Meaning Instructions

0000 SIGNATURE command types 0000, 0001, or 0010 must be
the last command that is executed in a trusted descriptor. If
one of these types is used, the trusted descriptor signature
(the keyed hash value) immediately follows the command. It is
an error for a SIGNATURE command with one of these types
to appear anywhere other than at the end of the descriptor.

Type 0000, when executed, terminates execution of
the descriptor normally.

0001 Type 0001 indicates that the descriptor should be
rehashed and the keyed hash updated following
descriptor execution. This type is used in cases
where the descriptor could modify itself during
execution. Note that the rehash and update is
always done whether the descriptor was modified or
not. Following the rehash and update, descriptor
execution terminates normally.

Table continues on the next page...

SIGNATURE command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

262 NXP Semiconductors

Table 7-88. TYPE field description (continued)

Type Meaning Instructions

0010 Type 0010 indicates that the descriptor should be
rehashed and the keyed hash updated following
descriptor execution if, upon completion, the
MATH_Z bit is set. This type is used in cases where
the descriptor could modify itself during execution
but updating the keyed hash should be conditional.
This version allows the rehash and update to be
skipped when no change has been made to the
descriptor. If MATH_Z is 0, descriptor execution
immediately terminates normally. Otherwise,
descriptor execution terminates normally after the
rehash and update.

1010 SIGNATURE command types 1010, 1011, and 1100 are used
to include only a portion of the following command in the
keyed hash calculation, omitting the remainder of the
command from the calculation. There is no hash value
associated with this type, so it is an error for this type to
appear at the end of the descriptor. These types allow the
trusted descriptor to be modified with other offsets, addresses
and lengths without invalidating the signature. Note that the
SIGNATURE command is, itself, included in the hash so that
it cannot be added later.

Type 1010 instructs SEC to hash only the first 2
bytes of the next command.

1011 Type 1011 instructs SEC to hash only the first 3
bytes of the next command.

1100 Type 1100 instructs SEC to hash only the first 4
bytes of the next command.

Others Reserved

Two types of the final SIGNATURE command, 0001 and 0010 described in the above
table, will recompute and update the signature in memory. These types are used when the
trusted descriptor modifies itself and the modified version is to be used thereafter. Note
that it is up to the descriptor writer to ensure that the copy of the descriptor in memory is
updated using a STORE command. However, this update should only be done once all
other commands in the descriptor have completed successfully. That is, the penultimate
command should be the STORE to update the descriptor and the final command must be
the SIGNATURE command. (If the update was done earlier and an error was detected
prior to the SIGNATURE command running, the trusted descriptor could never be run
again since the signature won't match.) The final signature command will wait to run
until all reads have completed, all write data has been taken by the DMA, and all internal
moves have completed. However, the final signature command is not a Done Checkpoint,
which means that it will not wait for CHAs to complete.

7.20 JUMP (HALT) command
The JUMP command has the following uses:

• Alters the execution order of descriptor commands

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 263

• Pauses execution until specified conditions are satisfied
• Halts the execution of the descriptor if specified conditions are satisfied

JUMP command format shows the format of the JUMP command, and Table 7-90
describes the JUMP command field definitions.

The JUMP command may or may not be a checkpoint depending on its conditions and
type.

7.20.1 Jump type

The JUMP command has eight different types, distinguished by the value in the JUMP
TYPE field. All of these types specify a tested condition and take some execution flow
action if the tested condition evaluates as true, and simply continue with the next
command if the tested condition is false. See Test type for an explanation of what it
means for the tested condition to be true.

Four of these jump types are true conditional jumps, another two are conditional halts,
and the last two are a conditional subroutine call and a conditional subroutine return.
Regardless of the jump type, the execution of the command waits for any specified wait
conditions to be satisfied before the conditional action (jump, call, return, or halt) is
taken. Some wait conditions can be specified in the CLASS field (wait for the Class 1
CHA to be done, wait for the Class 2 CHA to be done, or both), and additional wait
conditions can be specified with the TEST CONDITION field (if JSL = 1).

7.20.1.1 Local conditional jump

The local conditional jump works as follows:

• If the tested condition is true, a JUMP command of the local conditional jump type
continues the execution sequence at a new point within the descriptor buffer.

• If the tested condition is false, the jump is not taken and execution continues with the
command that follows the JUMP command.

Local jumps are relative. The LOCAL OFFSET field is treated as an 8-bit 2's
complement number that is added to the position of the JUMP command within the
descriptor buffer. For example, a jump of one goes to the next 32-bit word and a jump of
two skips one 32-bit word. Backward jumps are performed using 2's complement
negative numbers.

JUMP (HALT) command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

264 NXP Semiconductors

A LOCAL OFFSET of 0 is a shorthand means of jumping back to the start of the
descriptor buffer, which is either the start of the job descriptor if there is no shared
descriptor or the start of the shared descriptor, if there is one. (see Figure 7-2)

7.20.1.2 Local conditional increment/decrement jump

The local conditional increment/decrement jump is simply a local conditional jump that
either increments or decrements a specified register, updates the math conditions based
upon the result, and then evaluates the selected math conditions to determine whether or
not the jump should be taken:

• If the tested condition is satisfied, command execution continues at a new point
within the descriptor buffer.

• If the tested condition is not satisfied, the jump is not taken and execution continues
with the command that follows the JUMP command.

Note that the increment and decrement jump types use a different JUMP command
format than the other jump types. The four most-significant bits of the TEST
CONDITION field are replaced with a SRC_DST field that specifies the register that is to
be incremented or decremented. The least significant four bits of the TEST CONDITION
field constitute the MATH CONDITION field, which specifies the tested conditions that
are evaluated to determine whether the jump is taken or not.

Any of the legal choices for the SRC0 field of the MATH command which are also legal
choices for the DEST field of the MATH command may be selected as the register to
increment or decrement. Use the same value to select the register as is used for the
MATH command.

7.20.1.3 Non-local conditional jump

The non-local conditional jump is just like the local conditional jump except that the
target of the jump must be the header of a job descriptor or trusted descriptor. Note that
the target descriptor may not be a shared descriptor nor may the target descriptor have a
shared descriptor. The pointer to the target descriptor is in the one or two words
following the JUMP command.

• If the tested condition evaluates to true, the jump is taken.
• If the tested condition evaluates to false, the jump is not taken and execution

continues with the command following the pointer.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 265

NOTE
It is permissible to JUMP from a job descriptor to another job
descriptor or from a job descriptor or a trusted descriptor to
another trusted descriptor, but jumping from a trusted descriptor
to a job descriptor results in an error.

7.20.1.4 Conditional halt

This JUMP command is actually a conditional halt, meaning it stops the execution of the
current descriptor if the tested condition evaluates to true. In this case the PKHA/Math
condition bits (see the "TEST CONDITION bits when JSL=0" column in the TEST
CONDITION field in JUMP command format) are written out right-justified in the SSED
field of the job termination status word (see Job termination status/error codes).

If the tested condition evaluates to false, the descriptor is not halted and execution instead
continues with the command that follows the jump.

NOTE
If the specified conditions evaluate as true, this command will
always result in a nonzero status being returned for this job.
Therefore, such a job will always appear to have encountered
an error. The 8-bit error code will, as described above, be the
PKHA and Math status flags rather than one of the predefined
error codes.

7.20.1.5 Conditional halt with user-specified status

A JUMP command with the user-specified status option is another type of conditional
halt. If the tested condition is true, it stops execution of the descriptor but instead of
writing the PKHA/Math condition bits, this conditional halt writes out the value in the
LOCAL OFFSET field (again, right-justified in the SSED field of the job termination
status word). The interpretation of the code in the LOCAL OFFSET field is user-
specified, so it could be used during debugging to indicate that execution reached a
certain point in a particular descriptor. If the tested condition evaluates to false, execution
continues with the command following the jump.

NOTE
If the specified conditions evaluate as true, and the LOCAL
OFFSET field is nonzero, this command will result in a nonzero
status being returned for this job. That is, it will appear that
such a job encountered an error. The 8-bit error code will, as

JUMP (HALT) command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

266 NXP Semiconductors

described above, be a copy of the LOCAL OFFSET field rather
than one of the predefined error codes.

NOTE
If the specified conditions evaluate as true, and the LOCAL
OFFSET is zero, this command will terminate execution of the
descriptor with normal status. That is, it will appear that such a
job terminated normally. This is a convenient way to terminate
execution in the middle of a descriptor when it can be
determined that all work is done rather than having to jump to
the end of the descriptor.

7.20.1.6 Conditional subroutine call

A JUMP command with the subroutine call option is another type of local conditional
jump. If the tested condition is true, it jumps to the specified location in the descriptor
buffer but also saves the return address. The return address is the location immediately
following the JUMP command. If the tested condition evaluates to false, execution
continues with the command following the JUMP.

Note that only one return address can be saved, so subroutine calls cannot be nested. The
descriptor writer is responsible for enforcing this as no error will be thrown if subroutine
calls are nested.

NOTE
A built-in protocol is, in fact, also a special subroutine call. The
return address is used to note where execution should resume
following the execution of the built-in protocol. Therefore,
while a protocol may be called from within a subroutine, a
subsequent subroutine return will return to the command
following the protocol command rather than the command
following the subroutine call.

Each time a conditional subroutine call is taken or a built-in protocol is started, the return
address is saved. That return address will be maintained until it is overwritten by another
conditional subroutine call or built-in protocol. Therefore, it is possible to have one
subroutine call which corresponds to multiple subroutine returns. It is also possible to
match subroutine returns with calls to built-in protocols.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 267

7.20.1.7 Conditional subroutine return

A JUMP command with the subroutine return option is another type of local conditional
jump. In this case the local offset is ignored because the target of the jump is taken from
the previously saved return address. If the tested condition is true, the subroutine return
jumps to the saved return address. This address is the location immediately following the
most recently executed command which updated the return address. One command which
updates the return address is a conditional subroutine call in which the tested condition
evaluated as true. The other command which updates the return address is a built-in
protocol. If the tested condition evaluates to false, execution continues with the command
following the subroutine return command.

NOTE
See the previous section, Conditional subroutine call, for
important details on the use of the conditional subroutine
return.

7.20.2 Test type

The TEST TYPE field is used to specify when the conditional jump/halt tested condition
is considered to be met. The test type options are:

• 00—All specified test conditions are true. (Logical AND of all conditions.)
• 01—All specified test conditions are false. (Logical NOR of all conditions.)
• 10—Any specified test condition is true. (Logical OR of all conditions.)
• 11—Any specified test condition is false. (Logical NAND of all conditions.)

To create an unconditional jump, use TEST TYPE = 00 (all specified conditions true) and
clear all TEST CONDITION bits because the tested condition is considered to be true if
no test condition bits are set.

To create an unconditional jump/halt with a JSL = 1 conditional wait condition, use
TEST TYPE = 10 (any specified condition is true). This always jumps or halts once the
wait is completed because the selected conditional wait condition(s) are always true after
the wait is completed.

A local conditional jump with offset 1 (signifying a jump to the following command) is a
no-op because the next command in sequence is executed whether or not the jump is
taken. This is true regardless of the TEST TYPE and TEST CONDITION settings.
However, a wait condition can be specified to prevent the next command from executing
until the conditions are satisfied. This is a common use case for the local conditional
jump.

JUMP (HALT) command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

268 NXP Semiconductors

7.20.3 JSL and TEST CONDITION fields

The JSL field selects between two different interpretations of the TEST CONDITION
field:

• When JSL = 0, the conditional jump/halt bits select various MATH and PKHA status
conditions. These are used to jump or halt if the tested condition is satisfied.

• When JSL = 1, the bits in the TEST CONDITION field can affect the action taken by
the JUMP Command in two ways.

• Some of the TEST CONDITION bits are conditional jump/halt bits. The JQP,
SHRD, and SELF test conditions are typically used to avoid storing data that the
next descriptor might change or to prevent reloading data that is already
available because it was left by the previous descriptor.

• The remainder of the TEST CONDITION bits are conditional wait bits. The
CALM, NIP, NIFP, NOP, and NCP conditional wait bits are used to time loads,
moves, and stores properly. If conditional wait bits are set the JUMP command
stalls until all of the specified wait conditions become true. All of the conditional
wait bits must evaluate to true independent of the TEST TYPE specified. In
other words, you can't wait for one of two conditional wait conditions to become
true; you must wait for both. Once all the contional wait conditions are true, the
jump or halt either occurs or not, depending upon whether all of the specified
conditions are satisfied. Note that once the wait has completed, the selected
conditional wait conditions are always true; because they are evaluated as part of
the tested condition, they can affect whether the jump or halt action is taken.
Note that the CLASS bits are, in fact, conditional wait bits even though they are
not used in the decision on whether to take the JUMP.

For example, if a JUMP command is executed with JSL = 1 and the TEST CONDITION
bits NIP, NIFP, JQP, and SELF are set, the JUMP command stalls until both of the
following are true:

• No input to the input data FIFO is pending (NIP).
• No input to the information FIFO is pending (NIFP).

Because these are conditional wait bits, the command waits until all of the wait
conditions are true before evaluating the remaining conditions. The evaluation depends
upon the test conditions that are selected, the state of the selected conditions, and the
value in the TEST TYPE field:

• TEST TYPE = 00 (if all conditions are true): the jump or halt occurs if another job
wants to share this shared descriptor (JQP) and this shared descriptor is running in
the same DECO (SELF) as the one from which it was shared.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 269

• TEST TYPE = 01 (if all conditions are false): the jump or halt never occurs because
the NIP and NIFP conditions are true after the wait completes.

• TEST TYPE = 10 (if any condition is true): the jump or halt always occurs because
the NIP and NIFP conditions are true after the wait completes.

• TEST TYPE = 11 (if any condition is false): the jump or halt occurs if no job wants
to share this shared descriptor (JQP) or this shared descriptor is not running in the
same DECO (SELF) as the one from which it was shared.

7.20.4 JUMP command format
Table 7-89. JUMP command format

31-27 26-25 24 23-20 19-18 17-16

CTYPE = 10100 CLASS JSL JUMP TYPE Reserved TEST
TYPE

15-8 7-0

Format used with all jump types
except 0001 and 0011

TEST CONDITION LOCAL OFFSET

15-12 11-8 7-0

Format used with jump types 0001
and 0011

SRC_DST MATH CONDITION LOCAL OFFSET

Additional words of JUMP command

Pointer (one or two words); see Address pointers) (this field is present for non-local
JUMPs only)

Table 7-90. JUMP command field descriptions

Field Description

31-27

CTYPE

Command type

If CTYPE=10100 : JUMP command

26-25

CLASS

Class

Wait until specified class type CHA(s) is done before evaluating jump/halt conditions. For CLASS != 00, this
makes the JUMP command a DONE checkpoint.

If CLASS=00 : None

If CLASS=01 : Class 1

If CLASS=10 : Class 2

If CLASS=11 : Both Class 1 and Class 2

24

JSL

Jump Select Type

Selects which definition of the TEST CONDITION field to use.

If JSL=0 : MATH and PKHA status conditions

If JSL=1 : Various jump/halt and wait conditions (Note that JSL=1 is prohibited with jump types 0001 and 0011
and such usage will result in an error.)

Table continues on the next page...

JUMP (HALT) command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

270 NXP Semiconductors

Table 7-90. JUMP command field descriptions (continued)

Field Description

23-20

JUMP TYPE

Jump Type

Specifies the action taken by the JUMP Command. See Jump type for more information.

If JUMP TYPE=0000 : Local conditional jump. Evaluates the specified TEST CONDITION to determine
whether the local jump should be taken.

If JUMP TYPE=0001 : Local conditional increment jump. Increments the register specified in SRC_DST before
evaluating the specified MATH CONDITION.

If JUMP TYPE=0010 : Conditional subroutine call. Evaluates the specified TEST CONDITION to determine
whether the local subroutine call should be taken.

If JUMP TYPE=0011 : Local conditional decrement jump. Decrements the register specified in SRC_DST
before evaluating the specified MATH CONDITION.

If JUMP TYPE=0100 : Non-local conditional jump. Evaluates the specified TEST CONDITION to determine
whether the non-local jump should be taken.

If JUMP TYPE=0110 : Conditional subroutine return. Evaluates the specified TEST CONDITION to determine
whether the subroutine return should be taken.

If JUMP TYPE=1000 : Conditional Halt. If the specified TEST CONDITION is true, this returns the PKHA/
MATH bits as status. (see "TEST CONDITION bits when JSL=0" column in the TEST CONDITION field) and
halts descriptor execution with error status.

If JUMP TYPE=1100 : Conditional Halt with user-specified status. If the specified TEST CONDITION is true,
this returns the value in the LOCAL OFFSET field as status and halts descriptor execution with error status
unless the LOCAL OFFSET is zero, in which case descriptor execution terminates normally.

All other codes are reserved, and will generate an error.

19-18 Reserved

17-16

TEST TYPE

Test Type. This field defines how the condition code bits (see TEST CONDITION field) should be interpreted.
See Test type for more information.

If TEST TYPE=00 : Jump/halt if ALL selected conditions are true. That is, jump or halt if all the status
conditions are true for all TEST CONDITION bits that are 1. Note that if JSL = 1 and one or more conditional
wait bits is set, the command waits for all selected conditional wait conditions to be true before the conditional
jump/halt conditions are evaluated. The jump/halt then takes place if these conditions are all true.

If TEST TYPE=01 : Jump/halt if ALL selected conditions are false. That is, jump or halt if all the status
conditions are false for all TEST CONDITION bits that are 1. Note that if JSL=1 and one or more Conditional
Wait bits is set, the command will wait for all selected Conditional Wait conditions to be true and the jump/halt
will not take place (since the Condition Wait condition(s) are now true). If no Conditional Wait bits are set, the
jump/halt will take place if all of the selected Conditional Jump/Halt conditions are false.

If TEST TYPE=10 : Jump/halt if ANY selected condition is true. That is, jump or halt if any status condition is
true for a TEST CONDITION bit that is 1. Note that if JSL=1 and one or more Conditional Wait bits is set, the
command will wait for all selected Conditional Wait conditions to be true and then the jump/halt will take place
(since the Condition Wait condition(s) are now true). If no Conditional Wait bits are set, the jump/halt will take
place if any of the selected Conditional Jump/Halt conditions are true.

If TEST TYPE=11 : Jump/halt if ANY selected condition is false. That is, jump or halt if any status condition is
false for a TEST CONDITION bit that is 1. Note that if JSL=1 and one or more Conditional Wait bits is set, the
command will wait for all selected Conditional Wait conditions to be true and then Tested Condition will be
evaluated. Whether a wait occurs or not, the jump/halt will take place if any selected Conditional Jump/Halt
condition is false.

15-8

TEST
CONDITION

Test Condition.This 8-bit field is used with all jump types except 0001 and 0011. The interpretation of the
TEST CONDITION field depends upon the value of the JSL field, a shown in Table 7-91. See JSL and TEST
CONDITION fields for more information.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 271

Table 7-90. JUMP command field descriptions (continued)

Field Description

15-12

SRC_DST

Source/Destination. This four-bit field is used only with jump types 0001 and 0011. It replaces the most-
significant four bits of the TEST CONDITION field. This field is used to select the register that will be
incremented (jump type 0001) or decremented (jump type 0011) before the selected math condition is
evaluated to determine whether the local jump will be taken. For 8-byte registers, only the least-significant 4
bytes are used. (That is, the length of the math operation is restricted to 4 bytes.)

If SRC_DST=0000 : Math Register 0

If SRC_DST=0001 : Math Register 1

If SRC_DST=0010 : Math Register 2

If SRC_DST=0011 : Math Register 3

If SRC_DST=0101 : Math Register 4

If SRC_DST=0110 : Math Register 5

If SRC_DST=0111 : DECO Protocol Override Register

If SRC_DST=1000 : Sequence In Length (SIL)

If SRC_DST=1001 : Sequence Out Length (SOL)

If SRC_DST=1010 : Variable Sequence In Length (VSIL)

If SRC_DST=1011 : Variable Sequence Out Length (VSOL

If SRC_DST=1101 : Math Register 6

If SRC_DST=1110 : Math Register 7

All other values are reserved.

11-8

MATH
CONDITION

Math condition. This four-bit field is used only with jump types 0001 and 0011. It is identical with the
least-significant four bits of the TEST CONDITION field and uses the same definitions. This field is used
to select the math conditions that will be evaluated to determine whether the local jump should be taken.

bit 11 bit 10 bit 9 bit 8

MATH N MATH Z MATH C MATH NV

The result is negative. The result is zero. The operation resulted in
a carry or borrow.

Used for signed
compares. This is the
XOR of the sign bit and
2's complement overflow.

7-0

LOCAL
OFFSET

For local jumps this field specifies the offset of the JUMP target from the JUMP command's address in the
descriptor buffer. This field is ignored for non-local JUMPs. If the LOCAL OFFSET is 0, the target is the start
of the Descriptor Buffer. For non-zero values, the target address is relative to the JUMP Command. That is,
the field is interpreted as an 8-bit 2's complement number that is added to the index of the JUMP Command to
yield the 32-bit word of the target. For Halt with status, the LOCAL OFFSET will be returned in Descriptor
status. This will show up in the Output Job Status as the USTA field. If nonzero on halt with status, an error is
reported.

31-0

POINTER

Pointer (32-bit or 64-bit). This field is present only for non-local jumps. This is the address of the Descriptor to
which to jump if the jump is taken.

JUMP (HALT) command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

272 NXP Semiconductors

Table 7-91. TEST CONDITION bit settings

Bit
#

TEST CONDITION bits when JSL=0 TEST CONDITION bits when JSL=1

15 PKHA
IS_ZERO

For Finite Field
operations the result
of a PKHA operation
is zero. For ECC
operations, the
result is a Point at
Infinity.

Conditional
Jump/Halt

JQP Job Queue Pending. The Job Queue
Controller has identified that another job
wants to share this Shared Descriptor.
This bit can be used to avoid storing data
that the next Shared Descriptor would
just refetch. This condition is false if this
is not a Shared Descriptor.

Conditional
Jump/Halt

14 PKHA
GCD_1

The greatest
common divisor of
two numbers is 1
(that is, the two
numbers are
relatively prime).

Conditional
Jump/Halt

SHRD SHARED. This Shared Descriptor was
shared from a previously executed
Descriptor. Depending on the type of
sharing, this bit can be tested to
conditionally jump over commands. For
example, if the keys are shared they will
already be in the Key Registers so
decrypting and placing them in the Key
Registers must be skipped. This
condition is false if this is not a Shared
Descriptor.

Conditional
Jump/Halt

13 PKHA
IS_PRIME

The given number is
probably prime (that
is, it passes the
Miller-Rabin
primality test).

Conditional
Jump/Halt

SELF The SELF bit indicates that this Shared
Descriptor is running in the same DECO
as the one from which it was shared.
Hence, the Shared Descriptor may be
able to assume that Context Registers,
CHAs, and other items are still valid or
available. This condition is false if this is
not a Shared Descriptor.

Conditional
Jump/Halt

12 Reserved Must be 0. — CALM All pending bus transactions for this
DECO, whether internal or external, have
completed.

Conditional
Wait

11 MATH N The negative math
flag is set.

Conditional
Jump/Halt

NIP No input pending. No external loads,
whether from LOAD, FIFO LOAD, SEQ
LOAD, or SEQ FIFO LOAD, are pending.

Conditional
Wait

10 MATH Z The zero math flag
is set.

Conditional
Jump/Halt

NIFP No iNformation FIFO entries pending.
The NFIFO is empty and no data is
waiting in the C1 or C2 alignment blocks.

Conditional
Wait

9 MATH C The carry/borrow
math flag is set.

Conditional
Jump/Halt

NOP No output pending. No external stores,
whether from STORE, FIFO STORE,
SEQ STORE, or SEQ FIFO STORE, are
pending.

Conditional
Wait

8 MATH NV The NV math flag is
set. This is the XOR
of the sign bit and
2's complement
overflow.

Conditional
Jump/Halt

NCP No context load pending. There is no
data in flight toward the context registers
via the internal or external DMA.

Conditional
Wait

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 273

7.21 MATH and MATHI Commands
The MATH and MATHI commands compute simple mathematical functions of values in
registers or specified via immediate data. The result can be written to a specified
destination register or the result can be dropped. The commands set MATH condition bits
that reflect the result of the mathematical operation (see MNV, MN, MC, and MZ). These
condition bits can be tested with the JUMP commands, providing SEC with the flexibility
to implement conditional processing constructs, including loops. In addition, the MC bit
can be used to perform addition and subtraction of values larger than the math registers
via borrow or carry.

Length must always be specified in the command, as it determines the size of the
arguments used to set the MATH status bits. Note that the LENGTH field is used to mask
off results after the math operation, not before, so the user must present properly sized
data.

The MATHI command is useful when a one-byte immediate value is to be used. Since
this immediate value is contained within the MATHI command word, this allows the
MATHI command to be a single word rather than forcing the use of a two-word MATH
command. This is useful since one-byte arguments are common. In some large
descriptors, saving this one word several times can make the difference between fitting in
the descriptor buffer and having to use multiple descriptors.

Table 7-92. MATH and MATHI Commands, format

31–27 26 25 24 23–20 19–16

MATH: CTYPE = 10101 IFB NFU STL FUNCTION SRC0

MATHI: CTYPE = 11101 Reser
ved

NFU SSEL FUNCTION SRC

15–12 11–8 7-4 3–0

MATH: SRC1 DEST Reserved LEN

MATHI: DEST IMM_VALUE LEN

Table 7-93. MATH command, field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=10101b : MATH command (fields defined in this table)

If CTYPE=11101b : MATHI command (fields defined in table Table 7-94 below)

26

IFB

Immediate Four Bytes

If IFB=0 : Include full length immediate data in descriptor (length specified in LEN field)

If IFB=1 : Use only four bytes of immediate data even if LEN is 8. This shortens the descriptor by one
word when 1, 2, or 4-byte immediate data is to be used in an 8-byte operation. The immediate data will
automatically be zero padded out to 8 bytes. This bit has no effect if the LEN is less than 8.

Table continues on the next page...

MATH and MATHI Commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

274 NXP Semiconductors

Table 7-93. MATH command, field descriptions (continued)

Field Description

25

NFU

No Flag Update

If NFU=0 : Math flags will be updated as appropriate.

If NFU=1 : Preserve the existing math flag values by blocking all updates to math flags.

24

STL

Stall.

If STL=0 : Don't stall the execution of the MATH command.

If STL=1 : Stall MATH command. Causes the MATH command to take one extra clock cycle.

23-20

FUNCTION

This field specifies which function to perform, as listed in the table below titled Table 7-95. The operands
are specified in the SRC0 and SRC1 fields and the result is written to the destination specified in the
DEST field.

19-16

SRC0

The SRC0 field indicates the source of operand 0.

Source of Operand 0 SRC0 Field Value

Math Register 0 0h

Math Register 1 1h

Math Register 2 2h

Math Register 3 3h

Math Register 4 5h

Math Register 5 6h

Math Register 6 Dh

Math Register 7 Eh

Immediate data from descriptor words following
the MATH command1

4h

Protocol Override (DPOVRD), left-extended with
0s

7h

Sequence In Length (SIL), left-extended with 0s 8h

Sequence Out Length (SOL), left-extended with 0s 9h

Variable Sequence In Length (VSIL) Ah

Variable Sequence Out Length (VSOL) Bh

ZERO (the value 0000 0000h) is used as operand
0

Ch

ONE (the value 0000 00001) is used as operand 0 Fh

15-12

SRC1

The SRC1 field indicates the source of operand 1.

Source of Operand 1 SRC1 Field Value

Math Register 0 0h

Math Register 1 1h

Math Register 2 2h

Math Register 3 3h

Math Register 4 5h

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 275

Table 7-93. MATH command, field descriptions (continued)

Field Description

Source of Operand 1 SRC1 Field Value

Math Register 5 6h

Math Register 6 Dh

Math Register 7 Eh

Immediate data from descriptor words following
the MATH command1

4h

Protocol Override (DPOVRD), left-extended with
0s

7h

Variable Sequence In Length (VSIL) 8h

Variable Sequence Out Length (VSOL) 9h

Input Data FIFO2,3 Ah

Output Data FIFO3,4 Bh

ONE (the value 0000 0001h) is used as operand 1 Ch

ZERO (the value 0000 00000) is used as operand
1

Fh

11-8

DEST

The DEST field specifies the destination for the result of the command as follows:

Destination for MATH operation result DEST Field Value

Math Register 0 0h

Math Register 1 1h

Math Register 2 2h

Math Register 3 3h

Math Register 4 5h

Math Register 5 6h

Math Register 6 Dh

Math Register 7 Eh

Protocol Override 7h

Sequence In Length 8h

Sequence Out Length 9h

Variable Sequence In Length Ah

Variable Sequence Out Length Bh

No Destination. The result should not be written
anywhere.5

Fh

All other values for this field are reserved.

7-4 This field is reserved. All bits must be 0.

3-0

LEN

LEN denotes the length, in bytes, of the operation and the immediate value, if there is one.

1h : 1 byte

2h : 2 bytes

Table continues on the next page...

MATH and MATHI Commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

276 NXP Semiconductors

Table 7-93. MATH command, field descriptions (continued)

Field Description

4h : 4 bytes

8h : 8 bytes

9h : 8 bytes, with word swapping performed prior to use if SEC STATUS REGISTER[PLEND]=0 (i.e.
Little-Endian). LEN=9h is equivalent to LEN=8h (no word swapping) if SEC STATUS
REGISTER[PLEND]=1 (i.e. Big-Endian).6

All other values are reserved.

NOTE: If the selected FUNCTION is shift_l or shift_r, a LEN value other than 8h may yield unexpected
results. Also note that the IFB bit in the command can be used to override the LEN field for the
immediate value. When set, the IFB (Immediate Four Bytes) bit allows the MATH command to
use a 1, 2, or 4-byte immediate value (0 padded to the left) in the descriptor even though it is
doing an 8-byte operation.

NOTE: If the Length is 8h but the destination is only 4 bytes, an error will be generated. The 4-byte
destinations are SIL, SOL, and POVRD.

1. If the data is less than 8 bytes, it is left-extended with 0s. If the data is less than 8 bytes it must be right-aligned. If SRC0
and SRC1 both specify Immediate data, the SRC0 data is in the first word following the MATH command and the SRC1 data
is in the second word, and either the LEN field must be set to 4 bytes or the IFB field must be set to 1, else an error is
generated.

2. The input data FIFO is popped when the MATH command executes unless the function is shld (shift and load). Note that
this means a final pop may have to be done if the data consumed by the shld is the end of the data. If this is the last data to
be consumed by DECO, then it is not necessary to pop the data, because leaving it there is not a problem if the input data
FIFO is reset. The input FIFO is not automatically reset between job descriptors with the same shared descriptor unless the
CIF bit in the Shared Descriptor is set. The input data FIFO is always reset betwen jobs without, or with different, shared
descriptors. Note that the descriptor must have already created an NFIFO entry to get data to the DECO alignment block,
from which the MATH command will pop it.

3. If SRC1 specifies either input data FIFO or output data FIFO, the MATH command does not execute until the
corresponding FIFO has valid data. It is up to the user to ensure that a sufficient amount of data is present. The user must
also realize that data comes out of the FIFOs left aligned. This means that if there are only five bytes, the data is in the left 5
bytes, not in the right 5 bytes, of the 8-byte source word.

4. The output data FIFO is popped when the MATH command executes unless the function is shld (shift and load). Note that
this means a final pop may have to be done if the data consumed by the shld is the end of the data. If this is the last data to
be consumed by DECO, then it is not necessary to pop the data, because leaving it there is not a problem if the output data
FIFO is reset. The output FIFO is always cleared between descriptors whether shared or not.

5. No Destination is useful for setting flags when the actual result is not needed. An error will be generated if No Destination
is selected when the FUNCTION is shift_l or shift_r.

6. An error will be generated for LEN=9h if IFB=1 or if both or neither of the operands is Immediate.

Table 7-94. MATHI command, field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=10101b : MATH command (see field definitions in table Table 7-93 above)

If CTYPE=11101b : MATHI command (fields defined in this table)

26 Reserved. Must be 0.

25

NFU

No Flag Update

If NFU=0 : Math flags will be updated as appropriate.

If NFU=1 : Preserve the existing math flag values by blocking all updates to math flags.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 277

Table 7-94. MATHI command, field descriptions (continued)

Field Description

24

SSEL

SSEL. Source Select. Selects the type and order of the operands to the math function: operand 0
<function> operand 1 -> destination

SSEL value operand 0
specified by

math function
specified by

operand 1
specified by

destination
specified by

0 SRC0 for MATH
command

FUNCTION IMM_VALUE DEST

1 IMM_VALUE FUNCTION SRC1 for MATH
command

DEST

NOTE: If FUNCTION=Ah (FBYT) it is illegal to set SSEL to 1.

23-20

FUNCTION

This field specifies which function to perform, as listed in the table below titled Table 7-95. The
operands are specified in the SRC field and the IMM_VALUE field, and the result is written to the
destination specified in the DEST field.

19-16

SRC

The SRC field indicates the source of one of the operands. The SRC field has two definitions, selected
via the SSEL field:

• If SSEL=0: the SRC field is defined the same as the MATH command's SRC0 field (see SRC0)
except that IMM (4h) is not supported and will result in an error.

• If SSEL=1: the SRC field is defined the same as the MATH command's SRC1 field (see SRC1)
except that IMM (4h) is not supported and will result in an error.

15-12

DEST

The destination for the result of the math operation. The MATHI command DEST field is defined the
same as the MATH command's DEST field (see DEST), but is shifted to the left 4 bits to make room for
the IMM_VALUE field.

11-4

IMM_VALUE

The IMM_VALUE field contains an 8-bit immediate value that is left-extended with 0s. This is used as
either operand 0 or operand 1, as specified in the SSEL field.

3-0

LEN

LEN denotes the length, in bytes, of the operation (and the amount by which the IMM_VALUE is left-
extended with 0s).

1h : 1 byte

2h : 2 bytes

4h : 4 bytes

8h : 8 bytes

All other values are reserved.

NOTE: If the selected FUNCTION is shift_l or shift_r, a LEN value other than 8h may yield unexpected
results.

NOTE: If the Length is 8h but the destination is only 4 bytes, an error will be generated. The 4-byte
destinations are SIL, SOL, and POVRD.

Table 7-95. FUNCTION field values

Value Type Description Result

0h add Perform addition operation on operand 0 and operand 1. operand 0 + operand 1

1h add_w_carry Perform addition with a carry bit operation on operand 0 and
operand 1.

operand 0 + operand 1 +
MC

Table continues on the next page...

MATH and MATHI Commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

278 NXP Semiconductors

Table 7-95. FUNCTION field values (continued)

Value Type Description Result

2h sub Perform subtraction operation on operand 0 and operand 1. operand 0 - operand 1

3h sub_w_borrow Perform subtraction with borrow operation on operand 0 and
operand 1.

operand 0 - operand 1 -
MC

4h or Perform bitwise OR operation on operand 0 and operand 1 operand 0 | operand 1

5h and Perform bitwise AND operation on operand 0 and operand 1 operand 0 & operand 1

6h xor Perform bitwise XOR operation on operand 0 and operand 1 operand 0 ^ operand 1

7h shift_l Perform shift left operation. operand 0 should be shifted left by
operand 1 bits; can't be used with "No Destination"

operand 0 << operand 1

8h shift_r Perform shift right operation. operand 0 should be shifted right by
operand 1 bits; can't be used with "No Destination"

operand 0 >> operand 1

9h shld Perform 32-bit left shift of DEST and concatenate with left 32 bits
of operand 1. shld is only meaningful when DEST specifies Math
Registers 0-7. For all other destinations, this function will work like
an ADD with operand 0 set to 0. (That is, operand 1 will be placed
into DEST.) Note that if operand 1 and DEST are the same Math
Register, then shld would do a word swap.

Function type shld is prohibited for the MATHI command.

{DEST[31:0], operand
1[63:32]}

Ah zbyt or fbyt MATH command: zbyt. Find zero bytes in operand 0. The function
places into the destination seven bytes (if a 64-bit destination) or
three bytes (if a 32-bit destination) of zeros followed by a single
byte that contains a 1 in each bit position that corresponds to a
byte of operand 0 that is all zeros.

MATHI command: fbyt. Find the immediate byte in operand 0. The
function places into the destination seven bytes (if a 64-bit
destination) or three bytes (if a 32-bit destination) of zeros followed
by a single byte that contains a 1 in each bit position that
corresponds to a byte of operand 0 that is equal to IMM_VALUE.
For the fbyt function it is illegal to set SSEL=1.

result is shown at left

Bh swap_bytes Swap the order of the four bytes in the ms half of operand 0, and
independently swap the order of the four bytes in the ls half of
operand 0.

operand 0[39:32], operand 0[47:40], operand 0[55:48], operand
0[63:56],

operand 0[7:0], operand 0[15:8], operand 0[23:16], operand
0[31:24]

If this is used in conjunction with shld, the result of the two MATH
operations will be an "end-for-end" swap of all 8 bytes.

Function swap_bytes is prohibited for the MATHI command.

result is shown at left

All other values for this field are reserved.

NOTE: A Compare operation is accomplished by selecting FUNCTION=sub, with DEST=No Destination and then doing a
JUMP based on the CZ and/or CN flags.

All MATH and MATHI commands take one clock cycle to execute except for the shift_l
and shift_r functions. For the shift_l and shift_r functions, the number of bit positions that
the data is shifted is specified in operand 1.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 279

• If the data is to be shifted 64 or more bit positions, the shift command takes two
clocks. One clock decodes the command, and one clock stores all zeros in the DEST
register. Because all bits are shifted off the end, the result is all zeros.

• If the data is to be shifted 63 or fewer bit positions, the shift_l and shift_r functions
take at most two clocks more than the number of bits in operand that are 1. The
shifter can shift any power-of-2 number of bit positions in one cycle, and there are up
to two additional cycles of overhead. If an intermediate shift result is all 0, the
remaining shifts are skipped, resulting in fewer clock cycles than the maximum.

Note that the shift_l and shift_r functions first copy the data specified by operand 0 into
the register specified by DEST and then shift the data in the DEST register. If the source
is 64 bits but the destination is a 32-bit register, the 64-bit source value is truncated to its
least-significant 32 bits before the shifting begins. A shift_l works as expected, but a
shift_r of data from a 64-bit source to a 32-bit destination shifts in 0s rather than shifts in
bits from the most-significant 32-bits of the source.

When one source, operand 0 or operand 1, is immediate, then the length may be any legal
value. If 1, 2, or 4 bytes, the value is right-aligned in the word following the command. If
the value is 8 bytes, then the value is in the two words that follow the command. Note
that the immediate data can be 4 bytes even if the LEN is 8 bytes if the IFB bit is set.

7.22 SEQ IN PTR command
The Sequence In Pointer (SEQ IN PTR) command is used to specify the starting address
for an input sequence and the length of that sequence (see SEQ vs non-SEQ commands).
Only one input sequence may be active within the DECO at any one time. An input
sequence is initiated by executing a SEQ IN PTR command with PRE = 0. This causes
the following:

• Starting address of the input sequence to be set to the value in the Pointer field or to
the original pointer if RTO=1 or to the original output sequence pointer if SOP=1.

• The Sequence In Length register to be set to the value in the LENGTH field (if EXT
= 0) or the EXT_LENGTH field (if EXT = 1). If rewinding, the LENGTH or
EXT_LENGTH field is added to the current length.

Note that if the EXT bit is 0, the EXT_LENGTH field is omitted from the SEQ IN PTR
command.

The input sequence terminates when one of the following occurs:

• All input data is utilized.

SEQ IN PTR command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

280 NXP Semiconductors

• An error occurs.
• A new input sequence is started by executing a SEQ IN PTR command with PRE =

0.

An error is flagged if a SEQ command attempts to input data if the execution of that
command would cause the remaining length to go below 0. To extend the length of the
sequence any number of additional SEQ IN PTR commands may be executed with PRE
= 1. If PRE = 1, the value in the LENGTH field (if EXT = 0) or the EXT LENGTH field
(if EXT = 1) is added to the current Sequence In Length register value, but the address for
the input sequence is unaffected. In this case the SEQ IN PTR command does not include
a Pointer field. Additional length may also be added via the MATH and MATHI
commands.

If the same input data needs to be processed again, the input pointer can be restored to the
original starting address by executing a SEQ IN PTR with RTO = 1. However, if the job
descriptor using this input sequence was submitted through the Queue Manager Interface,
scatter tables are active, and input buffers are being released, it is not possible to back up
if buffers have already been released. The SEQ IN PTR command does not include a
Pointer field in this case.

Table 7-96. SEQ IN PTR command, format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CTYPE = 11110 RBS INL SGF PRE EXT RTO RJD SOP CTRL Rese
rved

Rese
rved

15–0

LENGTH (used if EXT = 0)

Optional words of SEQ IN PTR command:

This pointer
is omitted if
PRE=1 or

RTO=1

Pointer (one or two words; see Address pointers)

This field is
omitted if
EXT=0

EXT_LENGTH (present if EXT = 1) (one word)

Table 7-97. SEQ IN PTR command, field descriptions

Field Description

31-27

CTYPE

Command Type

If CTYPE=11110b : SEQ IN PTR command

26

RBS

Release Buffers

If RBS=0 : Do not release buffers.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 281

Table 7-97. SEQ IN PTR command, field descriptions (continued)

Field Description

If RBS=1 : Release buffers from input frame. DECO releases buffers from the input frame after using them. It
is an error if RBS = 1 when the Queue Manager Interface is not the job source. DECO releases only data
buffers and scatter/gather tables referenced, directly or indirectly, by a top-level scatter/gather table but does
not release the top-level scatter/gather table. If the table was specified by the original job descriptor's SEQ IN
PTR command, then the top-level scatter/gather table will be released following the completion of the job by
the Queue Manager Interface. If the input frame is not from a scatter/gather table, it is handled in the same
manner as the top-level scatter/gather table.

25

INL

In-Line Descriptor. This specifies that a new descriptor is to be found at the start of the data pointed to by the
sequence.

If INL=0 : No in-line descriptor

If INL=1 : In-line descriptor present. An in-line descriptor is found at the start of the data pointed to by the
sequence. DECO reads that descriptor (which must not have a shared descriptor) and then executes it.
Therefore, a SEQ IN PTR with INL = 1 is the last command that is executed in the current descriptor.

If the INL bit is 1 and the current Input Sequence length is not as large as the in-line descriptor, an error is
flagged. Note that it is an error for INL and RJD to both be 1.

See Using in-line descriptors for more information.

24

SGF

Scatter/Gather Table Flag.

If SGF=0 : Pointer points to actual data.

If SGF=1 : Pointer points to a scatter/gather table. SGF is ignored if RTO=1.

23

PRE

Previous. Add more length to the previously specified length of the input sequence.

If PRE=0 : The sequence pointer is set to the value of the Pointer and the input sequence length is set to the
value specified in the LENGTH or EXT LENGTH field.

If PRE=1 : Command has no pointer field, and the specified length (LENGTH or EXT LENGTH) is added to
the current input sequence length.

It is an error for the PRE bit and the RTO bit to both be set.

22

EXT

Extended Length

If EXT=0 : Input data length value is in the 16-bit LENGTH field in the first word of the command (before the
pointer). The EXT LENGTH field is omitted from the command.

If EXT=1 : Input data length value is in the 32-bit EXT LENGTH following the pointer. The 16-bit LENGTH
field is ignored.

21

RTO

Restore. Used to restore an input sequence.

If RTO=0 : Do not restore.

If RTO=1 : Restore. This command has no POINTER field. The length specified in LENGTH or EXT
LENGTH is added to the current Input Sequence length. The original sequence address and RBS and SGF
bits are automatically restored. The intended use is to be able to go back to the beginning of a sequence to
reprocess some or all of the data.

It is an error for the PRE bit and the RTO bit to both be set. SGF is ignored if RTO=1.

20

RJD

Replacement Job Descriptor

If RJD=0 : Don't replace job descriptor

If RJD=1 : Replace job descriptor. If there is no shared descriptor, and CTRL=0, this is synonymous with the
INL bit (that is, setting either bit yields the same result). However, if there is a shared descriptor, setting the
RJD bit causes the job descriptor to be replaced without affecting the shared descriptor, which will have
already been loaded. See Using replacement job descriptors for more information. It is an error if both RJD =
1 and INL = 1.

Table continues on the next page...

SEQ IN PTR command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

282 NXP Semiconductors

Table 7-97. SEQ IN PTR command, field descriptions (continued)

Field Description

NOTE: See the description below for the CTRL bit to understand how that bit can modify the above
behavior.

19

SOP

Sequence Out Pointer

If SOP=0 : This bit has no effect.

If SOP=1 : Start a new input sequence using the pointer and SGF bit used when the current output sequence
was defined. (If there was no previous sequence, behavior is undefined.) The length used is the length that
has already been written to the current output sequence. This functionality is used when a multi-pass
operation is required. The results of the first pass are stored in the output frame. By using the SOP bit, the
SEQ IN PTR command allows the second pass to reference the results of the first pass.

It is an error to assert SOP if RBS, PRE, EXT or RTO are set. SGF and LENGTH are ignored.

18

CTRL

CTRL. This bit is used in conjunction with the RJD bit to differentiate between a normal RJD and a control
RJD. See Using replacement job descriptors for more information.

If CTRL=0 and RJD=0 : This bit has no effect.

If CTRL=0 and RJD=1 : The new descriptor is the next data to be read from the input frame.

If CTRL=1 and RJD=0 : An error will be thrown.

If CTRL=1 and RJD=1 : The new descriptor is found following the shared descriptor in memory. If there is no
shared descriptor, an error will be thrown.

17 Reserved

16 Reserved

15-0

LENGTH

LENGTH. This is the length of the input frame.

If EXT = 0 : The LENGTH field specifies the number of bytes in (or to be added to) the input sequence. The
Extended Length word is omitted.

If EXT = 1 : The number of bytes in (or to be added to) the input sequence is specified in the Extended
Length field. The LENGTH field is ignored.

Optional words of SEQ IN PTR command:

31-0

POINTER

Pointer

Specifies the starting address for an Input Sequence. See Address pointers.

If PRE = 1,RTO =
1, or SOP = 1,
this field is
omitted.

31-0

EXT_LENGTH

Extended Length Field

If EXT = 0 : This field not present.

If EXT = 1 : The EXT LENGTH field specifies the number of bytes in (or to be added to)
the Input Sequence.

If EXT = 0, this
field is omitted.

7.23 SEQ OUT PTR command
The Sequence Out Pointer (SEQ OUT PTR) command is used to specify the starting
address for an output sequence and the length of that sequence (see SEQ vs non-SEQ
commands). Only one output sequence may be active within the DECO at any one time.

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 283

An output sequence is initiated by executing a SEQ OUT PTR command with PRE = 0.
This causes the following:

• The starting address of the output sequence to be set to the value in the Pointer field
or to the original pointer if rewinding.

• The Sequence Out Length register to be set to the value in the LENGTH field (if
EXT = 0) or the EXT LENGTH field (if EXT = 1). If rewinding, the LENGTH or
EXT_LENGTH field is added to the current length if REW = 10b and is ignored if
REW = 11b.

If the EXT bit is 0, the EXT LENGTH field is omitted from the SEQ OUT PTR
command.

The output sequence terminates when one of the following occurs:

• An error
• A new output sequence is started by executing a SEQ OUT PTR command with PRE

= 0.

To extend the length of the sequence, any number of additional SEQ OUT PTR
commands may be executed with PRE = 1. If PRE = 1, the value in the LENGTH field (if
EXT = 0) or the EXT LENGTH field (if EXT = 1) is added to the current value in the
Sequence Out Length register, but the address for the output sequence is unaffected. In
this case, the SEQ OUT PTR command does not include a Pointer field. Additional
length may also be added via the MATH and MATHI commands.

If the same output data needs to be processed again, the output pointer can be restored to
the original starting address by executing a SEQ OUT PTR using the REW field. The
SEQ OUT PTR command does not include a Pointer field in this case.

Table 7-98. SEQ OUT PTR command, format

31–27 26 25 24 23 22 21-20 19 18-17 16

CTYPE = 11111 Reserved SGF PRE EXT REW EWS Reserve
d

Re
ser
ved

15–0

LENGTH (used if EXT = 0)

Additional words of SEQ OUT PTR command:

This pointer is omitted if
PRE=1 or if rewinding

Pointer (one or two words; see Address pointers)

This word is omitted if
EXT=0

EXT LENGTH (used if EXT = 1)

SEQ OUT PTR command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

284 NXP Semiconductors

Table 7-99. SEQ OUT PTR command, field descriptions

Field Description

31-27

CTYPE

Command Type.

If CTYPE=11111b : SEQ OUT PTR command

26-25 Reserved

24

SGF

If SGF=0 : Pointer points to actual data.

If SGF=1 : Pointer points to a scatter/gather table.

23

PRE

Previous. Add more length to the previously specified length of the Output Sequence.

If PRE=0 : The sequence pointer is set to the value of the pointer and the Output Sequence Length is set to
the value specified in the LENGTH or EXT LENGTH field.

If PRE=1 : The SEQ OUT PTR command has no pointer field, and the specified length (LENGTH or EXT
LENGTH) is added to the current Output Sequence Length.

Note that it is an error if PRE = 1 and REW = 10b or 11b.

22

EXT

Extended Length

If EXT=0 : The output data length value is in the 16-bit LENGTH field in the first word of the command
(before the pointer). The EXT LENGTH field is omitted from the command.

If EXT=1 : The output data length value is in the 32-bit EXT LENGTH field following the pointer. The 16-bit
LENGTH field is ignored.

21-20

REW

Rewind. Used to rewind an Output Sequence.

If REW = 00b : Do not rewind.

If REW = 01b : Error

If REW = 10b : Rewind. This command has no POINTER field. The length specified in LENGTH or EXT
LENGTH is added to the current sequence output length. The original sequence address and SGF bit are
automatically restored. This allows returning to the beginning of a sequence to reprocess some or all of the
data. DECO automatically disables the counting of bytes written to the output frame. In order to re-enable
counting, use a write to the DECO CTRL Register.

If REW = 11b : Rewind and Reset. The same as 10b, except that any length provided is ignored, the current
output frame length is added back to the SOL (sequence output length) register and the tracking length 1 of
bytes written to the output frame is reset to 0. Care must be taken if the descriptor has modified the SOL
register other than as a result of decrements caused by SEQ STORE and SEQ FIFO STORE commands.
Since the number of bytes written to the output frame has been reset, counting such bytes remains enabled
in this case.

The REW = 10b or 11b functionality is used when a multi-pass operation is required. The results of the first
pass are stored in the output frame. Executing the SEQ OUT PTR command with REW = 11b allows the
second pass to start from the beginning of the output frame as if this were the original output stream. That
way the final status reported back contains the correct length.

19

EWS

Enable Write Safe.

When this bit is set, write-safe bus transactions are permitted for this output sequence. See AXI master
(DMA) interface.

18-16 Reserved

15-0

LENGTH

If EXT = 0 : The LENGTH field specifies the number of bytes in (or to be added to) the output sequence.

If EXT = 1 : The LENGTH field is ignored.

Optional words of SEQ OUT PTR command:

POINTER Pointer. Specifies the starting address for an Output Sequence. See Address pointers. If PRE = 1 or
REW != 00b, this
field is omitted.

Table continues on the next page...

Chapter 7 Descriptors and descriptor commands

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 285

Table 7-99. SEQ OUT PTR command, field descriptions (continued)

Field Description

One word

EXT LENGTH

If EXT = 0 : The EXT LENGTH field is omitted.

If EXT = 1 : The EXT LENGTH field specifies the number of bytes in (or to be added to)
the output sequence.

If EXT = 0, this
field is omitted.

1. DECO tracks how many bytes have been written to the output frame so that this number can be part of the status reported
when a job completes.

SEQ OUT PTR command

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

286 NXP Semiconductors

Chapter 8
Public Key Cryptography Operations
SEC implements, through protocol commands, a number of public (and private) key
functions. These are:

• DSA and ECDSA sign/verify
• Diffie-Hellman (DH) and ECDH key agreement
• ECC key generation (for ECDH, ECDSA, etc.)
• ECC public key validation
• DLC key generation for DH, DSA
• RSA public-key and private-key primitives, for use with RSA encryption/decryption

and RSA signature generation/verification
• RSA key-generation filnalization

SEC also contains a hardware block, Public-key hardware accelerator (PKHA)
functionality, which can be programmed directly for public key calculations.

8.1 Conformance considerations
The DSA and ECDSA key-generation, signing, verification, and Diffie-Hellman
functions described are intended to conform to the following specifications (except where
noted). For more information refer to the NIST Cryptographic Algorithm Validation
Program (CAVP) Certifications whitepaper, www.nxp.com/security, or consult these
standards:

• FIPS PUB 186-4, Digital Signature Standard (DSS), July 2013
• NIST SP800-90A, Recommendation for Random Number Generation Using

Deterministic Random Bit Generators, January 2012
• IEEE1363-2000, IEEE Standard Specifications for Public-Key Cryptography,

January 30, 2000
• ANSI X9.42-2003, Public Key Cryptography for the Financial Services Industry,

Agreement of Symmetric Keys Using Discrete Logarithm Cryptography, November
19, 2003

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 287

http://www.nxp.com/files/32bit/doc/support_info/FSLNISTCAVP.pdf
http://www.nxp.com/files/32bit/doc/support_info/FSLNISTCAVP.pdf
http://www.nxp.com/security

• ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry,
Key Agreement and Key Transport Using Elliptic Curve Cryptography, November
20, 2001

• ANSI X9.62-2005, Public Key Cryptography for the Financial Services Industry,
The Elliptic Curve Digital Signature Algorithm (ECDSA), November 16, 2005

The notation used is from IEEE 1363-2000 because only that document provides a set of
variable names and definitions consistent between both DSA and ECDSA.

Private keys for DSA and ECDSA, (as well as per-message secrets), are generated using
the method of extra random bits, equivalent to that described in FIPS 186-4, (Appendix
B.1.1). In B.1.1, c is a string of random bits, 64 bits longer than requested.

Then x = (c mod (q - 1)) + 1

SEC uses the following equivalent version.

x = c mod q; if (x = 0), choose another c

In both cases, x is uniformly distributed in the range [1, q-1].

Binary (aka Characteristic 2 or F2m) Elliptic Curves inputs and outputs are in polynomial
basis and in affine (x, y) coordinates.

Assurances for the validity of all domain parameters and public keys must be obtained
before invoking any of these functions. These functions assume that all domain
parameters and public keys are valid and are associated with each other.

8.2 Discrete-log key-pair generation
Some important characteristics and requirements of discrete-log key-pair generation is as
follows:

• DL KEY PAIR GEN is used to generate public key-pairs. There are four variations
to generate either prime field or binary field keys for either DSA or ECDSA.

• Each of the public key functions writes out the private key, followed by the public
key.

• DL KEY PAIR GEN requires the parameters listed in the following table. Note that
Gx,y and Wx,y are pointers to input buffers containing both an x and y coordinate. The
two coordinates must be the same length.

• There are two parameter lengths, size of the field (L), and size of the group or private
key modulus (N). These represent the size of the buffers, in bytes, required to hold
the input and output data, (not the bit lengths of the various parameters). Note that

Discrete-log key-pair generation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

288 NXP Semiconductors

the size of the buffers for Gx,y, Wx,y and a,b must be twice L, as each holds two
values of size L.

Table 8-1. Public key-generation parameters

Parameter Input/output Length Definition

q Input L Prime number or irreducible polynomial that creates the field

r Input N Order of the field of private keys or modulus for creating private keys

a,b Input 2L ECC curve parameters. For binary field curves, b' rather than b is used. (ECC
only.)

g or Gx,y Input L or 2L Generator or generator point (ECC)

s Output N Private key

w or Wx,y Output L or 2L Public key

8.2.1 Inputs to the discrete-log key-pair generation function
• For DSA, the domain parameters q, r, and g
• For ECDSA, the domain parameters q, a, b or b',r, and Gx,y

8.2.2 Assumptions of the discrete-log key-pair generation
function

• The domain parameters are valid and are associated with each other (that is,
parameter validation must be done prior to using this function).

• If the ENC bit of the Protocol Command register is set, s is treated as an encrypted
key and is encrypted before being written out. When generating an encrypted key,
the buffer must be large enough to hold the black key, i.e., the encrypted version of
the key.

8.2.3 Outputs from the discrete-log key-pair generation function
• The signer's private key s
• For DSA, the signer's public key w
• For ECDSA, the signer's public key Wx,y

8.2.4 Operation of the discrete-log key-pair generation function
• Generate a private key s, in the range 1 ≤ s < r. (Generate a random number k, 64 bits

larger than r, and find s = k mod r. If s = 0, generate a new k.)

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 289

• Compute w = gs mod q, or Wx,y = sGx,y.
• Output (s, w) or (s, Wx,y) as the private and public keys.

8.2.5 Notes associated with the discrete-log key-pair generation
function

For ECC binary field (F2M) functions, bˊ = b2m-2
mod q must be given, rather than b.

For IETF DH involving domains like MODP Groups 5, 14, 15, and 16, there is no
published r value. However, a value is necessary for this function, as it is the modulus
used to create the private key, where 1 (< private_key < mod). The value of N should be
determined based upon the desired strength of the private key; there are recommendations
in the IETF RFCs and elsewhere. Both r and the private key will be N bytes long. A
typical value for r would be a string containing N bytes of FFh.

When the PD (Predefined Domain) bit in the PDB is 1, the ECDSEL (Elliptic Curve
Domain Selection) field is used to select one of the built-in ECC domains. In this case
most of the curve parameters are supplied by the hardware. The valid values for the
ECDSEL field and their meanings are listed in Table 8-5.

Table 8-2. Public-key generation protocol data block (PD=0 version)

SGF

(6 bits)

PD=0

(1 bit)

Reserved

(8 bits)

L

(10 bits)

N

(7 bits)

Pointer to q

Pointer to r

Pointer to g (DSA) or Gx,y (ECC)

Pointer to s

Pointer to w (DSA) or Wx,y (ECC)

Pointer to a,b (ECC only)

(The protocol data block for DSA is shorter than for ECDSA, because the pointer to a,b is not required.)

Table 8-3. Public-key generation protocol data block (PD=1 version)

SGF

(6 bits)

PD=1

(1 bit)

Reserved

(8 bits)

Reserve
d

(3 bits)

ECDSEL

(7 bits)

Reserved

(7 bits)

Pointer to s

Pointer to w or Wx,y

For both PDB versions the format of the SGF field is illustrated in this figure.

Discrete-log key-pair generation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

290 NXP Semiconductors

Table 8-4. Public key-generation PDB - format of the SGF field

31 30 29 28 27 26

Version when
PD=0

ref q ref r ref Gx,y ref s ref w or Wx,y a,b (ECC)

reserved (DSA)

Version when
PD=1

Reserved ref s ref Wx,y Reserved

NOTE: If the SGF bit is set the argument is referenced via a scatter/gather table. If the SGF bit is not set the argument is
referenced via a direct-address pointer.

When PD=1, a valid value must appear in the ECDSEL (Elliptic Curve Domain
Selection) field. A list of the values that may be used in the ECDSEL field, and their
meanings, is given in the table below.

The following variable definitions apply to the following table. Variable names (q, r, b, c)
follow the conventions of IEEE Std 1363.
Name

The names in this table are associated with, or named in, various published standards.
Neither the names nor the domains are guaranteed to be complete. Two values of the
domain parameters are provided for purposes of identification.

• Those beginning with "P-", "K-", and "B-" are in FIPS 186 from NIST, found at
www.csrc.nist.gov

• Those beginning with "ansix9" are names from ANS X9.62-2005; those beginning
with "prime" or "c2pnb" are from an earlier ANSI document

• Those beginning with "sec" are from SEC 2 from the Standards for Efficient
Cryptography group, found at www.secg.org

• Those beginning with "wtls" are taken from Wireless Transport Layer Security /
Wireless Access Protocol, Version 06-Apr-2001, WAP-261-WTLS-20010406-a.
Not all software libraries agree with the mapping of these names to values; care
has been taken to identify the values based upon the source documentation.

• Those beginning with "ECDSA", "ECP", "EC2N", "ecp_group", and "Oakley" are
from various RFCs found at www.ietf.org

• Those beginning with "GOST" are from the Russian standard GOST R 3410-2001
• Those beginning with "brainpool" are from ECC Brainpool, found at www.ecc-

brainpool.org and republished in RFC 5639

q

This is the field-defining value for the elliptic curve. For Fp curves, it is the prime
number used as the modulus for all point arithmetic; it is named p in some other
publications. For F2m curves, it is the irreducible binary polynomial used as the
modulus for all point arithmetic. It is not, as usually defined, q = 2m, i.e. the size of the
field.

L

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 291

http://www.csrc.nist.gov
http://www.secg.org
http://www.ietf.org
http://www.ecc-brainpool.org
http://www.ecc-brainpool.org

This is the number of bytes needed to hold q and each of its associated values:, a,b,c,
the point coordinates x and y, the result of an ECDH key agreement, etc.

r

This is the (usually prime) number which is the order of G, the generator point. It is
also usually used as the modulus for the non-ECC-related arithmetic in an ECC
primitive. This variable is named n in some other publications.

N

This is the number of bytes needed to hold r and each of its associated values: private
keys, each of the two components of an ECDSA signature, etc.

a

This variable, along with q and b, define the elliptic curve. For Fp, a is the coefficient
for the x term. For F2m, it is the coefficient for the x2 term.

b / c (b')

b is the coefficient for the x0 (ones) term in an F2m elliptic curve equation. Its
relationship with c is b = c4. c is sometimes referred to as b' in NXP documentation.

Table 8-5. ECDSEL field values for built-in ECC Fp domains

When PD=1 in the first word of the PDB, the ECDSEL field specifies one of the built-in ECC domains. The valid
values for the ECDSEL field and the name of the ECC domain are listed in this table. The domains are ordered by

size.

Value Name(s)

ECC Fp domains

00h P-192, secp192r1, ansix9p192r1, prime192v1, ECPRGF192Random

01h P-224, secp224r1, ansix9p224r1, wtls12, ECPRGF224Random

02h P-256, secp256r1, ansix9p256r1, prime256v1, ECDSA-256, ecp_group_19, ECPRGF256Random

03h P-384, secp384r1, ansix9p384r1, ECDSA-384, ecp_group_20, ECPRGF384Random

04h P-521, secp521r1, ansix9p521r1, ECDSA-521, ecp_group_21, ECPRGF521Random

05h brainpoolP160r1

06h brainpoolP160t1

07h brainpoolP192r1

08h brainpoolP192t1

09h brainpoolP224r1

0Ah brainpoolP224t1

0Bh brainpoolP256r1

0Ch brainpoolP256t1

0Dh brainpoolP320r1

0Eh brainpoolP320t1

0Fh brainpoolP384r1

10h brainpoolP384t1

11h brainpoolP512r1

12h brainpoolP512t1

13h prime192v2

Table continues on the next page...

Discrete-log key-pair generation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

292 NXP Semiconductors

Table 8-5. ECDSEL field values for built-in ECC Fp domains (continued)

When PD=1 in the first word of the PDB, the ECDSEL field specifies one of the built-in ECC domains. The valid
values for the ECDSEL field and the name of the ECC domain are listed in this table. The domains are ordered by

size.

Value Name(s)

ECC Fp domains

14h prime192v3

15h prime239v1

16h prime239v2

17h prime239v3

18h secp112r1, wtls6

19h wtls8

1Ah wtls9

1Bh secp160k1, ansix9p160k1

1Ch secp160r1, ansix9p160r1, wtls7

1Dh secp160r2, ansix9p160r2

1Eh secp192k1, ansix9p192k1

1Fh secp224k1, ansix9p224k1

20h secp256k1, ansix9p256k1

ECC F2m domains

40h B-163, ansix9t163r2, sect163r2, EC2NGF163Random

41h B-233, sect233r1, ansix9t233r1, EC2NGF233Random, wtls11

42h B-283, sect283r1, ansix9t283r1, EC2NGF283Random

43h B-409, sect409r1, ansix9t409r1, EC2NGF409Random

44h B-571, sect571r1, ansix9t571r1, EC2NGF571Random

45h K-163, ansix9t163k1, sect163k1, EC2NGF163Koblitz, wtls3

46h K-233, sect233k1, ansix9t233k1, EC2NGF233Koblitz, wtls10

47h K-283, sect283k1, ansix9t283k1, EC2NGF283Koblitz

48h K-409, sect409k1, ansix9t409k1, EC2NGF409Koblitz

49h K-571, sect571k1, ansix9t571k1, EC2NGF571Koblitz

4Ah wtls1

4Bh sect113r1, wtls4

4Ch c2pnb163v1, wtls5

4Dh c2pnb163v2

4Eh c2pnb163v3

4Fh sect163r1, ansix9t163r1

50h sect193r1, ansix9t193r1

51h sect193r2, ansix9t193r2

52h sect239k1, ansix9t239k1

53h Oakley 3, ec2n_group_3

54h Oakley 4, ec2n_group_4

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 293

8.3 Using the Diffie_Hellman function
Diffie-Hellman is used in key exchange and key agreement schemes. For example,
Internet Key Exchange (IKE) specifies a pseudo-random function (PRF) that takes the
result of a Diffie-Hellman operation as an input. Because the output of Diffie-Hellman is
a secret value, it is advisable to store the output in encrypted form. SEC's Diffie-Hellman
protocol provides this option, and SEC's IKE PRF protocol can read the secret in
encrypted form.

Diffie-Hellman is defined for both discrete log (DH) and elliptic-curve (ECDH) forms.
SEC provides acceleration support for both forms.

8.3.1 Diffie_Hellman requirements

Diffie-Hellman requires the parameters listed in this table.

Table 8-6. Required Diffie-Hellman parameters

Parameter Input/Output Length Definition

L input 10 bits Number of bytes of the the field

N input 7 bits Number of bytes of the private key

q input L Prime number or irreducible polynomial that creates the field

r input - Unused for Diffie-Hellman

a,b input 2L ECC curve parameters. For binary field curves, b' rather than b is
used. (ECC only.)

wˊ or Wˊx,y input L (DH) or 2L
(ECDH)

Other party's public key

s input N Own private key

z output L Shared secret value

NOTE: Wx,y is a pointer to an input buffer containing both an x and a y coordinate. The two coordinates must be the same
length.

There are two parameter lengths, size of the field (L), and the size of the private key (N). These represent the size of
the buffers, in bytes, required to hold the input and output data.

The size of the buffers for Gx,y, Wx,y, and a,b must be twice L, as each holds two values of size L.

Using the Diffie_Hellman function

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

294 NXP Semiconductors

8.3.2 Inputs to the Diffie-Hellman function
• For discrete logs, the domain parameters q, s (own private key), and w' (other's

public key).
• For elliptic curve, the domain parameters q, s (own private key), and W'x,y (other's

public key), a and b (or b').

Note that the domain parameters r and g (or Gx,y) are not used.

8.3.3 Assumptions of the Diffie-Hellman function
• The domain parameters are valid and are associated with each other (that is,

parameter validation must be done prior to using this function).
• If the ENC_PRI bit of the Protocol Information register is set, s is treated as an

encrypted key and is decrypted after being read. If the ENC_PUB bit of the protocol
information is set, then z is encrypted before being written.

8.3.4 Outputs from the Diffie-Hellman function

The shared secret value z

8.3.5 Operation of the Diffie-Hellman function
• Read in the private key pointed to by s.
• For DL, compute z = ws mod q.
• For ECC, compute new_point = s * W, and output z = x coordinate of new_point
• Output z as the shared secret.

8.3.6 Notes associated with the Diffie-Hellman function

For ECC binary field (F2M) functions, bˊ = b2m-2
 mod q must be given rather than b. For

a detailed explanation, see Point math over a binary field (F2m)

Table 8-7. Diffie-Hellman protocol data block

SGF

(6 bits)

Reserved

(9 bits)

L

(10 bits)

N

(7 bits)

Pointer to q

Pointer to r (unused)

Table continues on the next page...

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 295

Table 8-7. Diffie-Hellman protocol data block (continued)

Pointer to w or Wx,y

Pointer to s

Pointer to z

Pointer to a,b (ECC only)

For discrete log Diffie-Hellman, the pointer to a,b is not required. The following figure
illustrates the format of the SGF field.

Table 8-8. Diffie-Hellman PDB-format of the SGF field

31 30 29 28 27 26

ref q ref r (unused) ref w or Wx,y ref s ref z a,b (ECC only)

NOTE: If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set, the argument is
referenced via a direct address pointer.

8.4 Generating DSA and ECDSA signatures
DSA_SIGN is SEC's hardware implementation of NIST's DSA (Digital Signature
Algorithm) and ECDSA digital signing functions. It supports DSA and ECDSA in both
prime fields and binary fields. These functions can take either a message or a message
representative as input, controlled by the MSG_REP bit in the OPERATION Command
register.

There are two parameter lengths: size of the field (L), and size of the group (N). These
represent the size of the buffers, in bytes, required to hold the input and output data, (not
the bit lengths of the various parameters). Note that the size of the buffers for Gx,y and a,b
must be twice L, as each holds two values of size L.

This table lists the DSA and ECDSA sign protocol parameters.

Table 8-9. DSA and ECDSA sign parameters

Parameter Input/Output Length Definition

q input L Prime number or irreducible polynomial that creates the field

r input N Order of the field of private keys

a, b input 2L ECC curve parameters. For binary field curves, b' rather than b is given.
(ECC only.)

g or Gx,y input L (DSA),

2L (ECDSA)

Generator or generator point (ECC)

s input N Private key

Table continues on the next page...

Generating DSA and ECDSA signatures

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

296 NXP Semiconductors

Table 8-9. DSA and ECDSA sign parameters (continued)

Parameter Input/Output Length Definition

f (or m) input N Message representative (typically the hash of the message) or the actual
message

c output N First part of digital signature

d output N Second part of digital signature. The buffer for d must be a multiple of 16
bytes, as it is used to store an encrypted intermediate result, which may
include padding.

u output N Per message random number, only in TEST mode

8.4.1 Inputs to the DSA and ECDSA signature generation
function

• For DSA, the domain parameters q, r, and g associated with key s.
• For ECDSA, the domain parameters q, r, g, a and b associated with key s.
• The signer's private key s.
• The message representative, which is an integer f ≥ 0, or the message itself (which is

hashed to form a message representative).

8.4.2 Assumptions of the DSA and ECDSA signature generation
function

• The private key s is in the range 1 ≤ s < r, and the domain parameters are valid and
are associated with each other, (that is, parameter validation must be done prior to
using this function).

• The message representative, f, is generated using an approved hashing function of the
appropriate security strength.

• If the ENC bit of the Protocol Command is set, then s is treated as an encrypted key,
and is decrypted before it is used.

8.4.3 Outputs from the DSA and ECDSA signature generation
function

When running the full signature opeartion, the output is a pair of integers (c, d), where 1
≤ c < r and 1 ≤ d < r

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 297

When just the first part of the signature is generated the output is the integer c, as above,
and the encrypted version of the (inverted) temporary key used in the creation of the
signature. It is stored at d, and the memory there must have space for the ECB-encrypted
version (i.e, rounded up to the nearest 16 bytes).

When just the second part of the signature is generated the output is d, as in the output of
the complete signature operation.

8.4.4 Operation of the DSA and ECDSA signature generation
function

• Generate a per message private key u, in the range 1 ≤ u < r. (Generate a random
number k, 64 bits larger than r, and find u = k mod r. If u = 0, generate a new k.)

• Compute c = (gu mod q) mod r, or Vx,y = uGx,y, c = Vx mod r. If c = 0, try again with
a new u.

• Compute d = u-1(f + sc) mod r. If d = 0, try again with a new u.
• Output (c, d) as the signature.
• If the TEST bit of the Protocol Command is set, then also output u. This test mode is

not accessible in the Trusted or Secure states.

8.4.5 Notes associated with the DSA and ECDSA Signature
Generation function

For ECC binary field (F2M) functions, b' = b2m-2
 mod q must be given, rather than b.

The beginning of the descriptor contains a protocol data block that specifies the sizes of
arguments to the Signature Generation function and pointers to those arguments. Each
pointer occupies one word of the PDB if MCFGR[PS]=0, or two words of the PDB if
MCFGR[PS]=1.

When the PD (Predefined Domain) bit in the PDB is 1, the ECDSEL (Elliptic Curve
Domain Selection) field is used to select one of the built-in ECC domains. In this case
most of the curve parameters are supplied by the hardware. The valid values for the
ECDSEL field and their meanings are listed in Table 8-5. Note that if PD=1 for a DSA
operation, a PDB error will be generated.

Table 8-10. DSA and ECDSA Signature Generation protocol data block

The format of PDB Word 1 depends on the value in the PD field.

PDB
Word 1

SGF (see format in table
below)

(9 bits)

PD=0

(1 bit)

Reserved

(5 bits)

L

(10 bits)

N

(7 bits)

Table continues on the next page...

Generating DSA and ECDSA signatures

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

298 NXP Semiconductors

Table 8-10. DSA and ECDSA Signature Generation protocol data block (continued)

SGF (see format in table
below)

(9 bits)

PD=1

(1 bit)

Reserved

(5 bits)

Reserv
ed

(3 bits)

ECDSEL

(7 bits)

Reserved

(7 bits)

Table 8-11. DSA and ECDSA Signature Generation protocol data block, continued

Following PDB Word 1 the PDB contains a series of address pointers for arguments to the Sign Protocol operation. Each
pointer occupies two words. If the pointer's SGF bit is 0 this is the 40-bit address of the argument data itself. If the pointer's
SGF bit is 1 this is the 40-bit address of a Scatter Gather Table that references the argument data. The format of the SGF
field is illustrated in the table below. Note that different arguments pointers are included or omitted depending upon the value
in the PD field and the type of Sign operation (full, 2nd half, 1st half). The six possible arrangements of the pointers are
shown in the rightmost six columns below.

PD=0 PD=1

Full Sign
operation (1st
Half Sign and
2nd Half Sign)

2nd Half Sign
operation

but not 1st Half
Sign

1st Half Sign
operation

but not 2nd Half
Sign

Full Sign
operation (1st
Half Sign and
2nd Half Sign)

2nd Half Sign
operation

but not 1st Half
Sign

1st Half Sign
operation

but not 2nd Half
Sign

PDB pointer
1

q r q s s c

PDB pointer
2

r s r f (MSG_REP=0)

or m
(MSG_REP=1)

f (MSG_REP=0)

or m
(MSG_REP=1)

d

PDB pointer
3

g (DSA)

or Gx,y (ECDSA)

f (MSG_REP=0)

or m
(MSG_REP=1)

g (DSA)

or Gx,y (ECDSA)

c c See note 4

PDB pointer
4

s c c d d

PDB pointer
5

f (MSG_REP=0)

or m
(MSG_REP=1)

d d See notes 2 and
7

See notes 3 and
7

PDB pointer
6

c See notes 3 and
7

See note 5 See notes 3 and
7

PDB pointer
7

d See note 6

PDB pointer
8

See notes 1 and
7

PDB pointer
9

See notes 8 and
7

PDB pointer
10

See notes 9 and
7

Note 1: If ECDSA, this is a pointer to a,b, else if TEST=1, this is a pointer to u, else if MSG_REP=1, this is the message
length, else the previous word is the last word of the PDB.

Note 2: If TEST=1, this is a pointer to u, else if MSG_REP=1, this word is the 32-bit message length, else the previous word
is the last word of the PDB.

Note 3: If MSG_REP=1, this word is the 32-bit message length, else the previous word is the last word of the PDB.

Note 4: If TEST=1, this is a pointer to u, else the previous word is the last word of the PDBt.

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 299

Table 8-11. DSA and ECDSA Signature Generation protocol data block, continued
Note 5: If ECDSA, this is a pointer to a,b, else if TEST=1, this is a pointer to u, else the previous word is the last word of the
PDB.

Note 6: If ECDSA and TEST=1, this is a pointer to u, else the previous word is the last word of the PDB.

Note 7: MSG_REP=1 means calculate the message representative from the message m. In this case the message length
must be provided in one word of the PDB. MSG_REP=0 means don't calculate a message representation, use f as the
message representative. In this case the word that would contain the message length is omitted from the PDB.

Note 8: If ECDSA and TEST=1, this is a pointer to u, else if (ECDSA or TEST=1) and MSG_REP=1, this word contains the
message length, else the previous word is the last word of the PDB.

Note 9: If ECDSA and TEST=1 and MSG_REP=1, this word contains the message length, else the previous word is the last
word of the PDB.

This table shows the format of the SGF field.

Table 8-12. DSA and ECDSA Signature Generation protocol data block - Format of the SGF
Field

Formats
for

Format
for

bit number

31 30 29 28 27 26 25 24 23

DSA or
for
ECDSA
with
PD=0

Full Sign

SGF bit
for:

q r

g (DSA)

or

Gx,y
(ECDSA)

s

f
(MSG_R
EP=0)

or

m
(MSG_R
EP=1)

c d

a,b
(ECDSA)

or

reserved
(DSA)

u
(TEST=1)

or

reserved
(TEST=0)

1st Half
Sign

q r

g (DSA)

or

Gx,y
(ECDSA)

reserved reserved c d

a,b
(ECDSA)

or

reserved
(DSA)

u
(TEST=1)

or
reserved
(TEST=0)

2nd Half
Sign

reserved r reserved s

f
(MSG_R
EP=0)

or

m
(MSG_R
EP=1)

c d reserved reserved

ECDSA
with
PD=1

Full Sign
SGF bit
for:

reserved reserved reserved s

f
(MSG_R
EP=0)

or

m
(MSG_R
EP=1)

c d reserved

u
(TEST=1)

or

reserved
(TEST=0)

Table continues on the next page...

Generating DSA and ECDSA signatures

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

300 NXP Semiconductors

Table 8-12. DSA and ECDSA Signature Generation protocol data block - Format of the SGF
Field (continued)

1st Half
Sign

reserved reserved reserved s reserved c d reserved

u
(TEST=1)

or

reserved
(TEST=0)

2nd Half
Sign

reserved reserved reserved reserved

f
(MSG_R
EP=0)

or

m
(MSG_R
EP=1)

c d reserved reserved

If the SGF bit for an argument is set, the argument is referenced via a scatter/gather table.
If the SGF bit is not set, the argument is referenced via a direct address pointer.

8.5 Verifying DSA and ECDSA signatures
DSA_VERIFY is the digital signature algorithm (DSA) verification function. It supports
both DSA and ECDSA, in both prime fields and binary fields. These functions can take
either a message or a message representative as input, controlled by the MSG_REP bit in
the OPERATION command.

There are two parameter lengths:

• Size of the field (L)
• Size of the subgroup (N)

These are given in bytes, and denote the size of the buffer required to hold each
parameter. Note that the size of the buffers for Gx,y, Wx,y and a,b must be twice L, as each
holds two values of size L.

Table 8-13. DSA and ECDSA Verify parameters

Parameter Input/Output Length (bytes) Definition

q input L Prime number or irreducible polynomial that creates the field

r input N Order of the subgroup of private keys

a, b input 2L ECC curve parameters. For binary field curves, b' rather than b is
used. (ECDSA only.)

g or Gx,y input L (DSA),

2L (ECDSA)

Generator or generator point (ECDSA)

w or Wx,y input L (DSA), Public key

Table continues on the next page...

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 301

Table 8-13. DSA and ECDSA Verify parameters (continued)

Parameter Input/Output Length (bytes) Definition

2L (ECDSA)

f (or m) input N Message representative (typically the hash of the message) or the
actual message

c input N First part of digital signature

d input N Second part of digital signature

Temp input/output L (DSA)

2L (ECDSA)

Temporary storage for intermediate results

8.5.1 Inputs to the DSA and ECDSA signature verification
function

• For DSA, the domain parameters q, r, and g associated with key w
• For ECDSA, the domain parameters q, r, Gx,y, a and b associated with key Wx,y
• The signer's public key w or Wx,y
• The received message representative, which is an integer f ≥ 0, or the message itself

(which is hashed to form a message representative)
• The received signature to be verified, which is a pair of integers (c, d)

8.5.2 Assumptions of the DSA and ECDSA signature verification
function

• The public key (w or Wx,y) and the domain parameters are valid and are associated
with each other (that is, parameter validation must be done prior to using this
function).

• The message representative, f, is generated using an approved hashing function of the
appropriate security strength.

8.5.3 Outputs from the DSA and ECDSA signature verification
function

• If the signature is correct, this function terminates normally.
• If the signature is not correct, this function terminates with an error code.

Verifying DSA and ECDSA signatures

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

302 NXP Semiconductors

8.5.4 Operation of the DSA and ECDSA signature verification
function

• Check that c is in the range [1, r-1]. If not, terminate with error code invalid
signature.

• Check that d is in the range [1, r-1]. If not, terminate with error code invalid
signature.

• For DSA, compute c´ = ((Gd-1f mod q)(wd-1c mod q)) mod r.
• For ECDSA, compute Px,y = d-1fGx,y + d-1cWx,y, and then if Px,y is the point at

infinity, terminate with error code invalid signature, else let c´ = Px mod r.
• If c´ ≠ c, then terminate with error code invalid signature.
• Continue as valid.

8.5.5 Notes associated with the DSA and ECDSA Signature
Verification function

For ECC binary field (F2M) functions, b' = b2m-2
 mod q must be given, rather than b.

The beginning of the descriptor contains a protocol data block that specifies the sizes of
arguments to the Signature Verification function and pointers to those arguments. Each
pointer occupies one word of the PDB if MCFGR[PS]=0, or two words of the PDB if
MCFGR[PS]=1.

Parameter information is as follows:

• L is the number of bytes in various data buffers. L the size of the prime number or
irreducible polynomial representing the cryptographic field.

• N is another length, in number of bytes in data buffers. N is the size of the number
representing the order of the subgroup of private keys within the field.

• All parameters are pointers to data buffers of size L or N, (or 2L for elliptic curve
points and a,b).

The protocol data block for DSA is shorter than for ECDSA, as the pointer to a,b is
absent.

A temporary buffer is required during the verification of the signature.

• For DSA, the temporary buffer must be at least L bytes.
• For ECDSA, the temporary buffer must be at least 2L bytes.

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 303

The ENC bit of PROTOINFO is ignored for signature verification because only public
keys are used. If the MSG_REP bit of the OPERATION command is set to 1, the pointer
to f (or m) points to the message to be signed, rather than to a message representative.
The message length field of the protocol data block (only used when the MSG_REP bit
of the OPERATION command is set to 1) defines the length of the message to be signed.

When the PD (Predefined Domain) bit in the PDB is 1, the ECDSEL (Elliptic Curve
Domain Selection) field is used to select one of the built-in ECC domains. In this case
most of the curve parameters are supplied by the hardware. The valid values for the
ECDSEL field and their meanings are listed in Table 8-5. Note that if PD=1 for a DSA
operation, a PDB error will be generated.

Table 8-14. DSA and ECDSA Signature Verification protocol data block

The format of PDB Word 1 depends on the value in the PD field.

PDB
Word 1

SGF (see format in table
below)

(9 bits)

PD=0

(1 bit)

Reserved

(5 bits)

L

(10 bits)

N

(7 bits)

SGF (see format in table
below)

(9 bits)

PD=1

(1 bit)

Reserved

(5 bits)

Reserv
ed

(3 bits)

ECDSEL

(7 bits)

Reserved

(7 bits)

Table 8-15. DSA and ECDSA Signature Verification protocol data block, continued

Following PDB Word 1 the PDB contains a series of address pointers for arguments to the Signature Verification function.
Each pointer occupies two words. If the pointer's SGF bit is 0 this is the 40-bit address of the argument data itself. If the
pointer's SGF bit is 1 this is the 40-bit address of a Scatter Gather Table that references the argument data. The format of the
SGF field is illustrated in the table below. Note that different arguments pointers are included or omitted depending upon the
value in the PD field and the type of Signature Verification operation (verification with public key, verification with private key).
The four possible arrangements of the pointers are shown in the rightmost four columns below.

PD=0(don't use a predefined domain) PD=1 (use a predefined domain)

Signature Verification
with public key

Signature Verification
with private key

Signature Verification
with public key

Signature Verification
with private key

PDB pointer 1 q q Wx,y s

PDB pointer 2 r r f (MSG_REP=0)

or m (MSG_REP=1)

f (MSG_REP=0)

or m (MSG_REP=1)

PDB pointer 3 g (DSA)

or Gx,y (ECDSA)

g (DSA)

or Gx,y (ECDSA)

c c

PDB pointer 4 w (DSA)

or Wx,y (ECDSA)

s d d

PDB pointer 5 f (MSG_REP=0)

or m (MSG_REP=1)

f (MSG_REP=0)

or m (MSG_REP=1)

Temp See notes 2 and 3

PDB pointer 6 c c See notes 2 and 3

PDB pointer 7 d d

PDB pointer 8 Temp See notes 1 and 3

Table continues on the next page...

Verifying DSA and ECDSA signatures

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

304 NXP Semiconductors

Table 8-15. DSA and ECDSA Signature Verification protocol data block, continued
(continued)

PDB pointer 9 See notes 1 and 3 See notes 2 and 3

PDB pointer 10 See notes 2 and 3

Note 1: If ECDSA, this is a pointer to a,b, else if MSG_REP=1, this is the message length, else the previous word is the last
word of the PDB.

Note 2: If ECDSA and MSG_REP=1, this word is the 32-bit message length, else the previous word is the last word of the
PDB.

Note 3: MSG_REP=1 means calculate the message representative from the message m. In this case the message length
must be provided in one word of the PDB. MSG_REP=0 means don't calculate a message representation, use f as the
message representative. In this case the word that would contain the message length is omitted from the PDB.

This table shows the format of the SGF field.

Table 8-16. DSA and ECDSA Signature Verification protocol data block - Format of the SGF
Field

Formats
for

Format
for

bit number

31 30 29 28 27 26 25 24 23

DSA or
ECDSA
with
PD=0

Verify
with
public
key

SGF bit
for:

q r

g (DSA)

or

Gx,y
(ECDSA)

w (DSA)

or

Wx,y
(ECDSA)

f
(MSG_R
EP=0)

or

m
(MSG_R
EP=1)

c d Temp

a,b
(ECDSA)

or

reserved
(DSA)

Verify
with
private
key

q r

g (DSA)

or

Gx,y
(ECDSA)

s

f
(MSG_R
EP=0)

or

m
(MSG_R
EP=1)

c d Temp

a,b
(ECDSA)

or

reserved
(DSA)

ECDSA
with
PD=1

Verify
with
public
key SGF bit

for:

reserved reserved reserved
Wx,y

(ECDSA)

f
(MSG_R
EP=0)

or

m
(MSG_R
EP=1)

c d Temp reserved

Verify
with
private
key

reserved reserved reserved s reserved c d Temp reserved

If the SGF bit for an argument is set, the argument is referenced via a scatter/gather table. If
the SGF bit is not set, the argument is referenced via a direct address pointer.

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 305

8.6 RSA Finalize Key Generation (RFKG)
SEC is able to complete RSA key generation given primes p and q and the public
exponent e. It can be configured to compute, or skip computation of, the remaining
elements of the public and private key.

The computations performed are:

• n = p*q
• d = 1/e mod LCM(p-1, q-1)
• d1 = d mod (p-1)
• d2 = d mod (q-1)
• c = 1/q mod p

it will also

• check p and q to determine whether they are 'too close' (per FIPS 186-3). This will
occur if they are long enough. It will not be effective if they are not of the same bit
length (that is, high order bits of p and q are not the same).

• Compute #d if d is being computed
• Check that #d > #p.
• Check that #n and the computed #n are the same

RSA Finalize Key Generation PDB

Table 8-17. RSA Finalize Key Generation PDB

Descriptor header (one or two words)

SGF

(9 bits)

Reserved

(23 bits)

Reserved

(23 bits)

#p

(9 bits)

Rsv

(6 bits)

#n

(10 bits)

Reserved

(6 bits)

#e

(10 bits)

Reference to p

Reference to q

Reference to e

Reference to n

Reference to d

Reference to #d

Reference to d1 (not required if FUNCTION=10b)

Reference to d2 (not required if FUNCTION=10b)

Reference to c (not required if FUNCTION=10b)

RSA Finalize Key Generation (RFKG)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

306 NXP Semiconductors

The fields #d and #n contain right-aligned 10-bit values that indicate the size (plaintext
size, in bytes) of the d and n inputs, respectively. Note that the size of d must be at least
as large as the size of an encrypted n.

A reference is a pointer, either to the data or to a scatter-gather table. The pointer is one
or two words long, depend upon the platform.

The references to d1, d2, and c may be omitted if those values are not to be generated.

This figure shows the format of the SGF field.

Table 8-18. RSA Finalize Key Generation PDB - SGF field

31 30 29 28 27 26 25 24 23 22 21

ref p ref q ref e ref n ref d ref #d ref d1 ref d2 ref c Reserved Reserved

If the SGF bit for a particular reference is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set,
the argument is referenced via a direct address pointer.

8.7 Implementation of the RSA encrypt operation
SEC implements an RSA encrypt operation that can be used for various purposes,
including support for RSA-Based IKEv1 for IPsec and SSL-TLS. It is the "RSA public
key primitive" and it is commonly used to encrypt a secret or to verify a signature.

When used for signature verification, it is actually "unscrambling" the signature so that
its contents may be verified. The input must be passed "raw" to the RSA function.

SEC implements the RSA encrypt operation in the following form:

g = RSA-Encrypt(n, e, FORMAT, #f, f, fff)

The variables have the following definitions:

• n, e represent the public key
• Before the RSA math is performed, FORMAT specifies the format to be used for

encoding f (none or PKCS #1 v1.5 encryption)
• f is the value to be RSA-encrypted (input value; will be output value if random data

('f out')is selected)
• #f is the size in bytes of f
• fff represents the type of encryption applied to f if it is output by SEC
• g is the RSA-encrypted value of (the possibly formatted version of) f

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 307

The RSA Encrypt function is implemented with the OPERATION command. See
PROTOCOL OPERATION commands for details on selecting this operation. See Table
7-63 and Table 7-64 for details about the PROTINFO field in the OPERATION
command.

RSA

JDKEK or TDKEK

f (as Black Key)

f (as plaintext)

OR

n, e (public key)

AES

ECB or CCM

g (RSA-encrypted value)

f_in (supplied

by user)

OR

f_out (random

data from RNG)

f is passed through
as is (no format) or embedded

in PKCSv1.5 encryption
format

Figure 8-1. RSA encrypt operation

The user may either supply a plaintext value to be RSA encrypted (f_in) or may opt to
have SEC generate #f bytes of random data from the RNG (f_out). The latter option
allows f to be stored encrypted as a black key, It is then protected; encrypted or not, it can
be used as an input to a PRF operation.

Once the value of f is known and possibly wrapped in PKCSv1.5 encoding, it is RSA-
encrypted and the result stored as g.

The PDB for the RSA encrypt operation is shown below.

Table 8-19. RSA Encrypt PDB

SGF

(4 bits)

Rsv

(4 bits)

#e

(12 bits)

#n

(12 bits)

Reference to f

Reference to g

Reference to n

Reference to e

Reserved

(20 bits)

#f

(12 bits)

All references are either 32-bit, 36-bit or 40-bit address pointers.

Implementation of the RSA encrypt operation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

308 NXP Semiconductors

The fields #e, #n and #f contain right-aligned 12-bit values that indicate the size of the e,
n and f inputs, respectively. The format of the SGF field is shown below.

Table 8-20. RSA Encrypt PDB; SGF field

31 30 29 28

ref f ref g ref n ref e

If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set, the argument is referenced
via a direct address pointer.

8.8 Implementation of the RSA decrypt operation
SEC implements an RSA decrypt operation that can be used for various purposes,
including support for RSA-Based IKEv1 for IPsec and SSL-TLS. This is the "RSA
private key primitive" and it is commonly used either to decrypt a secret or to create a
signature (sign a message).

When used for signing a message, it is actually "scrambling" the signature; the output
must be allowed to pass "raw" from the RSA function.

SEC implements the RSA decrypt operation in the form:

f = RSA-Decrypt((private key), FORMAT, g, fff)

The variables have the following definitions:
• (private key) represents the private key, in one of three forms
• After the RSA math is performed on g, FORMAT specifies the format to be used for

decoding f (none or PKCS #1 v1.5 encryption)..
• g is the input value
• fff represents the type of encryption applied to f when it is output by SEC
• f is the RSA-decrypted output value.

This operation leaves #f (size of the plaintext f, in bytes) in the MATH0 register. This
may be important if using a FORMAT of PKCS #1 v1.5 encryption.

The RSA Decrypt function is implemented via the OPERATION Command. See
PROTOCOL OPERATION commands for details on selecting this operation. See Table
7-65 and Table 7-65 for details concerning the PROTINFO field in the OPERATION
Command.

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 309

As the private key is an input and is considered sensitive, it may be supplied in Black
Key form. The components, individually, of the private key would then be decrypted
using the appropriate key encryption key and cryptographic mode prior to use. Note that
n is never encrypted. SEC allows the private key input to be provided in three different
forms: #1 (n, d), #2 (p, q, d), and #3 (p, q, dp, dq, c).

The RSA Decrypt function is implemented via the OPERATION Command. See
PROTOCOL OPERATION commands for details on selecting this operation. See Table
7-65 and Table 7-66 for details concerning the PROTINFO field in the OPERATION
Command.

The operation of RSA decrypt when using form #1, in which the private key is input as
(n, d), is illustrated below.

d (private exponent
as plaintext)

RSA

OR

JDKEK or TDKEK JDKEK or TDKEK

f (as Black Key)

f (as plaintext)

OR

d (private exponent
as Black Key)

n (public modulus
 as plaintext

 f "raw" (as is) or
extracted from

PKCS v1.5
encryption formatting g

 AES
ECB or CCM

 AES
ECB or CCM

Figure 8-2. RSA decrypt operation - private key form #1

The PDB for private key form #1 is shown below. All references are either 32-bit, 36-bit
or 40-bit address pointers.

Table 8-21. RSA decrypt PDB - private key form #1

SGF

(4 bits)

Rsv

(4 bits)

#d

(12 bits)

#n

(12 bits)

Reference to g

Reference to f

Reference to n

Reference to d

The fields #d and #n contain right-aligned 12-bit values that indicate the size (plaintext
size, in bytes) of the d and n inputs, respectively. This figure shows the format of the SGF
field.

Implementation of the RSA decrypt operation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

310 NXP Semiconductors

Table 8-22. RSA decrypt PDB - private key form #1; SGF field

31 30 29 28

ref g ref f ref n ref d

If the SGF bit for a particular reference is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set,
the argument is referenced via a direct address pointer.

The RSA decrypt operation also accepts the private key in the form (p, q, d). This form
(form #2) of the RSA decrypt operation is illustrated in this figure.

p, q, d (private key
as plaintext)

RSA

OR

AES
ECB or CCM

JDKEK or TDKEK

AES
ECB or CCM

JDKEK or TDKEK

OR

p, q, d (private key

f

g

as Black Key)

"raw" (as-is) or
extracted from

PKCS v1.5 encryption formatting

(as Black Key)

f

(as Black Key)

f

Figure 8-3. RSA decrypt operation - private key form #2

This figure shows the PDB for private key form #2. All references are either 32-bit, 36-
bit or 40-bit address pointers.

Table 8-23. RSA decrypt PDB - private key form #2

SGF

(7 bits)

Rsv

(1 bit)

#d

(12 bits)

#n

(12 bits)

Reference to g

Reference to f

Reference to d

Reference to p

Reference to q

Reference to tmp1

Reference to tmp2

Reserved

(8 bits)

#q

(12 bits)

#p

(12 bits)

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 311

The fields #d, #n, #q and #p contain right-aligned 12-bit values that indicate the size
(plaintext sizes, in bytes) of d, n, q and p, respectively. Note that even though there is no
n input, #n is still needed, as it is not just #p + #q. tmp1 needs to be as long as p (either
#p, or, if p is encrypted, as big as the encrypted value of p). tmp2 needs to be as long as q
(either #q, or. if q is encrypted, as big as the encrypted value of q). This figure shows the
format of the SGF field.

Table 8-24. RSA decrypt PDB - private key form #2; SGF field

31 30 29 28 27 26 25

ref g ref f ref d ref p ref q ref tmp1 ref tmp2

If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set, the argument is referenced
via a direct address pointer.

The RSA decrypt operation also accepts the private key in form #3, (p, q, dp, dq, c). dp,
dq, and c are

• dp = d mod p-1
• dq = d mod q-1
• c = q-1 mod p

The operation this form of RSA decrypt is illustrated in this figure.

p, q, dp, dq, c (private key
as plaintext)

RSA

OR

AES
ECB or CCM

JDKEK or TDKEK

AES
ECB or CCM

JDKEK or TDKEK

f
(as Black Key)

f
(as plaintext)

OR

p, q, dp, dq, c (private key
as Black Key)

f

g

Result is passed through
as is (no format) or extracted

from PKCSv1.5
encryption format

Figure 8-4. RSA Decrypt Operation - private key form #3

This figure shows the PDB for private key form #3. All references are either 32-bit, 36-
bit or 40-bit address pointers.

Table 8-25. RSA decrypt PDB - private key form #3

SGF Reserved #n

Table continues on the next page...

Implementation of the RSA decrypt operation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

312 NXP Semiconductors

Table 8-25. RSA decrypt PDB - private key form #3 (continued)
(9 bits) (11 bits) (12 bits)

Reference to g

Reference to f

Reference to c

Reference to p

Reference to q

Reference to dp

Reference to dq

Reference to tmp1

Reference to tmp2

Reserved

(8 bits)

#q

(12 bits)

#p

(12 bits)

The fields #n, #q and #p contain right-aligned, 12-bit values that indicate the size
(plaintext sizes, in bytes) of n, q and p, respectively. Note that even though there is no n
input, #n is still needed, as it is not just #p + #q. Note that #dp and #c are assumed to be
#p, and #dq is assumed to be #q. tmp1 needs to be as long as p (either #p, or, if p is
encrypted, as big as the encrypted value of p). tmp2 needs to be as long as q (either #q,
or, if q is encrypted, as big as the encrypted value of q).

Table 8-26. RSA Decrypt PDB - private key form #3; SGF Field

31 30 29 28 27 26 25 24 23

ref g ref f ref c ref p ref q ref dp ref dq ref tmp1 ref tmp2

NOTE: If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set, the argument is
referenced via a direct address pointer.

Chapter 8 Public Key Cryptography Operations

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 313

Implementation of the RSA decrypt operation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

314 NXP Semiconductors

Chapter 9
Protocol acceleration
SEC is designed to accelerate the cryptographic operations associated with various
network protocols. These cryptographic operations can be implemented using the
descriptor commands described in sections KEY commands through SEQ OUT PTR
command, but SEC also implements specialized descriptor commands for particular
networking protocols. Each such command performs a sequence of operations that are
equivalent to a series of the more general descriptor commands; for example, all the
protocols in this section manage the input data and output FIFOs directly -- a SEQ FIFO
LOAD command is required in a descriptor only if there is data in the input frame that is
not to be handled by the protocol. These protocols often require that state information
(for example, sequence numbers) be maintained per security association.

The specialized protocol commands implemented by SEC use data structures called
protocol data blocks (PDBs) embedded within the descriptor to specify protocol options
and hold state information. Typically these protocol commands and their associated
PDBs are contained in shared descriptors, so that the same protocol options and state
information can be shared among all the job descriptors that identify the PDUs within a
particular security association. The PDB is embedded within the shared descriptor
immediately following the header, and the START INDEX field in the header is used to
skip over the PDB to continue executing the commands within the shared descriptor.

If the protocol requires that state information be updated, SEC writes the updated
information back to the PDB in the shared descriptor located in system memory.

Sharing is described in Shared descriptors. Sharing significantly impacts Protocol
operation in particular, because SEC protocols tend to use a shared descriptor PDB to
share state across many jobs within a flow. One example is a sequence or packet number
-- it is important that only one packet be encapsulated with a given sequence number.
Therefore sharing type as described in Table 7-1 is to be carefully considered when
crafting a descriptor.

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 315

SEC is most efficent when using serial sharing -- there is extra time associated with
moving shared descriptor material from one DECO to another. On the other hand, an idle
DECO resulting from overuse of serial sharing is a greater cost. Therefore the overall set
of applications should be considered.

SEC protocols maintain a lock called OK to Share in order to allow for wait sharing. For
example, consider IPsec encapsulation using CBC mode. CBC requires every packet
include an Initialization Vector (an IV). For IPsec, either the IV can be the final block of
ciphertext from the previous packet (a Chained IV), or it can be a random value (a
Random IV). The IPsec protocol state machine will block WAIT sharing of a shared
descriptor until a Chained IV has been prepared and OK to Share is signalled. If instead a
Random IV is used, OK to Share can be set as soon as the IPsec protocol state machine
has updated Sequence Number in the PDB. It is probably not useful to use WAIT sharing
with a Chained IV; two jobs from a single flow can only be present in multiple DECOs
for a very limited period of time.

Never and Always Sharing should be used with extreme care. Selecting share type of
Always will cause a shared descriptor to be shared between DECOs without
consideration of state. In the IPsec encapsulation example, Always sharing can result in
packets with duplicate sequence numbers. Duplicate sequence numbers can also result
from using Never sharing, as a DECO will get a fresh copy of a Shared Descriptor from
system memory, without any consideration for any pending writes to update the Shared
Descriptor PDB from another DECO.

SEC includes built-in descriptor programming shortcuts for the following functions:

• IPsec ESP Encapsulation and Decapsulation
• SSL 3.0 Record Encapsulation and Decapsulation
• TLS 1.0, 1.1, and 1.2 Record Encapsulation and Decapsulation
• DTLS 1.0 and 1.2 Record Encapsulation and Decapsulation
• SRTP Packet Encapsulation and Decapsulation
• IEEE 802.1AEbw-2013 MACsec Encapsulation and Decapsulation
• IEEE 802.11-2012 WPA2 Encapsulation and Decapsulation for WiFi
• IEEE 802.16 WiMAX Encapsulation and Decapsulation
• 3G Double CRC
• 3G RLC Encryption and Decryption
• LTE PDCP Encapsulation and Decapsulation
• Cryptographic Blob Encapsulation and Decapsulation

Each detailed description of the function includes color-coded diagrams. Figure 9-1
shows the color coding key. Note that in the diagrams, processing order is reflected top-
to-bottom, and PDU content is reflected left-to-right.

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

316 NXP Semiconductors

Data received in the input data frame as plaintext

Data received in the input data frame as ciphertext (including encrypted MAC values)

Computed MAC value

Computed CRC value

Values extracted from protocol context region in descriptor

Values manipulated by SEC other than by encryption,
CRC, or MAC computations

SEC-generated padding data

Multi-source data (RNG or in protocol data field)

Software-prepended frame data not strictly part of PDU

Computations:

Portion of data
only authenticated

Portion of data
authenticated and encrypted

Encrypted
only

Plain frame data
Number of bytes

Encrypted frame data
Number of bytes

MAC data
Number of bytes

CRC data
Number of bytes

Descriptor data
Number of bytes

Descriptor data
Number of bytes

Padding
Numberof bytes

Multi-source
Number of bytes

Descriptor data
Number of bytes

Type of computation

Figure 9-1. Protocol diagram color-coding key

9.1 IPsec ESP encapsulation and decapsulation overview
SEC's built-in IPsec protocol supports data encapsulation, encryption, and data integrity
checking for the following cipher suites:

• DES-CBC or 3DES-CBC with selected HMAC algorithms, AES-XCBC-MAC, or
AES-CMAC

• AES-CBC with selected HMAC algorithms, AES-XCBC-MAC, or AES-CMAC
• AES-CTR (AES-Counter) with selected HMAC algorithms, AES-XCBC-MAC, or

AES-CMAC
• AES-CCM
• AES-GCM

The PROTINFO field codes enumerated in Table 7-54 are used to define the specific
encryption and data integrity algorithms to be used by the protocols.

SEC supports different IP versions as follows:

• For IPv4, SEC supports zero or one 32-bit option field.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 317

• For IPv6, SEC supports up to 96 bytes of extension headers.
• For all modes, SEC treats the option field and extension headers as part of the IP

header.

SEC supports IPsec with null encryption. For the most part IPsec with null encryption
processes the packet in a very similar fashion to how IPsec processing occurs with
encryption. Null encryption is not supported when AES-CCM is selected. When AES-
GCM is selected, null encryption uses the AES-GMAC algorithm. In this case, the
datagram is processed identically to packet processing for AES-GCM (including the use
of an IV), except that the payload is not encrypted. For IPsec null encryption when using
any HMAC algorithm, no IV is included in the encapsulated frame. Otherwise, the
encapsulated packet contains all the other fields, including padding and pad length.

SEC also supports IPsec with null authentication (with selected cipher algorithms). For
null authentication, SEC does not produce an ICV; an ICV is not written to the
encapsulation output frame, and no ICV check is performed during decapsulation. Null
Authentication may be combined with Null encryption, in which case SEC produces an
output frame that consists of an IP header followed by an ESP header, payload, and then
an ESP trailer with minimum padding.

The shared descriptor protocol data block (PDB) includes a field that indicates the byte
length of the IP header with options/extensions.

The following table summarizes the IPsec protocol descriptors.

Table 9-1. IPsec protocol descriptors

Encapsulation Decapsulation

Header Header

Protocol data block includes next header, SPI, sequence
number, IV (if not from RNG)

Protocol data block includes anti-replay information

Class 2 key data block Class 2 key data block

Class 1 key data block Class 1 key data block

Protocol = IPsec encrypt Protocol = IPsec decrypt

NOTE
Any bulk-data protocol using a cipher suite that includes any
HMAC uses MDHA and for performance requires the use of a
split key. Therefore for proper operation when using IPsec with
HMAC, the KDEST field in the Class 2 KEY command must
be set to MDHA Split Key. For first invocation, the Derived
Key Protocol may be used to create both the split key form of
the HMAC key as well as the actual key command loading the
split key.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

318 NXP Semiconductors

9.1.1 IPsec ESP encapsulation and decapsulation mode support

SEC supports two modes: transport and tunnel.

• During tunnel mode encapsulation, SEC treats the entire input frame as payload
except for the optional Outer IP header. During tunnel mode decapsulation, the
original IP header (with options and extensions) is uncovered.

• During tunnel mode encapsulation, SEC can prepend a new IP header (with options
and extensions). For decapsulation SEC must be given a pointer to the start of the
encapsulated data, skipping over the Outer IP header.

• For transport mode, the pre-encapsulation IP header and post-encapsulation IP
header are virtually identical, except for the 2-byte length field and the header
checksum.

• For both tunnel and transport modes, SEC recomputes the length field in the header,
can optionally recompute the header checksum.

The Protocol Data Block, or PDB, is used to store relevant parameters within a
descriptor. Parts of the PDBs are specific to particular cipher suites, but most is common
to either encapsulation or decapsulation. The common PDB for encapsulation is
described in PDB format for IPsec ESP Transport (and Legacy Tunnel) encapsulation,
and for decapsulation in Common PDB format descriptions for IPsec ESP Transport (and
Legacy Tunnel) decapsulation.

Prior to SEC Era 8, what is now called ESP Transport (and legacy tunnel) covered both
tunnel and transport modes. More recent developments to ESP Tunnel support, such as
the addition of direct support for NAT, have necessitated the addition of the new ESP
Tunnel encapsulation and decapsulation threads. For the forseeable future, Tunnel mode
IPsec encapsulation and decapsulation can be achieved by either the ESP Transport (and
legacy tunnel) or the ESP Tunnel processing threads.

The PDBs for ESP Tunnel are similar to those for ESP Transport (and Legacy Tunnel) --
in particular that both share that there is a segment of the PDB specific to the chosen
cipher suite. The common PDB for ESP Tunnel encapsulation is described in PDB format
for IPsec ESP Tunnel encapsulation and for decapsulation in Common PDB format
descriptions for IPsec ESP Tunnel decapsulation.

9.1.2 IPsec ESP error codes

This table lists the conditions under which IPsec encapsulation or decapsulation generates
an error status. Note that these are the error conditions directly detected by the protocol
engine. Authentication failure in decapsulation can also produce an ICV check error.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 319

Table 9-2. IPsec ESP encapsulation and decapsulation error conditions for both Tunnel and
Transport operation

Condition Error status Applies to encapsulation/
decapsulation

Input frame too long

• For IPsec ESP Transport (and legacy tunnel),
the input frame is longer than 216 bytes

• For IPsec ESP Tunnel, the input frame is longer
than 220 bytes

Note this length restriction applies to the input frame
received at the start of the protocol itself. Any bytes
that are part of the input frame that are dispositioned
by commands prior to either IPsec ESP protocol are
not governed by the size restriction.

Protocol size error Both

Reserved bit set to 1 in the PDB options byte Protocol PDB error Both

ARS in PDB set to reserved setting Protocol PDB error Decapsulation only

Tun/Trsp = 1 and NH_OFFSET != 0 Protocol PDB error Both

Inc IPHdr = 1 and PDB IP Hdr Length == 0 Protocol PDB error Both

Inc IPHdr = 1 and PDB IP Hdr Length is not a multiple
of 4

Protocol PDB error Both

Tun/Trsp = 0, and NH_OFFSET points to a byte
beyond PDB IP Hdr Length

Protocol PDB error Both

OPERATION Command PROT ID selects IPsec
Encap/Decap, and PROTINFO is not a valid protocol

Protocol Command Error Both

ESN option = 0, and PDB SEQNUM is FFFFFFFF Protocol Sequence Number
Overflow

Encapsulation only

ESN option = 1, both ESN and SEQNUM are
FFFFFFFF

Protocol Sequence Number
Overflow

Encapsulation only

ESN option = 0, and SEQNUM overflows Protocol Sequence Number
Overflow

Decapsulation only

ESN option = 1, and [ESN and SEQNUM] overflows Protocol Sequence Number
Overflow

Decapsulation only

Anti-Replay detects a LATE packet Protocol LATE error Decapsulation only

Anti-Replay detects a REPLAY packet Protocol REPLAY error Decapsulation only

Output option 0 selected and AOFL option bit == 1 Protocol PDB error Decapsulation only

UDP-encapsulated-ESP CE Drop

See Manipulation of the Inner IP Header during ESP
Tunnel decapsulation

CE DROP Error Decapsulation only

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

320 NXP Semiconductors

9.1.3 Programming for IPsec

IPsec in SEC is designed to provide stateful encapsulation and decapsulation of IPsec
ESP packets. The SEC representation of the ESP security association is the PDB -- the
Protocol Data Block. SPI and Sequence Number are maintained in the PDB, as are other
parameters and selectible options. The format of the PDB varies depending upon cipher
suite and options selected, and are shown in sections following.

In some circumstances, it may be desirable to override some contents of the PDB on a
frame-by-frame basis. Some capability is provided for that by programming the DECO
Protocol Override register. Use and capability of that functionality is also shown in
sections following.

9.1.3.1 PDB format for IPsec ESP Transport (and Legacy Tunnel)
encapsulation

IPsec ESP Transport (and Legacy Tunnel) encapsulation uses a mostly-common Protocol
Data Block (PDB) format to maintain certain state and security association information.
To complete encapsulation, SEC requires access to SPI, Sequence Number, Extended
Sequence Number (if used), plus some cipher-suite-specific material, such as the IV used
by AES-CBC and DES-CBC.

The PDB can, optionally, also provide for a common outer IP header to be written to the
output frame prior to the tunnel-mode encapsulated header. The header material need not
consist only of the outer IP header, but if extra material is included prior to the IP header
(such as an ethernet header), then the several options that can manipulate the outer header
(such as DSC and Cksm) will not work right.

This PDB diagram shows the common form, and the common definitions of the Options
and HMO bits follow afterwards. Details for the cipher-suite-specific portion are found:

• For AES-CBC and DES-CBC specific IV format, refer to IPsec ESP encapsulation
CBC-specific PDB segment format descriptions

• For AES-CTR specific Counter and IV format, refer to IPsec ESP encapsulation
AES-CTR-specific PDB segment format descriptions

• For AES-CCM specific data format, refer to IPsec ESP encapsulation AES-CCM-
specific PDB segment format descriptions

• For AES-GCM specific Salt and IV format, refer to IPsec ESP encapsulation AES-
GCM-specific PDB segment format descriptions

All fields shown here should be programmed as appropriate per the negotiated tunnel
parameters. NH Offset is used only for transport mode. For more detail on fields other
than HMO and Options, see Process for IPsec ESP Transport (and Legacy Tunnel)
encapsulation. HMO and Options are described below the PDB diagram.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 321

Table 9-3. IPsec ESP Transport (and Legacy Tunnel) encapsulation PDB

Descriptor Header (1 or 2 words)

PDB Word 0 HMO

(4 bits)

Reserve
d

(4 bits)

Next Header

(8 bits)

NH Offset

(8 bits)

Options

(8 bits)

PDB Word 1 Optional Extended Sequence Number (ESN) DECO writes back to
PDB as neededPDB Word 2 Sequence Number

PDB Word 3

Cipher-suite-specific portion of PDB

for CBC-mode see
CBC IV Format

for CTR-mode see
CTR IV Format

for CCM-mode see
CCM IV Format

for GCM-mode see
GCM IV Format

PDB Word 4

PDB Word 5

PDB Word 6

PDB Word 7 SPI

PDB Word 8 Reserved Opt IP Header Length

PDB Word 9 Optional IP Header (bytes 0-3)

PDB Word 10 Optional IP Header (bytes 4-7) ID field is incremented
and written back as

needed

PDB Word 11 Optional IP Header (bytes 8-11)

PDB Word 12 Optional IP Header (bytes 12-15)

PDB Word 13 + Optional IP Header (bytes 16+)

Table 9-4. IPsec ESP Transport (and Legacy Tunnel) encapsulation PDB, format of the
options byte

7 6 5 4 3 2 1 0

Cksm DSC IVsrc ESN IPHdr Src Inc IPHdr IPvsn Tun/ Trsp

Table 9-5. IPsec ESP Transport (and Legacy Tunnel) encapsulation PDB, description of the
options byte

Field Description

7

Cksm

Enable Checksum Update

0 - Do not perform any checksum computations

1 - For any changes performed to the IP header, perform computations to update the header checksum

6

DSC

DiffServ Copy

0 - Do not copy

1 - Copy the IPv4 TOS or IPv6 Traffic Class byte from the inner IP header to the IP header copied from the
PDB.

Table continues on the next page...

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

322 NXP Semiconductors

Table 9-5. IPsec ESP Transport (and Legacy Tunnel) encapsulation PDB, description of the
options byte (continued)

Field Description

5

IVsrc

IV Source

0 - Chained IV Stored in PDB

1 - Random IV fetched from RNG prior to starting encapsulation

4

ESN

Extended Sequence Number

0 - ESN not included in ICV computation. Optional ESN field of PDB is reserved in this case.

1 - ESN is copied from PDB and used for ICV computation but is not written to the output frame. ESN is
incremented as if part of the sequence number and written back to the PDB as required.

3

IPHdrSrc

IP Header source

0 - IP header in input frame

1 - IP header in PDB

2

Inc IPHdr

Include Optional IP Header

0 - Do not prepend IP header

1 - Prepend IP Header to output frame

1

IPvsn

This field indicates which version of IP is being used.

0 - IPv4

1 - IPv6

0

Tun/Trsp

Selects Tunnel or Transport Mode with respect to handling of the N (Next Header) byte

0 - Transport mode

1 - Tunnel mode

This figure shows the format of the HMO field.

Table 9-6. IPsec ESP Transport (and Legacy Tunnel) encapsulation PDB, format of the HMO
field

31 30 29 28

Reserved DFC DTTL SNR

Table 9-7. IPsec ESP Transport (and Legacy Tunnel) encapsulation PDB, description of the
HMO field

Field Description

31 Reserved

30

DFC

Copy DF bit

0 - Do not copy DF bit

1 - If an IPv4 tunnel mode outer IP header is coming from the PDB, copy the DF bit from the inner IP
header to the outer IP header. If not in tunnel mode or the outer IP header from the PDB is not included,
setting DFC = 1 causes a Protocol PDB error.

29 Decrement TTL (Hop Limit)

Table continues on the next page...

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 323

Table 9-7. IPsec ESP Transport (and Legacy Tunnel) encapsulation PDB, description of the
HMO field (continued)

Field Description

DTTL 0 - Do not decrement

1 - Based on the value of the Options Byte IPvsn field: if IPv4, decrement the inner IP header TTL field
(byte 8) and update the IPv4 header checksum; if IPv6 decrement the inner IP header Hop Limit field (byte
7). If TTL is decremented below 0, an error is generated.

28

SNR

Sequence Number Rollover enable

0 - Sequence Number (as extended by ESN) does not rollover; an error is generated if a rollover is
attempted

1 - Sequence Number (as extended by ESN) permitted to roll over

9.1.3.2 Common PDB format descriptions for IPsec ESP Transport
(and Legacy Tunnel) decapsulation

IPsec ESP Transport (and Legacy Tunnel) decapsulation uses a mostly-common Protocol
Data Block (PDB) format to maintain certain state and security association information.
To complete decapsulation, SEC requires access to SPI, Sequence Number, Extended
Sequence Number (if used). SPI and Sequence Number can be used as extracted from the
input frame, but the Extended Sequence Number is not included in the encapsulated
datagram. PDB words 1 and 2 are reserved for some cipher-suite-specific material, such
as the Salt used by AES-GCM. These words are reserved for CBC-based cipher suites
because no other information is required.

This PDB diagram shows the common form, and the common definitions of the Options
and HMO bits follows afterwards. For the cipher-suite-specific portion, additional details
can be found as follows:

• For AES-CBC and DES-CBC specific IV format, refer to IPsec ESP decapsulation
CBC-specific PDB segment format descriptions

• For AES-CTR specific Counter and IV format, refer to IPsec ESP decapsulation
AES-CTR-specific PDB segment format descriptions

• For AES-CCM specific data format, refer to IPsec ESP decapsulation AES-CCM-
specific PDB segment format descriptions

• For AES-GCM specific Salt and IV format, refer to IPsec ESP decapsulation AES-
GCM-specific PDB segment format descriptions

Fields shown here should be programmed as appropriate per the negotiated tunnel
parameters. NH Offset is used only for transport mode. The Anti-replay scorecard should
be initialized with zeros. For more detail on fields other than HMO and Options, see
IPsec ESP Transport (and Legacy Tunnel) decapsulation procedure overview. HMO and
Options are described below the PDB diagram.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

324 NXP Semiconductors

Table 9-8. IPsec ESP Transport (and Legacy Tunnel) decapsulation PDB

Descriptor Header (1 or 2 words)

PDB Word 0 HMO

(4 bits)

IP Header Length

(12 bits)

NH Offset

(8 bits)

Options

(8 bits)

PDB Word 1

Cipher-suite-specific portion of PDB

unused for CBC-mode

for CTR-mode see CTR
IV Format

for CCM-mode see
CCM IV Format

for GCM-mode see
GCM IV Format

PDB Word 2

PDB Word 3 Optional Extended Sequence Number (ESN)

DECO writes back to
PDB as needed

PDB Word 4 Sequence Number

PDB word 5 anti-replay scorecard 1

[present if ARS not 00b]

PDB word 6 anti-replay scorecard 2

[present if ARS either 10b or 11b]

PDB word 7 anti-replay scorecard 3

[present if ARS= 10b]

PDB word 8 anti-replay scorecard 4

[present if ARS= 10b]

Table 9-9. IPsec ESP Transport (and Legacy Tunnel) Common decapsulation PDB, format
of the options byte

7-6 5 4 3 2 1 0

ARS CKSM ESN OUT_FMT AOFL IPVSN TUN/TRSP

Table 9-10. IPsec ESP Transport (and Legacy Tunnel) Common decapsulation PDB,
description of the options byte

Field Description

7-6

ARS

Anti-replay window size.

00 - No anti-replay window

01 - 32-entry anti-replay window

10 - 128-entry anti-replay window

11 - 64-entry anti-replay window

5

CKSM

Checksum Enable

0 - Checksum calculation/verification disabled

1 - Checksum calculation/verification enabled

4

ESN

Include Extended Sequence Number:

0 - ESN not used. Optional ESN field of PDB is reserved in this case.

Table continues on the next page...

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 325

Table 9-10. IPsec ESP Transport (and Legacy Tunnel) Common decapsulation PDB,
description of the options byte (continued)

Field Description

1 - ESN is used for ICV and anti-replay computations. The ESN is not found in the input frame

3

OUT_FMT

Output Frame format:

0 - All Input Frame fields copied to Output Frame

1 - Output Frame is just the decapsulated PDU

2

AOFL

Adjust Output Frame Length

0 - Don't adjust output frame length -- output frame length reflects output frame actually written to memory,
including the padding, Pad Length, and Next Header fields.

1 - Adjust output frame length -- subtract the length of the padding, the Pad Length, and the Next Header
byte from the output frame length reported to the frame consumer.

If outFMT==0, this bit is reserved and must be zero.

1

IPVSN

This field indicates which version of IP is being used.

0 - IPv4

1 - IPv6

0

TUN/TRSP

Selects Tunnel or Transport Mode with respect to handling the N (Next Header) byte

0 - Transport mode

1 - Tunnel mode

Table 9-11. IPsec ESP Transport (and Legacy Tunnel) Common decapsulation PDB, format
of the HMO field

31 30 29 28

ODF DFV DTTL DSC

Table 9-12. IPsec ESP Transport (and Legacy Tunnel) Common decapsulation PDB,
description of the HMO field

Field Description

31

ODF

ODF -- Override DF bit in IPv4 header of decapsulated output frame

0 - DF bit the IPv4 header in the output frame is identical to that in the input frame (encapsulated header in
the input frame if in tunnel mode)

1 - DF bit in the IPv4 header in the output frame is replaced with the DFV value as shown below.

If IPv6 is selected, then this bit is reserved and must be zero.

30

DFV

DFV -- DF bit Value

If ODF (see above) is set, this bit replaces whatever value would have otherwise been placed in the IPv4
Header DF bit field.

If ODF is not set, then this bit is reserved and must be zero.

29

DTTL

Decrement TTL (Hop Limit)

0 - Do not decrement

Table continues on the next page...

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

326 NXP Semiconductors

Table 9-12. IPsec ESP Transport (and Legacy Tunnel) Common decapsulation PDB,
description of the HMO field (continued)

Field Description

1 - Based on the value of the Options Byte IPvsn field if IPv4, decrement the inner IP header TTL field (byte
8) and update the IPv4 header checksum; if IPv6 decrement the inner IP header Hop Limit field (byte 7). If
TTL is decremented below 0, an error is generated.

28

DSC

DiffServ Copy

0 - Do not copy

1 - Copy the IPv4 TOS or IPv6 Traffic Class byte from the outer IP header to the inner IP header.

9.1.3.3 Overriding ESP Transport (and legacy Tunnel) PDB content
with the DECO Protocol Override Register

A shared descriptor is created with the intent to provide information required for
processing every packet in a flow. Occasionally, it is required to override those standard
settings. For IPsec ESP Transport (and Legacy Tunnel) encapsulation and decapsulation,
several fields are maintained in the PDB, but can be overridden through the DPOVRD
register, by setting the OVRD bit (see figure below). When using the Job Ring interface,
this is achieved by including a LOAD IMMEDIATE to the DPOVRD register of the
desired values in the job descriptor. For more information, see Job Ring interface. When
using the Queue Manager Interface, QI builds the job descriptor with a LOAD
IMMEDIATE to the DPOVRD register with the value of the STATUS/CMD field in the
FD. For more information, see Queue Manager Interface (QI).

When DPOVRD is selected for use, SEC then uses the following values as specified in
DPVORD instead of as specified in the PDB:

• IP Header Length
• NH OFFSET,
• Next Header (encapsulation only)
• ECN

Note that the values in DPOVRD in no way affect the values stored in the descriptor's
PDB. DPOVRD works the same way regardless of the format of the IPsec encapsulation
and decapsulation PDB, although the PDB's format varies depending on the chosen
cipher suite. For details on how each of these fields are used, please refer to the
appropriate section -- either PDB format for IPsec ESP Transport (and Legacy Tunnel)
encapsulation or Common PDB format descriptions for IPsec ESP Transport (and Legacy
Tunnel) decapsulation.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 327

Table 9-13. IPsec ESP Transport (and legacy Tunnel) format of the DPOVRD register for
encapsulation and decapsulation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OVRD Reserved ECN IP Header Length

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NH OFFSET Next Header [Encapsulation only]

Reserved for decapsulation

Table 9-14. IPsec ESP Transport (and Legacy Tunnel) description of the DPOVRD register
for encapsulation and decapsulation

Field Description

31

OVRD

Selects whether DPOVRD overrides the values specified in the PDB.

0: Use the PDB as provided

1: Override values in PDB by using values in DPOVRD

30-28 Reserved

27-24

ECN

If OVRD = 1 and the MSB of the ECN field (bit 27) = 1, the two LSBs of the ECN field (bits 25 and 24)
replace the ECN bits in the IP header written to the output frame as part of encapsulation or decapsulation.

23-16

IP Header
Length

The length, in bytes, of the portion of the IP header that is not encrypted.

If IP Header Length = 0, the entire IP header is encrypted. In transport mode this indicates to SEC that this
particular packet has an IP header that is not of typical length, so that SEC does not authenticate or
encrypt any of the atypical IP headers found in the input frame.

15-8

NH OFFSET

The location of the next header field within the IP header of the transport mode packet.

This location is indicated by the number of bytes from the beginning of the IP header.

For encapsulation, the value at this location is replaced with the contents of the Next Header byte (bits 7-0),
and the value at the NH OFFSET location is used as the N byte in constructing the IPsec encapsulation
trailer.

For decapsulation, the reverse occurs; the N byte value decrypted and extracted from the ESP trailer
replaces the Next Header byte at this offset into the IP header.

7-0

Encapsulation:
Next Header

Decapsulation:
Reserved

For encapsulation, this value is placed in the transport mode header at location NH OFFSET, replacing the
value that was in the Next Hdr field of that particular header or extension header.

For decapsulation, this field is reserved.

9.1.3.4 PDB format for IPsec ESP Tunnel encapsulation

The PDB for IPsec ESP Tunnel encapsulation descriptors is very similar to the PDB used
by IPsec ESP Transport (and Legacy Tunnel) encapsulation. However, the use of the
HMO and Options fields has changed significantly.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

328 NXP Semiconductors

The Transport encapsulation PDB field NH Ofst is used only for transport-mode
applications; the Tunnel encapsulation PDB replaces that field with AOIPHO - Actual
Outer IP Header Offset. Tunnel encapsulation can permit the so-called Outer IP Header
material to include extra material, such as an ethernet header, which will be ignored for
the purpsoes of modifying the Outer IP header based on inner IP header values.

This PDB diagram shows the common form, and the common definitions of the Options
and HMO bits follow afterwards. Details for the cipher-suite-specific portion are found:

• For AES-CBC and DES-CBC specific IV format, refer to IPsec ESP encapsulation
CBC-specific PDB segment format descriptions

• For AES-CTR specific Counter and IV format, refer to IPsec ESP encapsulation
AES-CTR-specific PDB segment format descriptions

• For AES-CCM specific data format, refer to IPsec ESP encapsulation AES-CCM-
specific PDB segment format descriptions

• For AES-GCM specific Salt and IV format, refer to IPsec ESP encapsulation AES-
GCM-specific PDB segment format descriptions

All fields shown here should be programmed as appropriate per the negotiated tunnel
parameters. For more detail on fields other than HMO and Options, see IPsec ESP Tunnel
encapsulation overview. HMO and Options are described below the PDB diagram.

Table 9-15. IPsec ESP Tunnel encapsulation PDB

Descriptor Header (1 or 2 words)

PDB Word 0 HMO

(4 bits)

Reserve
d

(4 bits)

Next Header

(8 bits)

AOIPHO

(8 bits)

Options

(8 bits)

PDB Word 1 Optional Extended Sequence Number (ESN) DECO writes back to
PDB as neededPDB Word 2 Sequence Number

PDB Word 3

Cipher-suite-specific portion of PDB

for CBC-mode see
CBC IV Format

for CTR-mode see
CTR IV Format

for CCM-mode see
CCM IV Format

for GCM-mode see
GCM IV Format

PDB Word 4

PDB Word 5

PDB Word 6

PDB Word 7 SPI

PDB Word 8 Reserved Opt IP Header Length

PDB Word 9 Optional IP Header (bytes 0-3)

PDB Word 10 Optional IP Header (bytes 4-7) ID field is incremented
and written back as

needed

PDB Word 11 Optional IP Header (bytes 8-11)

Table continues on the next page...

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 329

Table 9-15. IPsec ESP Tunnel encapsulation PDB
(continued)

PDB Word 12 Optional IP Header (bytes 12-15)

PDB Word 13 + Optional IP Header (bytes 16+)

Table 9-16. IPsec ESP Tunnel encapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved IVsrc ESN OIHI NAT NUC

Table 9-17. IPsec ESP Tunnel encapsulation, description of the options byte

Field Description

7-6 Reserved

5

IVsrc

IV Source

0 - Chained IV Stored in PDB

1 - Random IV fetched from RNG prior to starting encapsulation

4

ESN

Extended Sequence Number

0 - ESN not included in ICV computation. Optional ESN field of PDB is reserved in this case.

1 - ESN is copied from PDB and used for ICV computation but is not written to the output frame. ESN is
incremented as if part of the sequence number and written back to the PDB as required.

3-2

OIHI

Outer IP Header Included

00 - No Outer IP Header Provided

01 - Outer IP Header from input frame -- The input frame provided will include two IP headers; first the
outer IP header, then the IP header of the datagram being encapsulated. The output frame will include the
Outer IP Header (modified as necessary), followed by the ESP Header, followed by the encrypted
datagram

10 - Outer IP Header Referenced by PDB - The output frame will include an outer IP header fetched from
the address in the appropriate PDB field. Note the extra memory reads associated with fetching the outer
IP header from independent memory cannot be prefetched or otherwise optimized, so a significant
performance penalty results from using this option.

11 - Outer IP Header from PDB - The output frame will include the Outer IP Header (modified as
necessary) extracted from the appropriate fields of the PDB.

1

NAT

Enable UDP-encapsulated-ESP as defined by RFC 3948 for traversing Network Address Translators
(NATs).

0 - no UDP-encapsulated-ESP

1 - UDP-encapsulated-ESP enabled.

0

NUC

enables NAT checksum

0 - If NAT is enabled, then no UDP checksum is computed, and the resulting UDP header uses a zero-
value checksum.

1 - If NAT is enabled, then a UDP checksum is computed and included in the UDP header.

If NAT is not enabled, NUC must be zero, else an error will be generated.

This figure shows the format of the HMO field.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

330 NXP Semiconductors

Table 9-18. IPsec ESP Tunnel encapsulation PDB, format of the HMO field

31 30 29 28

Reserved DFC DTTL SNR

Table 9-19. IPsec ESP Tunnel encapsulation PDB, description of the HMO field

Field Description

31 Reserved

30

DFC

Copy DF bit

0 - Do not copy DF bit

1 - If an IPv4 tunnel mode outer IP header is coming from the PDB, copy the DF bit from the inner IP
header to the outer IP header. If not in tunnel mode or the outer IP header from the PDB is not included,
setting DFC = 1 causes a Protocol PDB error.

29

DTTL

Decrement TTL (Hop Limit)

0 - Do not decrement

1 - Based on the value of the Options Byte IPvsn field: if IPv4, decrement the inner IP header TTL field
(byte 8) and update the IPv4 header checksum; if IPv6 decrement the inner IP header Hop Limit field (byte
7). If TTL is decremented below 0, an error is generated.

28

SNR

Sequence Number Rollover enable

0 - Sequence Number (as extended by ESN) does not roll over; an error is generated if a rollover is
attempted

1 - Sequence Number (as extended by ESN) permitted to roll over

9.1.3.5 Common PDB format descriptions for IPsec ESP Tunnel
decapsulation

IPsec ESP Tunnel decapsulation uses a mostly-common Protocol Data Block (PDB)
format to maintain certain state and security association information. To complete
decapsulation, SEC requires access to SPI, Sequence Number, Extended Sequence
Number (if used). SPI and Sequence Number can be used as extracted from the input
frame, but the Extended Sequence Number is not included in the encapsulated datagram.
PDB words 1 and 2 are reserved for some cipher-suite-specific material, such as the Salt
used by AES-GCM. These words are reserved for CBC-based cipher suites because no
other information is required. All of this is common with the IPsec ESP Transport (and
legacy tunnel) form of the decapsulation PDB. What is not common is the field AOIPHO
(Actual Outer IP Header Offset), which provides an offset to the actual outer IP header in
the input frame; allowing material preceeding the IP header (such as an ethernet header)
to be passed from input frame to output frame. This field replaces the ESP Transport
PDB field called NH Offset, which is used only for Transport mode processing.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 331

This PDB diagram shows the common form, and the ESP Tunnel definitions of the
Options and HMO bits follows afterwards. For the cipher-suite-specific portion,
additional details can be found as follows:

• For AES-CBC and DES-CBC specific IV format, refer to IPsec ESP decapsulation
CBC-specific PDB segment format descriptions

• For AES-CTR specific Counter and IV format, refer to IPsec ESP decapsulation
AES-CTR-specific PDB segment format descriptions

• For AES-CCM specific data format, refer to IPsec ESP decapsulation AES-CCM-
specific PDB segment format descriptions

• For AES-GCM specific Salt and IV format, refer to IPsec ESP decapsulation AES-
GCM-specific PDB segment format descriptions

Fields shown here should be programmed as appropriate per the negotiated tunnel
parameters. The Anti-replay scorecard should be initialized with zeros. For more detail
on fields other than HMO and Options, see IPsec ESP tunnel decapsulation overview.
HMO and Options are described below the PDB diagram.

Table 9-20. IPsec ESP Tunnel decapsulation PDB

Descriptor Header (1 or 2 words)

PDB Word 0 HMO

(4 bits)

IP Header Length

(12 bits)

AOIPHO

(8 bits)

Options

(8 bits)

PDB Word 1

Cipher-suite-specific portion of PDB

unused for CBC-mode

for CTR-mode see CTR
IV Format

for CCM-mode see
CCM IV Format

for GCM-mode see
GCM IV Format

PDB Word 2

PDB Word 3 Optional Extended Sequence Number (ESN)

DECO writes back to
PDB as needed

PDB Word 4 Sequence Number

PDB word 5 anti-replay scorecard 1 [present for any size of anti-replay window]

PDB word 6 anti-replay scorecard 2 [present if anti-replay window size exceeds 32]

PDB word 7 anti-replay scorecard 3 [present if anti-replay window size exceeds 64]

PDB word 8 anti-replay scorecard 4 [present if anti-replay window size exceeds 96]

Table 9-21. IPsec ESP Tunnel Common decapsulation PDB, format of the options byte

7-6 5 4 3 2 1 0

ARS TECN ESN rsv rsv rsv ETU

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

332 NXP Semiconductors

Table 9-22. IPsec ESP Tunnel Common decapsulation PDB, description of the options byte

Field Description

7-6

ARS

Anti-replay window size.

00 - No anti-replay window

01 - 32-entry anti-replay window

10 - 128-entry anti-replay window

11 - 64-entry anti-replay window

5

TECN

Tunnel ECN

0 - ECN Tunnelling disabled

1 - ECN Tunnelling enabled per RFC 6040.

4

ESN

Include Extended Sequence Number:

0 - ESN not used. Optional ESN field of PDB is reserved in this case.

1 - ESN is used for ICV and anti-replay computations. The ESN is not found in the input frame

3 Reserved

2-1 Reserved

0

ETU

EtherType update

0 - AOIPHO-defined material preceeding outer IP header copied as is to output frame

1 - AOIPHO-defined material preceeding outer IP header copied, except last two bytes are updated to
proper EtherType value for the IP header following -- 0800h for IPv4, and 86ddh for IPv6

Table 9-23. IPsec ESP Tunnel Common decapsulation PDB, format of the HMO field

31 30 29 28

ODF DFV DTTL DSC

Table 9-24. IPsec ESP Tunnel Common decapsulation PDB, description of the HMO field

Field Description

31

ODF

ODF -- Override DF bit in IPv4 header of decapsulated output frame

0 - DF bit the IPv4 header in the output frame is identical to that in the input frame (encapsulated header in
the input frame if in tunnel mode)

1 - DF bit in the IPv4 header in the output frame is replaced with the DFV value as shown below.

If IPv6 is selected, then this bit is reserved and must be zero.

30

DFV

DFV -- DF bit Value

If ODF (see above) is set, this bit replaces whatever value would have otherwise been placed in the IPv4
Header DF bit field.

If ODF is not set, then this bit is reserved and must be zero.

29

DTTL

Decrement TTL (Hop Limit)

0 - Do not decrement

1 - Based on the value of the Options Byte IPvsn field if IPv4, decrement the inner IP header TTL field (byte
8) and update the IPv4 header checksum; if IPv6 decrement the inner IP header Hop Limit field (byte 7). If
TTL is decremented below 0, an error is generated.

Table continues on the next page...

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 333

Table 9-24. IPsec ESP Tunnel Common decapsulation PDB, description of the HMO field
(continued)

Field Description

28

DSC

DiffServ Copy

0 - Do not copy

1 - Copy the IPv4 TOS or IPv6 Traffic Class byte from the outer IP header to the inner IP header.

9.1.3.6 Overriding ESP Tunnel PDB content with the DECO Protocol
Override Register

A shared descriptor is created with the intent to provide information required for
processing every packet in a flow. Occasionally, it is required to override those standard
settings. For IPsec ESP Tunnel encapsulation and decapsulation, several fields are
maintained in the PDB, but can be overridden through the DPOVRD register, by setting
the OVRD bit (see figure below). When using the Job Ring interface, this is achieved by
including a LOAD IMMEDIATE to the DPOVRD register of the desired values in the
job descriptor. For more information, see Job Ring interface. When using the Queue
Manager Interface, QI builds the job descriptor with a LOAD IMMEDIATE to the
DPOVRD register with the value of the STATUS/CMD field in the FD. For more
information, see Queue Manager Interface (QI).

When DPOVRD is selected for use, SEC then uses the following values as specified in
DPVORD instead of as specified in the PDB for both encapsulation and decapsulation:

• Outer IP Header Material Length
• AOIPHO
• OIMIF (encapsulation only)
• Next Header (encapsulation only)

Note that the values in DPOVRD in no way affect the values stored in the descriptor's
PDB. DPOVRD works the same way regardless of the format of the IPsec encapsulation
and decapsulation PDB, although the PDB's format varies depending on the chosen
cipher suite. For details on how each of these fields are used, please refer to the
appropriate section -- either PDB format for IPsec ESP Tunnel encapsulation or Common
PDB format descriptions for IPsec ESP Tunnel decapsulation.

The following table shows the form of the DPOVRD register used for encapsulation. A
separate format is used for decapsulation, and is shown below.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

334 NXP Semiconductors

Table 9-25. IPsec ESP Tunnel format of the DPOVRD register for encapsulation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OVRD Reserved Outer IP Header Material Length

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OIMIF AOIPHO Next Header

Table 9-26. IPsec ESP Tunnel description of the DPOVRD register for encapsulation

Field Description

31

OVRD

Selects whether DPOVRD overrides the values specified in the PDB.

0: Use the PDB as provided

1: Override values in PDB by using values in DPOVRD

30-28 Reserved

27-16

Outer IP Header
Material Length

The length, in bytes, of the portion of the IP header that is not encrypted.

If IP Header Length = 0, the entire IP header is encrypted. In transport mode this indicates to SEC that this
particular packet has an IP header that is not of typical length, so that SEC does not authenticate or
encrypt any of the atypical IP headers found in the input frame.

15

OIMIF

Outer IP Header Material in Input Frame

0: Use Outer IP Header Material as specified by PDB

1: For encapsulating this datagram, use Outer IP Header material found in input frame. Length specified by
DPOVRD register value Outer IP Header Material Length; AOIPHO specifies offset into material for actual
Outer IP Header.

14 Reserved

13-8

AOIPHO

Actual Outer IP Header Offset

This allows the Outer IP Header Material to be preceeded by some additonal content, such as an Ethernet
header. The value in this field indicats where the actual Outer IP Header starts in the material provided.

7-0 Next Header

Used in the Next Header field of the encapsulated payload.

The following table shows the form of the DPOVRD register used for decapsulation. A
separate format is used for encapsulation, and is shown above.

Table 9-27. IPsec ESP Tunnel format of the DPOVRD register for decapsulation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OVRD Reserved AOIPHO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AOIPHO (continued) Outer IP Header Material Length

Table 9-28. IPsec ESP Tunnel description of the DPOVRD register for decapsulation

Field Description

31 Selects whether DPOVRD overrides the values specified in the PDB.

Table continues on the next page...

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 335

Table 9-28. IPsec ESP Tunnel description of the DPOVRD register for decapsulation
(continued)

Field Description

OVRD 0: Use the PDB as provided

1: Override values in PDB by using values in DPOVRD

30-20 Reserved

19-12

AOIPHO

Actual Outer IP Header Offset

This allows the Outer IP Header Material to be preceeded by some additonal content, such as an Ethernet
header. The value in this field indicats where the actual Outer IP Header starts in the material provided.

15

OIMIF

Outer IP Header Material in Input Frame

0: Use Outer IP Header Material as specified by PDB

1: For encapsulating this datagram, use Outer IP Header material found in input frame. Length specified by
DPOVRD register value Outer IP Header Material Length; AOIPHO specifies offset into material for actual
Outer IP Header.

11-0

Outer IP Header
Material Length

The length, in bytes, of the portion of the IP header that is not encrypted.

If IP Header Length = 0, the entire IP header is encrypted. In transport mode this indicates to SEC that this
particular packet has an IP header that is not of typical length, so that SEC does not authenticate or
encrypt any of the atypical IP headers found in the input frame.

9.1.3.7 IPsec ESP encapsulation CBC-specific PDB segment format
descriptions

These figures show the format of the segment of the IPsec ESP encapsulation PDB used
with CBC-based cipher suites.

This segment is common to both ESP Tunnel and ESP Transport PDB forms.

Table 9-29. CBC-specific segment of IPsec ESP encapsulation PDB

common PDB above

(common encapsulation PDB shown for ESP Transport in Table 9-3) and for
ESP Tunnel in Table 9-15

PDB Word 3 IV bytes 0-3

DECO writes back to
PDB as needed

PDB Word 4 IV bytes 4-7

PDB Word 5 IV bytes 8-11

(AES only - reserved for DES)

PDB Word 6 IV bytes 12-15

(AES only - reserved for DES)

more common PDB below

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

336 NXP Semiconductors

9.1.3.8 IPsec ESP encapsulation AES-CTR-specific PDB segment
format descriptions

These figures show the format of the portion of the IPsec ESP encapsulation PDB used
with AES-CTR-based cipher suites.

This segment is common to both ESP Tunnel and ESP Transport PDB forms.

Table 9-30. AES-CTR specific segment of IPsec ESP encapsulation PDB

common PDB above

(common encapsulation PDB shown for ESP Transport in Table 9-3) and for
ESP Tunnel in Table 9-15

PDB Word 3 Counter Nonce

PDB Word 4 Counter Initial Count

PDB Word 5 IV bytes 0-3 DECO writes back to
PDB as neededPDB Word 6 IV bytes 4-7

more common PDB below

9.1.3.9 IPsec ESP encapsulation AES-CCM-specific PDB segment
format descriptions

These figures show the format of the portion of the IPsec ESP encapsulation PDB used
with AES-CCM cipher suites.

This segment is common to both ESP Tunnel and ESP Transport PDB forms.

Table 9-31. AES-CCM specific segment of IPsec ESP encapsulation PDB

common PDB above

(common encapsulation PDB shown for ESP Transport in Table 9-3) and for
ESP Tunnel in Table 9-15

PDB Word 3 Reserved

(8 bits)

Salt

(24 bits)

PDB Word 4 B0 Flags

(8 bits)

CTR0 Flags

(8 bits)

Counter Initial Count

(16 bits)

PDB Word 5 IV bytes 0-3

PDB Word 6 IV bytes 4-7

more common PDB below

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 337

9.1.3.10 IPsec ESP encapsulation AES-GCM-specific PDB segment
format descriptions

These figures show the format of the portion of the IPsec ESP encapsulation PDB used
with AES-GCM-based cipher suites.

This segment is common to both ESP Tunnel and ESP Transport PDB forms.

Table 9-32. AES-GCM specific segment of IPsec ESP encapsulation PDB

common PDB above

(common encapsulation PDB shown for ESP Transport in Table 9-3) and for
ESP Tunnel in Table 9-15

PDB Word 3 Salt

PDB Word 4 Reserved

PDB Word 5 IV bytes 0-3

PDB Word 6 IV bytes 4-7

more common PDB below

9.1.3.11 IPsec ESP decapsulation CBC-specific PDB segment format
descriptions

For both IPsec ESP decapsulation PDBs -- ESP Tunnel and ESP Transport (and legacy
tunnel) -- the two words reserved for cipher-specific additions are unused and therefore
reserved.

Table 9-33. CBC-specific segment of IPsec ESP decapsulation PDB

descriptor header above

PDB Word 1 Reserved

PDB Word 2 Reserved

more common PDB below

(common decapsulation PDB shown for ESP Transport in Table 9-8) and for
ESP Tunnel in Table 9-20

9.1.3.12 IPsec ESP decapsulation AES-CTR-specific PDB segment
format descriptions

The initial counter value required for decapsulation using counter mode is built using the
Nonce value assigned to the security association and the IPsec IV extracted from the ESP
header. The Nonce value is provided in the AES-CTR-specific portion of the

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

338 NXP Semiconductors

decapsulation PDB in word 1. The lower 4 bytes of the initial counter value is specified
using PDB word 2. RFC 3686 calls this segment the Block Counter, and specifies an
initial value of 00000001h.

This PDB segment is common to both ESP Tunnel and ESP Transport PDBs.

Table 9-34. AES-CTR specific segment of IPsec ESP decapsulation PDB

descriptor header above

PDB Word 1 Counter Nonce

PDB Word 2 Counter Initial Count

more common PDB below

(common decapsulation PDB shown for ESP Transport in Table 9-8) and for
ESP Tunnel in Table 9-20

9.1.3.13 IPsec ESP decapsulation AES-CCM-specific PDB segment
format descriptions

These figures show the format of the portion of the IPsec ESP decapsulation PDB used
with AES-CCM cipher suites. This form is common to both the IPsec ESP Tunnel and
ESP Transport PDBs.

Table 9-35. AES-CCM specific segment of IPsec ESP decapsulation PDB

descriptor header above

PDB Word 1 Reserved

(8 bits)

Salt

(24 bits)

PDB Word 2 B0 Flags

(8 bits)

CTR0 Flags

(8 bits)

Counter Initial Count

(16 bits)

more common PDB below

(common decapsulation PDB shown for ESP Transport in Table 9-8) and for
ESP Tunnel in Table 9-20

9.1.3.14 IPsec ESP decapsulation AES-GCM-specific PDB segment
format descriptions

The GCM IV required for decapsulation is built using the Salt value assigned to the
security association and the IPsec IV extracted from the ESP header. The salt value is
provided in the GCM-specific portion of the decapsulation PDB in word 1 for both ESP
Tunnel and ESP Transport PDB forms.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 339

Table 9-36. AES-GCM specific segment of IPsec ESP decapsulation PDB

descriptor header above

PDB Word 1 Salt

PDB Word 2 Reserved

more common PDB below

(common decapsulation PDB shown for ESP Transport in Table 9-8) and for
ESP Tunnel in Table 9-20

9.1.4 IPsec ESP Transport (and Legacy Tunnel) encapsulation
overview

SEC supports tunnel and transport encapsulation of either complete IP packets or of IP
payloads, per IPsec ESP requirements. The IPsec ESP Transport hardware (as specified
in the PROTOCOL OPERATION COMMAND with PROTID=01) is designed to
support Transport mode ESP datagram encapsulation. Limited Tunnel mode support is
also provided, but may be deprecated in future SEC hardware revisions; additional ESP
Tunnel mode support is (and will continue to be) supported by the IPsec ESP Tunnel
threads.

Once the payload is identified, cryptographic encapsulation proceeds identically for
Transport mode datagrams, for Tunnel mode datagrams when using the ESP Transport
(and legacy tunnel) encapsulation thread, and for Tunnel mode datagrams when using the
ESP Tunnel encapsulation thread. This procedure is described in IPsec ESP
Cryptographic Encapsulation.

As part of encapsulation, SEC updates the length field of the IP header. This field has
different characteristics depending on whether your device uses IPv4 or IPv6. The
following table summarizes these differences:

Table 9-37. Differences in the length field by IPrev

Characteristic IPv4 IPv6

Name IP Total Length Payload Length

Byte range 2:3 4:5

What includes Length of IP header itself Length of all extension headers; does
not include the length of the IP header

NOTE
To handle the differences between IP revs in terms of what the
length field includes, the ESP Tunnel protocol assumes that the
length field provided with the IP header is appropriate for IPv4

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

340 NXP Semiconductors

or IPv6. In other words, it assumes that the IP header Total
Length field (IPv4) includes the length of the IP header and
options whereas the IP header Payload Length field (IPv6) does
not include the length of the IP header and extensions. (ESP
Transport continues to use the PDB option bit that indicates
IPversion and ignores the IPversion field within the IP header
altogether.)

Note that SEC can optionally update the header checksum based on other changes made
to the header. This update is valid only if the checksum was correct for the header prior to
any other changes made.

9.1.4.1 Encapsulating the IP header in tunnel mode

For tunnel mode, the IP header is encapsulated as part of the payload. SEC can prepend a
new IP header from the PDB or the input frame after it computes the proper length value.
It computes this value as follows:

SEC-added ESP Header (SPI, Seq Num, and IV) length + the payload + ESP Trailer
(padding, Pad Len, N, and ICV) length = proper length value

Note that for the final length field to be correct, the correct length value must have been
programmed into the PDB field titled "Opt IP Hdr Length".

For IPv4, prior to RFC 6864, the IP Header identification field was required to be unique
for each packet transmitted. Therefore, if SEC is prepending an IP Header from the PDB,
it increments by 1 the bytes corresponding to the IP Header Identification field in the
PDB, per RFC 791.

9.1.4.2 Encapsulating the IP header in transport mode

No new IP header is prepended in transport mode. Instead, SEC inserts all these added
fields after the received IP header and updates the length to account for all the bytes SEC
adds: those in the ESP Header and the ESP Trailer. Note that SEC does not add bytes for
the payload length because it should be included in the original IP header length field.

9.1.4.3 Process for IPsec ESP Transport (and Legacy Tunnel)
encapsulation

This figure shows an example of the IPsec ESP Transport (and Legacy Tunnel)
encapsulation processing-sequence.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 341

 (May include Trsp. IP Hdr)

 Input Frame Outer IP Hdr Trsp. IP Hdr Payload

 Present in tunnel mode if
IncIPHdr = 1 & IPHdrSrc =
Absent in transport mode

 Used for IP Hdr in Output Frame
0 in transport mode when
Inc IPHdr = 1 & IPHdrSrc = 0
In all other cases this field, if present,
is treated as part of the Payload

 encryption processing

 authentication

 processing
 (CBC example)

 Output Frame

 Payload
 Padding

 Pad
 Len
 1 byte 1 byte

 N

 Encryption

 Payload Padding
 Pad
 Len
 1 byte 1 byte

 N Opt. ESN
 4 bytes

 SPI

 4 bytes
 Seq num
 4 bytes

 IPsec IV
 8/16 bytes

 Authenticate

 Payload Padding
 Pad
 Len
 1 byte 1 byte

 N ICV SPI
 4 bytes

 Seq num
 4 bytes

 IPsec IV
 8/16 bytes

 Included if Inc IPHdr = 1
 IP Hdr is taken from input
 frame if IPHdrSrc = 0 or
 from PDB if IPHdrSrc = 1

 ESP Header ESP Trailer

 IP Hdr

Figure 9-2. Example IPsec ESP Transport (and Legacy Tunnel) encapsulation
processing sequence (DES-CBC, AES-CBC, or AES-CTR)

As shown above, processing begins when SEC receives an input frame. Note that the
Transport IP Header is optional for transport mode because SEC does not authenticate or
encrypt the IP header. The transport IP header may be omitted in transport mode by
clearing IncIPHdr, setting IPHdrSrc, or clearing IP Header Length. For tunnel mode, the
input frame must include an IP header because SEC must authenticate and encrypt this
header as part of the payload.

When a IP header is included in transport mode, the N (Next Header) byte receives
special treatment if the NH_OFFSET byte of the PDB is set to a non-zero value, as
follows:

• If transport mode ESP with IPv4 for any non-zero value of NH_OFFSET (typically
set to 01h), the N byte used in the ESP trailer comes from byte 9 of the IP header,
and byte 9 of the IP header is replaced with the Next Header byte from the PDB.

• If transport mode ESP with IPv6 and NH_OFFSET = 01h, the N byte used in the
ESP trailer comes from byte 6 of the IP header, and byte 6 of the IP header is
replaced with the Next Header byte from the PDB.

• If transport mode ESP with IPv6 and NH_OFFSET > 01h, the N byte used in the
ESP trailer comes from byte (NH_OFFSET x 8) of the IP header, and byte

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

342 NXP Semiconductors

(NH_OFFSET x 8) of the IP header is replaced by the Next Header byte from the
PDB.

• In all cases, if NH_OFFSET contains zero, no swap occurs and the ESP trailer N
byte is copied directly from the PDB Next Header byte, as in tunnel mode.

As shown in Process for IPsec ESP Transport (and Legacy Tunnel) encapsulation, the
output frame results from SEC IPsec encapsulation regardless of the cipher suite used.

9.1.5 IPsec ESP Cryptographic Encapsulation

Construction of the ESP Header, Payload and ESP trailer is common for both ESP
Tunnel and Transport modes, as are the cryptographic processes involved in
encapsulating. However, the procedure and set up of cryptographic context differs,
depending upon the cipher suite chosen.

9.1.5.1 Process for IPsec encapsulation when using AES-CBC or
DES-CBC

This figure shows stages of IPsec ESP Transport (and Legacy Tunnel) encryption and
authentication for encapsulation.

 SPI Seq Num IV Payload padding Pad

 N Opt.ESN Len
 4 bytes 4 bytes 8/16 bytes

 Authenticate

 0 to 15 bytes 1 byte 1 byte 4 bytes

 Payload

 Payload

 padding
 0 to 15 bytes

 padding
 0 to 15 bytes

 Pad
 Len
 1 byte

 Pad
 Len
 1 byte

 N
 1 byte

 N
 1 byte

 Encrypt

Figure 9-3. Stages of IPsec ESP Transport (and Legacy Tunnel) encryption and
authentication for encapsulation with AES-CBC or DES-CBC

When using the AES-CBC or DES-CBC cipher suite, SEC performs IPsec encapsulation
by doing the following:

1. Begins by prepending authenticate-only data (the SPI and Seq Num found in the
PDB) to the payload. The authenticate-only data is passed to the output frame for
transmission and in parallel is passed to the authentication CHA.

2. Appends 8- or 16-byte IV (IV size is the cipher block size) after the sequence
number and sends it to the authentication CHA (typically a Class 2 CHA); in parallel,
it sends it to the output frame.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 343

NOTE
The IV can come from two possible sources, depending on
the setting of the IVsrc field in the PDB Options Byte:

• The RNG can generate it randomly for a packet (IVsrc
= 1).

• The IV can be a chained IV, meaning that the final
block of ciphertext from the previous packet is used as
the IV for the next packet (IVsrc = 0).

3. Writes the IV also into the first locations of the Context Register for the Class 1 CHA
4. After encryption is completed, writes the last block of ciphertext back to the PDB

and Seq Num is incremented and updated in the PDB in memory

After the IV is in place, the Payload itself is fetched from the Input Frame and encrypted.
The result of the encryption process is pushed onto the output frame, and is also pushed
into the authentication CHA (normally Class 2). SEC generates the appropriate padding
of monotonically increasing bytes, the first byte having the value 01h. SEC computes the
Pad Length (padding such that Next Header is the last byte in a cryptographic block), and
it appends Next Header (N) as found in the PDB. The padding, Pad Length, and Next
Header are encrypted and authenticated immediately following the payload.

Optionally, IPsec can use an extended sequence number (ESN) that is authenticated but
not transmitted. If an ESN is found in the PDB, it is the last thing given to the
authentication CHA. The ESN is incremented whenever the Seq Num rolls over.

For AES-CBC and DES-CBC, the update to the header length field reflects the addition
of the following:

• 4-byte SPI
• 4-byte Seq Num
• 8 or 16-byte IV
• Padding (0-7 bytes for DES, 0-15 bytes for AES)
• 1-byte pad length
• 1-byte Next (N) field
• the ICV (the length of which is dependent on the cipher suite chosen)

Null Authentication may be chosen along with AES-CBC or DES-CBC confidentiality. If
null authentication is chosen, then encryption proceeds as described before, steps that
cause data to be authenticated are skipped. As no ICV is genererated, writing of ICV to
the output frame is also skipped.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

344 NXP Semiconductors

9.1.5.2 Process for IPsec encapsulation when using AES-CTR

This figure shows IPsec ESP Transport (and Legacy Tunnel) encryption and
authentication for encapsulation with AES-CTR.

 Payload padding
 0 to 3 bytes

 Pad
 Len
 1byte

 N
 1byte

 Payload padding
 0 to 3 bytes

 Pad
 Len
 1byte

 N
 1byte

 Payload padding
 0 to 3 bytes

 Pad
 Len
 1byte

 N
 1byte

 Encrypt

 Authenticate

 SPI
 4 bytes

 Seq Num
 4 bytes

 IV
 8 bytes

 Opt. ESN
 4 bytes

Figure 9-4. IPsec ESP Transport (and Legacy Tunnel) encryption and authentication for
encapsulation with AES-CTR

When using an AES-CTR-based cipher suite, SEC performs IPsec encapsulation by
doing the following:

1. Begins by prepending authenticate-only data to the payload
2. Passes the SPI and sequence number found in the PDB to the output frame for

transmission and to the authentication CHA
3. Appends the IV after the sequence number for authentication (typically a Class 2

operation) and the Output Frame.

NOTE
The IV can come from two possible sources, depending on
the setting of the IVsrc field in the PDB Options byte

• The RNG can generate it for a packet (IVsrc = 1)
• The IV value within the PDB can be treated as a

pseudo-sequence number (IVsrc = 0).

If the second option is chosen, the actual sequence number
and the pseudo-sequence number are incremented and
updated after use in the PDB in memory.

4. Does not write the 8-byte IV to the Class 1 Context Register directly, but combines it
with a 4-byte nonce value and a 4-byte initial count constant (0000 0001h per RFC
3686). Both constants are static in the PDB.

Counter Value
16 bytes 4 bytes 8 bytes

Nonce IPsec-IV
4 bytes

initial count

Figure 9-5. Initial counter construction
5. Writes the 16-byte counter value into the counter value segment of the Class 1

Context Register, at offset 16.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 345

6. Following generation of the authentication-only data prepended to the payload,
fetches the payload itself from the input frame and encrypts it. The result of the
encryption process is pushed onto the output frame, and is also pushed into the
authentication CHA (normally Class 2).

7. Applies monotonically increasing padding bytes, followed by a Pad Len byte, such
that the end of the frame after ICV ends on a 4-byte boundary. SEC next appends
Next Header (N) as found in the PDB. The Next Header is encrypted and
authenticated immediately following the payload.

Optionally, IPsec can use an extended sequence number (ESN) that is authenticated but
not transmitted. If an ESN is found in the PDB, it is the last thing given to the
authentication CHA. The ESN is incremented whenever the Seq Num rolls over.

The update to the IP Header length field reflects the addition of the following:

• 4-byte SPI
• 4-byte Seq Num
• 8-byte IPsec IV
• 0-3 bytes of padding
• 1-byte pad length
• Next byte
• The ICV (the length of which is dependent on the cipher suite chosen).

Null Authentication may be chosen along with AES-CTR confidentiality. If null
authentication is chosen, then encryption proceeds as described before, steps that cause
data to be authenticated are skipped. As no ICV is genererated, writing of ICV to the
output frame is also skipped.

9.1.5.3 Process for IPsec encapsulation when using AES-CCM

When using the AES-CCM cipher suite, SEC performs IPsec encapsulation by doing the
following:

1. Constructs the CCM B0 and Initial Counter (CTR0) values from Flag bytes, the Salt,
and the IPsec IV as follows:

• A nonce is constructed by appending the 8-byte IPsec IV to a 3-byte salt value.
The salt value is a static value stored in the PDB. The IPsec IV is either a
pseudo-sequence number in the PDB that is incremented after use or a random
number.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

346 NXP Semiconductors

 To AES Context

 CCM B :

 CCM Ctr :

0
5B Nonce L(pyld)

03h

1 byte 11 bytes

Nonce
1 bytes 1 byte

4 bytes

0000h
4 bytes

Salt IPsec - IV
8 bytes3 bytes

 Nonce
 11 bytes

Nonce construction

Intial counter and IV
construction from the nonce

Note: value 5B comes from B flags byte of PDB 0
value 03h comes from CTR Flags byte of PDB

Figure 9-6. IPsec AES-CCM context construction
• To construct the Initial Counter value, SEC prepends the nonce with the counter

field flags, which is a static byte from the PDB (with a value of 03h), and
appends another 4 bytes that remain static in the PDB.

• To construct the CCM B0, SEC uses the B0 flags byte of the PDB, whose value
must be selected by the user according to the size of ICV transmitted.

• For an 8-byte ICV, select a value of 5Bh.
• For a 12-byte ICV, select a value of 6Bh.
• For a 16-byte ICV, select a value of 7Bh.

• Note that the cipher suite value in the Protocol Command selects the ICV size.
2. Writes the CCM B0 and Initial Counter values to the Class 1 Context Register (16

bytes starting with offset zero receive the CCM B0; the CCM Ctr immediately
follows).

3. After programming the Class 1 Context Registers, prepends authenticate-only data
(AAD) to the payload (see the following figure).

 SPI SPI
 4 bytes

 Opt.ESN
 4 bytes

 Seq Num
 4 bytes

 Payload padding
 0 to 3 bytes

 Pad
 Len 1 byte

 N 1 byte

 ICV
 8/12/16bytes

 AES-CCM Authenticate & Encrypt

 SPI L(AAD)
 2 bytes

 AAD

Figure 9-7. IPsec ESP Transport (and Legacy Tunnel) encryption and authentication for
encapsulation with AES-CCM

a. The AES-CCM mode encapsulation data starts with the formatted AAD, which
consists of a 2-byte field indicating the length of AAD field, and the ESP
Header, which consists of:

• SPI and Seq Num from the PDB (which are also passed to the output frame)
• ESN from the PDB and if enabled (ESN is not passed to the output frame).

b. The formatted AAD includes zero-padding to the nearest block (16-byte
boundary) and is passed into the input-data FIFO, but not into the output frame.

c. The 8-byte IPsec IV is appended after the sequence number to the output frame,
but is not written to the input-data FIFO.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 347

4. Following generation of the formatted AAD, fetches the payload from the input
frame and encrypts it.

5. The result of the encryption process is pushed onto the output frame; applies
monotonically increasing padding bytes, followed by a Pad Len byte, such that the
end of the frame after ICV ends on a 4-byte boundary.

6. Appends Next Header (N) as found in the PDB; N is encrypted and authenticated
immediately following the payload.

Optionally, IPsec can use an extended sequence number (ESN) that is authenticated but
not transmitted. For combination algorithms (that is, unlike the AES-CBC), the ESN is
appended to the AAD after the SPI. ESN, which is found in the PDB, is incremented
whenever the sequence number rolls over.

The update to the IP Header length field reflects the addition of the following:

• 4-byte SPI
• 4-byte Seq Num
• 8-byte IPsec IV
• 0-3 bytes of padding
• 1-byte pad length
• The Next byte
• The ICV (the length of which is dependent on the cipher suite chosen. The ICV may

be 8, 12, or 16 bytes, depending upon the PROTINFO code provided.)

9.1.5.4 Process for IPsec encapsulation when using AES-GCM

When using the AES-GCM cipher suite, SEC performs IPsec encapsulation by doing the
following:

1. Constructs the nonce, which is a 12-byte GCM IV.
• The GCM IV is created by appending the IPsec IV value to the 4-byte Salt value

(see Figure 9-8).
• The Salt is a static value found in the PDB.
• The IPsec IV value is either a pseudo-sequence number in the PDB that is

incremented after use or it is a random number.
• Per RFC 4106, Salt concatenated with IV creates a value called the Nonce. This

same value is called an IV (a GCM-IV) by specifications defining AES-GCM,
such as NIST document SP800-38D.

GCM-IV Salt IPsec IV
12 bytes 4 bytes 8 bytes

Figure 9-8. IPsec GCM-IV building

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

348 NXP Semiconductors

2. DECO writes the GCM-IV to the input-data FIFO after padding it with zeros to the
nearest block (16-byte) boundary.

3. The 8- or 12-byte authentication-only data (AAD) is zero padded by the DECO to the
nearest block (16-byte) boundary and then written to the input-data FIFO

• The AAD consists of the 4-byte SPI, the 4-byte ESN (if present), and the 4 byte
Seq Num, concatenated together (see Figure 9-9).

• The SPI and Seq Num are written to the output frame (in addition to the input-
data FIFO) and followed by the IPsec IV.

• ESN is written to the input-data FIFO only and not to the output frame.

 SPI SPI
4 bytes

Opt.ESN
4 bytes

Seq Num
4 bytes

Payload padding
0 to 3 bytes

Pad
Len
1 byte

N
1 byte

ICV
8/12/16bytes

AES-GCM Authenticate & Encrypt

Figure 9-9. IPsec ESP Transport (and Legacy Tunnel) encryption and authentication for
encapsulation with AES-GCM

4. Inputs the payload, monotonically increasing padding bytes, a Pad Len byte and the
next header (N) to the input-data FIFO, and encrypts these.

5. Pops the output-data FIFO off the encrypted result and writes it to the output frame.
6. Writes AES-GCM ICV to the output frame.

The update to the IP Header length field reflects the addition of the following:

• 4-byte SPI
• 4-byte Seq Num
• 8 byte IPsec IV
• 0-3 bytes of padding
• 1-byte pad length
• the Next byte
• ICV (the length of which is dependent on the cipher suite chosen by the PROTINFO

field -- see Table 7-53)

9.1.6 IPsec ESP Transport (and Legacy Tunnel) decapsulation
procedure overview

SEC is designed to decapsulate received IPsec ESP Transport (and limited Tunnel mode)
packets. The following figure provides an illustration of the procedure for both modes.
For mode-specific details, see IPsec ESP Transport Mode outer IP header decapsulation
procedure or IPsec ESP Transport (and Legacy Tunnel) outer IP header decapsulation
procedure (tunnel mode). For details on cryptographic processing for both Tunnel and
Transport modes, see IPsec ESP Cryptographic Decapsulation.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 349

Figure 9-10. IPsec ESP Transport (and Legacy Tunnel) decapsulation procedure for both
transport and tunnel modes

SEC does the following to decapsulate an IPsec ESP datagram:

1. Receives an input frame as illustrated in Figure 9-10.
2. Processes the input frame (minus the outer IP header) for authentication. Each mode

handles the outer IP header differently; see their individual sections for details.
3. Optionally updates the checksum of the valid IP header being written to the output

frame, if other changes are being made to the IP header. Note the validity of the
updated checksum depends upon the original checksum being valid to the IP header
before any changes were made.

4. Decrypts the payload, padding, pad length field (Pad Len), and next header (N) field.
Note that these fields are marked with green shading in Figure 9-10. For details on
cryptographic processing for both Tunnel and Transport modes, see IPsec ESP
Cryptographic Decapsulation.

5. Outputs the resulting output frame based on the selected mode and options.

Note that SEC does not have enough available buffering to decide how much padding to
drop for all possible values of the Pad Len byte at the end of the frame. As a result, the
output frame in options 1 and 2 includes the padding, the pad length byte, and the N byte.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

350 NXP Semiconductors

If the AOFL Options bit is set in the PDB for output options 1 and 2, SEC uses the post-
decryption Pad Length byte to compute the effective frame length after the fact. It adjusts
the output frame length to tell consumers of the output frame to ignore padding, pad
length, and N. These fields are written to the output frame, so the provided output frame
must be long enough to receive these fields.

Selecting option 0 for the output frame format (see Figure 9-10) causes SEC to decrypt
the payload, padding, pad length and next header fields, but leave the Outer IP header,
ESP header and IPSEC IV as is.

9.1.6.1 IPsec ESP Transport Mode outer IP header decapsulation
procedure

In transport mode, SEC processes the outer IP header by doing the following:

1. Finds the PDB field "IP Header Length"; this header length, in bytes, includes the
length of all option fields and extension headers.

2. Recomputes the length field by subtracting the length of the ESP Header, the IPsec
IV, and the complete ESP trailer, which consists of the ICV, the padding, the 1-byte
pad length (Pad Len) field, and the 1-byte next header (N) field.

3. Replaces the byte at the location in the outer IP header indicated by the PDB field
"NH Offset" with the decrypted Next Header value from the ESP Trailer (shown as
N in Figure 9-10).

4. Passes the modified outer IP header from the input frame to the output frame, where
it becomes the first field.

Note that SEC only recomputes the checksum field in the transport mode IP header if the
Cksm bit in the PDB Options Byte is set to 1 (see Table 9-4).

Figure 9-10 shows the output frame resulting from decapsulation in transport mode as
option 1.

9.1.6.2 IPsec ESP Transport (and Legacy Tunnel) outer IP header
decapsulation procedure (tunnel mode)

In tunnel mode, SEC processing does not modify the outer unencapsulated IP header. The
decapsulated IP header is included in the output frame, and normally the outer IP header
is discarded. The format of the output frame is controlled by PDB Options bit outFMT.

• If outFMT=0, Output Frame option 0 as shown in Figure 9-10 is selected.
Unencrypted fields in the input frame are copied as-is to the output frame, and after
decryption, all other fields are copied to the output frame, with the exception of the

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 351

ICV. It is then the responsibility of another processing element to discard the outer IP
header, the ESP header, and the ESP trailer.

• If outFMT=1, Output Frame option 1 as shown in Figure 9-10 is selected. The outer
IP header and ESP header are used as required for decapsulation processing but are
not written to the output frame. When outFMT=1, PDB Options bit AOFL (Adjust
Output Frame Length) comes into play in determining the contents of the output
frame:

• If AOFL= 0, then the entire decrypted ESP trailer is written to the output frame.
• If AOFL= 1, then SEC adjusts the output frame length after decryption has

completed. SEC cannot know where payload ends until the N byte is decrypted,
and goes to no special effort to decrypt it early. As a result, padding may be
written to the output frame. However, once the end of payload is known, SEC
adjusts the output frame length to reflect the end of proper payload, and rewinds
the output frame pointer to that point.

Because the original (inner) IP header was encrypted and authenticated during the
encapsulation procedure, it is uncovered during decapsulation.

Other PDB Options bits control how the inner IP header is presented:
• Setting DSC will cause SEC to copy the IPv4 TOS byte or the IPv6 Traffic Class

byte from the outer IP header to the inner IP header before writing the inner header to
the output frame.

• Setting DTTL will cause SEC to decrement the IPv4 TTL or IPv6 hop limit byte
before writing the inner IP header to the output frame.

• Setting ODF will cause SEC to overwrite the IPv4 DF bit in the inner IP header with
the value in DFV.

• Setting Cksm causes the IPv4 header checksum to be updated as a result of any
changes made to the inner IPv4 header.

9.1.7 IPsec ESP Cryptographic Decapsulation

The IPsec ESP cryptographic processes associated with decapsulation are common for
both ESP Tunnel and Transport modes, but vary depending upon cipher suite. In all
cases, the ICV is computed to cover both the ESP Header and the encrypted payload and
ESP Trailer. Payload and ESP Trailer are decrypted as well.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

352 NXP Semiconductors

9.1.7.1 IPsec decapsulation procedure when using AES-CBC or DES-
CBC

This figure shows IPsec ESP Transport (and Legacy Tunnel) authentification for
decapsulation when the cipher is AES-CBC or DES-CBC.

 ESP Header

 Authenticate

 Payload SPI
 4 bytes

 Seq Num
 4 bytes

 IPsec IV
 8/16 bytes

 padding
 Pad
 Len
 1 byte

 N
 1 byte

 Opt.ESN
 4 bytes

 ICV

 ESP Trailer

Figure 9-11. IPsec ESP Transport (and Legacy Tunnel) authentication for decapsulation
when cipher is AES-CBC or DES-CBC

When using the AES-CBC or DES-CBC cipher suite, SEC performs IPsec decapsulation
by doing the following:

1. Receives the packet from the Input Frame serially, first receiving the outer IP header,
then the ESP header, which consists of the SPI and the sequence number, and finally
the IPsec IV.

2. Pushes the SPI and sequence number into a CHA, typically a Class 2 CHA, for
authentication.

3. Pushes the IPsec IV into a CHA for authentication and then copies it to the Class 1
CHA Context Register (register offset 0).

4. Also gives the ICV to the authentication CHA, which compares the received ICV to
the value computed by authenticating all data as described above in red. If the
comparison fails, then an ICV CHECK FAIL is signalled in the Job Completion
Status Word.

5. Receives payload data (see Figure 9-12) from the input frame and pushes it into the
input-data FIFO.

 Payload padding
 Pad
 Len
 1 byte

 N
 1 byte

 Payload padding
 Pad
 Len
 1 byte

 N
 1 byte

 Decrypt

Figure 9-12. IPsec ESP Transport (and Legacy Tunnel) AES-CBC/3DES-CBC decryption
for decapsulation

6. Tags the payload data for authentication and decryption.
7. If the decapsulated output frame option 0 is selected, pushes the results of payload

decryption to the output frame along with the SPI, sequence number, and IPsec IV. If
the decapsulated output frame option 1 is selected, only the decrypted payload is
pushed to the output frame.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 353

9.1.7.2 Process for IPsec decapsulation when using AES-CTR

This figure shows the IPsec ESP Transport (and Legacy Tunnel) authentication for
decapsulation when the cipher is AES-CTR.

Figure 9-13. IPsec ESP Transport (and Legacy Tunnel) authentication for decapsulation
when cipher is AES-CTR

Figure 9-14. IPsec ESP Transport (and Legacy Tunnel) AES-CTR decryption for
decapsulation

When using the AES-CTR cipher suite, SEC performs IPsec decapsulation occurs by
doing the following:

1. Receives the packet from the input frame serially, first the outer IP header, then the
ESP header, which consists of the SPI and the sequence number, and finally the
IPsec IV.

2. Pushes the SPI and sequence number into a CHA, typically a Class 2 CHA, for
authentication.

3. Constructs the counter value by prepending the 8-byte IPsec IV with a 4-byte Nonce
and appending IPsec IV with a 4-byte initial count value (typically 0000 0001h);
both the Nonce and initial count values are extracted as is from the PDB.

4. Writes the constructed counter value to the Class 1 Context Register, offset 16.

 Counter Value
 16 bytes

 Nonce

 initial count
4 bytes

 IPsec-IV
 8 bytes 4 bytes

Figure 9-15. Initial counter construction
5. Also gives the ICV to the authentication CHA, which compares the received ICV to

the value computed by authenticating all data as described above. If the comparison
fails, then an ICV CHECK FAIL is signalled in the Job Completion Status Word.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

354 NXP Semiconductors

6. Receives payload data (see Figure 9-12) from the input frame and pushes it into the
input-data FIFO

7. Tags the payload data for authentication and decryption
8. If the decapsulated output frame option 0 is selected, pushes the payload decryption

to the output frame along with the SPI, sequence number, and IPsec IV. If the
decapsulated output frame option 1 is selected, only the decrypted payload is pushed
to the output frame.

9.1.7.3 Process for IPsec decapsulation when using AES-CCM

This figure shows the IPsec ESP Transport (and Legacy Tunnel) decryption and
authentication for decapsulation when the cipher is AES-CCM.

 SPI
 4 bytes

 Opt.ESN
 4 bytes

 Seq Num
 4 bytes

 Payload padding Pad
 Len 1 byte

 N 1 byte ICV
 8/12/16bytes

 AES-CCM Authenticate & Decrypt

 AAD

 Payload padding Pad
 Len 1 byte

 N 1 byte ICV
 8/12/16bytes

 ESP Trailer

 SPI L(AAD)
 2 bytes

Figure 9-16. IPsec ESP Transport (and Legacy Tunnel) decryption and authentication for
decapsulation with AES-CCM

When using the AES-CCM cipher suite, SEC performs IPsec decapsulation by doing the
following. Note that this cipher suite can receive packets out of order:

1. Computes the length of AAD, and creates the Formatted AAD from a 2-byte
representation of the length concatenated to the AAD, which consists of SPI, and
optional ESN, and the sequence number

2. Writes this portion of the input frame to the input-data FIFO
3. Optional: If, the ESN is included, determines the correct ESN value and inserts it

between SPI and Seq Num as the input frame is inserted to the input-data FIFO.

NOTE
Because packets may be received out of order and because
the ESN increments upon Seq Num rollover, SEC may
have to adjust the ESN. SEC does not increment the ESN
value until the entire anti-replay window reflects post-
rollover Seq Nums.

4. Contructs an 11-byte nonce value by first extracting the 8-byte IPsec IV from the
input frame and then prepending a 3-byte Salt value obtained from the PDB (see the
following figure).

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 355

 CCM B :
 To AES Context

 CCM Ctr:

 0
 5B Nonce L(pyld)

 03h

 1 byte 11 bytes

 Nonce
 11 bytes 1 byte

 4 bytes

 0000h
 4 bytes

 Salt IPsec IV
 8 bytes 3 bytes

 Nonce
 13 bytes

 Nonce Construction

 Initial Counter and IV
Construction from the Nonce

Figure 9-17. IPsec AES-CCM context construction
5. Constructs the CCM B0 value by prepending the B0 flags, which are a single-byte

constant found in the PDB, and postpending the 4-byte SEC-computed payload
length to create a 16-byte IV (see Figure 9-17).

6. Writes the 16-byte IV to the Class 1 Context Register (offset 0).

NOTE
Software must properly provision the PDB with the B0
flags, per RFC 3610. Typical values matching the Nonce
configuration (as specified in RFC 4309) are as follows:

• For an 8-byte ICV, use 5b.
• For a 12-byte ICV, use 6b.
• For a 16-byte ICV, use 7b.

7. Constructs the initial count value by prepending the counter field flags (another
single-byte constant extracted from the PDB, shown as CTR0) to the nonce and
appending a four-byte value, also extracted from the PDB (typically 4 bytes of zeros)
(see Figure 9-17).

8. Writes the resulting 16-byte initial count to the Class 1 Context Register immediately
following the IV (that is, at offset 16).

NOTE
Software must properly provision the PDB with the counter
field flags, per RFC 3610. The expected value matching the
nonce configuration, as specified in RFC 4309, is 03h.

9. Also gives the ICV to the authentication CHA, which compares the received ICV to
the value computed by authenticating all data as described above. If the comparison
fails, then an ICV CHECK FAIL is signaled in the Job Completion Status Word.

10. Receives payload data from the input frame and pushes it into the input-data FIFO
11. Tags the payload data for authentication and decryption
12. If the decapsulated output frame option 0 is selected, pushes the results of payload

decryption to the output frame along with the SPI, sequence number, and IPsec IV. If
the decapsulated output frame option 1 is selected, only the decrypted payload is
pushed to the output frame.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

356 NXP Semiconductors

9.1.7.4 Process for IPsec decapsulation when using AES-GCM

These figures show IPsec decapsulation when using AES-GCM.

SPISPI
4 bytes

Opt.ESN
4 bytes

Seq Num
4 bytes

Payload padding
Pad
Len

1 byte

N
1 byte

ICV
8/12/16bytes

AES-GCM Authenticate & Decrypt

AAD

Payload padding
Pad
Len

1 byte

N
1 byte

ICV
8/12/16bytes

ESP Trailer

Figure 9-18. IPsec ESP Transport (and Legacy Tunnel) decryption and authentication for
decapsulation with AES-GCM

When using the AES-GCM cipher suite, SEC performs IPsec decapsulation by doing the
following:

1. Computes the GCM-IV by extracting the 4-byte Salt value from the PDB and
appending to that the 8-byte IPsec IV received in the input frame (see the following
figure).

GCM-IV IPsec IV
12 bytes 4 bytes 8 bytes

Salt

Figure 9-19. IPsec GCM IV building
2. Pads this GCM-IV with 4-bytes of zeros and writes the resulting 16-byte value to the

input-data FIFO.
3. Pushes the AAD (the 4-byte SPI, an optional 4-byte ESN, and the 4-byte Seq Num)

onto the input-data FIFO, zero padded to a block (16-byte) boundary if necessary
(see Figure 9-18).

NOTE
Because packets may be received out-of-order and because
the ESN increments upon Seq Num rollover, SEC may
have to adjust the ESN. SEC does not increment the ESN
value until the entire anti-replay window reflects post-
rollover Seq Nums.

4. Pushes the encrypted payload and the ESP Trailer (padding, Pad Len, N and ICV)
onto the input-data FIFO for decryption and authentication.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 357

9.1.7.5 Use of SPI and the sequence number in decapsulation

When decapsulating, SEC ignores the SPI except when performing authentication.

SEC uses the sequence number for anti-replay checking (see Anti-replay checking in
IPsec ESP decapsulation). Using fields in the PDB, SEC maintains a replay window of up
to 128 packets.

• Any packet received and observed to be a duplicate of a previously received packet
(within the window) has REPLAY indicated in the Job Completion Status Word.

• Any packet received and observed to fall prior to a value permitted by the replay
window is tagged as LATE in the Job Completion Status Word.

9.1.7.6 Optional use of ESN in ESP decapsulation

After the encrypted data, the packet may infer an extended sequence number (ESN). If so
configured:

1. The ESN is copied from the PDB, with a possible modification (see below).
2. The ESN is pushed into the authentication CHA, which is typically the Class 2 CHA.
3. Upon rollover of the sequence number, the packet encapsulator increments the ESN.

SEC needs to detect which sequence numbers correspond to the pre-incremented ESN
and which correspond to the post-increment ESN. SEC adjusts the ESN as necessary
when authenticating the packet. Once the entire anti-replay window reflects the rollover
of the sequence number, SEC increments the ESN values stored in the PDB.

9.1.7.7 Anti-replay checking in IPsec ESP decapsulation

The IPsec decapsulation protocol uses SEC also performs anti-replay checking by doing
the following:

1. Confirms the received ICV against the computed ICV
2. Stores a Seq Num value in the PDB; this value indicates the newest packet still

within the window
3. Stores a bit array that supports an anti-replay window of up to 128 packets; this array

indicates which packets have been received, with the least significant bit representing
the packet with the aforementioned Seq Num, and which packets have not been
received.

The ARS bits in the PDB Options field controls the size of the anti-replay window, as
follows:

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

358 NXP Semiconductors

• If 01b is programmed into ARS, then a 32-bit window is selected and SEC only uses
word 6 of the PDB for implementing the anti-replay scorecard.

• When ARS contains 11b, then an anti-replay window of 64 is selected, and the LS bit
of word 7 represents the PDU immediately older than that represented by the MS bit
of word 6.

• When an anti-replay window of 128 is selected by programming ARS to 10b, then
the LS bit of word 8 represents the PDU immediately older than that represented by
the MS bit of word 7 and the LS bit of word 9 represents the PDU immediately older
than the MS bit of word 8.

• For any size anti-replay window, the LS bit of word 6 of the entire scorecard is used
to indicate the status of the PDU represented by the values of ESN and Seq Num
stored in the PDB, and each bit to the left represents a packet earlier in time.

In this version of SEC, the IPsec protocol actually uses the Anti-replay built-in protocol
described in Anti-Replay built-in checking.

9.1.7.7.1 When anti-replay checking is enabled

If anti-replay checking is enabled, the anti-replay scorecard (ARS) is updated with each
PDU that has passed its ICV check.

If the current PDU represents a more recent packet than any previously received, then the
ESN/Seq Num fields in the PDB are updated to match the received PDU, and the anti-
replay scorecard is shifted left so that the LS bit of word 6 represents the current packet.
For 64-bit windows, any bits shifted left out of PDB word 6 are shifted into the right end
of PDB word 7. For 128-bit windows, words 8 and 9 are handled in a similar fashion to
word 7.

If the current PDU is older than at least one PDU received before (as represented by the
input state of the PDB ESN/Seq Num fields), then the scorecard is not shifted, but the bit
representing the received packet is set to 1.

In either case, if that bit was already set to 1, then the received packet is considered a
REPLAY packet, and the return status for the frame indicates REPLAY. If the bit
representing the PDU has fallen off the end of the anti-replay scorecard (that is, if the
difference between the received packet's Seq Num is greater than the anti-replay size),
then the received packet is considered LATE, and the return status for the frame indicates
LATE.

9.1.7.7.2 When anti-replay checking is disabled

If anti-replay checking is disabled, the PDB is always updated to match the ESN or Seq
Num values for the last PDU received.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 359

9.1.7.8 ICV checking during IPsec ESP decapsulation

The last segment (normally 12 bytes) of the input frame is the Integrity Check Value, or
ICV. Once computed, the CHA responsible for computing the ICV on the received
decapsulated packet will compare the computed ICV to the received ICV. If PDB
Options indicates presence of ESN (Extended Sequence Number), the ESN value is taken
out of the PDB and is used as part of ICV computation. For cryptographic modes CBC
and CTR, the ICV is computed as if the ESN were received between the ESP Trailer's
Next Header byte and the ICV. For cryptographic modes CCM and GCM, the ICV is
computed as if the ESN were received between the SPI and the Sequence Number. If the
computed ICV and the Received ICV do not match, then an ICV ERROR is signalled,
and processing halts.

NOTE
The ICV is checked before sequencing and padding is checked.
That is, an ICV ERROR takes precedence and will mask
LATE, REPLAY, and BAD ESP PADDING errors. Only after
the ICV compares favorably is the sequencing and the padding
checked.

9.1.8 IPsec ESP Tunnel encapsulation overview

The IPsec ESP Tunnel Protocol-thread, when selected for encapsulation, encapsulates the
contents of the Input Frame, using the encryption and authentication functions selected in
the Protocol Operation command PROTINFO field. The Input Frame must not be so long
such that when an Outer IP Header is added, a Jumbo Datagram is constructed. In other
words, the maximum length after encapsulation must not exceed 65535 bytes (including
an outer IPv4 header but not including a 40 byte outer IPv6 header).

Note that the IPsec ESP Transport (and legacy tunnel) Protocol thread can also be used
for IPsec tunnel-mode encapsulation. Some of the details differ; in particular the IPsec
ESP Transport (and legacy tunnel) Protocol thread cannot be used in conjunction with
UDP-encapsulated-ESP, and the use of the Outer IP Header is more greatly constrained.
Both threads perform cryptographic encapsulation identically; for further details, see
IPsec ESP Cryptographic Encapsulation.

The details of how the IPsec ESP Tunnel encapsulation Protocol thread handles the outer
IP header are described below.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

360 NXP Semiconductors

9.1.8.1 Handling the Outer IP Header during ESP Tunnel
encapsulation

During ESP Tunnel mode encapsulation, an outer IP header is applied to the new
datagram, and the IP header of the datagram being encapsulated is encrypted. SEC
provides several options for providing this outer IP header, as controlled by the PDB
Options field OIHI and DPOVRD bit OIMIF:

• OIHI = 11b - Outer IP Header Material is copied from the PDB.
• OIHI = 10b - Outer IP Header Material is copied from memory -- from the location

addressed by the PDB
• OIHI = 01b - Outer IP Header Material is copied from input frame.
• OIHI = 00b - No Outer IP Header is applied
• OIMIF = 1b overrides the OIHI-specified source for the Outer IP Header Material,

instead using the input frame. Whereas the scope of OIHI is for every frame in the
flow, the scope of OIMIF is to the particular frame to which OIMIF applies.

The description of ESP Tunnel mode encapsulation refers to "Outer IP Header Material"
becuase specific provision is made for the material to contain more than just the Outer IP
Header. PDB / DPOVRD field AOIPHO specifies a number of additional bytes that
preceed the actual Outer IP Header. This additional material could consist of additional
outer headers, such as an Ethernet header. The additional material is copied to the output
frame as is. The Outer IP Header, on the other hand, is subject to additional processing.

The PDB is designed such that if OIHI selects Outer IP header material from PDB, that
the Outer IP header Material starts offset by some multiple of 8 bytes within the
descriptor. If using AOIPHO, then both the Outer IP header Material and the actual Outer
IP header must start offset on an 8-byte multiple within the descriptor. In such a
circumstance, AOIPHO reflects the number of bytes to be used that is part of the overall
material but is not part of the actual Outer IP Header. For example, if AOIPHO is used to
provide for a 14B Ethernet header header (two mac addresses and ethertype) in addition
to a standard 20B IPv4, then AOIPHO is programmed to 14, and Outer IP Header
Material length is programmed to 34. However, in constructing the PDB, there must be
two extra bytes of padding between the Ethernet header and the actual Outer IP header
that SEC will skip. The Outer IP Header Material will then occupy a total of 36 bytes in
the PDB, including the 2 bytes of padding.

NOTE
The 8-byte alignment rule only applies when OIHI selects
Outer IP header material from the PDB. If OIHI selects outer IP
header material from external memory or from the input frame,
then no padding material is required to align the actual Outer IP
header.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 361

9.1.8.2 Outer IP Header handling with UDP-encapsulated-ESP
The ESP Tunnel encapsulation thread is capable of handling RFC 3948 UDP-
encapsulated-ESP. If PDB Options bit NAT is set, then the ESP Tunnel encapsulation
procedure includes special handling as follows:

• The last 4 bytes of the Outer IP Header Material are treated as the Source and
Destination Port fields of the UDP header

• SEC inserts two bytes after the Destination Port field for the UDP Packet Length.
The length written in this field to the output frame includes the 8-byte UDP header,
the ESP header, the encrypted datagram, the ESP trailer, and the ICV.

• SEC inserts two bytes after the UDP Packet Length field for the UDP Packet
Checksum.

• If PDB Options bit NUC = 0, then no proper UDP Packet Checksum is
computed, and the field is left as two bytes of zeros.

• If PDB Options bit NUC = 1, then a proper UDP Packet Checksum is computed
across all the bytes written to the output frame as accounted for by the UDP
Packet Length field, plus an IP Pseudo-Header covering the appropriate fields of
the Outer IP Header. Note that these fields differ, depending upon whether the
Outer IP Header is IPv4 or IPv6.

NOTE
DECO includes hardware for computing a 16-bit one's
complement checksum. Normally, the use of the hardware is
controlled by SEQ FIFO STORE commands; that is SEQ FIFO
STORE Source Field values can be used to determine which
bytes written to the output frame are included in a checksum
computation. However, for IPsec ESP Tunnel encapsulation, if
NAT and NUC are selected in the PDB Options byte, then
those controls are overridden, and the checksum hardware is
used for computing the UDP checksum.

9.1.8.3 ESP Tunnel Outer IP Header manipulation
The ESP Transport (and legacy tunnel) PDB Options byte contains several bits that
control how that thread might handle the Outer IP Header. These bits include:

• Cksm: if enabled, and if IPv4 is selected, update the outer header checksum per any
manipulations made to the outer IP header

• DSC: if enabled, copy the IPv4 TOS or IPv6 Traffic Class byte from the inner IP
header to the outer IP header

• IPvsn, selecting the version of IP header handled

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

362 NXP Semiconductors

For the ESP Tunnel thread, these are not options. The version of IP header is known
based on the Version field of the inner and outer IP headers, and these need not be the
same. As long as an outer IP header is provided, SECwill copy the TOS or Traffic Class
byte from the inner header to the outer header, and if the outer header is IPv4, SECwill
update the checksum resulting from this and any other changes to the header.

In addition to manipulations described above, SEC will decrement the outer IP header
Time-to-Live field (for IPv4) and the Hop Limit field (for IPv6). SEC will also compute
the appropriate length field value for the Outer IP Header.

The PDB HMO field for both the ESP Transport (and legacy tunnel) and ESP Tunnel
encapsulation threads is identical. Copying the DF bit from inner IPv4 header to outer
IPv4 header is optional, as is decrementing the Time-to-Live (IPv4) / Hop Limit (IPv6)
field.

9.1.8.4 ESP Tunnel handling of Next Header

The last byte encrypted during encapsulation is the Next Header byte. The unencrypted
value is designed to indicate the type of payload that has been encapsulated. The value
SEC uses during encapsulation comes either from the Next Header field of the PDB, or
from Next Header field of the DPOVRD register, if the most significant bit of DPOVRD
is set.

9.1.9 IPsec ESP tunnel decapsulation overview

The IPsec ESP Tunnel Protocol-thread, when selected for decapsulation, decapsulates the
contents of the Input Frame, using the decryption and authentication functions selected in
the Protocol Operation command PROTINFO field. The input frame must contain an
ESP header, an encrypted payload with appropriate padding, and an ICV, and in total
must not exceed 65535 bytes in length (including an outer IPv4 header but not including
a 40 byte outer IPv6 header). The Input Frame may also contain Outer IP Header
Material at the front of the Input Frame. The primary purpose for inclusion of an Outer IP
Header as an input to the decapsulation process is to allow the Protocol-thread to copy
selected fields from the Outer IP Header to the decapsulated Inner IP Header. The
Descriptor Protocol Data Block (PDB) contains fields and control bits to specify the
precise processing performed. This is described in sections below.

Note that the IPsec ESP Transport (and legacy tunnel) Protocol thread can also be used
for IPsec tunnel-mode decapsulation. Some details differ; in particular the IPsec ESP
Transport (and legacy tunnel) Protocol thread cannot be used in conjunction with UDP-

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 363

encapsulated-ESP, and the use of the Outer IP Header is more greatly constrained. Both
threads perform cryptographic decapsulation identically; for further details, see IPsec
ESP Cryptographic Decapsulation.

After decryption of the ESP trailer has completed, SEC performs a check of the
cryptographic padding field to ensure it conforms to requirements and was not corrupted
during transmission or decapsulation. The detection of corrupted Cryptographic padding
will result in the signalling of a BAD ESP PADDING error, and will halt processing.

9.1.9.1 Input material preceding the outer IP header

Unlike the IPsec ESP Transport (and legacy tunnel) thread, the IPsec ESP Tunnel thread
is designed to accept lower level headers or other material that may precede the actual
Outer IP Header. PDB / DPOVRD field AOIPHO defines the number of bytes that
precede the actual Outer IP Header. The PDB value is used normally; if DPOVRD is
used to override the PDB, the the AOIPHO field in DPOVRD is used instead.

Normally, any additional material preceding the actual Outer IP Header is not included in
the output frame, like the Outer IP Header. PDB Options bit ETU enables copying of the
preceding material, under the assumption that it represents an Ethernet header.

Because the last two bytes of an Ethernet header are the EtherType field, SEC does not
copy the last two bytes of the preceding material (as defined by AOIPHO), but instead
replaces them with a proper EtherType value, depending on the version of the
decapsulated Inner IP Header: if IPv4, then 0x0800 is put into the Output Frame
immediately prior to the Inner IP Header. If IPv6, then 0x86DD is put into the Output
Frame.

9.1.9.2 Handling the Outer IP Header during ESP Tunnel
decapsulation

That Outer IP Header Material may consist of some segment of data prior to the actual
Outer IP Header, the Outer IP Header, and a UDP header suitable for NAT. The resulting
Output Frame will consist of the decapsulated payload, with extra material (including
cryptographic padding) removed. Note that the Decapsulation thread is not designed to
detect and remove TFC padding. In some circumstances, Input Frame material outside
the decapsulated payload that was prior to the actual Outer IP Header in the Input Frame
may be copied with adjustment to the Output Frame.

IPsec ESP encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

364 NXP Semiconductors

The primary purpose for inclusion of an Outer IP Header as an input to the decapsulation
process is to allow the Protocol-thread to copy selected fields from the Outer IP Header
to the decapsulated Inner IP Header. The Descriptor Protocol Data Block (PDB) contains
fields and control bits to specify the precise processing performed. This is described
below.

9.1.9.3 Manipulation of the Inner IP Header during ESP Tunnel
decapsulation

The PDB Options field for ESP Tunnel decapsulation contains several bits to control how
the Inner IP Header is manipulated after decryption.

In an IPv6 Header, DS and ECN are carried in 8 bits labelled Traffic Class, and straddle
the lower half of the first byte, and the upper half of the second byte. An IPv4 header uses
DS and ECN in the Type of Service (TOS) field, found in the second byte of an IPv4
Header. (The upper 6 bits is DS, and the lower 2 bits is ECN.) If the PDB options select
DSC but not TECN, then the entire TOS / TC byte is copied from the Outer IP Header to
the decapsulated Inner IP Header.

The ESP Tunnel decapsulation thread is designed to handle ECN Tunnelling upon IPsec
decapsulation as defined in RFC 6040. If Options bit TECN is set, then SEC updates the
inner IP header ECN bits as based on their current value, plus the value of the ECN bits
in the outer IP header. If TECN is selected without DSC, the Protocol thread will update
the ECN portion of the TOS / TC field in the Inner IP Header but not the DS field.
Details of ECN tunnelling are shown in the table below. Note that for the case of CE
DROP error assertion, the output frame is generated correctly, but for this version of
SEC, LATE and REPLAY checking is skipped.

Table 9-38. RFC 6040 ECN tunneling

receive inner ECN received outer ECN update inner ECN with additional action

00 00 / 01 / 10 00

00 11 11 Return complete frame with
new CE DROP error asserted

01 00 / 01 01

01 10 10

01 11 11

10 00 / 01 / 10 10

10 11 11

11 all 11

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 365

If the Inner IP Header is IPv4, then the PDB ODF Option applies as follows: the DF bit
in the Inner IP Header is replaced with the value of the DFV PDB Options bit before the
Inner IP header is written to the Output Frame.

Upon decapsulation, the IPv4 inner Header TTL field is decremented (by one) before the
decapsulated Inner Header is written to the Output Frame. If an IPv6 Header instead, then
the decrement by one is applied to the Hop Limit field.

All changes made to the decapsulated Inner IPv4 Header result in a update of the Header
Checksum. Note that if the Header Checksum was incorrect to begin with, the resulting
Checksum will also be incorrect.

9.1.9.4 Decapsulation Output Frame Length

The length of the Output Frame depends upon the version of the Inner IP Header as
follows:

• For IPv4, the Inner IP Header contains a Total Length field, and that field is used to
specify the length of the Output Frame. As a result, only the intended encapsulated
payload is written to the Output Frame; the remainder can be reliably prevented from
being written to memory.

• For IPv6, the Inner IP Header contains a Payload Length that indicates the length of
the encapsulated payload (including the Extension Headers), but not the length of the
encapsulated base IPv6 header (which is always 40 bytes in length).

9.2 SSL/TLS/DTLS record encapsulation and decapsulation
overview

SEC supports the following versions of the TLS family of security protocols:

• SSL 3.0
• TLS 1.0
• TLS 1.1
• TLS 1.2
• DTLS 1.0 (a variant of TLS 1.1)
• DTLS 1.2 (a variant of TLS 1.2)

The variants of the protocol are similar, but have the following key differences:

• Handling of IVs for block ciphers has evolved over the versions
• The list of supported cipher suites has evolved over the variants.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

366 NXP Semiconductors

• DTLS 1.0 is a variant of TLS 1.1 with an explicit sequence number.
• TLS 1.2 and DTLS 1.2 replace the MD5/SHA-1-based pseudo-random function

(PRF) with a PRF computed using only SHA-256 or SHA-384

The PROTINFO field codes enumerated in Table 7-55 define the cipher suites used by
the protocol, and SEC's built-in protocol processing sequences handles the remaining
details. Detailed processing descriptions must be described differently for different
versions. PDB and PDB Override programming, decapsulation output frame options, and
finding the last byte of the encrypted payload during decapsulation processing are all
common to the different protocol versions, and are described first.

Table 9-39. SSL/TLS/DTLS protocol descriptors

Encapsulation Decapsulation

Header Header

Protocol data block includes next header, SPI, sequence
number, IV (if not from RNG)

Protocol data block includes sequence number, anti-
replay information (DTLS only)

Class 2 key data block Class 2 key data block

Class 1 key data block Class 1 key data block

Protocol = <protocol> encrypt Protocol = <protocol> decrypt

NOTE
Any bulk-data protocol using a cipher suite that includes any
HMAC uses MDHA and for performance requires the use of a
split key. Therefore for proper operation when using IPsec with
HMAC, the KDEST field in the Class 2 KEY command must
be set to MDHA Split Key. For first invocation, the Derived
Key Protocol may be used to create both the split key form of
the HMAC key as well as the actual key command loading the
split key.

NOTE
Sharing MD5 SMAC and HMAC keys is restricted. SEC will
prevent mis-sharing of MD5 Keys if shared descriptor SHARE
is set to NEVER, WAIT, or SERIAL. ALWAYS should not be
used. For more information on sharing, please refer to Table
7-1.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 367

9.2.1 Programming and processing details common to all
versions of SSL, TLS, and DTLS

Certain details of processing, and how to program the shared descriptor, are common to
all supported versions of SSL, TLS, and DTLS:

• Protocol Data Block Programming formats vary by cipher suite, but are common
across protocol versions, including encapsulation and decapsulation.

• Using the Datapath Override (DPOVRD) register to provide a non-default Type field
for encapsulation

• Finding the last byte of payload and determining the pre-encapsulation record header
• Decapsulation Output Frame Formats

9.2.1.1 PDB use and format for SSL, TLS, and DTLS encapsulation
and decapsulation

Unlike other protocols' PDBs, the SSL/TLS/DTLS PDB varies in content and field size
based on PROTINFO and Options settings. In particular, for CBC-mode cipher suites, the
IV field is only 2 words if the PROTINFO field of the Operation Command selects DES
or 3DES. Also, the ICV Len field is present only if necessary per the TrICV bit in the
PDB's Options field. The format of the PDB is, as much as possible, kept common
between all different versions. One notable exception is the Sequence Number: Rather
than using a 64-bit sequence number, DTLS uses a 16-bit epoch and a 48-bit sequence
number.

SSL and all versions of TLS use identical PDBs for both encapsulation and
decapsulation. DTLS PDBs for decapsulation are almost the same as all the others, with
the addition of the Anti Replay Scorecard prior to the ICV Length word. The Options
byte is somewhat different for decapsulation, with the addition of a field to control the
size of the Anti Replay window

9.2.1.1.1 PDB for SSL, TLS, and DTLS when a Block Cipher is used

Block ciphers in SSL family require an initialization vector -- an IV. The IV randomizes
the payload prior to encryption. For SSL and TLS version 1.0, the IV is the final cipher
block of the previous record. TLS 1.2 uses a random IV. TLS 1.1 allows the final cipher
block of the previous record to be masked with a random or fixed mask. The IV field is
designed to store IV state, as required, between a previous record and a next record. The
Anti-replay Scorecard fields are used only for DTLS Decap, and only as many words as
required to implement the window size chosen by the Options byte ARS field.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

368 NXP Semiconductors

Table 9-40. Block cipher shared descriptor PDB for SSL, TLS, and DTLS encapsulation and
decapsulation

Descriptor Header (1 or 2 words)

PDB Word 0 Type

(8 bits)

Version

(16 bits)

Options

(8 bits)

PDB Word 1

for SSL and TLS

Seq Num 1

DECO writes back
to PDB as needed

PDB Word 1

for DTLS

Epoch Seq Num 1

PDB Word 2

all protocols

Seq Num 2

PDB Word 3

either-CBC and I/E=1

IV word 1

PDB Word 4

either-CBC and I/E=1

IV word 2

PDB Word 5

AES-CBC and I/E=1

IV word 3

PDB Word 6

AES-CBC and I/E=1

IV word 4

PDB Word 7 or 5 or 3

Anti-Replay Scorecard word 1 DECO writes back
to PDB as needed

for DTLS Decap
only

(First PDB word
identifying number
used when AES-
CBC and I/E=1)

(Second PDB
word identifying
number used

when DES-CBC
and I/E=1)

(Third PDB word
identifying number
used when I/E=0)

PDB Word 8 or 6 or 4

Anti-Replay Scorecard word 2

PDB Word 9 or 7 or 5 Anti-Replay Scorecard word 3

(when anti-replay window is 128)

PDB Word 10 or 8 or 6 Anti-Replay Scorecard word 4

(when anti-replay window is 128)

Last PDB Word ICV Len

(8 bits)

Reserved

(24 bits)

9.2.1.1.2 PDB for SSL, TLS, and DTLS when AES-Counter mode is used

The TLS implementation of AES-Counter is based on a draft RFC that was permitted to
expire. The PDB requires a 48-bit WRITE_IV for constructing the initial counter value,
which per the draft is a product of the 48 "rightmost" bits of either CLIENT_WRITE_IV

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 369

or SERVER_WRITE_IV -- whichever was generated by this side of the negotiation. The
draft RFC for TLS with AES-counter specifies initial lower 16 bits are to be programmed
as zeros, but a different can be used by programming the PDB field "Constant 0000h"
otherwise. The Anti-replay Scorecard fields are used only for DTLS Decap, and only as
many words as required to implement the window size chosen by the Options byte ARS
field.

Table 9-41. AES-Counter cipher shared descriptor PDB for SSL, TLS, and DTLS
encapsulation and decapsulation

Descriptor Header (1 or 2 words)

PDB Word 0 Type

(8 bits)

Version

(16 bits)

Options

(8 bits)

PDB Word 1

for SSL and TLS

Seq Num 1

DECO writes back to
PDB as needed

PDB Word 1

for DTLS

Epoch Seq Num 1

PDB Word 2

all protocols

Seq Num 2

PDB Word 3 WRITE_IV

(Upper 32 bits)

PDB Word 4 Write IV

(lower 16 bits)

Constant 0000h

PDB Word 5 Anti-Replay Scorecard word 1
DECO writes back to

PDB as needed

for DTLS Decap only

PDB Word 6 Anti-Replay Scorecard word 2

PDB Word 7 Anti-Replay Scorecard word 3 (when anti-replay window is 128)

PDB Word 8 Anti-Replay Scorecard word 4 (when anti-replay window is 128)

Last PDB Word ICV Len

(8 bits)

Reserved

(24 bits)

for DTLS Decap only

9.2.1.1.3 PDB for TLS and DTLS when AES-GCM is used

AES GCM state required in the PDB that required for all cipher suites, plus a 4 byte Salt
value that is essentially extra key material. Salt, and the 8-byte sequence number, are
concatenated to form a 12-byte GCM IV. The Anti-replay Scorecard fields are used only
for DTLS Decap, and only as many words as required to implement the window size
chosen by the Options byte ARS field.

Table 9-42. AES-GCM AEAD shared descriptor PDB for TLS 1.2 and DTLS 1.2
encapsulation and decapsulation

Descriptor Header (1 or 2 words)

Table continues on the next page...

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

370 NXP Semiconductors

Table 9-42. AES-GCM AEAD shared descriptor PDB for TLS 1.2 and DTLS 1.2
encapsulation and decapsulation (continued)

PDB Word 0 Type

(8 bits)

Version

(16 bits)

Options

(8 bits)

PDB Word 1

for SSL and TLS

Seq Num 1

DECO writes back to
PDB as needed

PDB Word 1

for DTLS

Epoch Seq Num 1

PDB Word 2 Seq Num 2

PDB Word 3 Salt

PDB Word 4 Anti-Replay Scorecard word 1

DECO writes back to
PDB as needed

for DTLS Decap only

PDB Word 5 Anti-Replay Scorecard word 2

PDB Word 6 Anti-Replay Scorecard word 3

(when anti-replay window is 128)

PDB Word 7 Anti-Replay Scorecard word 4

(when anti-replay window is 128)

Last PDB Word ICV Len

(8 bits)

Reserved

(24 bits)

for DTLS Decap only

9.2.1.1.4 PDB for TLS and DTLS when AES-CCM is used

AES-CCM uses the most complex PDB of all. Besides Type, Version, and Sequence
Number, Several constants get pulled out of the PDB in order to create B0 and CTR0 that
must be written into Class 1 context for AESA to perform CCM mode encapsulation
properly. The Anti-replay Scorecard fields are used only for DTLS Decap, and only as
many words as required to implement the window size chosen by the Options byte ARS
field.

Table 9-43. AES-CCM AEAD shared descriptor PDB for TLS 1.2 and DTLS 1.2
encapsulation and decapsulation

Descriptor Header (1 or 2 words)

PDB Word 0 Type

(8 bits)

Version

(16 bits)

Options

(8 bits)

PDB Word 1

for SSL and TLS

Seq Num 1

DECO writes back to
PDB as needed

PDB Word 1

for DTLS

Epoch Seq Num 1

PDB Word 2

all protocols

Seq Num 2

PDB Word 3 WRITE_IV32

Table continues on the next page...

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 371

Table 9-43. AES-CCM AEAD shared descriptor PDB for TLS 1.2 and DTLS 1.2
encapsulation and decapsulation (continued)

(write IV generated by this endpoint)

PDB Word 4 B0 Flags CTR0 Flags Reserved

PDB Word 5 Reserved CTR0 lower 3 bytes 000000h

PDB Word 6 Anti-Replay Scorecard word 1

DECO writes back to
PDB as needed

for DTLS Decap only

PDB Word 7 Anti-Replay Scorecard word 2

PDB Word 8 Anti-Replay Scorecard word 3

(when anti-replay window is 128)

PDB Word 9 Anti-Replay Scorecard word 4

(when anti-replay window is 128)

Last PDB Word ICV Len

(8 bits)

Reserved

(24 bits)

for DTLS Decap only

9.2.1.1.5 Programming the Options byte with the PDB for SSL, TLS and
DTLS

The encapsulation options byte contains three control bits, described below. Note that
W/B and I/E are used only for CBC-based cipher suites, and are NOT for use with SSL or
TLS 1.0.

Table 9-44. SSL, TLS, DTLS encapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved TrICV Reserved w/b e/i

Table 9-45. SSL, TLS, and DTLS encapsulation PDB, description of the options byte

Field Description

7-5 Reserved

4

TrICV

Truncate ICV

0 Normal ICV as defined per cipher suite.

1 ICV length is determined by ICV Len field in PDB.

3-2 Reserved

1

w/b

IV writeback

0 IV field in PDB held constant.

1 IV field in PDB written back with last block of ciphertext.

NOTE: Block Cipher ONLY. For stream or AEAD ciphers, this bit is reserved and must be 0.

NOTE: SSL and TLS 1.0, this bit is reserved and must be 0.

0

e/i

e/i: Explicit/Implicit random IV.

0 Implicit Random IV field transmitted as part of encrypted payload.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

372 NXP Semiconductors

Table 9-45. SSL, TLS, and DTLS encapsulation PDB, description of the options byte

Field Description

1 Explicit Random IV field transmitted as plaintext IV.

NOTE: Block Cipher ONLY. For stream or AEAD ciphers, this bit is reserved and must be 0.

NOTE: SSL and TLS 1.0, this bit is reserved and must be 0.

The decapsulation options byte for SSL and TLS contains five control bits, described
below. DTLS decapulation options add two ARS control bits. Note that W/B and I/E are
used only for CBC-based cipher suites, and are NOT for use with SSL or TLS 1.0.

Table 9-46. SSL, TLS, DTLS decapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

DTLS: ARS

SSL, TLS: Reserved

rsv TrICV outFMT w/b e/i

Table 9-47. SSL, TLS, and DTLS decapsulation PDB, description of the options byte

Field Description

7-6

ARS

Anti-replay window size

00 - No anti-replay window

01 - 32 entry anti-replay window

10 - 128 entry anti-replay window

11 - 64 entry anti-replay window

Note ARS is used only with DTLS, not with TLS or SSL

5 Reserved

4

TrICV

Truncate ICV

0 Normal ICV as defined per cipher suite.

1 ICV length is determined by ICV Len field in PDB.

3-2

outFMT

Decapsulation Output Frame format

00 - Option 1: Output is payload only

01 - Option 3: Output frame consists of Header and Payload

10 - Option 2: Output frame consists of entire input frame, decrypted

11 - Reserved -- results in PDB error

1

w/b

IV writeback

0 IV field in PDB held constant.

1 IV field in PDB written back with last block of ciphertext.

NOTE: Block Cipher ONLY. For stream or AEAD ciphers, this bit is reserved and must be 0.

NOTE: SSL and TLS 1.0, this bit is reserved and must be 0.

0

e/i

e/i: Explicit/Implicit random IV.

0 Implicit Random IV field transmitted as part of encrypted payload.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 373

Table 9-47. SSL, TLS, and DTLS decapsulation PDB, description of the options byte

Field Description

1 Explicit Random IV field transmitted as plaintext IV.

NOTE: Block Cipher ONLY. For stream or AEAD ciphers, this bit is reserved and must be 0.

NOTE: SSL and TLS 1.0, this bit is reserved and must be 0.

9.2.1.2 Overriding the PDB for SSL, TLS, and DTLS Encapsulation

A shared descriptor is created with the intent to provide information required for
processing every packet in a flow. Occasionally, it is required to override those standard
settings. For SSL, TLS, and DTLS, the header TYPE field is maintained in the PDB, but
can be overridden through the DPOVRD register, by setting the OVRD bit (see figure
below). When using the Job Ring interface, this is achieved by including a LOAD
IMMEDIATE to the DPOVRD register of the desired TYPE value in the job descriptor.
For more information, see Job Ring interface. When using the Queue Manager Interface,
QI builds the job descriptor with a LOAD IMMEDIATE to the DPOVRD register with
the value of the STATUS/CMD field in the FD. For more information, see Queue
Manager Interface (QI).

Table 9-48. SSL/TLS/DTLS encapsulation-DECO Protocol Override Register format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OVR
D

Reserved

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Type

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-49. SSL/TLS/DTLS encapsulation-DECO Protocol Override Register description

Field Description

31

OVRD

Indicates whether to use the contents of DPOVRD to override values specified in the PDB

0 Use the PDB as provided.

1 Override values in PDB by using values in DPOVRD.

30-8 Reserved

7-0

Type

This value is used for constructing the SSL or TLS packet header (instead of the Type field in the PDB) if
OVRD = 1.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

374 NXP Semiconductors

9.2.1.3 Computing the pre-encrypted record length during
decapsulation

TLS was developed such that the record is encapsulated using the pre-encryption length
in the header, but the length field of the encapsulated record includes additions such as
the ICV, any nonce or IVs, and padding. Because SEC performs decryption and
authentication processing simultaneously, it must pre-compute the pre-encryption length
to use for authentication processing. This is particularly challenging for block ciphers,
which during encapsulation adds some number of bytes of padding, that number being
unknown to decryption processing until the last byte of ciphertext has been decrypted.

Payload ICV
len per hash

Type
1 byte

Version
2 bytes

Len (full rec)
2 bytes

padding
Pad
Len
1 byte

PayloadType
1 byte

Version
2 bytes

Len (full rec)
2 bytes

ne
8 bytes

ICV
16 bytes

Stream Cipher Example
(SSL / TLS)

AES-GCM Example
(TLS 1.2)

Block Cipher Example
(SSL / TLS)

Type
1 byte

Version
2 bytes

Len (full rec)
2 bytes

Payload ICV
16 bytes

AES-GCM Example
(DTLS 1.2)

Epoch
2 bytes

Sequence Number
6 bytes

ne
8 bytes

Figure 9-20. Some examples of encapsulated records

For stream ciphers, the required computation is relatively simple: subtract the length of
the ICV. The ICV length in the case of all supported stream cipher suites turns out to be
the size of the underlying hash unless TLS extension Truncated_HMAC has been
negotiated, and PDB option TrICV has been set. In that case, the ICV length subtracted is
the value found in the PDB ICV Len field.

Some AEAD ciphers are like stream ciphers, in that the ICV Length must be subtracted
from the record length prior to beginning decapsulation. For DTLS, a second eight bytes
needs to be subtracted from the record length to account for Epoch (two bytes) and
Sequence Number (six bytes).

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 375

AES-GCM is an AEAD cipher that requires a slightly different encapsulated record -- it
is like stream ciphers, except for the addition of ne (nonce-explicit). For this form, the
length of the unprotected record is found by subtracting both the ICV length (16 bytes)
and the ne length (8 bytes)

DTLS includes an explicit 8-byte Epoch / Sequence Number pair, in both the
encapsulated and unencapsulated forms of the record, regardless of the cipher suite
selected. These eight bytes are always included in the record length.

During encapsulation using block ciphers (CBC mode), some number of bytes of
padding, plus one byte of pad length, are added to the encrypted payload to ensure the
encrypted payload is an integral multiple of the underlying cipher block size. The total
subtracted from the encapsulated record length is the ICV length (described above for
stream ciphers), any IVs added during encapsulation, the length of padding, and 1 for the
pad length byte.

Tail of Payload ICV
len per hash

padding
Pad
Len
1 byte

DecryptUse as IV

one block one block

Figure 9-21. Example of last two blocks of ciphertext

To compute the length of padding, prior to starting decapsulation, SEC jumps to the end
of the input frame, grabs the two last block of ciphertext, and performs a quick
decryption of the last block, using the penultimate block as an IV. The last byte of the
decrypted block is the padlength.

9.2.1.4 SSL, TLS, DTLS Decapsulation Output frame options

Programming the outFMT field of the PDB Options byte offers three options for
providing the decapsulated record:

• Option 1 is the bare record encapsulated record, with everything but the payload
removed.

• For jobs submitted through QI, the payload length can be determined by the
output buffer length returned as part of the frame description

• For jobs submitted through a Job Ring, the actual record length will be returned
only if INCL_SEQ_OUT is set in the JRCFGR_JRx_MS register associated with
the particular Job Ring.

• Option 2 returns the entire decrypted record, with the modification that the length
field reflects the length of the plaintext-payload. This option allows software

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

376 NXP Semiconductors

inspection of padding (which is recommended by standards but is not implemented
by SEC).

• Option 3 returns the record header (length-adjusted) and payload.

Some example diagrams follow for reference. First is an example showing option 1,
where the returned output frame consists of just the record payload.

Payload

Figure 9-22. Decapsulation output frame Option 1

Next, some examples of option 2. For option 2, all fields are found in the input frame are
returned; albeit with the record length field modified to reflect the decapsulated record
length, and the record payload decrypted. The simplest form is used by stream ciphers
and most AEAD ciphers. AES-GCM is the exception for AEAD ciphers, including the
nonce_explicit field. The block cipher forms include the padding and the pad-length byte,
with either the random IV or the masked IV included for TLS 1.1 and TLS 1.2. Finally,
for any permitted cipher, DTLS varies from the TLS 1.2 form by inclusion of the Epoch
and Sequence Number.

PayloadType
1 byte

Version
2 bytes

Len (preICV)
2 bytes

ne
8 bytes

ICV
16 bytes

Payload paddingType
1 byte

Version
2 bytes

Len (preICV)
2 bytes

ICV
16 / 20 bytes

Pad
Len
1 byte

PayloadType
1 byte

Version
2 bytes

Len (preICV)
2 bytes

ICV
len per hash

Output frame for stream ciphers and other AEAD ciphers

AEAD cipher AES-GCM Output frame

SSL 3.0 and TLS 1.0 output frame for block ciphers

TLS 1.1 and TLS 1.2 output frame for block ciphers

DTLS output frame for block ciphers

Figure 9-23. Examples of decapsulation output frames for output format Option 2

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 377

For Option 3, all versions of SSL, TLS, and DTLS return the same unprotected TLS
record, regardless of cipher suite. This consists of Type, Version, Record Length, and
Payload. For DTLS, Epoch and Sequence Number are also included. DTLS is virtually
the same, including Epoch and Sequence Number.

Epoch
2 bytes

Sequence Number
6 bytes

PayloadType
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

DTLS example output frame

PayloadType
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

SSL / TLS example output frame

Figure 9-24. Decapsulation example output frames for Option 3

9.2.1.5 SSL / TLS / DTLS error codes

This table lists the conditions under which SSL, TLS, or DTLS encapsulation or
decapsulation generates an error status. Note that these are the error conditions directly
detected by the protocol engine. Authentication failure in decapsulation can also produce
an ICV check error.

Table 9-50. SSL, TLS, and DTLS encapsulation and decapsulation error conditions

Condition Error status Applies to:

PDB Options Field outFMT programmed to 11b Invalid Setting in PDB Decapsulation

Bad Protocol Operation command (often caused by
protocol version and cipher suite mismatch)

undefined protocol command both encapsulation and
decapsulation

Required keys not present when protocol starts
execution

Key not written before start of
protocol

both encapsulation and
decapsulation

Sequence Number rolls over back to zero Sequence Number Overflow both encapsulation and
decapsulation, TLS only

Received a sequence number far enough below the
latest sequence number it "fell off" the window

Anti-replay LATE error DTLS decapsulation, if anti-replay
is turned on

Received a recent, repeated sequence number Anti-replay REPLAY error DTLS decapsulation, if anti-replay
is turned on

9.2.2 Process for SSL 3.0 and TLS 1.0 record encapsulation

SEC performs SSL 3.0/TLS 1.0 encapsulation by doing the following:

1. Receives an input frame containing the payload.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

378 NXP Semiconductors

2. Examines the contents of the DECO Protocol Override Register (DPOVRD)
• If the MS bit (OVRD) is set, the job descriptor has selected a record-type

override
• If the MS bit is cleared, no record-type override is selected

3. Optional: If a record-type override has been selected, extracts the sequence number
and the version field from the PDB and uses the least significant byte of DPOVRD
for the record type

4. Optional: If no record-type override has been selected, extracts the sequence number,
the record type and version fields from the PDB

5. Concatenates the sequence number, the record type (from whichever source is
selected) and the version together, and pushes them into the Class 2 CHA for
authentication (Note that version is excluded for SSL)

6. Pushes the record type and version fields onto the output frame
7. Increments the sequence number prior to writing it back to memory
8. Extracts and pushes the payload length, which is part of the frame description, as a 2-

byte field into the Class 2 CHA for authentication
9. Adds the ICV length to the payload length, along with the length of any padding

(including Pad Len) SEC adds; note that padding and Pad Len are added only for
block ciphers (see Processing SSL 3.0 and TLS 1.0 record encapsulation with block
ciphers)

10. Pushes the encrypted-payload length onto the output frame

Note that while the pre-ICV length is authenticated, the full record length (the length
after ICV and padding is appended) is what is transmitted.

SEC supports two output frame formats: one for block ciphers and one for stream
ciphers. See Processing SSL 3.0 and TLS 1.0 record encapsulation with block ciphers for
more details.

9.2.2.1 Differences between SSL 3.0 and TLS 1.0 (record
encapsulation)

For record encapsulation, the only differences between SSL 3.0 and TLS 1.0 are:

• For SSL:
• A custom SSL-MAC is used for message authentication
• Version field in header is 0300h
• Version field is not part of authentication computation
• AES is not part of any valid cipher suite

• For TLS 1.0:
• A HMAC is used for message authentication
• Version field in header is 0301h

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 379

• Version field is included in authentication computation
• Cipher suites including AES are supported

9.2.2.2 Processing SSL 3.0 and TLS 1.0 record encapsulation with
block ciphers

This figure shows the process of SSL 3.0/TLS 1.0 when a block cipher (such as AES-
CBC) is used.

Input Frame

authentication
processing

encryption processing
for Block Ciphers

Output Frame
for Block Ciphers

PayloadSeq Num
8 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Payload

Pad
Len
1 byte

padding
0-15 bytes

Version not authenticated in SSL 3.0

Authenticate

Type
1 byte

Version
2 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Len (pre ICV)
2 bytes

Payload

Payload

Encrypt

ICV
16/20 bytes

ICV
16/20 bytes

padding
0-15 bytes

Pad
Len
1 byte

Figure 9-25. SSL 3.0/TLS 1.0 block cipher encapsulation

1. If the selected cipher suite includes a block cipher, the IV is extracted from the PDB
and written to the CCB Class 1 Context Register (offset 0) as appropriate for the
chosen block cipher. For AES, this IV is 16 bytes; for DES, it is 8 bytes.

2. The IV in the PDB is overwritten with the first block in the Class 1 Context Register
(containing the final block of ciphertext) after encryption has completed.

3. As payload is extracted from the input frame, it is pushed onto the input-data FIFO
and tagged for both encryption and authentication.

4. The last byte of the payload is the last byte authenticated. As a result, the ICV
computed is also encrypted.

5. Following the ICV, SEC adds the minimal padding and a pad length byte such that
the pad length byte is the last byte in a cipher block. Per the standard for TLS, the
value of every byte of padding is the same as the value of the pad length byte.

Example: Using an AES-128-CBC-SHA cipher suite with a plaintext-
payload length of 32 bytes

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

380 NXP Semiconductors

When using an AES-128-CBC-SHA cipher suite with a plaintext-payload
length of 32 bytes, the ICV is 20 bytes.

Payload (32) + ICV (20) = 52 bytes.

The next multiple of the AES-CBC block size of 16 is 64.

Therefore, SEC appends 12 bytes, each with value 0Bh, immediately after the
ICV.

6. This SEC-generated padding gets pushed into the Class 1 CHA for encryption, as
shown in the following figure.

7. The resulting encrypted payload (which includes the encrypted ICV and the
encrypted padding and pad length) is pushed onto the output frame, as shown in the
following figure.

9.2.3 Process for SSL 3.0 and TLS 1.0 record decapsulation

SEC performs SSL 3.0/TLS 1.0 decapsulation by doing the following:

1. Receives an input frame consisting of the record header and the protected record.
2. Computes the length of the unprotected record, as described in Computing the pre-

encrypted record length during decapsulation.
3. Decrypts the record payload, MAC (ICV), and any padding.
4. Extracts the implicit sequence number from the PDB, and updates the incremented

number back to the PDB.
5. Computes a MAC on the implicit sequence number, the record header (using the

unprotected record length), and the decrypted record payload. When SSL 3.0 is
selected, the version field of the record header is excluded from the MAC
computation.

6. Compares the computed MAC against the decrypted ICV. If the two do not match,
SEC returns an ICV Check Fail value in the Job Completion Status Word, and
updated PDB is not written back to memory.

7. Returns an output frame per the selected output format, as described in SSL, TLS,
DTLS Decapsulation Output frame options.

CAUTION
For SSL and TLS, SEC does not perform any form of replay
checking. Records are required to arrive in order. The use of an
implicit sequence number guarantees that any records that
arrive out of order result in an ICV failure.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 381

9.2.3.1 SSL 3.0 and TLS 1.0 Record Decapsulation for block ciphers

This figure shows SSL 3.0/TLS 1.0 decapsulation when a block cipher is used.

block cipher Input Frame Type
1 byte

Version
2 bytes

Len (full rec)
2 bytes

Payload ICV
16/20 bytes

Pad
Len

1 byte

Payload

Payload

Payload

Payload

ICV
16/20 bytes

ICV
16/20 bytes

ICV
16/20 bytes

ICV
16/20 bytes

Pad
Len
1 byte

Pad
Len

1 byte

Pad
Len

1 byte

Type
1 byte

Version
2 bytes

Len (full rec)
2 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

padding

one block

Use as IV Decrypt
one block

padding

padding

Version not authenticated in SSL 3.0

End of Payload padding

block cipher decryption
pre processing
(pre-decrypt Pad Len for Block Cipher Suites)

decryption processing
for block cipher suites

authentication
processing

Output Frame -- option 1
(payload only)

Output Frame -- option 2
for block cipher suites
(if checking other fields)

Seq Num

Authenticate

8 bytes

Decrypt

Output Frame -- option 3
(Record Header and Payload)

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Payload

Figure 9-26. SSL 3.0 / TLS 1.0 Block Cipher Decapsulation

Block cipher decapsulation follows the process set forth in Process for SSL 3.0 and TLS
1.0 record decapsulation, but with a few extra steps added. In particular:

1. SEC supports block cipher decapsulation only with CBC mode. CBC mode requires
an IV. Prior to beginning of decryption, the IV is extracted from the PDB and written
to the Class 1 Context Register.

2. After decryption is complete, the final block of ciphertext is written back into the
PDB to be used as the IV for the next record in sequence.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

382 NXP Semiconductors

9.2.3.2 Differences between SSL 3.0 and TLS 1.0 (record
decapsulation)

For record decapsulation, the only differences between SSL 3.0 and TLS 1.0 are the
message authentication code and the version code applied.

• For SSL, a custom SSL-MAC is used for message authentication, and the version
code is set to 0300h.

• For TLS, standard HMAC is used for message authentication, and the version code is
set to 0301h.

• For SSL, the Version field is not included in the SSL-MAC Computation. It is
included in the TLS HMAC computation.

9.2.4 Process for TLS 1.1 and TLS 1.2 record encapsulation

In general, SEC performs TLS 1.1/1.2 encapsulation by doing the following:

1. Begins encapsulation when it receives an input frame containing the payload
2. Extracts the sequence number (which is incremented and written back to memory)

and version fields from the PDB
3. Extracts the record type from the PDB unless the MS bit of DPOVRD = 1, indicating

that the record type field comes from the least significant byte of DPOVRD
4. Use the selected keyed MAC function to authenticate the sequence number and the

record header (Type, Version, Record Length). Note that the Record Length value
that is part of the authentication function does not include any additions to the record
due to payload protection, such as the ICV.

• For an HMAC, MDHA is used to perform the authentication computations, so
the sequence number and record header are passed to the input Data FIFO tagged
as Class 2 message data.

• For AEAD using AES (CCM or GCM), the sequence number and record header
are passed to the input Data FIFO tagged as AAD.

5. The record type and version fields are also pushed onto the output frame
6. The length of the protected record is computed and is pushed onto the output frame.

For more specifics, please refer to the appropriate section as follows:

• For encapsulation using either the AES-CBC or DES-CBC confidentiality
algorithms, see Processing TLS 1.1 and TLS 1.2 record encapsulation with block
ciphers (AES or DES).

• For encapsulation using the AES-Counter confidentiality algorithms, see Processing
TLS 1.1 and TLS 1.2 record encapsulation with stream ciphers.

• For encapsulation using either AEAD algorithms AES-CCM or AES-GCM, see
Processing TLS 1.1 and TLS 1.2 record encapsulation with AEAD ciphers.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 383

9.2.4.1 Differences between TLS 1.0, TLS 1.1, and TLS 1.2 Record
Encapsulation

The main difference between TLS 1.0 and TLS 1.1 is in how block ciphers handle IVs.
Because of security concerns, TLS 1.1 adopted the use of a random mask instead of a
purely implicit IV, chained from the previous record. If a TLS 1.0 style implicit IV is
used, the IV, which is the final block of ciphertext from the previously encapsulated
record, is XORed with a random mask that is prepended to payload and treated as
payload through the encryption process. The diagrams in this section represent this as
IVM for IV Mask.

For cipher suites supported by TLS version 1.1, record encapsulation is identical between
TLS 1.1 and TLS 1.2. For block ciphers, options bits IE and WB must be set to select a
pure random IV.

TLS 1.2 specifies how to use AEAD (authenticated encryption with additional
authenticated data) algorithms with TLS. Therefore SEC now supports AES-GCM and
AES-CCM with TLS 1.2.

9.2.4.2 Support for IV generation in TLS 1.1 and TLS 1.2 record
encapsulation

An Initialization Vector (IV) is used to provide per-packet randomization. For CBC-
Mode (Ciphers AES or DES), This value is used to randomize the input in a reproducible
but unpredictable manner. This randomization prevents attacks based upon knowing the
structure of the plaintext. The TLS standard has evolved to provide more
cryptographically secure IVs. As such, SEC supports IV generation in three ways:
Explicit IV, Implicit IV with Mask, or TLS 1.0 compatibility IV.

• If an Explicit IV is chosen, RNG generates a random IV (shown as Opt IV in Figure
9-28), which is written to the Class 1 Context Register and also to the output frame.

• If an Implicit IV with Mask is chosen, the IV is extracted from the PDB and written
to the Class 1 Context Register. RNG also generates a random IV Mask (shown as
Opt IVM in Figure 9-28), which is encrypted but not authenticated.

• For TLS 1.0 Compatibility Mode, IV is extracted from the PDB, and is written to the
Class 1 Context Register. The final block of the encrypted record is saved back to
memory for use as the next IV. This truly chained IV is supplemented with a RNG-
generated IV Mask, which is prepended to the payload and encrypted, but not
authenticated.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

384 NXP Semiconductors

Other cipher suites supported by SEC that use an IV are AEAD algorithms, and AES-
Counter based cipher suites. In all these ciphers, the IV does not randomize the data, but
instead randomizes the key-stream generation process.

• For AES-CCM and AES-GCM, RNG generates a random nonce_explicit (shown in
Figure 9-30 and in Figure 9-27 as ne), which is combined with SALT from the PDB
to form the nonce. SALT is a form of Write_IV, generated by the PRF as part of key
generation.

• For AES-GCM the 12-byte nonce is passed into the input Data FIFO tagged as IV.
• For AES-CCM, the nonce is formed from the appropriate 4 byte Write IV (server or

client), concatenated with the 8 byte Sequence number. The nonce is in turn used to
create CTR0 and B0.

AES-CCM mode has a much more complex use model for the IV than other modes. As
said above, the IV is combined with WRITE_IV32 that has been programmed into the
PDB to form a nonce identical to that generated for AES-GCM. This nonce is used
differently for AES-CCM, and the SEC TLS state machine contains special instructions
to explicitly construct B0 and CTR0, and to write them to the Class 1 Context Register.

B0 is constructed:

• The first byte is taken from the PDB B0 Flags field
• The next 12 bytes consist of the Nonce
• The final 3 bytes are constructed by the state machine and reflect the length of the

payload being encapsulated

CTR0 is constructed:

• The first byte is taken from the PDB CTR0 Flags field
• The next 12 bytes consist of the Nonce
• The final 3 bytes are taken from the CTR0 Constant field in the PDB.

NOTE
Proper CCM-mode encapsulation relies upon proper
programming of B0 Flags, CTR0 Flags, and CTR0 Constant
fields into the Shared Descriptor PDB. Per RFCs 3610 and
6655, the CTR0 Constant should be programmed with zeros,
CTR0 Flags should be programed with 0x02, and B0 Flags
should be programmed to 0x7A for ciphersuites requiring a 16-
byte authentication tag, and to 0x5A for cipher suites requiring
an 8-byte authentication tag.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 385

Seq Num
8 bytes

CCM Nonce
12 bytes

Write_IV32
4 bytes

CCM Nonce

CCM Nonce
12 bytes

B0
1 byte

payload length
3 bytes

B0
16 bytes

CCM Nonce
12 bytes

CTR0
1 byte

Init Counter
3 bytes

CTR0
16 bytes

GCM IV (Nonce)

GCM IV
12 bytes

Salt
4 bytes

ne
8 bytes

B0 is loaded into Class 1 Context offset 0
CTR0 immediately follows B0

Normally loaded into input Data FIFO, type IV
can also be written to Class 1 Context offset 32

Figure 9-27. TLS 1.1 /1.2 Nonce Generation and use for AEAD ciphers

9.2.4.3 Processing TLS 1.1 and TLS 1.2 record encapsulation with
block ciphers (AES or DES)

This figure shows TLS 1.1/1.2 authentication for encapsulation using block ciphers (AES
or DES).

Type
1 byte

Version
2 bytes

Len (full rec)
2 bytes

Payload ICV
len per hash

padding
0-15 bytes

Pad
Len
1 byte

Opt IV
0/8/16 bytes

Opt IVM
0/8/16 bytes

Payload

Payload

ICV
len per hash

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

padding
0-15 bytes

Pad
Len
1 byte

Opt IV
0/8/16 bytes

Opt IVM
0/8/16 bytes

Seq Num
8 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Opt IV
0/8/16 bytes

Opt IVM
0/8/16 bytes

Payload

Opt IV and Opt IVM are not authenticated

Encrypt

Authenticate

Input Frame

authentication
processing

encryption processing
using Block Ciphers

Output Frame when
using Block Ciphers

Figure 9-28. TLS 1.1/1.2 authentication for encapsulation using block ciphers (AES or
DES)

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

386 NXP Semiconductors

For block cipher processing, the length of either the IV or the IV Mask is also added to
the record header length field. Although the transmitted length field is of the record
(except the TLS record header), the length field used during authentication is the length
of the payload itself.

Payload is processed as follows:

1. As payload is extracted from the Input Frame, it is pushed onto the input-data FIFO,
tagged for both encryption and authentication.

2. The last byte of the payload is the last byte authenticated; the last word of data is so
tagged in the iNformation FIFO.

3. The ICV computed as a result of authentication is pushed back into the Class 1 CHA,
and is also encrypted.

4. Following the ICV, SEC adds the minimal padding and a pad length byte such that
the pad length byte is the last byte in a cipher block. The value of every byte of
padding is the same as the value of the pad length byte.

Example: An AES-128-CBC-SHA ciphersuite with a plaintext-payload
length of 32 bytes

Using an AES-128-CBC-SHA ciphersuite with a plaintext-payload length of
32 bytes, the ICV is 20 bytes.

Payload (32) + ICV (20) = 52 bytes.

The next multiple of the AES-CBC block size of 16 is 64.

Therefore, SEC appends 12 bytes, each with value 0Bh, immediately after the
ICV.

5. This SEC-generated padding is pushed into the Class 1 CHA for encryption.
6. The resulting encrypted payload, which includes the encrypted ICV and the

encrypted padding and pad length, is pushed onto the output frame.

9.2.4.4 Processing TLS 1.1 and TLS 1.2 record encapsulation with
stream ciphers

IVs are not transmitted for stream ciphers.

Payload is processed as follows:

1. As payload is extracted from the Input Frame, it is pushed onto the input-data FIFO,
tagged for both encryption and authentication.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 387

2. The last byte of the payload is the last byte authenticated; the last word of data is so
tagged in the iNformation FIFO.

3. The ICV computed as a result of authentication is pushed back into the Class 1 CHA,
and is also encrypted.

4. The resulting encrypted payload (which includes the encrypted ICV is pushed onto
the output frame.

Note that for stream ciphers, padding is not required, so the padding and Pad Len fields
are skipped altogether.

Payload ICV
len per hash

Len (full rec)
2 bytes

Version
2 bytes

Type
1 byte

Payload

Payload

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

ICV
len per hash

Seq Num
8 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Payload

Authenticate

Encrypt

Input Frame

authentication
processing

encryption processing
using stream ciphers

Output Frame when
using stream ciphers

Figure 9-29. TLS 1.1 /1.2 encapsulation for stream ciphers

9.2.4.5 Processing TLS 1.1 and TLS 1.2 record encapsulation with
AEAD ciphers

AEAD stands for Authenticated Encryption with Additional Data. Introduced to TLS
with version 1.2, it provides a new structure: an independently vetted algorithm that
combines encryption and authentication in one.

For both AES-CCM and AES-GCM, payload is processed as follows:

1. As payload is extracted from the input frame, it is pushed into the input-data FIFO
and tagged for both encryption and authentication.

2. The last byte of the payload is the last byte authenticated; the last word of data is so
tagged in the iNformation FIFO.

3. The ICV computed as a result of authentication is also encrypted.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

388 NXP Semiconductors

4. The resulting encrypted payload, which includes the ICV, is pushed onto the output
frame, as shown in the following figure.

PayloadType
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Seq Num
8 bytes

ne
8 bytes

Payload

ne is not authenticated

Authenticate

Input Frame

PayloadType
1 byte

Version
2 bytes

Len (full rec)
2 bytes

ne
8 bytes

ICV
16 bytes

Output Frame when using AES

Authenticate & Encrypt

PayloadType
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Seq Num
8 bytes

Poly1305 Authenticate

Authenticated encryption (AEAD) processing
for AES-CCM.

Authenticate & Encrypt

AES authenticated encryption
(AEAD) process nonce_explicit
(ne) is unique per packet and is
combined with SALT to form the
AES-GCM IV.

Figure 9-30. TLS 1.2 encapsulation for AEAD ciphers

For AES-GCM ciphers, TLS 1.2 defines a special value: the nonce. The default nonce is
12 bytes and is comprised of two values from two sources: the salt and the nonce_explicit
(ne). Nonce generation is discussed in Support for IV generation in TLS 1.1 and TLS 1.2
record encapsulation.

• Salt is generated as key material and remains constant throughout the lifetime of the
keys.

• nonce_explicit is generated randomly by RNG for each frame.

In the AES-GCM algorithm, the 12-byte nonce is used as the GCM-IV, which sets the
first counter value used for encryption.

The TLS 1.2 protocol thread also supports encapsulation using AEAD algorithm AES-
CCM. AES-CCM uses a 12-byte nonce generated from the 4 byte Write IV and the 8-
byte Sequence Number. However the usage is different, as is the method for
programming AESA with the nonce. Section Support for IV generation in TLS 1.1 and
TLS 1.2 record encapsulation provides more details.

9.2.5 Process for TLS 1.1 and TLS 1.2 record decapsulation

For TLS record decapsulation, SEC must authenticate:

• All the plaintext fields

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 389

• Implicit sequence number
• Decrypted payload

The details depend upon the type of cipher suite used. For cipher suites based on block
ciphers (using either AES-CBC or DES-CBC), refer to Decapsulation of TLS 1.1 and
TLS 1.2 records when a block cipher is used. For cipher suites based on stream ciphers,
refer to Decapsulation of TLS 1.1 and TLS 1.2 records when a stream cipher is used. For
cipher suites based on AEADs (Authenticated Encryption with Additional Data), refer to
Decapsulation of TLS 1.2 records when an AEAD is used.

In general, processing consists of two different computations: decryption, and integrity
checking. During encapsulation, the record and the original header was integrity
protected; the record length reflecting the header and payload, but not any other additions
resulting from encapsulation. As a result, for decapsulation, the record header has to be
modified to reflect the original length.

For block and stream cipher encapsulation, the integrity computation was performed on
plaintext. So for decapsulation, the payload must be decrypted before being integrity
checked. AEAD ciphers define an algorithm (or pair of algorithms) that perform both
encryption and intregity computations. TLS performs the algorithm as specified by the
algorithm definition.

In all cases, the sequence number is extracted from the PDB and is included in the
integrity computation, prior to the record header.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

390 NXP Semiconductors

9.2.5.1 Decapsulation of TLS 1.1 and TLS 1.2 records when a stream
cipher is used

PayloadOutput Frame Option 1

Decryption processing

Decryption

Input Frame when using a Stream Cipher
Payload ICV

len per hash
Len (full rec)

2 bytes
Version
2 bytes

Type
1 byte

Output Frame Option 2
Payload ICV

len per hash
Len (pre ICV)

2 bytes
Version
2 bytes

Type
1 byte

Output Frame Option 3
PayloadLen (pre ICV)

2 bytes
Version
2 bytes

Type
1 byte

Payload ICV
len per hash

Authentication processing
Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Seq Num
8 bytes

HMAC Computation

Payload ICV
len per hash

Figure 9-31. TLS 1.1 / 1.2 Decapsulation when using a Stream Cipher

A stream cipher is the simplest TLS construction for SEC to decapsulate. The record
header gets pre-processed, so that the length of the ICV can be removed from the record
length. The modified header is then passed into MDHA to be the first segment of input
frame to be integrity checked.

Subsequent bytes are all encrypted during encapsulation, thereby requiring decapsulation.
All encrypted bytes up to but not including the encrypted ICV are tagged "class 1
outsnoop to class 2", thereby automatically shunting the decrypted bytes into MDHA for
integrity checking.

Decrypted payload is written out to the memory location specified. If the PDB Options
outFMT field selects, the record header preceeds the payload, and if the outFMT selects,
the decrypted ICV will be written out as well. See Table 9-47 for details on programming
outFMT.

The ICV, after decryption, is put into MDHA as an ICV. MDHA, after completing the
integrity computation, compares the computed ICV against the decrypted ICV, and
signals an ICV error if the match fails.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 391

9.2.5.2 Decapsulation of TLS 1.1 and TLS 1.2 records when a block
cipher is used

Type
1 byte

Version
2 bytes

Len (full rec)
2 bytes

Payload ICV
len per hash

padding
Pad
Len
1 byte

Opt IV
0/8/16 bytes

Opt IVM
0/8/16 bytes

Payload

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Seq Num
8 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Payload

Opt IV and Opt IVM are not authenticated

Decrypt

Authenticate

Output Frame Option 1

authentication
processing

decryption processing
using Block Ciphers

Input Frame when
using Block Ciphers

Opt IV
0/8/16 bytes

Opt IVM
0/8/16 bytes

Payload ICV
len per hash

padding
Pad
Len
1 byte

Opt IV
0/8/16 bytes

Opt IVM
0/8/16 bytes

PayloadOutput Frame Option 3 Len (pre ICV)
2 bytes

Version
2 bytes

Type
1 byte

PayloadOutput Frame Option 2 Len (pre ICV)
2 bytes

Version
2 bytes

Type
1 byte

Opt IV
0/8/16 bytes

Opt IVM
0/8/16 bytes

ICV
len per hash

padding
Pad
Len
1 byte

pre-decryption of pad-length

Decrypt

penultimate
block

final
block

Pad
Len
1 byte

used as IV

Figure 9-32. TLS 1.1 / 1.2 Decapsulation when using a Block Cipher

A block cipher (AES-CBC, DES-CBC) requires that encryption be performed on
multiples of the block size. TLS specifies padding when a block cipher is used, and a
pad-length byte is the last byte of the encrypted record. The integrity computation
includes the header, which includes the original record length. That is, the length of all
fields added as part of the encapsulation process need to be subtracted before
authentication can begin. In order to compute the HMAC in parallel with decryption, the
final byte of the record -- the pad-length byte, must be decrypted first. As a result, SEC
will start by loading the final two blocks of the record (16 bytes for DES, 32 bytes for
AES), and use the first half as IV for decrypting the final block. Once the pad-length byte
is decrypted, this material is thrown away, the pre-encapsulation record length is
computed, and used for the integrity check process.

From this point, block cipher decapsulation proceeds much like stream cipher
decapsulation -- the modified header is passed into MDHA to be the first segment of the
input frame to be integrity checked.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

392 NXP Semiconductors

Block Ciphers use an IV to randomize the input, to thwart cryptanalysis. TLS 1.0 uses a
chained IV -- literally the final block of ciphertext in record i becomes the IV for record i
+1. TLS 1.2 specifies use of a random IV; setting PDB options WB=0 and IE=1 is used
to specify a pure random IV that is explicitly part of the encapsulated record. For the IV,
TLS 1.1 is a transitional standard that allows for an implicit IV or an explicit IV, and
allows a random mask to be used. IE and WB can be programmed as required for TLS
1.1. The IV, whether implicit or explicit, is not included in the integrity computation.
More info on programming WB and IE can be found at Table 9-47.

Subsequent bytes are all encrypted during encapsulation, thereby requiring decapsulation.
All encrypted bytes up to but not including the encrypted ICV are tagged "class 1
outsnoop to class 2", thereby automatically shunting the decrypted bytes into MDHA for
integrity checking.

Decrypted payload is written out to the memory location specified. If the PDB Options
outFMT field selects, the record header preceeds the payload, and if the outFMT selects,
the decrypted ICV and padding will be written out as well. SEC does not check the
contents of the padding bytes after decryption, so outFMT should be programmed to 01b
to select output type 2 if software checking of the padding bytes is required. Note that the
ICV computation does cover the padding bytes. See Table 9-47 for details on
programming outFMT.

The ICV, after decryption, is put into MDHA as an ICV. MDHA, after completing the
integrity computation, compares the computed ICV against the decrypted ICV, and
signals an ICV error if the match fails.

9.2.5.3 Decapsulation of TLS 1.2 records when an AEAD is used

TLS 1.2 adds the capability to use AEAD ciphers for record protection.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 393

PayloadType
1 byte

Version
2 bytes

Len (full rec)
2 bytes

ne
8 bytes

ICV
16 bytes

PayloadType
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Seq Num
8 bytes

ne
8 bytes

Payload

ne is not authenticated

Authenticate

Output Frame Option 1

AES (AEAD) decryption process
nonce_explicit (ne) is received
and is combined with SALT to
form the AES-GCM IV.

Input Frame

Authenticate & Decrypt

PayloadType
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

ne
8 bytes

ICV
16 bytes

Output Frame Option 2

Output Frame Option 3
PayloadLen (pre ICV)

2 bytes
Version
2 bytes

Type
1 byte

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Seq Num
8 bytes

Authenticate

AES (AEAD) decryption process
uses Seq_num instead of ne
for constructing the AES-CCM
nonce.

Payload

Authenticate & Decrypt

Figure 9-33. TLS 1.1 / 1.2 Decapsulation when using an AEAD Cipher

AEAD ciphers often include use of a nonce or an IV. Please refer to Figure 9-27 for more
information about constructing the nonce or IV for encapsulation. Note that in the case of
decapsulation, the received nonce_explicit is used instead of generated.

AES-GCM and AES-CCM processes the record very similarly to a stream cipher, that
nonce_explicit (ne in figures) is not included in either decryption nor the integrity check.
The nonce_explicit is used as a parameter to randomize the key-stream generated by
AES-Counter mode. (AES-Counter is the confidentiality portion of AES-GCM and AES-
CCM.

AES-CCM, like AES-GCM, is a AEAD cipher using AES-Counter for confidentiality.
However SEC implements AES-CCM a little differently, in that it creates a 12-byte
NONCE from the 4-byte Write IV and the 8-byte Seqence Number. The 12-byte nonce is
then used as shown in Figure 9-27 to construct the AES-CCM IV (B0) and Initial Counter
(CTR0).

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

394 NXP Semiconductors

9.2.6 Process for DTLS record encapsulation
This version of SEC supports DTLS versions 1.0 and 1.2, and supports several cipher
suites, including:

• Triple-DES-CBC with HMAC-SHA-1
• AES-128-CBC with HMAC-SHA-1
• AES-256-CBC with HMAC-SHA-256
• AES-128-CTR with HMAC-SHA-1
• AES-256-GCM
• AES-128-CCM-8

Note this list is not complete. For a complete list, please see Table 7-55.

9.2.6.1 Differences between DTLS and TLS

DTLS 1.0 is a variant of TLS 1.1, and DTLS 1.2 is a variant of TLS 1.2. The DTLS
procedure for record encapsulation is different from TLS in that:

• DTLS requires the insertion of an explicit sequence number.
• DTLS authenticates the header fields in a different order than transmitted. The field

order for authentication matches how TLS performs authentication.

The explicit Sequence Number is necessary to support the DTLS-specific requirement of
support for out-of-order reception of records. Because TLS uses implicit sequence
numbers, it cannot support out-of-order reception.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 395

9.2.6.2 Process of DTLS Record Encapsulation when using a Block
Cipher

Input Frame

Epoch
2 bytes

authentication
processing for
block ciphers

encryption
processing for
block ciphers

output Frame

Note that for authentication, Epoch/Seq Num appear similarly to SSL and TLS Seq Num
 Opt IV and Opt IVM are not authenticated

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Opt IV
0/8/16 bytes

Opt IV
0/8/16 bytes

Payload

Payload

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (full rec)
2 bytes

Opt IV
0/8/16 bytes

Opt IV
0/8/16 bytes

Payload ICV
len per hash

padding
0-15 bytes

Pad
Len
1 byte

Encrypt

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
8 bytes

Len (full rec)
2 bytes

Opt IV
0/8/16 bytes

Opt IV
0/8/16 bytes

Payload ICV
len per hash

padding
0-15 bytes

Pad
Len
1 byte

Authenticate

Figure 9-34. DTLS Record Encapsulation when using a Block Cipher

The DTLS block cipher encapsulation procedure is as follows:

1. SEC begins encapsulation when it receives an input frame containing the payload
requiring encapsulation.

2. SEC extracts the version, epoch, and sequence number fields from the PDB.
3. SEC checks the most significant bit of the Datapath Override register:

• If DPOVRD[MS] is cleared, SEC extracts the record type from the PDB
• If DPOVRD[MS] is set, SEC instead takes the record type field comes from the

least significant byte of the DECO Protocol Override Register.
4. SEC pushes the concatenated epoch, sequence number, record type, and version into

the Class 2 CHA for authentication and then onto the output frame.

NOTE
The order of these fields for authentication is different than
for transmission.

5. The payload length, which is part of the frame description, is extracted and pushed as
a two byte field into the Class 2 CHA for authentication, after adding to it to reflect
the length of the record header and the IV. In the diagram, this is called Len (pre
ICV)

6. Another record length reflecting the added ICV, padding, and the pad length byte is
computed. This version of length is pushed into the output frame, and is transmitted
in the clear. Pad Length is computed to be the minimum required for the chosen
cipher suite, such that the total length is the smallest multiple of the block size of the

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

396 NXP Semiconductors

chosen cipher required to be able to encrypt Payload, ICV, padding, and the pad
length byte.

7. The sequence number is then incremented and updated to the PDB in memory.
8. PDB Options bits IE and WB are examined to determine how to construct the IV.

• If w/b is set, then the last block of ciphertext from the previous block was saved
in the PDB IV field. This is extracted and XORed with a random number to form
the IV

• If e/i is set, then the the IV is explicitly included prior to the payload. Otherwise,
the IV is encrypted as if part of the payload.

NOTE
The proper setting for DTLS 1.2 is w/b=0 and e/i=1.

9. Payload, ICV, padding, and the pad length byte are encrypted use the selected CHA,
using CBC mode; the encryption product is pushed into the output frame.

9.2.6.3 Process of DTLS Record Encapsulation when using a Stream
Cipher

SEC performs DTLS AES-Counter mode encapsulation very similarly to TLS 1.1 record
encapsulation as described in Processing TLS 1.1 and TLS 1.2 record encapsulation with
stream ciphers. Like DTLS Block cipher encapsulation, the major difference between
TLS AES-Counter and DTLS AES-Counter processing is authentication placement of the
explicit sequence number.

Input Frame

authentication
processing for
stream cipher AES-CTR

encryption processing
using AES-CTR

output Frame

Note that for authentication, Epoch/Seq Num appear similarly to SSL and TLS Seq Num

Payload

PayloadEpoch
2 bytes

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Len (full rec)
2 bytes

Authenticate

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Payload ICV
len per hash

Encrypt

Len (full rec)
2 bytes

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

ICV
len per hash

Payload

Figure 9-35. DTLS Record Encapsulation when using a Stream Cipher

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 397

The DTLS stream-cipher encapsulation procedure is as follows:

1. SEC begins encapsulation when it receives an input frame containing the payload
requiring encapsulation.

2. SEC extracts the version, epoch, and sequence number fields from the PDB.
3. SEC pushes the concatenated epoch, sequence number, record type, and version into

the Class 2 CHA for authentication and then onto the output frame.

NOTE
The order of these fields for authentication is different than
for transmission.

4. The sequence number and Write_IV are extracted from the PDB and written into
Class 1 Context to become the packets' initial counter value for AES-Counter
Encryption.

5. The sequence number is then incremented and updated to the PDB in memory.
6. The payload length, which is part of the frame description, is extracted and pushed as

a two byte field into the Class 2 CHA for authentication.
7. The ICV length is added to the payload length. This variant of payload length is

pushed into the output FIFO and becomes part of the output frame
8. Payload and ICV are encrypted using AES Counter mode; the encryption product is

pushed into the output frame.

9.2.6.4 DTLS 1.2 Record Encapsulation when using an AEAD Cipher

This version of SEC supports two different AEAD ciphers:

• AES-GCM (using 128, 192, or 256 bit keys)
• AES-CCM (using 128, 192, or 256 bit keys)

Each AEAD cipher suite operates a little differently. Critical to the cipher is the
underlying nonce. In each case, nonce / IV construction is performed identically to how
built for TLS 1.2, as described in Support for IV generation in TLS 1.1 and TLS 1.2
record encapsulation; particularly as shown in Figure 9-27. RFC 6347 specifies that
DTLS 1.2 AEAD cipher suites operate identically the same as with TLS 1.2.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

398 NXP Semiconductors

Input Frame

AES-GCM authenticated encryption (AEAD)processing.
none_explicit (ne) is
unique per packet and
is combined with SALT to
form the AES-GCM IV.

AEAD Processing with AES-CCM
B0 and CTR0 are formatted from
values stored in the PDB.

 Output Frame when
 using AES-GCM

Output Frame when
using AES-CCM

ne is not authenticated

Len (pre ICV)
2 bytes

Payload
ne

8 bytes

AES-GCM Authenticate & Encrypt

Len (pre ICV)
2 bytes

Payload

Authenticate & Encrypt

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Len (full rec)
2 bytes

ne
8 bytes

Payload ICV
16 bytes

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq Num
6 bytes

Payload ICV
len per hash

Len (full rec)
2 bytes

Payload

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Figure 9-36. DTLS Record Encapsulation when using an AEAD Cipher

For AEAD ciphers, the authenticate-only segment consists of a reordered record header,
and is constructed by extracting the epoch, sequence number, type and version from the
PDB, and then by using the record length, which reflects the header and payload length,
but not the length of the ICV, nor for AES-GCM, of the Nonce Explicit. This construct is
passed to the class 1 CHA as type AAD.

The record header is passed to the output frame in proper order, consisting of type,
version, epoch, sequence number, and for AES-GCM, nonce_explicit. Nonce Explicit is a
random number. Included in the record header is the full record version of the record
length, which is the length of the encapsulated record, and includes the length of ICV,
and for AES-GCM, the length of nonce_explicit.

9.2.7 Process for DTLS record decapsulation
This version of SEC supports DTLS versions 1.0 and 1.2, and supports several cipher
suites, including:

• Triple-DES-CBC with HMAC-SHA-256
• AES-256-CBC with HMAC-SHA-1
• AES-128-CCM-16

Note this list is not complete. For a complete list, please see Table 7-55.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 399

9.2.7.1 Differences between DTLS and TLS

DTLS 1.0 is a variant of TLS 1.1, and DTLS 1.2 is a variant of TLS 1.2. The DTLS
procedure for record decapsulation is different from TLS in that:

• DTLS requires the reception of an explicit sequence number.
• DTLS authenticates the header fields in a different order than received The field

order for authentication matches how TLS performs authentication.

The explicit Sequence Number is necessary to support the DTLS-specific requirement of
support for out-of-order reception of records. Because TLS uses implicit sequence
numbers, it cannot support out-of-order reception.

Because DTLS support out-of-order reception, anti-replay checking is available as part of
SEC DTLS decapsulation processing. Please refer to Anti-Replay built-in checking for
more details on how anti-replay works. Anti-Replay operation is controlled by the PDB
options byte, and state is maintained in the PDB. Details can be found in PDB use and
format for SSL, TLS, and DTLS encapsulation and decapsulation.

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

400 NXP Semiconductors

9.2.7.2 Process of DTLS Record Decapsulation when using a Block
Cipher

Input Frame

decryption
pre processing
(pre-decrypt Pad Len for Block Ciphersuites)

decryption
processing

authentication
processing

Output Frame -- option 1
(payload only)

Output Frame
option 2
(complete decrypted record)

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (full rec)
2 bytes

Opt IV
0/8/16 bytes

Opt IV
0/8/16 bytes

ICV
len per hash

Pad
Len
1 byte

Payload padding

ICV
len per hash

Pad
Len
1 byte

padding

one block one block
Use as IV

Tail of Payload

Decrypt

Decrypt

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (full rec)
2 bytes

Opt IV
0/8/16 bytes

Opt IV
0/8/16 bytes

ICV
len per hash

Pad
Len
1 byte

Payload padding

Epoch
2 bytes

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Opt IV
0/8/16 bytes

Opt IV
0/8/16 bytes

Payload ICV
len per hash

Authenticate

Note that for authentication, Epoch/Seq Num appear similarly to SSL and TLS Seq Num
 Opt IV and Opt IVM are not authenticated

Payload

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (preICV)
2 bytes

Opt IV
0/8/16 bytes

Opt IV
0/8/16 bytes

ICV
len per hash

Pad
Len
1 byte

Payload padding

Output Frame
option 3
(record header and decrypted payload)

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (preICV)
2 bytes

Opt IV
0/8/16 bytes

Opt IV
0/8/16 bytes

Payload

Figure 9-37. DTLS Record Decapsulation when using a Block Cipher

The DTLS block cipher decapsulation procedure is as follows:

1. SEC begins decapsulation when it receives an input frame containing the
encapsulated payload.

2. SEC determines the number of bytes of padding by fast-forwarding to the last two
cipher blocks of the message, and uses the second to last block as an IV to decrypt
the final block, the last byte of which is the pad length byte.

3. SEC rewinds to beginning of the frame, and extracts the type, version, epoch,
sequence number, and record length fields from the input frame.

4. SEC pushes the concatenated epoch, sequence number, record type, and version into
the Class 2 CHA.

NOTE
The order of these fields for authentication is different than
received.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 401

5. SEC takes the received record length field, which reflects the length of the
encapsulated frame, and subtracts the length of ICV, padding, and the pad length
byte. This computed record length (shown in diagrams as "length (pre ICV)") is
passed into the class 2 CHA for authentication.

6. If the PDB Options byte field OutFMT so selects, the record header, including the
adjusted record length field, is written to the output frame.

7. If enabled, anti-replay checking is performed, updating state to the PDB.
8. Decryption is performed. The decrypted payload is passed into the class 2 CHA for

authentication, and is written to the output frame.
9. Once the HMAC computation is complete, the recieved ICV is compared to the

computed ICV. Any mismatch between the two ICVs generates an error and is
signalled back.

9.2.7.3 Process of DTLS Record Decapsulation when using a Stream
Cipher

SEC performs DTLS AES-Counter mode decapsulation very similarly to TLS 1.1 record
decapsulation as described in Decapsulation of TLS 1.1 and TLS 1.2 records when a
stream cipher is used. Like DTLS Block cipher decapsulation, the major difference
between TLS AES-Counter and DTLS AES-Counter processing is authentication
placement of the explicit sequence number.

Input Frame
(AES-CTR / HMAC Stream Cipher)

decryption processing
(Stream Ciphers)

authentication processing
(Stream Ciphers)

Output Frame -- option 1
(payload only)

Note that for authentication, Epoch/Seq Num appear similarly to SSL and TLS seq Num

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (full rec)
2 bytes

Payload ICV
len per hash

Payload ICV
len per hash

Decrypt

Authenticate

Payload

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (full rec)
2 bytes

Payload ICV
len per hash

Epoch
2 bytes

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Output Frame -- option 3
(record header and decrypted payload) PayloadType

1 byte
Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (pre ICV)
2 bytes

Output Frame -- option 2
(complete decrypted record) Payload ICV

len per hash

Epoch
2 bytes

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Len (pre ICV)
2 bytes

Figure 9-38. DTLS Record Decapsulation when using a Stream Cipher

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

402 NXP Semiconductors

The DTLS stream-cipher decapsulation procedure is as follows:

1. SEC begins decapsulation when it receives an input frame containing the
encapsulated record.

2. SEC extracts the version, epoch, sequence number, and record length fields from the
input frame.

3. SEC pushes the concatenated epoch, sequence number, record type, and version into
the Class 2 CHA for authentication and then onto the output frame.

NOTE
The order of these fields for authentication is different than
from the input frame.

4. The received record length is adjusted by subtracting the length of ICV from it. The
adjusted record length is then pushed into the class 2 CHA for authentication.

5. If so selected by the PDB Options byte field outFMT, the record header, including
the adjusted record length, is writen to the output frame.

6. The sequence number and Write_IV are extracted from the PDB and written into
Class 1 Context to become the packets' initial counter value for AES-Counter
Decryption.

7. If enabled, SEC performs anti-replay checking, and updates PDB state as a result.
8. Payload and ICV are decrypted using AES Counter mode; the decrypted payload is

pushed into the output frame and into the class 2 CHA for authentication processing.
9. Once the HMAC computation is complete, it is compared to the received HMAC,

and an error is signalled if not identical.
10. If enabled by outFMT, then the decrypted ICV is written to the output frame.

9.2.7.4 DTLS 1.2 Record Decapsulation when using an AEAD Cipher

This version of SEC supports two different AEAD ciphers:

• AES-GCM (using 128, 192, or 256 bit keys)
• AES-CCM (using 128, 192, or 256 bit keys)

Each AEAD cipher suite operates a little differently. Critical to the cipher is the
underlying nonce. In each case, nonce / IV construction is performed identically to how
built for TLS 1.2, as described in Support for IV generation in TLS 1.1 and TLS 1.2
record encapsulation; particularly as shown in Figure 9-27. RFC 6347 specifies that
DTLS 1.2 AEAD cipher suites operate identically the same as with TLS 1.2.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 403

Input Frame
(AES-GCM)

Input Frame
(AES-CCM)

AES-GCM decryption
and authentication
processing (DTLS 1.2 only)

AES-CCM decryption
and authentication
processing (DTLS 1.2 only)

Output Frame -- option 1
(payload only)

Output Frame -- option 3
(Record Header and Payload -- AES-CCM)

Output Frame
option 2
(AES-GCM)

ne is not authenticated

Len (pre ICV)
2 bytes

Payload ICV
16 bytes

Payload

Payload ICV
len per hash

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (full rec)
2 bytes

ne
8 bytes

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (full rec)
2 bytes

Len (pre ICV)
2 bytes

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Payload ICV
len per hash

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (pre ICV)
2 bytes

Payload ICV
16 bytes

ne
8 bytes

Payload
ne

8 bytes

Len (pre ICV)
2 bytes

Len (pre ICV)
2 bytes

AES-GCM Authenricate & Decrypt

AES-CCM Authenticate & Decrypt

Payload

Payload

Payload ICV
len per hash

Len (pre ICV)
2 bytes

ne
8 bytes

Output Frame
option 2
(AES-CCM)

Payload ICV
len per hash

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (pre ICV)
2 bytes

Output Frame
option 2
(AES-GCM)

PayloadType
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Len (pre ICV)
2 bytes

ne
8 bytes

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Type
1 byte

Version
2 bytes

Epoch
2 bytes

Seq. Num.
6 bytes

Figure 9-39. DTLS Record Decapsulation when using an AEAD Cipher

The DTLS AEAD-cipher decapsulation procedure is as follows:

1. For AEAD ciphers, the authenticate-only segment consists the received record
header, reordered to put epoch and sequence number first and is constructed like for
TLS, and with the length field is adjusted to remove the length of the ICV. This
modified record header is passed to the class 1 CHA as type AAD.

2. For AES-GCM, the nonce_explicit (ne) field is extracted from the input frame and is
used to construct the nonce. Nonce_explicit is not authenticated.

3. If selected by the PDB options byte field outFMT, the record header is passed to the
output frame in same order as received in the input frame, consisting of type, version,
epoch, sequence number, the adjusted record length, and for AES-GCM,
nonce_explicit.

4. The encrypted message is passed into the class 1 CHA with type set to message data.
The ICV is passed into the class 1 CHA with type set to ICV . Decrypted payload is

SSL/TLS/DTLS record encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

404 NXP Semiconductors

written to the output frame. If outFMT is selected to do so, then SEC writes the ICV
to the output frame.

9.3 SRTP packet encapsulation and decapsulation
SRTP, which stands for secure real-time transport protocol, is defined in RFC 3711 as a
cryptographic encapsulation of RTP, which stands for real time protocol. RFC 3711
defines two ciphers and one authentication function for use in SRTP encapsulation and
decapsulation. SEC supports the following:

• AES-Counter Mode for confidentiality
• SHA-1 for authentication.
• AEAD AES-GCM for confidentiality and authentication
• AEAD AES-CCM for confidentiality and authentication

SEC does not support AES-f8, which is the remaining cipher specified by RFC 3711.

SEC's built-in SRTP protocol supports data encapsulation, encryption, and data integrity
checking. The PROTINFO field codes enumerated in Table 7-54 define the specific
encryption and data integrity algorithms to be used by the protocol, and the hardware
handles the remaining details.

Table 9-51. SRTP protocol descriptors

Encapsulation Decapsulation

Header Header

Protocol data block Protocol data block

Class 2 key data block Class 2 key data block

Class 1 key data block Class 1 key data block

Protocol = SRTP encrypt Protocol = SRTP decrypt

NOTE
Any bulk-data protocol using a cipher suite that includes any
HMAC uses MDHA and for performance requires the use of a
split key. Therefore for proper operation when using IPsec with
HMAC, the KDEST field in the Class 2 KEY command must
be set to MDHA Split Key. For first invocation, the Derived
Key Protocol may be used to create both the split key form of
the HMAC key as well as the actual key command loading the
split key.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 405

9.3.1 Building the initial counter value (Counter IV)

The first 16 to 80 bytes of an RTP packet consists of a series of fields that are
authenticated, but not encrypted, by the encapsulation process. This series of fields is
referred to as the SRTP header.

 SRTP Header

 Salt Key (14 bytes) 0000 (2B)

 AES Counter IV (16 bytes)

 RTP Header
 Timestamp
 SSRC ID

 CSRC IDS
 (1-16 words)

 Opt RTP Extension
 (length in PDB)

 V P X CC M PT seq. num. (2 bytes)
 CC specifies the number of 4-byte CSRC IDs included

 If X=1, then RTP Extension is included
Error if xlen is not a nonzero multiple of 4

 If X=0, then RTP Extension is not included
Error if xlen is not zero

 0000 (4 bytes) ROC (4 bytes) 0000(2B) seq.num. SSRC ID (4 bytes)

Figure 9-40. SRTP encapsulation and decapsulation AES Counter IV Preparation

AES counter mode requires an initial counter value (Counter IV). SRTP specifies that the
initial counter value is obtained by performing a 112-bit bitwise XOR function of the Salt
key (14 bytes of extra key material) with a concatenation of the following three fields
(found on the input frame): the 4-byte SSRC ID, the 2-byte sequence number, and the 4-
byte ROC.

• The SSRC ID is found in bytes 9-13 of the SRTP Header.
• The sequence number is found in bytes 2-3 of the SRTP Header.
• The rollover counter (ROC) is an RTP parameter that is incremented each time the

sequence number rolls over; each RTP packet is generated with a monotonically
increasing sequence number).

9.3.2 Building the AEAD Nonce

Both AEAD cipher suites supported by SRTP require the construction of a 12-byte
Nonce. AES-GCM uses the 12-byte nonce as the 12-byte GCM-IV; effectively becoming
the initial counter value for encrypting the packet. AES-CCM requires construction of
16-byte words B0 and Initial Counter from the 12-byte Nonce.

SRTP packet encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

406 NXP Semiconductors

 SRTP Header

 Salt Key (12 bytes)

 AES GCM IV / AES CCM Nonce (12 bytes)

 RTP Header
 Timestamp
 SSRC ID

 CSRC IDS
 (1-16 words)

 Opt RTP Extension
 (length in PDB)

 V P X CC M PT seq. num. (2 bytes)
 CC specifies the number of 4-byte CSRC IDs included

 If X=1, then RTP Extension is included
Error if xlen is not a nonzero multiple of 4

 If X=0, then RTP Extension is not included
Error if xlen is not zero

 0000 (2 bytes) ROC (4 bytes) seq.num. SSRC ID (4 bytes)

Figure 9-41. SRTP AEAD Nonce Preparation

The Nonce is constructed by taking the 12-byte Salt Key from the PDB, and XORing that
value with a 12-byte value constructed from the 4-byte SSRC from the input frame, the 4-
byte ROC from the PDB, and the 2-byte Sequence Number from the input frame (the two
most significant bytes are treated as zero to construct a 12-byte value).

• The SSRC ID is found in bytes 9-13 of the SRTP Header.
• The sequence number is found in bytes 2-3 of the SRTP Header.
• The rollover counter (ROC) is an RTP parameter that is incremented each time the

sequence number rolls over; each RTP packet is generated with a monotonically
increasing sequence number).

9.3.3 Constructing the AESA context from the SRTP AEAD
Nonce for AES-CCM mode

This figure shows the construction of SRTP AESA context for AES-CCM mode.

 CCM B0: B0 Flags
1 byte
 Note: B0 Flags to be programmed into PDB word 6 field B0 Flags
 use 5A with 8-byte ICV, 6A with 12-byte ICV, and 7A with 16-byte ICV
 02 to be programmed into PDB word 6 field CTR0 Flags
 0000h to be programmed into PDB word 6 field CTR0 Constant

 To AES Context CCM Ctr: 02
1 byte

 Nonce
12 bytes Nonce
12 bytes

 L(pyld)
3 bytes 0000h

2 bytes 00h
1 byte

Figure 9-42. SRTP CCM Context construction

SEC uses the nonce to construct both the CCM Initial Counter value and CCM B0, both
of which are written to the Class 1 CHA Context Register.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 407

• The CCM Initial Counter value includes 3 bytes extracted from the protocol data
block.

• The CCM B0 includes one byte extracted from the protocol data block and the length
of the payload (as determined by SEC).

9.3.4 SRTP encapsulation

SEC interprets the input frame as:

• A 16-80 byte SRTP Header
• An arbitrary-length RTP payload
• RTP padding that ensures the packet ends on a 4-byte boundary; therefore SEC does

not perform padding for SRTP encapsulation.
• A pad length field indicating how many bytes after payload is padding.

Note that the SRTP header contains the following:

• 4-byte RTP header, consisting of a field indicating the number of CSRC IDs included
(CC) and an RTP sequence number

• 4-byte timestamp field
• SSRC ID field
• Field from 1 to 16 CSRC IDs, each 4 bytes
• Optional RTP extension header

 ROC RTP Pad Pad
 1 byte

 RTP Payload SRTP Header Len 4 bytes

 SHA-1 Authentication

 RTP Pad Pad
 1 byte

 RTP Payload Len
 AES-CTR Encryption

 RTP Pad Pad
 1 byte

 RTP Payload SRTP Header Len Input Frame

 encryption
processing

 authentication
processing

 Opt.MKI ICV RTP Pad
 Pad
 1 byte

 RTP Payload SRTP Header Len Output Frame

 Processing using
Authenticated
Encryption
(GCM or CCM)

 RTP Pad Pad

 RTP Payload SRTP Header Len
 1 byte

 Authenticated Encryption

Figure 9-43. SRTP encapsulation process

Figure 9-44. SRTP encapsulation input frame

SRTP packet encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

408 NXP Semiconductors

9.3.4.1 Process for SRTP encapsulation

This figure shows SRTP encapsulation with AES Counter encryption and HMAC-SHA-1
authentication.

 ROC RTP Pad Pad
 1 byte

 RTP Payload SRTP Header Len 4 bytes

 SHA-1 Authentication

 RTP Pad Pad
 1 byte

 RTP Payload Len
 AES-CTR Encryption

 (length derived from first byte)

 RTP Pad Pad
 1 byte

 RTP Payload Len

Figure 9-45. SRTP encapsulation encryption and authentication when using AES-
Counter and HMAC-SHA-1

1. To begin encapsulation for the AES-Counter / HMAC-SHA-1 cipher suite, SEC
builds the Counter IV as described in Building the initial counter value (Counter IV).

2. To begin encapsulation for AEAD cipher suites, SEC builds the Nonce as described
in Building the AEAD Nonce.

3. SEC processes the input frame as follows:
• SEC passes the SRTP header to the Class 2 CHA for HMAC-SHA-1

authentication and then to the output frame.
• SEC passes the RTP payload, padding, and pad length fields to the Class 1 CHA

for AES-Counter encryption.
• For AEAD Cipher Suites, SEC passes the RTP payload, padding, and pad length

fields to the Class 1 CHA for Authenticated Encryption. The SRTP header is
processed as AAD, and the RTP Payload, RTP Pad, and Pad Length are
processed as plaintext. Note that the ROC is not included as part of AAD for
Authenticated Encryption. Instead, the ROC is used in Nonce formation.

• The encrypted result is passed to the output frame immediately following the
SRTP header and then to the Class 2 CHA for authentication.

4. When HMAC-SHA-1 is used, the ROC field is the last item authenticated although it
appears first in the PDB; it is not passed to the output frame. As noted above, for
AEAD encapsulation the ROC is not treated as data for any authentication
computation and instead is part of the IV.

5. ROC is incremented whenever the Seq Num in the SRTP Header rolls over (so after
use, ROC should be incremented and written back to PDB if the Seq Num value is
FFFF).

6. Once authentication completes, the number of bytes of ICV selected is passed to the
output frame. For HMAC-SHA-1, the selection is made by the PDB n_tag field. For
AEAD cipher suites, the ICV size is defined by the chosen cipher suite.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 409

 Opt.MKI
 (length in PDB)

 ICV
 n_tag bytes

 RTP Pad Pad
 1 byte

 RTP Payload SRTP Header
 (length derived from first byte) Len

Figure 9-46. SRTP encapsulation output frame

9.3.4.2 Handling the optional MKI

If present, the optional MKI is copied from the PDB to the output frame immediately
following the encrypted pad length and prior to the ICV. However as MKI is not
authenticated, it is not copied to the input-data FIFO. The length of the MKI (in 4-byte
words) is also stored in the PDB. Note that the length of MKI supported by SEC is
limited by the total size of the descriptor buffer as well as the size of the other contents
required to be stored in the descriptor buffer.

9.3.4.3 SRTP encapsulation PDB format descriptions
Table 9-52. SRTP encapsulation PDB, formats for AES-CTR, AES-CCM and AES-GCM

PDB word 0 (8 bits)

x-len

(8 bits)

length of MKI

(8 bits)

for AES-CTR: n_tag

otherwise: reserved
(00h)

(8 bits)

options

[see table below]

PDB word 1 (16 bits)

for AES-CTR: constant=0000h

otherwise: constant

(16 bits)

for AES-CTR: constant=0000h

otherwise: reserved (0000h)

PDB word 2 (16 bits)

reserved (0000h)

(16 bits)

for AES-CTR: constant=0000h

otherwise: reserved (0000h)

PDB word 3 salt 1

PDB word 4 salt 2

PDB word 5 salt 3

PDB word 6 (16 bits)

for AES-CTR: salt 4

for AES-GCM: reserved (0000h)

for AES-CCM:

(16 bits)

for AES-CTR: constant=0000h

for AES-GCM: reserved (0000h)

for AES-CCM: Ctr0 constant

B0 flags (8 bits) Ctr0 flags (8 bits)

PDB word 7 reserved (00000000h)

PDB word 81 ROC

PDB word 9 optional MKI

1. Written back to PDB in memory, as needed.

SRTP packet encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

410 NXP Semiconductors

Table 9-53. SRTP encapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved MKI Reserved

Table 9-54. SRTP encapsulation PDB, description of the options byte

Field Description

7-4 Reserved

3

MKI

MKI included in Output Frame

0b - MKI not included in Output Frame.

1b - MKI copied from PDB into Output Frame

2-0 Reserved

9.3.4.4 SRTP encapsulation error conditions

This table lists the conditions under which SRTP encapsulation generates an error status.
Note that these are the error conditions directly detected by the protocol engine.

Table 9-55. SRTP encapsulation error conditions

Condition Error status

Reserved bit set to 1 in the PDB options byte Protocol PDB error

OPERATION Command PROT ID selects SRTP Encap, and
PROTINFO is not a valid protocol

Protocol Command Error

n_tag in the PDB = 0, or n_tag > 20 and cipher suite is AES-
Counter with HMAC-SHA-1

Protocol Command Error

[ROC, SEQNUM] overflows Protocol Sequence Number Overflow

9.3.5 SRTP decapsulation overview

This figure shows SRTP decapsulation.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 411

 RTP Payload

 AES-CTR
decryption
processing

 HMAC-SHA-1
authentication
processing

 Input Frame
(normal style)

 SRTP Header

 (length derived from first byte)

 RTP Payload RTP Pad
 Pad
 Len

 1 byte

 AES-CTR Decryption

 RTP Payload RTP Pad
 Pad
 Len
 1 byte

 Opt. MKI
 (length in PDB)

 ICV
 n_tag bytes

 Output Frame SRTP Header

 (length derived from first byte) RTP Payload RTP Pad
 Pad
 Len
 1 byte

 SRTP Header

 (length derived from first byte) RTP Payload RTP Payload RTP Pad
 Pad
 Len

 1 byte

 SHA-1 Authentication

 ROC
 4 bytes n_tag bytes

 ICV

 Processing using
Authenticated
Encryption
(GCM or CCM)

 RTP Pad RTP Payload SRTP Header Pad
 Len
 1 byte

 Authenticated Decryption

 ICV

Figure 9-47. SRTP decapsulation overview

To perform decapsulation, SEC receives an input frame interpreted similarly to the
encapsulation input frame, with the main differences being the inclusion of an ICV field
and an optional MKI field. If present, the optional MKI is located after the padding
length and before the ICV.

9.3.5.1 Process for SRTP decapsulation

 ROC RTP Pad Pad
 1 byte

 RTP Payload SRTP Header Len 4 bytes

 SHA-1 Authentication

 RTP Pad Pad
 1 byte

 RTP Payload Len
 AES-CTR Decryption

 (length derived from first byte)

 RTP Pad Pad
 1 byte

 RTP Payload Len

 n_tag bytes

 ICV

Figure 9-48. SRTP decapsulation decryption and authentication with AES-Counter and
HMAC-SHA-1

The SRTP decapsulation procedure for the AES-Counter / HMAC-SHA-1 cipher suite is
as follows:

1. SEC grabs the appropriate fields from the SRTP header to generate the Counter IV as
described in Building the initial counter value (Counter IV).

2. SEC pushes the SRTP header into the Class 2 CHA for authentication and then onto
the output frame.

3. The encrypted payload and padding are passed from the input frame to both CHAs
for decryption and authentication.

4. The decrypted results are passed to the output frame.
5. The ROC is pushed into the Class 2 CHA for authentication; if the MKI, is present

on the input frame, it is ignored.

SRTP packet encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

412 NXP Semiconductors

6. MDHA completes computation of the ICV across the input frame and compares the
result to that received from the input frame. If any difference is detected, a failure is
reported.

The SRTP decapsulation procedure for Authenticated Encryption cipher suites is as
follows:

1. SEC constructs the AEAD Nonce as described in Building the AEAD Nonce, using
SSRC and Sequence Number from the input frame, and ROC and Salt Key from the
protocol data block.

2. For AES-GCM cipher suites, the nonce is passed to AESA as IV
3. For AES-CCM cipher suites, the nonce is used to construct B0 and Ctr0, which are

then written to Class 1 context register
4. The received SRTP header is passed to AESA as AAD
5. The encrypted part of the received frame is passed to AESA as message data
6. MKI, if present, is stripped
7. ICV is passed to AESA as ICV type, to be compared with the computed ICV

RTP Padding
Pad

1 byte

RTP PayloadSRTP Header
(length derived from first byte) Len

Figure 9-49. SRTP decapsulation output frame

SEC can perform anti-replay checking for SRTP decapsulation, using a window of 64 or
128 packets. A replayed or late PDU is rejected, and the Job Completion Status Word
written to the Output Frame Queue is tagged as REPLAY or LATE as appropriate.

SEC does not update the PDB with the anti-replay status until after the ICV check has
passed. If the ICV check fails, the PDU is rejected and the anti-replay status in the PDB
is not updated. SEC manages a local copy of the sequence number found in the SRTP
Header, as well as the ROC. The ROC needs to be incremented whenever the sequence
number rolls over; sometimes ROC needs to be adjusted prior to use.

9.3.5.2 SRTP decapsulation PDB format descriptions
Table 9-56. SRTP decapsulation PDB, formats for AES-CTR, AES-CCM and AES-GCM

PDB word 0 (8 bits)

x-len

(8 bits)

length of MKI

(8 bits)

for AES-CTR: n_tag

otherwise: reserved
(00h)

(8 bits)

options

[see table below]

Table continues on the next page...

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 413

Table 9-56. SRTP decapsulation PDB, formats for AES-CTR, AES-CCM and AES-GCM
(continued)

PDB word 1 (16 bits)

for AES-CTR: constant=0000h

otherwise: constant

(16 bits)

for AES-CTR: constant=0000h

otherwise: reserved (0000h)

PDB word 2 (16 bits)

reserved (0000h)

(16 bits)

for AES-CTR: constant=0000h

otherwise: reserved (0000h)

PDB word 3 salt 1

PDB word 4 salt 2

PDB word 5 salt 3

PDB word 6 (16 bits)

for AES-CTR: salt 4

for AES-GCM: reserved (0000h)

for AES-CCM:

(16 bits)

for AES-CTR: constant=0000h

for AES-GCM: reserved (0000h)

for AES-CCM: Ctr0 constant

B0 flags (8 bits) Ctr0 flags (8 bits)

PDB word 7 1 (16 bits) reserved (16 bits) sequence number

PDB word 8 ROC

PDB word 9 anti-replay scorecard 1 [present if ARS= 01b or 10b]

PDB word 10 anti-replay scorecard 2 [present if ARS= 01b or 10b]

PDB word 11 anti-replay scorecard 3 [present if ARS= 10b]

PDB word 12 anti-replay scorecard 4 [present if ARS= 10b]

1. Shaded rows are written back to PDB in memory, as needed.

Table 9-57. SRTP decapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

ARS Reserved MKI Reserved

Table 9-58. SRTP decapsulation PDB, description of the options byte

Field Description

7-6

ARS

anti-replay checking scorecard

00b - Anti-replay checking disabled

01b - 64-bit anti-replay checking enabled

10b - 128-bit anti-replay checking enabled

11b - Reserved

5-4 Reserved

3

MKI

MKI included in Output Frame

0b - MKI not included in Output Frame.

1b - MKI copied from PDB into Output Frame

Table continues on the next page...

SRTP packet encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

414 NXP Semiconductors

Table 9-58. SRTP decapsulation PDB, description of the options byte (continued)

Field Description

2-0 Reserved. Must be zero.

9.3.5.3 SRTP decapsulation error conditions

This table lists the conditions under which SRTP decapsulation generates an error status.
Note that these are the error conditions directly detected by the protocol engine.
Authentication failure can produce an ICV check error.

Table 9-59. SRTP decapsulation error conditions

Condition Error Status

Reserved bit set to 1 in the PDB options byte Protocol PDB error

OPERATION Command PROT ID selects SRTP Decap, and
PROTINFO is not a valid protocol

Protocol Command Error

n_tag in the PDB = 0, or n_tag > 20 for HMAC-SHA-1 cipher
suites

Protocol Command Error

[ROC, SEQNUM] overflows Protocol Sequence Number Overflow

Anti-Replay detects a LATE packet Protocol LATE error

Anti-Replay detects a REPLAY packet Protocol REPLAY error

9.4 IEEE 802.1AE MACsec encapsulation and decapsulation
overview

SEC supports MACsec encapsulation and decapsulation as described in the IEEE
802.1AE-2006 specification and the IEEE 802.1AEbn-2011 and 802.1AEbw-2013
amendments, using AES-GCM for authentication and confidentiality.

SEC optionally supports the following:

• CRC generation and insertion of the resulting frame check sequence (FCS).
• Insertion of an optional AAD (up to 96 bytes for encapsulation and up to 112 bytes

for decapsulation) that is not part of the current IEEE 802.1AE specification.

Both options are controlled by the descriptor's operation command (see PROTOCOL
OPERATION commands).

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 415

Table 9-60. IEEE 802.1AE MACsec protocol descriptors

Encapsulation Decapsulation

Header Header

Protocol data block Protocol data block

Class 1 key data block Class 1 key data block

Protocol = MACsec encrypt Class 2 key data block

Protocol = MACsec decrypt

9.4.1 Process for 802.1AE MACsec encapsulation

This figure shows 802.1AE MACsec encapsulation procedure.

 Input Frame Dest Adrs
6 bytes

 Ethernet Header
 MAC Addtesses MPDU

 Payload

 SecTag building
for insertion into PDU
 GCM-IV building
inserted into AES for
802.1AE-2006 and
802.1AEbn-2011

 Generate
FCS (CRC)

 Output Frame
(without FCS)
 Output Frame
(with FCS)

 AES-GCM
processing

 Src Adrs
6 bytes Opt AAD

length in PDB Type
2 bytes

 Sec Tag
8 or 16 (8 if no SCI xmit) Ethertype

2 bytes TCI/AN
1 byte SL

1 byte PN
4 bytes SCI

8 bytes

 ICV
16 bytes

 Ethernet Header
 Dest Adrs

6 bytes Src Adrs
6 bytes Sec Tag

8 or 16 bytes Opt AAD
length in PDB Type

2 bytes Payload

 Dest Adrs
6 bytes Src Adrs

6 bytes Sec Tag
8 or 16 bytes Opt AAD

length in PDB Type & Payload
 Ethernet Header

 CRC Generation

 AES-GCM Authenticate & Encrypt

 ICV
16 bytes Dest Adrs

6 bytes Src Adrs
6 bytes Sec Tag

8 or 16 bytes Opt AAD
length in PDB Type & Payload

 ICV
16 bytes Dest Adrs

6 bytes Src Adrs
6 bytes Sec Tag

8 or 16 bytes Opt AAD
length in PDB Type & Payload FCS

4 bytes
 Ethernet Header

 SCI
8 bytes PN

4 bytes GCM-IV
12 bytes

 GCM-IV building
inserted into AES for
f802.1AEbw-2013 GCM-IV

12 bytes
 SSCI

8 bytes PN
4 bytes XPN

8 bytes

 SALT
12 bytes

Figure 9-50. 802.1AE MACsec encapsulation

This figure shows the encapsulation input frame.

IEEE 802.1AE MACsec encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

416 NXP Semiconductors

Figure 9-51. 802.1AE MACsec encapsulation input frame

The standard MACsec encapsulation procedure is:

1. SEC receives an Ethernet header from the input frame; the header consists of:
• A destination address (Dest Adrs)
• A source address (Src Adrs)
• Optional AAD (of up to 96 bytes)

NOTE
In Figure 9-51, a second 2-byte ethertype field is
assumed to part of the optional AAD because during
the encapsulation process a new ethertype field
(assumed part of the SecTag) is inserted into the
Ethernet header.

• An ethertype field that refers to the type of the frame (Type)
2. SEC receives the payload from the input frame.
3. The destination address and source address portions of the Ethernet header are copied

to both AESA and CRCA, tagged for authentication (AAD) and CRC (if enabled),
and also copied to the output frame.

4. SEC builds the 8 or 16-byte SecTag as shown in the following figure:

 SecTag
 8 or 16 bytes

 Enthertype
 2 bytes

 TCI/AN
 1 byte

 SL
 1 byte

 PN
 4 bytes

 SCI
 8 bytes

Figure 9-52. Building the MACsec SecTag

a. SCI transmission is determined by bit 1 of the TCI/AN byte.
• If set, the 16-byte SecTag includes the SCI.
• If not set, the 8-byte SecTag omits the SCI.

b. The 4-byte PN, or packet number, is incremented and written back to one word
of the PDB.

c. SEC computes the 1-byte SL as the length of payload if the payload is less than
48 bytes in length and as zero otherwise.

d. EtherType and TCI/AN occupy one word of the PDB.
5. (optional) Rollover results in a ROLLOVER status indication in the Job Completion

Status Word.
6. The SecTag is pushed onto output frame and into both CHAs, where it is tagged for

authentication and CRC.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 417

7. SEC constructs the GCM-IV from the SCI and PN for AES-GCM, or from the SSCI,
XPN, PN, and SALT for AES-GCM-XPN; note that SCI is used to construct the
GCM-IV even if bit 1 of the TCI/AN byte indicates that SCI is not transmitted.

 GCM-IV
12 bytes SCI

8 bytes PN
4 bytes

Figure 9-53. Building the GCM initialization vector (GCM IV) for AES-GCM cipher suites

 GCM-IV
12 bytes

 SSCI
8 bytes PN

4 bytes XPN
8 bytes

 SALT
12 bytes

Figure 9-54. Building the GCM initialization vector (GCM IV) for AES-GCM-XPN cipher
suites

8. SEC pads the GCM IV with trailing zeros and pushes it to AESA (tagged as IV) prior
to AAD, ethertype, and payload.

9. SEC treats the two byte ethertype field as if it were part of payload and pushes the
payload into AESA for encryption and authentication, and into CRCA.

10. The resulting encrypted payload (including the encrypted type) is pushed onto the
output frame.

11. AESA computes the GCM ICV automatically, and that encrypted ICV is also pushed
onto the output frame.

Dest Adrs
6 bytes

MAC Ethernet Header

Src Adrs
6 bytes

SecTag
8 or 16 bytes

Opt AAD
length in PDB

Type & Payload

Type
2 bytes

AES-GCM Authenticate & Encrypt

Payload

ICV
16 bytes

Opt AAD
length in PDB

Dest Adrs
6 bytes

Src Adrs
6 bytes

SecTag
8 or 16 bytes

Figure 9-55. 802.1AE MACsec packet encapsulation using AES-GCM

IEEE 802.1AE MACsec encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

418 NXP Semiconductors

9.4.1.1 Using the frame check sequence (FCS)

SEC's in-built CRCA CHA can be enabled to compute the frame check sequence (FCS).
IEEE 802.3 (Ethernet) specifies a minimum frame size of 64 bytes, and the last four bytes
of the frame are the FCS.

 MAC Ethernet Header

 Dest Adrs Src Adrs Sec Tag
 6 bytes 6 bytes 8 or 16 bytes

 Opt AAD
 length in PDB

 Type and Payload ICV
 16 bytes

 CRC Checked

Figure 9-56. Optional 802.1AE MACsec packet encapsulation using CRC

If the FCS is enabled, the CRCA receives all data authenticated. If the output frame is
less than 60 bytes, SEC pads the output frame with zeros to bring the frame size to 60
bytes. These additional bytes of zero padding are input to the CRC calculation.

Additionally, the ICV computed by AESA is recirculated back as a final input to Class 2
CHA CRCA. The FCS produced is then a CRC of the entire authenticated and encrypted
packet, as shown in Figure 9-57. Figure 9-58 shows the result of appending the FCS to
the end of the encapsulated packet.

MAC Ethernet Header

Dest Adrs
6 bytes Type & PayloadSrc Adrs

6 bytes
SecTag

8 or 16 bytes
Opt AAD

length in PDB
ICV

16 bytes

Figure 9-57. 802.1AE MACsec encapsulation output packet option 1 (no FCS)

MAC Ethernet Header

Dest Adrs
6 bytes Type & PayloadSrc Adrs

6 bytes
SecTag

8 or 16 bytes
Opt AAD

length in PDB
ICV

16 bytes
FCS

4 bytes

Figure 9-58. 802.1AE MACsec encapsulation output packet option 2 (with FCS)

NOTE
At this point, the Ethernet header consists of the destination
address, the source address, and the ethertype that is part of the
SecTag.

9.4.1.2 Additional notes for GMAC support

Process for 802.1AE MACsec encapsulation describes MACsec with GCM. SEC also
supports GMAC. MACsec for GMAC is processed like GCM except that the input frame
is not encrypted. The ICV is computed in the same fashion.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 419

SEC determines whether to use GCM or GMAC based on the E bit in the TCI field of the
SecTag programmed into the Shared Descriptor PDB. The TCI field is found in the next-
to-the-rightmost byte of word 4 of the PDB. IEEE standard 802.1AE numbers the TCI
octet with msb 8 and lsb 1, and identifes E as bit 4. Therefore, the E bit is programmed
into ms bit of the third-from-the-rightmost nibble of word 4 of the PDB.

9.4.2 MACsec encapsulation PDB format descriptions
Table 9-61. MACsec Encapsulation PDB for AES-GCM cipher suites

PDB word 0 AAD Length

(16 bits)

reserved

(8 bits)

options

(8 bits)

[see table below]

PDB word 1 SCI 1

PDB word 2 SCI 2

PDB word 3 Ethertype

(16 bits)

TCI/AN

(8 bits)

reserved

(8 bits)

PDB word 4 PN

Table 9-62. MACsec Encapsulation PDB for AES-GCM-XPN cipher suites

PDB word 0 AAD Length

(16 bits)

reserved

(8 bits)

options

(8 bits)

[see table below]

PDB word 1 SCI 1

PDB word 2 SCI 2

PDB word 3 Ethertype

(16 bits)

TCI/AN

(8 bits)

reserved

(8 bits)

PDB word 4 salt 1

PDB word 5 salt 2

PDB word 6 salt 3

PDB word 7 EPN

PDB word 8 PN

PDB word 9 SSCI

Table 9-63. MACsec encapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved Reserved SAinSCI Reserved Reserved Reserved Reserved FCS

IEEE 802.1AE MACsec encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

420 NXP Semiconductors

Table 9-64. MACsec Encapsulation PDB - Description of the Options Byte

Field Description

7-6 Reserved

5

SAinSCI

0: SCI used as-is from PDB for encapsulation

1: SCI for encapsulation constructed from SA from input frame, with portID from lower 16 bits of SCI2 in
PDB

4-1 Reserved

0

FCS

FCS included in Output Frame

0 FCS not included in Output Frame.

1 FCS computed by CRCA and copied into Output Frame

9.4.3 Process for 802.1AE MACSec decapsulation

This figure shows the stages for the 802.1AE MACsec decapsulation process.

 Dest Adrs Src Adrs SecTag Opt AAD
 6 bytes 6 bytes 8 or 16 bytes length in PDB

 Type & Payload ICV
 16 bytes

 AES-GCM Authenticate & Decrypt

 Dest Adrs Src Adrs Opt AAD
 6 bytes 6 bytes length in PDB

 Type
 2 bytes Payload

 MAC Ethernet Header

 Dest Adrs Src Adrs SecTag Opt AAD
 6 bytes 6 bytes 8 or 16 bytes length in PDB

 Type & Payload ICV
 16 bytes

 MAC Ethernet Header

 FCS
 4 bytes

 Dest Adrs Src Adrs SecTag Opt AAD
 6 bytes 6 bytes 8 or 16 bytes length in PDB

 Type & Payload ICV
 16 bytes

 FCS
 4 bytes

 Input Frame

 Extracting PN and SCI
from PDU

 GCM-IV building inserted
into AES for 802.1AE-2006
and 802.1AEbn-2011

 FCS check
(if enabled)

 AES-GCM
Processing

 Output Frame

 Ethertype TCI/AN SL SCI
 2 bytes 1 byte 1 byte 8 bytes

 Sec Tag
 8 or 16 bytes

 PN
 4 bytes

 SCI
 8 bytes

 PN
 4 bytes

 GCM-IV
 12 bytes

 CRC Checked

 MAC Addresses MPDU

 MAC Ethernet Header

 MAC Ethernet Header

 GCM-IV building
inserted into AES for
802.1AEbw-2013 GCM-IV

 12 bytes

 SALT
 12 bytes

 SSCI
 4 bytes

 PN
 4 bytes

 XPN
 4 bytes

Figure 9-59. 802.1AE MACsec decapsulation process

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 421

SEC decapsulates MACsec encapsulated packets as specified by the IEEE 802.1AE
specification, with the addition of support for an optional AAD value. This optional AAD
is specified to sit in the frame between the SecTag and the encrypted type & payload field
(see the following figure).

 MAC Ethernet Header

 Dest Adrs Src Adrs Sec Tag
 6 bytes 6 bytes 8 or 16 bytes

 Opt AAD
 length in PDB

 Type and Payload ICV
 16 bytes

Figure 9-60. 802.1AE MACsec decapsulation input frame

 Dest Adrs Src Adrs SecTag Opt AAD
 6 bytes 6 bytes 8 or 16 bytes length in PDB

 Dest Adrs Src Adrs SecTag Opt AAD
 6 bytes 6 bytes 8 or 16 bytes length in PDB

 Type
 2 bytes

 Payload

 Type and Payload ICV
 16 bytes

 AES-GCM Authenticate & Decrypt

 Ethernet Header

Figure 9-61. 802.1AE MACsec decapsulation

The procedure for MACsec decapsulation is:

1. SEC pulls the MAC Ethernet header and the SecTag from the input frame and pushes
them into the AESA tagged for authentication.

2. The destination address and source address fields of the MAC Ethernet header are
also copied to the output frame.

3. (optional) If present, the optional AAD is tagged for authentication by AESA.
4. For AES-GCM cipher suites, SCI and PN are pulled out of the SecTag to form the

GCM-IV, as shown in the following figures.

Figure 9-62. 802.1AE MACsec SecTag elements

 GCM-IV
12 bytes SCI

8 bytes PN
4 bytes

Figure 9-63. 802.1AE MACsec GCM IV building

NOTE
If SCI is not transmitted (this is indicated by bit 1 not set in
TCI/AN byte of SecTag), the GCM-IV must be built using
a SCI extracted from the PDB.

IEEE 802.1AE MACsec encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

422 NXP Semiconductors

5. For the GCM-XPN cipher suites, PN is pulled out of the received frame's SecTag and
combined with SSCI, XPN and SALT as programmed into the PDB to form the
GCM-IV, as shown in the following figures.

Figure 9-64. 802.1AE MACsec SecTag elements

 GCM-IV
12 bytes

 SSCI
4 bytes PN

4 bytes XPN
4 bytes

 SALT
12 bytes

Figure 9-65. 802.1AE MACsec GCM-XPN IV building
6. The GCM-IV is padded with trailing zeros to a 16-byte boundary and pushed to

AESA.
7. (optional) If present, the optional AAD is also pushed to the output frame.
8. The encrypted type and payload are pushed into AESA and tagged for authentication

and decryption.
9. The decrypted result is pushed onto the output frame.

10. SEC compares the received ICV to the computed ICV; if it detects differences, it
indicates ICV CHECK FAIL in the Job Completion Status Word.

 Dest Adrs Src Adrs Opt AAD
 6 bytes 6 bytes length in PDB

 Type
 2 bytes Payload

 MAC Ethernet Header

 MAC Addresses MPDU

 Output Frame
if outFMT = 0

 Dest Adrs Src Adrs Opt AAD
 6 bytes 6 bytes length in PDB

 Type
 2 bytes Payload

 MAC Ethernet Header

 MAC Addresses MPDU

 Output Frame
if outFMT = 1

 ICV
 16 bytes

 FCS
 4 bytes

 SecTag
 8 or 16 bytes

Figure 9-66. 802.1AE MACsec Decapsulation Output Frame

9.4.3.1 Automatically switching between two keys

SEC MACsec decapsulation has the ability to automatically switch between two keys. If
AKS (Automatic Key Switching) is set in the PDB, SEC uses the least significant bit of
the AN field of the SecTag received in the input frame to select which key is used:

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 423

• If the bit is set, the Class 2 Key is used.
• If the bit is cleared, the Class 1 Key is used.

This feature allows reception of frames without software needing to preprocess the
frames to determine which key is being used.

9.4.3.2 Additional notes for GMAC support (decapsulation)

Process for 802.1AE MACSec decapsulation describes MACsec with GCM. SEC also
supports GMAC. MACsec for GMAC is processed like GCM, except that the input frame
is not encrypted. The same ICV is computed in the same fashion.

During MACsec decapsulation, SEC determines whether to use GCM or GMAC based
on the E bit in the TCI field of the SecTag received in the input frame. The TCI field is
found in bits 16-23 of word 4 of the PDB. IEEE standard 802.1AE numbers the TCI octet
with msb 8 and lsb 1 and identifes E as bit 4.

9.4.4 MACsec decapsulation PDB format descriptions
Table 9-65. MACsec decapsulation PDB

Descriptor Header (1 or 2 words)

PDB word 0 AAD Length

(16 bits)

reserved

(8 bits)

Options

(8 bits)

[see table below]

PDB word 1 SCI 1

PDB word 2 SCI 2

PDB word 3 reserved ARlen

(8 bits)

PDB word 4 PN

DECO updates PDB in
descriptor buffer and
external memory as

needed

PDB word 5 Anti Replay Scorecard 1 [present if AR=1]

PDB word 6 anti-replay scorecard 2 [present if AR=1 and ARlen>32]

PDB word 7 anti-replay scorecard 3 [present if AR=1 and ARlen>64]

PDB word 8 anti-replay scorecard 4 [present if AR=1 and ARlen>96]

Table 9-66. MACsec decapsulation PDB for GCM-XPN cipher suites

Descriptor Header (1 or 2 words)

PDB word 0 AAD Length

(16 bits)

ARLen

(8 bits)

Options

(8 bits)

[see table below]

Table continues on the next page...

IEEE 802.1AE MACsec encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

424 NXP Semiconductors

Table 9-66. MACsec decapsulation PDB for GCM-XPN cipher suites (continued)

PDB word 1 SCI 1

PDB word 2 SCI 2

PDB word 3 SSCI

PDB word 4 salt 1

PDB word 5 salt 2

PDB word 6 salt 3

PDB word 7 EPN

DECO updates PDB in
descriptor buffer and
external memory as

needed

PDB word 8 PN

PDB word 9 anti-replay scorecard 1 [present if AR=1]

PDB word 10 anti-replay scorecard 2 [present if AR=1 and ARlen>32]

PDB word 11 anti-replay scorecard 3 [present if AR=1 and ARlen>64]

PDB word 12 anti-replay scorecard 4 [present if AR=1 and ARlen>96]

Table 9-67. MACsec decapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved AR SAinSCI outFMT Reserved Reserved AKS FCS

Table 9-68. MACsec decapsulation PDB, description of the options byte

Field Description

7 Reserved

6

AR

Anti-replay enable

0: Anti-replay checking not enabled.

1: Anti-replay checking enabled

5

SAinSCI

0: use SCI as is from PDB for decapsulation

1: construct SCI using SA from input frame plus lower 16bits of SCI2 from PDB (for portID)

4 Reserved

3

outFMT

0: SECTAG, ICV and FCS stripped from output frame

1: SECTAG, ICV, and FCS left in output frame

2 Reserved

1

AKS

Automatic Key Switching performed

0: Automatic Key Switching not performed -- Class 1 Key is always used

1: Automatic Key Switching performed -- input frame SecTag AN field LSB selects key.

0 FCS included in Output Frame

0: FCS not included in Output Frame.

1: FCS computed by encapsulator and included into Input Frame

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 425

9.5 IEEE 802.11-2012 WPA2 MPDU encapsulation and
decapsulation

IEEE 802.11 "WiFi" is a popular standard that provides wireless LAN services. Security
has evolved within the WiFi standard; Wired-Equvalent Privacy, or WEP, was the
original security service. WEP was replaced by Temporal Key Integrity Protocol (TKIP)
in 2002, and by WiFi Protected Access (WPA) in 2003. The 80211i-2004 amendment
settled upon WPA2, utilizing CCMP.

SEC supports WPA2 CCMP encapsulation and decapsulation of WiFi MPDUs in support
of the IEEE 802.11-2012 standard.

Table 9-69. IEEE 802.11i protocol descriptors

Encapsulation Decapsulation

Header Header

Protocol data block Protocol data block

Class 1 key data block Class 1 key data block

Protocol = WiFi encrypt Class 2 key data block

Protocol = WiFi decrypt

9.5.1 Processing Common to WPA2 Encapsulation and
Decapsulation

In order for SEC to support WPA2 CCMP encapsulation and decapsulation of WiFi
MPDUs, several preprocessing steps have to occur to prepare AESA to receive the
MPDU:

• Additional Authentication Data (AAD) requires preparation
• Nonce requires preparation
• AESA Context must be prepared

9.5.1.1 Constructing the AAD for WPA2 encapsulation and
decapsulation

The MAC Header is not used as-is as Additional Authentication Data (AAD). Bits in
several fields require masking, and the Dur/ID field is not protected at all. In addition, for
CCM, AESA requires AAD to be formatted; the 2-byte AAD Length field must be
prepended before it is presented to AESA.

This figure shows the construction of formatted Additional Authenticated Data (AAD).

IEEE 802.11-2012 WPA2 MPDU encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

426 NXP Semiconductors

 L(AAD)
 2 bytes

 masked masked

 AAD Construction:
Bit Masking of
FC, SC, and QC fields

 Dur/ID field from MAC Header is excluded from AAD construction

 Frm Ctl
 2 bytes

 Seq Ctl
 2 bytes

 Address 1
 6 bytes

 Address 2
 6 bytes

 Address 3
 6 bytes

 Address 4
 Optional

 QoS Ctl
 Optional 2B

 masked

 C78Fh
 2 bytes

 Note: C78F is found in PDB
 Frm Ctl Mask field

 &

 Frm Ctl
 2 bytes
 masked

 Frm Ctl
 2 bytes

 From Input Frame

 Note: 0F00 is found in PDB
 Seq Ctl Mask field

 Seq Ctl
 2 bytes

 Seq Ctl
 2 bytes

 0F00h
 2 bytes

 &

 masked

 From Input Frame

 Note: 0F00 is found in PDB
 QoS Ctl Mask field QoS Ctl

 2 bytes

 0F00h
 2 bytes

 &

 masked

 QoS Ctl
 2 bytes

 From Input Frame

 Optional HT Control field from MAC Header is excluded from AAD construction

 HT Ctl
 Optional 2B

 AAD (from Parts of MAC Header)

 Formatted AAD
 Formatted AAD
Construction

Figure 9-67. 802.11 CCMP construction of formatted AAD

SEC builds the AAD as shown in the figure above, using fields in the MAC Header. The
first 2 bytes of the formatted AAD contain the length of the AAD proper.

Note that SEC bit masks the Frame Control and Sequence Control, and QoS Control
fields of the MAC header per the IEEE 802.11 spec (as illustrated above), using masks
stored in the descriptor's Protocol Data Block.

The AAD is authentication-only data provided to the AES engine. That is, the parts of the
MAC header protected as AAD are authenticated, but are not encrypted. AAD is
constructed for AESA only; the unmodified MAC header is copied from the input frame
to the output frame.

9.5.1.2 Constructing the CCMP Nonce for WPA2 encapsulation and
decapsulation

SEC constructs the AES-CCM nonce using:

• A constant priority (Pri) field extracted from the PDB
• The Address2 field found in the MAC header from the input frame
• A packet number (PN) extracted from the PDB (and for decapsulation, matched

against the PN found in the input frame).

 Nonce
 13 bytes

 Pri

 PN
6 bytes

 Address 2
 6 bytes 1 byte

Figure 9-68. CCMP nonce construction

The PN is incremented following use, and the incremented value is written back to the
protocol data block.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 427

9.5.1.3 Constructing the AESA context for WPA2 CCMP
encapsulation and decapsulation

For AES-CCM, AESA requires B0 and CTR0 to be constructed and written to the Class 1
context register before it can start processing the input frame, per the example formatting
function described in Appendix A of NIST Special Publication 800-38C. The 13-byte
nonce is the bulk of both 16-byte values, and is prepared first.

To construct B0, SEC first computes a 2-byte representation of the length of the payload.
The B0; flags byte is extracted from the PDB, and the three are concatenated together as
shown below.

To construct CTR0, SEC extracts the CTR flags byte and the Counter Init Count field
from the PDB, and concatenates the three as shown below.

 CCM B0: 59
1 byte
 Note: 59 to be programmed into PDB field B0 Flags
 01h to be programmed into PDB field CTR Flags
 0000h to be programmed into PDB field CTR Init Count

 To AES Context CCM Ctr: 01h
1 byte

 Nonce
13 bytes Nonce
13 bytes

 L(pyld)
2 bytes 0000h
2 bytes

Figure 9-69. WPA2 CCMP context construction

9.5.2 Process for WPA2 encapsulation

This figure shows the WPA2 encapsulation process.

MAC Header

FCS
4 bytes

PDU

MAC Header CCMP Header
8 bytes

ICV

Output Frame

CRC Generation

AES-CCM
Encryption and Authentication

Input Frame

PDU

Payload

AES-CCM Authenticate & Encrypt

AAD

CRC Generate

Frm Ctl
2 bytes

Dur/ID
2 bytes

Address 1
6 bytes

Address 2
6 bytes

Address 3
6 bytes

Seq Ctl
2 bytes

Address 4
Optional 6 bytes

QoS Ctl
Optional 2B

HT Ctl
Optional 4B

CCM MIC is 8 bytes

Payload

Payload

MAC Header CCMP Header
8 bytes

MIC

ICVPayload

Figure 9-70. WPA2 encapsulation process

IEEE 802.11-2012 WPA2 MPDU encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

428 NXP Semiconductors

For WPA2 encapsulation, SEC requires that the input frame consist of an 802.11 MPDU,
including the MAC header and the payload requiring cryptographic protection. The MAC
Header Length field in the PDB can be used to determine the contents of the MAC
header. If HTE is set in the PDB Options field, then the HT Control field is expected.
Alternatively, by setting the DFC bit in the PDB Options field, the MPDU header will be
parsed to determine the contents of the header.

 MAC Header

 Input Frame

 PDU

 Payload Frm Ctl
 2 bytes

 Dur/ID
 2 bytes

 Address 1
 6 bytes

 Address 2
 6 bytes

 Address 3
 6 bytes

 Seq Ctl
 2 bytes

 Address 4
 Optional 6 bytes

 QoS Ctl
 Optional 2B

 HT Ctl
 Optional 4B

Figure 9-71. WPA2 encapsulation input frame (802.11 MPDU)

SEC performs the encapsulation procedure by doing the following:

1. Receives the input frame.
2. Uses fields from the MAC Header to construct the AAD (see Constructing the AAD

for WPA2 encapsulation and decapsulation for more details).
3. Uses fields from the PDB and MAC header to construct the nonce (see Constructing

the CCMP Nonce for WPA2 encapsulation and decapsulation for more details).
4. Uses the nonce to construct both the CCM Initial Counter value and CCM B0, both

of which are written to the Class 1 CHA Context Register (see Constructing the
AESA context for WPA2 CCMP encapsulation and decapsulation for more details).

5. Constructs a CCMP header and pushes it onto the output frame immediately
following the MAC header; note that this header is not cryptographically protected
(see Constructing the CCMP header for WPA2 encapsulation for more details).

6. Extracts the payload from the input frame and pushes it into AESA. (see WPA2
Payload Encapsulation for more details)

7. AESA automatically produces the appropriate MAC and encrypts it to produce the
ICV.

8. Pushes the encrypted payload and ICV onto the output frame.

FCS
4 bytes

PayloadMAC Header CCMP Header
8 bytes

ICV
8 bytes

Figure 9-72. WPA2 CCMP-encapsulated output frame

All data pushed onto the output frame (up through the ICV) may also be pushed into
CRCA for CRC computation. If you have CRC computation enabled, see Computing the
FCS for WPA2 encapsulation.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 429

9.5.2.1 Constructing the CCMP header for WPA2 encapsulation

SEC constructs a CCMP header, using the original packet number (PN1, PN2) and Key
ID found in the protocol data block, plus a constant 00h byte. This construction is pushed
onto the output frame immediately following the MAC header, but is not
cryptographically protected.

PN[5]

1 byte
MSB

PN[3]

1 byte

PN[4]

1 byte

PN[2]

1 byte

PN[0]

1 byte
LSB

PN[1]

1 byte

Key ID

1 byte

00h

1 byte

CCMP Header
8 bytes

PN[5:4] from PDB word 1
PN[3:0] from PDB word 2

00h is Const from PDB word 4
Key ID from PDB word 4

Figure 9-73. WPA2 CCMP header construction

9.5.2.2 WPA2 Payload Encapsulation

The payload is extracted from the input frame and pushed into AESA. As part of the
WPA2 authentication and encryption computation, AESA automatically produces the
appropriate CBC-MAC and encrypts it to produce the ICV. The encrypted payload and
ICV are pushed onto the output frame.

Payload

PayloadAAD

ICV
8 bytes

CCMP Header
8 bytesMAC Header

AES-CCM Authenticate & Encrypt

Figure 9-74. WPA2 cryptographic encapsulation

9.5.2.3 Computing the FCS for WPA2 encapsulation

As produced, all data pushed onto the output frame (up through the ICV) may also be
pushed into CRCA for CRC computation. If CRC computation is enabled, SEC appends
the resulting frame check sequence (FCS) to the output frame.

MAC Header

CRC Checked

 CCMP Header
8 bytes

Payload ICV
8 bytes

Figure 9-75. WPA2 checksum encapsulation

IEEE 802.11-2012 WPA2 MPDU encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

430 NXP Semiconductors

9.5.2.4 WPA2 encapsulation PDB format descriptions
Table 9-70. 802.11 WPA2 encapsulation PDB

Descriptor Header (1 or 2 words)

PDB Word 0 MAC Header Length

(16 bits)

rsv

(8 bits)

Options

(8 bits)

PDB Word 1 B0 Flags

(8 bits)

Pri

(8 bits)

PN 1

(16 bits)
DECO writes PN back

to PDB as needed
PDB Word 2 PN 2

PDB Word 3 Frm Ctl Mask

(16 bits)

Seq Ctl Mask

(16 bits)

PDB Word 4 QoS Ctl Mask

(16 bits)

Const

(8 bits)

KeyID

(8 bits)

PDB Word 5 CTR Flags

(8 bits)

rsv

(8 bits)

CTR Init Count

(16 bits)

Table 9-71. WPA2 encapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved Reserved DFC Reserved Reserved HTE Reserved FCS

Table 9-72. WPA2 encapsulation PDB, description of the options byte

Field Description

7-6 Reserved

5

DFC

Decode Frame Control

0: do not decode Frame Control field; determine format of MAC Header from Mac Header Length and HTE
bit.

1: use Frame Control field to determine format of MAC Header (HTE must be programmed to 0; PDB MAC
Header Length field is ignored).

4-3 Reserved

2 HTE HT Enable

0: When DFC=0, HT Control field is not present in MAC Header

1: When DFC=0, HT Control field may be present in MAC Header. SEC will use Frame Control field from
input frame to determine if MAC Header includes an HT Control field. If an HT Control field is determined to
be present, it is skipped from the authentication processing that most of the MAC header undergoes.

Note: HTE must be 0 if DFC=1

1 Reserved

0

FCS

FCS included in Output Frame

0 FCS not included in Output Frame.

1 FCS computed by CRCA and copied into Output Frame

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 431

9.5.2.5 WPA2 encapsulation error conditions

This table lists the conditions under which WPA2 encapsulation generates an error status.
Note that these are the error conditions directly detected by the protocol engine.

Table 9-73. WPA2 encapsulation error conditions

Condition Error Status

Reserved bit set to 1 in the PDB options byte Protocol PDB error

DFC=1 and HTE=1 in the PDB Options byte Protocol PDB error

OPERATION Command PROT ID selects IEEE 802.11 WiFi
WPA2 Encap, and PROTINFO is not a valid protocol

Protocol Command Error

PN overflows Protocol Sequence Number Overflow

9.5.3 Process for WPA2 decapsulation

SEC performs WPA2 decapsulation by doing the following:

1. Receives an input frame containing the original MAC header, a CCMP header, an
encrypted payload and ICV, and an optional frame check sequence (FCS) (see the
following figure).

MAC Header CCMP Header
8 bytes

Payload ICV
8 bytes

FCS
4 bytes

PDU MIC

Figure 9-76. WPA2 decapsulation input frame
2. Constructs the Nonce as described for encapsulation, using the MAC header from the

input frame, and various resources programmed in the PDB.
3. Constructs the AAD as described for encapsulation, by masking and removing fields

from the MAC header.
4. For AES-CCM mode, constructs the formatted AAD from the constructed AAD, and

constructs the AESA context, using the Nonce, and various resources programmed in
the PDB.

5. Copies the MAC header from the input frame to the output frame.
• If PDB Option DFC=0, the MAC Header Length field in the PDB determines the

number of bytes to copy.
• If DFC=1, the Frame Control field of the MAC header is parsed to determine the

length and contents of the MAC Header.

IEEE 802.11-2012 WPA2 MPDU encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

432 NXP Semiconductors

6. Optional: If enabled, writes the entire input frame into CRCA for CRC computation
(see the following figure).

CRC Checked

FCS
4 bytes

ICV
8 bytes

CCMP Header
8 bytes

MAC Header Payload

Figure 9-77. WPA2 decapsulation checksum verification
7. If the computed CRC does not validate the frame check sequence (FCS) found at the

end of the input frame, a CRC fail is indicated in the Job Completion Status Word.
8. Optional: If anti-replay checking is enabled, each received PN is compared to the

packet number maintained in the PDB, and if the values are different, REPLAY is
indicated in the Job Completion Status Word (see WPA2 Decapsulation Anti-replay
checking).

9. The AAD is pushed, tagged for authentication only, to AESA.
10. Following AAD, the encrypted payload and ICV are pushed into AESA and CRCA;

the payload is tagged for authentication and decryption.
11. AESA automatically computes an ICV and compares it to the received ICV. If the

two ICVs do not match, an ICV CHECK FAIL is indicated in the Job Completion
Status Word.

Payload

Payload ICV
8 bytes

AES-CCM Authenticate & Decrypt

AAD

Figure 9-78. WPA2 cryptographic decapsulation
12. The decrypted payload is pushed onto the output frame immediately following the

MAC header.

MAC Header Payload

PDU

Output frame when outFMT=0

MAC Header CCMP Header
8 bytes

Payload ICV
8 bytes

FCS
4 bytes

PDU MIC

Output frame when outFMT=1

Figure 9-79. WPA2 decapsulation Output Frame (802.11 MPDU)

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 433

9.5.3.1 WPA2 Decapsulation Anti-replay checking

If enabled by the options byte AR field, each received PN is compared to the packet
number maintained in the PDB. If the value of PN received is not equal to that previously
stored, REPLAY is indicated in the Job Completion Status Word. If Anti-Replay is
disabled, a packet received with an out-of-sequence PN produces an ICV error and does
not decapsulate correctly.

The use of the AR option allows the user to know whether an ICV error was caused by an
out-of-sequence PN.

9.5.3.2 Using automatic key-switching

SEC WPA2 decapsulation has the ability to automatically switch between two keys. If
Automatic key-switching (AKS) is set in the PDB, SEC uses the least significant bit of
the KeyID field of the CCMP Header received in the input frame to select which key is
used.

• If the bit is set, the Class 2 Key is used.
• If the bit is cleared, the Class 1 Key is used.

This feature allows reception of frames without software having to preprocess to
determine which key is being used.

9.5.3.3 WPA2 decapsulation PDB format descriptions
Table 9-74. 802.11 WPA2 decapsulation PDB

Descriptor Header (1 or 2 words)

PDB Word 0 MAC Header Length

(16 bits)

rsv

(8 bits)

Options

(8 bits)

PDB Word 1 B0 Flags

(8 bits)

Pri

(8 bits)

PN 1

(16 bits)
DECO writes PN back

to PDB as needed
PDB Word 2 PN 2

PDB Word 3 Frm Ctl Mask

(16 bits)

Seq Ctl Mask

(16 bits)

PDB Word 4 QoS Ctl Mask

(16 bits)

rsv

(16 bits)

PDB Word 5 CTR Flags

(8 bits)

rsv

(8 bits)

CTR Init Count

(16 bits)

IEEE 802.11-2012 WPA2 MPDU encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

434 NXP Semiconductors

Table 9-75. WPA2 decapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved AR DFC Reserved outFMT HTE AKS FCS

Table 9-76. WPA2 decapsulation PDB, description of the options byte

Field Description

7 Reserved

6

AR

Anti-replay enable

0 Anti-replay checking not enabled.

1 Anti-replay checking enabled

5

DFC

Decode Frame Control field

0: do not decode Frame Control field; determine format of MAC Header from Mac Header Length and HTE
bit.

1: use Frame Control field to determine format of MAC Header (HTE must be programmed to 0; PDB MAC
Header Length field is ignored).

4 Reserved. Must be zero.

3

outFMT

Output Frame Format

0: CCMP / GCMP Header, ICV, and FCS stripped from output frame

1: CCMP Header, ICV, and FCS included in output frame

2

HTE

HT Field Enable

0: When DFC=0, HT Control field is not present in MAC Header

1: When DFC=0, HT Control field may be present in MAC Header. SEC will use Frame Control field from
input frame to determine if MAC Header includes an HT Control field. If an HT Control field is determined to
be present, it is skipped from the authentication processing that most of the MAC header undergoes.

Note: HTE must be 0 if DFC=1

1

AKS

Automatic Key Switching

0 Automatic Key Switching not performed -- Class 1 Key is always used

1 Automatic Key Switching performed -- input frame CCMP Header KEYID field selects key.

0

FCS

FCS included in input Frame

0 FCS not included in inputFrame.

1 FCS computed by encapsulator and included into Input Frame

9.5.3.4 WPA2 decapsulation error conditions

This table lists the conditions under which WPA2 Decapsulation generates an error
status. Note that these are the error conditions directly detected by the protocol engine;
authentication failure can produce an ICV check error.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 435

Table 9-77. WPA2 decapsulation error conditions

Condition Error status

Reserved bit set to 1 in the PDB options byte Protocol PDB error

DFC=1 and HTE=1 Protocol PDB error

OPERATION Command PROT ID selects WPA2 Decap, and
PROTINFO is not a valid protocol

Protocol Command Error

PN overflows Protocol Sequence Number Overflow

AR = 1, and PN is not received Sequentially (PN PDB doesn't
match received PN)

Protocol REPLAY Error

9.6 IEEE 802.16 WiMAX encapsulation and decapsulation
overview

The IEEE 802.16 standard describes how the generic MAC header (or GMH) is to be
modified during the encapsulation process. SEC assumes the input frame includes the
GMH appropriate for transmission with the encapsulated payload. If applying AES-
CCM, SEC uses fields from the GMH to build the initial counter CTR0 and B0 values
required to be written into Class 1 Context for AESA to perform AES-CCM processing,
but does not perform any of the modifications specified in IEEE 802.16. Software is
required to include the GMH with the value of the EC bit changed, with the length field
updated to include the ICV and FCS additions, and with the HCS updated.

The IEEE 802.16 standard specifies the use of AES-CCM for confidentiality and data
integrity protection, without any Additional Authentication Data (AAD). The standard
does not require confidentiality or data integrity.

The PROTINFO field of the Protocol Operation command specifies whether or not AES-
CCM is to be applied to the flow.

• If AES-CCM is applied to encapsulation, the payload is encrypted and an ICV is
computed and inserted into the output frame.

• If AES-CCM is not applied to encapsulation, then no encryption, ICV computation,
or ICV insertion is performed.

• If AES-CCM is not applied to decapsulation, then decryption is not performed, and
no ICV check is performed.

Table 9-78. IEEE 802.16 protocol descriptors

Encapsulation Decapsulation

Header Header

Protocol data block Protocol data block

Table continues on the next page...

IEEE 802.16 WiMAX encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

436 NXP Semiconductors

Table 9-78. IEEE 802.16 protocol descriptors (continued)

Encapsulation Decapsulation

Class 1 key data block Class 1 key data block

Protocol = WiMAX encrypt Class 2 key data block

Protocol = WiMAX decrypt

9.6.1 Process for IEEE 802.16 WiMAX encapsulation

SEC performs IEEE 802.16 WiMAX encapsulation by doing the following:

1. Receives an input frame including the encapsulation-appropriate GMH and payload

Figure 9-80. 802.16 WiMAX encapsulation input frame

Figure 9-81. 802.16 WiMAX generic MAC header detail
2. Takes this input frame and performs the following actions:

• Optional: If selected, encrypts and authenticates the payload
• Inserts a packet number
• Optional: If enabled, inserts a frame check sequence (FCS) generated using a

CRC32 algorithm.
3. Optional: If the ESF bit in the GMH is set, indicating that extended subheaders

(ESH) are present in the input frame, the ESH is passed to the output frame and FCS
protected (if CRC checking is enabled), but is not passed to the AESA for
authentication or confidentiality.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 437

• The first byte of the ESH is the length, in bytes, of the ESH.
• There must be at least one more byte of ESH after the ESH length or an error is

returned.
4. Uses the first 5 bytes of the GMH, along with a PDB-maintained 4-byte constant and

4-byte packet number (PN), and builds a nonce.
• The packet number is incremented and written back to the PDB after use.
• (optional) If the most significant bit of PN changes upon incrementing, the Job

Completion Status Word contains the ROLLOVER indicator.
5. Writes the GMH, Optional ESH, and original PN to the output frame and passes

them to CRCA

 Nonce (13bytes) GMH[39:0]

 00000000h PN (4bytes)
 Note: 0000 0000h to be programmed into PDB field Nonce Constant

Figure 9-82. 802.16 WiMAX nonce construction
6. Uses the 13-byte nonce to build the initial counter value CTR0 and the B0, which are

provided to the Class 1 Context Register for AES to use in performing CCM
computations.

• The constants used in Nonce construction and in CTR0 and B0 construction are
extracted from the PDB, future proofing against the possibility of a simple
change to the WiMAX spec.

 B To AES Context
 Init Ctr

 0 19h Nonce L(pyld)
 01h Nonce 0000h

 Note: 19h to be programmed into PDB field B Flags 0
 01h to be programmed into PDB field CTR Flags

 0000h to be programmed into PDB field CTR Init Count

Figure 9-83. 802.16 WiMAX AES-CCM context construction

NOTE
If the Protocol Operation command PROTINFO field
indicates AES-CCM is not used, construction of CTR0 and
B0 is skipped.

7. After loading the key, CTR0, and B0 into the AES engine, uses AES-CCM mode to
encrypt the payload and compute an ICV

8. Writes the encrypted payload and ICV the output frame and passes them to CRCA.

 Pay load

 Pay load

 ICV
 8 bytes

 AES-CCM Authenticate & Encrypt

Figure 9-84. 802.16 WiMAX cryptographic encapsulation
9. CRC is computed across the entire output frame, and the FCS is appended to the

output frame (see the following figure).

IEEE 802.16 WiMAX encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

438 NXP Semiconductors

 GMH

 Payload

 6 bytes
 Optional ESH

 CRC Computed

 PN
 4 bytes Payload

 AES-CCM Authenticate & Encrypt

 ICV
 8 bytes

Figure 9-85. 802.16 WiMAX cryptographic and checksum encapsulation

After the FCS has been appended, the output frame resulting from WiMAX
encapsulation consists of:

• the software modified GMH (6 bytes)
• an optional ESH (present if the ESF bit is set in the GMH)
• the packet number (4 bytes)
• the encrypted payload
• he AES-CCM produced ICV
• the CRC-produced FCS

NOTE
The WiMAX spec uses two different FCS computation
schemes depending on the type of connection. The built-in
CRC engine is capable of performing either of the required
CRC types.

Figure 9-86. 802.16 WiMAX encapsulation output frame

The processing that SEC performs presumes processor precomputation of the
encapsulation- appropriate Generic MAC Header. As shown in Figure 9-86, HT and EC
are shown to be set as appropriate for an encapsulated packet, not a decapsulated one.
However, Figure 9-86 fails to show that the GMH processor precomputation includes
updating the Len field (adding 4 for the PN, 8 for the ICV, and 4 for the FCS) and
updating the Header Check Sequence as appropriate for the other changes made to the
GMH.

9.6.2 IEEE 802.16 WiMAX encapsulation PDB format descriptions

The IEEE 802.16 WiMAX specification shows two different formats for PN: that
labelled PN and that shown as transmitted on the wire. In the PDB, PN is stored (and
incremented) in spec PN order, and the order is reversed for building the nonce and for
building the output frame.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 439

Table 9-79. WiMAX encapsulation PDB

Descriptor Header (1 or 2 words)

PDB Word 0 Reserved

(24 bits)

Options

(8 bits)

PDB Word 1 Nonce Constant

PDB Word 2 B0 Flags

(8 bits)

CTR0 Flags

(8 bits)

Counter Initial Count

(16 bits)

PDB word 3 PN DECO updates PDB as
needed

Table 9-80. WiMAX encapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved FCS

Table 9-81. WiMAX encapsulation PDB, description of the options byte

Field Description

7-1 Reserved

0

FCS

FCS included in Output Frame

0 FCS not included in Output Frame.

1 FCS computed by encapsulator and included into Input Frame

9.6.3 WiMax encapsulation error conditions

This table lists the conditions under which WiMAX encapsulation generates an error
status. Note that these are the error conditions directly detected by the protocol engine.

Table 9-82. WiMAX encapsulation error conditions

Condition Error status

Reserved bit set to 1 in the PDB options byte Protocol PDB error

OPERATION Command PROT ID selects WMAX Encap, and
PROTINFO is not a valid protocol

Protocol Command Error

ESH enabled in GMH, and ESH Length byte < 2 Protocol Command Error

PN overflows Protocol Sequence Number Overflow

IEEE 802.16 WiMAX encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

440 NXP Semiconductors

9.6.4 Procedure for IEEE 802.16 WiMAX decapsulation

SEC performs decapsulation by doing the following:

1. Receives the input frame without software modification to the GMH (see following
figure)

GMH
6 bytes

Optional ESH
at least 2 bytes if present

PN
4 bytes

Payload ICV
 8 bytes

FCS
4 bytes

Figure 9-87. 802.16 WiMAX decapsulation input frame
2. Optional: If the frame check sequence has not been verified by software or other

external hardware prior to SEC receiving the input frame, verifies the FCS, signalling
an error if the received FCS does not match the expected result

• This FCS check occurs in parallel with other SEC processing of the input frame.
• The FCS is computed across the GMH, the ESH (present if ESF =1 in the

GMH), the PN, the Payload, and the ICV.
• If an ESH is present, the ESH must be at least 2 bytes in length or an error is

returned.

Figure 9-88. 802.16 WiMAX generic MAC header detail
3. Constructs the nonce from the GMH and packet number

 Nonce GMH[39:0]

 00000000h PN

Figure 9-89. 802.16 WiMAX nonce construction
4. Builds the AES-CCM initial counter (CTR0) and B0 values using constants extracted

from the PDB. Note that if the Protocol Operation command PROTINFO field
indicates AES-CCM is not used, then construction of CTR0 and B0 is skipped.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 441

 B To AES Context
 Init Ctr

 0 19h Nonce L(pyld)
 01h Nonce 0000h

 Note: 19h to be programmed into PDB field B Flags 0
 01h to be programmed into PDB field CTR Flags

 0000h to be programmed into PDB field CTR Init Count

Figure 9-90. 802.16 WiMAX AES-CCM context construction
5. Completes decapsulation of the packet by decrypting the payload and computing the

ICV on the received, decrypted payload.
6. Computes and compares the ICV to the ICV value received, and if the two ICVs fail

to match, an error is asserted.

 Pay load

 Pay load ICV
 8 bytes

 AES-CCM Authenticate & Decrypt

Figure 9-91. 802.16 WiMAX cryptographic decapsulation
7. After the received ICV is checked against the computed ICV, performs anti-replay

checking on the Packet Number field.
• The PDB is configurable for either 32, 64, or 128-packet windows (size

determined by the 2-byte Anti-replay length field), and all state information is
stored back into the PDB before SEC finishes decapsulating the packet.

• SEC does not pass the PN onto the output frame.
8. After decryption, pushes the payload to the output frame.

The packet in the output frame consists of the unmodified GMH, the ESH if present in
the input frame, and the decrypted payload. Unless option outFMT is set, The ICV, FCS,
and PN fields are not included in the Output Frame.

GMH Optional ESH Payload

GMH Optional ESH Payload ICV
8 bytes

FCS
4 bytes

PN
4 bytes

Output frame if outFMT=0

Output frame if outFMT=1

Figure 9-92. 802.16 WiMAX decapsulation output frame

9.6.4.1 Transforming the GMH (WiMAX decapsulation)

The decapsulated output frame still contains the encapsulation GMH. Transformation of
the GMH (setting EC to 0, reducing the length as appropriate, and recomputing the
header check sequence) requires processor intervention after SEC finishes processing the
PDU.

IEEE 802.16 WiMAX encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

442 NXP Semiconductors

9.6.4.2 Automatic key switching (WiMAX decapsulation)

SEC WiMAX decapsulation has the capability to automatically switch between two keys.
If AKS (Automatic Key Switching) is set in the PDB, then SEC uses the least significant
bit of the EKS field of the GMH received in the input frame to select which key is used;
if the bit is asserted, then the Class 2 Key is used. If the bit is negated, then the Class 1
Key is used. This feature allows reception of frames without software having to
preprocess to determine which key is being used.

9.6.5 IEEE 802.16 WiMAX decapsulation PDB format descriptions
Table 9-83. WiMAX decapsulation PDB

Descriptor Header (1 or 2 words)

PDB Word 0 Reserved

(24 bits)

Options

(8 bits)

PDB Word 1 Nonce Constant

PDB Word 2 B0 Flags

(8 bits)

CTR0 Flags

(8 bits)

Counter Initial Count

(16 bits)

PDB word 3 PN

DECO updates PDB in
descriptor buffer and
external memory as

needed

PDB Word 4 reserved Anti-Replay Length

(16 bits)

PDB word 5 Anti Replay Scorecard 1 [present if AR=1]

PDB word 6 anti-replay scorecard 2 [present if AR=1 and Anti-Replay Length > 32]

PDB word 7 anti-replay scorecard 3 [present if AR=1 and Anti-Replay Length > 64]

PDB word 8 anti-replay scorecard 4 [present if AR=1 and Anti-Replay Length > 96]

Table 9-84. WiMAX decapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved AR Reserved Reserved outFMT Reserved AKS FCS

Table 9-85. WiMAX Decapsulation PDB - Description of the Options Byte

Field Description

7 Reserved

6

AR

Anti-replay enable

0 Anti-replay checking not enabled.

1 Anti-replay checking enabled; length determined by PDB field Anti-Replay Length

5-4 Reserved. Must be zero.

Table continues on the next page...

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 443

Table 9-85. WiMAX Decapsulation PDB - Description of the Options Byte (continued)

Field Description

3 output frame format

0 PN, ICV, and FCS stripped from output frame.

1 PN, ICV, and FCS included in output frame.

2 Reserved. Must be zero.

1

AKS

Automatic Key Switching performed

0 Automatic Key Switching not performed; Class 1 Key is always used.

1 Automatic Key Switching performed; input frame EKS field of GMH selects key.

0

FCS

FCS included in input Frame

0 FCS not included in input Frame.

1 FCS computed by encapsulator and included into Input Frame

9.6.6 WiMAX decapsulation error conditions

This table lists the conditions under which WiMAX decapsulation generates an error
status. Note that these are the error conditions directly detected by the protocol engine.
Authentication failure can produce an ICV check error.

Table 9-86. WiMAX decapsulation error conditions

Condition Error Status

Reserved bit set to 1 in the PDB options byte Protocol PDB error

AR = 1, and Anti-Replay Length > 64 Protocol PDB error

AR = 0, and Anti-Replay Length != 0 Protocol PDB error

OPERATION Command PROT ID selects WiMAX Decap, and
PROTINFO is not a valid protocol

Protocol Command Error

ESH enabled in GMH, and ESH Length byte < 2 Protocol Command Error

PN overflows Protocol Sequence Number Overflow

Anti-Replay detects a LATE packet Protocol LATE Error

Anti-Replay detects a REPLAY packet Protocol REPLAY Error

Anti-Replay built-in checking

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

444 NXP Semiconductors

9.7 Anti-Replay built-in checking
Several network protocol decapsulation commands include the ability to perform Anti-
Replay checking. This capability is actually built as a separate command that can be
invoked separately. As a separate command, Anti-Replay supports a packet number of
16, 32, 48, or 64 bits in length, and an anti-replay window sized anywhere between 1 and
128 entries.

The Anti-Replay operation compares the Packet Number stored in the PDB to the Packet
Number stored right-justified in MATH0. It is the responsibility of other descriptor
commands to put the Packet Number into MATH0 in the correct form. Four checks can
be performed by the Anti-Replay operation:

1. Late Check determines if the Packet Number found in MATH0 is smaller than the
Packet Number found in the PDB by at least the size of the Anti Replay Window.
That is, MATH0's Packet Number is so old that it cannot be checked for a replay. If
determined LATE, then either an error or a warning will be signaled as determined
by PDB options bit RLST.

2. Replay Check determines if the Packet Number found in MATH0 is already reflected
by appropriate entry in the Anti Replay Window. In particular, the window entry
associated with the value in MATH0 is checked. If already set, then it is determined
to be REPLAY. If not yet set, then it is not REPLAY, and the entry is set. If
determined REPLAY, then either an error or a warning will be signaled as
determined by PDB options bit RLST.

3. Packet Number Overflow check (optional; occurs if COF=1) detects if Packet
Number in MATH0 has rolled past the maximum Packet Number, as determined by
the length of the Packet Number. An Overflow indicates the Packet Number in the
PDB is close to 2PNLen - 1, but the Packet Number in MATH0 is close to zero. When
an overflow is detected, either an error or a warning is signalled, as determined by
Option OUST.

4. Packet Number Underflow check (optional; occurs if CUF=1) detects if Packet
Number in MATH0 has rolled back past zero. For this to be detected, the Packet
Number in the PDB must be close to zero and the Packet Number in MATH0 must
be close to 2PNLen - 1. When an underflow is detected, either an error or a warning is
signalled, as determined by Option OUST.

If the value in MATH0 is a not a replay and is newer than the Packet Number in the PDB,
then the PDB is updated with the Packet Number value from MATH0, and the Anti
Replay Window is shifted such that the newest entry corresponds to the new Packet
Number. The Packet Number and Anti Replay window fields are updated back to
memory where the descriptor was fetched from.

Upon successful completion of the Anti-Replay operation, the status field of the PDB is
updated.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 445

NOTE
If an error is signalled, then descriptor execution is terminated
immediately; further tasks will not be completed.

When the Anti-Replay operation is invoked as a stand-alone operation, it requires its own
PDB that is of a form different than seen when Anti-Replay is part of a network protocol.
ARLen, a field in the first PDB word, control the size of the anti-replay window, and is
programmable to any integer between 1 and 128. Options byte field PNLen selects the
packet number length. Options bits CUF and COF indicate whether or not to check for
packet number underflow (roll-under) or overflow (roll-over). Bit OUST determines
whether to signal an error or a warning for any detected packet number underflow or
overflow. Bit RLST determines whether to signal an error or a warning if either a LATE
or a REPLAY Packet Number is detected.

Table 9-87. Anti-Replay built-in checking PDB

Descriptor Header (1 or 2 words)

PDB Word 0 Status

(4 bits)

Reserved

(12 bits)

ARLen

(8 bits)

Options

(8 bits)

PDB Word 1 Upper Packet Number (unused if PNLen is 32 or 16)

DECO writes back to
PDB as needed

PDB Word 2 Lower Packet Number

PDB Word 3 Anti Replay Window entries 31-0 (always present)

PDB Word 4 Anti Replay Window entries 63-32 (present if ARLen > 32)

PDB Word 5 Anti Replay Window entries 95-64 (present if ARLen > 64)

PDB Word 6 Anti Replay Window entries 127-96 (present if ARlen > 96)

Table 9-88. Anti-Replay built-in checking PDB, format of the status nibble

31 30 29 28

PNUpdate LATE REPLAY OUFD

Table 9-89. Anti-Replay built-in checking PDB, description of the status nibble

Field Description

31

PNUpdate

Indicates if the Packet Number field in the PDB was updated by the Anti Replay command

0 : was not updated

1 : was updated

30

LATE

LATE was detected but no error was issued

0 : no LATE detected

1 : LATE Packet Number detected

29

REPLAY

REPLAY was detected but no error was issued

0 : no REPLAY detected

Table continues on the next page...

Anti-Replay built-in checking

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

446 NXP Semiconductors

Table 9-89. Anti-Replay built-in checking PDB, description of the status nibble (continued)

Field Description

1 : REPLAY Packet Number detected

28

OUFD

Underflow or Overflow Packet Number detected but no error issued

0 : no Underflow or Overflow detected

1 : Underflow or Overflow of Packet Number detected

Table 9-90. Anti-Replay built-in checking PDB, format of the options byte

7-6 5-4 3 2 1 0

Reserved PNLen CUF COF OUST RLST

Table 9-91. Anti-Replay built-in checking PDB, description of the options byte

Field Description

7-6 Reserved

5-4

PNLen

Selects Packet Number Size

00 : use 16 bit Packet Number

01 : use 32 bit Packet Number

10 : use 48 bit Packet Number

11 : use 64 bit Packet Number

3

CUF

Check for packet number Underflow.

0 : do not check for underflow

1 : check for underflow -- if Packet Number rolls back past zero, signal per OUE

2

COF

Check for packet number Overflow.

0 : do not check for overflow

1 : check for overflow -- if Packet Number rolls forward past 2PNLen - 1, signal per OUST

1

OUST

Overflow / Underflow signal type.

0 : signal warning upon detection of Packet Number Overflow or Underflow

1 : signal error upon detection of Packet Number Overflow or Underflow

0

RLST

Replay / Late signal type.

0 : signal warning upon detection of late or replay Packet Number

1 : signal error upon detection of late or replay Packet Number

9.8 Process for 3G double-CRC encapsulation and
decapsulation

SEC includes a double-CRC encapsulation and decapsulation protocol thread designed
for 3G MAC-d protection.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 447

The unencapsulated frame contains a packet consisting of:

• A PDU header
• A PDU payload consisting of 0 or more bytes

SEC computes either a 7-bit or 11-bit CRC of the PDU Header (the length of which is in
the PDB) and the 16-bit CRC of the PDU Payload.

• The 7-bit CRC computation uses an irreducible polynomial of D7+D6+D2+1.
• The 11-bit CRC uses an irreducible polynomial is D11+D9+D8+D2+D+1.
• The 16-bit CRC uses an irreducible polynomial of D16+D15+D2+1.

For all three computations, the CRC engine is configured with DIS, DOS, DOC, and IVZ
all set.

9.8.1 3G double-CRC encapsulation process

The encapsulated output frame consists of the following:

• The PDU header, which is copied from the input frame after being modified by
insertion of the header CRC

• The PDU payload, which is copied without modification from the input frame
• The sixteen-bit payload CRC

9.8.1.1 Calculating the 7-bit CRC of the PDU header for encapsulation

This figure shows 3G double-CRC encapsulation with 7-bit header CRC.

Detail of Received
PDU Header

Zeros
7 bits

Input Frame

Output Frame

Detail of PDU Header after
checking 7-bit CRC

FT
1 bit

PDU
Header

PDU
Payload

Payload
CRC

PDU
Header

PDU
Payload

7-bit CRC
7 bits

FT
1 bit

7-bit CRC Generation 16-bit CRC Generation

2nd header byte
8 bits

2nd header byte
8 bits

Figure 9-93. 3G double-CRC encapsulation with 7-bit header CRC

Process for 3G double-CRC encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

448 NXP Semiconductors

If the PROTINFO field of the Operation Command selects a 7-bit CRC, it is computed as
follows:

1. SEC takes the number of bytes for the PDU Header from the input frame as defined
by the PDU Header Length field in the PDB.

2. SEC zeroes the first 7 bits as the header is passed to the CRC engine.
3. After the 7-bit CRC computation is completed, the computed value is moved to a

DECO register, along with the FT bit that completes the byte containing the CRC.

9.8.1.2 Calculating the 11-bit CRC of the PDU header for
encapsulation

This figure shows 3G double-CRC encapsulation with 11-bit header CRC.

Detail of Received
PDU Header

Zeros
7 bits

Input Frame

Output Frame

Detail of PDU Header after
adding 11-bit CRC

FT
1 bit

PDU
Header

PDU
Payload

Payload
CRC

PDU
Header

PDU
Payload

11-bit CRC
7 bits

11-bit CRC Generation 16-bit CRC Generation

Zeros
4 bits

FSN
4 bits

FT
1 bit

CRC
4 bits

FSN
4 bits

Figure 9-94. 3G double-CRC encapsulation with 11-bit header CRC

If the PROTINFO field of the Operation Command selects an 11-bit CRC, it is computed
against a modified PDU Header as follows:

1. SEC takes the number of bytes for the PDU Header from the input frame as defined
by the PDU Header Length field in the PDB.

2. The PDU Header bits reserved for the CRC are zeroed.
3. The second byte of the PDU Header is re-ordered before being passed to the CRC

engine: the FT bit is moved to be after the entire CRC field.
4. The PDU Header is copied from the input frame to the output frame, unmodified,

along with the PDU Payload.
5. The completed 11-bit CRC value is moved to a DECO register, along with the rest of

the first two bytes of the PDU Header.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 449

9.8.1.3 Calculating the 16-bit payload CRC for encapsulation

After the header CRC computation has been completed, the CRC CHA is reconfigured
for the sixteen-bit payload CRC computation.

1. The PDU Payload is passed unmodified from the input frame to the output frame and
is also passed to the CRC CHA.

2. The CRC CHA calculates the payload CRC.
3. The CRC value is appended to the end of the output frame by the CRC engine.
4. The saved first byte or two of the PDU Header with inserted CRC is written out,

overwriting the start of the output frame.

9.8.2 3G double-CRC encapsulation PDB format descriptions

Figure 9-95. 3G double-CRC encapsulation PDB

Table 9-92. 3G double-CRC encapsulation PDB, format of the options byte

7..0

Reserved

Table 9-93. 3G double-CRC encapsulation PDB, description of the options byte

Field Description

0-7 Reserved

9.8.3 3G double-CRC decapsulation process

The decapsulation process is as follows:

1. The PDU Header CRC is checked and passed as-is from the input frame to the output
frame, along with the rest of the PDU Header.

2. If the received header CRC does not match the computed header CRC, an error
results.

Process for 3G double-CRC encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

450 NXP Semiconductors

3. The received payload CRC is checked against the computed payload CRC, but the
output frame does not include the payload CRC, meaning that the decapsulated
output frame is 2 bytes shorter than the input frame.

4. If the received payload CRC does not match the computed payload CRC, an error is
returned.

9.8.3.1 Calculating the 7-bit CRC of the PDU header for decapsulation

This figure shows 3G double-CRC decapsulation with 7-bit header.

Detail of Received
PDU Header

7-bit CRC
7 bits

Input Frame

Output Frame

Detail of PDU Header after
checking 7-bit CRC

FT
1 bit

2nd header byte
8 bits

PDU
Header

PDU
Payload

Payload
CRC

PDU
Header

PDU
Payload

7-bit CRC
7 bits

FT
1 bit

2nd header byte
8 bits

7-bit CRC Checking 16-bit CRC Checking

Figure 9-96. 3G double-CRC decapsulation with 7-bit header

If the value of the Operation Command PROTINFO field selects a seven-bit CRC
computation, the procedure is:

1. The first 7 bits of the PDU header are checked against a CRC computed across the
PDU header; the length of the PDU header is determined by the PDU Header Length
field in the PDB.

2. The PDU header is copied verbatim from the input frame to the output frame.
3. For the purposes of the CRC computation, the received seven-bit CRC is zeroed prior

to passing it to the CRC engine.
4. The seven-bit CRC received from the input frame is written separately into the CRC

engine, and is compared to the computed CRC.
5. If the two CRC values do not match, an error is returned.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 451

9.8.3.2 Calculating the 11-bit CRC of the PDU header for
decapsulation

This figure shows 3G double-CRC decapsulation with a 11-bit header.

Detail of Received
PDU Header

11-bit CRC
7 bits

Input Frame

Output Frame

Detail of PDU Header after
checking 11-bit CRC

FT
1 bit

CRC
4 bits

PDU
Header

PDU
Payload

Payload
CRC

PDU
Header

PDU
Payload

11-bit CRC
7 bits

FT
1 bit

11-bit CRC Checking 16-bit CRC Checking

FSN
4 bits

CRC
4 bits

FSN
4 bits

Figure 9-97. 3G double-CRC decapsulation with 11-bit header

If the value of the Operation Command PROTINFO field selects an 11-bit CRC
computation, the procedure is the same as for the 7-bit CRC except for how the PDU
Header is presented to the CRC engine. Because the FT bit appears in the last bit of the
first byte of the PDU Header, the first two bytes of the header are reordered going into
the CRC engine, in addition to zeroizing the CRC fields. The PDU header is presented
such that the FT bit follows eleven zeroed CRC bits, but preceeds all other parts of the
PDU header.

9.8.3.3 Calculating the 16-bit payload CRC for decapsulation

After the header CRC has been checked, a 16-bit CRC is computed across the PDU
payload, which comprises everything after the PDU Header in the input frame except for
the final two bytes. The final two bytes of the input frame comprise the payload CRC,
which the CRC engine compares to the computed payload CRC. If the two CRC values
do not match, an error is returned.

Process for 3G double-CRC encapsulation and decapsulation

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

452 NXP Semiconductors

9.8.4 3G double-CRC decapsulation PDB format descriptions

Figure 9-98. 3G double-CRC decapsulation PDB

Table 9-94. 3G double-CRC decapsulation PDB, format of the options byte

7..0

Reserved

Table 9-95. 3G double-CRC decapsulation PDB, description of the options byte

Field Description

7-0 Reserved.

9.9 3G RLC PDU Encapsulation and Decapsulation overview
SEC implements encapsulation and decapsulation for 3G RLC PDUs. For RLC PDUs,
only confidentiality is provided; authentication is handled at a different protocol layer.
SEC supports both Kasumi-f8 (UEA1) and SNOW-3g f8 (UEA2) for NULL
confidentiality (UEA0) as well as for confidentiality.

Table 9-96. 3G RLC protocol descriptors

Encapsulation Decapsulation

Header Header

Protocol data block, includes HFN Protocol data block, includes HFN

Class 1 key data block Class 1 key data block

Protocol = <protocol> encrypt Protocol = <protocol> decrypt

9.9.1 3G RLC PDU encapsulation overview

The input frame consists of a single 3G RLC layer PDU header and payload.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 453

• The header is either one or two bytes, depending on the length of the sequence
number.

• The payload consists of zero or more bytes.

The encapsulation output frame consists of:

• The PDU header (unmodified)
• The encrypted PDU payload
• Optional padding

Encapsulation can occur in either unacknowledged mode or acknowledged mode:

• If the PDB options byte SNS bit = 1, the PDU is interpreted as an unacknowledged
mode PDU, with a 7-bit sequence number in a one-byte PDU Header.

• If the PDB options byte SNS bit is not 1, the PDU is interpreted as an acknowledged
mode PDU header, with a twelve-bit sequence number in a two-byte PDU header.

This figure shows 3G RLC PDU encapsulation.

 Input Frame

 PDU Header
 Unack-Mode

 PDU Header
 1 byte header for Unacknowledged Mode (7-bit Sequence Number)
 2 byte header for Acknowledged Mode (12-bit Sequence Number)

 Seq Num

 HFN Seq Num

D
ir

 1 bit 26 bits

 encryption processing

 Output Frame with optShift=1

 Header
 PDU

 Payload
 PDU

 Encryption

 Header Payload
 PDU PDU

 Header
 PDU

 Payload
 PDU

 Reserved (CA & CE) 64-bit Initialization Vector
for Kasumi-f8 (UEA1) and SNOW3G-f8 (UEA2)
 Note: length of HFN with

 Seq Num is always 32 bits 32 bits

 PDU Header
 Ack-Mode

 Seq Num

D

/C

 1 bit
 P

 1 bit
 P

 1 bit 7 bits 12 bits
 HE
 2 bits

 zero

 pad

 0.5 byte

 Lead

 0.5 bytes
 Nibble

 Bearer
 5 bits

 Output Frame with optShift=0
 Header

 PDU
 Payload

 PDU

Figure 9-99. 3G RLC PDU encapsulation

9.9.2 Process for 3G RLC PDU encapsulation

The 3G RLC PDU encapsulation procedure is:

3G RLC PDU Encapsulation and Decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

454 NXP Semiconductors

1. Prior to starting encryption, the sequence number is extracted and combined with the
HyperFrame Number (HFN) field maintained in the PDB.

2. (optional) When the sequence number rolls over from all 1s to zero, the HFN field in
the PDB is incremented and written back.

3. Whether incremented or not, the HFN field is checked against the Threshold field in
the PDB.

4. If the HFN matches or exceeds the Threshold, a warning is returned when frame
processing is complete; this warning indicates keys should be renegotiated at earliest
convenience.

5. The PDU Header is copied as-is from the input frame to the output frame. It is used
in f8 IV construction, but is not provided to the selected encryption engine (KFHA or
SNOW-3G-f8) for encryption.

6. An f8 initialization vector (IV) is built from the following:
• HFN field as found in the input PDB
• The PDB word that includes Bearer and Direction
• The Sequence Number from the input frame

7. The IV is written to the Class 1 Context Register prior to commencing encryption.
8. The entire PDU Payload is moved from the input frame into the input-data FIFO as

message data.
9. The resulting encrypted PDU payload is sent to the output frame.

9.9.3 3G RLC PDU encapsulation PDB format descriptions
Table 9-97. 3G RLC PDU encapsulation PDB

Descriptor Header (1 or 2 words)

PDB Word 0 Resvd

(4 bits)

Lead

Nibble

(4 bits)

Reserved

(16 bits)

Options

(8 bits)

PDB Word 1 HFN

(25 bits)

Reserved

(7 bits)
DECO writes back to

PDB as needed
PDB Word 2 Bearer, Dir, Reserved for CA & CE

The PDB options byte includes a bit enabling an optional shift. If set, the output frame is
1 byte longer than the input frame, and the entire PDU is offset by 4 bits from the start of
the frame. The 4 bits added to the output frame at the front are taken from the Lead
Nibble field of the PDB and the 4 bits added at the tail are all zeros.

Table 9-98. 3G RLC PDU encapsulation PDB, format of the options byte

7-3 2-1 0

Reserved SNS optShift

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 455

Table 9-99. 3G RLC PDU encapsulation PDB, description of the options byte

Field Description

7-3 Reserved

2-1

SNS

Selects Serial Number Size. Ignored for LTE C-Plane.

If SNS = 00b : 12-bit Serial Number. This is Acknowledged mode for 3G.

If SNS = 01b : 7-bit Serial Number. This is Unacknowledged mode for 3G.

If SNS = 10b : 15-bit Serial Number. Not recommended for 3G RLC encapsulation.

If SNS = 11b : Reserved.

0

optShift

Enables the optional four-bit Output Frame shift

If optShift = 0 : No shift

If optShift = 1 : Shift the output frame 4 bits, inserting zeros.

9.9.4 3G RLC PDU decapsulation overview

The encapsulated input frame consists of:

• A single 3G RLC layer PDU Header
• An encrypted PDU Payload consisting of zero or more bytes

NOTE
If the optShift bit in the PDB Options byte is set, the input
frame includes an extra byte beyond the PDU: half the byte
(four bits) at the front (before the header) and half the byte (four
bits) at the end (after the payload). The frame must be un-
shifted before decryption can take place.

The PDU Header is either one or two bytes, depending on the length of the sequence
number.

The decapsulation output frame consists of:

• The PDU header (unmodified)
• The decrypted PDU payload

Decapsulation can occur in either unacknowledged or acknowledged mode.

• If the PDB Options byte SNS bit = 1, the PDU is interpreted as an unacknowledged
mode PDU, with a 7-bit sequence number in a 1-byte PDU Header.

• If the PDB options byte SNS bit is not 1, the PDU is interpreted as an acknowledged
mode PDU header, with a twelve-bit sequence number in a two-byte PDU header.

This figure shows 3G RLC PDU decapsulation.

3G RLC PDU Encapsulation and Decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

456 NXP Semiconductors

 Input Frame when optShift = 1

 PDU Header
 Unack-Mode

 PDU Header
 1 byte header for Unacknowledged Mode (7-bit Sequence Number)
 2 byte header for Acknowledged Mode (12-bit Sequence Number)

 Seq Num

 HFN Seq Num

D
ir

 1 bit 26 bits

 decryption processing

 Output Frame with either value of optShift

 Decryption

 Header Payload
 PDU PDU

 Reserved (CA & CE) 64-bit Initialization Vector
for Kasumi-f8 (UEA1) and SNOW3G-f8 (UEA2)
 Note: length of HFN with

 Seq Num is always 32 bits 32 bits

 PDU Header
 Ack-Mode

 Seq Num

D

/C

 1 bit
 P

 1 bit
 P

 1 bit 7 bits 12 bits
 HE
 2 bits

 Bearer
 5 bits

 Header
 PDU

 Payload
 PDU zero

 pad

 0.5 byte

 Lead

 0.5 bytes
 Nibble

 (with optShift = 0, Lead Nibble and zero pad are excluded)

 Header Payload
 PDU PDU

Figure 9-100. 3G RLC PDU decapsulation

9.9.5 Process for 3G RLC PDU decapsulation

The decapsulation procedure is:

1. Prior to starting decryption, the sequence number is extracted and combined with the
Hyper Frame Number (HFN) field maintained in the PDB.

2. Whenever the sequence number rolls over from all 1s back to zero, the HFN field in
the PDB is incremented and written back; note that there is no provision for rolling
back the HFN, so frames must be provided in-order.

3. Whether HFN is incremented or not, the HFN field is checked against the Threshold
field in the PDB.

4. If the HFN field matches or exceeds the Threshold field, a warning is returned when
frame processing is complete. This warning indicates keys should be renegotiated at
earliest convenience.

5. The PDU Header is copied as-is from the input frame to the output frame (shifted if
optShift =1). It is used in f8 IV construction, but is not provided to the selected
confidentiality engine (KFHA or SNOW-3G-f8) for decryption.

6. An f8 Initialization Vector (IV) is built from:
• The Hyper Frame Number (HFN) as found in the input PDB

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 457

• The PDB word that includes Bearer and Direction
• The Sequence Number from the input frame

7. The IV is written to the Class 1 Context Register prior to commencing decryption.
8. The entire PDU Payload is moved from the Input Frame into the input-data FIFO as

message data.
9. The resulting decrypted PDU Payload is sent to the output frame.

9.9.6 3G RLC PDU decapsulation PDB format descriptions

Figure 9-101. 3G RLC PDU decapsulation PDB

Table 9-100. 3G RLC PDU decapsulation PDB, format of the options byte

7 6 5 4 3 2 1 0

RSV RSV RSV RSV RSV RSV SNS optShift

Table 9-101. 3G RLC PDU decapsulation PDB, description of the options byte

Field Description

Reserved.

SNS
Selects Serial Number Size. Ignored for LTE C-plane

0: 12-bit Serial Number. This is Acknowledged mode for 3G.

1: 7-bit Serial Number. This is Unacknowledged mode for 3G.

optShift
Selects whether or not to perform a 4-bit shift before decryption.

0: No shift

1: 4-bit shift performed

3G RLC PDU Encapsulation and Decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

458 NXP Semiconductors

9.9.7 Overriding the PDB for 3G RLC PDU encapsulation and
decapsulation

A shared descriptor is created with the intent to provide information required for
processing every packet in a flow. Occasionally, it is required to override those standard
settings. For 3G RLC PDU encapsulation and decapsulation, The HFN is maintained in
the PDB, but can be overridden through the DPOVRD register, by setting the OVRD bit
(see figure below). When using the Job Ring interface, this is achieved by including a
LOAD IMMEDIATE to the DPOVRD register of the desired HFN value in the job
descriptor. For more information, see Job Ring interface. When using the Queue Manager
Interface, QI builds the job descriptor with the LOAD IMMEDIATE to the DPOVRD
register with the value of the STATUS/CMD field in the FD. For more information, see
Queue Manager Interface (QI).

Table 9-102. Format of the DPOVRD register when used with the 3G RLC protocol

format when HFN is
20 bits

OVRD Reserved (12 bits) HFN (20 bits)

format when HFN is
25 bits

OVRD Reserved

(7 bits)

HFN (25 bits)

Reset 0

9.10 LTE PDCP PDU encapsulation and decapsulation
overview

For LTE, 3GPP moved confidentiality and integrity to both reside in the PDCP layer. Not
all modes use authentication.

• PDCP User Plane uses confidentiality only. The encapsulation and decapsulation
process is very much like that for 3G RLC PDUs.

• PDCP User Plane for RN uses confidentiality and integrity. The encapsulation and
decapsulation process is very much like that for PDCP Control Plane PDUs.

• PDCP Control Plane uses confidentiality and integrity.

The following algorithms are supported for LTE PDCP:

• 128-EEA0 (null-confidentiality) for confidentiality.
• 128-EEA1 (SNOW-3G) for confidentiality.
• 128-EEA2 (AES-CTR) for confidentiality.
• 128-EEA3 (ZUC) for confidentiality.
• 128-EEA0 (null-integrity) for integrity.
• 128-EIA1 (SNOW-3G) for integrity.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 459

• 128-EIA2 (AES-CMAC) for integrity.
• 128-EIA3 (ZUC) for integrity.

NOTE
Note that whenever processing the integrity function is
included, any combination of confidentiality and integrity
algorithm may be selected.

Table 9-103. LTE control plane protocol descriptors

Encapsulation Decapsulation

Header Header

Protocol data block, includes HFN Protocol data block, includes HFN

Class 2 key data block Class 2 key data block

Class 1 key data block Class 1 key data block

Protocol = <protocol> encrypt Protocol = <protocol> decrypt

9.10.1 LTE PDCP PDU IV generation

Each of the algorithms supported by SEC require the generation of initialization vectors
(IV). In most cases, a confidentiality IV is written into the Class 1 context register, and a
different integrity IV is written into the Class 2 context register to affect processing.
EIA2 (AES-CMAC) is the exception; CMAC has no provision for an IV, so the value
computed is used as AAD (additonal authenticated data) instead. The various IV values
are constructed using Direction, Bearer, some constants programmed into the PDB (in
case of future standards work), and Count. Count itself is created by using HFN as the
most significant bits and the header's sequence number for least significant bits.
Generation of the forms of IV used are shown in the diagrams followiing. These IVs are
used for both encapsulation and decapsulation.

LTE PDCP PDU encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

460 NXP Semiconductors

 128-EEA1 (SNOW-3G) Initialization Vector
 (first 64 bits of C1CTX)

 HFN
 32 - len(Seq Num) bits

 Seq Num Bearer
 5 bits

D
ir

 1 bit

 0
 26 bits

 HFN Seq Num 0
 5 bits

 Bearer
 5 bits

 0
 27 bits

D
ir

 1 bit

 0
 26 bits

 128-EIA1 (SNOW-3G) Initialization Vector
 (first 96 bits of C2CTX) 32 - len(Seq Num) bits

 PDU Header breakdown
 Header format depends upon
whether u-plane or c-plane, and for
u-plane, upon the Seq Num size C/D Seq Num

 1 bit 7 bits
 PDU Header format for U-plane with 7-bit Seq Num (1 byte)

 RSV Seq Num
 3 bits 5 bits

 PDU Header format for C-plane (1 byte)

 PDU Header format for U-plane with 12-bit Seq Num (2 bytes) RSV Seq Num
 3 bits 12 bits

 C/D
 1 bit

 PDU Header format for U-plane with 15-bit Seq Num (2 bytes) Seq Num
 15 bits

 C/D
 1 bit

Figure 9-102. IV generation for 128-EEA1 and 128-EIA1 (SNOW3G)

Generation of IVs for SNOW3G occurs as follows:
• COUNT is constructed by taking HFN from the PDB and appending the Sequence

Number from the input frame
• For the confidentiality IV, Bearer and Direction are taken from the PDB and

appended immedlately following COUNT
• The confidentiality IV is completed by appending a 26-bit constant zero value from

the PDB (labelled CA & CE).
• For the integrity IV, the Bearer value is moved (and replaced with zeros) from

immediately after COUNT to following the end of the confidentiality IV.
• The integrity IV is completed by appending 27 bits of zeros.

NOTE
The integrity IV is only constructed if integrity processing is
being performed.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 461

 EEA2 (AES-CTR)
CTR0

 HFN
 32 - len(Seq Num) bits

 Seq Num Bearer
 5 bits

D
ir

 1 bit

 0
 80 bits

 EIA2 IV (AES-CMAC)
(Identical to EEA1 IV)
SEC treats EIA2 IV as first 64bits processed by AES-CMAC

 HFN
 32 - len(Seq Num) bits

 Seq Num Bearer
 5 bits

D
ir

 1 bit

 0
 26 bits

 PDU Header breakdown
 Header format depends upon
whether u-plane or c-plane, and for
u-plane, upon the Seq Num size

 C/D Seq Num
 1 bit 7 bits

 PDU Header format for U-plane with 7-bit Seq Num (1 byte)

 RSV Seq Num
 3 bits 5 bits

 PDU Header format for C-plane (1 byte)

 PDU Header format for U-plane with 12-bit Seq Num (2 bytes) RSV Seq Num
 3 bits 12 bits

 C/D
 1 bit

 PDU Header format for U-plane with 15-bit Seq Num (2 bytes) Seq Num
 15 bits

 C/D
 1 bit

Figure 9-103. IV generation for 128-EEA2 and 128-EIA2 (AES)

Generation of IVs for AES occurs as follows:
• COUNT is constructed by taking HFN from the PDB and appending the Sequence

Number from the input frame
• Bearer and Direction are taken from the PDB and appended after COUNT.
• a zero constant is applied to make the confidentiality IV 128 bits, and to make the

integrity IV 96 bits.

NOTE
The integrity IV is only constructed if integrity processing is
being performed.

NOTE
AES-CMAC has no provision for an IV. As a result, the
generated integrity IV is applied as additional authenticated
data (AAD) prior to the input frame.

LTE PDCP PDU encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

462 NXP Semiconductors

 EEA3 IV
 (ZUC Confidentiality)

 HFN
 32 - len(Seq Num) bits

 Seq Num Bearer
 5 bits

D
ir

 1 bit

 0
 26 bits

 HFN
 27bits

 Seq Num
 5 bits

 Bearer
 5 bits

D
ir

 1 bit

 0
 26 bits

 HFN
 32 - len(Seq Num) bits

 Seq Num Bearer
 5 bits

 0
 27 bits

 Modified HFN
 27bits

 Seq Num
 5 bits

 Bearer
 5 bits 11bits

 0
 15 bits

 Note that the second 64-bits of Class 1 IV is just a repeat
of the first 64 bits of the Class 1 IV

D
ir

 1 bit
 0

 EIA3 IV
 (ZUC Integrity Protection)

 Note that the second 64-bits of IV is NOT just a repeat
of the first 64 bits of the IV; the upper 32-bit word has Dir
XORed with the most significant bit of the word, and the
32-bit word has Dir XORed with the most significant bit of
the least-significant 16-bit segment.

 0
 31 bits

 0
 16 bits

D
ir

 1 bit

 0
 15 bits

D
ir

 1 bit

 PDU Header breakdown
 Header format depends upon
whether u-plane or c-plane, and for
u-plane, upon the Seq Num size

 C/D Seq Num
 1 bit 7 bits

 PDU Header format for U-plane with 7-bit Seq Num (1 byte)

 RSV Seq Num
 3 bits 5 bits

 PDU Header format for C-plane (1 byte)

 PDU Header format for U-plane with 12-bit Seq Num (2 bytes) RSV Seq Num
 3 bits 12 bits

 C/D
 1 bit

 PDU Header format for U-plane with 15-bit Seq Num (2 bytes) Seq Num
 15 bits

 C/D
 1 bit

Figure 9-104. IV generation for 128-EEA3 and 128-EIA3 (ZUC)

Generation of IVs for ZUC occurs as follows:
• The ZUC confidentiality IV is just the SNOW3G confidentiality IV repeated twice.
• The integrity IV is created from the confidentiality IV by removing the Direction bits

and
• • A direction bit is XORed into the most significant bit of the lower-half HFN.

• The direction bit from the lower-half of the confidentiality IV is shifted 10 bits to
the right.

NOTE
The integrity IV is only constructed if integrity processing is
being performed.

9.10.2 LTE PDCP PDU encapsulation process for confidentiality
only

LTE PDCP PDUs use only confidentiality and no integrity function for user plane
operation, when not for relay nodes (RN). A RN may be configured to use integrity
protection; for that case see LTE PDCP PDU encapsulation for confidentiality and
integrity. The encapsulation procedure is as follows:

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 463

1. Prior to starting encryption, Count is created by extracting the sequence number from
the input frame header and combining it with the Hyper Frame Number (HFN)
maintained in the PDB.

2. Whenever the sequence number rolls over from all 1s back to zero, the HFN field in
the PDB is incremented and written back.

3. The HFN field is checked against the Threshold field in the PDB.
4. If the HFN matches or exceeds the Threshold, a warning is returned when frame

processing is complete; this warning indicates keys should be renegotiated at earliest
convenience.

5. The PDU Header is copied as-is from the input frame to the output frame. It is used
in the construction of the IV, but is not provided to the selected encryption engine
(SNOW3G or AESA or ZUC) for encryption.

6. A confidentiality initialization vector (IV) is built as shown in LTE PDCP PDU IV
generation from:

• The HFN as found in the input PDB
• The PDB word that includes Bearer and Direction
• The Sequence Number from the input frame.

7. This IV is written to the Class 1 Context Register prior to commencing encryption.
8. The entire PDU Payload is moved from the input frame into the input-data FIFO as

message data.
9. The resulting encrypted PDU Payload is sent to the output frame.

The process is shown in the figure below.

 Input Frame

 encryption processing

 Output Frame

 Header Payload
 PDU PDU

 Encryption

 Header
 PDU

 Header
 PDU

 Payload
 PDU

 Payload
 PDU

 Header
 PDU

 Payload
 PDU

 PDU Header breakdown
 Seq Num is used, with various fields
from PDB, to construct IVs

 Header
 PDU

 . . . Seq Num
 size per mode

 . . .

Figure 9-105. LTE PDCP PDU encapsulation for confidentiality only

LTE PDCP PDU encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

464 NXP Semiconductors

9.10.3 LTE PDCP PDU encapsulation for confidentiality and
integrity

This figure shows LTE PDCP PDU encapsulation for confidentiality and integrity.

 Input Frame

 encryption processing

 authentication processing

 Output Frame

 Header Payload
 PDU PDU

 Encryption

 Header
 PDU

 4 bytes
 ICV

 Header
 PDU

 Payload
 PDU

 4 bytes
 ICV

 Payload
 PDU

 Payload
 PDU

 Header
 PDU

 Authentication

 Header
 PDU

 4 bytes
 ICV

 Payload
 PDU

 PDU Header breakdown
 Seq Num is used, with various fields
from PDB, to construct IVs

 Header
 PDU

 . . . Seq Num
 size per mode

 . . .

Figure 9-106. LTE PDCP PDU encapsulation for confidentiality and integrity

Control plane PDUs include a 1-byte PDU header with a 5-bit sequence number. User
plane PDUs for relay nodes (RN) have 7, 12, or 15 bit sequence numbers. User plane
headers are 2-bytes for larger sequence numbers, or 1-byte for 7-bit sequence numbers.

1. SEC receives an input frame containing the PDU header and PDU payload.
2. SEC extracts the sequence number from the PDU header.
3. SEC creates the confidentiality IV by taking the two words that contain the Hyper

Frame Number (HFN), Bearer, and Direction fields from the PDB and dropping in
the sequence number that was extracted from the PDU Header.

4. After the confidentiality IV has been written to the Class 1 Context Register and the
integrity IV has been written to the Class 2 Context Register, SEC begins
cryptographic computations.

5. The PDU Header is written to the data FIFO to be written to the output frame and
also to be processed by the selected integrity (class 2) CHA.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 465

6. The PDU Payload is written to the data FIFO, to be processed by both the
confidentiality (class 1) and integrity CHAs. The encrypted PDU Payload is written
to the output frame

7. After computation of the integrity MAC-I (Message Authentication Check) value, it
is passed back for encryption by the confidentiality CHA.

8. The four-byte encrypted MAC-I is appended to the end of the output frame.

9.10.4 LTE PDCP PDU decapsulation process for confidentiality
only

LTE PDCP PDUs use only confidentiality for user plane operation, when not for relay
nodes (RN). A RN may be configured to use integrity protection; for that case see LTE
PDCP PDU decapsulation for confidentiality and integrity. The decapsulation process is:

1. Prior to starting decryption, SEC extracts the sequence number and combines it with
the Hyper Frame Number (HFN) maintained in the PDB.

2. Whenever the sequence number rolls over from all 1's back to zero, the HFN field in
the PDB is incremented and written back; note that because there is no provision for
rolling the HFN back, PDUs must be provided in-order.

3. Whether the HFN is incremented or not, the HFN field is checked against the
Threshold field in the PDB.

4. If the HFN matches or exceeds the Threshold, a warning is returned when frame
processing is complete; this warning indicates keys should be renegotiated at earliest
convenience.

5. The PDU Header is copied as-is from the input frame to the output frame. It is used
in the construction of the IV, but is not provided to the selected confidentiality
engine (SNOW-3G-f8 or AESA or ZUC) for decryption.

6. A confidentiality Initialization Vector (IV) is built from:
• The Hyper Frame Number (HFN) as found in the input PDB
• The PDB word that includes Bearer and Direction
• The Sequence Number from the input frame.

7. This IV is written to the Class 1 Context Register prior to commencing decryption.

NOTE
Note that the IV is constructed slightly differently,
depending on the underlying cryptographic algorithm. This
is described in LTE PDCP PDU IV generation.

8. The entire PDU Payload is moved from the input frame into the input-data FIFO as
message data.

9. The resulting decrypted PDU Payload is sent to the output frame.

LTE PDCP PDU encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

466 NXP Semiconductors

The process is shown in the figure below.

 Input Frame

 Header
 PDU

 PDU Header breakdown

 . . . Seq Num
 size per mode

 decryption processing

 Output Frame

 Decryption

 Header
 PDU

 Header
 PDU

 Payload
 PDU

 Payload
 PDU

 Header
 PDU

 Payload
 PDU

 Seq Num is used, with various fields
from PDB, to construct IVs

 Header Payload
 PDU PDU

 . . .

Figure 9-107. LTE PDCP PDU decapsulation for confidentiality only

9.10.5 LTE PDCP PDU decapsulation for confidentiality and
integrity

This figure shows LTE PDCP PDU decapsulation when using confidentiality and
integrity.

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 467

 Input Frame

 Header
 PDU

 PDU Header breakdown

 . . . Seq Num
 size per mode

 decryption processing

 authentication processing

 Output Frame

 Decryption

 Header
 PDU

 4 bytes
 ICVr

 Header
 PDU

 Payload
 PDU

 4 bytes
 ICV

 Payload
 PDU

 Payload
 PDU

 Header
 PDU

 Authentication

 Header
 PDU

 Payload
 PDU

 Seq Num is used, with various fields
from PDB, to construct IVs

 Header Payload
 PDU PDU

 4 bytes
 ICV

 4 bytes
 ICVr

 ICVr == ICVc

 . . .

Figure 9-108. LTE PDCP PDU decapsulation for confidentiality and integrity

The decapsulation procedure is:

1. SEC receives an input frame that contains the PDU header, PDU payload, and ICV.
2. SEC extracts the sequence number from the PDU header.
3. SEC creates the confidentiality and integrity IVs for decapsulation as described in

LTE PDCP PDU IV generation; taking the two words from the PDB containing the
Hyper Frame Number (HFN), Bearer, and Direction fields, and inserting in the
sequence number that it extracted from the PDU Header.

4. After the Confidentiality IV has been written to the Class 1 Context Register and the
integrity IV has been written to the Class 2 Context Register, cryptographic
computations begin.

5. Just like for encapsulation, the PDU Header gets written to the data FIFO, to be
processed by the selected Class 2 CHA.

6. The PDU Payload also gets written to the data FIFO, to be decrypted. The decrypted
data is then passed to the selected Class 2 CHA for the integrity function.

7. After decryption, the received MAC (XMAC-I) is passed into the Class-2 CHA.
8. After computation of the integrity MAC-I (Message Authentication Check) value, it

is compared to the XMAC-I value received from the input frame. If the two values
are not identical, an error is returned.

The output frame consists of the unmodified PDU Header and the decrypted PDU
payload. The XMAC-I is not part of the output frame.

LTE PDCP PDU encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

468 NXP Semiconductors

9.10.6 LTE PDCP shared descriptor PDB format descriptions
Table 9-104. LTE PDCP shared descriptor PDB

Descriptor Header (1 or 2 words)

PDB Word 0 Reserved

(24 bits)

Options

(8 bits)

PDB Word 1
(when 5-bit

Sequence Number
used)

HFN

(27 bits)

Reserved

(5 bits)

DECO updates PDB in
descriptor buffer and
external memory as

needed

PDB Word 1
(when 7-bit

Sequence Number
used)

HFN

(25 bits)

Reserved

(7 bits)

PDB Word 1
(when 12-bit

Sequence Number
used)

HFN

(20 bits)

Reserved

(12 bits)

PDB Word 1
(when 15-bit

Sequence Number
used)

HFN

(17 bits)

Reserved

(15 bits)

PDB Word 2 Bearer, Dir, Reserved for CA & CE

PDB Word 3 Threshold

Table 9-105. LTE PDCP shared descriptor PDB, format of the options byte

7-3 2-1 0

Reserved SNS Reserved

Table 9-106. LTE PDCP shared descriptor PDB, description of the options byte

Field Description

7-3 Reserved

2-1

SNS

Selects Serial Number Size. Ignored for LTE C-Plane.

If SNS = 00b : 12-bit Serial Number.

If SNS = 01b : 7-bit Serial Number.

If SNS = 10b : 15-bit Serial Number.

If SNS = 11b : Reserved.

Reserved

Chapter 9 Protocol acceleration

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 469

9.10.7 Overriding the PDB for LTE PDCP encapsulation and
decapsulation

A shared descriptor is created with the intent to provide information required for
processing every packet in a flow. Occasionally, it is required to override those standard
settings. For LTE PDCP PDU encapsulation and decapsulation, The HFN is maintained
in the PDB, but can be overridden through the DPOVRD register, by setting the OVRD
bit (see figure below). When using the Job Ring interface, this is achieved by including a
LOAD IMMEDIATE to the DPOVRD register of the desired HFN value in the job
descriptor. For more information, see Job Ring interface. When using the Queue Manager
Interface, QI builds the job descriptor with the LOAD IMMEDIATE to the DPOVRD
register with the value of the STATUS/CMD field in the FD. For more information, see
Queue Manager Interface (QI).

Table 9-107. Format of the DPOVRD register when used with the LTE PDCP protocol

format when HFN is
17 bits

OVRD Reserved (15 bits) HFN (17 bits)

format when HFN is
20 bits

OVRD Reserved (12 bits) HFN (20 bits)

format when HFN is
25 bits

OVRD Reserved (7 bits) HFN (25 bits)

format when HFN is
27 bits

OVRD Resvd (5
bits)

HFN (27 bits)

Reset 0

LTE PDCP PDU encapsulation and decapsulation overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

470 NXP Semiconductors

Chapter 10
Key agreement functions
The SEC protocol processing capabilities described in Protocol acceleration are centered
on bulk data encryption and authentication. This section focuses on key agreement, which
is another important part of protocol processing.

Certain protocols specify the use of a pseudo-random function (PRF) as a way that two
parties can generate an identical pseudo-random byte string for use as a shared secret key.
Internet Key Exchange (IKE) specifies a PRF for use in conjunction with IPsec. SSL and
TLS have their own unique PRFs.

Several protocols also specify public key methods for generating or exchanging a shared
secret key.

SEC implements the following key agreement methods as built-in functions:

• IKEv2 PRF
• SSL 3.0 PRF
• TLS 1.0, TLS 1.1, DTLS 1.0 PRF
• TLS 1.2, DTLS 1.2 PRF

10.1 IKEv2 PRF overview
The Internet Key Exchange v2 pseudo-random function requirements are covered in SEC
by two separate but related functions.

• The IKE PRF function can be used to compute SKEYSEED per RFC 5996 section
2.13.

• The IKE PRF+ function can be used to compute IKE Security Association Keying
Material per RFC 5996 section 2.14.

• The IKE PRF+ function can also be used to compute Child Security Association
Keying Material per RFC 5996 section 2.17.

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 471

IKE PRF is a simply a Keyed MAC function -- either one of several selected HMACs
based on MD5, SHA-1 or SHA-2; or based on AES-CMAC or AES-XCBC-MAC. As
such, it generates a fixed length of material; at least 16 bytes (for MD5, AES-CMAC, and
AES-XCBC-MAC); as many as 64 bytes when using SHA-512. IKE PRF+ is a well
defined recursive use of PRF. It includes a single byte recursion count such that PRF+ is
undefined past the 254th recursion. PRF+ can be used to generate a large pseudo-random
byte string, suitable to be used for several keys and / or salting values. The PROTINFO
field codes found in Table 7-56 define the cipher suites to be used by the protocol, and
SEC's built-in protocol processing sequences handle the remaining details. The protocol
permits selected input parameters to be decrypted on the way in, and for results to be
encrypted on the way out. By using the IKE PRF function, key material can be generated
without allowing any other system resources to have access to unencrypted precursor
material.

10.1.1 Using IKE PRF to generate SKEYSEED

IKEv2, as described in RFC 5996, specifies generation of a first master key material seed
called SKEYSEED:

• SKEYSEED = prf(Ni | Nr, g^ir) for initial setup
• SKEYSEED = prf(SK_d (old), g^ir (new) | Ni | Nr) for rekeying

SKEYSEED is the master seed used by IKE PRF+ to generate IKE SA key material. One
of the IKE SA keys generated is subsequently used to generate Child SA key material --
for example, the Child SA material may be for IPsec ESP.

In the initial setup computation of SKEYSEED, Ni and Nr are concatenated to form K --
the key string. Before concatenation, if PDB Option KOV is set, then Ni will be
decrypted. The Diffie Hellman shared secret, g^ir, will be decrypted before use as string
S if PDB Option IOV is set.

For the rekeying instance, SK_d will be decrypted if PDB Option KOV is set, and g^ir
will be decrypted if PDB Option IOV is set. The unencrypted form of g^ir is then
concatenated with Ni and Nr to form string S.

10.1.2 Using IKE PRF+ to generate keying material for the IKEv2
SA

The IKE PRF+ function can be used as part of IKEv2 to generate IKE key material. The
form shown in RFC 5996, is

IKEv2 PRF overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

472 NXP Semiconductors

• {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr} = PRF+ (SKEYSEED, Ni |
Nr | SPIi | SPIr)

In this case, the PRF+ function generates seven separate key blocks. SEC, can generate
up to 8 outputs, any of which may be encrypted using the JDKEK. SKEYSEED and Ni
may also have been encrypted; SKEYSEED will be decrypted using the JDKEK before
use if PDB option KOV is set, and Ni will be decrypted using the JDKEK before use if
PDB option IOV is set.

10.1.3 Using IKE PRF+ to generate Child SA key material

The IKE PRF+ function can be used as part of IKEv2 to generate Child SA key material.
Several forms of this are shown in RFC 5996, including

• KEYMAT = prf+(SK_d, Ni | Nr)
• KEYMAT = prf+(SK_d, g^ir | Ni | Nr)

In both forms, SK_d may have been protected by SEC, using its JDKEK. PDB Option
KOV controls whether or not to decrypt SK_d.

In the form with the Diffie-Hellman exchange result, g^ir may have been encrypted using
the JDKEK. In the form that excludes the Diffie-Hellman exchange result, Ni might have
been encrypted. PDB Option IOV Controls whether or not to decrypt the first segment of
string S.

How string KEYMAT is sliced up into keys for child security associations is beyond the
scope of RFC 5996. SEC supports splitting this KEYMAT by means of multiple FIFO
STORE Commands into up to 8 separate locations as defined by the PDB Output
Reference block.

In each case, the resulting PRF output material is passed to another protocol (such as
IPsec) for further disposition or is used whole by another element of IKE.

10.1.4 Restrictions on programming control blocks

Note the following restrictions on the programming of the control blocks:

• The total length of the key control blocks may not exceed 2046 bytes.
• When not encrypted, the length of either key control block may not exceed 1023

bytes individually.
• Only the first referenced key may be encrypted, and the length of the first key control

block when encrypted may not exceed 128 bytes.

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 473

• For input material, only the first reference may be encrypted; if encrypted, it is
limited to 512 bytes.

• The first two unencrypted referenced inputs may not exceed a total of 512 bytes.
• The remaining three or four unencrypted references may not exceed a total of 512

bytes.

The length of each output segment is limited by the size of the output FIFO. In current
designs this is 128 bytes. The total amount of output cannot exceed 512 bytes.

10.1.5 IKE PRF PDB format descriptions

Both IKE PRF and PRF+ use the exact same form of PDB. The PDB is used to specify
each key block (up to 2), each input block (up to 6), and each output block (up to 8).
Restrictions as to length and what may be encrypted are described in Restrictions on
programming control blocks. More detail is provided below as to how processing occurs.
However, the general idea is that the two Key References can be used to supply up to two
separately stored key segments. The two segments are concatenated together and used as
a key to the underlying function. The key material fetched from the first address is
decrypted before use if PDB option KOV is set. The key material from the second
address is never decrypted. In RFC 5996, the resulting concatenated data is called "K."

Similarly, material is fetched from the locations specified by the up-to 6 Input
References, the first of which will be decrypted if PDB option IOV is set. All of the
fetched data is concatenated to form what RFC 5996 refers to as "S." For output, the
PRF-generated string is chopped up into up to 8 different memory locations, as specified
by the lengths found in the Output Reference Control Block and the addresses found in
the Output Reference Block. Each of the 8 output references controls whether the string
segment written to the associated location is encrypted using the KEK in AES-ECB, or
using the KEK in AES-CCM.

IKEv2 PRF overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

474 NXP Semiconductors

Figure 10-1. IKE PRF PDB

Table 10-1. IKE PRF PDB, description of the PDB

Field Description

Key Count Number of key inputs to the PRF function. Valid values are 1 and 2.

In Count Number of inputs to the PRF function. Valid values are 1 - 6.

Out Count Number of outputs from the PRF function. Valid values are 1 - 8.

Options See Table 10-3

Key Reference
Control Block

A series of 16-bit fields, called reference controls. There are two Key Reference Controls, one for each
Key Reference below. If KOV=1 in the Options field, then the material referenced by the first pointer is
considered encrypted, and will be decrypted before use. The ENC, SPLIT and OEKT fields in the Key
Reference controls are reserved and must be zero.

Input Reference
Control Block

A series of 16-bit fields, called Reference controls. There are 6 input reference controls, one for each
Input reference. If IOV=1 in the Options field, then the first Input Reference has been encrypted. The
ENC, SPLIT and OEKT fields in the Input Reference controls are reserved and must be zero.

Output Reference
Control Block

A series of 16-bit fields, called reference controls. There are 8 output reference controls, one for each
Output Reference.

Key Reference
Block

Two pointer fields. The width of each field is determined by the PS field of the Master Configuration
Register.

Input Reference
Block

Six pointer fields. The width of each field is determined by the PS field of the Master Configuration
Register.

Output Reference
Block

Eight pointer fields. The width of each field is determined by the PS field of the Master Configuration
Register.

Table 10-2. IKE PRF PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved Reserved Reserved IKEKT IDEKT KOV IOV Reserved

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 475

Table 10-3. IKE PRF PDB, description of the options byte

Field Description

7-5 Reserved

4

IKEKT

Input Key Encryption Key Type. Note: this field is ignored if keys are not encrypted.

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

3

IDEKT

Input Data Encryption Key Type. Note: this field is ignored if data is not encrypted.

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

2

KOV

Key input override. If KOV=1, the data referenced by the firstKey Reference is treated as if it has been
encrypted using the Job Descriptor Key Encryption Key.

0 Key or keys are not encrypted

1 Key Override -- the first referenced key is decrypted before use.

1

IOV

Input override. If 1, then the first reference is to a value that has been encrypted using the Job Descriptor
Key Encryption Key.

0 No encrypted inputs

1 Input Override -- one encrypted input is referenced

0 Reserved

Table 10-4. IKE PRF PDB reference controls, format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SGT ENC SPLIT OEKT Reserved LENGTH

Reference Control i

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SGT ENC SPLIT OEKT Reserved LENGTH

Reference Control i+1 (if necessary)

Table 10-5. IKE PRF PDB reference controls - description of the fields

Field Description

31

SGT

For Reference Control i, SGT specifies whether the pointer is a direct reference to the data or a pointer to
a Scatter/Gather Table.

0 Direct reference to data

1 Reference to a Scatter/Gather Table

30

ENC

(output reference only) - For Reference Control i, ENC=1 specifies that the value is encrypted (with the
Job Descriptor Key Encryption Key) before it is written to memory.

29

SPLIT

(output reference only) - For Reference Control i, SPLIT=1 specifies that the value is used as an HMAC
key and is stored in IPAD/OPAD form. If SPLIT=1, then the HMAC key is encrypted regardless of the ENC
value.

28

OEKT

(output reference only) - For Reference Control i, OEKT specifies the type of algorithm used for encrypting
the output

Table continues on the next page...

IKEv2 PRF overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

476 NXP Semiconductors

Table 10-5. IKE PRF PDB reference controls - description of the fields (continued)

Field Description

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

27-26 Reserved

25-16

LENGTH

For Reference Control i, LENGTH specifies the number of bytes of data when in plaintext form. Note that
if ENC=1, the encrypted form of the data may be longer than the length specified here.

15-0 contain the same fields as bits 31-16, but are used for the next reference. Note that if there is an odd number of input
references in the PDB, then the fields in the least-significant half of the PDB word are ignored.

15

SGT

For Reference Control i+1, SGT specifies whether the pointer is a direct reference to the data or a pointer
to a Scatter/Gather Table.

0 Direct reference to data

1 Reference to a Scatter/Gather Table

14

ENC

(output reference only) - For Reference Control i+1, ENC =1 specifies that the value is encrypted (with the
Job Descriptor Key Encryption Key) before it is written to memory.

13

SPLIT

(output reference only) - For Reference Control i+1, SPLIT=1 specifies that the particular value is used as
an HMAC key and is to be stored in IPAD/OPAD form. If SPLIT =1, then ENC is ignored.

12

OEKT

(output reference only) - For Reference Control i+1, OEKT specifies the type of algorithm used for
encrypting the output

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

11-10 Reserved

9-0

LENGTH

For Reference Control i, LENGTH specifies the number of bytes of data when in plaintext form. Note that
if ENC=1, the encrypted form of the data may be longer than the length specified here.

10.1.6 Implementation details for IKE PRF function

This figure shows the IKE PRF-material in system memory.

 some PRF input material
 more PRF input material yet more PRF input material

Figure 10-2. IKE PRF-material in system memory

The procedure is as follows:

1. SEC collects the key, as shown in the following figure.

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 477

 PRF input material some PRF input material more PRF input material yet more PRF input material

 some PRF input material
 decrypt using KEK

Figure 10-3. Collecting IKE PRF-material in SEC
2. If decryption is required, the decryption procedure is applied to the whole first

segment.
3. For Key material, up to two segments may be fetched. RFC 5996 refers to the

concatenated result as K.
4. The procedure is repeated for input material. Up to six segments may be fetched.

RFC 5996 refers to the concatenated result as S.
5. A MAC of the resultant string is then generated.

• For IKE, legitimate MAC functions include all HMACs supported by MDHA
(except SHA-224), as well as AES-CMAC and AES-XCBC-MAC.

10.1.7 Implementation Details for IKE PRF+ function

The IKE PRF (Pseudo Random Function) Protocol is a method defined by RFC 5996 for
generating session keys using cryptographic algorithms to create pseudo-random data.
The SEC's built in protocol processing sequences handle most of the details, so the
PROTINFO field codes enumerated in Table 7-56 are used to define the ciphersuites to
be used by the Protocol.

The IKE PRF+ is similar to the IKE PRF described in Implementation details for IKE
PRF function, with the additional step of adding a byte of counter value to the end of the
input material for every recursion of the PRF (see the following figure).

PRF+[i] MAC
function

MAC Key

PRF+[i-1] PRF input material i

Figure 10-4. Recursive IKE PRF+ material generation

SEC uses PRF input material and the HMAC key in the same way as for the IKE PRF.
However, it manages the byte counter i. Each PRF+ invocation starts with i = 01h; each
iteration increments i by 1.

IKEv2 PRF overview

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

478 NXP Semiconductors

Valid IKE PRF+ underlying MAC functions include all HMACs supported by MDHA
(except SHA-224), AES-CMAC, and AES-XCBC-MAC.

10.2 SSL/TLS/DTLS pseudo-random functions (PRF)
The TLS revisions have the following differences in how they define the PRFs.

• SSL 3.0 uses simple hash functions, relying on both MD5 and SHA-1.
• TLS 1.0, TLS 1.1, and DTLS use MD5 and SHA-1, but with HMAC enabled instead

of a straight hash.
• TLS 1.2 drops the requirement for any particular hash function and does not combine

the output of multiple hash functions to produce the PRF result.

Note that all SSL/TLS/DTLS PRFs use only hash functions supported by MDHA.

See Table 7-55 for a description of the PROTINFO field as used with SSL and TLS PRF
Commands.

10.2.1 SSL 3.0 PRF overview

This figure shows a functional diagram of SSL 3.0 PRF.

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 479

Figure 10-5. SSL 3.0 PRF

The SSL 3.0 PRF is referred to as an ad-hoc PRF because it does not use the typical
constructs, such as an HMAC, used by other PRFs. Instead, the SSL 3.0 PRF uses
straight MD5 and straight SHA-1 to produce PRF material.

10.2.1.1 SSL 3.0 PRF definitions

The secret's value is typically the master_secret, which is 48 bytes in length. If the
secret's value is the premaster_secret, SSL has no explicit bounds on the length of the
premaster_secret. However, SEC does not support a premaster_secret greater than 512
bytes in length.

The seed is composed of two values. Per standards, the values typically used are the 32-
byte client_random and server_random values.

• When generating the master_secret value, seed1 is clientHello.random, and seed2 is
serverHello.random.

SSL/TLS/DTLS pseudo-random functions (PRF)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

480 NXP Semiconductors

• When generating key material, that is reversed: seed1 is serverHello.random and
seed2 is clientHello.random.

• For FINISHED message generation, typical use is that seed1 is a 16-byte MD5 hash
of all the handshake messages that the FINISHED message is covering, and seed2 is
the 20-byte SHA-1 hash of all the same handshake messages the FINISHED message
is covering. Note that the SSL 3.0 PRF function does not support the computation of
those hashes.

Whatever the type of seed value, the descriptor PDB can either include the immediate
values or can reference them in external memory.

10.2.2 Process for SSL 3.0 PRF

For every 16 bytes of PRF material that SEC needs to generate, SEC performs the
following actions:

1. Concatenates an iteration constant, a secret, and a nonce
2. Produces a SHA-1 hash
3. Takes the same secret (from the concantenation step) and postpends the SHA-1 hash

result to it
4. Produces an MD5 hash of that concatenation.

The descriptor provides the secret to SEC. The secret typically has already been
encrypted with the key encryption key. The descriptor also provides the nonce to SEC,
but the nonce is not considered sensitive.

SEC iterates to produce as many bytes of PRF material as required. The iteration constant
for the first iteration is 41, which is ASCII for "A". Note that with each iteration, both the
value and the number of instances of the iteration constant increments; that is the second
iteration uses 42, 42 and the seventh iteration uses seven copies of the byte 47.

SEC divides an arbitrary number of bytes of SSL PRF material into up to six distinct
memory locations, meaning that the SSL PRF descriptor can have between one and six
output pointers for returning PRF material. Note the following:

• Each of these output pointers may be considered sensitive and require encryption of
that memory location's PRF material using the key encryption key.

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 481

10.2.3 SSL 3.0 PRF PDB format descriptions

Figure 10-6. SSL 3.0 PRF PDB

Table 10-6. SSL 3.0 PRF PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved IEKT OEKT IEOV OEOV

Table 10-7. SSL 3.0 PRF PDB, description of the options byte

Field Description

7-4 Reserved

3

IEKT

Input Encryption Key Type. Note this field applies only to encrypted inputs.

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

2

OEKT

Output Encryption Key Type. Note this field applies only to encrypted outputs.

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

Table continues on the next page...

SSL/TLS/DTLS pseudo-random functions (PRF)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

482 NXP Semiconductors

Table 10-7. SSL 3.0 PRF PDB, description of the options byte (continued)

Field Description

1

IEOV

Input Encryption Override

1 Master-Secret input is not encrypted.

0 Master-Secret input is encrypted.

0

OEOV

Output Override default. Note this field is ignored if PROTINFO != FFFF or FFFE

1 If PROTINFO=FFFF or FFFE, the generated key material is not encrypted.

0 If PROTINFO=FFFF or FFFE, the generated key material is encrypted.

Table 10-8. SSL 3.0 PRF PDB input and output reference, format

Pointer (32-bit or 64-bit) (See Address Pointers)

Table 10-9. SSL 3.0 PRF PDB input and output reference, field descriptions

Field Description

31-0 or 63-0

Pointer

Pointer to the reference. The size of this field is determined by the PS field of the Master Configuration
Register.

• If 32 bit addresses are selected, 4 bytes are reserved for this field.
• If larger addresses are selected, 8 bytes are reserved for this field.

Table 10-10. SSL 3.0 PRF PDB input reference control, format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reser
ved

Input Secret Length Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Input Seed Part 1 Length Input Seed Part 2 Length

Table 10-11. SSL 3.0 PRF PDB input reference control, field descriptions

Field Description

31 Reserved

30-21

Input Secret
Length

Length of the input secret in bytes.

NOTE: If the PRF material is split into keys, (if PROTINFO != FFFF or FFFE) the master_secret must be
48 bytes, and this field is ignored.

20-14 Reserved

13-7

Input Seed Part
1 Length

Length of the Input Seed Part 1 in bytes. Per protocol definitions, legitimate values are 16 or 32.

6-0

Input Seed Part
2 Length

Length of the Input Seed Part 2 in bytes. Per protocol definitions, legitimate values are 20 or 32.

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 483

Table 10-12. SSL 3.0 PRF PDB output reference control, format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SGT Reserved LENGTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Table 10-13. SSL 3.0 PRF PDB output reference control, format

Field Description

31

SGT

Specifies whether the pointer is a direct reference to the data or a pointer to a scatter/gather table.

0 Direct reference

1 Reference to a scatter/gather table

30-24 Reserved

23-16

LENGTH

Length of the data. Ignored if PROTINFO != FFFF or FFFE. In these cases the derived from the cipher suite
determined by the PROTINFO field of the OPERATION Command.

If PROTINFO = FFFF or FFFE, this field signals the length, in bytes, of the master_secret/verify_data
output.

15-0 Reserved

10.2.4 TLS 1.0/TLS 1.1/DTLS PRF overview

This figure shows a functional diagram of TLS 1.0/TLS 1.1/DTLS PRF.

SSL/TLS/DTLS pseudo-random functions (PRF)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

484 NXP Semiconductors

Figure 10-7. TLS 1.0/TLS 1.1/DTLS PRF

The TLS 1.0, TLS 1.1, and DTLS PRF uses both HMAC-MD5 and HMAC-SHA-1. SEC
implements this PRF with a protocol descriptor that specifies the following inputs: secret,
label, and seed. Any of those inputs may be considered sensitive and therefore decrypted
using the key-encryption key prior to use.

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 485

The seed may be split across multiple memory segments, each individually referenced in
the protocol descriptor. Each seed segment referenced in the descriptor is either entirely
considered sensitive or not. Each seed segment may be further split in memory using a
scatter/gather table. All material referred to by the table must be either completely
sensitive or completely not sensitive.

10.2.4.1 TLS PRF RFC definitions

RFCs 2246 and 4346 define the TLS PRF as follows:

PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed);
P_MD5(secret, seed) = HMAC_MD5(secret, A(1) + seed) + HMAC_MD5(secret, A(2) + seed) + ...
P_SHA-1(secret, seed) = HMAC_SHA-1(secret, A(1) + seed) + HMAC_SHA-1(secret, A(2) + seed)
+ ...

Where for both P_MD5 and P_SHA-1,
A(0) = label + seed
A(i) = HMAC_hash (secret, A(i-1))

Note the following:

• The keyword seed is multiply defined, meaning that the value for seed in all
subsequent lines takes the meaning that label + seed has in the first line.

• The + operator is defined to mean concatenation (see Figure 10-7 for an illustration).
For example:

• Generating anywhere between 41 and 48 bytes of PRF material requires four
iterative executions of P_MD5 and four iterative executions of P_SHA-1,
resulting in a total of 14 HMAC computations.

• Generating between 33 and 40 bytes of PRF material requires four P_MD5
executions, but only three P_SHA-1 executions.

• The secret value is either the master_secret or the premaster_secret.
• master_secret is typically used and is 48 bytes in length.
• If the premaster_secret is used, TLS has no explicit bounds on the length, but

SEC does not support a premaster_secret greater than 512 bytes in length.
• If the premaster_secret is longer than 128 bytes, the split secrets s1 and s2 are

each larger than the 64-byte maximum permissible HMAC key value, unless
preprocessing is performed. SEC performs that preprocessing if required,
hashing S1 using MD5 and hashing S2 using SHA-1.

• label is a byte string
• All valid byte strings identified in standards are less than 16 bytes in length.
• The descriptor PDB permits the byte string to be either an immediate value in the

PDB or to be stored in external memory and be referenced by a pointer.
• The seed is composed of two values. per standards, typical use are the 32-byte

client_random and server_random values.

SSL/TLS/DTLS pseudo-random functions (PRF)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

486 NXP Semiconductors

• When generating the master_secret value, seed1 is clientHello.random, and
seed2 is serverHello.random.

• When generating key material, that is reversed; seed1 is serverHello.random,and
seed2 is clientHello.random.

• For FINISHED message generation, typical use is that seed1 is a 16-byte MD5
hash of all the handshake messages the FINISHED message is covering, and
seed2 is the 20-byte SHA-1 hash of all the same handshake messages the
FINISHED message is covering. Note that the TLS 1.0/ TLS 1.1/DTLS PRF
function does not support the computation of those hashes.

• Whatever the type of seed value, the descriptor PDB can either include the
immediate values or can reference them in external memory.

10.2.5 Process for TLS 1.0, TLS 1.1, DTLS PRF

SEC splits the secret into two equal portions, entitled s1 and s2.

• s1 is used as the HMAC key for all HMAC-MD5 computations.
• s2 is used as the HMAC key for all HMAC-SHA-1 computations.

If the secret is not even in length, then s1 and s2 both encompass the middle byte. For
example, if the secret is 11 bytes:

• s1 and s2 are each 6 bytes in length.
• The middle byte of secret is the last byte of s1 and the first byte of s2.

SEC divides an arbitrary number of bytes of TLS PRF material into up to six distinct
memory locations, meaning that the TLS PRF descriptor can have between one and six
output pointers for returning PRF material. Note the following:

• Each of these output pointers may be considered sensitive and thus require
encryption of that memory location's PRF material using the key encryption key.

• The PRF material generated for any of those memory locations may be prepared for
use as an HMAC key.

10.2.5.1 How TLS uses PRF material

Typical TLS use of PRF material is to split it the following ways:

• Client-write MAC secret
• Server-write MAC secret
• Client-write key
• Server-write key

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 487

• Client-write IV
• Server-write IV

The MAC secrets and keys are sensitive, but the IVs are not.

The MAC secrets are encrypted after they have been expanded into HMAC IPAD and
OPAD key material.

If the PRF is being used in this way, the PROTINFO field described in Table 7-55
indicates two things:

• How the material is to be split-for example, HMAC-MD5 keys are 16 bytes long
• How the material is to be treated after it is split-for example, HMAC keys are turned

into IPAD/OPAD split keys to maximize performance through the use of these keys

Per the PROTINFO field, keys are encrypted using the key encryption key before being
stored in memory.

The PRF can also be used to generate a fixed length value. Per standards, that is done
either when generating:

• The master_secret from the premaster_secret
• A FINISHED message

The result of generating the master_secret is a 48-byte value that is encrypted with the
key encryption key. The result of generating a FINISHED message is a 12-byte value that
is not encrypted with the key encryption key.

10.2.5.2 Concatenating input material into one input string (TLS
1.0/1.1/DTLS)

SEC concatenates all input material entitled label and seed into one input string that is
persistent throughout the PRF computation.

Using the labels from Figure 10-7 :

• md5-A(0) is the result of an HMAC-MD5 computation over the persistent input
string

• sha1-A(0) is the result of an HMAC-SHA-1 computation over the persistent input
string.

• md5-A(i) is the result of an HMAC-MD5 computation over md5-A(i-1)
• sha1-A(i) is the result of an HMAC-MD5 computation over sha1-A(i-1).

SSL/TLS/DTLS pseudo-random functions (PRF)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

488 NXP Semiconductors

For every md5-A(i) computed (except for i = 0), md5-A(i) is also prepended to the
persistent input string. An HMAC-MD5 computation is performed over the resultant
string. This is performed for enough iterations of i to produce the required number of
bytes of output.

A similar prepending of sha1-A(i) to the persistent input string occurs. An HMAC-
SHA-1 computation is performed, and the HMAC-SHA-1 procedure is repeated for
enough iterations to produce the required number of bytes of output.

The iterative HMAC-SHA-1 results are concatenated together as are the iterative HMAC-
MD5 results. Note that because SHA-1 produces 20-byte results and MD5 produces 16-
byte results, there are likely to be more iterations on the MD5 side than on the SHA-1
side.

The PRF material results from performing an XOR of the concatenated MD5 output
string with the concatenated SHA-1 output string, truncated to the required length.

10.2.6 TLS 1.0, TLS 1.1, DTLS PRF PDB format descriptions

The figure below illustrates the PDB format for the Master Secret, FINISHED and Key
Material Generation forms for the TLS 1.0, TLS 1.1 and DTLS PRF protocols.

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 489

See the tables below for a description of the fields in these PDBs.

Descriptor Header (1 or 2 words)

PRF for Key Material GenerationPRF for Master Secret or FINISHED Message Generation

.

.

.

PDB Word 2
PDB Word 1
PDB Word 0

Master_Secret/Verify_Data Output Reference

Input Seed Part 2 Reference

Input Seed Part 1 Reference

Input Label Reference

Input Secret Reference

Output Reference Control
Input Reference Control

reserved (24 bits) Options (8 bits)

.

.

.

PDB Word 2
PDB Word 1
PDB Word 0

Server-Write IV Output Reference

Client-Write IV Output Reference

Server-Write Key Output Reference

Client-Write Key Output Reference

Server-Write MAC Secret Output Reference

Input Seed Part 2 Reference

Input Seed Part 1 Reference

Input Label Reference

Input Secret Reference

Output Reference Control
Input Reference Control

Client-Write MAC Secret Output Reference

Options (8 bits)reserved (24 bits)

Note: TLS PRF descriptors are limited to 50 four-byte words in length,
including both the Job Descriptor and any Shared Descriptor.
Exceeding that limit yields undesirable results.

Descriptor Header (1 or 2 words)

Figure 10-8. TLS 1.0/TLS 1.1/DTLS PRF PDB

SSL/TLS/DTLS pseudo-random functions (PRF)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

490 NXP Semiconductors

Table 10-14. TLS 1.0/TLS 1.1/DTLS PRF PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved IEKT OEKT IEOV OEOV

Table 10-15. TLS 1.0/TLS 1.1/DTLS PRF PDB, description of the options byte

Field Description

7-4 Reserved

3

IEKT

Input Encryption Key Type. Note this field applies only to encrypted inputs.

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

2

OEKT

Output Encryption Key Type. Note this field applies only to encrypted outputs.

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

1

IEOV

Input Encryption Override.

1 Master-Secret input is not encrypted

0 Master-Secret input is encrypted

0

OEOV

Output Encryption Override default. Note this field is ignored if PROTINFO != FFFF or FFFE

1 If PROTINFO = FFFF or FFFE, the generated key material is not encrypted.

0 If PROTINFO = FFFF or FFFE, the generated key material is encrypted.

Table 10-16. TLS 1.0 and 1.1/DTLS PRF PDB input and output reference, format

Pointer (32-bit or 64-bit) (see Address Pointers)

Table 10-17. TLS 1.0 and 1.1/DTLS PRF PDB input and output reference, field descriptions

Field Description

Pointer
Pointer to the reference

The size of this field is determined by the PS field of the Master Configuration Register. If 32 bit addresses
are selected, 4 bytes are reserved for this field. If larger addresses are selected, 8 bytes are reserved for this
field.

Table 10-18. TLS 1.0 and 1.1/DTLS PRF PDB input and output reference, format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reser
ved

Input Secret Length Input Label Length

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input Label
Length (cont)

Input Seed Part 1 Length Input Seed Part 2 Length

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 491

Table 10-19. TLS 1.0 and 1.1/DTLS PRF PDB input and output reference, field descriptions

Field Description

31 Reserved

30-21

Input Secret
Length

Length of the Input Secret in bytes.

NOTE: if the PRF material is split into keys, (if PROTINFO != FFFF or FFFE), the master_secret must be
48 bytes, and this field is ignored.

20-14

Input Label
Length

Length of the Input Label in bytes.

Per protocol definitions, legitimate values are between 11 and 15, inclusive.

13-7

Input Seed Part
1 Length

Length of the Input Seed Part 1 in bytes.

Per protocol definitions, legitimate values are 16 or 32.

6-0

Input Seed Part
2 Length

Length of the Input Seed Part 2 in bytes.

Per protocol definitions, legitimate values are 20 or 32.

Table 10-20. TLS 1.0 & 1.1/DTLS PRF PDB output reference control, format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SGT Reserved LENGTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Reserved

Table 10-21. TLS 1.0 & 1.1/DTLS PRF PDB output reference control, field descriptions

Field Description

31

SGT

Specifies whether the pointer is a direct reference to the data or a pointer to a scatter/gather table.

0 Direct reference

1 Reference to a scatter/gather table

30-24 Reserved

23-16

LENGTH

Length of the data

• If PROTINFO = FFFF or FFFE, this field signals the length in bytes of the master_secret/verify_data
output.

• This field is ignored if PROTINFO != FFFF or FFFE. In these cases the length is derived from the cipher
suite determined by the PROTINFO field of the OPERATION Command.

15-0 Reserved

10.2.7 TLS 1.2 PRF overview

This figure is a functional diagram of TLS 1.2 PRF.

SSL/TLS/DTLS pseudo-random functions (PRF)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

492 NXP Semiconductors

Figure 10-9. TLS 1.2 PRF

The TLS 1.2 PRF uses the same computational structure as the PRF for TLS 1.0, TLS
1.1, and DTLS, but it only uses one underlying hash function for performing the HMAC.
The PRF is defined in RFC 5246.

• For all cipher suites supported by TLS 1.1, HMAC-SHA-256 is the underlying hash
function used.

• Cipher suites defined under TLS 1.2 are required to explicitly specify a PRF hash
function.

Only cipher suites employing HMAC-SHA-256 and HMAC-SHA-384 for PRF are
supported for encapsulation and decapsulation.

10.2.8 Process for TLS 1.2 PRF

SEC implements this PRF with a protocol descriptor that specifies the following inputs:
secret, label, and seed. Any of those inputs may be considered sensitive and so be input in
the form of Black Keys. If so, they are decrypted using the key encryption key prior to
use.

The seed may be split across multiple memory segments, each referenced by pointers in
the protocol descriptor. Each seed segment referenced in the descriptor is either entirely
considered sensitive or not. Each seed segment may be further split in memory using a
scatter/gather table. Individual segments in a scatter/gather table may not be considered
sensitive: either all material referred to by the table is sensitive or it is all not sensitive.

The secret value can be either:

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 493

http://tools.ietf.org/html/rfc5246#section-5

• The master_secret, which is 48 bytes in length and is the value typically used
• The premaster_secret

Although TLS has no explicit bounds on the length of the premaster_secret, SEC does
not support a premaster_secret greater than 512 bytes in length. The maximum
permissible HMAC key value is:

• 64 bytes for most HMAC algorithms
• 128 bytes for HMAC-SHA-384 and HMAC-SHA-512

If the premaster_secret is longer than this, preprocessing is performed. SEC performs the
preprocessing if required, using the specified algorithim to hash the premaster_secret.

10.2.8.1 Concantenating input material into one input string (TLS 1.2)

SEC concatenates all input material entitled label and seed into one input string that is
persistent throughout the PRF computation.

Referring to the labels in Figure 8-1, there are two lines (or rows) of HMAC
computations. The top row keeps producing an HMAC of the previous HMAC result,
using secret as the key. That is, A(i) is the result of performing an HMAC of A(i-1). For
each of these A(i) values produced (except A(0)), the next D bytes of PRF is the result of
performing an HMAC of the persistent input string with the appropriate A(i) value
prepended (where D is the size of the digest).

10.2.8.2 How TLS uses PRF material (TLS 1.2)

The SEC PRF functions are designed to generate an arbitrary number of bytes of PRF
material into an arbitrary number of destinations. Each destination may be designated as
secure key material, in which case the result is encrypted using the key encryption key.

Typical TLS use of PRF material is to split it the followingways:

• Client-write MAC secret
• Server-write MAC secret
• Client-write key
• Server-write key
• Client-write IV
• Server-write IV

The MAC secrets and keys are sensitive, but the IVs are not. Typically, the MAC secrets
are encrypted after they have been expanded into HMAC IPAD and OPAD key material.

SSL/TLS/DTLS pseudo-random functions (PRF)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

494 NXP Semiconductors

Note that AES-GCM does not make use of a MAC secret. As a result, if an AES-GCM
cipher suite is selected, SEC skips the client-write and server-write MAC secrets,
regardless of the length specified for each in their output references in the PDB.

Because the PRF is used for other purposes, including generation of a MAC across a
series of messages, SEC supports splitting PRF material across between 1 and 8 unique
destinations, each of which can enable or disable use of the key encryption key and each
of which can enable or disable pre-preparation of HMAC material prior to encryption.

10.2.9 TLS 1.2 PRF PDB format descriptions

Figure 10-10. TLS 1.2 PRF PDB

Table 10-22. TLS 1.2 PRF PDB, format of the options byte

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved IEKT OEKT IEOV OEOV

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 495

Table 10-23. TLS 1.2 PRF PDB, description of the options byte

Bits Description

7-4 Reserved

3

IEKT

Input Encryption Key Type. Note that this field applies only to encrypted inputs.

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

2

OEKT

Output Encryption Key Type. Note that this field applies only to encrypted outputs.

0 AES-ECB-256 encryption

1 AES-CCM-256 encryption

1

IEOV

Input Encryption Override

1 Master-Secret input is not encrypted

0 Master-Secret input is encrypted

0

OEOV

Output Encryption Override Default. Note this field is ignored if PROTINFO != FFFF or FFFE

1 If PROTINFO=FFFF or FFFE, the generated key material is not encrypted.

0 If PROTINFO=FFFF or FFFE, the generated key material is encrypted.

Table 10-24. TLS 1.2 PRF PDB input and output reference, format

Pointer (32-bit or 64-bit) (see Address Pointers)

Table 10-25. TLS 1.2 PRF PDB input and output reference, field descriptions

Field Description

Pointer
Pointer to the reference.

The size of this field is determined by the PS field of the Master Configuration Register.

• If 32 bit addresses are selected, 4 bytes are reserved for this field.
• If addresses larger than 32 bits are selected, 8 bytes are reserved for this field.

Table 10-26. TLS 1.2 PRF PDB input reference control, format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reser
ved

Input Secret Length Input Label Length

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input Label
Length (cont)

Input Seed Part 1 Length Input Seed Part 2 Length

Table 10-27. TLS 1.2 PRF PDB input reference control, field descriptions

Field Description

31 Reserved

Table continues on the next page...

SSL/TLS/DTLS pseudo-random functions (PRF)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

496 NXP Semiconductors

Table 10-27. TLS 1.2 PRF PDB input reference control, field descriptions (continued)

Field Description

30-21

Input Secret
Length

Length of the input secret in bytes.

NOTE: if the PRF material is split into keys, (if PROTINFO != FFFF or FFFE) then the master_secret
must be 48 bytes, and this field is ignored.

20-14

Input Label
Length

Length of the input label in bytes.

Per protocol definitions, legitimate values are between 11 and 15, inclusive.

13-7

Input Seed Part
1 Length

Length of the Input Seed Part 1 in bytes.

Per protocol definitions, legitimate values are 16 or 32.

6-0

Input Seed Part
2 Length

Length of the Input Seed Part 2 in bytes.

Per protocol definitions, legitimate values are 20 or 32.

Table 10-28. TLS 1.2 PRF PDB output reference control, format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SGT Reserved LENGTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Reserved

Table 10-29. TLS 1.2 PRF PDB output reference control, field descriptions

Field Description

31

SGT

Specifies whether the pointer is a direct reference to the data or a pointer to a scatter/gather table.

0: Direct reference

1: Reference to a Scatter/Gather Table

30-24 Reserved

23-16

LENGTH

Length of the data.

• If PROTINFO = FFFF or FFFE, this field signals the length, in bytes, of the master_secret/verify_data
output.

• If PROTINFO != FFFF or FFFE, this field is ignored. The length is derived from the cipher suite
determined by the PROTINFO field of the OPERATION Command.

15-0 Reserved

10.3 Implementation of the derived key protocol

This protocol is available to assist with replacing a negotiated key with a derived form of
that key. In particular, this protocol can be used for these tasks:

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 497

• Compute the IPAD/OPAD split key form of a HMAC key. [see Using the MDHA
Key Register with IPAD/OPAD "split keys" for more information]

The use of the derived form of the key is mandatory for bulk-data protocols such as
IPsec, where the use of the derived form provides a significant speed advantage.

The derived key protocol (DKP) is designed to allow a negotiated key to be replaced with
the derived form in-place in a shared descriptor. For example, an IPsec descriptor can be
written to supply an immediate HMAC key in negotiated form as a parameter to the DKP
operation command. The DKP computes the IPAD/OPAD "split key" form, leaving the
derived key in the Class 2 Key register, available for the subsequent IPsec command.
Further, the DKP updates the descriptor, replacing the DKP operation command with the
appropriate KEY command, and replacing the negotiated form of the key with the
derived form of the key. It is the responsibility of the descriptor author to ensure the
resulting derived key will not overwrite any descriptor commands that need to be kept.

10.3.1 Using DKP with HMAC keys

When used to generate HMAC keys, DKP receives an unprotected negotiated key and
generates an unprotected derived key. If an encrypted split key is desired, or if an
encrypted negotiated key is provided, see the FIFO STORE command and Output Data
Types 16, 17, 26, 27 in Table 7-31.

When generating derived HMAC keys (also known as "Split Keys"), the four-bit I/O
control subfield of the PROTINFO field in the DKP Operation command is split in half;
the upper 2 bits define the Input Source, and the lower two bits define the Output
Destination. Not all combinations are valid.

Input Source - bits 16-17

Table 10-30. DKP input destination field

Setting Description

00 IMM - negotiated key is in words immediately following the DKP Operation Command.

This option can only be used with an Immediate Output Destination (OD=00).

01 SEQ - negotiated key is found in the input frame as defined by the SEQ IN PTR command. This must be
the choice when DKP is used in a trusted descriptor.

10 PTR - the input key is referenced by the address found immediately following the DKP Operation
Command.

11 SGF - the input key is distributed amongst different memory locations as indicated by the Scatter/Gather
Table address found immediately following the DKP Operation Command.

Output Destination - bits 18-19

Implementation of the derived key protocol

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

498 NXP Semiconductors

Table 10-31. DKP output destination field

Setting Description

00 IMM - resulting derived HMAC "split key" will be written back to the descriptor, immediately after the KEY
command written to the descriptor, consuming as many words as required. The contents of those words
will be overwritten and will not be preserved. The length of the resulting derived HMAC key is twice the
underlying hash context length. See Table 10-32

Note that IMM is not restricted when used as an Output Destination as it is when used as an Input Source.

01 SEQ - the resulting derived HMAC "split key" will be written to the output frame as defined by the SEQ
OUT PTR command. Note that SEQ is a valid Output Destination only when SEQ is provided as an Input
Source. This must be the choice when DKP is used in a trusted descriptor.

10 PTR - the resulting derived HMAC "split key" will be written back to the memory location specified by the
address found immediately after the DKP Operation Command. This option is not valid with Input Source
options IMM or SGF.

11 SGF - the resulting derived HMAC "split key" will be written back to memory per the scatter/gather table
found at the address immediately following the DKP operation command. This option is not valid with Input
Source options IMM or PTR.

The twelve-bit length field designates the number of bytes the negotiated key takes. The
length of the derived "split" key is determined by the underlying hash function chosen, as
shown.

Table 10-32. HMAC derived key lengths

Hashing algorithm Length of derived "split" key

MD5 32 bytes / 8 words

SHA-1 40 bytes / 10 words

SHA-224

SHA-256

64 bytes / 16 words

SHA-384

SHA-512

128 bytes / 32 words

10.3.2 Implementation of the Blob Protocol

The blob protocol provides a method for cryptographically protecting the confidentiality
and integrity of user data across SoC power cycles. The data to be protected is encrypted
so that it can be safely placed into non-volatile storage before the SoC is powered down.
The key used to encrypt the blob is derived from a non-volatile master secret key so the
blob can be decrypted when the SoC powers up again. More details on the Blob protocol
can be found in section Blobs

Chapter 10 Key agreement functions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 499

Implementation of the derived key protocol

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

500 NXP Semiconductors

Chapter 11
Cryptographic hardware accelerators (CHAs)
This section describes the functionality of each individual CHA used by the DECOs.

Table 11-1. Summary of cryptographic hardware accelerators (CHAs)

Definition Abbreviation What it implements Cross-reference

Public-key hardware accelerator PKHA RSA, Diffie-Hellman, DSA, Elliptic-Curve
Diffie-Hellman, Elliptic-Curve DSA

Public-key
hardware
accelerator (PKHA)
functionality

Kasumi f8 and f9 hardware accelerator KFHA The Kasumi f8 encryption and Kasumi f9
authentication algorithms

Kasumi f8 and f9
hardware
accelerator(KFHA)
functionality

Data encryption standard accelerator DESA The DES and Triple-DES encryption
algorithms

Data encryption
standard
accelerator (DES)
functionality

Cyclic-redundancy check accelerator CRCA The coudble-CRC authentication
algorithm

Cyclic-redundancy
check accelerator
(CRCA)
functionality

Random number generator RNG A true hardware random number
generator and a pseudo-random number
generator

Random-number
generator (RNG)
functionality

SNOW 3G f8 accelerator SNOWf8 The SNOW f8 encryption algorithm SNOW 3G f8
accelerator
functionality

SNOW 3G f9 accelerator SNOWf9 The SNOW f9 authentication algorithm SNOW 3G f9
accelerator
functionality

Message-digest hardware accelerator MDHA The MD-5, SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512SHA-512/224,
SHA-512/256 authentication algorithms

Message digest
hardware
accelerator
(MDHA)
functionality

AES accelerator AESA The AES encryption algorithm AES accelerator
(AESA)
functionality

Table continues on the next page...

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 501

Table 11-1. Summary of cryptographic hardware accelerators (CHAs) (continued)

Definition Abbreviation What it implements Cross-reference

ZUC encryption accelerator ZUCE The ZUC encryption algorithm ZUC encryption
accelerator (ZUCE)
functionality

ZUC authentication accelerator ZUCA The ZUC authentication algorithm ZUC authentication
accelerator (ZUCA)
functionality

11.1 Public-key hardware accelerator (PKHA) functionality
The PKHA module is capable of performing a number of different operations used in
public-key cryptography, including modular arithmetic functions such as addition,
subtraction, multiplication, exponentiation, reduction, squaring, cubing, simultaneous
exponentiation, and inversion. All of these functions are provided in both integer and
polynomial-binary field versions, except modular subtraction, which is the same as
addition for binary polynomials. There are also elliptic-curve functions for point addition,
point doubling, point validation, and point multiplication the standard prime and binary
curves. Most of these functions can be performed timing-equalized to thwart timing-
related side-channel attacks. PKHA also includes a Miller-Rabin primality test function
for detecting prime numbers.

The PKHA internally performs modular multiply operations using "Montgomery
multiplication". For efficiency, many of these functions have a variant which allows
either inputs or outputs in Montgomery form. Some have variants to supply the
Montgomery conversion factor. These save time over the variations without. Internally,
the PKHA operates on digits of these values. Different versions of the PKHA may have a
different digit size. This PKHA has a digit size of 32 bits. This has implications for the
inputs and outputs of certain functions. See the discussion on Montgomery arithmetic.

Because the numbers used in public-key cryptography are typically quite large and often
referenced many times during a function, the inputs to PKHA are loaded into registers.
PKHA has four of these labeled A, B, E, and N. A and B are for operands and results. E
is for "keys", and N holds the modulus. For ECC functions, A and B are divided up into
equal-size quadrants to accommodate the greater number of inputs required.

PKHA also has two other types of functions for manipulating the data in the registers.
These are the Clear Memory and Copy Memory functions. The Clear Memory function
allows all or any combination of the registers to be overwritten with zeros. The Copy
Memory functions can be used to copy data from any of the A, B or N registers or
register quadrant to any register A, B, E or N.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

502 NXP Semiconductors

PKHA requires that all data for a given function be loaded before the Mode Register is
written to invoke a function. This convention indicates to PKHA that all needed data has
been loaded, and the function can now be launched. The typical procedure for executing a
PKHA function is to use KEY and FIFO LOAD Commands to load the registers (usually
N first), followed by an OPERATION Command to write the Mode Register, followed
by one or more FIFO STORE Commands to store the result. PKHA functions may also
be cascaded, so that the output of one function stays in a PKHA memory to become an
input for the next function.

When loading or storing a value, it is important that its associated size register not change
during the operation. To help avoid this issue when loading ECC parameters, make sure
that all quadrants of a given register have the same size values by left-filling "short"
values with zero. If a size register for a FIFOLOAD command mayl change before it is
complete, it is necessary to cause the Descriptor to stall until safe to proceed: insert a
JUMP Command before offending command: JUMP jsl = 1 type = 0 cond = nifp offset =
1 (instruction 0xA1000401). In the other case, where a FIFOSTORE may still be in
progress when a subsequent command will change the value in its size register, insert a
SEQ FIFOSTORE Command before the offending command: SEQ FIFOSTORE
length=0 (Instruction 0x68000000).

11.1.1 Modular math

Almost all math operations require with a modulus value in the N Memory. Math
operations involving multiplication (multiplication, exponentiation, prime test, and ECC
functions) are performed internally using Montgomery values.

11.1.2 About Montgomery values

The PKHA contains a Modular Arithmetic Unit. Multiplication is always modular
multiplication:

A * B mod N.

The PKHA performs this computation with a Montgomery multiplier. A Montgomery
multiplier can be more efficient than a multiply-then-reduce calculation because the
modular reduction is done as part of the multiplication and the working product never
gets larger than the modulus. In a normal multiplication, the product, before reduction,
would be the size of the sum of the factors, so usually twice the size of the modulus. The
factors in a Montgomery multiplication each have an R factor, and, as part of the
multiplication and modular reduction, one R is removed. Thus, the computation
performed is:

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 503

(AR * BR) / R mod N.

The equivalent of "division by R" occurs even if one of the inputs does not have an R
factor.

A number of PKHA functions accept inputs in Montgomery form instead of normal
values. Some instead take R2 mod N as an input. These functions can be faster than their
normal-value alternatives if several operations are performed in a row or if these values
are known in advance. This is because, before being used, (R2 mod N needs to be
computed and) normal values need to be converted internally to Montgomery form.

The Montgomery form of a value is value*R mod N, referred to here as value. The term
R = 2SD is the Montgomery factor, where D is the digit size (of a digit in the PKHA
arithmetic unit), in bits, and S is the minimum number of digits needed to hold the value
in N. R is therefore dependent on N and D.

To use the PKHA to convert a normal value to a Montgomery value, one must first
compute (or know) R2 mod N, the Montgomery Conversion Factor. The following steps
can be used to convert a value from a normal value into its Montgomery form (A and B
inputs may be reversed):

R2 = MOD_R2(N)

A = MOD_MUL_IM_OM(A, B=R2, N)

The equivalent F2M function can be used for binary polynomial values.

Eventually, the value needs to be converted out of Montgomery form. This can be done
by performing another multiply (R2 is not needed for this).

A = MOD_MUL_IM_OM(A=A, B=1, N)

Another method is to cause the PKHA to perform a multiplication and conversion to
normal form. Internally, there are two multiplications: first the two inputs, then the
product by one.

AB mod N = MOD_MUL_IM(A=A, B=B, N)

A third method is to have just one factor (either one) in Montgomery form:

AB mod N = MOD_MUL_IM_OM(A=A, B=B, N)

The following operations can be used to convert a value from a normal value into its
Montgomery form (A and B inputs may be reversed):

The equivalent F2M functions can be used for binary polynomial values.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

504 NXP Semiconductors

It is possible to add and subtract Montgomery values, if R mod N is the same. Do not mix
and match Montgomery and normal values for addition or subtraction. 5 + 3R => 5/R +
3R or 5/R + 3; neither is likely the desired result.

11.1.3 Non-modular Math

Although addition, subtraction, and multiplication functions require a modulus, it is
possible to perform these calculations without any reduction: the modulus must be larger
than the expected result.

For addition and subtraction, this is easily done. For multiplication, the MOD_MUL
function may be used, but it is not the most efficient, as internally first R2 mod N will be
computed, then two multiplications will be performed (first to convert one factor into
Montgomery, then to compute the product, not in Montgomery).

For non-modular multiplication, MUL_IM_OM is much more efficient, as only one
multiplication will be performed. This can be used if the factors are not in Montgomery
form, i.e., if the product to be calculated is A*B instead of A*B mod N. Since the
multiplier always "divides by R', a special modulus value in Nram is required which will
make R have the value 1. This is done by creating a modulus N = R-1 so that R mod N
will have the value one. This way, normal values are the same as Montgomery values; no
conversion is necessary and the multiplier will quietly "divide by one" to no effect.

As an example, on a PKHA with a digit size of 32 bits and a product which will be no
more than six bytes long, R = 2SD = 22*32 = 264. Therefore the modulus must be
0xFFFFFFFFFFFFFFFF.

For computation with binary polynomials, the equivalent F2M functions may be used.

11.1.4 Elliptic-Curve Math

The PKHA provides point math operations on different types of elliptic curves. These
include the ability to add two points (+ operator), double a point, and multiply a point by
an integer (scalar) value (x operator).

The input points are assumed to be valid points on the curve. If non-point coordinates or
invalid curve parameters are used an input, then a non-point set of coordinates are likely
to be returned as output. The "ECC Point Check" functions may be used to verify that a
point's (x,y) values constitute a point which satisfies the equation for the curve.

The minimum modulus is 1 byte. The maximum modulus is 1024 bits, 128 in length, or
one quadrant.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 505

If xx is the Point at Infinity, Pand Q are points on the curve, and j and k are integers, then
the following identities, as well as others easily derived by taking advantage of
associative and commutive properites, hold:

• P + Q = Q + P
• P = xx + P
• xx = 0 x P
• (j + k)P = (j x P) + (k x P)

There may be times when the negative of a point is necessary:
• When subtracting points PA - PB
• When multiplying by a negative integer: -abs(k) x PA

To subtract, one can negate the second term and perform an addition, i.e.

PC = PA - PB = PA + (-PB)

When multiplying by a negative value, one can either negate the starting point or the
ending point. The multiplication value is the absolute value of the scalar, i.e., when k is
negative

PC = k x PA = -abs(k) x PA = abs(k) x (-1PA) = -(abs(k) x PA)

11.1.4.1 Point math over a prime field (Fp)

The ECC_MOD family of functions perform Add, Double, and scalar Multiply
operations on points on a curve defined by the equation:

E: y2 = x3 + ax + b mod p

where p is the a prime integer > 3. These operations are available in Affine Coordinates
(x,y).

The modulus (value in N memory) for these operations is p, also referred to as q.

The equality for the negative of a point P, in affine coordinates, is -P = -(x,y) = (x, -y)

The operations will not provide useful outputs if the inputs are not valid points on the
curve, i.e., if they are not solutions to the curve equation E.

The point at infinity is a possible result for point math operations. The PIZ bit in
Operation Status Register can be used to determine when the result of an operation is the
point at infinity.

The representation of the point at infinity, in affine coordinates, depends upon the type of
curve and the value of the b term of the curve's equation:

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

506 NXP Semiconductors

• Where b is equal to 0: (0, 1)
• Where b is not equal to 0: (0, 0)

The (X,Y,Z) projective coordinates are Jacobian projective coordinates, as defined in
IEEE Std 1363-2000, § A.9.6. Some variants of elliptic curve operations which allow for
their input and output.

The conversions between the affine and projective versions of a point are:

• Affine to Jacobian projective: (x, y) => (x, y, 1)
• Jacobian projective to Affine: (X, Y, Z) >= (X/Z2, Y/Z3) for Z not equal to 0. Z equal

to 0 is interpreted as the point at infinity.

The curve equation is E: Y2 = X3 + aXZ4 + bZ6

• the equality for the negative of a point is (X, -Y, Z) = (X, Y, Z)

11.1.4.2 Point math over a binary field (F2m)

The ECC_F2M family of functions perform add, double, and scalar multiply operations
on points on a curve defined by the equation:

E: y2 + xy = x3 + ax2 + b

These operations are available in Affine Coordinates (x,y). All inputs and output values
of polynomial values are in polynomial basis. For example, x5+x+1 is represented as 23h

The modulus (value in N memory) for these functions is q, the field-defining irreducible
polynomial for the curve. Other documents use other symbols, including p(t), f(t), and f.

The equality for the negative of a point, in affine coordinates, is -P = -(x,y) = (x, x+y).

The operations will not provide useful outputs if the inputs are not valid points on the
curve, i.e., if they are not solutions to the curve equation E.

Because of the way the point operations are performed over a binary field, these
functions require as an input the value c rather than b. The relationship between these two
values is:

b = c4 mod q

and

c = b2m-2
 mod q, where m is the degree (the power of its highest-power term) of q.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 507

This c value is referred to as b' in the ECC Public-Key protocols for ECDSA sign, and so
on. The calculation of c is expensive, so it is obviously an advantage to calculate it only
once or have it precomputed. See Special values for common ECC domains for these
values for common ECC domains.

The point at infinity is a possible result for point math operations. The PIZ bit in
Operation Status Register can be used to determine when the result of an operation is the
point at infinity.

The representation of the point at infinity, in affine coordinates, is:

• (0, 0)

The (X,Y,Z) projective coordinates are Jacobian projective coordinates, as defined in
IEEE Std 1363-2000, § A.9.6. Some variants of elliptic curve operations which allow for
their input and output.

The conversions between the affine and projective versions of a point are:

• Affine to Jacobian projective: (x, y) => (x, y, 1)
• Jacobian projective to Affine: (X, Y, Z) >= (X/Z2, Y/Z3) for Z not equal to 0. Z equal

to 0 is nterpreted as the point at infinity.

For F2m curves,

• the curve equation is E: Y2 + XYZ = X3 + aX2Z2 + bZ6

• the equality for the negative of a point is (X, X + Y, Z) = (X, Y, Z)

All computations must be performed with the proper MOD or F2M operation, with the
curve's modulus as the modulus of the function.

11.1.4.3 About Jacobian projective coordinates

Jacobian projective coordinates are used as in IEEE Std 1363-2000, § A.9.6. There are
variants of elliptic curve operations which allow for their input and output.They are used
internally for computation.

The conversions between the affine and projective versions of a point are:

• Affine to Jacobian projective: (x, y) => (x, y, 1)
• Jacobian projective to Affine: (X, Y, Z) >= (X/Z2, Y/Z3) for Z not equal to 0. Z equal

to 0 is interpreted as the point at infinity.

For Fp curves,
• the curve equation is E: Y2 = X3 + aXZ4 + bZ6

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

508 NXP Semiconductors

• the equality for the negative of a point is (X, -Y, Z) = (X, Y, Z)

For F2m curves,
• the curve equation is E: Y2 + XYZ = X3 + aX2Z2 + bZ6

• the equality for the negative of a point is (X, X + Y, Z) = (X, Y, Z)

All computations must be performed with the proper MOD or F2M operation, with the
curve's modulus as the modulus of the function.

11.1.4.4 About the Point at Infinity

The point at infinity is a possible result for point math operations. Knowing its
representation is important for programming, though the PIZ bit in Operation Status
Register can be used to determine when the result of an operation is the point at infinity.

The representation of the point at infinity, in affine coordinates, depends upon the type of
curve and the value of the b term of the curve's equation:

• For Fp curves, where b is equal to 0: (0, 1)
• For Fp and F2m curves, where b is not equal to 0: (0, 0)

11.1.5 PKHA Mode Register

The formats of the PKHA Mode Register are described in detail in PKHA OPERATION
command.

The following tables list the valid PKHA_MODE values for all PKHA functions:

PKHA Clear Memory Functions: Table 11-3

PKHA Modular Arithmetic functions: Table 7-75

PKHA Elliptic Curve functions: PKHA OPERATION: Elliptic Curve Functions

PKHA Copy Memory functions: Table 7-80

NOTE
Use of any PKHA_MODE value not listed in these tables
results in an invalid mode error.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 509

11.1.6 PKHA functions

The various PKHA functions are described in the following subsections. The following
information applies to all PKHA functions.

• Mode Register bits that may be either 1's or 0's for the given function are represented
with x.

• For convenience, in all the descriptions below the output is shown as the default B,
although the actual output destination can be specified for most functions via the
Class 1 Mode Register[OutSel] field to be either the B RAM or the A RAM.

• For each PKHA function, the specified mode bits are in the Class 1 Mode
Register[PKHA_MODE_LS] field.

• For all of the PKHA functions, the Class 1 Mode Register[PKHA_MODE_MS] field
is set to 8h.

• The descriptions specify the output register(s) and any other registers that might be
modified. Note that the default output register is still modified but the output is
placed into the specified destination register(s).

• Note that any parameter underlined is in Montgomery form (for example, A = AR
mod N).

• Errors reported by PKHA are written to the Job Ring Output Status Register and
termination status word (Job termination status/error codes). They are encoded in the
ERRID field.

• Three flags in the CCB Status Register may be set by PKHA: PIZ, PIO, and PRM.
These flags can be tested by the JUMP (HALT) command. is set to indicate that
PKHA generated a result equal to zero, or, in the case of ECC functions, the point at
infinity.

• PIO is set whenever a GCD routine finds that the Greatest Common Denominator of
two numbers is the number 1. For other general non-ECC functions, it means that the
result is equal to one. This may also be referred to as the GCD flag.

• PRM is set by the PRIME_TEST routine if it finds that a candidate integer is
probably prime (that is, passes the Miller-Rabin primality test).

• It is important to note that the PKHA mathematical functions work in terms of
"digits"; that is, the arithmetic unit is pipelined to work on a digit of data at a time.
For PKHA-32 a digit = 32 bits (4 bytes) of data, for PKHA-64 a digit = 64 bits (8
bytes), and for PKHA-128 a digit = 128 bits (16 bytes). Therefore, the term 'digit'
refers to 32, 64, or 128 bits of data in the input and/or output values used by the
PKHA arithmetic unit.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

510 NXP Semiconductors

11.1.6.1 Clear Memory (CLEAR_MEMORY) function

This function clears the specified registers or quadrants of registers in the PKHA. This
includes the A, B, N and E. All registers or quadrants of registers are written with zeros.

A detailed description may be found in PKHA OPERATION: clear memory function.

Table 11-2. CLEAR_MEMORY function properties

Property Notes

Mode value ABEN_0000_00 QQ_QQ 00_0001, with the following restrictions on the combinations of ABEN and
QQQQ: At least one of ABEN must be on. If E is on, all Q must be zero. Some example encodings are
in the table below.

Input None

Output A = 0, B = 0, E = 0, N = 0, or some quadrant(s) thereof, as specified by ABEN and QQQQ. Each Q
specifies a quadrant, in order from 3 through 0.

Requirements The Mode Register specifies which registers or quadrants of registers to clear.

If no quadrants are selected, then all quadrants of the specified register(s) are cleared.

Side effects None

Errors reported Invalid Mode, if no registers are selected, or E with one or more quadrants is selected

Flags set None

Table 11-3. Example mode values for PKHA clear memory functions

Function name Register selects Quadrant selects Brief description Bits 19-0,
including

PKHA_MO
DE and

reserved
bits1 (Hex)

A B E N 3 2 1 0

CLEAR_MEMORY 1 1 1 1 0 0 0 0 Clear registers A, B, E, N F0001

1 1 1 0 0 0 0 0 Clear registers A, B, E E0001

1 1 0 1 0 0 0 0 Clear registers A, B, N D0001

1 0 1 0 0 0 0 0 Clear registers A, E A0001

1 0 0 1 0 0 0 0 Clear registers A, N 90001

0 1 0 1 0 0 0 0 Clear registers B, N 50001

0 1 0 0 0 0 0 0 Clear register B 40001

0 0 1 0 0 0 0 0 Clear register E 20001

0 0 0 1 0 0 0 0 Clear register N 10001

1 0 0 0 1 1 0 0 Clear quadrants 2 and 3 of
register A

80301

0 1 0 1 0 0 0 1 Clear quadrant 0 of registers
B, N

50041

1 1 0 0 1 0 0 0 Clear quadrant 3 of registers
A, B

C0201

1. PKHA_MODE_MS concatenated with 0h concatenated with PKHA_MODE_LS

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 511

11.1.6.2 Integer Modular Addition (MOD_ADD) function
Table 11-4. MOD_ADD function properties

Property Notes

Mode value 0000_0000_0000_0000_0010 (output placed in B)

0000_0000_0001_0000_0010 (output placed in A)

Input • N = modulus and data size, any integer
• A = first addend, any integer less than N
• B = second addend, any integer less than N

Output B (or A, if selected) = (A + B) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are each < N.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

If (A + B) >= N, N will be subtracted just once from the sum. That is, if (A + B) >= 2N, then the result will
not be mod N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.3 Integer Modular Subtraction (MOD_SUB_1) function

Modular subtraction can be described as follows. If A ≥ B or A = B = 0, then B = A - B.
Otherwise, if A < B, then B = A + N - B. The result is always positive and less than N.

Table 11-5. MOD_SUB_1 function properties

Property Notes

Mode value 0000_0000_0000_0000_0011 (output placed in B)

0000_0000_0001_0000_0011 (output placed in A)

Input • N = modulus, any integer
• A = minuend, any integer less than N
• B = subtrahend, any integer less than N

Output B (or A, if selected) = (A - B) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are less than N.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

512 NXP Semiconductors

Table 11-5. MOD_SUB_1 function properties (continued)

Property Notes

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.4 Integer Modular Subtraction (MOD_SUB_2) function
Table 11-6. MOD_SUB_2 function properties

Property Notes

Mode value 0000_0000_0000_0000_0100 (output placed in B)

0000_0000_0001_0000_0100 (output placed in A)

Input • N = modulus, any integer
• B = minuend, any integer less than or equal to N
• A = subtrahend, any integer less than or equal to N

Output B (or A, if selected) = (B - A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are < N

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.5 Integer Modular Multiplication (MOD_MUL)

The (AB) mod N computation is provided to assist in algorithms and protocols where a
single modular multiplication is required and not as a chaining of multiplications. In the
latter case, Montgomery form multiplication routines (that is, MOD_MUL_IM or
MOD_MUL_IM_OM) are more efficient. This function first computes R2 mod N, then
multiples one factor to produce AR, then multiplies AR*B to produce AB.

Table 11-7. MOD_MUL function properties

Property Notes

Mode value 0000_0000_0000_0000_0101 (output placed in B)

0000_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, any odd integer

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 513

Table 11-7. MOD_MUL function properties (continued)

Property Notes

• A = multiplicand, any integer less than N
• B = multiplier, any integer less than N

Output B (or A, if selected) = (AxB) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are < N.

Side effects A and E are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.
• Divide-By-Zero Error is set if the most significant digit of the modulus is all zeros.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.6 Integer Modular Multiplication with Montgomery Inputs
(MOD_MUL_IM)

This function takes its inputs, integers, in Montgomery form, multiplies them modulo the
value in the N register and returns the result as a field value. To do this, it performs two
multiplications: AR*BR => ABR and ABR*1 => AB.

Table 11-8. MOD_MUL_IM function properties

Property Notes

Mode value 1000_0000_0000_0000_0101 (output placed in B)

1000_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, any odd integer
• A = multiplicand, a value in Montgomery form
• B = multiplier, a value in Montgomery form

Output B (or A if selected) = A x B mod N, the non-Montgomery product of the inputs

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are less than modulus N

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

514 NXP Semiconductors

11.1.6.7 Integer Modular Multiplication with Montgomery Inputs and
Outputs (MOD_MUL_IM_OM) Function

This function performs the calculation A*B/R mod N, where R is the Montgomery factor
for N. This can be used in several ways:

• If one value is a normal value, and the other is R2 mod N, then the result is the
normal value converted to Montgomery.

• If A and B are both Montgomery values, then the result is the product of A and B as
a Montgomery value.

• If only one of (A,B) is a Montgomery value, then the result is the product as a normal
value.

• If one of (A,B) is a Montgomery value and the other is the value one, then the result
is Montgomery value converted to a normal value.

Table 11-9. MOD_MUL_IM_OM function properties

Property Notes

Mode value 1100_0000_0000_0000_0101 (output placed in B)

1100_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, any odd integer
• A = multiplicand, a value in Mongomery format 0 ≤ A < N
• B = multiplier, a value in Mongomery format 0 ≤ B < N

Output B (or A, if selected) = (AxB) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

11.1.6.8 Integer Modular Exponentiation (MOD_EXP and
MOD_EXP_TEQ)

This function is commonly used to perform a single-step RSA operation. It computes R2

mod N and converts A to Montgomery form before beginning the exponentiation.
MOD_EXP_TEQ performs the same operation as MOD_EXP but with an added timing
equalization security feature. The exponentiation run-time of MOD_EXP_TEQ, for a
given modulus and size of exponent, is constant. In general MOD_EXP will run faster
than MOD_EXP_TEQ, but will never run slower.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 515

Table 11-10. MOD_EXP and MOD_EXP_TEQ function properties

Property Notes

Mode value for
MOD_EXP

0000_0000_0000_0000_0110 (output placed in B)

0000_0000_0001_0000_0110 (output placed in A)

Mode value for
MOD_EXP_TEQ

0000_0000_0100_0000_0110 (output placed in B)

0000_0000_0101_0000_0110 (output placed in A)

Input • N = modulus, any odd integer
• A = an integer 0 ≤ A < N
• E = exponent, any integer

Output B (or A, if selected) = (AE) mod N, a an integer 0 ≤ A < N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• Maximum key (exponent) size = 512> bytes
• A < N

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• Key Size Error is set if size of E = 0 or size of E > 512.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

11.1.6.9 Integer Modular Exponentiation, Montgomery Input
(MOD_EXP_IM and MOD_EXP_IM_TEQ) Function

This function is commonly used to perform a single-step RSA operation. It computes A =
AR (mod N), where R is the Montgomery constant). The input data (base) to be
exponentiated must be provided in the Montgomery form. The result will be returned in
normal integer (non-Montgomery) representation. MOD_EXP_IM_TEQ performs the
same operation as MOD_EXP_IM but with an added timing equalization security feature.
The exponentiation run-time of MOD_EXP_IM_TEQ is constant for a given modulus
and size of exponent. In general MOD_EXP_IM will run faster than
MOD_EXP_IM_TEQ, but will never run slower.

Table 11-11. MOD_EXP_IM and MOD_EXP_IM_TEQ function properties

Property Notes

Mode value for
MOD_EXP_IM

1000_0000_0000_0000_0110 (output placed in B)

1000_0000_0001_0000_0110 (output placed in A)

Mode value for
MOD_EXP_IM_TE
Q

1000_0000_0100_0000_0110 (output placed in B)

1000_0000_0101_0000_0110 (output placed in A)

Input • N = modulus, any odd integer

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

516 NXP Semiconductors

Table 11-11. MOD_EXP_IM and MOD_EXP_IM_TEQ function properties
(continued)

Property Notes

• A = a value 0 ≤ A < N, in Montgomery form
• E = exponent, any integer (normal integer representation)

Output B (or A, if selected) = (AE) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• Maximum key (exponent) size = 512 bytes
• A < N

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• Key Size Error is set if size of E = 0 or size of E > 512.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.10 Integer Simultaneous Modular Exponentiation
(MOD_SML_EXP)

MOD_SML_EXP performs two modular exponentiations and multiplies the results. This
is faster than doing them separately. It is useful for DSA Verification.

Table 11-12. MOD_SML_EXP function properties

Property Notes

Mode value 0000_0000_0000_0001_0110 (output placed in B)

0000_0000_0001_0001_0110 (output placed in A)

Input • N = modulus, any odd integer
• A0 = an integer < N, first base
• E = an integer, first exponent
• A2 = an integer < N, second base
• B = an integer, second exponent

Output B (or A if selected) = A0E * A2B mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 1/2 RAM size
• Maximum key (exponent) size and B size = 1/4 RAM size
• A0 < N
• A2 < N
• The values in A0 and A2 must be the same number of bytes, matching the A SIZE register, and

should be the same size as N

Side effects A, B, and E are modified.

Errors reported • N size error is set if N size > half RAM
• A size error is set if A size > half RAM

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 517

Table 11-12. MOD_SML_EXP function properties
(continued)

Property Notes

• B size error is set if B size > quarter-RAM
• E size error is set if E size > quarter-RAM

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.11 Integer Modular Square (MOD_SQR and MOD_SQR_TEQ)

This function may be used to square an integer value. MOD_SQR_TEQ, the timing
equalized version, will take the same time to complete for a given modulus. In general
the MOD_SQR version will run faster than MOD_SQR_TEQ, but will never run slower.

Table 11-13. MOD_SQR and MOD_SQR_EXP function properties

Property Notes

Mode value for
MOD_SQR

0000_0000_0000_0001_1010 (output placed in B)

0000_0000_0001_0001_1010 (output placed in A)

Mode value for
MOD_SQR_TEQ

0000_0000_0100_0001_1010 (output placed in B)

0000_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, any odd integer
• A = a field element

Output B (or A, if selected) = (A*A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

11.1.6.12 Integer Modular Square, Montgomery inputs (MOD_SQR_IM
and MOD_SQR_IM_TEQ)

This function may be used to square an integer value. For a given modulus,
MOD_SQR_IM_TEQ will take the same time to complete for any value of A. In general
MOD_SQR_IM will run faster than MOD_SQR_IM_TEQ, and will never run slower.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

518 NXP Semiconductors

Table 11-14. MOD_SQR_IM and MOD_SQR_IM_TEQ function properties

Property Notes

Mode value for
MOD_SQR_IM

1000_0000_0000_0001_1010 (output placed in B)

1000_0000_0001_0001_1010 (output placed in A)

Mode value for
MOD_SQR_IM_TE
Q

1000_0000_0100_0001_1010 (output placed in B)

1000_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, any odd integer
• A = an integer < N in Montgomery form

Output B (or A, if selected) = (A*A) mod N, an integer

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

11.1.6.13 Integer Modular Square, Montgomery inputs and outputs
(MOD_SQR_IM_OM and MOD_SQR_IM_OM_TEQ)

This function may be used to square an integer value. For a given modulus,
MOD_SQR_IM_OM_TEQ will take the same time to complete for any value of A. In
general MOD_SQR_IM_OM will run faster than MOD_SQR_IM_OM_TEQ, and will
never run slower.

Table 11-15. MOD_SQR_IM_OM and MOD_SQR_IM_OM_TEQ function properties

Property Notes

Mode value for
MOD_SQR_IM_O
M

1100_0000_0000_0001_1010 (output placed in B)

1100_0000_0001_0001_1010 (output placed in A)

Mode value for
MOD_SQR_IM_O
M_TEQ

1100_0000_0100_0001_1010 (output placed in B)

1100_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, any odd integer
• A = a Montgomery value < N

Output B (or A, if selected) = (A*A) mod N, in Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = >Maximum modulus size = 512 bytes
• A < N

Side effects

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 519

Table 11-15. MOD_SQR_IM_OM and MOD_SQR_IM_OM_TEQ function properties
(continued)

Property Notes

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

11.1.6.14 Integer Modular Cube (MOD_CUBE and MOD_CUBE_TEQ)

This function may be used to cube an integer value. These functions first compute the
Montgomery conversion factor, R2 mod N and then convert the value to cube. For a given
modulus, MOD_CUBE_TEQ will take the same time to complete for any value of A. In
general MOD_CUBE will run faster than MOD_CUBE_TEQ, and will never run slower.

Table 11-16. MOD_CUBE and MOD_CUBE_TEQ function properties

Property Notes

Mode value for
MOD_CUBE

0000_0000_0000_0001_1011 (output placed in B)

0000_0000_0001_0001_1011 (output placed in A)

Mode value for
MOD_CUBE_TEQ

0000_0000_0100_0001_1011 (output placed in B)

0000_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, any odd integer
• A = a value < N

Output B (or A, if selected) = (A*A*A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

520 NXP Semiconductors

11.1.6.15 Integer Modular Cube, Montgomery input (MOD_CUBE_IM
and MOD_CUBE_IM_TEQ)

MOD_CUBE_IM is used to cube an integer value. The timing equalized version,
MOD_CUBE_IM_TEQ, also cubes an integer value but will take the same time to
complete for a given modulus. In general MOD_CUBE_IM will run faster than
MOD_CUBE_IM_TEQ, but will never run slower.

Table 11-17. MOD_CUBE_IM and MOD_CUBE_IM_TEQ function properties

Property Notes

Mode value for
MOD_CUBE_IM

1000_0000_0000_0001_1011 (output placed in B)

1000_0000_0001_0001_1011 (output placed in A)

Mode value for
MOD_CUBE_IM_T
EQ

1000_0000_0100_0001_1011 (output placed in B)

1000_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, any odd integer
• A = a Montgomery value

Output B (or A, if selected) = (A*A*A) mod N, a normal value

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

11.1.6.16 Integer Modular Cube, Montgomery input and output
(MOD_CUBE_IM_OM and MOD_CUBE_IM_OM_TEQ)

MOD_CUBE_IM_OM is used to cube an integer value. The timing equalized version,
MOD_CUBE_IM_OM_TEQ, also cubes an integer value but will take the same time to
complete for a given modulus. In general MOD_CUBE_IM_OM will run faster than
MOD_CUBE_IM_OM_TEQ, but will never run slower.

Table 11-18. MOD_CUBE_IM_OM and MOD_CUBE_IM_OM_TEQ function
properties

Property Notes

Mode value for
MOD_CUBE_IM_O
M

1100_0000_0000_0001_1011 (output placed in B)

1100_0000_0001_0001_1011 (output placed in A)

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 521

Table 11-18. MOD_CUBE_IM_OM and MOD_CUBE_IM_OM_TEQ function properties
(continued)

Property Notes

Mode value for
MOD_CUBE_IM_O
M_TEQ

1100_0000_0100_0001_1011 (output placed in B)

1100_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, any odd integer
• A = a Montgomery value

Output B (or A, if selected) = (A*A*A) mod N, a Montgomery value

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

11.1.6.17 Integer Modular Square Root (MOD_SQRT)

The modular square root function computes output result B, such that (B x B) mod N =
input A. If no such B result exists, the result will be set to 0 and the PKHA "prime" flag
will be set. Input values A and B are limited to a maximum size of 128 bytes. Note that
two such square root values may exist. This algorithm will find either one of them, if any
exist. The second possible square root (B') can be found by calculating B' = N - B.

Table 11-19. MOD_SQRT function properties

Property Notes

Mode value 0000_0000_0000_0001_0111 (output placed in B)

0000_0000_0001_0001_0111 (output placed in A)

Input • N0 (N RAM, 1st quadrant) = modulus, any odd integer
• A0 (A RAM, 1st quadrant) = input value, for which a square root is to be calculated

Output B0 (or A0, if selected) is calculated such that (B0 x B0) mod N = A mod N. If no such B exists, then B is
set to 0.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are < N.

Side effects All of the following PKHA RAM quadrants are modified: E2, E3, N1, N2, N3, B1, B2, B3, A1, A2, A3.

Errors reported N Size Error is set if the size of N is greater than 128.

Flags set PRM is set if no square root solution can be found.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

522 NXP Semiconductors

11.1.6.18 Integer Modulo Reduction (MOD_AMODN)

MOD_AMODN computes the remainder of A divided by N. A and N can be of any size
and it is not required that A > N, but N must be non-zero.

Table 11-20. MOD_AMODN function properties

Property Notes

Mode value 0000_0000_0000_0000_0111 (output placed in B)

0000_0000_0001_0000_0111 (output placed in A)

Input • N = modulus, any non-zero integer
• A = any integer

Output B (or A, if selected) = A mod N, A reduced modulo N

Requirements • N = non-zero value
• Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Divide By Zero Error is set if N = 0.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.19 Integer Modular Inversion (MOD_INV)

MOD_INV computes the inverse of A, if an inverse exists. If the modulus, N, is prime,
then all values of A, 1 ≤ A < N, are guaranteed to have an inverse mod N. If N is not
prime, A may or may not have an inverse. It will have one only if GCD(A, N) == 1.

Table 11-21. MOD_INV function properties

Property Notes

Mode value 0000_0000_0000_0000_1000 (output placed in B)

0000_0000_0001_0000_1000 (output placed in A)

Input • N = modulus, any non-zero integer
• A = any non-zero integer lass than N

Output B (or A, if selected) = A-1 mod N, an integer, the multiplicative inverse of A

Requirements • Neither A or N can be zero.
• A must be less than N.
• Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects A and E are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 523

Table 11-21. MOD_INV function properties (continued)

Property Notes

• A Size Error is set if the size of A is greater than size of N.
• Divide-By-Zero Error is set if N or A = 0, or if the most significant digit of N = 0, or if there is no

inverse.

Flags set None

11.1.6.20 Integer Montgomery Factor Computation (MOD_R2)

This function is used to compute a constant to assist in converting operands into the
Montgomery residue system representation. The constant R2(mod N) is dependent upon
the digit size of the PKHA and the value in N.

MUL, EXP, and ECC functions that do not have "IM" (Montgomery inputs) or an R2
input will internally invoke this routine to determine the constant and do the conversions
before other operations.

If the modulus N is a protocol- or system-wide parameter that does not change
frequently, such as in ECC operations for a specific curve, save this computed constant,
because this routine takes a not-insignificant amount of time to complete.

Table 11-22. MOD_R2 function properties

Property Notes

Mode value 1000_0000_0000_0000_1100 (output placed in B)

1000_0000_0001_0000_1100 (output placed in A)

Input N = modulus, any odd integer

Output B (or A, if selected) = R2 mod N, where R = 2SD where S is size of a digit in bits and D is the number of
digits of N; in other words, D = ceiling [sizeof(N) in bits / S]

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.

Flags set None

11.1.6.21 Integer Greatest Common Divisor (MOD_GCD)

MOD_GCD finds the greatest common divisor of two integers.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

524 NXP Semiconductors

Table 11-23. MOD_GCD function properties

Property Notes

Mode value 0000_0000_0000_0000_1110 (output placed in B)

0000_0000_0001_0000_1110 (output placed in A)

Input • N = any integer. The most-significant digit of N must be non-zero.
• A = any integer less than or equal to N

Output B (or A, if selected) = GCD(A,N), an integer less than or equal to A that divides both A and N

If the output is placed in B, the MOD_INV result is available in A.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and N may not both be zero

Side effects A is modified

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• Divide-By-Zero Error is set if N or A = 0, or if the most significant digit of N = 0.

Flags set PIO is set if the result is 1.

11.1.6.22 Miller_Rabin Primality Test (PRIME_TEST)
Table 11-24. PRIME_TEST function properties

Property Notes

Mode value 0000_0000_0000_0000_1111 (output placed in B)

0000_0000_0001_0000_1111 (output placed in A)

Input • N1 = Candidate prime integer
• A = An initial random seed for the base value of exponentiation; can be any integer 2 < A < N - 2
• B = "t" parameter, which is the number of trial runs. By default, it is set at 1 or B[7:0], whichever is

greater. Only the lowest byte of the supplied value is used.

Output B (or A, if selected) = 1 if candidate is believed to be prime, otherwise 0

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and N may not both be zero

Side effects N and A are modified

Errors reported • N Size Error is set if size of N = 0 or size of N > 512.
• B Size Error is set if N size > 256. and the least-significant byte of B > 31.
• Divide-By-Zero Error is set if no seed can be found that is in the legal range of 2 < A < N-2. This

occurs if N = 1 or N = 3.

Flags set PRM is set if the candidate is believed to be prime

1. If the most significant digit of N is zero, the result is always composite, the output is the value zero, and the PRM flag is not
set, regardless of the primality of the value of N.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 525

11.1.6.23 Binary Polynomial (F2m) Addition (F2M_ADD) function

This function performs binary polynomial modular addition without any modulo
reduction, as the value in the N register is ignored. Only its size is used, to determine the
size of the result.

This type of addition is the equivalent of a bitwise XOR and this function may be used
for that purpose.

This function could as easily be labeled F2M_SUB, as it is mathematically equivalent.

Table 11-25. F2M_ADD function properties

Property Notes

Mode value 0000_0000_0000_0000_0010 (output placed in B)

0000_0000_0001_0000_0010 (output placed in A)

Input • Size of N (modulus size)
• A = first addend, a binary polynomial
• B = second addend, a binary polynomial

Output B (or A, if selected) = A xor B, a binary polynomial

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• The N need not be written, because its contents are ignored, but the size of N must be written.

This size is needed because inputs A and B are considered binary polynomials modulo some
irreducible polynomial N.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.24 Binary Polynomial (F2m) Modular Multiplication (F2M_MUL)

The (AB) mod N computation is provided to assist in algorithms and protocols where a
single modular multiplication is required and not as a chaining of multiplications. In the
latter case, Montgomery form multiplication routines (that is, F2M_MUL_IM or
F2M_MUL_IM_OM) are more efficient. This function first computes R2 mod N, then
multiples A*R2 to produce AR, then multiplies AR*B to produce AB.

Table 11-26. F2M_MUL function properties

Property Notes

Mode value 0010_0000_0000_0000_0101 (output placed in B)

0010_0000_0001_0000_0101 (output placed in A)

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

526 NXP Semiconductors

Table 11-26. F2M_MUL function properties (continued)

Property Notes

Input • N = modulus, an irreducible polynomial
• A = multiplicand, a field element
• B = multiplier, a field element

Output B (or A, if selected) = (AB) mod N, a field element

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are field elements modulo N.

Side effects A and E are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.25 Binary Polynomial (F2m) Modular Multiplication with
Montgomery Inputs (F2M_MUL_IM) Function

This function takes its inputs, binary polynomials, in Montgomery form, multiplies them
modulo the value in the N register, used as a reduction polynomial, and returns the result
as a field value. To do this, it performs two multiplications: AR*BR => ABR and ABR*1
=> AB.

Table 11-27. F2M_MUL_IM function properties

Property Notes

Mode value 1010_0000_0000_0000_0101 (output placed in B)

1010_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = multiplicand, a binary polynomial < 2m, in Montgomery form
• B = multiplicand, a binary polynomial < 2m, in Montgomery form

Output B (or A, if selected) = (AxB) mod N, a a binary polynomial < 2m, non-Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are field elements in Montgomery form and must be modulo reduced by irreducible

polynomial N.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 527

11.1.6.26 Binary Polynomial (F2m) Modular Multiplication with
Montgomery Inputs and Outputs (F2M_MUL_IM_OM)
Function

This function performs the calculation A*B/R mod N, where R is the Montgomery factor
for N. This can be used in several ways:

• If one value is a normal value, and the other is R2 mod N, then the result is the
normal value converted to Montgomery.

• If A and B are both Montgomery values, then the result is the product of A and B as
a Montgomery value.

• If only one of (A,B) is a Montgomery value, then the result is the product as a normal
value.

• If one of (A,B) is a Montgomery value and the other is the value one, then the result
is Montgomery value converted to a normal value.

Table 11-28. F2M_MUL_IM_OM function properties

Property Notes

Mode value 1110_0000_0000_0000_0101 (output placed in B)

1110_0000_0001_0000_0101 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial 0 < 2m, in Montgomery form.
• B = a binary polynomial 0 < 2m, in Montgomery form.

Output B (or A, if selected) = (AxB) mod N, in Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and B are field elements in Montgomery form.

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error is set if the size of B is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

528 NXP Semiconductors

11.1.6.27 Binary Polynomial (F2m) Modular Exponentiation (F2M_EXP
and F2M_EXP_TEQ)

This function is similar to MOD_EXP but works on binary polynomials. It is provided
mainly to assist in the computation of elliptic curve parameter "c", where c = b2m-2

 mod n)
given an elliptic curve parameter "b" and the field-defining polynomial in N. It computes
R2 mod N and converts A to Montgomery form before beginning the exponentiation.
F2M_EXP_TEQ performs the same operation as F2M_EXP but with an added timing
equalization security feature. Its exponentiation run-time, for a given modulus and size of
exponent, is constant. In general F2M_EXP will run faster than F2M_EXP_TEQ, but will
never run slower.

Table 11-29. F2M_EXP function properties

Property Notes

Mode value for
F2M_EXP

0010_0000_0000_0000_0110 (output placed in B)

0010_0000_0001_0000_0110 (output placed in A)

Mode value for
F2M_EXP_TEQ

0010_0000_0100_0000_0110 (output placed in B)

0010_0000_0101_0000_0110 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial < 2m

• E = exponent, any integer

Output B (or A, if selected) = (AE) mod N, a binary polynomial

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• Maximum key (exponent) size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• Key Size Error is set if size of E = 0 or size of E > 512.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.28 Binary Polynomial (F2m) Simultaneous Modular
Exponentiation (F2M_SML_EXP)

F2M_SML_EXP performs two modular exponentiations on binary polynomials, and
multiplies the results. This is faster than doing them separately. It is useful for DSA
Verification.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 529

Table 11-30. F2M_SML_EXP function properties

Property Notes

Mode value 0000_0000_0000_0001_0110 (output placed in B)

0000_0000_0001_0001_0110 (output placed in A)

Input • N = modulus, any odd integer
• A0 = a field element, first base
• E = an integer, first exponent
• A2 = a field element, second base
• B = an integer, second exponent

Output B (or A if selected) = A0E * A2B mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 1/2 RAM
• Maximum key (exponent) size and B size = 1/4 RAM size
• A0 < N
• A2 < N
• The values in A0 and A2 must be the same number of bytes, matching the A SIZE register, and

should be the same size as N

Side effects A, B, and E are modified.

Errors reported • N size error is set if N size > half RAM
• A size error is set if A size > half RAM
• B size error is set if B size > quarter-RAM
• E size error is set if E size > quarter-RAM

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.29 Binary Polynomial (F2m) Modular Square (F2M_SQR and
F2M_SQR_TEQ)

F2M_SQR may be used to square an binary polynomial value. The timing equalized
version, F2M_SQR_TEQ, will also square a binary polynomial value but for a given
modulus will always take the same time to complete. F2M_SQR will usually run faster
than F2M_SQR_TEQ, but will never run slower

Table 11-31. F2M_SQR and F2M_SQR_TEQ function properties

Property Notes

Mode value for
F2M_SQR

0010_0000_0000_0001_1010 (output placed in B)

0010_0000_0001_0001_1010 (output placed in A)

Mode value for
F2M_SQR_TEQ

0010_0000_0100_0001_1010 (output placed in B)

0010_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m

Output B (or A, if selected) = (A*A) mod N

Requirements • Minimum modulus size = 1 byte

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

530 NXP Semiconductors

Table 11-31. F2M_SQR and F2M_SQR_TEQ function properties
(continued)

Property Notes

• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

11.1.6.30 Binary Polynomial (F2m) Modular Square, Montgomery Input
(F2M_SQR_IM and F2M_SQR_IM_TEQ)

F2M_SQR_IM may be used to square a binary polynomial in Montgomery form.
F2M_SQR_IM_TEQ, the timing equalized version, will take the same time to complete
for a given modulus. F2M_SQR_IM will generally run faster than F2M_SQR_IM_TEQ,
but will never run slower.

Table 11-32. F2M_SQR_IM and F2M_SQR_IM_TEQ function properties

Property Notes

Mode value for
F2M_SQR_IM

1010_0000_0000_0001_1010 (output placed in B)

1010_0000_0001_0001_1010 (output placed in A)

Mode value for
F2M_SQR_IM_TE
Q

1010_0000_0100_0001_1010 (output placed in B)

1010_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m in Montgomery form

Output B (or A, if selected) = (A*A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 531

11.1.6.31 Binary Polynomial (F2m) Modular Square, Montgomery Input
and Output (F2M_SQR_IM_OM and F2M_SQR_IM_OM_TEQ)

F2M_SQR_IM_OM may be used to square a binary polynomial in Montgomery form,
and will output the result in Montgomery form. F2M_SQR_IM_OM_TEQ, the timing
equalized version, will take the same time to complete for a given modulus.
F2M_SQR_IM_OM will generally run faster than F2M_SQR_IM_OM_TEQ, but will
never run slower.

Table 11-33. F2M_SQR_IM_OM and F2M_SQR_IM_OM_TEQ function properties

Property Notes

Mode value for
F2M_SQR_IM_OM

1110_0000_0000_0001_1010 (output placed in B)

1110_0000_0001_0001_1010 (output placed in A)

Mode value for
F2M_SQR_IM_OM
_TEQ

1110_0000_0100_0001_1010 (output placed in B)

1110_0000_0101_0001_1010 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m, possibly in Montgomery form

Output B (or A, if selected) = (A*A) mod N, in Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

11.1.6.32 Binary Polynomial (F2m) Modular Cube (F2M_CUBE and
F2M_CUBE_TEQ)

F2M_CUBE may be used to cube a binary polynomial value. The function will first
compute the Montgomery conversion factor, R2 mod N and convert the value to cube.
F2M_CUBE_TEQ, the timing equalized version, performs the same function but will
take the same time to complete for a given modulus. F2M_CUBE will generally run
faster than F2M_CUBE_TEQ, but will never run slower.

Table 11-34. F2M_CUBE and F2M_CUBE_TEQ function properties

Property Notes

Mode value for
F2M_CUBE

0010_0000_0000_0001_1011 (output placed in B)

0010_0000_0001_0001_1011 (output placed in A)

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

532 NXP Semiconductors

Table 11-34. F2M_CUBE and F2M_CUBE_TEQ function properties
(continued)

Property Notes

Mode value for
F2M_CUBE_TEQ

0010_0000_0100_0001_1011 (output placed in B)

0010_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order <m

Output B (or A, if selected) = (A*A*A) mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

11.1.6.33 Binary Polynomial (F2m) Modular Cube, Montgomery Input
(F2M_CUBE_IM and F2M_CUBE_IM_TEQ)

F2M_CUBE_IM may be used to cube a binary polynomial value that is in Montgomery
form. F2M_CUBE_IM_TEQ, the timing equalized version, performs the same function
but will take the same time to complete for a given modulus. F2M_CUBE_IM will
generally run faster than F2M_CUBE_IM_TEQ, but will never run slower.

Table 11-35. F2M_CUBE_IM and F2M_CUBE_IM_TEQ function properties

Property Notes

Mode value for
F2M_CUBE_IM

1010_0000_0000_0001_1011 (output placed in B)

1010_0000_0001_0001_1011 (output placed in A)

Mode value for
F2M_CUBE_IM_TE
Q

1010_0000_0100_0001_1011 (output placed in B)

1010_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m in Montgomery form

Output B (or A, if selected) = (A*A*A) mod N, a binary polynomial

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 533

Table 11-35. F2M_CUBE_IM and F2M_CUBE_IM_TEQ function properties
(continued)

Property Notes

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

11.1.6.34 Binary Polynomial (F2m) Modular Cube, Montgomery Input
and Output (F2M_CUBE_IM_OM and
F2M_CUBE_IM_OM_TEQ)

F2M_CUBE_IM_OM may be used to cube a binary polynomial value that is in
Montgomery form, and output the result in Montgomery form.
F2M_CUBE_IM_OM_TEQ, the timing equalized version, performs the same function
but will take the same time to complete for a given modulus. F2M_CUBE_IM_OM will
generally run faster than F2M_CUBE_IM_OM_TEQ, but will never run slower.

Table 11-36. F2M_CUBE_IM_OM and F2M_CUBE_IM_OM_EXP function
properties

Property Notes

Mode value for
F2M_CUBE_IM_O
M

1110_0000_0000_0001_1011 (output placed in B)

1110_0000_0001_0001_1011 (output placed in A)

Mode value for
F2M_CUBE_IM_O
M_TEQ

1110_0000_0100_0001_1011 (output placed in B)

1110_0000_0101_0001_1011 (output placed in A)

Input • N = modulus, an "odd" binary polynomial of order m
• A = a binary polynomial of order < m, possibly in Montgomery form

Output B (or A, if selected) = (A*A*A) mod N, in Montgomery form

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A < N

Side effects

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.

Flags set PIZ is set if the result is zero.

GCD is set if the result is one.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

534 NXP Semiconductors

11.1.6.35 Binary Polynomial (F2m) Modulo Reduction (F2M_AMODN)

F2M_AMODN computes the remainder of A divided by N. This is the equivalent of the
MOD_AMODN function applied to a binary polynomial. A and N can be of any size and
it is not required that A > N, but N must be non-zero.

Table 11-37. F2M_AMODN function properties

Property Notes

Mode value 0010_0000_0000_0000_0111 (output placed in B)

0010_0000_0001_0000_0111 (output placed in A)

Input • N = modulus, any non-zero polynomial
• A = any polynomial

Output B (or A, if selected) = A mod N, a polynomial, binary element modulo N

Requirements • N = non-zero value
• Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Divide By Zero Error is set if N = 0.

Flags set PIZ is set if the result is zero.

PIO is set if the result is one.

11.1.6.36 Binary Polynomial (F2m) Modular Inversion (F2M_INV)

F2M_INV computes the multiplicative inverse of a binary polynomial.

Table 11-38. F2M_INV function properties

Property Notes

Mode value 0010_0000_0000_0000_1000 (output placed in B)

0010_0000_0001_0000_1000 (output placed in A)

Input • N = modulus, an irreducible polynomial
• A = a field element

Output B (or A, if selected) = A-1 mod N, a field element, the multiplicative inverse of A

Requirements • A is an element of the binary polynomial field.
• Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects A and E are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• Divide-By-Zero Error is set if N or A = 0, or if the most significant digit of N = 0.

Flags set None

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 535

11.1.6.37 Binary Polynomial (F2m) R2 Mod N (F2M_R2) Function

This function is used to compute the Montgomery Conversion Factor, which is used to
convert operands into the Montgomery residue system representation. The constant
R2(mod N) is dependent upon the digit size of the PKHA and the value of N. If this value
is not available, then this routine (function) is called to determine the constant before
other operations. If N contains a protocol- or system-wide parameter that does not change
frequently, such as in ECC operations for a specific curve, save this computed constant,
because this routine takes a considerable amount of time to complete.

Table 11-39. F2M_R2 function properties

Property Notes

Mode value 0010_0000_0000_0000_1100 (output placed in B)

0010_0000_0001_0000_1100 (output placed in A)

Input N = modulus, an irreducible polynomial

Output B (or A, if selected) = R2 mod N, where R = 2SD where S is size of a digit in bits and D is the number of
digits of an irreducible polynomial, in other words D = ceiling [sizeof(N) in bits / S]

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects None

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.

Flags set None

11.1.6.38 Binary Polynomial (F2m) Greatest Common Divisor
(F2M_GCD) Function

MOD_GCD finds the greatest common divisor of two binary polynomials.

Table 11-40. F2M_GCD function properties

Property Notes

Mode value 0010_0000_0000_0000_1110 (output placed in B)

0010_0000_0001_0000_1110 (output placed in A)

Input • N = any polynomial. The most-significant digit of N must be non-zero.
• A = any polynomial with degree less than or equal to N

Output B (or A, if selected) = BINARY_GCD(A,N), a polynomial with degree less than or equal to polynomial A
that divides both A and N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes
• A and N may not both be zero

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

536 NXP Semiconductors

Table 11-40. F2M_GCD function properties (continued)

Property Notes

Side effects A is modified

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• A Size Error is set if the size of A is greater than size of N.
• Divide-By-Zero Error is set if N or A = 0, or if the most significant digit of N = 0.

Flags set PIO is set if the result is 1.

11.1.6.39 ECC Fp Point Add, Affine Coordinates (ECC_MOD_ADD)
Function

ECC_MOD_ADD performs an addition of two points on an elliptic curve. The inputs and
output are in affine coordinates.

Table 11-41. ECC_MOD_ADD function properties

Property Notes

Mode value 0000_0000_0000_0000_1001 (output placed in B)

0000_0000_0001_0000_1001 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero The most
significant digit of N must be non-zero

• [A0, A1] = first addend in affine coordinates
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = second addend in affine coordinates
• B3 = ignored

Output [B1, B2] (or [A0, A1], if A output selected) = [A0, A1] + [B1, B2], where "+" represents an elliptic curve
point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

prime field and therefore are less than the modulus N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide-By-Zero Error is set if the most-significant digit of N = 0.

Flags set None

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 537

11.1.6.40 ECC Fp Point Add, Affine Coordinates, R2 Mod N Input
(ECC_MOD_ADD_R2) Function

ECC_MOD_ADD_R2 performs an addition of two points on an elliptic curve. The
addends are input and the sum is output in affine coordinates. Since
ECC_MOD_ADD_R2 has R2 mod N as an additional input, this function is more
efficient than ECC_MOD_ADD, which first must compute R2 mod N before performing
the addition.

Table 11-42. ECC_MOD_ADD_R2 function properties

Property Notes

Mode value 0001_0000_0000_0000_1001 (output placed in B)

0001_0000_0001_0000_1001 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero The most
significant digit of N must be non-zero

• [A0, A1] = first addend point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = second addend point in affine coordinates (x,y)
• B3 = R2 (R2 mod N) input

Output [B1, B2] (or [A0, A1], if A output selected) = [A0, A1] + [B1, B2], where "+" represents an elliptic curve
point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

prime field formed by N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide-By-Zero Error is set if the most-significant digit of N = 0.

Flags set None

11.1.6.41 ECC Fp Point Double, Affine Coordinates (ECC_MOD_DBL)
Function

ECC_MOD_DBL computes the double (B + B) of a point B on an elliptic curve. The
input and output are in affine coordinates.

Table 11-43. ECC_MOD_DBL function properties

Property Notes

Mode value 0000_0000_0000_0000_1010 (output placed in B)

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

538 NXP Semiconductors

Table 11-43. ECC_MOD_DBL function properties (continued)

Property Notes

0000_0000_0001_0000_1010 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1, A2] = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = input point in affine coordinates
• B3 = ignored

Output [B1, B2] (or [A0, A1], if A output selected) = [B1, B2] + [B1, B2], where "+" represents an elliptic-curve
point addition. Output is in affine coordinates (x, y).

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates B1 and B2, and elliptic curve parameters A3 and B0 are elements of the prime

field formed by N.

Side effects A0, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

11.1.6.42 ECC Fp Point Multiply, Affine Coordinates (ECC_MOD_MUL
and ECC_MOD_MUL_TEQ) Function

ECC_MOD_MUL computes the scalar multiplication of a point on an elliptic curve. The
input and output are in affine coordinates. ECC_MOD_MUL_TEQ computes the same
function, but with an added timing equalization security feature. Its computation run-time
is, for a given curve (N, A3, B0), constant for a given size of E. ECC_MOD_MUL in
general will run faster than ECC_MOD_MUL_TEQ, but will never run slower.

Table 11-44. ECC_MOD_MUL and ECC_MOD_MUL_TEQ function properties

Property Notes

Mode value for
ECC_MOD_MUL

0000_0000_0000_0000_1011 (output placed in B)

0000_0000_0001_0000_1011 (output placed in A)

Mode value for
ECC_MOD_MUL_T
EQ

0000_0000_0100_0000_1011 (output placed in B)

0000_0000_0101_0000_1011 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero
• E = scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 539

Table 11-44. ECC_MOD_MUL and ECC_MOD_MUL_TEQ function properties
(continued)

Property Notes

• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• The point (A0, A1) must be on the elliptic curve formed by (N, A3, B0).

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

• For k = 0, this function returns a point at infinity; that is (0,0) if curve parameter "b"
is nonzero and (0,1) otherwise.

• For k < 0, (that is, a negative scalar multiplication is required), its absolute value
should be provided to the PKHA; that is, k = abs(-k). After the computation is
complete, the formula -P= (x,-y) can be used to compute the "y" coordinate of the
effective final result, and other coordinates are the same.

11.1.6.43 ECC Fp Point Multiply, R2 Mod N Input, Affine Coordinates
(ECC_MOD_MUL_R2 and ECC_MOD_MUL_R2_TEQ)
Function

ECC_MOD_MUL_R2 computes a scalar multiplication of a point on an elliptic curve.
The input point and the output point are in affine coordinates. Since
ECC_MOD_MUL_R2 has R2 mod N as an additional input, this function is more
efficient than ECC_MOD_MUL, which first must compute R2 mod N before performing
the multiplication. ECC_MOD_MUL_R2_TEQ computes the same function, but with an
added timing equalization security feature. Its computation run-time is, for a given curve
(N, A3, B0), constant for a given size of E. ECC_MOD_MUL_R2 in general will run
faster than ECC_MOD_MUL_R2_TEQ, but will never run slower.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

540 NXP Semiconductors

Table 11-45. ECC_MOD_MUL_R2 and ECC_MOD_MUL_R2_TEQ function properties

Property Notes

Mode value for
ECC_MOD_MUL_
R2

0001_0000_0000_0000_1011 (output placed in B)

0001_0000_0001_0000_1011 (output placed in A)

Mode value for
ECC_MOD_MUL_
R2_TEQ

0001_0000_0100_0000_1011 (output placed in B)

0001_0000_0101_0000_1011 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• E = key, scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = R2 mod N, pre-computed as described in MOD_R2
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0 and A1 and elliptic curve parameters A3 and B0 are elements of the prime

field formed by the modulus N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

• For k = 0, this function returns a point at infinity; that is, (0,0) if curve parameter "b"
is nonzero and (0,1) otherwise.

• For k < 0, (that is, a negative scalar multiplication is required), its absolute value
should be provided to the PKHA; that is, k = abs(- k). After the computation is
complete, the formula -P = (x,-y) can be used to compute the "y" coordinate of the
effective final result, and other coordinate is the same.

11.1.6.44 ECC Fp Check Point (ECC_MOD_CHECK_POINT) Function

ECC_MOD_CHECK_POINT determines whether the point (x,y) is on the elliptic curve,
i.e. whether x and y satisfy the equation y3 = x3 + ax + b.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 541

ECC_MOD_CHECK_POINT checks whether x and y are < N. If not, the routine exits
with no flags set. If the input is O, the point at infinity, then PIZ is set and the routine
exits. It then computes y2 mod N and x3 + ax + b mod N. If they are equal, then the (x,y)
coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set meaning
that (x,y) are not part of the curve, so the point is invalid. All inputs remain unchanged.

Table 11-46. ECC_MOD_CHECK_POINT function properties

Property Notes

Mode value 0000_0000_0000_0001_1100

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Output • B2 = R2 mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

GCD is set if the point is on the curve (but not point at infinity).

11.1.6.45 ECC Fp Check Point, R2 Mod N Input, Affine Coordinates
(ECC_MOD_CHECK_POINT_R2) Function

ECC_MOD_CHECK_POINT_R2 determines whether the point (x,y) is on the elliptic
curve, i.e. whether x and y satisfy the equation y2 = x3 + ax + b.
ECC_MOD_CHECK_POINT_R2 checks whether x and y are < N. If not, the routine
exits with no flags set. If the input is O, the point at infinity, then PIZ is set and the
routine exits. It then computes y2 mod N and x3 + ax + b mod N. If they are equal, then
the (x,y) coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set
meaning that (x,y) are not part of the curve, so the point is invalid. All inputs remain

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

542 NXP Semiconductors

unchanged. Since this function takes R2 mod N as an additional input,
ECC_MOD_CHECK_POINT_R2 is more efficient than ECC_MOD_CHECK_POINT,
which first must compute R2 mod N before performing the point check.

Table 11-47. ECC_MOD_CHECK_POINT_R2 function properties

Property Notes

Mode value 0001_0000_0000_0001_1100

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = (f2m) R2 mod N, pre-computed as described in F2M_R2MODN (0Eh)
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

GCD is set if the point is on the curve (but not point at infinity).

ECC_MOD_CHECK_POINT_R2 checks whether x and y are < N. If not, the routine
exits with no flags set. If the input is O, the point at infinity, then PIZ is set and the
routine exits. It then computes y2 = x3 + ax + b mod N. If the equation is true, then the
(x,y) coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set,
meaning that (x,y) are not part of the curve, so the point is invalid. All inputs remain
unchanged.

11.1.6.46 ECC F2m Point Add, Affine Coordinates (ECC_F2M_ADD)
Function

ECC_F2M_ADD performs an addition of two points on an elliptic curve. The inputs and
output are in affine coordinates.

Table 11-48. ECC_F2M_ADD function properties

Property Notes

Mode value 0010_0000_0000_0000_1001 (output placed in B)

0010_0000_0001_0000_1001 (output placed in A)

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 543

Table 11-48. ECC_F2M_ADD function properties (continued)

Property Notes

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• [A0, A1] = first addend in affine coordinates
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter, where c = b2m-2

 mod n
• B1, B2] = second addend in affine coordinates
• B3 = ignored

Output P[B1, B2] (or P[A0, A1], if A output selected) = P[A0, A1] + P[B1, B2], where "+" represents an elliptic
curve point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1, and B2 and elliptic curve parameters A3 and B0 are elements of the

binary polynomial field N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide By Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set None

11.1.6.47 ECC F2m Point Add, Affine Coordinates, R2 Mod N Input
(ECC_F2M_ADD_R2) Function

ECC_F2M_ADD_R2 performs an addition of two points on an elliptic curve. The inputs
and output are in affine coordinates. Since this function takes R2 mod N as an additional
input, ECC_F2M_ADD_R2 is more efficient than ECC_F2M_ADD, which first must
compute R2 mod N before performing the addition.

Table 11-49. ECC_F2M_ADD_R2 function properties

Property Notes

Mode value 0011_0000_0000_0000_1001 (output placed in B)

0011_0000_0001_0000_1001 (output placed in A)

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• [A0, A1] = first addend in affine coordinates
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter, where c = b2m-2

 mod n. Must not be zero.
• [B1, B2] = second addend in affine coordinates
• B3 = R2 input

Output P[B1, B2] (or P[A0, A1], if A output selected) = P[A0, A1] + P[B1, B2], where "+" represents an elliptic
curve point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

544 NXP Semiconductors

Table 11-49. ECC_F2M_ADD_R2 function properties (continued)

Property Notes

• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

binary polynomial field.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide By Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set None

11.1.6.48 ECC F2m Point Double - Affine Coordinates (ECC_F2M_DBL)
Function

ECC_F2M_DBL computes the double (B + B) of a point B on an elliptic curve. The
input and output are in affine coordinates.

Table 11-50. ECC_F2M_DBL function properties

Property Notes

Mode value 0010_0000_0000_0000_1010 (output placed in B)

0010_0000_0001_0000_1010 (output placed in A)

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• A0, A1, A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter where c = b2m-2

 mod n
• [B1, B2] = input point in affine coordinates
• B3 = ignored

Output P[B1, B2] (or P[A0, A1], if A output selected) = P[B1, B2] + P[B1, B2], where "+" represents an elliptic-
curve point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates B1 and B2, and elliptic curve parameters A3 and B0 are elements of the binary

polynomial field formed by N.

Side effects A0, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set PIZ is set if the result is the point at infinity.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 545

11.1.6.49 ECC F2m Point Multiply, Affine Coordinates (ECC_F2M_MUL
and ECC_F2M_MUL_TEQ) Function

ECC_F2M_MUL computes the scalar multiplication of a point on an elliptic curve. The
input and output are in affine coordinates. ECC_F2M_MUL_TEQ performs the same
operation as ECC_F2M_MUL but with an added timing equalization security feature. Its
computation run-time is, for a given curve (N, A3, B0), constant for a given size of E. In
general ECC_F2M_MUL will run faster than ECC_F2M_MUL_TEQ, but will never run
slower.

Table 11-51. ECC_F2M_MUL and ECC_F2M_MUL_TEQ function properties

Property Notes

Mode value for
ECC_F2M_MUL

0010_0000_0000_0000_1011 (output placed in B)

0010_0000_0001_0000_1011 (output placed in A)

Mode value for
ECC_F2M_MUL_T
EQ

0010_0000_0110_0000_1011 (output placed in B)

0010_0000_0111_0000_1011 (output placed in A)

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• E = key, scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter where c = b2m-2

 mod n
• B1 = ignored
• B2 = ignored
• B3 = ignored

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes (irreducible polynomial of maximum degree 1023
• Point coordinates A0 and A1 and elliptic curve parameters A3 and B0 must be elements of the

binary polynomial field.

Side effects A0, A1 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

546 NXP Semiconductors

• For E = 0, this function returns a point at infinity (0,0).
• For E < 0, (that is, a negative scalar multiplication is required), its absolute value

should be provided to the PKHA; that is, k = -E). After the multiplication is
complete, the formula -P= (x, x+y) can be used to compute the y coordinate of the
effective final result; the x coordinate stays the same.

11.1.6.50 ECC F2m Point Multiply, R2 Mod N Input, Affine Coordinates
(ECC_F2M_MUL_R2 and ECC_F2M_MUL_R2_TEQ)
Function

ECC_F2M_MUL_R2 computes the scalar multiplication of a point on an elliptic curve.
The input and output are in affine coordinates. Since this function takes R2 mod N as an
additional input, ECC_F2M_MUL_R2 is more efficient than ECC_F2M_MUL, which
first must compute R2 mod N before performing the multiplication.
ECC_F2M_MUL_R2_TEQ performs the same operation as ECC_F2M_MUL_R2 but
with an added timing equalization security feature. Its computation run-time is, for a
given curve (N, A3, B0), constant for a given size of E. In general ECC_F2M_MUL_R2
will run faster than ECC_F2M_MUL_R2_TEQ, but will never run slower.

Table 11-52. ECC_F2M_MUL_R2 and ECC_F2M_MUL_R2_TEQ function properties

Property Notes

Mode value for
ECC_F2M_MUL_R
2

0011_0000_0000_0000_1011 (output placed in B)

0011_0000_0001_0000_1011 (output placed in A)

Mode value for
ECC_F2M_MUL_R
2_TEQ

0011_0000_0100_0000_1011 (output placed in B)

0011_0000_0101_0000_1011 (output placed in A)

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• E = key, scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter where c = b2m-2

 mod n and m = degree of polynomial M
• B1 = (f2m) R2 mod N, pre-computed as described in F2M_R2MODN (0Eh)
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equally size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes (irreducible polynomial of maximum degree 1023
• Point coordinates A0 and A1 and elliptic curve parameters A3 and B0 must be elements of the

binary polynomial field.

Side effects A0, A1, A2, and B3 are modified.

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 547

Table 11-52. ECC_F2M_MUL_R2 and ECC_F2M_MUL_R2_TEQ function properties
(continued)

Property Notes

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.
• C is Zero Error if B3 is zero.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

• For k = 0, this function returns a point at infinity (0,0).
• For k < 0, (that is, a negative scalar multiplication is required), its absolute value

should be provided to the PKHA; that is, k = abs(- k). After the computation is
complete, the formula -P = (x, x+y) can be used to compute the "y" coordinate of the
effective final result, and other coordinate is the same.

11.1.6.51 ECC F2m Check Point (ECC_F2M_CHECK_POINT) Function

This function determines whether the point (x,y) is on the elliptic curve, i.e. satisfies the
equation y3 + xy = x3 + ax2 + b.

Table 11-53. ECC_F2M_CHECK_POINT function properties

Property Notes

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Output • B2 = R2 mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

548 NXP Semiconductors

Table 11-53. ECC_F2M_CHECK_POINT function properties

Property Notes

GCD is set if the point is on the curve (but not point at infinity).

This function checks whether x and y are < N. If not, the routine exits with no flags set. If
the input is O, the point at infinity, then PIZ set and the routine exits. It then computes y2

mod N and x3 + ax + b mod N. If they are equal, then the (x,y) coordinates are on the
curve and the GCD flag is set. Otherwise, no flags are set meanning that (x,y) are not part
of the curve, so the point is invalid. All inputs remain unchanged..

11.1.6.52 ECC F2m Check Point, R2 (ECC_F2M_CHECK_POINT_R2)
Function

This function determines whether the point (x,y) is on the elliptic curve, i.e. satisfies the
equation y2 + xy = x3 + ax2 + b.

Since this function has R2 mod N as an additional input, it is more efficient than
ECC_F2M_CHECK_POINT, which first must compute R2 mod N before performing the
operaton.

Table 11-54. ECC_F2M_CHECK_POINT_R2 function properties

Property Notes

Input • N = modulus, an irreducible polynomial. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "c" parameter
• B1 = R2 mod N
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Output • B2 = curve "b" parameter = c4 mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

GCD is set if the point is on the curve (but not point at infinity).

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 549

This function checks whether x and y are < N. If not, the routine exits with no flags set. If
the input is O, the point at infinity, then PIZ set and the routine exits. It then computes y2

+ xy = x3 + ax2 + b mod N. If the equation is true, then the (x,y) coordinates are on the
curve and the GCD flag is set. Otherwise, no flags are set, meanning that (x,y) are not
part of the curve, so the point is invalid. All inputs remain unchanged. The output will not
be present if PIZ is set.

11.1.6.53 ECM Modular Multiplication (ECM_MOD_MUL and
ECM_MOD_MUL_TEQ) Function

ECM_MOD_MUL computes the scalar multiplication of a point on an elliptic curve in
Montgomery form. The input and output are just the x coordinates of the points.
ECM_MOD_MUL_TEQ computes the same function, but with an added timing
equalization security feature. Its computation run-time is, for a given curve (N, A3),
constant for a given size of E. ECM_MOD_MUL in general will run faster than
ECM_MOD_MUL_TEQ, but will never run slower.

This function computes a point multiplication on a Montgomery curve, using
Montgomery values, by means of a Montgomery ladder. At the end of the ladder, P2 = P3
+ P1, where P1 is the input and P3 is the result.

Table 11-55. ECM_MOD_MUL and ECM_MOD_MUL_TEQ function properties

Property Notes

Mode value for
ECM_MOD_MUL

0000_0000_0000_0100_1011 (output placed in B)

0000_0000_0000_0100_1011 (output placed in A)

Mode value for
ECM_MOD_MUL_
TEQ

0000_0000_0100_0100_1011 (output placed in B)

0000_0000_0101_0100_1011 (output placed in A)

Input • N = modulus, a prime number.
• E = scalar multiplier (k), any integer
• [A0] = multiplicand, an input point's affine x coordinate
• A2 = ignored
• A3 = elliptic curve a24 parameter, that is, (A+2)/4
• B0 = ignored
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1] (or P[A0], if A output selected) = E x P[A0], where "x" denotes elliptic curve scalar point
multiplication. Output is the resulting point's affine x coordinate.

• N1 = R2
• A1 = X2R, the X the (X,Z) scalar multiplication, with the Montgomery factor. P2x = X2R/Z2R
• A2 = Z2R, the Z of the (X,Z) scalar multiplication, with the Montgomery factor
• A3 = a24R, the a24 input, with the Montgomery factor
• B0 = X3R, the X result of the (X,Z) scalar multiplication, with the Montgomery factor. P3x =

X3R/Z3R

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

550 NXP Semiconductors

Table 11-55. ECM_MOD_MUL and ECM_MOD_MUL_TEQ function properties
(continued)

Property Notes

• B2 = Z3R, the Z result of the (X,Z) scalar multiplication, with the Montgomery factor
• B3 = X1R, the x input, with the Montgomery factor

Requirements • Maximum modulus size = 128 bytes
• The x in (A0) should be on the elliptic curve formed by (N, A3 and "B").

Side effects All quadrants of A, B, and N are modified except N0.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.

Flags set PIZ is set if the result is the point at infinity.

11.1.6.54 ECM Fp Point Multiply, R2 Mod N Input, Affine Coordinates
(ECM_MOD_MUL_R2 and ECM_MOD_MUL_R2_TEQ)
Function

ECM_MOD_MUL_R2 computes a scalar multiplication of a point on an elliptic curve in
Montgomery form. The input and output are just the x coordinates of the points. Since
ECM_MOD_MUL_R2 has R2 mod N as an additional input, this function is more
efficient than ECM_MOD_MUL, which first must compute R2 mod N before performing
the multiplication. ECM_MOD_MUL_R2_TEQ computes the same function, but with an
added timing equalization security feature. Its computation run-time is, for a given curve
(N, A3), constant for a given size of E. ECM_MOD_MUL_R2 in general will run faster
than ECM_MOD_MUL_R2_TEQ, but will never run slower.

This function computes a point multiplication on a Montgomery curve, using
Montgomery values, by means of a Montgomery ladder. At the end of the ladder, P2 = P3
+ P1, where P1 is the input and P3 is the result.

Table 11-56. ECM_MOD_MUL_R2 and ECM_MOD_MUL_R2_TEQ function properties

Property Notes

Mode value for
ECM_MOD_MUL_
R2

0001_0000_0000_1000_1011 (output placed in B)

0001_0000_0001_1000_1011 (output placed in A)

Mode value for
ECM_MOD_MUL_
R2_TEQ

0001_0000_0100_1000_1011 (output placed in B)

0001_0000_0101_1000_1011 (output placed in A)

Input • N = modulus, a prime number.
• E = scalar multiplier (k), any integer
• [A0] = multiplicand, an input point's affine x coordinate

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 551

Table 11-56. ECM_MOD_MUL_R2 and ECM_MOD_MUL_R2_TEQ function properties
(continued)

Property Notes

• A2 = ignored
• A3 = elliptic curve a24 parameter, that is, (A+2)/4
• B0 = ignored
• B1 = R2 mod N, pre-computed as described in MOD_R2
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1] (or P[A0], if A output selected) = E x P[A0], where "x" denotes elliptic curve scalar point
multiplication. Output is the resulting point's affine x coordinate.

• N1 = R2
• A1 = X2R, the X the (X,Z) scalar multiplication, with the Montgomery factor. P2x = X2R/Z2R
• A2 = Z2R, the Z of the (X,Z) scalar multiplication, with the Montgomery factor
• A3 = a24R, the a24 input, with the Montgomery factor
• B0 = X3R, the X result of the (X,Z) scalar multiplication, with the Montgomery factor. P3x =

X3R/Z3R
• B2 = Z3R, the Z result of the (X,Z) scalar multiplication, with the Montgomery factor
• B3 = X1R, the x input, with the Montgomery factor

Requirements • Maximum modulus size = 128 bytes
• The x in (A0) should be on the elliptic curve formed by (N, A3 and "B").

Side effects All quadrants of A, B, and N are modified except N0.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.

Flags set PIZ is set if the result is the point at infinity.

11.1.6.55 ECT Modular Multiplication (ECT_MOD_MUL and
ECT_MOD_MUL_TEQ) Function

ECT_MOD_MUL computes the scalar multiplication of a point on an elliptic curve. The
input and output are in affine coordinates. ECT_MOD_MUL_TEQ computes the same
function, but with an added timing equalization security feature. Its computation run-time
is, for a given curve (N, A3, B0), constant for a given size of E. ECT_MOD_MUL in
general will run faster than ECT_MOD_MUL_TEQ, but will never run slower.

Table 11-57. ECT_MOD_MUL and ECT_MOD_MUL_TEQ function properties

Property Notes

Mode value for
ECT_MOD_MUL

0000_0000_0000>_1000_1011 (output placed in B)

0000_0000_0000_1000_1011 (output placed in A)

Mode value for
ECT_MOD_MUL_T
EQ

0000_0000_0100_1000_1011 (output placed in B)

0000_0000_0101_1000_1011 (output placed in A)

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

552 NXP Semiconductors

Table 11-57. ECT_MOD_MUL and ECT_MOD_MUL_TEQ function properties
(continued)

Property Notes

Input • N = modulus, a prime number. The most significant digit of N must be non-zero
• E = scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" (or should this be "d") parameter
• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• The point (A0, A1) must be on the elliptic curve formed by (N, A3, B0).

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

• For k = 0, this function returns a point at infinity; that is (0,0) if curve parameter "b"
is nonzero and (0,1) otherwise.

• For k < 0, (that is, a negative scalar multiplication is required), its absolute value
should be provided to the PKHA; that is, k = abs(-k). After the computation is
complete, the formula -P= (x,-y) can be used to compute the "y" coordinate of the
effective final result, and other coordinates are the same.

11.1.6.56 ECT Fp Point Multiply, R2 Mod N Input, Affine Coordinates
(ECT_MOD_MUL_R2 and ECT_MOD_MUL_R2_TEQ)
Function

ECT_MOD_MUL_R2 computes a scalar multiplication of a point on an elliptic curve.
The input point and the output point are in affine coordinates. Since
ECT_MOD_MUL_R2 has R2 mod N as an additional input, this function is more
efficient than ECT_MOD_MUL, which first must compute R2 mod N before performing

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 553

the multiplication. ECT_MOD_MUL_R2_TEQ computes the same function, but with an
added timing equalization security feature. Its computation run-time is, for a given curve
(N, A3, B0), constant for a given size of E. ECT_MOD_MUL_R2 in general will run
faster than ECT_MOD_MUL_R2_TEQ, but will never run slower.

Table 11-58. ECT_MOD_MUL_R2 and ECT_MOD_MUL_R2_TEQ function properties

Property Notes

Mode value for
ECT_MOD_MUL_
R2

0001_0000_0000_1000_1011 (output placed in B)

0001_0000_0001_1000_1011 (output placed in A)

Mode value for
ECT_MOD_MUL_
R2_TEQ

0001_0000_0100_1000_1011 (output placed in B)

0001_0000_0101_1000_1011 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• E = key, scalar multiplier (k), any integer
• [A0, A1] = multiplicand, an input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = R2 mod N, pre-computed as described in MOD_R2
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four equal-size segments of A and B memory locations.

Output • P[B1, B2] (or P[A0, A1], if A output selected) = E x P[A0, A1], where "x" denotes elliptic curve
scalar point multiplication. Output is in affine coordinates (x,y).

• B0 = undefined
• B3 = undefined

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0 and A1 and elliptic curve parameters A3 and B0 are elements of the prime

field formed by the modulus N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Key Size Error is set if size of E = 0 or size of E > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

The following special cases should be noted:

• For k = 0, this function returns a point at infinity; that is, (0,0) if curve parameter "b"
is nonzero and (0,1) otherwise.

• For k < 0, (that is, a negative scalar multiplication is required), its absolute value
should be provided to the PKHA; that is, k = abs(- k). After the computation is
complete, the formula -P = (x,-y) can be used to compute the "y" coordinate of the
effective final result, and other coordinate is the same.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

554 NXP Semiconductors

11.1.6.57 ECT Fp Point Add, Affine Coordinates (ECT_MOD_ADD)
Function

ECT_MOD_ADD performs an addition of two points on an elliptic curve. The inputs and
output are in affine coordinates.

Table 11-59. ECT_MOD_ADD function properties

Property Notes

Mode value 0000_0000_0000_1000_1001 (output placed in B)

0000_0000_0001_1000_1001 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero The most
significant digit of N must be non-zero

• [A0, A1] = first addend in affine coordinates
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = second addend in affine coordinates
• B3 = ignored

Output [B1, B2] (or [A0, A1], if A output selected) = [A0, A1] + [B1, B2], where "+" represents an elliptic curve
point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

prime field and therefore are less than the modulus N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide-By-Zero Error is set if the most-significant digit of N = 0.

Flags set None

11.1.6.58 ECT Fp Point Add, Affine Coordinates, R2 Mod N Input
(ECT_MOD_ADD_R2) Function

ECT_MOD_ADD_R2 performs an addition of two points on an elliptic curve. The
addends are input and the sum is output in affine coordinates. Since
ECT_MOD_ADD_R2 has R2 mod N as an additional input, this function is more
efficient than ECT_MOD_ADD, which first must compute R2 mod N before performing
the addition.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 555

Table 11-60. ECT_MOD_ADD_R2 function properties

Property Notes

Mode value 0001_0000_0000_1000_1001 (output placed in B)

0001_0000_0001_1000_1001 (output placed in A)

Input • N = modulus, a prime number. The most significant digit of N must be non-zero The most
significant digit of N must be non-zero

• [A0, A1] = first addend point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• [B1, B2] = second addend point in affine coordinates (x,y)
• B3 = R2 (R2 mod N) input

Output [B1, B2] (or [A0, A1], if A output selected) = [A0, A1] + [B1, B2], where "+" represents an elliptic curve
point addition. Output is in affine coordinates.

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 128 bytes
• Point coordinates A0, A1, B1 and B2, and elliptic curve parameters A3 and B0 are elements of the

prime field formed by N.

Side effects A0, A1, A2, A3 and B3 are modified.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 128.
• Modulus Even Error is set if N is even.
• A Size Error is set if the size of A is greater than size of N.
• B Size Error will be set if size of B is greater than size of N.
• Divide-By-Zero Error is set if the most-significant digit of N = 0.

Flags set None

11.1.6.59 ECT Fp Check Point (ECT_MOD_CHECK_POINT) Function

ECT_MOD_CHECK_POINT determines whether the point (x,y) is on the elliptic curve,
i.e. whether x and y satisfy the equation y3 = x3 + ax + b.

ECT_MOD_CHECK_POINT checks whether x and y are < N. If not, the routine exits
with no flags set. If the input is O, the point at infinity, then PIZ is set and the routine
exits. It then computes y2 mod N and x3 + ax + b mod N. If they are equal, then the (x,y)
coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set meaning
that (x,y) are not part of the curve, so the point is invalid. All inputs remain unchanged.

Table 11-61. ECT_MOD_CHECK_POINT function properties

Property Notes

Mode value 0000_0000_0000_1001_1100

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

556 NXP Semiconductors

Table 11-61. ECT_MOD_CHECK_POINT function properties (continued)

Property Notes

• B1 = ignored
• B2 = ignored
• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Output • B2 = R2 mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

GCD is set if the point is on the curve (but not point at infinity).

11.1.6.60 ECT Fp Check Point, R2 (ECT_MOD_CHECK_POINT_R2)
Function

ECT_MOD_CHECK_POINT_R2 determines whether the point (x,y) is on the elliptic
curve, i.e. whether x and y satisfy the equation y3 = x3 + ax + b.

ECT_MOD_CHECK_POINT_R2 checks whether x and y are < N. If not, the routine
exits with no flags set. If the input is O, the point at infinity, then PIZ is set and the
routine exits. It then computes y2 mod N and x3 + ax + b mod N. If they are equal, then
the (x,y) coordinates are on the curve and the GCD flag is set. Otherwise, no flags are set
meaning that (x,y) are not part of the curve, so the point is invalid. All inputs remain
unchanged. Since ECT_MOD_CHECK_POINT_R2 has R2 mod N as an additional input,
this function is more efficient than ECT_MOD_CHECK_POINT, which first must
compute R2 mod N before performing the operaton.

Table 11-62. ECT_MOD_CHECK_POINT_R2 function properties

Property Notes

Mode value 0001_0000_0000_1001_1100

Input • N = modulus, a prime number. The most significant digit of N must be non-zero.
• [A0, A1] = a possible input point in affine coordinates (x,y)
• A2 = ignored
• A3 = elliptic curve "a" parameter
• B0 = elliptic curve "b" parameter
• B1 = ignored
• B2 = ignored

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 557

Table 11-62. ECT_MOD_CHECK_POINT_R2 function properties (continued)

Property Notes

• B3 = ignored
• A0-A3 and B0-B3 are four, equal-size segments of A and B memory locations.

Output • B2 = R2 mod N

Requirements • Minimum modulus size = 1 byte
• Maximum modulus size = 512 bytes

Side effects Various quadrants are modified, but inputs are unchanged.

Errors reported • Data Size Error is set if size of N = 0 or size of N > 512.
• Modulus Even Error is set if N is even.
• A Size Error is set if size of A is greater than size of N.
• B Size Error is set if size of B is greater than size of N.
• Divide-by-Zero Error is set if the most significant digit of N = 0.

Flags set PIZ is set if the result is the point at infinity.

GCD is set if the point is on the curve (but not point at infinity).

11.1.6.61 Copy memory, N-Size and Source-Size (COPY_NSZ and
COPY_SSZ)

These functions copy data from a PKHA register (or register quadrant) specified as a
source, to another PKHA register (or register quadrant) specified as a destination. COPY
NSZ copies the amount of data specified by the N Size register. COPY_SSZ copies the
amount of data specified in the source register's size register. The source and destination
are specified in the Mode Value. The source can be A, B or N. The destination can be A,
B, E or N, but not the same as the source.

In a quadrant copy, when NSZ/SSZ exceeds the length of a quadrant, the copy will carry
on into the next (higher-numbered) quadrant(s).

When the copy operation has completed, the destination register's size register will be
updated to contain the number of bytes copied.

Table 11-63. COPY_NSZ and COPY_SSZ function
properties

Property Notes

Mode value Bits 19:17 Bits 16,11,10 Bits 9:8 Bits 7:6 Bits 5:0

Source Register Destination
Register

Source
Segment

Destination
Segment

Function Code

000 = A Register 000 = A Register 00 = Segment 0 00 = Segment 0
01_0000 =
Copy_NSZ

01_0001 = Copy_SSZ

001 = B Register 001 = B Register 01 = Segment 1 01 = Segment 1

011 = N Register 011 = N Register 10 = Segment 2 10 = Segment 2

010 = E Register 11 = Segment 3 11 = Segment 3

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

558 NXP Semiconductors

Table 11-63. COPY_NSZ and COPY_SSZ function properties
(continued)

Property Notes

Bits 19:17 Bits 16,11,10 Bits 9:8 Bits 7:6 Bits 5:0

Source Register Destination
Register

Source
Segment

Destination
Segment

Function Code

other values
reserved

other values
reserved

1. If the destination register is E, the source and destination seqments must be 00b.

Input None

Output None

Requirements For Copy_NSZ, the N-size Register must contain a valid value.

For Copy_SSZ, the source register's size register must contain a valid value.

Side effects The destination register's size register is updated to the number of bytes copied.

Errors reported None

Flags set None

1. If the destination register is E, the source and destination seqments must be 00b.

11.1.6.62 Right Shift A (R_SHIFT) function
Table 11-64. R_SHIFT function properties

Property Notes

Mode value 0000_0000_0000_0001_1101 (output placed in B)

0000_0000_0001_0001_1101 (output placed in A)

Input • A = Input value to be shifted. Bytes above A Size will be assumed to be zero, regardless of the
contents of the PKHA A RAM.

• B = Number of bit positions that the A RAM will be shifted (Only the least-significant two bytes are
used. The upper bytes are ignored.)

Output B (or A, if selected) = the contents of PKHA A RAM (with zeros substituted for bytes above A Size),
right-shifted by the number of bit positions specified in the least-significant two bytes of PKHA B RAM,
and zero-filled on the left.

Requirements none

Side effects B (or A) is modified.

Errors reported none

Flags set none

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 559

11.1.6.63 Compare A B (COMPARE) function
Table 11-65. COMPARE function properties

Property Notes

Mode value 0000_0000_0000_0001_1110

Input • A = Value to be compared
• B = Value to be compared
• A Size = the number of least-significant bits that will be compared

Output None (other than flags)

Requirements A Size must be >= B Size.

Side effects none

Errors reported If B Size > A Size a "B Size" error will be generated.

Flags set • PKHA_GCD_ONE is set if B > A
• PKHA_ZERO is set if B == A
• no flag is set if B < A

11.1.6.64 Evaluate A (EVALUATE) function
Table 11-66. EVALUATE function properties

Property Notes

Mode value SB00_0000_0000_0001_1111 (output placed in B)

SB00_0000_0001_0001_1111 (do not modify B)

• If the S bit is set, PKHA will push to the output FIFO a single DWord with the value
000_000_000_0sss, where sss is the updated A Size.

• If the B bit is set, PKHA will push to the output FIFO a single DWord with the value
000_000_000_bbbb, where bbbb is the updated number of bits in A.

• If the S bit is set and the B bit is set, the A-Size DWord will be pushed before the number-of-bits-
in-A Dword.

Input • A = Value to be evaluated

Output • A Size is updated with the number of least-significant non-zero bytes, i.e. the position of the most-
significant non-zero byte (least-significant byte is byte-position 0). This evaluation considers only
the bytes specified by the incoming value of A Size. This allows the incoming value of A Size to be
set so that A0 will be evaluated, ignoring the values in A1, A2 and A3, or the incoming value could
be set so that (A1,A0) will be evaluated, ignoring A2 and A3, or (A2,A1,A0) could be evaluated,
ignoring A3.

• If the mode value specifies that the output is to be placed in B, the updated value of A Size will be
copied into the least-significant two bytes of B and B Size will be set to 2. If the "do not modify B"
option is selected, the updated value of A Size will not be copied into B.

Requirements none

Side effects • A Size will be modified.
• B Size may be modified.
• One or two DWords mmay be pushed to the output FIFO.

Errors reported none

Flags set • PKHA_GCD_ONE is set if A == 1
• PKHA_ZERO is set if A == 0. A Size (and number of bits in A) will be set to 0. Note that this could

cause an A Size error in a subsequent PKHA operation.

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

560 NXP Semiconductors

11.1.7 Special values for common ECC domains

Software can sometimes use the PKHA more effectively if the Montgomery Conversion
Factor (R2 mod N) is either provided or previously used to convert other inputs into
Montgomery form. For convenience, the conversion factors for common ECC domains
have been computed and published here. Some of the other domain values are provided
to aid in definite identification of the domain, in the case that the name is not found or is
not an exact match.

The following tables give these values for the q and r modulus values found in ECC
domains. These associated Montgomery values are dependent upon the PKHA digit size
(16, 32, 64, 128). These tables are for a PKHA with a 32-bit digit.

ECC F2m requires a c (also called b') parameter for the elliptic curve in place of the b
value. Table 11-68 provides these values in addition to the Montgomery values. The b'
values are universal and do not change with PKHA digit size.

The following variable definitions apply to both tables. Variable names (q, r, b, c) follow
the conventions of IEEE Std 1363.
Name

The names in this table are associated with, or named in, various published standards.
Neither the names nor the domains are guaranteed to be complete. Two values of the
domain parameters are provided for purposes of identification.

• Those beginning with "P-", "K-", and "B-" are in FIPS 186 from NIST, found at
www.csrc.nist.gov

• Those beginning with "ansix9" are names from ANS X9.62-2005; those beginning
with "prime" or "c2pnb" are from an earlier ANSI document

• Those beginning with "sec" are from SEC 2 from the Standards for Efficient
Cryptography group, found at www.secg.org

• Those beginning with "wtls" are taken from Wireless Transport Layer Security /
Wireless Access Protocol, Version 06-Apr-2001, WAP-261-WTLS-20010406-a.
Not all software libraries agree with the mapping of these names to values; care
has been taken to identify the values based upon the source documentation.

• Those beginning with "ECDSA", "ECP", "EC2N", "ecp_group", and "Oakley" are
from various RFCs found at www.ietf.org

• Those beginning with "GOST" are from the Russian standard GOST R 3410-2001
• Those beginning with "brainpool" are from ECC Brainpool, found at www.ecc-

brainpool.org and republished in RFC 5639

R

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 561

http://www.csrc.nist.gov
http://www.secg.org
http://www.ietf.org
http://www.ecc-brainpool.org
http://www.ecc-brainpool.org

R is the Montgomery factor. Its value is 2SD, where D is the PKHA digit size in bits,
and S is the minimum number of digits needed to hold the modulus. As an example,
for a modulus of nine bytes (72 bits), R would be

• 280 for a PKHA with digit size of 16 bits
• 296 for a PKHA with digit size of 32 bits
• 2128 for a PKHA with digit size of 64 or 128 bits

q

This is the field-defining value for the elliptic curve. For Fp curves, it is the prime
number used as the modulus for all point arithmetic; it is named p in some other
publications. For F2m curves, it is the irreducible binary polynomial used as the
modulus for all point arithmetic. It is not, as usually defined, q = 2m, i.e. the size of the
field.

L

This is the number of bytes needed to hold q and each of its associated values:
R2modq, a,b,c, the point coordinates x and y, the result of an ECDH key agreement,
etc.

R2modq

This is R2 mod q, the Montgomery Conversion Factor when q is the modulus.
r

This is the (usually prime) number which is the order of G, the generator point. It is
also usually used as the modulus for the non-ECC-related arithmetic in an ECC
primitive. This variable is named n in some other publications.

N

This is the number of bytes needed to hold r and each of its associated values:
R2modr, private keys, each of the two components of an ECDSA signature, etc.

R2modr

This is R2 mod r, the Montgomery Conversion Factor when r is the modulus.
b / c (b')

b is the coefficient for the x0 (ones) term in an F2m elliptic curve equation. Its
relationship with c is b = c4. c is sometimes referred to as b' in NXP documentation.

A / a24

a24 is the special value derived from the A coefficient for the y2term in a
Montgomery-form elliptic curve equation. Its relationship with A is a24 = (A+2)/4.

The domains in the table are ordered by size.

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits

Name L N

var Value (hex, decimal, sums of powers)

secp112r1

wtls6

14 14

q 0xDB7C2ABF62E35E668076BEAD208B

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

562 NXP Semiconductors

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

4451685225093714772084598273548427

R2modq 0x0000000000000000000000000009

r 0xDB7C2ABF62E35E7628DFAC6561C5

4451685225093714776491891542548933

R2modr 0xDA4A43AD7F34245D42B9C948C559

secp112r2 14 14

q 0xDB7C2ABF62E35E668076BEAD208B

4451685225093714772084598273548427

R2modq 0x0000000000000000000000000009

r 0x36DF0AAFD8B8D7597CA10520D04B

1112921306273428674967732714786891

R2modr 0x2049C67E5F79E8C06B7825955374

wtls8 14 15

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFDE7

5192296858534827628530496329219559

2112 - 29 - 24 - 23 - 1

R2modq 0x0000000000000004667100000000

r 0x0100000000000001ECEA551AD837E9

5192296858534827767273836114360297

R2modr 0x00E074FD104C86569DB6C204A52932

secp128r1 16 16

q 0xFFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF

340282366762482138434845932244680310783

2128 - 297 - 1

R2modq 0x00000024000000040000000800000011

r 0xFFFFFFFE0000000075A30D1B9038A115

340282366762482138443322565580356624661

R2modr 0x71875047CDD8151626BC6448FADE9BED

secp128r2 16 16

q 0xFFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF

340282366762482138434845932244680310783

2128 - 297 - 1

R2modq 0x00000024000000040000000800000011

r 0x3FFFFFFF7FFFFFFFBE0024720613B5A3

85070591690620534603955721926813660579

R2modr 0x0EFCA409C09D126A99CD2E9404A3B434

secp160k1 20 21

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 563

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

ansix9p160k1 q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73

1461501637330902918203684832716283019651637554291

2160 - 232 - 214 - 212 - 29 - 28 - 27 - 23 - 22 - 1

R2modq 0x0000000000000000000000010000A71A1B44BBA9

r 0x0100000000000000000001B8FA16DFAB9ACA16B6B3

1461501637330902918203686915170869725397159163571

R2modr 0x00CDCF2BABDFE35D2F4D8A8AAD0F8494330E687AAF

secp160r1

ansix9p160r1

wtls7

20 21

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF

1461501637330902918203684832716283019653785059327

2160 - 231 - 1

R2modq 0x0000000000000000000000004000000100000001

r 0x0100000000000000000001F4C8F927AED3CA752257

1461501637330902918203687197606826779884643492439

R2modr 0x00A0E626837A981E4B3CDC3854085E335F6744F8A4

secp160r2

ansix9p160r2

20 21

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73

1461501637330902918203684832716283019651637554291

2160 - 232 - 214 - 212 - 29 - 28 - 27 - 23 - 22 - 1

R2modq 0x0000000000000000000000010000A71A1B44BBA9

r 0x0100000000000000000000351EE786A818F3A1A16B

1461501637330902918203685083571792140653176136043

R2modr 0x0076E5A1814769EF9E8DD4D69E29AEB02AD8C126C7

wtls9 20 21

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC808F

1461501637330902918203684832716283019655932313743

2160 - 217 - 216 - 214 - 213 - 212 - 211 - 210 - 29 - 28 - 26 - 25 - 24 - 1

R2modq 0x0000000000000000000000000000000C3C174FE1

r 0x0100000000000000000001CDC98AE0E2DE574ABF33

1461501637330902918203687013445034429194588307251

R2modr 0x00CC3AB9A731EBB2AA87D1BED0AEF6B4CF5840D789

brainpoolP160r1 20 20

q 0xE95E4A5F737059DC60DFC7AD95B3D8139515620F

1332297598440044874827085558802491743757193798159

R2modq 0x6CF12F81C0CA7EF8FED717E0B333F8D625BC14FF

r 0xE95E4A5F737059DC60DF5991D45029409E60FC09

1332297598440044874827085038830181364212942568457

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

564 NXP Semiconductors

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

R2modr 0x2BC73851FC9BE6F69E31FE16FC61D4351FDF90EA

brainpoolP160t1 20 20

q 0xE95E4A5F737059DC60DFC7AD95B3D8139515620F

1332297598440044874827085558802491743757193798159

R2modq 0x6CF12F81C0CA7EF8FED717E0B333F8D625BC14FF

r 0xE95E4A5F737059DC60DF5991D45029409E60FC09

1332297598440044874827085038830181364212942568457

R2modr 0x2BC73851FC9BE6F69E31FE16FC61D4351FDF90EA

P-192

secp192r1

ansix9p192r1

prime192v1

ECPRGF192Random

24 24

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF

6277101735386680763835789423207666416083908700390324961279

2192 - 264 - 1

R2modq 0x000000000000000100000000000000020000000000000001

r 0xFFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831

6277101735386680763835789423176059013767194773182842284081

R2modr 0x28BE5677EA0581A24696EA5BBB3A6BEECE66BACCDEB35961

secp192k1

ansix9p192k1

24 24

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37

6277101735386680763835789423207666416102355444459739541047

2192 - 232 - 212 - 28 - 27 - 26 - 23 - 1

R2modq 0x0000000000000000000000000000000100002392013C4FD1

r 0xFFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D

6277101735386680763835789423061264271957123915200845512077

R2modr 0x6A21191C2EC4B2B1F0F4F172195E97E2461C1989250F0702

prime192v2 24 24

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF

6277101735386680763835789423207666416083908700390324961279

2192 - 264 - 1

R2modq 0x000000000000000100000000000000020000000000000001

r 0xFFFFFFFFFFFFFFFFFFFFFFFE5FB1A724DC80418648D8DD31

6277101735386680763835789423078825936192100537584385056049

R2modr 0xA4FEB8C277C030E139DA8CFB4E35E1F62814A261001BE8FF

prime192v3 24 24

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF

6277101735386680763835789423207666416083908700390324961279

2192 - 264 - 1

R2modq 0x000000000000000100000000000000020000000000000001

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 565

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

r 0xFFFFFFFFFFFFFFFFFFFFFFFF7A62D031C83F4294F640EC13

6277101735386680763835789423166314882687165660350679936019

R2modr 0x45BCB42FF1CC05D0194D076B366D09BF0305982367330969

brainpoolP192r1 24 24

q 0xC302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297

4781668983906166242955001894344923773259119655253013193367

R2modq 0xB6225126EED34F1033BF484602C3FE69E2474C6972C7B21A

r 0xC302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4ACC1

4781668983906166242955001894269038308119863659119834868929

R2modr 0x98769B9CE772102BBF4AFD5DBF53AFF0B4727C80E407E8F8

brainpoolP192t1 24 24

q 0xC302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297

4781668983906166242955001894344923773259119655253013193367

R2modq 0xB6225126EED34F1033BF484602C3FE69E2474C6972C7B21A

r 0xC302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4ACC1

4781668983906166242955001894269038308119863659119834868929

R2modr 0x98769B9CE772102BBF4AFD5DBF53AFF0B4727C80E407E8F8

P-224

secp224r1

ansix9p224r1

wtls12

ECPRGF224Random

28 28

q 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001

26959946667150639794667015087019630673557916260026308143510066298881

R2modq 0x00000000FFFFFFFFFFFFFFFFFFFFFFFE000000000000000000000001

r 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D

26959946667150639794667015087019625940457807714424391721682722368061

R2modr 0xD4BAA4CF1822BC47B1E979616AD09D9197A545526BDAAE6C3AD01289

secp224k1

ansix9p224k1

28 29

q 0xFFFEFFFFE56D

26959946667150639794667015087019630673637144422540572481099315275117

2224 - 232 - 212 - 211 - 29 - 27 - 24 - 21 - 1

R2modq 0x00000000000000000000000000000000000000010000352602C23069

r 0x010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7

26959946667150639794667015087019640346510327083120074548994958668279

R2modr 0x00993FF72BB882BD88BBFF32E48BE0320816F60AF534CE24FBEC9FEAA0

brainpoolP224r1 28 28

q 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

22721622932454352787552537995910928073340732145944992304435472941311

R2modq 0x0578FD592E6A6CE43FE8A2AA96AF774C43C20E727867CA8064DCD04F

r 0xD7C134AA264366862A18302575D0FB98D116BC4B6DDEBCA3A5A7939F

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

566 NXP Semiconductors

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

22721622932454352787552537995910923612567546342330757191396560966559

R2modr 0x4A73A6563211A5611E9CAE249F24919B9399652CADDAF8AA486CA401

brainpoolP224t1 28 28

q 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

22721622932454352787552537995910928073340732145944992304435472941311

R2modq 0x0578FD592E6A6CE43FE8A2AA96AF774C43C20E727867CA8064DCD04F

r 0xD7C134AA264366862A18302575D0FB98D116BC4B6DDEBCA3A5A7939F

22721622932454352787552537995910923612567546342330757191396560966559

R2modr 0x4A73A6563211A5611E9CAE249F24919B9399652CADDAF8AA486CA401

prime239v1 30 30

q 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF

883423532389192164791648750360308885314476597252960362792450860609699
839

R2modq 0x0000000000000005000000000005FFFFFFFFFFFC00000000000800000000

r 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF9E5E9A9F5D9071FBD1522688909D0B

883423532389192164791648750360308884807550341691627752275345424702807
307

R2modr 0x2BE4B1BE15BDEB5DF3096A7BE4944FA0CB87DC9852A129052EC789ED615B

prime239v2 30 30

q 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF

883423532389192164791648750360308885314476597252960362792450860609699
839

R2modq 0x0000000000000005000000000005FFFFFFFFFFFC00000000000800000000

r 0x7FFFFFFFFFFFFFFFFFFFFFFF800000CFA7E8594377D414C03821BC582063

883423532389192164791648750360308886392687657546993855147765732451295
331

R2modr 0x76CF025EBF73DDE8A5D15F0C7C29FF23EED0AE5C096A0D32ABCB4B16B765

prime239v3 30 30

q 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF

883423532389192164791648750360308885314476597252960362792450860609699
839

R2modq 0x0000000000000005000000000005FFFFFFFFFFFC00000000000800000000

r 0x7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF975DEB41B3A6057C3C432146526551

883423532389192164791648750360308884771190369765922550517967171058034
001

R2modr 0x11500EB94E46F16737BEB7A266592D93C18845A5EB3F814C07B00EA6ACF5

P-256

secp256r1

ansix9p256r1

32 32

q 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 567

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

prime256v1

ECDSA-256

ecp_group_19

ECPRGF256Random

115792089210356248762697446949407573530086143415290314195533631308867
097853951

R2modq 0x00000004FFFFFFFDFFFFFFFFFFFFFFFEFFFFFFFBFFFFFFFF000000000000000
3

r 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632
551

115792089210356248762697446949407573529996955224135760342422259061068
512044369

R2modr 0x66E12D94F3D956202845B2392B6BEC594699799C49BD6FA683244C95BE79EEA
2

secp256k1

ansix9p256k1

32 32

q 0xFFFEFFFFF
C2F

115792089237316195423570985008687907853269984665640564039457584007908
834671663

2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1

R2modq 0x0001000007A2000E90A1

r 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD036
4141

115792089237316195423570985008687907852837564279074904382605163141518
161494337

R2modr 0x9D671CD581C69BC5E697F5E45BCD07C6741496C20E7CF878896CF21467D7D1
40

brainpoolP256r1 32 32

q 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E537
7

768849563970453442208097466290016490930379502009430552037356014450315
16197751

R2modq 0x4717AA21E5957FA8A1ECDACD6B1AC8075CCE4C26614D4F4D8CFEDF7BA6465
B6C

r 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856
A7

768849563970453442208097466290016490927375317844145295387555190630635
36359079

R2modr 0x0B25F1B9C32367629B7F25E76C815CB0F35D176A1134E4A0E1D8D8DE3312FC
A6

brainpoolP256t1 32 32

q 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E537
7

768849563970453442208097466290016490930379502009430552037356014450315
16197751

R2modq 0x4717AA21E5957FA8A1ECDACD6B1AC8075CCE4C26614D4F4D8CFEDF7BA6465
B6C

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

568 NXP Semiconductors

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

r 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856
A7

768849563970453442208097466290016490927375317844145295387555190630635
36359079

R2modr 0x0B25F1B9C32367629B7F25E76C815CB0F35D176A1134E4A0E1D8D8DE3312FC
A6

GOSTR3410-
CryptoPro-A

32 32

q 0xFFF
D97

115792089237316195423570985008687907853269984665640564039457584007913
129639319

2256 - 29 - 26 - 25 - 23 - 1

R2modq 0x0005CF11

r 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6C611070995AD10045841B09B761B89
3

115792089237316195423570985008687907853073762908499243225378155805079
068850323

R2modr 0x551FE9CB451179DBF74885D08A3714C6FB07F8222E76DD529AC2D7858E79A46
9

GOSTR3410-
CryptoPro-B

32 32

q 0x800C99

578960446186580977117854925043439539266349923328202820197287920039565
64823193

R2modq 0x00027ACDC4

r 0x800000000000000000000000000000015F700CFFF1A624E5E497161BCC8A198F

578960446186580977117854925043439539271021331602558268200688444960877
32066703

R2modr 0x09D1D2C4E50824664A2E7E2F6882CF102A3104A7EA43E85529B721F4E6CD782
3

GOSTR3410-
CryptoPro-C

32 32

q 0x9B9F605F5A858107AB1EC85E6B41C8AACF846E86789051D37998F7B9022D759
B

703900853520833051995477180190184378410795166300451804712843468437056
33502619

R2modq 0x807A394EDE097652186304212849C07B1017BB39C2D346C5409973B4C427FCE
A

r 0x9B9F605F5A858107AB1EC85E6B41C8AA582CA3511EDDFB74F02F3A6598980B
B9

703900853520833051995477180190184378409208826471640810353226014583522
98396601

R2modr 0x7AA61B49A49D4759C67E5D0EE96E8ED304FDA8694AFDA24BE94FAAB66ABA1
80E

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 569

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

brainpoolP320r1 40 40

q 0xD35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC
28FCD412B1F1B32E27

176359332223916635416190984244601952088951277271951519277296041528864
0868802149818095501499903527

R2modq 0xA259BA4A6C2D92525455A964E614D6D21F4C881F30C5B676C2478A8D906978E
F994EE88A743B52F9

r 0xD35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658
E98691555B44C59311

176359332223916635416190984244601952088951277271768606376068612401678
4784845843468355685258203921

R2modr 0x31EC87C73200B14FE30D35244E6390FE86B330BCAF86C40991C3001BE0E1680
5679D29DF2513E4CD

brainpoolP320t1 40 40

q 0xD35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC
28FCD412B1F1B32E27

176359332223916635416190984244601952088951277271951519277296041528864
0868802149818095501499903527

R2modq 0xA259BA4A6C2D92525455A964E614D6D21F4C881F30C5B676C2478A8D906978E
F994EE88A743B52F9

r 0xD35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658
E98691555B44C59311

176359332223916635416190984244601952088951277271768606376068612401678
4784845843468355685258203921

R2modr 0x31EC87C73200B14FE30D35244E6390FE86B330BCAF86C40991C3001BE0E1680
5679D29DF2513E4CD

P-384

secp384r1

ansix9p384r1

ECDSA-384

ecp_group_20

ECPRGF384Random

48 48

q 0xFFF
FFEFFFFFFFF0000000000000000FFFFFFFF

394020061963944792122790401001436138050797392704654466679482934042457
21771496870329047266088258938001861606973112319

R2modq 0x000000000000000000000000000000010000000200000000FFFFFFFE0000000000
00000200000000FFFFFFFE00000001

r 0xFFC7634D81F4372
DDF581A0DB248B0A77AECEC196ACCC52973

394020061963944792122790401001436138050797392704654466679469052796276
59399113263569398956308152294913554433653942643

R2modr 0x0C84EE012B39BF213FB05B7A28266895D40D49174AAB1CC5BC3E483AFCB829
47FF3D81E5DF1AA4192D319B2419B409A9

brainpoolP384r1 48 48

q 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB7112
3ACD3A729901D1A71874700133107EC53

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

570 NXP Semiconductors

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

216592707701193161730692368423326049797961163870176486000816185038210
89934025961822236561982844534088440708417973331

R2modq 0x36BF6883178DF842D5C6EF3BA57E052C621401919918D5AF8E28F99CC994089
9535283343D7FD965087CEFFF40B64BDE

r 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A
7CF3AB6AF6B7FC3103B883202E9046565

216592707701193161730692368423326049797961163870176486000756452748216
11501358515537962695117368903252229601718723941

R2modr 0x0CE8941A614E97C28F886DC965165FDB574A74CB52D748FF2A927E3B9802688
A37264E202F2B6B6EAC4ED3A2DE771C8E

brainpoolP384t1 48 48

q 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB7112
3ACD3A729901D1A71874700133107EC53

216592707701193161730692368423326049797961163870176486000816185038210
89934025961822236561982844534088440708417973331

R2modq 0x36BF6883178DF842D5C6EF3BA57E052C621401919918D5AF8E28F99CC994089
9535283343D7FD965087CEFFF40B64BDE

r 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A
7CF3AB6AF6B7FC3103B883202E9046565

216592707701193161730692368423326049797961163870176486000756452748216
11501358515537962695117368903252229601718723941

R2modr 0x0CE8941A614E97C28F886DC965165FDB574A74CB52D748FF2A927E3B9802688
A37264E202F2B6B6EAC4ED3A2DE771C8E

brainpoolP512r1 64 64

q 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA7033
08717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A
48F3

894896220765023255165660281515915342216260964409835451134459718720005
701041355243991793430419195694276544653038642734593796389430992392853
6070534607816947

R2modq 0x3C4C9D05A9FF6450202E19402056EECCA16DAA5FD42BFF8319486FD8D58980
57E0C19A7783514A2553B7F9BC905AFFD3793FB1302715790549AD144A6158F205

r 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA7033
0870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90
069

894896220765023255165660281515915342216260964409835451134459718720005
701041341852837898173064352495985745139837002928058309421561388204397
3354392115544169

R2modr 0xA794586A718407B095DF1B4C194B2E56723C37A22F16BBDFD7F9CC263B790D
E3A6F230C72F0207E83EC64BD033B7627F0886B75895283DDDD2A3681ECDA816
71

brainpoolP512t1 64 64

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 571

Table 11-67. Special Values for common ECC Fp domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

q 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA7033
08717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A
48F3

894896220765023255165660281515915342216260964409835451134459718720005
701041355243991793430419195694276544653038642734593796389430992392853
6070534607816947

R2modq 0x3C4C9D05A9FF6450202E19402056EECCA16DAA5FD42BFF8319486FD8D58980
57E0C19A7783514A2553B7F9BC905AFFD3793FB1302715790549AD144A6158F205

r 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA7033
0870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90
069

894896220765023255165660281515915342216260964409835451134459718720005
701041341852837898173064352495985745139837002928058309421561388204397
3354392115544169

R2modr 0xA794586A718407B095DF1B4C194B2E56723C37A22F16BBDFD7F9CC263B790D
E3A6F230C72F0207E83EC64BD033B7627F0886B75895283DDDD2A3681ECDA816
71

P-521

secp521r1

ansix9p521r1

ECDSA-521

ecp_group_21

ECPRGF521Random

66 66

q 0x01FFF
FFF
FFFFFFFF

686479766013060971498190079908139321726943530014330540939446345918554
318339765605212255964066145455497729631139148085803712198799971664381
2574028291115057151

2521 - 1

R2modq 0x000
000400000000000

r 0x01FFF
FFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E9
1386409

686479766013060971498190079908139321726943530014330540939446345918554
318339765539424505774633321719753296399637136332111386476861244038034
0372808892707005449

R2modr 0x019A5B5A3AFE8C44383D2D8E03D1492D0D455BCC6D61A8E567BCCFF3D142B
7756E3A4FB35B72D34027055D4DD6D30791D9DC18354A564374A6421163115A61
C64CA7

Table 11-68. Special Values for common ECC F2m domains when PKHA digit size is 32 bits

Name L N

var Value (hex, decimal, sums of powers)

sect113r1

wtls4

15 15

q 0x020000000000000000000000000201

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

572 NXP Semiconductors

Table 11-68. Special Values for common ECC F2m domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

x113 + x9 + 1

R2modq 0x000000000000000001000040000000

b

c

0xE8BEE4D3E2260744188BE0E9C723

0x0173E834AF28EC76CB83BD8DFEB2D5

r 0x0100000000000000D9CCEC8A39E56F

5192296858534827689835882578830703

R2modr 0x002D02609ABE76F866BDCE5B3F9BCC

sect113r2 15 15

q 0x020000000000000000000000000201

x113 + x9 + 1

R2modq 0x000000000000000001000040000000

b

c

0x95E9A9EC9B297BD4BF36E059184F

0x0054D9F03957174A32329167D7FE71

r 0x010000000000000108789B2496AF93

5192296858534827702972497909952403

R2modr 0x00471CB662E29CB41ABC888E16FF49

wtls1 15 14

q 0x020000000000000000000000000201

x113 + x9 + 1

R2modq 0x000000000000000001000040000000

b

c

0x01

0x000000000000000000000000000001

r 0xFFFFFFFFFFFFFFFDBF91AF6DEA73

5192296858534827627896703833467507

R2modr 0x9A1AB7E0A60C212FBD48A8239130

sect131r1 17 17

q 0x080000000000000000000000000000010D

x131 + x8 + x3 + x2 + 1

R2modq 0x0000000000000004014400000000000000

b

c

0x0217C05610884B63B9C6C7291678F9D341

0x03DB89B405E491160E3B2F07B0CE20B37E

r 0x0400000000000000023123953A9464B54D

1361129467683753853893932755685365560653

R2modr 0x00739BBCD15B208AC45847F42ED438E023

sect131r2 17 17

q 0x080000000000000000000000000000010D

x131 + x8 + x3 + x2 + 1

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 573

Table 11-68. Special Values for common ECC F2m domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

R2modq 0x0000000000000004014400000000000000

b

c

0x04B8266A46C55657AC734CE38F018F2192

0x07CBB9920D71A48E099C38D71DA6490EB1

r 0x0400000000000000016954A233049BA98F

1361129467683753853879535043412812867983

R2modr 0x01BB89631FCB716E50598B58B5058E0389

Oakley 3 20 -

q 0x0800000000000000000000004000000000000001

x155 + x62 + 1

R2modq 0x0000004000000000000000000000000000000400

b

c

0x07338F

0x00311000000223A000C4474000088E8000111D1D

B-163

ansix9t163r2

sect163r2

EC2NGF163Random

21 21

q 0x0800000000000000000000000000000000000000C9

x163 + x7 + x6 + x3 + 1

R2modq 0x000000000000000000000001410400000000000000

b

c

0x020A601907B8C953CA1481EB10512F78744A3205FD

0x072C4E1EF7CB2F3A035D33104294159609138BB404

r 0x040000000000000000000292FE77E70C12A4234C33

5846006549323611672814742442876390689256843201587

R2modr 0x003488BE6C9C552CFE775F73CFB60B416A9AA88652

K-163

ansix9t163k1

sect163k1

EC2NGF163Koblitz

wtls3

21 21

q 0x0800000000000000000000000000000000000000C9

x163 + x7 + x6 + x3 + 1

R2modq 0x000000000000000000000001410400000000000000

b

c

0x01

0x0001

r 0x04000000000000000000020108A2E0CC0D99F8A5EF

5846006549323611672814741753598448348329118574063

R2modr 0x01719E20D16A34F5053B1368AE089C83FBAA63410E

sect163r1

ansix9t163r1

21 21

q 0x0800000000000000000000000000000000000000C9

x163 + x7 + x6 + x3 + 1

R2modq 0x000000000000000000000001410400000000000000

b

c

0x0713612DCDDCB40AAB946BDA29CA91F73AF958AFD9

0x05ED403ED58EB45B1CCECA0F4F61655549861BE052

r 0x03FFFFFFFFFFFFFFFFFFFF48AAB689C29CA710279B

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

574 NXP Semiconductors

Table 11-68. Special Values for common ECC F2m domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

5846006549323611672814738465098798981304420411291

R2modr 0x03F45AD7608E554A90299358F3719D4236333FE8B2

wtls5 21 21

q 0x080000000000000000000000000000000000000107

x163 + x8 + x2 + x1 + 1

R2modq 0x000000000000000000000004005400000000000000

b

c

0xC9517D06D5240D3CFF38C74B20B6CD4D6F9DD4D9

0x0453E1E4B7291F5C2D53CE18483F007081E7EA26EC

r 0x0400000000000000000001E60FC8821CC74DAEAFC1

5846006549323611672814741626226392056573832638401

R2modr 0x02704CFBABEA28A831BAD35BCAA440A89884D1FA9B

Oakley 4 24 -

q 0x020000000000000000000000000000200000000000000001

x185 + x69 + 1

R2modq 0x000000000100000000000000000000000000000000004000

b

c

0x1EE9

0x000000000000300000018000C00C000000638030001C0009

sect193r1

ansix9t193r1

25 25

q 0x02008001

x193 + x15 + 1

R2modq 0x00000000000000000000000000100000004000000000000000

b

c

0xFDFB49BFE6C3A89FACADAA7A1E5BBC7CC1C2E5D831478814

0x0167B35EB4313F263D0F7A3D5036F0A0A3C980D40E5A053ED2

r 0x01000000000000000000000000C7F34A778F443ACC920EBA49

6277101735386680763835789423269548053691575186051040197193

R2modr 0x009F0A6812CD5A0961578029E866525B193ED6F556637F68CD

sect193r2

ansix9t193r2

25 25

q 0x02008001

x193 + x15 + 1

R2modq 0x00000000000000000000000000100000004000000000000000

b

c

0xC9BB9E8927D4D64C377E2AB2856A5B16E3EFB7F61D4316AE

0x006989FE6BFE30EDDC3244269F3AAD18D66CF3DB3E3302FAA8

r 0x010000000000000000000000015AAB561B005413CCD4EE99D5

6277101735386680763835789423314955362437298222279840143829

R2modr 0x00B24356750478EA3C6D96955F00208DD023F898087B1BF123

B-233

sect233r1

30 30

q 0x020000000000000000000000000000000000000004000000000000000001

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 575

Table 11-68. Special Values for common ECC F2m domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

ansix9t233r1

EC2NGF233Random

wtls11

x233 + x74 + 1

R2modq 0x000000000004000000000000000000000000000000000000400000000000

b

c

0x66647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE115F7D8F90AD

0x0007D5EF4389DFF11ECDBA39C30970D3CE35CEBBA58473F64B4DC0F2686C

r 0x01000000000000000000000000000013E974E72F8A6922031D2603CFE0D7

690174634679056378743475586227702555583981273734501355537938363448546
3

R2modr 0x006AB044AA57CDD6D0CC9138B004578CD5EFE7E89545CDAA1BA1C26DD4D1

K-233

sect233k1

ansix9t233k1

EC2NGF233Koblitz

wtls10

30 29

q 0x020000000000000000000000000000000000000004000000000000000001

x233 + x74 + 1

R2modq 0x000000000004000000000000000000000000000000000000400000000000

b

c

0x01

0x0001

r 0x8000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF

345087317339528189371737793113851276057094098886225212632808702474134
3

R2modr 0x59BEBED80293C813EEB5B58A0AF7E3EB91DB9A5B861710AC1009468BB6

sect239k1

ansix9t239k1

30 30

q 0x800000000000000000004000000000000000000000000000000000000001

x239 + x158 + 1

R2modq 0x000000000000100000000000000000008000000000000000000440000000

b

c

0x01

0x0001

r 0x2000000000000000000000000000005A79FEC67CB6E91F1C1DA800E478A5

220855883097298041197912187592864814948216561321709848887480219215362
213

R2modr 0x183E8C975E5EA68E203395FBEC1187B0F40DFFCA2CE64F17F77925590A73

B-283

sect283r1

ansix9t283r1

EC2NGF283Random

36 36

q 0x08000
010A1

x283 + x12 + x7 + x5 + 1

R2modq 0x0004011
00400

b

c

0x027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485AF6263E3
13B79A2F5

0x03D8C93D3B0EA81D9294034D7EE3135D0AC5FC8D9CB0276F7211F880F0D81C
A4C6E87B38

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

576 NXP Semiconductors

Table 11-68. Special Values for common ECC F2m domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

r 0x03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7
CEFADB307

777067556890291628367784762729407562656962592437690488910919652677004
4277787378692871

R2modr 0x0299ADD3FE013DB2E23755FAA9545A49222D8461643773D41D288BCA1EBB695
767D7CA78

K-283

sect283k1

ansix9t283k1

EC2NGF283Koblitz

36 36

q 0x08000
010A1

x283 + x12 + x7 + x5 + 1

R2modq 0x0004011
00400

b

c

0x01

0x000
00001

r 0x01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E
061E163C61

388533778445145814183892381364703781328481173379306132429587499752981
5829704422603873

R2modr 0x00868DB4F6424B4B297831F5EBA11AE2B1AC177F33C6C133859892757E41B7C
AE8927BDB

B-409

sect409r1

ansix9t409r1

EC2NGF409Random

52 52

q 0x02000
0000000000000008000000000000000000001

x409 + x87 + 1

R2modq 0x0010000000000
0000000000000000000000000000000004000

b

c

0x21A5C2C8EE9FEB5C4B9A753B7B476B7FD6422EF1F3DD674761FA99D6AC27C
8A9A197B272822F6CD57A55AA4F50AE317B13545F

0x0149B8B7BEBD9B63653EF1CD8C6A5DD105A2AAAC36FE2EAE43CF28CE1CB7
C830C1ECDBFA413AB07FE35A57811AE4F88D30AC63FB

r 0x010001E2AAD6A612F3
3307BE5FA47C3C9E052F838164CD37D9A21173

661055968790248598951915308032771039828404682964281219284648798304157
774827374805208143723762179110965979867288366567526771

R2modr 0x0007C24B27E70A941D4738F415F186A66A9FF8783C798E99D4A152BF0CE0C0C
C273CDA3D70AA82C43A336EFBE1479034DB8EF936

K-409

sect409k1

ansix9t409k1

EC2NGF409Koblitz

52 51

q 0x02000
0000000000000008000000000000000000001

x409 + x87 + 1

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 577

Table 11-68. Special Values for common ECC F2m domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

R2modq 0x0010000000000
0000000000000000000000000000000004000

b

c

0x01

0x000
0000000000000000000000000000000000001

r 0x7FFE5F83B2D4E
A20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF

330527984395124299475957654016385519914202341482140609642324395022880
711289249191050673258457777458014096366590617731358671

R2modr 0x50DC9B805D4BEBA0701EDA0D529DAD74A3ED9914801EFC3F5D0760180600F3
725B714A1C6E7B3C68A06DF3709E9354226F8D6C

B-571

sect571r1

ansix9t571r1

EC2NGF571Random

72 72

q 0x08000
000
00000425

x571 + x10 + x5 + x2 + 1

R2modq 0x000
000
40104400

b

c

0x02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1CD6BA8CE4A9A18
AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A78FF12AA520E4DE739BAC
A0C7FFEFF7F2955727A

0x06395DB22AB594B1868CED952578B6539FABA69406D9B2986123A185C85832E
25FD5B63833D51442ABF1A9C05FF0ECBD88D7F77997F4DC9156AAF1CE0816468
6DDFF75116FBC9A7A

r 0x03FFF
FFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D
66E8382E9BB2FE84E47

386453752301725834469535189093198734429892732970643499865723525145151
914228956042453614399938941577308313388112192694448624687246281681307
0234528288303332411393191105285703

R2modr 0x00780C1005944C99C498CDB275BF7CCC389C0853C856C10F3786A7DCF3AA9A
E196A3FB16F1DE5AF21B1318667E55C15B9A8ABF1B469BD13D57BB95B60B677D
BCAA35B843B87069F9

K-571

sect571k1

ansix9t571k1

EC2NGF571Koblitz

72 72

q 0x08000
000
00000425

x571 + x10 + x5 + x2 + 1

R2modq 0x000
000
40104400

b

c

0x01

Table continues on the next page...

Public-key hardware accelerator (PKHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

578 NXP Semiconductors

Table 11-68. Special Values for common ECC F2m domains when PKHA digit size is 32 bits
(continued)

Name L N

var Value (hex, decimal, sums of powers)

0x000
000
00000001

r 0x02000
00000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE
778F637C1001

193226876150862917234767594546599367214946366485321749932861762572575
957114478021226813397852270671183470671280082535146127367497406661731
1929682421617092503555733685276673

R2modr 0x019433720D8C7057F7F3F824CCB3E09071584DD65C1437B2406C8210EEF4949
565D35EE4FE01AAEE96D0DC137749D25AA49C07F63F829BF85960C535AA90F11
DDEC4B62B18F2E26D

For these Montgomery domains, some functions require a24 instead of A. The PKHA
requires that a24 be (A+2)/4.

Table 11-69. Special Values for common ECM MOD (Montgomery curves) domains when
PKHA digit size is 32 bits

Name L N

var Value (hex, decimal, sums of powers)

Curve25519 32 32

q 0x7FF
FED

2255-19

R2modq 0x0005A4

A

A24

0x076D06

486662

0x01DB42

121666

r 0x1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED

723700557733226221397318656304299424085711635937990760600195093828545
4250989

R2modr 0x0399411B7C309A3DCEEC73D217F5BE65D00E1BA768859347A40611E3449C0F0
1

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 579

Table 11-70. Special Values for common ECT MOD (Edwards curves) domains when PKHA
digit size is 32 bits

Name L N

var Value (hex, decimal, sums of powers)

edwards25519 32 32

q 0x7FF
FED

2255-19

R2modq 0x0005A4

r 0x1000000000000000000000000000000014DEF9DEA2F79CD65812631A5CF5D3ED

723700557733226221397318656304299424085711635937990760600195093828545
4250989

R2modr 0x0399411B7C309A3DCEEC73D217F5BE65D00E1BA768859347A40611E3449C0F0
1

11.2 Kasumi f8 and f9 hardware accelerator(KFHA)
functionality

Kasumi is a radio-interface, cryptographic algorithm set for LTE (two other sets are
SNOW and ZUC). Kasumi 3G f8 is the encryption algorithm, and Kasumi 3G f9 is the
authentication/integrity algorithm within this cryptographic set. The KFHA (Kasumi f8/9
hardware accelerator) implements both the f8 and f9 modes of the Kasumi cryptography
algorithm. The KFHA CHA is controlled via the class 1 CHA registers. Because it is not
possible to own two Class 1 CHAs simultaneously, it is not possible to "snoop" between
two KFHAs or between a KFHA and an AESA.

11.2.1 KFHA use of the Mode Register

The KFHA uses the Mode Register as follows:

• The Encrypt/Decrypt field of the Mode Register is not used by KFHA, because there
is no difference between encrypt and decrypt in Kasumi. However, this bit should be
set to indicate whether encryption or decryption is being performed so that the
Performance Counter registers properly count events (see the description of the PM
registers in the register descriptions section of this document).

• The ICV check field of the Mode Register is used to enable/disable ICV checking.
• The Algorithm (ALG) field of the Mode Register must be set to "Kasumi" to activate

the KFHA.

Kasumi f8 and f9 hardware accelerator(KFHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

580 NXP Semiconductors

• The Additional Algorithm Information (AAI) field must be set to either "f8" or "f9".
In addition, the bits for either GSM or EDGE (but not both) may be OR'ed into the
values for f8 or f9 to enable GSM or EDGE.

• The Algorithm State (AS) field of the Mode Register is used to select between the
operations described in this table.

Table 11-71. Mode Register[AS] operation selections in KFHA

Mode Indication

INIT KFHA starts with an initialization process. This puts the KFHA into an initial state needed at the start of an
operation

INIT/FINALIZE KFHA starts with an initialization process, and at the end of the message process, any selected padding
will occur

FINALIZE KFHA starts with no initialization process, and at the end of the message process, any selected padding
will occur

UPDATE KFHA starts with no initialization process

11.2.2 KFHA use of the Context Register

The KFHA uses the Context Register as follows:

• The 512-bit Context Register is used as the working registers for KFHA.
• The count, bearer, direction, ca, ce, FRESH, and ICV_in fields within the Context

Register should be loaded by software before INIT or INIT/FINALIZE operations.
• The Context Register is continually updated during processing, so at the end of an

operation, it reflects the current state of the KFHA. The bits are assigned as shown in
these tables.

Table 11-72. Context usage in Kasumi 3G modes

Mode DWord
number

Initial input definition Context switching definition Final result definition

Kasumi 3G f8
mode

0 count, bearer, direction, ca, ce count, bearer, direction ca, ce -

1 - - -

2 - - -

3 - - -

4 - f8 C register -

5 - f8 B register -

6 - f8 A register -

7 - core data out -

Kasumi 3G f9
mode

0 count, bearer, direction, ca, ce count, bearer, direction, ca, ce count, bearer, direction, ca, ce

1 FRESH, ICV_in FRESH, ICV_in FRESH, ICV_in

2 - f9 C register ICV_out

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 581

Table 11-72. Context usage in Kasumi 3G modes (continued)

Mode DWord
number

Initial input definition Context switching definition Final result definition

3 - f9 A register -

Table 11-73. Format of context DWord 0 in Kasumi 3G f8 and f9 modes

Bits 0-31 Bits 32-36 Bit 37 Bits 38-47 Bits 48-63

count bearer direction ca ce

Table 11-74. Format of context DWords 1 and 2 in Kasumi 3G f9 mode

DWord number Bits 0-31 Bits 32-63

1 FRESH ICV_in

2 (output only) ICV_out -

11.2.3 KFHA use of the Key Register

The KFHA uses the Key Register as follows:

• The Key Register contains the 16-byte key used by the KFHA, which is placed in
bits [127:0]. (The first key byte is in Key Register bits [127:120], the second key
byte is in key [119:112], and so on).

• The Key Size Register must be programmed to a value of 16. Any other value
produces a KFHA key size error.

11.2.4 KFHA use of the Data Size Register

The KFHA does not need to know the total size of the message being processed. It only
needs to know how many bits will be processed out of the last 64-bit DWord of the
message. Therefore, it uses only the 3 LSB of the Data Size Register (PDB 2:0]) and the
NUMBITS field (bits 63:61 of the Data Size Register) during message processing.

11.2.5 KFHA error conditions

Errors that can occur while operating the KFHA CHA include the following:

Kasumi f8 and f9 hardware accelerator(KFHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

582 NXP Semiconductors

Table 11-75. KFHA error conditions and results

Error condition Result

After a FINALIZE or INIT/FINALIZE operation completes and
the Mode Register is cleared, if the mode is re-written to
UPDATE or FINALIZE (with no DECO reset in between)

Mode error

NOTE: The assumption is that any "Final" packet requires an
initialization or a reset for a following packet.

After an INIT or UPDATE operation (that is, operations that
are not "Final") completes and the Mode Register is cleared,
if the mode is re-written to INIT or INIT/FINALIZE (with no
DECO reset in between)

Mode error

NOTE: The assumption is that any "Initial" packet would only
follow a "Final" packet or a reset.

If both GSM and EDGE bits are set in the AAI field of the
mode register while KFHA is operating

Mode error

When operating KFHA, neither F8 or F9 are selected in the
mode register AAI field

Mode error

If the KFHA is operated with a key size of any value other
than 16 bytes

Key size error

If any input data is received by KFHA that is not type
"Message"

Data sequence error

If KFHA is operating in F9 mode with ICV checking enabled in
the Mode Register

ICV mismatch produces an ICV check error

11.3 Data encryption standard accelerator (DES)
functionality

DES performs encryption and decryption on 64-bit values using the algorithm found in
FIPS46-3. The DES module in SEC supports both single- and triple-DES functionality
and ECB, CBC, CFB, and OFB modes as well as key parity checking in compliance with
the DES specification. DES is controlled from the class 1 CHA registers.

11.3.1 DESA use of the Mode Register

The DESA uses the Mode Register as follows:

• The encryption field (ENC) controls whether DESA is encrypting or decrypting data.
• The Algorithm State (AS) field is not used to affect DESA functionality and should

be set to zero at all times.
• The Additional Algorithm Information field (AAI) specifies the mode DESA runs.

The supported modes are electronic code book (ECB), cipher block chaining (CBC),
cipher feedback (CFB-8), and output feedback (OFB), described as follows:

• ECB (0x20h) mode is a confidentiality mode that features, for a given key, the
assignment of a fixed ciphertext block to each plaintext block (analogous to the
assignment of code words in a codebook).

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 583

• CBC (0x10h) mode is a confidentiality mode whose encryption process features
the combining ("chaining") of the plaintext blocks with the previous ciphertext
blocks. CBC mode requires an IV to combine with the first plaintext block. The
IV does not need to be secret, but it must be unpredictable.

• CFB (0x30h) mode is a confidentiality mode that features the feedback of
successive ciphertext segments into the input blocks of the forward cipher to
generate output blocks that are exclusive-ORed with the plaintext to produce the
ciphertext, and vice versa. The CFB mode requires an IV as the initial input-
block.

• OFB (0x40h) mode is a confidentiality mode that features the iteration of the
forward cipher on an IV to generate a sequence of output blocks that are
exclusive-ORed with the plaintext to produce the ciphertext, and vice versa. The
OFB mode requires that the IV be unique for each execution of the mode under
the given key.

• Key parity checking for DESA that checks for odd parity within each byte of the key
is enabled with a value of (0x80h) in the AAI field.

• The algorithm field (ALG) must be programmed to DES (0x20h) or 3DES (0x21h).

11.3.2 DESA use of the Key Register

The DESA uses the Key Register as follows:

• The Key Register contains the 8-, 16-, or 24-byte key that is used during permutation
in all DES modes.

• The DES specification defines the key as having odd parity in each byte.
• Key parity can be verified using the correct mode setting.

11.3.3 DESA use of the Key Size Register

DESA uses the Key Size Register as follows:

• Key size can be either 8, 16, or 24 bytes.
• A key size of 8 is valid only in single-DES mode.
• Values of 16 and 24 bytes can be used only in triple-DES mode.
• An illegal key size error is generated when in single-DES mode with a key size other

than 8 or when in triple-DES mode with a key size other than 16 or 24.

Data encryption standard accelerator (DES) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

584 NXP Semiconductors

11.3.4 DESA use of the Data Size Register

The DESA uses the Data Size Register as follows:

• The Data Size Register is written with the number of bytes of data to be processed.
• All DES modes except OFB expect to process data that is a multiple of 8 bytes and

generates an error if the data size written is not an 8-byte multiple.
• This register must be written to start data processing.
• Because writing to the Data Size Register causes the written value to be added to the

previous value in the register, the register may be written multiple times while data is
being processed in order to increase the amount of input data that will be processed.

11.3.5 DESA Context Register

The DESA uses the Context Register as follows:

• For CBC, OFB, and CFB modes, the initialization vector is written to and read from
the DESA Context Register.

• The value of this register changes as a result of the encryption process and reflects
the context of DESA.

• DESA uses the first eight bytes of the Context Register to hold the beginning and
final IV value for the CBC, OFB, and CFB modes. The bits are assigned as follows:
Context DWord0: IV = desa_context[63:0]

11.3.6 Save and store operations in DESA context data

DESA is able to process data in chunks by saving the intermediate IV from the Context
Register after each chunk of data and restoring the IV and key to the correct registers
before processing any subsequent chunks of data.

11.4 Cyclic-redundancy check accelerator (CRCA)
functionality

CRCA performs 1- to 32-bit cyclic redundancy code computation. Cyclic redundancy
checks are a common algorithm for providing additional integrity check bits that are
included with data in danger of corruption. A typical usage is to include a CRC for each
packet transmitted over a network and then recompute this CRC at the destination to
verify that the received packet is uncorrupted. CRC is controlled via the class 2 CHA
registers

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 585

11.4.1 CRCA modes of operation

The CRCA module supports the following primary modes of operation:

• IEEE 802 CRC32 protocol mode
• iSCSI (IETF 3385) CRC32c protocol mode
• Dynamic polynomial custom mode

The protocol-specific modes automatically use the correct polynomial. The custom mode
takes the desired polynomial from the Key Register. All modes support either raw (DOS
and DOC equal one), default processing, or any combination of the use of DIS, DOS,
DOC, and IVZ control bits. Default processing involves bit-swapping, byte-swapping,
complementing the CRC result, and setting initial value to FFFFFFFFh for specifications
compliance. Raw mode (with DOS and DOC set) does not modify the CRC result in any
way and is commonly used for partial CRC calculations. ICV checking can be performed
in all modes.

11.4.2 CRCA use of the Mode Register

The CRCA uses the Mode Register as follows:

• The Mode Register is used to program the function of the CRCA.
• The ICV field selects whether a comparison between the computed CRC and the

provided CRC should be performed. When enabled, ICV check compares a CRC
calculated across the message against the received ICV. The comparison is
performed after the bit manipulations controlled by the DIS, DOS, DOC, IVZ bits are
performed.

• The Algorithm State (AS) field controls two features in the CRC module, namely the
ability to load context and inhibit mangling output data. The LSB of the AS field
selects whether to load the context value that was written into the class 2 Context
Register. The MSB of the AS field is used to inhibit both the output swapping and
the 1's complement of data when the current mode of operation does not result in a
final computation of the CRC. Programming the initialize or update modes overrides
the functionality of the DOS and DOC bits. This table is a synopsis of the 2-bit AS
field and its functionality.

Table 11-76. 2-bit AS functionality and synopsis

Value Phase Actions

00 Update • Loads context
• Does not mangle output data

Table continues on the next page...

Cyclic-redundancy check accelerator (CRCA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

586 NXP Semiconductors

Table 11-76. 2-bit AS functionality and synopsis (continued)

Value Phase Actions

01 Initialize • Does not load context
• Does not mangle output data

10 Finalize • Loads context
• Mangles output data

11 Init/Finalize • Does not load context
• Mangles output data

• The Algorithm field (ALG) must be set to CRC.
• The Additional Algorithm Information (AAI) field controls the modes and

functionality of the CRC module. The lower 4 bits select one of the three modes that
the CRC operates in while the upper 5 bits allow individual control over how the
CRC engine manipulates its input and output data. The lower 4-bit definitions for the
mode values are described in this table.

Table 11-77. Lower 4 bits AAI functionality

Value Mode Actions

0001 IEEE 802 mode The CRC32 algorithm is performed using the polynomial 04C11DB7h.

0010 iSCSI mode (also
called IETF 3385)

The CRC32c algorithm is performed using the polynomial 1EDC6F41h.

0100 Dynamic custom mode • The CRC remainder is computed using the polynomial programmed into the Key
Register.

• The polynomial can be 1-32 bits.
• The polynomial must be left justified.

• In compliance with the IEEE 802 and iSCSI CRC implementations, the CRCA result
is bit-swapped, byte-swapped, and complemented before it is output. The upper 5
bits of the AAI field allow the user to individually control the input bit-swapping
(DIS), the output bit-swapping (DOS), complementing of output data (DOC), and
initial value zero (IVZ).

Table 11-78. Upper 5 bits AAI functionality

Value Name Description Encodings

00001 DIS Don't Input Swap • 0: Input data is bit-swapped
• 1: Turns off swapping of the input data bits

00010 DOS Don't Output Swap • 0: Output data is bit and byte-swapped
• 1: Turns off bit-/byte-swapping of the output data

00100 DOC Don't Output Complement • 0: Output data is complemented
• 1: Turns off complementing the CRC output data

01000 IVZ Initial Value Zero • 0: Initial CRC value is FFFFFFFFh
• 1: Initial CRC value is 00000000h

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 587

11.4.3 CRCA Key Register

The CRCA uses the Key Register as follows:

• The Class 2 Key Register stores the polynomial for custom mode.
• Any size polynomial may be used, up to 32 bits.
• The key must be left-justified in the Key Register.

11.4.4 CRCA Key Size Register

The CRCA uses the Key Size Register as follows:

• For IEEE 802 CRC32 protocol mode and iSCSI (IETF 3385) CRC32c protocol
mode, it is not necessary to write to this register, because the polynomial size is
clearly fixed by the algorithm.

• For dynamic custom polynomial mode, write a 4-byte value into the Key Size
register to specify the size of the polynomial.

11.4.5 CRCA Data Size Register

The CRCA uses the Data Size Register as follows:

• The Data Size Register is written with the number of bytes of data to be processed.
• This register must be written to start data processing.

11.4.6 CRCA Context Register

The CRCA uses the Context Register as follows:

• The 32-bit Context Register is used to load partial CRCs. This register can be written
with an intermediate CRC result prior to processing any data. Once processing is
complete, the CRC result is available from this register. The reset state of this
register is all ones, because this allows the CRC32 algorithm to detect bit errors in
the leading zeros of a message.

• CRC uses the first word of the Context Register to load a CRC value for the engine
to start from a previous, partial calculation. This register also holds the intermediate
or final CRC when calculations are done. The bits are assigned as follows:

• Context DWord0: CRC register = {00000000h, crca_context[0:31]}

Cyclic-redundancy check accelerator (CRCA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

588 NXP Semiconductors

11.4.7 Save and restore operations in CRCA context data

To run CRC for multiple, related groups of data, it is necessary to program CRC in the
correct initial mode (either initialize or update) and then to save the intermediate CRC
value from the Context Register to be used for all subsequent data. When it is necessary
to continue from the previous point, the intermediate CRC value must be loaded into the
Context Register before the Data Size Register is written.

CRC must be programmed in either update or finalize modes (AS field) to continue from
the previous partial calculation. For CRC to compute its final value, the module would
need to be programmed in the final mode (AS field). This causes CRC to both swap and
complement the output and provide the calculated CRC in the Context Register. If a
custom polynomial was used for the above calculations, it would need to be loaded into
the Key Register each time calculations were continued.

11.5 Random-number generator (RNG) functionality
The RNG generates cryptographically-strong, random data. SEC's RNG utilizes a true
random-number generator (TRNG) as well as a deterministic random-bit generator
(DRBG) to achieve both true randomness and cryptographic strength.

The random numbers generated by the RNG are intended for direct use as secret keys,
per-message secrets, random challenges, and other similar quantities used in
cryptographic algorithms. Note that before data can be obtained from the RNG, it must be
instantiated in a particular mode by executing the appropriate descriptor. Also, a
descriptor must be executed to load the JDKEK, TDKEK and TDSK registers with data
from the RNG.

11.5.1 RNG features summary

The RNG module includes these distinctive features:

• Complete implementation of DRBG_Hash (SP800-90A) using SHA-256.
• Support for two state handles.
• Built-in entropy source conforming to SP800-90B and BSI AIS/31.
• Integrated entropy source for instantiating and re-seeding the DRBG.
• The RNG may be accessed through a register interface for test purposes.
• IP global interface. The RNG system clock and resets are controlled through the IP

global interface.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 589

• Interface to supply SEC with random data as required for descriptors, and to initialize
key encryption key and Trusted Descriptor Signing Key Registers.

• Random-number stream obtainable using job descriptor.
• Random numbers automatically supplied as padding when needed by protocols.
• External interface to furnish random data to other modules such as SecMon.

11.5.2 RNG functional description

While the RNG consists of several, functional sub-modules, its overall functionality can
be easily described from the top level in terms of a few functional operations. These
operations are seed generation and random number generation. Each of these operations
require coordination of the RNG's true random-number generator (TRNG) and
deterministic random-bit generator (DRBG). TRNG creates real entropy (seed
generation) and DRBG generates cryptographically strong data using this entropy
(random-number generation).

11.5.2.1 RNG state handles

The RNG in SEC implements two state handles. Each state handle is:

• A completely independent virtual RNG.
• Instantiated independently in deterministic or nondeterministic mode, and with or

without prediction resistance
• Seeded (or reseeded) independently with independent entropy

Thereafter, each state handle maintains an independent context for the RNG's
deterministic random bit generator (DRBG).

Note that the JDKEK, TDKEK, TDSK and ZMK (if the ZMK is set for hardware
programming) and the random data to seed the AES Differential Power Analysis
protection (if implemented in the AESA) are initialized by data drawn from State Handle
0, and that any random padding required by SEC's built-in protocols is also drawn from
State Handle 0. Because this data may be confidential, there are special security features
to ensure that State Handle 0 is not inadvertently or maliciously instantiated in
deterministic mode when it should have been instantiated in nondeterministic mode. See
the discussion of the RNGSH0 and RANDDPAR fields in the Security Configuration
Register.

Random-number generator (RNG) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

590 NXP Semiconductors

11.5.2.2 RNG NIST certification

SEC's RNG is designed to be NIST-certifiable. One of the requirements of that
certification is the ability to test the RNG prior to normal operation. This requires
instantiating the RNG in test (deterministic) mode rather than normal (nondeterministic)
operational mode, and then having software run various tests on the RNG. To allow an
opportunity for this testing, SEC does not automatically instantiate the RNG in
operational mode or automatically load the JDKEK, TDKEK and TDSK registers, and
does not automatically respond to a request for random data from the SecMon. After the
tests have completed, or if the tests are going to be skipped, the RNG must be instantiated
in operational mode and the JDKEK, TDKEK and TDSK registers must be loaded. These
steps are accomplished by executing descriptors as described in this table. The execution
of these descriptors must be initiated by software, typically via the job ring interface.

Table 11-79. Examples of Descriptors to initialize, instantiate and uninstantiate the RNG
and to initialize the JDKEK, TDKEK and TDSK

Descriptor Value Execution

Descriptor to instantiate
RNG State Handle 0 in
deterministic (test) mode

NOTE: This descriptor
would be
executed prior to
running tests on
the RNG.

B080 0004h HEADER command indicating a descriptor with a length of four 32-bit words

1281 0004h LOAD Command with 4 bytes of immediate data; destination is Class 1 Key
Size register

0000 0000h 4 bytes of immediate data (entropy input is null)

8250 0005h OPERATION command, Class 1, RNG, Instantiate, Test Mode

Descriptor to uninstantiate
RNG State Handle 0

NOTE: This descriptor
would be
executed after
running tests on
the RNG.

B080 0002h HEADER command, indicating a descriptor with a length of two 32-bit words

8250 000Dh OPERATION command, Class 1, RNG, Uninstantiate, Test Mode

Descriptor to instantiate
RNG State Handle 0 in
normal mode and load the
JDKEK, TDKEK, and
TDSK registers

NOTE: This descriptor
would be
executed to start
normal operation
of the RNG and
also initialize
JDKEK, TDKEK
and TDSK.

B080 0006h HEADER command, indicating a descriptor with a length of six 32-bit words

8250 0004h OPERATION command, Class 1, RNG, Instantiate, Non-Test Mode

A200 0001h JUMP command, wait until Class 1 (RNG) done then local jump to next
command

1088 0004h LOAD command, 4 bytes of Immediate data, destination Clear Written Register

0000 0001h 4 bytes of immediate data (clear the Class 1 Mode Register. This resets the
done interrrupt and returns the RNG to idle.)

8250 1000h OPERATION command, Class 1, RNG, Secure Key, Generate

The Generate command for secure keys allows for an optional "additional_input" of up to 256 bits that would be loaded into
the Class 1 Context register prior to executing the OPERATION Generate command.

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 591

Table 11-79. Examples of Descriptors to initialize, instantiate and uninstantiate the RNG
and to initialize the JDKEK, TDKEK and TDSK (continued)

Descriptor Value Execution

Descriptor to instantiate
RNG State Handle 0 in
nondeterministic (normal)
mode

NOTE: This descriptor
would be
executed to start
normal operation
of the RNG, but
without initializing
JDKEK, TDKEK
and TDSK.

B080 0002h HEADER command, indicating a descriptor with a length of two 32-bit words

8250 0004h OPERATION command, Class 1, RNG, Instantiate, Non-Test Mode

The Instantiate command allows for an optional "personalization_string" of up to 256 bits that would be loaded into the Class
1 Context register prior to executing the OPERATION Instantiate command.

11.5.3 RNG operations

RNG operations are performed by appropriately setting the Algorithm State (AS) field of
the OPERATION command.

Table 11-80. RNG Operations

Value of
AS

Name Function

00 State-handle
generate operation

Causes the RNG to generate random data from the selected state handle and push that
data to the output FIFO. The amount of data generated is based on the value in the
Class 1 Data Size register. The descriptor can also provide 256 bits of additional input
via the Class 2 Key Register, which is used as additional entropy when generating the
requested data. The TST bit value must match the deterministic/nondeterministic mode
of the selected state handle, else a test error is generated.1 A test error is also
generated if a Generate command is issued to a state handle that is not instantiated.

01 State-handle
instantiation
operation

Causes the RNG to set up the initial context for the specified state handle. The state
handle remains instantiated in the specified mode (deterministic or nondeterministic)
until it is uninstantiated or SEC is reset. A test error is generated if an attempt is made to
instantiate a state handle that is already instantiated.

• TST bit = 0. Nondeterministic instantiation. When instantiating a state handle in
nondeterministic (normal) mode, the state handle is seeded with 512 bits of high-
grade random entropy from the TRNG and an optional 256-bit personalization
string supplied by the descriptor via the Class 1 Context Register.

• TST bit = 1. Deterministic instantiation. When instantiating a state handle in
deterministic (test) mode, the state handle is seeded with 256 bits of user-
specified entropy supplied via the Class 1 Key register and an additional 256 bits
of nonce supplied via the Class 2 Key register. Seeding the state handle with
known entropy and nonce values allows for deterministic testing. Note that once
the RNGSH0 bit in the Security Configuration register has been set to 1, State
Handle 0 can no longer be instantiated in deterministic mode. State Handle 0

Table continues on the next page...

Random-number generator (RNG) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

592 NXP Semiconductors

Table 11-80. RNG Operations (continued)

Value of
AS

Name Function

produces the random numbers used for nonces and padding within the built-in
protocols, so this special protection can be used to prevent accidentally or
maliciously substituting a test instantiation in place of a nondeterministic
instantiation.

10 State-handle reseed
operation

Causes the RNG to reseed an already instantiated state handle; that is, the current state
associated with the selected state handle is replaced with new state information. A test
error is generated if an attempt is made to reseed a state handle that is not instantiated.

• For a state handle in nondeterministic mode, the DRNG is seeded with 512 bits of
entropy from the TRNG and an optional 256-bit additional input from the descriptor
via the Class 1 Context Register.

• For a state handle in deterministic mode, 256 bits of user-specified entropy is
taken from the Class 1 Key Register. Nonce is not used for reseeding.

11 State-handle
uninstantiate
operation

Causes the RNG to uninstantiate the specified state handle, which prevents the state
handle from being used to generate data. The state handle can later be instantiated
again. A test error is generated if an attempt is made to uninstantiate a state handle that
is not instantiated.

1. There is one exception to this rule. A test error is not generated if State Handle 0 is in Test mode but a generate operation
requests nondeterministic data from State Handle 0. This permits deterministic testing of the built-in protocols prior to
setting the RNGSH0 bit in the Security Configuration Register. Setting RNGSH0 would normally be performed during the
boot process after testing is complete.

11.5.4 RNG use of the Key Registers

RNG uses the key registers as follows:

• RNG uses the Class 1 Key Register only when instantiating or reseeding a state
handle in deterministic (test) mode.

• RNG uses the Class 2 Key Register only when instantiating a state handle in
deterministic (test) mode. In these cases, the descriptor has the TST bit set during the
OPERATION command and has loaded known values into the following registers:

• 256-bit entropy input in the Class 1 Key Register (for instantiate and reseed
operations)

• 256-bit nonce in the Class 2 Key register (only for instantiate operations)
• When instantiating or reseeding a state handle in nondeterministic mode, the key

registers are ignored and entropy is instead obtained from the TRNG.

11.5.5 RNG use of the Context Register

The Class 1 Context Register is used to supply an optional 256-bit personalization string
when instantiating a state handle, or to supply an optional 256 bits of additional input
when reseeding a state handle or generating random data.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 593

11.5.6 RNG use of the Data Size Register

The RNG uses the Data Size Register as follows:

• When an RNG generate command is executed, the value in the Data Size Register
specifies the number of bytes of random data that should be generated and pushed
onto the Output FIFO.

• When an RNG instantiate command is executed, the value in the Data Size Register
specifies a reseed interval, measured in number of generate requests.

• The RNG uses a default reseed value of 10,000,000 requests. This means that
10,000,000 generate requests are processed before an automatic reseed operation
occurs. For a system with the clock speed between 133MHz - 400MHz, the reseed
happens between 3-20 seconds if RNG operations are being processed at the
maximum rate.

• The Data Size Register holds 32 bits so the user can specify a larger or smaller value.
If the user does not specify a reseed interval, the default value is used.

11.6 SNOW 3G f8 accelerator functionality
SNOW is a radio interface cryptographic algorithm set for LTE (two other sets are
Kasumi and ZUC). The f8 mode confidentiality algorithm is defined as a word-oriented
stream cipher that generates a sequence of 32-bit words under the control of a 128-bit key
and a 128-bit initialization value. It can be used to encrypt or decrypt blocks of data
between 1 and 20000 bits in length. Some of the features of the SNOW f8 accelerator
include the following:

• Message encryption and decryption in f8 (UEA2) mode
• Throughput of up to 4 bytes per cycle
• Support for multiple session message processing through context switching
• Support for descriptor sharing
• Total message size of up to 232 bits (processed in chunks of no more than 217-1 bytes

per session)
• Support for any number of bits in the last byte of the message
• Automatic zeroization of the invalid bits in the last incomplete byte of the message

11.6.1 Differences between SNOW 3G f8 and SNOW 3G f9

Some of the key differences between SNOW 3G f8 and f9 are as follows:

SNOW 3G f8 accelerator functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

594 NXP Semiconductors

• SNOW 3G f8 is the encryption algorithm, and SNOW 3G f9 is the authentication
algorithm within this cryptographic set.

• The SNOWf8 hardware accelerator implements the f8 encryption mode of operation
of the SNOW algorithm, whereas the SNOWf9 hardware accelerator implements the
f9 integrity authentication mode of the SNOW algorithm.

• The SNOW f8 CHA is programmed using Class 1 CCB registers, whereas the
SNOW f9 CHA is programmed using Class 2 CCB registers. Note that it is possible
to encrypt or decrypt data using SNOW f8 and also hash the same data using SNOW
f9 authentication via "snooping"; that is, passing the same data simultaneously to
both CHAs ("in snooping"), or passing the output of one CHA directly to the input of
the other CHA ("out snooping"). However, in those versions of SEC that implement
more than one DECO but only one SNOW f8 CHA and one SNOW f9 CHA, the
descriptor must select the SNOW f9 CHA first. Selecting the SNOW f8 CHA first
and then selecting the SNOW f9 CHA within the same descriptor results in an error
indication.

11.6.2 SNOW 3G f8 use of the Mode Register

The SNOW 3G f8 uses the Mode Register as follows:

• The SNOW 3G f8 accelerator is enabled by setting the Algorithm (ALG) field of the
Class 1 Mode Register to 60h.

• The f8 mode is enabled by setting the Additional Algorithm Information (AAI) field
to C0h.

• The Algorithm State (AS) field should be set to "Initialize" state when a new
message is to be processed. The SNOW 3G f8 accelerator initializes the core engine
(keystream generator) based on the key and initialization parameters COUNT-C,
BEARER and DIRECTION in a 32-step initialization process. This is a necessary
step before keystream generation can begin. It is possible to perform this
initialization in advance without the need to provide any input data by writing 0 to
the Data Size register. The AS field should be reset (or set to "Update" state) after
context switch, assuming that Key/Context Registers are restored, when continuing
message processing. In this case, the state of the keystream generator necessary for
continuation of message processing is in the Key/Context Registers and initialization
is not needed.

• Other fields in the Mode Register have no effect on f8 mode.
• If the AAI field is set to a value that does not correspond to f8 mode, an illegal-mode

error is generated. The Mode, Key Size and Data Size Registers can be written in any
order. The operation will begin after all of these have been written.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 595

11.6.3 SNOW 3G f8 use of the Context Register

The SNOW 3G f8 uses the Context Register as follows:

• SNOW 3G f8 uses the Class 1 Key and Context registers.
• The usage of the Key and Context registers in the f8 mode is described in this table.

Table 11-81. Key/Context Register usage in SNOW 3G f8 mode

Register DWord number Initialize input definition Update input definition1

Key Register 0 Key[0:63] s0, s1

1 Key[64:127] s2, s3

2 - s4, s5

3 - s6, s7

Context Register 0 Count-C || Bearer || Direction || 0 s8, s9

1 - -

2 - -

3 - r1

4 - r2, r3

5 - s10, s11

6 - s12, s13

7 - s14, s15

1. The symbols in this column represent values written back by SNOW 3G f8. These values comprise the state of the
keystream generator that must be restored after context switch for the message processing to continue.

• In the f8 mode, the Context Register is treated as an extension of the Key Register;
that is, it is automatically encrypted when saved and decrypted when restored. The
IV value must be written to the Context Register when starting a new Job in the f8
mode. This value consists of SNOW 3G f8 initialization parameters in the order
shown in this table.

Table 11-82. IV that must be written to Class 1 Context Register in SNOW 3G f8 mode

0-31 32-36 37 38-63

Count-C Bearer Direction 0

11.6.4 SNOW 3G f8 use of the Data Size Register

The SNOW 3G f8 uses the Data Size Register as follows:

SNOW 3G f8 accelerator functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

596 NXP Semiconductors

• SNOW 3G f8 uses the 17 lsbs of the Class 1 Data Size Register to indicate the
number of bytes of input data and uses bits 63-61 to indicate the number of valid bits
in the last byte.

• SNOW 3G f8 internally decrements this value as it processes the message. It
continue to process data until the value in the Data Size register reaches zero. If 0 is
written to the Data Size register and the AS field of the Mode Register is set to
"Initialize", SNOW 3G f8 keystream generator is initialized and Key and Context
Registers contain this initialized state.

11.6.5 SNOW 3G f8 use of the Key Register

The SNOW 3G f8 uses the Key Register as follows:

• A 128-bit key must be written to the Class 1 Key Register with offset of 0 if the AS
field of the Mode Register is set to "Initialize".

• The key is necessary for the initialization of the keystream generator but it is not
needed when the AS field of the Mode Register is set to "Update"; that is, when a
message processing is continued after context switch.

• The Key Register is used to implement internal state of the keystream generator as
depicted in Table 11-81.

11.6.6 SNOW 3G f8 use of the Key Size Register

Writing to this register is not required by SNOW 3G f8, because the SNOW 3G f8 key is
always 16 bytes long. Writing a value of 16 to this register is allowed, but writing a value
other than 16 causes a key-size error to be generated.

11.7 SNOW 3G f9 accelerator functionality
SNOW 3G f9 is a keyed word-oriented stream integrity/authentication algorithm that
generates a 32-bit message digest under the control of a 128-bit key and a 128-bit
initialization value. The message may be between 1 and 20000 bits in length. The
algorithm is based on the same stream cipher (SNOW 3G f9) as is used by the
confidentiality algorithm f8. See Differences between SNOW 3G f8 and SNOW 3G f9
for more on the differences between the SNOW f8 and the SNOW f9 CHAs. Some of the
features of the SNOW f9 CHA are as follows:

• Message authentication in f9 (UIA2) mode
• Automatic comparison of the received and computed MAC values (ICV check)

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 597

• Throughput of up to 2 bytes per cycle
• Support for multiple session message processing through context switching
• Support for descriptor sharing
• Total message size of up to 232 bits (processed in chunks of no more than 217-1 bytes

per session)
• Supports any number of bits in the last byte of the message
• Automatic zeroization of the invalid bits in the last incomplete byte of the message

11.7.1 SNOW 3G f9 use of the Mode Register

The SNOW 3G f9 uses the Mode Register as follows:

• The SNOW 3G f9 accelerator is enabled by setting the Algorithm (ALG) field of the
class 2 Mode Register to A0h.

• The f9 mode is enabled by setting the Additional Algorithm Information (AAI) field
to C8.

• The Algorithm State (AS) field must be set to "Initialize" state when the first session
of message processing is to be performed. This assumes that message processing is
split into multiple sessions; that is, that the first one is not also the final session. The
SNOW 3G f9 accelerator initializes the core engine (keystream generator) based on
the key and an IV built from initialization parameters COUNT-I, DIRECTION,
BEARER and FRESH in a 32-step initialization process. This is a necessary step
before keystream generation can begin. It is possible to perform this initialization in
advance without the need to provide any input data by writing 0 to the Data Size
register.

• If the AS mode field is set to "Initialize/Finalize" (11b), but there is no message to be
processed (0 written to the Data Size Register), the computed MAC will be identical
to the keystream word Z5 as defined in the SNOW specification. If the CICV mode
bit is also set, the ICV/MAC expected on the input-data FIFO is checked against Z5.

• If the data size is 0, and CICV is 1, AS set to "Update" (00b) means that Check ICV
job is requested. The CICV-only job does not process any data, it just pops received
ICV/MAC from the input-data FIFO, and compares it to the computed MAC that is
restored with the rest of the context from the previous session.

• The AS field must be set to "Finalize" state when the last session of message
processing is to be performed. This enables computation of the MAC.

• The AS field must be set to "Initialize/Finalize" state when the whole message is
processed in one session.

• The ICV bit of the Mode Register must be set for the f9 mode to compare computed
MAC/ICV with the received ICV. The received ICV must be provided through the
input data FIFO following the message data at which time the FIFO data type must

SNOW 3G f9 accelerator functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

598 NXP Semiconductors

be set to ICV. If this bit is reset, the f9 mode does not expect ICV to be put on Input
Data FIFO.

• The illegal-mode error is generated if ICV bit is set, but the AS field is not set to
either "Initialize/Finalize" or "Finalize" state, except for CICV-only jobs; that is, the
data size is non-zero and valid (there are no more writes to the Data Size Register).

• If the AAI field is set to a value that does not correspond to f9 mode, the illegal-
mode error is generated. The Mode, Key Size and Data Size Registers can be written
in any order. The operation will begin after all of these have been written.

• When SEC descriptor sharing mode is used with SNOW 3G f9, clear mode, followed
by clear-done interrupt command, must be issued between SNOW 3G f9 jobs.

11.7.2 SNOW 3G f9 use of the Context Register

The SNOW 3G f9 uses the Context Register as follows:

• This table shows context usage in the f9 mode that is relevant for its programming.

Table 11-83. Context usage in SNOW 3G f9 mode

Register DWord
number

Initialization input definition Update state (for
context switching)

Finalize output definition

Key Register 0 Key[0:63] - -

1 Key[64:127] - -

2 - - -

3 - - -

4 - IV -

5 - z1, z2 -

6 - z3, z4 -

7 - z5, bit length -

Context
Register

0 Count-C || 0 || Direction || 0 - {MAC,32'h0}

1 {FRESH, 32'h0} (3G) {Bearer,
59'h0} (LTE)

- -

• For 3G, the IV value is built as shown in this table.

Table 11-84. IV in Class 2 Context for 3G in SNOW 3G f9 mode

0-31 32-36 37 38-63 64-95

Count-C 0 Direction 0 FRESH

• LTE systems do not include a FRESH value in the f9 IV value. It is instead built as
shown in this table.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 599

Table 11-85. IV in Class 2 Context for LTE in SNOW 3G f9 mode

0-31 32-36 37 38-63 64-68 69-95

Count-C 0 Direction 0 Bearer 0

• At the end of processing, SNOW 3G f9 overwrites IV in the context word 0 with the
MAC/ICV. Because the MAC is a 32-bit value, it is written left-justified and the
remaining bits are cleared.

• Values z1-z5 are the keystream words computed during initialization of the f9 mode
by the keystream generator. After initialization stage is complete, keystream
generator is not active any more in the f9 mode. The processing is based on the
Galois Field (GF) multiplier implemented as part of the f9 mode logic. The bit length
is a value copied from the data size register to be used to compute the final MAC. In
case of multi-session message processing, this value represents the total message
length as each session's data size is accumulated.

• To read only the final MAC value, the "finalize" option must be present in the AS
mode setting. When saving context, the starting address must be the address of the
first double word of the Key Registers.

11.7.3 SNOW 3G f9 use of the Data Size Register

The SNOW 3G f9 uses the Data Size Register as follows:

• SNOW 3G f9 uses the 17 lsbs of the Class 2 Data Size register to indicate the
number of bytes of input data, and the NUMBITS field to indicate the number of
valid bits in the last byte.

• SNOW 3G f9 internally decrements this value as it processes the message. It
continues to process data until the value in the Data Size register reaches zero. If 0 is
written to the Data Size register and the AS field of the Mode Register is set to
"Initialize", SNOW 3G f9 keystream generator is initialized and the context contains
this initialized state.

• In the f9 mode, the data size must be divisible by 64 except when the AS field of the
Mode Register is set to "Finalize" or "Initialize/Finalize". In other words, the
message can be split for multi-session processing only on a 64-bit boundary. If this
rule is violated, the illegal data size error is generated.

SNOW 3G f9 accelerator functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

600 NXP Semiconductors

11.7.4 SNOW 3G f9 use of the Key Register

A 128-bit key must be written to the Class 2 Key Register with offset of 0 if the AS field
of the Mode Register is set to "Initialize" or "Initialize/Finalize". The key is necessary for
the initialization of the keystream generator.

11.7.5 SNOW 3G f9 use of the Key Size Register

The SNOW 3G f9 uses the Key Size Register as follows:

• Writing to this register is not required by SNOW 3G f9, because the SNOW 3G f9
key is always 16 bytes long.

• Writing a value of 16 to this register is allowed, but writing a value other than 16
causes a key-size error to be generated.

11.7.6 SNOW 3G f9 use of ICV check

The SNOW 3G f9 uses ICV check as follows:

• The f9 mode can automatically compare received ICV with the computed ICV at the
end of processing if the ICV bit of the Mode Register is set and the AS field is set to
"Finalize" or "Initialize/Finalize".

• The received ICV must be supplied after message data through the Input Data FIFO.
• The FIFO data type for it must be set to ICV.
• The SNOW 3G f9 mode ICV/MAC is always a 32-bit value.
• If the ICV mode bit is set but the AS field is set to "Initialize" or "Update", an illegal-

mode error is generated, except for CICV-only jobs where no processing is done and
only ICV check is performed as indicated by data size being 0.

• SNOW 3G f9 generates ICV error if received and computed ICVs do not match.
• It is allowed to create jobs where there is no data to be processed, and only ICV is

being checked. For this, the AS mode field should be reset.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 601

11.8 Message digest hardware accelerator (MDHA)
functionality

The MDHA performs hashing and authentication operations using the hashing algorithms
defined in FIPS 180-3 (SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512) and MD5.
The MDHA also supports SMAC with MD5 and SHA-1 that is used with SSL 3.0 and
HMAC that is used by TLS and other protocols. MDHA is controlled by the Class 2
registers.

11.8.1 MDHA use of the Mode Register

The MDHA uses the Mode Register as follows:

• The Encryption field (ENC) is not used by the MDHA, and the Authenticate/Protect
(AP) field is used only for selecting the appropriate Performance Counter register.

• The Algorithm field (ALG) must be programmed to MD5, SHA-1, SHA-224,
SHA-256, SHA-384, or SHA-512.

• The ICV field enables ICV checking for MDHA. Starting at the MSB, MDHA
verifies the number of bytes in the digest that are defined in the Class 2 ICV Size
Register.

• The Algorithm State (AS) field is defined as follows:

Table 11-86. Mode Register[AS] operation selections in
MDHA

Operation Description

INIT The hashing algorithm is initialized with the chaining variables and then hashing begins.
Input data must be a non-zero multiple of 64-byte blocks for MD5, SHA-1, SHA-224,
SHA-256, and 128-byte blocks for SHA-384 and SHA-512.

INIT/FINALIZE The hashing algorithm is initialized with the chaining variables, and padding is
automatically put on the final block of data. Any size of data is supported.

UPDATE The hashing algorithm begins hashing with an intermediate context and running
message length. Input data must be a multiple of 64-byte blocks for MD5, SHA-1,
SHA-224, SHA-256, and 128- byte blocks for SHA-384 and SHA-512.

FINALIZE The hashing algorithms begin hashing with an intermediate context and running
message length. Padding is performed on the final block of data. Any size of data is
supported.

• The Additional Algorithm Information field (AAI) field is defined as follows:
• The Additional Algorithm Information field (AAI) specifies whether

Authentication is performed on the data with the specified algorithm. The
optional authentication modes are HMAC, SMAC, and HMAC with
precomputed IPAD/OPAD.

Message digest hardware accelerator (MDHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

602 NXP Semiconductors

• The HMAC mode is defined by FIPS 198-1. This can be performed with any of
the hashing algorithms.

• The SMAC mode is defined by the SSL 3.0 specification. This can be performed
with MD5 or SHA-1 hashing algorithm only.

• The HMAC with precomputed IPAD/OPAD performs the HMAC algorithm but
allows the IPAD and OPAD step to be preloaded and started from instead of the
KEY.

NOTE
For HMAC and SMAC, the MD5 Key cannot be shared
between DECOs until the donor MDHA is done. As a result, if
using an MD5 key in a shared descriptor, sharing must be set to
NEVER, WAIT or SERIAL, and sharing cannot be permitted to
proceed until MDHA is done. For more information on sharing,
please refer to Table 7-1.

11.8.2 MDHA use of the Key Register

The MDHA uses the Key Register as follows:

• The Key Register is only used when one of the AAI field bits are specified.
• These registers either hold the key or the precomputed IPAD/OPAD split key.
• The size of the IPAD and OPAD are each the size of the digest that is defined by the

specified algorithm, except for SHA-224, which is 32 bytes, and SHA-384, which is
64 bytes.

11.8.2.1 Using the MDHA Key Register with normal keys

When loading the Key Register with the Key Command (See KEY commands), a
KDEST value of 0h results in the key source being loaded, with offset zero, into the Key
Register. If the ENC bit = 1 in the Key Command, then the key is decrypted into this
register.

11.8.2.2 Using the MDHA Key Register with IPAD/OPAD "split keys"

The HMAC function uses an HMAC key per the following equation:

HMAC(Key,Message) = Hash[(Key ⊕ OPAD) || HASH((Key ⊕ IPAD) || Message)],

where "IPAD" and "OPAD" are constants, "Key" is the HMAC Key, and "HASH" is the
chosen hashing function (for example, SHA-256).

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 603

11.8.2.2.1 Definition and function of IPAD/OPAD split keys

To improve performance, SEC permits the use of pre-computed IPAD/OPAD "split
keys". Computing the values Hash(Key ⊕ IPAD) and Hash(Key ⊕ OPAD) each require
MDHA to perform one block of hashing computation. By perforrming this computation
once, subsequent HMAC computations can save two blocks of a HMAC computation. As
a result, the Key Command has an option to signal MDHA that the key being loaded is a
precomputed split key.

11.8.2.2.2 Process flow of using the Key Register with split keys

When MDHA runs, it turns a key into an IPAD/OPAD pair. MDHA writes this pair back
to the Class 2 Key Register. Because the IPAD/OPAD pair is required every time, it
saves time to create it once and then reuse it rather than starting with the key again.
However, the IPAD/OPAD pair does not appear in the Key Register contiguously. To
make the hardware much simpler, the IPAD appears at the start of the Key Register and
the OPAD starts at the midpoint. So, between a 16-byte IPAD and the 16-byte OPAD,
there can be 48 bytes of null data. Rather than having to load or store the null data, use
the split key type.

11.8.2.2.3 Using padding with the split key type to align with storage

When doing a FIFO STORE of the split key type, the user provides a length equivalent to
the sum of the bytes in the IPAD and OPAD. That is, in the example above, a total length
of 32 bytes. DECO knows to get 16 bytes from the start and another 16 bytes from the
midpoint. This saves in encryption time and bandwidth. When loading 20-byte IPAD and
OPAD (size would be 40), there must be "padding" of 4 bytes following each. That is:
{20 bytes of IPAD, 4 bytes of PAD, 20 bytes of OPAD, 4 bytes of PAD}. The padding
can be anything, because SEC discards it. The reason for this is to make it align with how
the encrypted split key is stored, where the extra padding is used to pad each of IPAD and
OPAD to an 8-byte boundary so that they can be handled separately.

11.8.2.2.4 Length of a split key

Because the split key consists of two blocks of material processed by the selected hash
algorithm, the length of a split key is twice the length of the hash algorithm's running
digest (note exception below). Storage of the split Key in the Class 2 Key Register,
however, is such that the value Hash(Key ⊕ IPAD) is at offset zero, and the value
Hash(Key ⊕ OPAD) is at offset 64.

Message digest hardware accelerator (MDHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

604 NXP Semiconductors

11.8.2.2.5 Loading/storing a split key with a key command

A split key may be loaded either in encrypted or in unencrypted form. The DECO
command to load a split key is the key command with the KDEST field set to 3h. A split
key loaded in this way must be stored contiguously in external memory, and is twice the
length of the hash algorithm's running digest. For example, the running digest for
SHA-224 is 32 bytes, so the length of a SHA-224 split key in external memory is 64
bytes. In addition, the length for a key command associated with a SHA-224 split key
must be 64. A split key that SEC has generated has also been encrypted, and for SHA-1,
has been padded with 8 additional bytes.

11.8.2.2.6 Loading/storing a split key with a FIFO STORE command

The DECO command to store a split key is the FIFO STORE command (see FIFO
STORE command), with output-data type set to 16 or 26 (17 or 27 to encrypt using the
TDKEK). Generating a split key in this fashion results in the key being encrypted with
the JDKEK or TDKEK. Note that the length of an encrypted split key is longer if the
FIFO STORE command output-data type selects AES-CCM (16 or 17) for the encrypted
key type. Even if AES-ECB is selected (26 or 27), a SHA-1 encrypted split key is always
longer, because SEC must add 8 bytes of padding before the pre-encrypted 40 bytes of
actual split key can be encrypted.

11.8.2.2.7 Sizes of split keys

This table describes the different sizes of split keys depending on how they were
generated.

Table 11-87. Sizes of split keys

Hash algorithm Final digest
size

Running
digest size

Software-generated
split-key Size

AES-ECB encrypted
split-key size

AES-CCM encrypted
split-key size

MD5 16 bytes 16 bytes 32 bytes 32 bytes 44 bytes

SHA-1 20 bytes 20 bytes 40 bytes 48 bytes 52 bytes

SHA-224 28 bytes 32 bytes 64 bytes 64 bytes 76 bytes

SHA-256 32 bytes 32 bytes 64 bytes 64 bytes 76 bytes

SHA-384 48 bytes 64 bytes 128 bytes 96 bytes 140 bytes

SHA-512 64 bytes 64 bytes 128 bytes 128 bytes 140 bytes

11.8.2.2.8 Constructing an HMAC-SHA-1 split key in memory

This figure is an example of how software would construct an HMAC-SHA-1 split key in
memory.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 605

Software-generated SHA-1 split key in memory
IPAD refers to H (Key ^ IPAD)
OPAD refers to H (Key ^ OPAD)

Split key after loading into Class 2 Key Register

Split key in memory after executing FIFO STORE command Encrypted split key (48B)

FIFO STORE:
Out Type=16.

Len=48

IPAD (20B) reserved(44B) OPAD (20B) reserved (44B)

KEY Command:
KDEST = 3h.

ENC = 0.
Len = 48

IPAD (20B) OPAD (20B)

Figure 11-1. Split keys in memory and in the Class 2 Key Register

Use the KEY Command to load it into the Class 2 Key Register, and then use the FIFO
STORE Command to write it back out in encrypted form.

11.8.2.3 MDHA use of the Key Size Register

The Key Size Register is defined to be the number of bytes of key that is loaded into the
Key Registers. Key Size ranges are defined as followed:

• MD5: 0 → 64 bytes
• SHA-1: 0 → 64 bytes
• SHA-224: 0 → 64 bytes
• SHA-256: 0 → 64 bytes
• SHA-384: 0 → 128 bytes
• SHA-512: 0 → 128 bytes

11.8.3 MDHA use of the Data Size Register

The MDHA uses the Data size Register as follows:

• The Data Size Register is written with the number of bytes of data to be processed.

Message digest hardware accelerator (MDHA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

606 NXP Semiconductors

• This register must be written to start data processing.
• This register may be written multiple times while data processing is in progress in

order to add the amount written to the register to the previous value in the register.

11.8.4 MDHA use of the Context Register

The Context Register stores the current digest and running message length. The running
message length will be 8 bytes immediately following the active digest. The digest size is
defined as follows:

• MD5: 16 bytes
• SHA-1: 20 bytes
• SHA-224: 28 bytes final digest; 32 bytes running digest
• SHA-256: 32 bytes
• SHA-384: 48 bytes final digest; 64 bytes running digest
• SHA-512: 64 bytes

11.8.5 Save and restore operations in MDHA context data

MDHA is able to process data in chunks by saving the intermediate context and running
message length from the Context Register after each chunk of data and restoring the
context and running message length to the Context Registers before processing any
subsequent chunks of data.

11.9 AES accelerator (AESA) functionality
The advanced encryption standard accelerator (AESA) module is a hardware co-
processor capable of accelerating the advanced encryption standard (AES) cryptographic
algorithm.

11.9.1 Differences between the AES encrypt and decrypt keys

AES is a block cipher that processes data in 128-bit blocks. It is a symmetric key
algorithm, that is, the "same"1 key is used for both encryption and decryption, although
the key appears in a different form for decryption than it does for encryption. The decrypt
form of the key is different from the encrypt form of the key because AES successively

1. The two forms are considered the same key because one can be derived from the other.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 607

modifies the cryptographic key during the steps of the cryptographic operation. The
decryption operation yields the correct result only if the modified form of the key (the
decrypt key) is used at the beginning of the decryption operation. Unless told otherwise
(via the DK bit in the OPERATION command), SEC assumes that a key loaded from
memory is the encrypt key, that is, the form appropriate for encryption. If a decryption
operation is specified and DK = 0, SEC first goes through the steps required to derive the
decrypt key from the encrypt key, and then performs the decryption operation. If a
decryption operation is specified and DK = 1 (indicating that a decrypt key has been
loaded), the steps required to derive the decrypt key are skipped and the decryption
operation is performed immediately, significantly improving performance for small data
blocks.

Note that the difference between the encrypt key and the decrypt key must be taken into
account when sharing keys between jobs. When an AES decryption job loads a key from
memory, it is probably an encrypt key, so the DK bit in the OPERATION command
should be set to 0 so that SEC derives the decrypt key from the encrypt key before
beginning the decryption operation. But when a subsequent AES decryption job shares
the key from a previous decryption job, the key that is shared is a decrypt key. In that
case, the DK bit should be set to 1, which tells SEC to skip the key derivation steps. If
DK were set to 0 in this case, the decrypt key would be modified as if it were an encrypt
key, and consequently, the wrong key value would be used in the decryption operation.
Note that a JUMP command with TEST CONDITION set to SHRD (see Table 7-90) can
be used to determine whether the OPERATION command should be executed with DK =
0 or DK = 1.

11.9.2 AESA as both Class 1 and Class 2 CHA

AESA can be programmed as either a Class 1 or a Class 2 CHA. When used as a Class 1
CHA, all of the modes of operation that it implements are available. Thus, it can perform
both confidentiality and authentication tasks. In this case, AESA is programmed via the
Class 1 CCB interface and all of the descriptor commands referring to AESA, its data,
context or keys must also use Class 1 designator where appropriate.

In order to support processing modes where an AES algorithm is used to perform
authentication while another Class 1 CHA is being used for encryption or decryption,
AESA can be programmed as a Class 2 CHA, i.e. using the Class 2 CCB interface. In this
case only authentication algorithms are available, specifically XCBC-MAC and CMAC.
An attempt to program AESA to perform any other mode algorithm will cause an illegal-
mode error. When used as a Class 2 CHA, AESA and its input/output data, context data

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

608 NXP Semiconductors

or keys must be referred to as Class 2 in any descriptor command that contains the Class
field. The designator for AESA in the ALG field of a mode register remains the same for
both Class 1 and 2 mode registers.

The ability to function either as a Class 1 or a Class 2 CHA is further leveraged to allow
AESA to operate simultaneously as both a Class 1 and a Class 2 CHA. This allows the
user to perform encryption/decryption using any of the supported AES confidentiality
modes except the XTS, i.e. ECB, CBC, CTR, OFB, CFB128, while simultaneously
performing authentication using either XCBC-MAC or CMAC modes. An attempt to
program AESA via Class 1 and 2 mode registers with any other combination of modes
will cause an illegal-mode error.

When operating simultaneously as both a Class 1 and a Class 2 CHA, AESA will switch
between processing Class 1 or 2 data blocks of 16 bytes after each processed block as
long as both Class 1 and 2 blocks are fetched from the corresponding FIFO interface and
are ready for processing. It will continue with processing blocks belonging to one Class
as long as the data belonging to the other Class is not available. AESA can prefetch data
from both Class 1 and Class 2 FIFO interfaces simultaneously. If an error is generated for
either Class 1 or Class 2 jobs, the processing is terminated for both classes. The reported
error status will contain the appropriate class designator.

AESA can be used either with an in-snooping or an out-snooping data flow. If the Class 2
job needs to process the same data as the Class 1 job, CCB should be programmed to
utilize in-snooping. Alternatively, if the Class 2 job performs authentication on the Class
1 job result, out-snooping should be used. If an authentication job using XCBC-MAC or
CMAC is to be performed on data in memory, AESA can be programmed either as Class
1 or Class 2.

The descriptor sharing and context switching between different jobs can be utilized with
descriptors programming AESA either as Class 1 or Class 2 or both.

When programmed to process Class 1 and Class 2 jobs simultaneously, AESA is
considered busy until both jobs complete. For example, after the Class 1 job completes, it
is not possible to start another Class 1 job while the initial Class 2 job is still being
processed, or vice versa. When clearing an interrupt or issuing a software reset, the
corresponding Class Mode Register should also be cleared. The internal registers will not
be cleared if AESA is still selected by the other Class Mode Register.

11.9.3 AESA modes of operation

The following modes are supported by AESA:

• Electronic codebook (ECB)

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 609

• Cipher block chaining (CBC)
• Output feedback (OFB)
• 128-bit cipher feedback (CFB128)
• Counter (CTR)
• XTS tweakable block cipher
• Extended cipher block chaining message authentication code (XCBC-MAC)
• Cipher-based MAC (CMAC)
• CTR and CBC-MAC (CCM)
• Galois/Counter mode (GCM)
• Combined CBC and XCBC (CBC-XCBC)
• Combined CTR and XCBC (CTR-XCBC)
• Combined CBC and CMAC (CBC-CMAC)
• Combined CTR and CMAC (CTR-CMAC)

AES modes can be classified into these categories:

• Confidentiality (ECB, CBC, CTR, OFB, CFB128,XTS)
• Authenticated Confidentiality (CCM, GCM,GCM, CBC-XCBC, CTR-XCBC)
• Authentication (XCBC-MAC, CMAC)

CBC Mode can also be viewed as an authentication mode when used to encrypt data,
because it provides CBC-MAC in the context registers.

11.9.4 AESA use of registers

Note the following regarding the AESA's use of registers:

• AESA is controlled by either the Class 1 or Class 2 registers.
• For all modes, if AES is selected and the mode code written to the Mode Register

does not correspond to any of the implemented AES modes, the illegal-mode error is
generated.

• KEY SIZE, MODE and DATA SIZE can be written in any order. The operation will
begin after all of these have been written. As a Class 2 CHA, only XBC-MAC and
CMAC authentication modes are available. Writing the Class 2 Mode Register to
request any other modes will cause an illegal-mode error. Also, for all AES modes,
the bit offset in the Data Size Register must be zero when the last write to that
register is completed. Failure to comply with these requirements will generate an
error in the CCB Status Register.

• When sharing context between consecutive AES jobs, software reset is not issued. To
prepare AES for the next job, the Data Size Register and Mode Register must be

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

610 NXP Semiconductors

cleared, as well as the Done Interrupt. The order of these should be such that the
Done Interrupt is not cleared first.

• If ICV-only jobs are created (no data to be processed, only ICV to be checked) in
modes that support ICV check, the AS mode field should be reset.

11.9.5 AESA use of the parity bit

AESA incorporates fault-detection logic based on parity. The parity bit is computed for
every byte of input data and key. These parity bits are then fed to the fault detection logic
that computes expected parity of every byte for both key and data based on the AES
transformations implemented in the main data-path. The expected parity is compared
with the parity of the actual key and data bytes and the hardware error is generated if
there is a mismatch.

11.9.6 AES ECB mode

The electronic codebook (ECB) mode is a confidentiality mode that features, for a given
key, the assignment of a fixed, ciphertext block to each plaintext block, analogous to the
assignment of code words in a codebook. In ECB encryption, the forward cipher function
is applied directly and independently to each block of the plaintext. The resulting
sequence of output blocks is the ciphertext. In ECB decryption, the inverse cipher
function is applied directly and independently to each block of the ciphertext. The
resulting sequence of output blocks is the plaintext.

11.9.6.1 AES ECB mode use of the Mode Register

AES ECB mode uses the Mode Register as follows:

• The Encrypt (ENC) field should be 1 for ECB encryption and 0 for ECB decryption.
• The ICV/TEST bit is used in ECB mode to activate the fault detection test logic. This

logic verifies that the fault detection logic is operational by injecting bit-level errors
into input data and key bytes. Because ECB mode does not normally use the Context
Registers, the first 128 bits of the context are used in the ECB TEST mode to define
which byte of the input data and the key has a bit error injected.

• The Algorithm State (AS) field is not used in ECB mode.
• The Additional Algorithm Information (AAI) field must be set with value 20h that

activates ECB mode. Setting the MSB in the AAI field (interpreted as the Decrypt
Key or DK bit for AES operations) specifies that the key loaded to the Class 1 Key
Register is the decryption form of the key, rather than the encryption form of the key.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 611

If DK = 0, when a decryption operation is requested SEC processes the content of the
Class 1 Key Register to yield the decryption form of the key. If DK = 1, SEC skips
this processing. The illegal-mode error is generated if DK = 1 and ENC=1.

• The Algorithm (ALG) field is used to activate AESA by setting it to 10h.

11.9.6.2 AES ECB mode use of the Context Register

ECB does not use Context Registers except when fault-detection test is activated. In this
case, the first 128 bits of the context are reserved for the error code. The error code:

• Defines which byte of the input data and the key will have a bit error injected.
• Can have 32, 40, or 48 active bits depending on the key size (16, 24 or 32 bytes in

ECB mode).
• Is right justified within first 128 bits of the context such that bit 0 of Context DWord

1 injects error into the MSB of the input data, while bit 16 of Context DWord 1
injects error into the MSB of the key.

If all bits of the error code are 0, no error is injected and fault detection logic does not
activate the hardware error. If the ICV/TEST bit of the Class 1 Mode Register is 0 in the
ECB mode, the Context Registers have no effect on ECB processing.

Table 11-88. Context usage in ECB mode

Context DWord Definition

ECB ECB with ICV/TEST = 1

0 - ERROR CODE

1 -

11.9.6.3 AES ECB Mode use of the Data Size Register

The length of the message to be processed in bytes must be written to the Data Size
register. If this value is not divisible by 16, the Data Size error is generated.

11.9.6.4 AES ECB Mode use of the Key Register

ECB keys must be written to the Class 1 Key Register and can have 16, 24, or 32 bytes.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

612 NXP Semiconductors

11.9.6.5 AES ECB Mode use of the Key Size Register

The number of bytes in the ECB key must be written to the Key Size register. The KEY
SIZE, MODE and DATA SIZE can be written in any order. Processing starts after all of
them have been written. Any value other than 16, 24, or 32 causes the key-size error to be
generated.

11.9.7 AES CBC, OFB, CFB128 modes

The CBC, OFB, CFB128 modes are considered together because of their similarities and
are described in this table.

Table 11-89. AES CBC, OFB, CFB128 modes

Name Abbreviation Function

Cipher-block chaining
mode

CBC Confidentiality mode whose encryption process features the combining
("chaining") of the plaintext blocks with the previous ciphertext blocks. The
CBC mode requires an IV (Initialization Vector) to combine with the first
plaintext block

NOTE: CBC mode uses both forward and inverse AES cipher. OFB and
CFB use only forward AES cipher.

Cipher feedback mode CFB Confidentiality mode that features the feedback of successive ciphertext
segments into the input blocks of the forward cipher to generate output
blocks that are exclusive-ORed with the plaintext to produce the
ciphertext, and vice versa. The CFB mode requires an IV as the initial
input block. AESA implements 128-bit CFB mode where every ciphertext/
plaintext block must have 128 bits

Output feedback mode OFB Confidentiality mode that features the iteration of the forward cipher on an
IV to generate a sequence of output blocks that are exclusive-ORed with
the plaintext to produce the ciphertext, and vice versa. The OFB mode
requires IV. The last block of OFB input data can have fewer than 16 bytes

11.9.7.1 AES CBC, OFB, and CFB128 modes use of the Mode
Register

The AES CBC, OFB, and CFB128 modes use the Mode Register as follows:

• The Encrypt (ENC) field should be 1 for encryption and 0 for decryption, except for
OFB mode in which this bit is not used.

• The ICV/TEST bit is not used in these modes.
• The Algorithm State (AS) field is used only in CBC mode to prevent IV update in the

context for the last data block when set to "Finalize" (2h).
• The Additional Algorithm Information (AAI) field defines which mode is used for

processing. For CBC, OFB, and CFB, these values are 10h, 40h, and 30h,

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 613

respectively. The Decrypt Key [DK] (AAI field MSB) bit affects CBC mode and
specifies that the key loaded to the Class 1 Key Register is the decrypt key. The
illegal mode error is generated if DK=1 and ENC=1. If the DK bit is set in OFB or
CFB128 modes the illegal-mode error is also generated, because these modes do not
use inverse AES cipher.

• The Algorithm (ALG) field is used to activate AESA by setting it to 10h.

11.9.7.2 AES CBC, OFB, and CFB128 modes use of the Context
Register

The AES CBC, OFB, and CFB128 modes use the Context Register as follows:

• AES CBC, OFB, and CFB all use the Context Registers to provide IV, which is
updated with every processed block of a message. When a message is split into
chunks and processed in multiple sessions, the IV must be saved and later restored
for the next chunk to be processed correctly. At the end of CBC processing, IV is
also the MAC of the message.

• If the AS field of the Mode Register is set to "Finalize" (2h) in the CBC mode, the
last IV update is not written to the context. This enables CBC encryption to
effectively perform ECB encryption transformation of a single-block message
located in the context in place of IV, and with an all-zero block provided as input
data through the FIFO without overwriting the context.

Table 11-90. Context usage in CBC, OFB, CFB modes

Context DWord Definition

0 IV [127:64]

1 IV [63:0]

11.9.7.3 AES CBC, OFB, and CFB128 modes use of the Data Size
Register

The AES CBC, OFB, and CFB128 modes use the Data Size Register as follows:

• The byte length of the message to be processed must be written to the Data Size
Register.

• The first write to this register initiates processing. This register can also be written
during processing, in which case the value written is accumulated to the current state
of the register.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

614 NXP Semiconductors

• After the Data Size Register is written for the last time, its value must be divisible by
16 in CBC and CFB modes, otherwise the data-size error is generated.

• Only OFB decrements the value in this register with every processed block.

11.9.7.4 AES CBC, OFB, and CFB128 modes use of the Key Register

The AES CBC, OFB, and CFB128 modes uses the Key Register as follows:

• A CBC, OFB, or CFB key must be written to the Class 1 Key Register.
• Keys can have 16, 24, or 32 bytes.

11.9.7.5 AES CBC, OFB, and CFB128 modes use of the Key Size
Register

The AES CBC, OFB, and CFB128 modes use the Key Size Register as follows:

• The number of bytes in a key must be written to the Class 1 Key Size register by the
time that MODE and DATA SIZE have been written.

• Any value other than 16, 24, or 32 causes a key-size error to be generated.

11.9.8 AES CTR mode

The counter (CTR) mode is a confidentiality mode that features the application of the
forward cipher to a set of input blocks, called counters, to produce a sequence of output
blocks that are exclusive-ORed with the plaintext to produce the ciphertext, and vice
versa. Note that the counter value must be unique for each data block that is encrypted
with the same key. SEC uses a 128-bit counter to ensure that the counter value will not
overflow and wrap around.

NOTE
It is the user's responsibility to ensure that the same key value is
not used again following a reset.

11.9.8.1 AES CTR mode use of the Mode Register

The AES CTR mode uses the Mode Register as follows:

• The Additional Algorithm Information (AAI) field should be set to 00h to activate
CTR mode. If the Decrypt Key [DK] (AAI field MSB) bit is set, the illegal-mode

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 615

error is generated, because CTR uses only forward AES cipher requiring encryption
rather than decryption keys.

• The Algorithm State (AS) field when set to "Finalize" (2h) prevents counter update
in the context for the last data block.

• The Algorithm (ALG) field is used to activate AESA by setting it to 10h.

11.9.8.2 AES CTR mode use of the Context Register

The AES CTR mode uses the Context Register as follows:

• CTR uses context dwords 2 and 3 to provide initial counter value (CTR0). This value
is incremented with every processed block of a message. When a message is split
into chunks and processed in multiple sessions, the CTR0 field of context has to be
saved and later restored for the next chunk to be processed correctly.

• If the AS field of the Mode Register is set to Finalize (2h) in the CTR mode, the last
counter update is not written to the context. This enables CTR encryption to
effectively perform ECB encryption transformation of a single-block message
located in the context dwords 2 and 3 in place of CTR0 and with all-zero block
provided as input data through the FIFO without overwriting the context.

Table 11-91. Context usage in CTR mode

Context dword Initial-input definition Context-switching definition

0 - -

1 - -

2 CTR0 [127:64] CTRi [127:64]

3 CTR0 [63:0] CTRi [63:0]

11.9.8.3 AES CTR mode use of the Data Size Register

The byte-length of the message to be processed must be written to the Data Size register.
The first write to this register initiates processing. It can also be written during processing
in which case the value written will be accumulated to the current state of the register.
After the Data Size register is written for the last time, the value of this register may not
be divisible by 16. CTR decrements the value in this register with every processed block.

11.9.8.4 AES CTR mode use of the Key Register
• CTR key must be written to the Class 1 Key Register.
• The Key Register can have 16, 24 or 32 bytes.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

616 NXP Semiconductors

11.9.8.5 AES CTR mode use of the Key Size Register

The number of bytes in a key must be written to the Class 1 Key Size register. Any value
other than 16, 24, or 32 will cause Key Size error to be generated.

11.9.9 AES XTS mode

XTS is a tweakable block-cipher that acts on data units (sectors) of 128 bits or more and
uses the AES block-cipher as a subroutine. The key material for XTS-AES consists of a
data encryption key (used by the AES block cipher) as well as a "tweak key" that is used
to incorporate the logical position of the data block into the encryption.

11.9.9.1 AES XTS mode use of the Mode Register

AES XTS uses the Mode Register as follows:

• The Encrypt (ENC) bit must be set to 1 for encryption and 0 for decryption.
• The ICV/TEST bit is ignored in this mode.
• The Algorithm State (AS) field is ignored in this mode.
• The Additional Algorithm Information (AAI) field's lower 8 bits must be set to 50h

for XTS to be activated.
• The Decrypt Key [DK] (AAI field MSB) bit should be set to 1 only if the AES key,

written to the Class 1 Key Register with offset 0, is the decryption form of the key.
Otherwise, SEC assumes that the key that was loaded is the encryption form of the
key, and before beginning a decryption operation SEC first processes the content of
the Class 1 Key Register to derive the decryption form of the key.

• The Algorithm (ALG) field is used to activate AESA by setting it to 10h.

11.9.9.2 AES XTS mode use of the Context Register

AES XTS uses the Context Register as follows:

• Because XTS uses two keys (see AES XTS mode use of the Key Register), Key1
(AES key) and Key2 ("tweak" key), and each can be 32 bytes long, both keys cannot
always fit in the Key Register. In that case, Key2 spills into first 32 bytes of the
Context Register.

• When these keys are 16 bytes long each, XTS does not use the first 32 bytes of the
Context Register.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 617

• Context Register dword 4 is used to provide the sector index (I).
• The sector size in bytes must be provided in the low 16 bits of Context Register

dword 5.
• When a message is processed in chunks, all of the key and context data (in the first 6

context dwords) except the Block Index (j) must be saved at the end of the last
session and restored before starting a new XTS session on the next chunk of the
message. The message split must be done on a sector boundary and sectors have
integral number of 16-byte blocks, except the last one, whose size can be any number
of bytes higher or equal to 16.

Table 11-92. Context usage in XTS mode

Context dword Initial-input definition Context-switching definition

0 Key2 [0:63] (only for 64-byte keys) Key2 [0:63] (only for 64-byte keys)

1 Key2 [64:127] (only for 64-byte keys) Key2 [64:127] (only for 64-byte keys)

2 Key2 [128:191] (only for 64-byte keys) Key2 [128:191] (only for 64-byte keys)

3 Key2 [192:255] (only for 64-byte keys) Key2 [192:255] (only for 64-byte keys)

4 Sector Index (I) Sector Index (I)

5 Sector Size Block Index (j), Sector Size

11.9.9.3 AES XTS mode use of the Data Size Register

AES XTS uses the Data Size Register as follows:

• The byte-length of the message to be processed must be written to the Data Size
register.

• Processing starts when mode, key size, and data size are all written in any order. This
register can also be written during processing, in which case the value written will be
accumulated to the current state of the register. XTS decrements the value in this
register with every processed block.

• The message size does not have to be a multiple of sector size. However, the size of
data in the last sector must be at least 16 bytes-otherwise, cipher text stealing
method, employed for processing messages whose last block has fewer than 16 bytes,
would be done across sector boundary, which would produce incorrect result. When
detected, this situation generates the Data Size error. This error is also generated if
sector size is 0 or is not a multiple of 16 bytes, or if the total message size is less than
16 bytes.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

618 NXP Semiconductors

11.9.9.4 AES XTS mode use of the Key Register

AES XTS uses the Key Register as follows:

• The IEEE 1619-2007 standard defining XTS mode refers to a single XTS-AES key
of either 256 or 512 bits, but the key is parsed as a concatenation of two fields of
equal size called Key1 and Key2 such that: Key = Key1 | Key2.

• For a 256-bit key, Key1 must be written to the Class 1 Key Register with offset
0, and Key2 with offset 16.

• For a 512-bit key, Key2 is written to the first 32 bytes of the context. The AES
key(Key1) can be either an encrypt key or a decrypt key.

• If the decrypt key is written to the Key Register, the DK bit (MSB of the AAI field in
the Class 1 Mode Register) must be set to 1.

11.9.9.5 AES XTS mode use of the Key Size Register

AES XTS uses the Key Size Register as follows:

• The total number of key bytes must be written to the Class 1 Key Size register. The
KEY SIZE, MODE, and DATA SIZE can be written in any order. Processing starts
after all of them have been written.

• Any value other than 32, or 64 will cause Key Size error to be generated.

11.9.10 AES XCBC-MAC and CMAC modes

The AES XCBC-MAC and CMAC modes are described together because of their
similarities. They are extensions of the AES CBC mode that produces a key-dependent,
one--way hash (or message authentication code (MAC)) in a secure fashion across
messages of varying lengths. They also provide data-integrity and data-origin
authentication regarding the original message source.

11.9.10.1 AES XCBC-MAC and CMAC modes use of the Mode
Register

The AES XCBC-MAC and CMAC modes use the Mode Register as follows:

• The Encrypt (ENC) bit is ignored.
• The ICV_TEST bit must be set for computed MAC to be compared with the received

MAC. The received MAC must be written to the Input Data FIFO after message data

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 619

and the FIFO data type must be set to ICV. If this bit is not set, XCBC-MAC and
CMAC do not expect received ICV to be supplied after message data.

• The Algorithm State (AS) field is defined for XCBC-MAC as shown in this table.

Table 11-93. Mode Register[AS] operation selections in AES XCBC-MAC

Operation Description

INITIALIZE Message is processed in multiple sessions and the current session is the first one. During
initialization, derived keys K3 and K2 that are XOR-ed with the last message block are computed and
stored in the context to be used in the last processing session. The derived key K1 used as an AES
key is computed and written back to the Key Register over the original key

INITIALIZE/FINALIZE Message is processed in a single XCBC session and the final MAC is computed

UPDATE Message is processed in multiple sessions and the current session is neither the first nor the last.
Derived keys K2 and K3 are provided in the context and the derived key K1 is provided in the Key
Register. If decryption is requested, and data size is not written or is set to 0, and ICV_TEST bit is 1 -
AS = UPDATE means that Check ICV (CICV) job is requested. The CICV-only job does not process
any data, it just pops received ICV/MAC from the Input Data FIFO, and compares it to the computed
MAC that is restored with the rest of the context from the previous session.

FINALIZE Message is processed in multiple sessions and the current session is the last one. Derived keys K2
and K3 are provided in the context and the derived key K1 is provided in the Key Register. The final
MAC is computed

• The Algorithm State (AS) field is defined for CMAC as shown in this table.

Table 11-94. Mode Register[AS] operation selections in CMAC

Operation Function

INITIALIZE Message is processed in multiple sessions and the current session is the first one. During
initialization, the constant L = E(K, 0) is computed as encrypted block of zeros using key K and stored
in the context to be used in the last processing session for derivation of keys K1 and K2. One of these
keys will be XOR-ed with the last message block.

INITIALIZE/FINALIZE Message is processed in a single session and the final MAC is computed

UPDATE Message is processed in multiple sessions and the current session is neither the first nor the last. The
constant L used for key derivation is provided in the context. If decryption is requested, and data size
is not written or is set to 0, and ICV_TEST:w bit is 1 - AS = UPDATE means that Check ICV (CICV)
job is requested. The CICV-only job does not process any data, it just pops received ICV/MAC from
the Input Data FIFO, and compares it to the computed MAC that is restored with the rest of the
context from the previous session

FINALIZE Message is processed in multiple sessions and the current session is the last one. The constant L
used for key derivation is provided in the context. The final MAC is computed

• If the AS field is not set to either "Initialize/Finalize" or "Finalize" and the
ICV_TEST bit is set to 1, the illegal-mode error is generated, except for CICV-only
jobs.

• The Additional Algorithm Information (AAI) field must be set to 70h for XCBC and
60h for CMAC to be activated. Setting the DK bit (AAI field MSB) will cause the
Illegal Mode error.

• The Algorithm (ALG) field is used to activate AESA by setting it to 10h.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

620 NXP Semiconductors

11.9.10.2 AES XCBC-MAC and CMAC Modes use of the Context
Register

The AES XCBC-MAC and CMAC modes use the Context Register as follows:

• No data needs to be provided in the context when starting a new XCBC or CMAC
session.

• The computed MAC and the derived keys K2 and K3 are written back to the context
by XCBC.

• The computed MAC and the constant L = E(K,0), computed as encrypted block of
zeros using key K, are written back to the context by CMAC.

• When a message is split into chunks and processed in multiple sessions, these values
need to be saved before context switch and restored before the next chunk of a
message is to be processed. At the end of message processing the first 2 dwords of
the context contain the MAC value.

Table 11-95. Context usage in XCBC-MAC and CMAC modes

Mode Context dword Context-switching definition Final-result definition

XCBC-MAC 0 MAC[127:64] MAC[127:64]

1 MAC[63:0] MAC[63:0]

2 K3[127:64] -

3 K3[63:0] -

4 K2[127:64] -

5 K2[63:0] -

CMAC 0 MAC[127:64] MAC[127:64]

1 MAC[63:0] MAC[63:0]

2 L[127:64] -

3 L[63:0] -

11.9.10.3 AES XCBC-MAC and CMAC modes use of the Class 1 ICV
Size Register

The AES XCBC-MAC and CMAC modes use the ICV Size Register as follows:

• This register is used to provide received ICV/MAC byte-size when it is other than 16
bytes.

• The computed ICV/MAC written to the context in the XCBC mode is always 16
bytes.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 621

• In CMAC mode, this register determines also the computed MAC size-the remaining
bytes are cleared.

• Supported values for ICV size are 4 to 16 bytes. If this register is 0, the size of ICV is
16 bytes.

11.9.10.4 AES XCBC-MAC and CMAC modes use of the Data Size
Register

The AES XCBC-MAC and CMAC modes use the Data Size Register as follows:

• The byte-length of the message to be processed must be written to the Data Size
register.

• The first write to this register initiates processing. It can also be written during
processing in which case the value written is accumulated to the current state of the
register.

• XCBC-MAC and CMAC decrement the value in this register with every processed
block.

11.9.10.5 AES XCBC-MAC and CMAC modes use of the Key Register

The AES XCBC-MAC and CMAC modes use the Key Register as follows:

• The key must be written to this register.
• For XCBC-MAC, if the AS mode field is set to either "Initialize" or "Initialize/

Finalize", it is the original XCBC key (K) that must be written here. Otherwise, the
derived key (K1) must be restored to this register. CMAC only uses original key K as
an AES key.

11.9.10.6 AES XCBC-MAC and CMAC modes use of the Key Size
Register

The AES XCBC-MAC and CMAC modes use the Key Size Register as follows:

• The total number of key bytes must be written to the Class 1 Key Size register.
• For XCBC-MAC, any value other than 16 causes a key-size error to be generated.

For CMAC, this error is generated only if any value other than 16, 24, or 32 is
written.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

622 NXP Semiconductors

11.9.10.7 ICV checking in AES XCBC-MAC and CMAC modes

Automatic ICV checking is enabled by setting the ICV_TEST bit of the Mode Register to
1. When ICV is set to 1, the AS mode field must be set to either "Finalize" or "Initialize/
Finalize"; otherwise the illegal-mode error is generated, except for CICV-only (Check-
ICV-only) jobs.

The received ICV must be provided on the FIFO after the message data. The FIFO data
type must be set to ICV when it is put on the FIFO. The size of the received and
computed ICV is provided in the Class 1 ICV Size register.

If the ICV check detects a mismatch between the decrypted received ICV and the
computed ICV, the ICV error is generated.

11.9.11 AESA CCM mode

CCM consists of two related processes: generation encryption and decryption
verification, which combine two cryptographic primitives: counter mode encryption
(CTR) and cipher-block chaining based authentication (CBC-MAC). Only the forward
cipher function of the block cipher algorithm is used within these primitives. Note that
the counter value must be unique for each data block that is encrypted with the same key.
SEC uses a 128-bit counter to ensure that the counter value does not overflow and wrap
around.

NOTE
It is the user's responsibility to ensure that the same key value is
not used again following a reset.

11.9.11.1 Generation encryption

A cipher-block chaining is applied to the payload, the associated data (AAD), and the
nonce to generate a message authentication code (MAC); then counter mode encryption
is applied to the MAC and the payload to transform them into an unreadable form, called
the ciphertext. Thus, CCM generation encryption expands the size of the payload by the
size of the MAC.

11.9.11.2 Decryption verification

Counter-mode decryption is applied to the purported ciphertext to recover the MAC and
the corresponding payload; then cipher block chaining is applied to the payload, the
received associated data, and the received nonce to verify the correctness of the MAC.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 623

In CCM mode, the FIFO data type must be set to message type for message data, while
for AAD, either AAD or message type can be used.

11.9.11.3 AES CCM mode use of the Mode Register

The AES CCM mode uses the Mode Register as follows:

• The Encrypt (ENC) bit must be set to 1 for encryption and 0 for decryption.
• The ICV_TEST bit must be set for CCM to compare computed MAC with the

received MAC when decryption is requested.
• The received MAC must be written to the input-data FIFO after message data and the

FIFO data type must be set to ICV.
• Setting the ICV_TEST bit causes the received MAC to be decrypted and compared

with the computed MAC.
• The number of MSBs to be compared is defined by the MAC size in the CCM IV

(B0) as described in the CCM specification.
• If the AS field is set to FINALIZE, but ICV = 0, AESA does not expect received

ICV to be put on the input-data FIFO. In that case, MAC is computed and truncated
to the specified size for decryption.

• For encryption, the computed MAC is encrypted and truncated to size. The illegal-
mode error is generated if ICV = 1 and ENC = 1.

• If ICV = 1 and the decrypted received MAC do not match computed MAC, the ICV
error is generated.

• The Algorithm State (AS) field is defined for CCM as follows:

Table 11-96. Mode Register[AS] operation selections in AES CCM

Operation Description

INITIALIZE Message is processed in multiple sessions and the current session is the first one. During
initialization, the initial counter CTR0 is encrypted in the CTR mode and the B0 is processed with the
CBC-MAC mode. The resulting values are stored in the context. Also, the size of MAC is decoded
from B0 and written to the context. This AS setting must be used whenever the first part (or whole)
AAD is being processed

INITIALIZE/FINALIZE Message is processed in a single CCM session and the final MAC is computed and encrypted. The
initial counter CTR0 and B0 must be provided in the context

UPDATE Message is processed in multiple sessions and the current session is neither the first nor the last. All
context data is restored from the previous session and the key is written to the Key Register. If
decryption is requested, and data size is not written or is set to 0, and ICV_TEST bit is 1 -
AS=UPDATE means that a CICV-only job is requested. The CICV-only job does not process any
data, it just pops received ICV/MAC from the Input Data FIFO, decrypts it and compares it to the
computed MAC that is restored with the rest of the context from the previous session

FINALIZE Message is processed in multiple sessions and the current session is the last one. All context data is
restored from the previous session and the key is written to the Key Register. The final MAC is
computed and encrypted

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

624 NXP Semiconductors

• Whenever AS is set to Initialize or Initialize/Finalize, context registers must be zero.
• If the AS field is not set to either Initialize/Finalize or Finalize and the ICV_TEST

bit is set to 1, the illegal-mode error is generated. This does not apply in case when
only ICV check is requested as described for AS = UPDATE.

• The Additional Algorithm Information (AAI) field must be set to 80h for CCM to be
activated. The C2K bit is used to select a key register. If C2K = 0, CCM uses the key
in the Class 1 Key Register. If C2K = 1, CCM uses the key in the Class 2 Key
Register. Setting the DK bit causes the illegal-mode error.

• The Algorithm (ALG) field is used to activate AESA by setting it to 10h.

11.9.11.4 AES CCM mode use of the Context Register

The AES CCM mode uses the Context Register as follows:

• B0 and the initial counter CTR0 must be provided in the context before the first
chunk of the message is to be processed. During initialization, the initial counter
CTR0 is encrypted in the CTR mode and B0 (which functions like a CBC-MAC IV
in CCM) is processed with the CBC-MAC mode. The resulting values are stored in
the context. Also, the size of MAC is decoded from B0 and written to the lower 32
bits of the context dword 6.

• If there is AAD, the first block of it defines its size, and that value is decoded and
written to the upper 32 bits of context dword 6. All of the context data must be
restored before the next chunk of the message is to be processed in multi-session
processing.

• For CCM encryption, the ICV (encrypted final MAC) is written to context words 4
and 5. For CCM decryption, the ICV (received MAC), which is always encrypted, is
decrypted to dwords 4 and 5. The final computed MAC is written (in clear) to
dwords 0 and 1.

Table 11-97. Context usage in CCM mode encryption

Context DWord Initial-input definition Intermediate definition Final-output definition

0 B0[127:64] intermediate MAC state MAC[127:64]

1 B0[63:0] intermediate MAC state MAC[63:0]

2 CTR0[127:64] CTR[127:64] -

3 CTR0[63:0] CTR[63:0] -

4 - E(CTR0)[127:64], 1 E(MAC)[127:64]

5 - E(CTR0)[63:01 E(MAC)[63:0]

6 - AAD size, MAC size; see Table 11-99 -

1. E(x) means encrypted x

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 625

Table 11-98. Context usage in CCM mode decryption

Context DWord Initial-input definition Context-switching Definition Final-result definition

0 B0[127:64] intermediate MAC state MAC[127:64]

1 B0[63:0] intermediate MAC state MAC[63:0]

2 CTR0[127:64] CTR[127:64] -

3 CTR0[63:0] CTR[63:0] -

4 - E(CTR0)[127:64] Decrypted Received
MAC[127:64]

5 - E(CTR0)[63:0] Decrypted Received
MAC[63:0]

6 - AAD size, MAC size -

Table 11-99. Format of Context DWord 6 in AES-CCM mode

Bit 63 Bits 62-48 Bits 47-32 Bits 31-3 Bits 2-0

AAD Presence Flag 0 AAD Size 0 Encoded MAC Size

11.9.11.5 AES CCM mode use of the Data Size Register

The AES CCM mode uses the Data Size Register as follows:

• The byte-length of the message to be processed must be written to the Data Size
register.

• The first write to this register initiates processing. It can also be written during
processing in which case the value written will be added to the current state of the
register.

• CCM decrements the value in this register with every processed block.
• The content of the Data Size register must be divisible by 16 after the last write to it

if the AS mode field is set to either "Update" or "Initialize". Otherwise, the data-size
error is generated. In other words, message splitting can be done only on a 16-byte
boundary.

11.9.11.6 AES CCM mode use of the Key Register

CCM key must be written to this register; it is always an encryption key.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

626 NXP Semiconductors

11.9.11.7 AES CCM mode use of the Key Size Register

The AES CCM mode uses the Key Size Register as follows:

• The total number of key bytes must be written to the Class 1 Key Size register by the
time that MODE and DATA SIZE have been written.

• Any value other than 16, 24, or 32 causes a key-size error to be generated.

11.9.11.8 AES CCM mode use of the ICV check

The AES CCM mode uses ICV checking as follows:

• Automatic ICV checking is enabled by setting the ICV_TEST bit of the Mode
Register to 1. When ICV is set to 1, the AS mode field must be set to either
"Finalize" or "Initialize/Finalize"-otherwise the illegal-mode error is generated,
unless data size is 0 indicating ICV check is only requested. Also, if ICV = 1, the
ENC bit must be 0.

• The received ICV must be provided on the input data FIFO after the message data. In
CCM, received ICV is always encrypted. The FIFO data type must be set to ICV
when it is put on the FIFO. The size of the received and computed ICV is for CCM
encoded in the B0.

• If the ICV check detects mismatch between the decrypted received ICV and the
computed ICV, the ICV error is generated.

11.9.12 AES GCM mode

The AES GCM provides the following:

• Data confidentiality using counter mode (CTR). Note that the counter value must be
unique for each data block that is encrypted with the same key. SEC uses a 128-bit
counter to ensure that the counter value does not overflow and "wrap around", but it
is the user's responsibility to ensure that the same key value is not used again
following a reset.

• Authentication (assurance of integrity) of the confidential data using a universal hash
function (GHASH) that is defined over a binary Galois (that is, finite) field. GCM
can also provide authentication assurance for additional data (AAD) that is not
encrypted.

• Stronger authentication assurance than a (non-cryptographic) checksum or error
detecting code; in particular, GCM can detect both of the following:

• Accidental modifications of the data
• Intentional, unauthorized modifications

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 627

11.9.12.1 GMAC

If the GCM input is restricted to data that is not encrypted, the resulting specialization of
GCM, called GMAC, is simply an authentication mode on the input data.

11.9.12.2 GCM data types

In the GCM mode, the FIFO data type must be set to the message data type for textdata
(payload), AAD type for additional data, IV type for IV data and ICV type for the
received ICV. These data types must always be provided in the following order:

1. IV
2. AAD
3. Message data

Any of these may be missing.

11.9.12.3 IV processing

IV is processed using GHASH function if the size of IV is not 12 bytes. The result of IV
processing is the initial counter (Y0) value used for encryption/decryption. GHASH
function is also performed on AAD and textdata before the MAC can be computed.

11.9.12.4 GCM initialization

GCM initialization is completed when all of the IV data is processed and the initial
counter value (Y0) is computed as a result. For that to happen, IV data needs to be
supplied through the Input Data FIFO and the FIFO data type must be set to IV.

11.9.12.5 AES GCM mode use of the Mode Register

The AES GCM mode uses the Mode Register as follows:

• The Encrypt (ENC) bit must be set to 1 for encryption and 0 for decryption. Even
though operations performed in either case are identical, the authentication is done of
the cipher text in parallel with decryption when ENC = 0, and after encryption of
each block when ENC = 1.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

628 NXP Semiconductors

• The ICV_TEST bit must be set for GCM to compare computed MAC with the
received MAC. The received MAC must be written to the input-data FIFO after
message data and the FIFO data type must be set to ICV. If this bit is not set, GCM
does not expect received ICV to be supplied after textdata. The illegal-mode error is
generated if ICV = 1 and ENC = 1.

• The Algorithm State (AS) field is defined for GCM as shown in this table:

Table 11-100. Mode Register[AS] operation selections in AES GCM

Operation Value Description

INITIALIZE 1h Message is processed in multiple sessions and the current session processes final part of IV or
textdata; do the final GHASH step, but do not compute MAC.

NOTE: This AS state does not indicate initialization in GCM; instead, it means that the final step of
the GHASH function is to be performed. In general, whenever the final GHASH iteration
needs to be computed (either for GHASH(IV) or GHASH(AAD, ciphertext)), and the current
message size provided in the Data Size Register is not equal to the total size for either IV,
AAD, or textdata, AS should be set to INITIALIZE (1h). Consequently, an AS = 1h also
indicates that the Context Registers 6-7 need to provide the total length of IV, AAD, or
textdata for this to be accomplished.

INITIALIZE/
FINALIZE

3h Message is processed in multiple sessions and the current session is the last. The final MAC is
computed.

UPDATE 0h Message is processed in multiple sessions (descriptors) and the current session is not the last. The
descriptor contains a non-final part of IV, AAD, textdata (IV, AAD or textdata split between
descriptors). If decryption is requested, and data size is not written or is set to 0, and ICV_TEST bit
is 1 - AS = UPDATE means that Check ICV (CICV) job is requested. The CICV-only job does not
process any data, it just pops received ICV/MAC from the Input Data FIFO, and compares it to the
computed MAC that is restored with the rest of the context from the previous session

FINALIZE 2h Message is processed in a single session. MAC is computed.

• If the AS field is not set to either "Initialize/Finalize" or "Finalize" and the
ICV_TEST bit is set to 1, the Illegal Mode error will be generated except for CICV-
only jobs.

Proper AS field settings

Assume that a message has IV, AAD, and textdata and each of these types is split into
two sessions (descriptors). The first IV descriptor should have AS set to "Update", the
second IV Descriptor should have AS set to "Initialize", both AAD Descriptors and the
first textdata descriptor should have AS field set to "Update", and the final Descriptor
sets AS to "Initialize/Finalize".

• The Additional Algorithm Information (AAI) field must be set to 90h for GCM to be
activated. The C2K bit is used to select a Key Register. If C2K = 0, GCM uses the
key in the Class 1 Key Register. If C2K = 1, GCM uses the key in the Class 2 Key
Register. Setting the DK bit causes an illegal-mode error.

• The Algorithm (ALG) field is used to activate AESA by setting it to 10h.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 629

11.9.12.6 AES GCM mode use of the Context Register

The AES GCM mode uses the Context Register as follows:

• New message processing does not need any data provided in the context. All of the
context data is written back by the GCM mode and needs to be restored before the
next data chunk is to be processed in the multi-session processing. The final MAC is
written in the context dwords 0-1.

• The initial counter value required for encryption/decryption is derived from IV and
written to dwords 4-5. It is also required for the MAC computation.

• The incremented counter is placed in dwords 2-3 and is updated with every
encrypted/decrypted block.

• Bit sizes of IV, AAD and textdata are required for GHASH computation and are
accumulated in dwords 6-7 when multi-session processing is used.

Table 11-101. Context usage in GCM mode

Context DWord Context-switching definition Final-result definition

0 MAC[0:63] MAC[0:63]

1 MAC[64:127] MAC[64:127]

2 Yi[0:63] -

3 Yi[64:127] -

4 Y0[0:63] -

5 Y0[64:127] -

6 IV bit size (during GHASH of IV), AAD bit size (during message processing) -

7 textdata bit size -

11.9.12.7 AES GCM Mode use of the Data Size Register

The AES GCM mode uses the Data Size Register as follows:

• The byte-length of the message to be processed (including IV, AAD and textdata)
must be written to the Data Size register (IV and AAD sizes must include padding to
the 16 byte boundary).

• he first write to this register initiates processing. It can also be written during
processing in which case the value written will be accumulated to the current state of
the register.

• GCM decrements the value in this register with every processed block.
• Message splitting must be done only on a 16-byte boundary.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

630 NXP Semiconductors

11.9.12.8 AES GCM mode use of the Class 1 IV Size Register

The Class 1 IV Size register is written with the number of bytes in the last IV block. If
the total IV size is written, only the low 4 bits are registered. GCM needs this information
to determine correct byte size of the IV used in the GHASH computation. To do this,
GCM also uses the fact that IV size padded to a 16-byte boundary is written to the Data
Size register.

11.9.12.9 AES GCM mode use of the AAD Size Register

The AAD Size register is written with the number of bytes in the last AAD block. If the
total AAD size is written, only the low 4 bits are registered. GCM needs this information
to determine correct byte size of the AAD used in the GHASH computation. To do this,
GCM also uses the fact that AAD size padded to a 16-byte boundary is written to the
Data Size register.

11.9.12.10 AES GCM mode use of the Class 1 ICV Size Register

The AES GCM mode uses the Class 1 ICV Size Register as follows:

• This Class 1 register is used to provide ICV/MAC byte-size when it is other than 16
bytes. In that case, the remaining bytes of the ICV/MAC written to the context is
zero.

• If the ICV mode bit is set, the Class 1 ICV Size register also determines the number
of bytes in the received ICV. Supported values for ICV size are 4 to 16 bytes. If this
register is 0, ICV size will be 16 bytes.

11.9.12.11 AES GCM mode use of the Key Register

GCM key must be written to this register; it is always an encryption key.

11.9.12.12 AES GCM mode use of the Key Size Register

The AES GCM mode uses the Key Size Register as follows:

• The total number of key bytes must be written to the Key Size register.
• Any value other than 16, 24, or 32 causes key-size error to be generated.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 631

11.9.12.13 AES GCM mode use of the ICV check

The AES GCM mode uses ICV checking as follows:

• Automatic ICV checking is enabled by setting ICV_TEST bit of the Mode Register
to 1. When ICV is set to 1, the AS mode field must be set to either "Finalize" or
"Initialize/Finalize"; otherwise the Illegal Mode error is generated except for CICV-
only jobs. Also, if ICV = 1, the ENC bit must be 0.

• The received ICV must be provided on the input-data FIFO after the message data.
The FIFO data-type must be set to ICV when it is put on the FIFO. The size of the
received and computed ICV is for GCM written to the Class 1 ICV Size register.

• If the ICV check detects mismatch between the decrypted received ICV and the
computed ICV, the ICV error is generated.

11.9.13 AESA optimization modes

The AESA optimization modes are as follows:

• CBC-XCBC
• CTR-XCBC
• CBC-CMAC
• CTR-CMAC
• CTR-CMAC-LTE

These modes are described together because of their similarities. Unlike CCM and GCM,
these optimization modes are not actual AES modes, but instead are hardware modes that
AESA implements to perform two block cipher modes of AES on the same data in the
same hardware. These modes are typically used to support specific networking protocols.

CBC-XCBC, CTR-XCBC, CBC-CMAC, and CTR-CMAC modes combine a
confidentiality mode with an authentication mode in a way suitable for IPsec. In
particular, the encrypted data is processed with XCBC-MAC or CMAC mode.

11.9.13.1 CTR-XCBC and CTR-CMAC modes data format

The CTR-XCBC and CTR-CMAC modes data format is a 24-byte header processed with
XCBC, followed by 1 or more 16-byte blocks of data processed with CBC and then
XCBC, followed by 0 or 1 XCBC-only words of 4 bytes.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

632 NXP Semiconductors

11.9.13.2 CTR-XCBC and CTR-CMAC modes message format

The CTR-XCBC and CTR-CMAC modes message format is a 16-byte header processed
with XCBC, followed by 1 or more 4-byte words of data processed with CTR and then
XCBC, followed by 0 or 1 XCBC-only words of 4 bytes.

11.9.13.3 CTR-CMAC-LTE for LTE PDCP control-plane processing

CTR-CMAC-LTE is designed for LTE PDCP control-plane processing. In particular,
unencrypted data is processed with CMAC mode. The data format for CTR-CMAC-LTE
is that of a 9-byte segment that is only authenticated, followed by any number of bytes
that is both authenticated and encrypted.

11.9.13.4 Authentication-only data

Authentication- or MAC-only data requires special authentication data (SAD) type to be
used as FIFO data type. The CBC or CTR data uses message data type, while ICV is
using ICV data type.

11.9.13.5 AES optimization modes use of the Mode Register

The AES optimization modes use the Mode Register as follows:

• The Encrypt (ENC) bit must be set to 1 for encryption and 0 for decryption.
• The ICV bit must be set for computed MAC to be compared with the received MAC.

The received MAC must be written to the Input Data FIFO after message data and
the FIFO data type must be set to ICV. If this bit is not set, AESA does not expect
received ICV to be supplied after textdata. The illegal-mode error is generated if ICV
= 1 and ENC = 1.

• The Algorithm State (AS) field is defined for all these optimization modes as
described in this table.

Table 11-102. Mode Register[AS] operation selections in AES optimization modes

Operation Value Description

INITIALIZE 1h Message is processed in multiple sessions and the current session is the first one.

• During CBC-XCBC initialization, derived key K3 for XCBC-MAC that is XOR-ed with the last
message block is computed and stored in the context to be used in the last processing session.
Derived key K1 used as the AES key for XCBC-MAC processing is computed and replaces the
original XCBC-MAC key in the Class 2 Key register. XCBC-MAC derived key K2 is never
computed, because the message length cannot be divisible by 16 bytes.

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 633

Table 11-102. Mode Register[AS] operation selections in AES optimization modes
(continued)

Operation Value Description

• During CTR-XCBC initialization both K2 and K3 XCBC-MAC keys are computed. Derived key
K1, used as the AES key for XCBC-MAC processing, is computed and replaces the original
XCBC-MAC key in the Class 2 Key register.

• During CMAC-based mode initialization, the key-derived value L is computed and written to
Context words 4 and 5. Derived keys K1 and K2, which are derived from L, are computed as
needed but not saved into Context.

• CTR-CMAC, CTR-XCBC and CTR-CMAC-LTE will generate the Data Size Error if the data size
value is not divisible by 16.

INITIALIZE/
FINALIZE

- Message is processed in a single session and the final MAC is computed. For CBC-based modes,
only CBC IV must be written to the context. For CTR-based modes, only initial CTR must be written to
the context.

UPDATE - Message is processed in multiple sessions and the current session is neither the first nor the last. For
XCBC-MAC-based modes, keys K2 and K3 are provided in the context and the derived key K1 is
provided in the Class 2 Key Register. For CMAC-based modes, Key-derived value L is provided in the
Context Register, and is used to compute K1 and K2. If decryption is requested, and data size is
written to 0, and ICV bit is 1 - AS=UPDATE means that Check ICV (CICV) job is requested. Data size
must be written, even if written with 0. The CICV-only job does not process any data, it just pops
received ICV/MAC from the Input Data FIFO, and compares it to the computed MAC that is restored
with the rest of the context from the previous session. CTR-CMAC, CTR-XCBC and CTR-CMAC-LTE
will generate the Data Size Error if the data size value is not divisible by 16. Note that a data size of 0
is not supported for CTR-CMAC-LTE

FINALIZE - Message is processed in multiple sessions and the current session is the last one. For XCBC-MAC
based modes keys K2 and K3 are provided in the context and the derived key K1 is provided in the
Class 2 Key Register. For CMAC-based modes key-derived value L is provided in the context. The
final MAC is computed using either K1 or K2, derived from L as needed

• If the AS field is not set to either "Initialize/Finalize" or "Finalize" and the ICV bit is
set to 1, the Illegal Mode error will be generated, except for CICV-only jobs.

• The Additional Algorithm Information (AAI) field's lower 8 bits must be set as
shown in Table 11-103 for the desired Optimization Mode to be activated.

• The Decrypt Key bit (DK) can be used in CBC-based Optimization Modes for
decryption to avoid the time required for key expansion by providing already
expanded key in the Class 1 Key Register. This must be used in multi-session
processing if the expanded key is saved and later restored to the Key Register. For
any CTR-based Optimization Mode, setting the DK (Decrypt Key) bit causes the
illegal-mode error.

Table 11-103. Optimization modes

AAI value (mode
[19:27])

Optimization mode name Confidentiality mode Authentication mode

0A0h CBC-XCBC CBC XCBC-MAC

0B0h CTR-XCBC CTR XCBC-MAC

0C0h CBC-CMAC CBC CMAC

0D0h CBC-CMAC-LTE CBC CMAC

0E0h CTR-CMAC CTR CMAC

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

634 NXP Semiconductors

• The Algorithm (ALG) field is used to activate AESA by setting it to 10h.

11.9.13.6 AES optimization modes use of the Context Register

The AES optimization modes use the Context Register as follows:

• A new message processing session needs CBC IV to be provided in the context for
CBC-based Optimization Modes, and the initial counter (CTR0) for CTR-based
Optimization Modes.

• The final MAC is in all cases written to context words 0-1.
• The XCBC derived keys K3 and K2 are written back to the context by CTR-XCBC

and only K3 by CBC-XCBC. Because the data format for the CBC-XCBC
guarantees that the message size is never divisible by 16, only K3 XCBC key is
needed. For the same reason, splitting of the CBC processed data on a 16 byte
boundary means that XCBC/CMAC processed data is not split on the 16 byte
boundary. Hence, the context DWord 6 is used by CBC-XCBC and CBC-CMAC to
save the least significant word (8 bytes) of the last CBC encrypted data block from
the previous session because it cannot be processed until the next 8 bytes are known.
Similarly, for CTR-CMAC-LTE, context DWords 6-7 are used to save 9 bytes of
previous data/header for the next processing session.

• This mode's 9-byte authenticate-only header cannot be processed until CTR message
data is available. Hence, if only header is provided in the current session, it will be
saved to the context for processing in the next session. The same applies for message
data in later sessions.

• The data continuation flag in context DWord 7 is used only for CTR-CMAC-LTE
encryption to signal the presence of data from the previous session and is set/reset by
the mode logic automatically in case of context switching.

• For decryption, the context DWords 6-7 are always used to store the remainder of the
previous block of data, because the current block on the input needs to be decrypted
before a new AES block can be formed by concatenating 9 bytes from the previous
block with 7 bytes from the current input block.

• In CTR-XCBC, CTR-CMAC, CTR-CMAC-LTE modes, message splitting must be
done on a 16-byte boundary for multi-session message processing.

• The CBC-XCBC and CBC-CMAC modes require that the first session processes the
whole authenticate-only header and at least 16 bytes of the CBC data. From that
point on, message splitting is supported on a 16-byte boundary of CBC data.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 635

Table 11-104. Context usage in CBC-XCBC mode

Context DWord Initial-input definition Context-switching definition Final-result definition

0 - MAC[127:64] MAC[127:64]

1 - MAC[63:0] MAC[63:0]

2 CBC-IV[127:64] CBC-IVi[127:64] -

3 CBC-IV[63:0] CBC-IVi[63:0] -

4 - K3[127:64] -

5 - K3[63:0] -

6 - LS word of CBC encrypted data
from previous session

-

Table 11-105. Context usage in CTR-XCBC mode

Context DWord Initial-input definition Context-switching definition Final-result definition

0 - MAC[127:64] MAC[127:64]

1 - MAC[63:0] MAC[63:0]

2 CTR0[127:64] CTRi[127:64] -

3 CTR0[63:0] CTRi[63:0] -

4 - K3[127:64] -

5 - K3[63:0] -

6 - K2[127:64] -

7 - K2[63:0] -

Table 11-106. Context usage in CBC-CMAC mode

Context DWord Initial-input definition Context-switching definition Final-result definition

0 - MAC[127:64] MAC[127:64]

1 - MAC[63:0] MAC[63:0]

2 CBC-IV[127:64] CBC-IVi[127:64] -

3 CBC-IV[63:0] CBC-IVi[63:0] -

4 - L[127:64] -

5 - L[63:0] -

6 - LS word of CBC encrypted data from
previous session

-

Table 11-107. Context usage in CTR-CMAC mode

Context DWord Initial-input definition Context-switching definition Final-result definition

0 - MAC[127:64] MAC[127:64]

1 - MAC[63:0] MAC[63:0]

2 CTR0[127:64] CTRi[127:64] -

3 CTR0[63:0] CTRi[63:0] -

Table continues on the next page...

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

636 NXP Semiconductors

Table 11-107. Context usage in CTR-CMAC mode (continued)

Context DWord Initial-input definition Context-switching definition Final-result definition

4 - L[127:64] -

5 - L[63:0] -

Table 11-108. Context usage in CTR-CMAC-LTE mode

Context DWord Initial-input definition Context-switching definition Final-result definition

0 - MAC[127:64] MAC[127:64]

1 - MAC[63:0] MAC[63:0]

2 CTR0[127:64] CTRi[127:64] -

3 CTR0[63:0] CTRi[63:0] -

4 - L[127:64] -

5 - L[63:0] -

6 - 9 LS bytes of previous session's data and
data continuation flag

Encrypted MAC[0:31]

7 - -

This table summarizes all the ways in which a message can be split for processing in
multiple sessions and what settings should be used for each.

Table 11-109. Context DWord 6-7 for CTR-CMAC-LTE mode

Bits 127-56 Bits 55-8 Bit 7 Bits 6-0

9 LSBs of previous session's data 0 Data continuation flag 0

NOTE
The check-ICV-only session assumes that a complete message
has been processed and final ICV computed in one or more
previous session. When combining sessions from this table to
process a message, note that only session 2.1 can be repeated
multiple times. Also, if there is a session with AS = 1, then
there can only be one such session and there must be one and
only one with AS = 2 but none with AS = 3. If there is a session
with AS = 3, then there cannot be any other sessions except
check-ICV-only.

Table 11-110. Multi-session processing options for AES optimization modes

Session
number

Session description Mode supported Mode AS
field

Mode ICV field AAD size Data size

1.1 Initialization-only CTR-XCBC

CTR-CMAC

1 0 0 0

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 637

Table 11-110. Multi-session processing options for AES optimization modes (continued)
(Computing L for CMAC
or K2/K3 for XCBC)

CTR-CMAC-LTE

1.2 Header-only CTR-XCBC

CTR-CMAC

1 or 0 0 0 16

CTR-CMAC-LTE 9

1.3 Header and partial
message

CTR-XCBC

CTR-CMAC

1 or 0 0 0 16 + 16 * (Number of
MDATA blocks)

CTR-CMAC-LTE 9

CBC-XCBC

CBC-CMAC

1 8 24 + 16 * (Number of
MDATA blocks)

2.1 Message-only All 0 0 0 16 * (Number of
MDATA blocks)

2.2 Final message CTR-XCBC

CTR-CMAC

2 1 (ENC=0) or 0 0 4 * (Number of
MDATA nibbles)

CTR-CMAC-LTE > 0

CBC-XCBC

CBC-CMAC

16 * (Number of
MDATA blocks)

2.3 Final message and
ESN

CTR-XCBC

CTR-CMAC

2 1 (ENC=0) or 0 4 4 + 4 * (Number of
MDATA nibbles)

CBC-XCBC

CBC-CMAC

4 + 16 * (Number of
MDATA blocks)

3.1 ESN-only CTR-XCBC

CTR-CMAC

CBC-XCBC

CBC-CMAC

2 1 (ENC=0) or 0 4 4

4.1 Header and final
message

CTR-CMAC-LTE 3 or 2 1 (ENC=0) or 0 9 > 16

CTR-XCBC

CTR-CMAC

3 or 2 0 16 + 4 * (Number of
MDATA nibbles)1 0

CBC-XCBC

CBC-CMAC

3 1 (ENC=0) or 0 8 24 + 16 * (Number of
MDATA blocks)1 0

4.2 Header, final message
and ESN

CTR-XCBC

CTR-CMAC

2 1 (ENC=0) or 0 4 20 + 4 * (Number of
MDATA nibbles)

CBC-XCBC

CBC-CMAC

12 28 + 16 * (Number of
MDATA blocks)

5 Check-ICV-only

(For ENC = 0)

All 0 1 0 0

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

638 NXP Semiconductors

11.9.13.7 AES optimization modes use of the Data Size Register

The AES optimization modes use the Data Size Register as follows:

• The byte-length of the message to be authenticated must be written to the Data Size
Register. In case of CTR-CMAC-LTE, 16 must be written to this register for the 9-
byte, authenticate-only header as the header is provided in 2 FIFO DWords to AES.

• The first write to this register initiates processing. It can also be written during
processing, in which case the value written is accumulated to the current state of the
register.

• An additional restriction applies to CTR-XCBC and CTR-CMAC modes: the final
value of the Data Size Register must be a multiple of 4-byte words, otherwise the
data-size error is generated.

• For all CMAC-based optimization modes, the data-size error is generated if the data
size value is not divisible by 16 when AS mode field is set to INITIALIZE or
UPDATE. CBC-based modes generate the same error if the data size value is 0 and
the AS field has INITIALIZE bit set. This is to enforce that the header must be
processed with INITIALIZE bit set.

11.9.13.8 AES optimization modes use of the AAD Size Register

The AES optimization modes use the AAD Size Register as follows:

• The AAD Size Register is written with the number of bytes in the Authentication-
only data. Only the low 4 bits will be registered.

• For CTR-XCBC and CTR-CMAC, because authenticate-only header is always 16
bytes long, the value of the AAD Size Register reflects the presence or absence of the
optional trailing 4 bytes.

• For CBC-XCBC and CBC-CMAC, the content of this register is either 8 or 12 based
on the fixed size of the 24-byte header and the optional 4 trailing bytes.

• For CTR-CMAC-LTE, 9 must be written to this register for any session that
processes the 9-byte header.

• The AAD Size Register must be written before the last write to the Data Size
Register.

• Writes to the AAD Size Register are cumulative.

11.9.13.9 AES optimization modes use of the Class 1 ICV Size
Register

The AES optimization modes use the Class 1 ICV Size Register as follows:

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 639

• For optimization modes other than CTR-CMAC-LTE, this Class 1 register is used to
provide received ICV/MAC byte-size when it is other than 16 bytes. The Class 1
ICV Size register also determines the number of bytes in the computed ICV/MAC
that is provided in context DWords 0-1.

• The computed MAC written to the context is always 16 bytes long.
• Supported values for the ICV size are 4 to 16 bytes. If this register is 0, the ICV size

is 16 bytes.
• For CTR-CMAC-LTE, the ICV length is always 4 bytes.
• As long as any bytes trailing the received ICV are zero, there is no need to write this

register.
• The encrypted MAC provided in context DWord 6 is also always 4 bytes long.

11.9.13.10 AES optimization modes use of the Class 1 Key Register

The AES optimization modes use the Class 1 Key Register as follows:

• The confidentiality key must be written to this register.
• For CTR-based Optimization Modes, it is always an encryption key.
• For CBC-based Optimization Modes, this key must be a decryption key when DK

mode bit (AAI field MSB) is set.

11.9.13.11 AES optimization modes use of the Class 2 Key Register

The AES optimization modes use the Class 2 Key Register as follows:

• The Class 2 Key Register is used to provide a 16 byte Authentication key.
• It is overwritten by the derived key K1 during XCBC-MAC initialization.
• It is not overwritten for CMAC-based Optimization Modes.

11.9.13.12 AES optimization modes use of the Class 1 Key Size
Register

The AES optimization modes use the Class 1 Key Size Register as follows:

• The total number of confidentiality-key bytes must be written to the Class 1 Key Size
register by the time that Mode Register and Data Size Register have been written.

• Any value other than 16, 24, or 32 causes key-size error to be generated.
• The out-of-sequence error is generated if this Key Size Register is not written by the

time both Mode Register and Data Size Register are written.

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

640 NXP Semiconductors

11.9.13.13 AES optimization modes use of the Class 2 Key Size
Register

The AES optimization modes use the Class 2 Key Size Register as follows:

• This value is the length of the written authentication key.
• For XCBC-MAC-based modes, they must be 16 bytes long, otherwise the key-size

error is generated.
• For CMAC-based modes, 16-, 24-, and 32-byte keys are supported.

11.9.13.14 AES optimization modes use of the ICV check

The AES optimization modes use ICV checking as follows:

• Automatic ICV checking is enabled by setting ICV bit of the Mode Register to 1.
When ICV is set to 1, the AS mode field must be set to either "Finalize" or
"Initialize/Finalize"; otherwise the illegal-mode error is generated, except for CICV-
only jobs. Also, if ICV = 1, the ENC bit must be 0.

• The received ICV must be provided on the input-data FIFO after the message data.
• The FIFO data type must be set to ICV when it is put on the FIFO.
• The size of the received ICV is written to the Class 1 ICV Size register.
• If the ICV check detects mismatch between the decrypted received ICV and the

computed ICV, the ICV error is generated.

11.9.13.15 AES optimization modes error conditions

This table shows all the error checks implemented for the AES optimization modes.

Table 11-111. AES optimization modes error conditions

Description Modes
affected

Mode DK
bit

Mode AS
field

Mode
ICV bit

Mode
ENC bit

Data size Key size Error type
generated

ICV check can be
requested only when
decrypting.

All - - 1 1 - - Mode error

Must compute final
ICV/MAC before
checking ICV except for
check-ICV-only jobs that
have no data to be
processed (AS =
UPDATE, DS = 0).

All - 1 or 0 1 - > 0 -

Table continues on the next page...

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 641

Table 11-111. AES optimization modes error conditions (continued)

Description Modes
affected

Mode DK
bit

Mode AS
field

Mode
ICV bit

Mode
ENC bit

Data size Key size Error type
generated

CTR mode does not use
the decrypt key.

CTR-XCBC

CTR-CMAC

CTR-CMAC-
LTE

1 - - - - -

Using the decrypt key for
encryption would
produce wrong result.

CBC-XCBC

CBC-CMAC

1 - - 1 - -

Only a messages with
integral number of bytes
allowed.

All - - - - Bit-size
not
divisible
by 8

- Data-size
error

CTR message data must
consist of 1 or more 4-
byte chunks, that is,
ESN cannot be split
between blocks.

CTR-CMAC

CTR-XCBC

- - - - Last block
of CTR
message
data does
not have
4, 8, 12 or
16 bytes

-

Finalize-only jobs are not
supported.

All - 3 or 2 - - 0 -

Header must be
processed in an initialize
session.

CBC-XCBC

CBC-CMAC

- 1 - - 0 -

Must switch the context
on a block boundary.

CTR-XCBC

CTR-CMAC

CTR-CMAC-
LTE

- 1 or 0 - - Not
divisible
by 16

-

Wrong Class 1 key size All - - - - - Class 1
key size
not 16,
24, or 32

Key-size
error

Wrong Class 2 key size CBC-XCBC

CTR-XCBC

- - - - - Class 2
key size
not 16

CBC-CMAC

CTR-CMAC

CTR-CMAC-
LTE

- - - - - Class 2
key size
not 16,
24, or 32

Key sizes are not written
before both mode and
data size are written.

All - - - - - - Out-of-
sequence
error

The header is loaded for
processing in a non-
initialize session.

CBC-XCBC

CBC-CMAC

- 2 or 0 - - - -

The computed ICV does
not match received ICV.

All - 3 or 2 1 0 > 0 - ICV error

AES accelerator (AESA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

642 NXP Semiconductors

Table 11-111. AES optimization modes error conditions

Description Modes
affected

Mode DK
bit

Mode AS
field

Mode
ICV bit

Mode
ENC bit

Data size Key size Error type
generated

(or 0 for
DS=0)

(or 0 for
AS=0)

11.10 ZUC encryption accelerator (ZUCE) functionality
The ZUCE hardware accelerator implements the encryption mode of operation of the
ZUC algorithm. The encryption mode confidentiality algorithm is defined as a stream
cipher that encrypts/decrypts blocks of data between 1 and 20000 bits in length. The f9
authentication mode of the ZUC algorithm is implemented in the ZUCE CHA. See
Differences between ZUCE and ZUCA for more information. The features of the ZUCE
accelerator include the following:

• Message encryption and decryption in encryption (UEA2) mode
• Throughput of up to 4 bytes per cycle
• Support for multiple session message processing through context switching
• Support for Descriptor sharing
• Total message size of up to 232 bits (processed in chunks of no more than 217-1 bytes

(per session)
• Support for any number of bits in the last byte of the message
• Automatic zeroization of the invalid bits in the last incomplete byte of the message

11.10.1 Differences between ZUCE and ZUCA

ZUC is a proposed third radio interface cryptographic algorithm set for LTE (in addition
to Kasumi and SNOW), which was submitted as a candidate for standardization by a
3GPP member company. ZUC forms the basis of the f8 encryption algorithm and f9
integrity/authentication algorithm. ZUC encryption (ZUCE) is a word-oriented stream
cipher that generates a sequence of 32-bit words under the control of a 128-bit key and a
128-bit initialization value. ZUCE is programmed using Class 1 CCB registers, whereas
ZUCA is programmed using Class 2 CCB registers. Note that it is possible to encrypt or
decrypt data using ZUC and also hash the same data using ZUC authentication via
"snooping", that is, passing the same data simultaneously to both CHAs ("in-snooping"),
or passing the output of one CHA directly to the input of the other CHA ("out-
snooping"). But in those versions of SEC that implement more than one DECO but only

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 643

one ZUCE CHA and one ZUCA CHA, the descriptor must select the ZUCA CHA first.
Selecting the ZUCE CHA and then selecting the ZUCA CHA within the same descriptor
results in an error indication.

11.10.2 ZUCE use of the Mode Register

ZUCE uses the Mode Register as follows:

• The ZUC encryption accelerator (ZUCE) is enabled by setting the Algorithm (ALG)
field of the Class 1 Mode Register to B0.

• The encryption mode is enabled by setting the Additional Algorithm Information
(AAI) field to C0.

• The Algorithm State (AS) field should be set to "Initialize" state when a new
message is to be processed. The ZUCE accelerator initializes the core engine
(keystream generator) based on the key and initialization parameters COUNT-C,
BEARER and DIRECTION in a 32-step initialization process. This is a necessary
step before keystream generation can begin. It is possible to perform this
initialization in advance without the need to provide any input data by writing 0 to
the Data Size register. The AS field should be reset (or set to "Update" state) after
context switch, assuming that Context Registers are restored, when continuing
message processing. In this case, the state of the keystream generator necessary for
continuation of message processing is in the Context Registers and initialization is
not needed.

• Other fields in the Mode Register have no effect on encryption mode.
• If the AAI field is set to a value that does not correspond to encryption mode, the

illegal-mode error is generated. The message processing is initiated by writing a
message size to the Data Size Register.

11.10.3 ZUCE use of the Context Register

ZUCE uses the Class 1 Key and Context registers. The usage of the Key and Context
registers in the encryption mode is shown in Table 11-113. The symbols in the Update
Input Definition column represent values written back by ZUCE. These values comprise
the state of the keystream generator that must be restored after context switch for the
message processing to continue. In encryption mode, the Context Register is treated as an
extension of the Key Register, tat is, it is automatically encrypted when saved and
decrypted when restored. The symbol IV represents a value that must be written to the
Context Register when starting a new Job in the encryption mode. This value consists of
ZUCE initialization parameters in the following order:

ZUC encryption accelerator (ZUCE) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

644 NXP Semiconductors

Table 11-112. Context 1 usage in ZUCE mode

0-31 32-36 37 38-63

Count-C Bearer Direction 0

Table 11-113. Key/Context Register usage in ZUCE mode

Register DWord Number Initialize-input definition Update-input definition

Key Register 0 Key[0:63] s0, s1

1 Key[64:127] s2, s3

2 - s4, s5

3 - s6, s7

Context Register 0 Count-C || Bearer || Direction || 0 s8, s9

1 - -

2 - -

3 - r1

4 - r2, r3

5 - s10, s11

6 - s12, s13

7 - s14, s15

11.10.4 ZUCE use of the Data Size Register

ZUCE uses the Data Size Register as follows:

• ZUCE uses the 16 lsbs of the Class 1 Data Size register to indicate the number of
bytes of input data, and the 3 msbs to indicate the number of valid bits in the last
byte.

• Writing to the LSB of the Class 1 Data Size register initiates processing. ZUCE
internally decrements this value as it processes the message. It continues to process
data until the value in the Data Size register reaches zero.

• If 0 is written to the Data Size Register and the AS field of the Mode Register is set
to "Initialize", ZUCE keystream generator is initialized and the Context Register
contains this initialized state.

11.10.5 ZUCE use of the Key Register

A 128-bit key must be written to the Class 1 Key Register with offset of 0 if the AS field
of the Mode Register is set to "Initialize". The key is necessary for the initialization of the
keystream generator but it is not needed when the AS field of the Mode Register is set to

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 645

"Update", that is, when a message processing is continued after context switch. However,
the Key Register is used to implement internal state of the keystream generator as
depicted in Table 11-113.

11.10.6 ZUCE use of the Key Size Register

Writing to this register is not required by ZUCE, because the ZUC encryption key is
always 16 bytes long. However, writing a value of 16 to this register is allowed, but
writing a value other than 16 causes a key-size error to be generated.

11.11 ZUC authentication accelerator (ZUCA) functionality
The ZUCA hardware accelerator implements the f9 authentication mode of the ZUC
algorithm. The ZUCA algorithm is based on the same stream cipher (ZUC) as is used by
the encryption algorithm (ZUCE). The f8 encryption mode of the ZUC algorithm is
implemented in the ZUCE CHA. See Differences between ZUCE and ZUCA for more
information. ZUC Authentication is a word-oriented stream cipher that generates a 32-bit
Message Authentication Code (MAC) under the control of a 128-bit key and a 128-bit
initialization value. The message may be between 1 and 20000 bits in length.

The features of ZUCA include the following:

• Computation of 32-bit MAC in ZUC authentication (UIA2) mode
• Automatic comparison of the received and computed MAC values (ICV check)
• Throughput of up to 2 bytes per cycle
• Support for multiple session message processing through context switching
• Support for Descriptor sharing
• Total message size of up to 232 bits (processed in chunks of no more than 217-8 bytes

per session)
• Supports any number of bits in the last byte of the message
• Automatic zeroization of the invalid bits in the last incomplete byte of the message

11.11.1 ZUCA use of the Mode Register

The ZUCA uses the Mode Register as follows:

• The ZUC authentication accelerator (ZUCA) is enabled by setting the Algorithm
(ALG) field of the Class 2 Mode Register to C0.

ZUC authentication accelerator (ZUCA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

646 NXP Semiconductors

• The authentication mode is enabled by setting the Additional Algorithm Information
(AAI) field to C8.

• The Algorithm State (AS) field must be set to "Initialize" state when the first session
of message processing is to be performed. This assumes that message processing is
split into multiple sessions, that is, that the first one is not also the final session. The
ZUCA accelerator initializes the core engine (keystream generator) based on the key
and an IV built from initialization parameters COUNT-I, DIRECTION, BEARER
and FRESH in a 32-step initialization process. This is a necessary step before
keystream generation can begin. It is possible to perform this initialization in
advance without the need to provide any input data by writing 0 to the Data Size
register.

• If an initialization-only job is executed (data size is 0 and AS set for initialization),
"Finalize" in the AS setting is ignored, as well as the ICV mode bit.

• If decryption is requested, and data size is not written or is set to 0, and ICV bit is 1 -
AS = "Update" means that Check ICV (CICV) job is requested. The CICV-only job
does not process any data, it just pops received ICV/MAC from the Input Data FIFO,
and compares it to the computed MAC that is restored with the rest of the context
from the previous session.

• The AS field must be set to "Finalize" state when the last session of message
processing is to be performed. This enables computation of the MAC.

• The AS field must be set to "Initialize/Finalize" state when the whole message is
processed in one session.

• The ICV bit of the Mode Register must be set for the authentication mode to
compare computed MAC/ICV with the received ICV. The received ICV must be
provided through the Input Data FIFO following the message data at which time the
FIFO data type must be set to ICV. If this bit is reset, the authentication mode does
not expect ICV to be put on Input Data FIFO.

• The illegal-mode error is generated if ICV bit is set but AS field is not set to either
"Initialize/Finalize" or "Finalize" state, except for CICV-only jobs, that is, the data
size is non-zero and valid (there will be no more writes to the Data Size Register).

• If the AAI field is set to a value that does not correspond to authentication mode, the
illegal-mode error is generated. The message processing is initiated by writing a
message size to the Data Size Register.

• When SEC descriptor sharing mode is used with ZUCA, clear mode, followed by
clear done interrupt command, must be issued between ZUCA jobs.

11.11.2 ZUCA use of the Context Register

ZUCA uses the Context Register as follows:

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 647

• This table shows context usage in the authentication mode that is relevant for its
programming.

Table 11-114. Context usage in ZUCA mode

Register Word
number

Initialization-input
definition

Update state (for context
switching)

Finalize-output definition

Key Register 0 Key[0:63] - -

1 Key[64:127] - -

2 - - -

3 - - -

4 - IV -

5 - z1, z2 -

6 - z3, z4 -

7 - z5, bit length -

Context
Register

0 Count-C || 0 || Direction || 0 - {MAC,32'h0}

1 {FRESH, 32'h0} (3G) {Bearer,
59'h0} (LTE)

- -

• For 3G, the IV value is built as shown in this table.

Table 11-115. Usage of Context 2 for 3G in ZUCA mode

0-31 32-36 37 38-63 64-95

Count-C 0 Direction 0 FRESH

• LTE systems do not include a FRESH value in the authentication IV value. It is
instead built as shown in this table.

Table 11-116. Usage of Context 2 for LTE in ZUCA mode

0-31 32-36 37 38-63 64-68 69-95

Count-C 0 Direction 0 Bearer 0

• At the end of processing, ZUCA overwrites IV in the context word 0 with the MAC/
ICV. Because MAC is a 32-bit value, it is written to low-order bit locations (right-
justified) and the remaining bits are cleared.

• Values z1-z5 are the keystream words computed during initialization of the
authentication mode by the keystream generator. After the initialization stage is
complete, the keystream generator is not active any more in authentication mode.
The processing is based on the Galois Field (GF) multiplier implemented as part of
the authentication mode logic. The bit length is a value copied from the Data Size
Register to be used to compute the final MAC. In case of multi-session message

ZUC authentication accelerator (ZUCA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

648 NXP Semiconductors

processing, this value represents the total message length as each session's data size
is accumulated.

• To read only the final MAC value, the "finalize" option must be present in the AS
mode setting. When saving context, the starting address must be the address of the
first double word of the Key Registers.

11.11.3 ZUCA use of the Data Size Register

ZUCA uses the Data Size Register as follows:

• ZUCA uses the 16 lsbs of the Class 2 Data Size Register to indicate the number of
bytes of input data, and bits 63-61 to indicate the number of valid bits in the last byte.

• Writing to the LSB of the Class 2 Data Size Register initiates processing.
• The number of input data bits that ZUCA is to process must be written into the lower

20 bits of the Class 2 Data Size register.
• ZUCA internally decrements this value as it processes the message. It continues to

process data until the value in the Data Size register reaches zero. If 0 is written to
the Data Size Register and the AS field of the Mode Register is set to "Initialize",
ZUCA keystream generator is initialized and the context contains this initialized
state.

• In authentication mode, the data size must be divisible by 64 except when the AS
field of the Mode Register is set to "Finalize" or "Initialize/Finalize". In other words,
the message can be split for multi-session processing only on a 64-bit boundary. If
this rule is violated, the illegal data-size error is generated.

11.11.4 ZUCA use of the Key Register

A 128-bit key must be written to the Class 2 Key Register with offset of 0 if the AS field
of the Mode Register is set to "Initialize" or "Initialize/Finalize". The key is necessary for
the initialization of the keystream generator.

11.11.5 ZUCA use of the Key Size Register

Writing to this register is not required by ZUCA, because the ZUC authentication key is
always 16 bytes long. However, writing a value of 16 to this register is allowed, but
writing a value other than 16 causes a key-size error to be generated.

Chapter 11 Cryptographic hardware accelerators (CHAs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 649

11.11.6 ZUCA use of ICV checking

ZUCA uses ICV checking as follows:

• Authentication mode can automatically compare received ICV with the computed
ICV at the end of processing if the ICV bit of the Mode Register is set and the AS
field is set to "Finalize" or "Initialize/Finalize".

• The received ICV must be supplied after message data through the Input Data FIFO.
The FIFO data type for it must be set to ICV. The ZUCA mode ICV/MAC is always
a 32-bit value.

• If the ICV mode bit is set but the AS field is set to "Initialize" or "Update", the illega-
mode error is generated, except for CICV-only jobs where no processing is done and
only ICV check is performed as indicated by data size being 0. ZUCA generates ICV
error if received and computed ICVs do not match. It is allowed to create jobs where
there is no data to be processed, and only ICV is being checked. For this, the AS
mode field should be reset.

ZUC authentication accelerator (ZUCA) functionality

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

650 NXP Semiconductors

Chapter 12
Trust Architecture modules
The SEC Trust Architecture functions are performed in the run-time integrity checker
(RTIC), and the secure key module.

12.1 Run-time integrity checker (RTIC)
The run-time integrity checker (RTIC) is a component of SEC that is used to ensure the
integrity of the peripheral memory contents and assist with boot authentication. The
RTIC has the ability to verify the memory contents during system boot and during run-
time execution. If the memory contents at runtime fail to match a reference hash
signature, then a security violation is asserted. This security violation should then be
captured by a monitoring device on the platform.

12.1.1 RTIC modes of operation

The RTIC modes of operation are described in this table.

Table 12-1. RTIC modes of operation

Mode Description

One-time hash mode • Used during high assurance boot for code authentication or one time integrity checking
• Stores a reference hash result internally and signals an interrupt to the processor

Continuous hash mode • Used at run time to continuously verify the integrity of memory contents
• Checks a re-generated hash against an internally stored reference value and interrupts the

processor only if an error occurs

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 651

12.1.2 RTIC initialization and operation

RTIC supports integrity checking of up to four, independent memory blocks. RTIC's
Hash Register File stores a reference hash for each memory block. During the boot stage
integrity checking, each independent memory block's content is hashed and the result is
stored in the hash register file. At boot-time, the memory contents are read and hashed
(authenticated) as quickly as possible (RTIC Throttle Register should be set to 00h) to
minimize the performance impact at startup. The reference hash result for each memory
block is stored in RTIC for the processor to compare against the signed code hash value.
Once RTIC has finished hashing the boot image, RTIC interrupts software, which then
can check the generated hash value against digitally-signed hash value(s) stored with the
code. Software policy determines what actions to take in the event of a hash mismatch at
boot time. Note that in chips supporting high-assurance boot, RTIC's boot-image hashing
may take place after secure-boot software validates the first code to execute. This means
that any unauthorized code modification would either be caught by the secure boot
software before RTIC runs, or trusted software would detect the hash mismatch after
RTIC had integrity-checked the boot image.

After the trusted boot software has verified the boot image, the software can put RTIC
into run-time mode to ensure that the boot image remains uncorrupted. In run-time mode,
RTIC periodically reads a small section of memory, waits for a specified period of time,
and then reads another small section of memory. During this process, RTIC computes a
hash of the software image. When RTIC has eventually read the entire software image, it
compares the newly computed hash with the reference hash that was validated at boot
time. If the RTIC hardware detects a hash mismatch, RTIC generates an interrupt and
signals a security violation to the chip's security monitor (SecMon) hardware. If the hash
matches, RTIC starts over and re-validates the software image. This process repeats until
the chip is powered down or RTIC checking is turned off.

12.1.3 RTIC use of the Throttle Register

The RTIC scan rate is controlled using the Throttle Register. This allows the user to trade
off the software image revalidation rate against memory bandwidth utilization.
Depending on the settings, the software image might be revalidated every few seconds or
every few days. RTIC also implements a watchdog timer that can be used to ensure that
an attacker isn't able to block RTIC's access to memory for an extended period of time. If
a DMA read error, illegal address/length error, RTIC Watchdog time-out, or hash
mismatch occurs, the RTIC enters an error state and signals a security violation. A
hardware reset is required to resume operation.

Run-time integrity checker (RTIC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

652 NXP Semiconductors

12.1.4 RTIC use of command, configuration, and status registers

The RTIC controller holds the command/configuration registers, which are programmed
through SEC's register interface. RTIC uses SEC's DMA interface only to read memory
contents. The command/control registers are used to:

• Set the DMA burst and throttle level
• Specify which memory blocks to hash (one time and continuously)
• Enable/Disable/Clear interrupts
• Enable one-time or run-time hashing, software reset, and clear interrupts

A status register in the RTIC indicates the current state of the controller, which includes:

• Interrupt status
• Processing status
• Error status

The controller also contains a comparator to check the generated hash value against the
reference hash value.

12.1.5 Initializing RTIC

At boot time, RTIC can be used to accelerate software-image verification. This is
accomplished by first selecting the hash algorithm (SHA-256 or SHA-512) and one or
more RTIC memory blocks by writing to the RTIC Control Register, specifying the areas
of memory to be hashed by writing one or more pairs of RTIC Memory Block Address
and Length registers and, if necessary, altering the endianness settings via the RTIC
Control Register and then writing to the RTIC Command Register to initiate the hashing
operations.

At chip-initialization time, RTIC is configured for run-time mode operation by writing to
the RTIC Control Register), the RTIC Throttle Register the RTIC Watchdog Register and
the RTIC Memory Block Address and Length registers and, if necessary, writing to the
RTIC Control Register to change the endianness settings, and then writing to the RTIC
Command Register to put RTIC into run-time mode.

12.1.6 RTIC Memory Block Address/Length Registers

Up to four independent memory blocks can be hashed by the RTIC, each with its own
message digest (reference hash value). The RTIC scans through the memory blocks in the
order they are defined in the RTIC Memory Block Address registers. Each of the four

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 653

Memory Blocks can be divided into two separate segments, with separate starting
addresses and segment lengths. RTIC computes the hash over each Memory Block that is
enabled by first reading segment 0 of the Memory Block and then appending segment 1.

Since there can be two segments per Memory Block, each memory block (A, B, C, D) is
defined by two address/length register pairs (RTIC Memory Block Address 0 Register /
RTIC Memory Block Length 0 Register and RTIC Memory Block Address 1 Register /
RTIC Memory Block Length 1 Register). For each memory block, starting at the address
indicated in the RTIC Memory Block Address 0 Register RTIC reads the number of
memory bytes specified in the RTIC Memory Block Length 0 Register. When that is
complete, RTIC starts at the address indicated in the RTIC Memory Block Address 1
Register and reads the number of memory bytes specified in the RTIC Memory Block
Length 1 Register. If a Length Register is set to zero, RTIC skips over that memory
segment. Once the specified number of bytes are read from both segments within the
memory block, the data is hashed and stored (Hash-Once mode) or compared to the
reference value (Run-Time mode). Information on additional registers used for RTIC
configuration can be found in the sections describing the RTIC registers in SEC register
page 6.

12.2 SEC virtualization and security domain identifiers
(SDIDs)

This section describes the SEC features that are intended to support virtualization of the
SEC hardware; that is, the ability to share the SEC functionality among multiple software
entities.

12.2.1 Virtualization

SEC has been designed so that it can be "virtualized", that is, it can be shared among
multiple software entities while still maintaining individual security protections for each
of these entities. These software entities might include guest operating systems running
under a hypervisor that allocates the chip's hardware resources among the guest OSs.

12.2.2 Security domain identifiers (SDIDs)

SEC implements 4096 security domain identifier (SDID) values that system control
software (for example: hypervisor, kernel, operating system) can associate with different
software entities. SDIDs are used to provide separation between software entities, and are
used with black keys, blobs, and trusted descriptors. SDIDs are used to provide

SEC virtualization and security domain identifiers (SDIDs)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

654 NXP Semiconductors

separation between software entities, and are used with black keys, blobs, and trusted
descriptors. An SDID is a static value that must be maintained across power cycles as it is
used to provide separation even across power cycles. A unique SDID value can be
associated with each software entity, or the same SDID value could be associated with
multiple software entities, or multiple SDID values could be associated with a single
software entity. The SDID values must be assigned at boot configuration time, and the
same SDID always assigned to the same software entity. In the case of a guest OS
running under a hypervisor, the guest OS may assign some of its different SDID values to
processes under the guest OS's control. Note that the hypervisor is itself one of the
software entities that can utilize SEC's functionality, and can assign itself as many SDID
values as it wishes. SEC imposes no restrictions on how these SDID values are assigned,
but simply uses the SDID values to control how data is shared among SDID assignees, or
kept private to each assignee. SDID values are assigned to the queue manager interface,
RTIC and to job rings by writing to registers in page 0 of SEC's register address space.
The sections below describe how SEC uses the SDID values to "virtualize" black keys,
trusted descriptors and blobs.

12.2.3 TrustZone SecureWorld

SEC recognizes TrustZone SecureWorld as a unique software entity with special
privileges, and identifies SecureWorld using a special "TZ" security identifier. All SEC
registers that are used to hold 12-bit SDID values also have a separate TZ bit. Hardware
signals ensure that only TrustZone SecureWorld can write to TZ bits. TrustZone
SecureWorld indicates that specific SEC resources belong to SecureWorld by setting the
TZ bit to 1. This allows SecureWorld to generate black keys that cannot be encrypted or
decrypted by non-SecureWorld, to encapsulate and decapsulate blobs that cannot be
encapsulated or decapsulated by non-SecureWorld, and to claim SEC job rings and
secure memory partitions for its exclusive use. The sections below describe how SEC
enforces these SecureWorld privileges.

12.3 Special-purpose cryptographic keys
SEC provides protection of session keys by means of black keys (see Black keys),
integrity protection of SEC descriptors by means of trusted descriptors (see Trusted
descriptors), and protection of long-term secrets by means of blobs (see Blobs). All of
these protection mechanisms make use of special-purpose cryptographic keys that are
managed by SEC.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 655

12.3.1 Initializing and clearing black and trusted descriptor keys

The SEC hardware implements special black key key encryption keys (see Black keys)
and trusted descriptor signing keys (see Trusted descriptors). These must be initialized to
random values each time that SEC powers up. These keys are cleared when SecMon
enters a FAIL state. The hardware implementation ensures that only SEC itself can use
these keys. The values cannot be read or extracted from the chip by any means. However,
test values can be written or read by software for debug purposes when SEC is in non-
secure mode, (see Keys available in non-secure mode).

12.3.2 Black keys and JDKEK/TDKEK

One special cryptographic key used with the black key mechanism is the 256-bit job
descriptor key encryption key (JDKEK) (see Black keys). When a job descriptor instructs
SEC to store a Key Register into memory, the hardware first encrypts the content of the
Key Register using the JDKEK and then stores the resulting black key into memory.
When a job descriptor later references that key, the descriptor identifies the key as a black
key, causing the hardware to decrypt the key using the JDKEK before loading the key
into a Key Register. Trusted descriptors can also use the JDKEK, but they are permitted
to choose the 256-bit trusted descriptor key encryption key (TDKEK) instead of the
JDKEK. Using the TDKEK ensures that only trusted descriptors can use particularly
sensitive keys, such as keys that are used to derive session keys. If a TDKEK-encrypted
key is embedded as immediate data within a trusted descriptor, this ensures that no other
key could be substituted for that particular key.

12.3.3 Trusted descriptors and TDSK

The SEC hardware controls use of the 256-bit trusted descriptor signing key (TDSK) that
is used to compute the signature (keyed hash) over trusted descriptors (see Trusted
descriptors.). The TDSK is used for verifying the signature whenever a trusted descriptor
is executed. The TDSK is used to sign a descriptor only if the descriptor is executed in a
specially privileged job ring, or if a trusted descriptor modifies itself during execution.

Special-purpose cryptographic keys

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

656 NXP Semiconductors

12.3.4 Master key and blobs

The special cryptographic key used for blobs is the 256-bit master key that SEC receives
from SecMon. The SEC hardware uses this master key to derive keys that are used for
blob encryption and decryption when SEC is in secure mode or trusted mode, but uses a
known test key for key derivation when SEC is in non-secure mode or fail mode.

12.4 Black keys
SEC's black key mechanism is intended for protection of user keys against bus snooping
while the keys are being written to or read from memory external to the SoC. The black
key mechanism automatically encapsulates and decapsulates cryptographic keys on-the-
fly in an encrypted data structure called a black key. Before a value is copied from a key
register to memory, SEC automatically encrypts the key as a black key (encrypted key)
using as the encryption key the current value in the JDKEKR or TDKEKR, modified via
the appropriate TZ/SDID value. Thus, each security domain (and TrustZone
SecureWorld) has its own private black keys, which cannot be decrypted by the user of a
different security domain identifier. When SEC is instructed to use a black key as an
encryption key, SEC automatically decrypts the black key and places it directly into a key
register before using the decrypted value in the user-specified cryptographic operation.

12.4.1 Black key encapsulation schemes

SEC supports two different black key encapsulation schemes, one intended for quick
decryption, and another intended for high assurance.

• The quick decryption scheme uses AES-ECB encryption.
• The high-assurance black key scheme uses AES-CCM encryption. The AES-CCM

mode is not as fast as AES-ECB mode, but AES-CCM includes an "MAC tag"
(integrity check value) that ensures the integrity of the encapsulated key. SEC does
not mix the length of the encrypted key into the value of the key encryption key
when using the high assurance black key scheme, because the MAC-tag prevents
misrepresenting the length of the encrypted key. In AES-CCM encryption the AES
algorithm is always used in the "encryption" direction regardless of whether the key
is being encrypted or decrypted, so in the high-assurance black key scheme
encapulation and decapsulation require approximately the same amount of time.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 657

12.4.2 Differences between black and red keys

Differences between black keys and red keys include the following:

• Black keys are encrypted, while red keys are un-encrypted.
• A black key is usually longer than the red key that is encapsulated. ECB encrypted

data is a multiple of 16 bytes long, because ECB is a block cipher with a block length
of 16 bytes. So if the red key that is to be encapsulated in an ECB-black key is not
already a multiple of 16 bytes long, it is padded with zeros to make it a multiple of
16 bytes long before it is encrypted, and the resulting black key is this length.

• A CCM-encrypted black key is always at least 12 bytes longer than the encapsulated
red key, because the encapsulation uses a 6-byte nonce and adds a 6-byte ICV. If the
key is not already a multiple of 8 bytes long, it is padded as necessary so that it is a
multiple of 8 bytes long. The nonce and ICV add another 12 bytes to the length.

12.4.3 Loading red keys

Red keys can be loaded into Key Registers using either a LOAD command or a KEY
command with ENC = 0. But keys cannot be stored from Key Registers back to memory
in red form. The only way to store keys back out to memory is in black form. This is
accomplished by using the FIFO STORE command with an appropriate OUTPUT DATA
TYPE value (see Table 7-31, values 10h-27h).

12.4.4 Loading black keys

The only way that black keys can be successfully loaded is by using a KEY command
with ENC = 1 and the proper setting of the EKT bit. The EKT bit in the KEY command
indicates which encryption algorithm (AES-ECB or AES-CCM) should be used to
decrypt the key. An ECB-encrypted black key can be successfully loaded only with EKT
= 0 (ECB mode), and a CCM-encrypted black key can be successfully loaded only with
EKT = 1 (CCM mode).

12.4.5 Avoiding errors when loading red and black keys

There are ways to unsuccessfully load red and black keys that do not produce error
messages, so take special care when loading these keys. Note the following known ways
of unsuccessfully loading red and black keys:

• If any type of black key is loaded into a key register using a LOAD command or a
KEY command with ENC = 0, no error message is generated.

Black keys

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

658 NXP Semiconductors

• Because these commands instruct SEC to not perform any decryption when
loading the key, this simply places the encrypted form of the black key in the key
register. The only indication that something is wrong is that incorrect results are
produced if the key is then used in an encryption or decryption operation.

• No error message is generated if a red key or a CCM-encrypted black key is
loaded with a KEY command with ENC = 1 and EKT = 0 (indicating ECB
mode), but the wrong value is placed in the key register because the key is
decrypted using the wrong mode. Again, the only indication that something is
amiss are incorrect results.

• If a red key or an ECB-encrypted black key is loaded using a KEY command with
ENC = 1 and EKT = 1 (indicating CCM mode), an error is generated because the
CCM-mode ICV check fails.

• An error is also generated if a CCM-mode black key is decrypted by the wrong
security domain because the TZ/SDID modification to the JDKEK or TDKEK causes
the CCM-mode ICV check to fail. If an ECB-mode encrypted black key is decrypted
by the wrong security domain, no error is generated, but the key value is incorrect,
that is, effectively still encrypted.

12.4.6 Encapsulating and decapsulating black keys

SEC's key-protection policy imposes restrictions on creating black keys and converting
between black key types. When loading a red or black key into a Key Register, it is
possible to prohibit the key from being written back out to memory at all. Executing a
KEY command with NWB = 1 prohibits writing the key out, whereas NWB = 0 permits
the key to be stored to memory as a black key. If a red key is loaded into a key register, it
can be stored as either an ECB or CCM-encrypted black key (assuming NWB = 0). But if
a black key is loaded into a key register, it can be stored out only as the same type of
black key as was loaded, as shown in this figure.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 659

LOAD command (sets ENC=0 & NWB= 0)
or

KEY command with ENC = 0
(sets ENC= 0, NWB= 0 or)Key Register

NWB flag
ENC flag

EKT flag

Plaintext key

Memory

KEY command with
ENC=1 & EKT=1
(sets ENC=1, EKT=1
and NWB=0 or 1)

CCM black key
CCM-encrypted key
plus6-byte nonce,
6-byte ICV (and
padding added. if
needed, to reach
8-byte boundary)

Plaintext key

ECB black key
ECB-encrypted key
and padding (added as
needed, to reach
16-byte boundary)

FIFO STORE
command
(store allowded

if NWB=0)

KEY command with
ENC=1 & EKT=0
(sets ENC=1, EKT=0
and NWB=0 or 1)

JDKEK or
TDKEK

AES-CCM

(allowed
ENC=0
or EK=)

(allowed if
ENC=0

or EKT=1)

if AES-ECB

Figure 12-1. Encapsulating and decapsulating SEC black keys

The cryptographic key used to encrypt or decrypt black keys is held in the 256-bit
JDKEKR or TDKEKR, and this key's value is modified via the appropriate TZ/SDID
value before being used in a black key operation on behalf of some descriptor. The TZ/
SDID value is taken from the job ring or Queue Manager Interface SDID register,
depending upon where the descriptor is executed. Job descriptors or their shared
descriptors always use the JDKEKR key, but trusted descriptors, or shared descriptors
referenced by trusted descriptors, can use either the JDKEKR key or the TDKEKR key.
Use of the TDKEKR allows trusted descriptors to encapsulate keys that cannot be
decrypted by job descriptors.

The black keys used by each SDID value are encrypted using a different modification of
the JDKEK or TDKEK in order to provide cryptographic separation between the keys
used in different security domains. Note that TrustZone trusted descriptors always use TZ
= 1b, SDID = 000h for the JDKEK/TDKEK modification, regardless of the job ring in
which the descriptor is executed. All QI queues use the same SDID value, so all queues
can share black keys.

Because black keys are not intended for storage of keys across chip power cycles (SEC's
blob mechanism (section Blobs) is intended for this purpose), the values in the JDKEKR
and TDKEKR are not preserved at chip power-down. Instead, new 256-bit secret values
are loaded into the JDKEKR and TDKEKR from the RNG following power-on for use
during the current power-on session. That means that a black key created during one
power-on session cannot be decrypted on subsequent power-on sessions.

Black keys

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

660 NXP Semiconductors

12.4.7 Types of black keys and their use

The four types of black keys that SEC's black-key mechanism implements are listed in
this table.

Table 12-2. Black key types

Black key type Key used Encryption mode

JDKEK-ECB JDKEKR AES-ECB

TDKEK-ECB TDKEKR

JDKEK-CCM JDKEKR AES-CCM

TDKEK-CCM TDKEKR

Note that it is possible to inadvertently load a black key as the wrong type, resulting in an
incorrect key value in the key register. No error message is generated when any of the
black key types listed in this table are loaded in ECB mode. But an ICV check failure
error message is generated if the wrong black key type (or a red key) is loaded in CCM
mode.

It is possible to load a JDKEK-encrypted black key and save it out as a TDKEK-
encrypted black key, or vice versa. This is permitted because only trusted descriptors
have access to TDKEK encryption, and they are trusted to operate only in a secure
manner. Such conversions might be used during a key provisioning procedure. (But as
noted earlier, conversion between ECB-black keys and CCM-black keys is not
permitted.)

12.4.8 Types of blobs for key storage

As described in Blobs, SEC implements different types of blobs that are intended for
storage of keys across power cycles. Because encapsulation or decapsulation of blobs
takes longer than encapsulation and decapsulation of black keys, if a long-term key is
stored in a blob and must be used multiple times during a power-on session, for
performance reasons it is preferable to decapsulate the blob at power-up and re-
encapsulate the key as a black key.

SEC implements operations that convert between blob encapsulation and black-key
encapsulation without exposing the key in plaintext. There are several different blob
types dedicated to key storage that correspond to the different types of black keys. A
specific type of black key converts into a specific type of black-key blob. If this were not
enforced by SEC, a hacker could attempt to convert one black key type to another black
key type by first exporting the black key as a black key blob, and then re-importing the

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 661

blob as if it were a different type of black key blob. But because each blob type uses a
different derivation for the blob key encryption key, such an attempt at misrepresenting
the blob type fails with a MAC-tag error when the blob is decapsulated.

12.5 Trusted descriptors
Trusted descriptors provide a means for trustworthy software to create trusted "applets"
that can be safely executed by less trustworthy software.

12.5.1 Why trusted descriptors are needed

Software utilizes the cryptographic features of SEC by building a descriptor, and then
adding this descriptor to a job ring. Usually the same software entity performs both
operations, that is, building the descriptor and adding it to a job ring. But there are cases
in which different software entities perform the two operations. One important case is
when the descriptor builder is more trustworthy than the job ring owner. For example, the
boot software or TrustZone SecureWorld software might be trusted to properly handle
particularly sensitive data, such as digital-rights management keys, but the content-
rendering software that needs to use those keys may not be as trustworthy.

SEC implements a trusted descriptor mechanism to be used in these cases. These trusted
descriptors are granted special privileges that ordinary job descriptors are not, and to
ensure that these special privileges are not abused by tampering with the trusted
descriptor, SEC ensures the integrity of the trusted descriptor with a cryptographic
signature.

12.5.2 Trusted-descriptor key types and uses

When SEC is in trusted mode or secure mode, the hardware (Special-purpose
cryptographic keys) allows SEC to use the trusted-descriptor key encryption key and the
trusted-descriptor signing key. These keys are available only to SEC and cannot be read
or written. (For testing purposes, these registers, but not the trusted mode or secure mode
values of these keys, can be read and written in non-secure mode.) Furthermore, these
keys can be used only for key encryption/decryption or signing/signature verification;
users cannot use them for anything else. In addition, these keys are changed every boot
cycle so that any keys encrypted with the trusted-descriptor key encryption key are lost
when the system is rebooted. Likewise, following a reboot, any trusted descriptors signed
(HMAC'd) during the previous power-on cycle fail the integrity check and do not
execute.

Trusted descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

662 NXP Semiconductors

12.5.3 Trusted descriptors encrypting/decrypting black keys

SEC implements both trusted and normal (non-trusted) black keys, which are encrypted
with different key-encryption keys. Both trusted and normal descriptors are allowed to
encrypt or decrypt normal black keys, but only trusted descriptors are allowed to encrypt
or decrypt trusted black keys. Note that if any black keys are included as immediate data
within the trusted descriptor, it is the encrypted version of the key that is verified when
computing the signature. When executing the trusted descriptor, the black key is not
decrypted unless the signature is valid.

Trusted software can decapsulate master secrets from trusted-descriptor blobs and can
use these master secrets to derive keys that it embeds as trusted black keys within trusted
descriptors. Untrusted software can then cause SEC to execute these trusted descriptors to
encrypt or decrypt data, without the master secrets or derived keys ever being directly
accessible to the untrusted software.

In addition, trusted descriptors can be written to ensure that these keys cannot be
misused. This mechanism would be useful in certain IKE key exchange processes, or for
supporting trusted-computing group, trusted-platform module operations, or various data
rights-management standards.

See Black keys for more information.

12.5.4 Trusted-descriptor blob types and uses

SEC implements both trusted-descriptor blobs and normal (non-trusted descriptor) blobs,
which use different key derivations for the blob-key encryption keys. Both trusted and
normal descriptors are allowed to encapsulate or decapsulate normal blobs, but only
trusted descriptors are allowed to encapsulate or decapsulate trusted blobs. When
executing the trusted descriptor, the blob is not decapsulated unless the integrity check is
valid.

See Blobs for more information.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 663

12.5.5 Configuring the system to create trusted descriptors
properly

NOTE
Trusted descriptors use the descriptor commands defined in
Using descriptor commands. The SIGNATURE command
(SIGNATURE command) is used only by trusted descriptors.

Although trusted descriptors cannot be forged or altered in unauthorized ways after they
are generated and signed, to be truly considered "trusted," the system must be configured
so that trusted descriptors can be created only by trusted software. Trusted descriptors can
be created only via a job ring that has the Allow Make Trusted Descriptor (AMTD) bit
set in the job ring's JRaICID register. Proper configuration is required to ensure that only
trusted software can write to any JRaICID register (because this would allow the AMTD
bit to be set). This can be ensured in any of the following ways:

• The register is written and then locked (via its LAMTD bit) by trusted boot software.
• The system uses the operating system or hypervisor to control access to the address

block that includes the JRaICID registers.

Proper configuration for the use of trusted descriptors must also ensure control of access
to the trusted-descriptor-creation job rings, that is, those job rings whose JRaICID
registers have been configured with the AMTD bit set. The operating system or
hypervisor can provide access control by granting certain processes access to the register
address block containing a particular job ring's control registers, and denying access to
that block to other processes.

12.5.6 Creating trusted descriptors

To create a trusted descriptor, trustworthy software builds a candidate trusted descriptor
that uses the extra privileges properly. For example, the trusted descriptor might utilize
cryptographic keys that an ordinary job descriptor cannot access, but the trusted
descriptor would be designed so that the key values cannot be exposed.

The candidate trusted-descriptor is converted to a trusted descriptor by executing the
candidate trusted-descriptor in a specially-privileged job ring. This causes SEC to
cryptographically sign the descriptor. The trusted descriptor can later be executed by less
trustworthy software. When the trusted descriptor is executed, SEC executes the
commands within the trusted descriptor only if the signature is correct. This ensures that
the trusted descriptor has not been tampered with after it was created.

Trusted descriptors

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

664 NXP Semiconductors

12.5.6.1 Trusted descriptors and descriptor-header bits

Descriptor headers contain a 2-bit field related to trusted descriptors. See HEADER
command for a full explanation of the descriptor header.

The 00 value in the TDES field indicates an ordinary job descriptor. The 11 value
indicates a candidate trusted descriptor, that is, a descriptor that SEC should convert into
a trusted descriptor by affixing a signature. When SEC executes a candidate trusted
descriptor, it checks to see if the AMTD (allow make trusted descriptor) bit is set in the
job ring's JRaICID register. If not, the candidate trusted descriptor is not converted to a
trusted descriptor and the job terminates with an error. If AMTD=1, SEC changes the
TDES field value to 10 if the candidate trusted descriptor is being created in a job ring
owned by TrustZone nonSecureWorld, but changes the TDES field to 01 if the job ring is
owned by TrustZone SecureWorld. SEC then either affixes a signature to the new trusted
descriptor, or executes the trusted descriptor, or both, depending upon the option in the
SIGNATURE command at the end of the descriptor.

12.5.6.2 Trusted-descriptor execution considerations

Important rules of use and things to consider when executing trusted descriptors are as
follows:

• When a trusted descriptor is executed, SEC first checks the signature (HMAC) to
verify that the trusted descriptor has not been modified. If the trusted descriptor
references a shared descriptor, it is included in the computation of the signature. If
the signature is valid, the trusted descriptor is executed. If the signature is invalid, the
job is aborted with an error indication.

• A TrustZone non-SecureWorld trusted descriptor can be executed only within a job
ring that has the same SDID value as the job ring in which the trusted descriptor was
created. The reason for this restriction is that job rings may be owned by different
security domains that do not trust each other's TrustZone non-SecureWorld trusted
descriptors. This restriction is enforced by including the SDID of the job ring's
JRaICID register in the signature computation, both when creating the trusted
descriptor and before executing the trusted descriptor.

• A TrustZone SecureWorld trusted descriptor can be executed within any job ring,
regardless of that job ring's SDID or TZ value. TrustZone SecureWorld trusted
descriptors can be created only in a job ring owned by TrustZone SecureWorld. This
allows TrustZone SecureWorld to create special trusted descriptors that are trusted
by all security domains. The TDES field in the trusted descriptor's HEADER
command is used to distinguish SecureWorld trusted descriptors from non-
SecureWorld trusted descriptors.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 665

• If a trusted descriptor contains a jump to another descriptor, it must also be trusted.
Jumping from a trusted descriptor to a job descriptor results in an error and
processing stops. Because all CHAs, all MODEs, and the Class 2 Key and Key Size
Registers are reset before a trusted descriptor's signature is checked, care must be
taken when transferring to a trusted descriptor from another descriptor (whether
trusted or not) via Non-Local JUMP (see Section JUMP (HALT) command), In-Line
Descriptor (see INL field in Table 7-97), or Replacement Job Descriptor (see RJD
field in Table 7-97).

• Note that although address pointers within a trusted descriptor are protected against
modification, any data referenced by an address pointer is not protected against
modification. Therefore, keys and other information that must be protected against
modification should be contained as immediate data within the trusted descriptor.
When a trusted descriptor executes, it is permitted to modify itself just like a non-
trusted descriptor can. This ability can be useful if the trusted descriptor is
maintaining an integrity-protected value that changes, such as a usage count,
sequence number, and so on. Because modifying the trusted descriptor renders the
signature invalid, the signature must be recomputed after the modification. This can
be accomplished by placing a SIGNATURE Command at the end of the trusted
descriptor. This directs SEC to recompute the trusted descriptor's signature.

12.6 Blobs
SEC can protect data in a cryptographic data structure called a blob, which provides both
confidentiality and integrity protection.

12.6.1 Blob protocol

SEC's built-in blob protocol provides a method for protecting user-defined data across
system power cycles. The data to be protected is encrypted so that it can be safely placed
into non-volatile storage before the chip is powered down. Each time that the blob
protocol is used to protect data, a different randomly generated key is used to encrypt the
data. This random key is itself encrypted using a key encryption key and the resulting
encrypted key is then stored along with the encrypted data. The key-encryption key is
derived from the chip's master secret key so the key-encryption key can be recreated
when the chip powers up again. The combination of encrypted key and encrypted data is
called a blob.

Table 7-59 shows the format of the PROTINFO field for the blob protocol, and Table
7-60 describes the bit values.

Blobs

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

666 NXP Semiconductors

12.6.2 Why blobs are needed

To retain data across power cycles, the data must be stored in non-volatile memory. But
data stored in this manner is potentially vulnerable to disclosure or modification when the
SoC's software and hardware security-mechanisms are not functioning, for example,
during debug operations. SEC is able to protect data for long term storage by encrypting
that data using a secure non-volatile key. 1 Using a unique non-volatile key for each
device prevents data encrypted on one device from being copied and decrypted on a
different device, which might compromise the secrecy of the data.

12.6.3 Blob conformance considerations

Generation of private blobs is not considered in any governmental security specification.
However, there are several steps in the process that can be viewed as having approved
methods. These methods were chosen to conform to the following specifications, (except
where noted).

• FIPS PUB 197, Advanced Encryption Standard (AES), November 26, 2001.
• FIPS PUB 180-2, SECURE HASH STANDARD, August 1, 2002.
• SP800-90A, Recommendation for Random Number Generation Using Deterministic

Random Bit Generators, January 2012. Draft SP800-90B, Recommendation of the
Entropy Sources Used for Random Bit Generation, August 2012.

• SP800-38c, Recommendation for Block Cipher Modes of Operation: The CCM Mode
for Authentication and Confidentiality, May 2004.

• SP800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography, March, 2007.

• SP800-57, Recommendation for Key Management - Part 1: General, March, 2007.

In the context of SEC, a blob is encrypted data that is bound to a specific device by virtue
of using a secret non-volatile, device-specific master key. This master key is used only
for the purpose of creating and extracting blob data, and the value of this key cannot itself
be extracted from a device. To protect data requiring high-security strength, blob creation
is performed in hardware using 256-bit security strength. AES-256 is used as the
encryption algorithm. SHA-256 is used for key derivation (SP800-57 specifies that
SHA-256 has 256-bit security strength when used in key derivation).

1. The data is actually encrypted with a randomly generated blob key, and it is that blob key that is encrypted using the
secure non-volatile key

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 667

The random number generator is specified in SP800-90A, using the Hash_DRBG with
SHA-256 as the hash function. It gets entropy from a live entropy source intended to
comply with SP800-90B. The random number generator has a security strength of 256
bits.

SEC blobs provide both confidentiality and integrity protection for the encapsulated data.
Because a blob protects both confidentiality and integrity, it may be stored in external
long-term storage such as flash. Counter with cipher block chaining-message
authentication code (AES-CCM) is used as the bulk encryption algorithm. Note that the
MAC associated with a blob provides integrity protection not only for the encrypted data
the blob contains, but also for all intermediate keys used in the creation of a blob.

There may be many different blobs existing at the same time, used for many different
purposes, and subject to different security policies. To guarantee that blobs are not
inadvertently or intentionally swapped, SEC encrypts different blobs with different keys.
Two mechanisms are used to guarantee that a single key is not used to encrypt unrelated
data and to ensure that each key is used to encrypt as little data as possible. One of these
mechanisms is random-key generation. Each time that a blob is created, SEC generates a
different, random 256-bit key using SEC's internal hardware random-number generator
(RNG). This blob key is used to encrypt the blob data using AES-CCM, which provides
both confidentiality and integrity protection. The second mechanism is key derivation,
using a device-unique, non-volatile master key as the key-derivation key. The (volatile)
random blob key is encrypted with the non-volatile key derived from the master key, and
then stored with the blob so that the blob data can be decrypted during subsequent power-
on cycles. Different types of blobs are encrypted using different keys derived from the
master key. The derived keys are further differentiated by a key modifier supplied by
software, which can be used to guarantee that one blob cannot be inadvertently or
maliciously substituted for another blob. Software can use these key modifiers to
differentiate specific data, or to prevent replay attacks (the replacement of the current
blob with an out-of-date version of the blob).

The master key is used in a key derivation function (KDF) similar to that specified in
SP800-56 (sec. 5.8.1). That function includes two parties U and V, who both add
information for use in deriving their shared key. Here the derived key is used for storage,
and so there is only a single involved party, and hence only one block of public and
private information. In the current key-derivation function, only a single iteration is
required, because the size of the derived key is the same as the hash function used.
Therefore, the counter is not used. The master key is concatenated with a key modifier
(which may be a public or private nonce), an AlgorithmID (the blob type) and a security
state indicator (that is, non-secure, secure or trusted). This message is then hashed with
SHA-256, and the output is used as a blob-key encryption key.

Blobs

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

668 NXP Semiconductors

AES-CCM mode uses a nonce and initial counter value as inputs, along with the key and
data. SP800-38c requires that the nonce and counter values be unique across all
invocations of AES-CCM under a given key. This requirement is met by virtue of a
random key being generated for each blob. Because a key is never used more than once,
there are no requirements on the nonce and initial counter value. Therefore, both nonce
and initial counter value are fully specified, and the same values are used for all blobs.
Blob creation uses the formatting function specified in SP800-38c, Appendix A.

The entire 16-byte MAC is stored along with the encrypted data, to provide a strong
assurance of integrity. Note that due to the design of the blobs, the MAC provides
integrity protection for the data, blob key and blob-key encryption key.

12.6.4 Encapsulating and decapsulating blobs

When encapsulating a blob, SEC:

1. Obtains a random blob key (BK) value from the RNG
2. Encrypts the data with that BK
3. Derives a blob-key encryption key (BKEK) from the master key
4. Encrypts the BK using that BKEK

When decapsulating a blob, SEC:

1. Derives a BKEK from the master key
2. Decrypts the BK using that BKEK
3. Decrypts the data with the BK

12.6.5 Blob types

SEC supports different types of blobs, and a coded value of the blob type is used as an
input to the key-derivation function. This prevents a blob that was exported as one type
from being imported as another type because it would decrypt improperly and so would
fail the MAC tag check. This table lists the types of blobs that SEC supports. Note that
the type categories are orthogonal, that is, a blob has one type from each type category.
For instance, one blob may be a (normal format/black key/secure state blob), while
another blob may be a (test format/general data/trusted state) blob. In addition, black key
blobs are differentiated by encryption mode and encryption key, so one black key blob
may be a (AES-ECB/TDKEK) type and another black key blob may be a (AES-CCM/
JDKEK) type.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 669

Table 12-3. Blob types

Type Category Type Cross-reference

Formats Normal format Blob types differentiated by format

Test format

Master key verification format

Contents General data (that is, red blobs) Blob types differentiated by content

Black keys (that is, black blobs)

• Encryption modes: AES-ECB and AES-CCM
• Encryption keys: JDKEK and TDKEK

Security states Trusted state Blob types differentiated by security state

Secure state

Non-secure state

12.6.5.1 Blob types differentiated by format

SEC supports three different formats for blobs, usable for all blob content types, and all
blob security state types. This figure describes the blob formats and how they work.

Encrypted
portions

Test-format blob
Master key

Verification-format blob

Normal-format blob

Indirectly
authenticated

portion

Directly
authenticated

portions

Unencrypted
portions

MAC tag over data

Blob key encrypted
with BKEK

Data encryted
with blob Key

BKEK

Blob key

BKEK

Normal-format blob

Normal-format blob

Figure 12-2. Formats of SEC blobs

• A normal-format blob consists of the encrypted blob key, the encrypted data, and a
message authentication code (MAC) tag, as shown on the left side of the figure. A
randomly-generated, 256-bit blob key is used to encrypt the data using the AES-
CCM cryptographic algorithm. AES-CCM encrypts the data and also yields a MAC
tag that is used to protect the data's integrity. The blob key itself is encrypted in AES-
ECB mode using a 256-bit blob-key encryption key (BKEK). Checking the MAC
directly authenticates the data encapsulated in the blob. The blob key is indirectly
authenticated because substitution or corruption of the encrypted blob key yields an
incorrect plaintext blob key, which causes the blob content to be decrypted
incorrectly, which is detected by the MAC check. Because a normal-format blob is

Blobs

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

670 NXP Semiconductors

used to protect actual data, the blob-key encryption key (BKEK) that is used to
encrypt the blob key for a normal format blob is secret, by virtue of having been
derived from the secret master key.

• As shown in the middle of the figure, a test-format blob consists of a normal-format
blob, with the unencrypted BKEK and unencrypted blob key prepended. Because the
purpose of a test-format blob is to facilitate testing blob encapsulation and
decapsulation, the BKEK for a test-format blob is derived from a known test key.
SEC permits test-format blobs to be encapsulated or decapsulated only when SEC is
in non-secure mode.

• As shown on the right side of the figure, a master key verification format blob
consists of only the unencrypted BKEK. Because the purpose of a master key
verification format blob is to verify that the master key has been properly
programmed, the BKEK for a master key verification format blob is derived from the
secret master key. In order to ensure the secrecy of BKEKs used for normal format
blobs, the derivation is different from the derivation used for normal format blobs.
This ensures that the BKEKs used to protect data cannot be exposed by examining
the BKEK values in master key verification format blobs.

12.6.5.2 Blob types differentiated by content

One of the blob content types is intended for general data (see Red blobs (for general
data)), and four content types are intended for cryptographic keys (see Black blobs (for
cryptographic keys)).

12.6.5.2.1 Red blobs (for general data)

Unencrypted data that should be protected is sometimes referred to as "red data", so the
type of blob intended for general data (which is left unencrypted when the blob is
decapsulated) is called a red blob. When SEC is instructed to encapsulate data as a red
blob, it assumes that the data to be encapsulated is unencrypted and it proceeds to encrypt
the data with the blob key. Likewise, when SEC is instructed to decapsulate a red blob, it
assumes that the data that is decapsulated is to be left in memory unencrypted. Other
mechanisms, such as an operating system or hypervisor acting in conjunction with a
memory management unit, may be used to protect the data before it is encapsulated into a
blob and after it is decapsulated from a blob.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 671

12.6.5.2.2 Black blobs (for cryptographic keys)

SEC's black blob mechanism is a means for translating between black key encapsulation
and blob encapsulation without exposing the key during the translation process. A black
blob is simply a blob whose input during blob encapsulation is assumed to be a black
key, and whose output during blob decapsulation is either a black key that is written into
memory, or an unencrypted key that is placed directly into a Key Register.

SEC supports the protection of cryptographic session keys by encrypting these keys in a
"black key" encapsulation format when storing them in memory via a FIFO STORE
command, and then decapsulating them "on-the-fly" as they are referenced by a job
descriptor with a descriptor KEY command. Black key encapsulation or decapsulation is
very quick, but black keys are intended only for protection during the current SoC power-
on session. Black keys encapsulated during one chip power-on session cannot be
decapsulated on subsequent power-on sessions because the key encryption key (JDKEK
or TDKEK) is erased during power-down and is replaced by a new randomly-generated
key encryption key at power-up. To protect a key so that it can be recovered on
subsequent power cycles, the key must be encapsulated as a blob. A key could be
encapsulated as a red blob, but this would require exposing the key in memory in
unencrypted form. To avoid exposing keys in unencrypted form, SEC supports the
concept of black blobs. (Data that is not sensitive to disclosure, either because it is
inherently nonsensitive or because it always remains encrypted, is sometimes referred to
as "black data".)

12.6.5.2.3 Enforcing blob content type

When SEC is instructed to encapsulate a black blob, it first decapsulates the black key
that was specified as input and then encapsulates the resulting key as a Black blob. The
black blob itself is exactly the same as a red blob, except that the BKEK derivation is
different from red blobs. This prevents a black blob from being decapsulated as a red
blob, which would leave the key exposed in memory. Because black keys can be
encrypted under either the JDKEK or the TDKEK, and can be encrypted in either AES-
ECB mode or AES-CCM mode, SEC first decrypts the black key data with the
appropriate KEK using the appropriate mode and then re-encrypts the key data with the
BK using AES-CCM. During this process the key that is temporarily unencrypted is
safely protected within SEC's hardware storage. To prevent mixing up the different types
of black blobs (JDKEK vs. TDKEK and ECB vs. CCM), the BKEK for each type is
derived differently.

Blobs

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

672 NXP Semiconductors

12.6.5.3 Blob types differentiated by security state

SEC also supports different types of blobs for use in different security states. All of the
blob-format types and blob-content types are available in each of the following different
security states:

• Trusted state
• Secure state
• Non-secure state

However, the BKEKs for the blobs are derived differently for each of these states.
Therefore, a blob encapsulated while operating in a particular state cannot be
decapsulated while SEC is operating in another of these states:

• During trusted and secure states, the BKEK is derived from the secret master key
(but using different key derivation functions in the two states).

• While SEC is operating in non-secure state, the BKEK is derived from the known
test key. This latter type of blob is intended to facilitate testing using known-answer
tests.

12.6.6 Blob encapsulation

A data blob is encrypted using a blob key (BK), which is a random number used as an
AES-CCM key. The NIST AES-CCM specification states that for any key, all
invocations must use distinct nonces and counter blocks. Although SEC uses the same
nonce and initial counter block values for all data blobs, SEC satisfies the AES-CCM
requirement because each encryption operation uses a different key (that is, a random
number generated by the RNG). The nonce is given as all zeros, and so the initial block
B0 = 3B00_0000_0000_0000_0000_0000_0000_xxxxh, where xxxx is the number of
bytes of plaintext (maximum length is 65535 bytes), while the initial counter value Ctr0=
0300_0000_0000_0000_0000_0000_0000_0000h. These values are automatically
generated during the encapsulation operation.

Figure 12-3 shows the entire blob-encryption operation. B0 is generated internally and
stored in the Class 1 Context DWords 0 and 1, while Ctr0, also generated internally, is
stored in Class 1 Context DWords 2 and 3 (see Table 11-97). The random BK value is
stored in the Class 1 Key Register, and the operation mode is set to AES-CCM.

At the blob pointer, the first 32 bytes contain the key blob, which is the encrypted value
of the random blob key. Output ciphertext data (data blob) is stored at the blob pointer +
32. The generated message-authentication code (MAC, the signature over the data blob)
is stored in the final 16 bytes of the blob.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 673

Memory

Data

AES ECB
or

AES CCM
decryption

(for Black blobs)

JDKEK
or

TDKEK

Ctr

Blob- key encryption key (BKEK)

Plaintext

o

Bo

Plaintext
AES-CCM
encryption

Ciphertext

MAC tag

Blob Key

Cryptographic blob

Key blob

Data blob

MAC

AES-ECB
encryption

ciphertext

RNG

256

Figure 12-3. Encapsulating a blob

12.6.7 Blob decapsulation

Before decrypting a data blob, the associated key blob must be decrypted to obtain the
blob key. The key blob resides at the blob pointer. AES-ECB mode is used to decrypt the
key blob using the BKEK. Generation of the BKEK for blobs is described below.

Ctr0 and B0 are generated internally, and are stored in the Class 1 Context 1 and Context
2 registers, respectively (see Figure 12-4). AES-CCM mode is used to decrypt the data
blob (starting at the blob pointer + 32), using the decrypted blob key.

Memory

Data

AES ECB
or

AES CCM
encryption

(for black blobs)

JDKEK
or

TDKEK

Ctr

Blob- key encryption key (BKEK)

Plaintext

o

Bo

Plaintext
AES-CCM
decryption

Ciphertext

MAC tag

Blob Key

Cryptographic blob

Key blob

Data blob

MAC

AES-ECB
decryption

ciphertext

Figure 12-4. Decapsulating a blob

Blobs

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

674 NXP Semiconductors

12.7 Critical security parameters
SEC contains several encryption and authentication keys that are identified as being
critical security parameters (CSPs), as defined in FIPS140-2. Each of these CSPs are
zeroized (cleared) upon the SecMon state machine entering the FAIL state. This FAIL
state indicator is an input to SEC and can be observed via the SEC Status Register.

Upon receiving an indication that the security state machine has entered the FAIL state,
all register-based CSPs are zeroized via the asynchronous hardware reset. SEC can be
restarted after the chip has transitioned from FAIL to non-secure state; however, all
critical security parameters are lost forever.

This table lists the critical security parameters included in SEC.

Table 12-4. Critical security parameters

CSP Notes Related cross-reference

Zeroizable master key Inside of security power island; loaded
and locked once at provisioning time

—

CCB Class 1 Key Register — See register appendix

CCB Class 2 Key Register — See register appendix

PKHA E register Exponent See register appendix

Trusted descriptor signing key Loaded at boot time from RNG Trusted descriptors

Trusted descriptor key encryption key

Job descriptor key encryption key Loaded at boot time from RNG Keys available in different security
modes

SNOW f8 internal state — SNOW 3G f8 accelerator functionality

SNOW f9 internal state — SNOW 3G f9 accelerator functionality

ZUCE internal state — ZUC encryption accelerator (ZUCE)
functionality

ZUCA internal state — ZUC authentication accelerator
(ZUCA) functionality

Crypto-engine internal datapath registers — See register appendix

Output data FIFO — —

12.8 Manufacturing-protection chip-authentication process
The manufacturing-protection authentication process is used to authenticate the chip to
the OEM's server. This authentication process can ensure that the chip:

• Is a genuine NXP part

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 675

• Is the correct part type
• Has been properly configured by means of fuses
• Is running authenticated OEM software
• Is currently in the secure or trusted mode

These are inputs to a key derivation function, to create a private ECC key that is available
only to the crypto hardware. The public ECC key can be generated and used to later
authenticate the chip and verify the security status of the chip. These properties are
verified by digitally signing a message using this private ECC key. The message may be
verified by a server using the public ECC key. Because only a genuine NXP part,
configured correctly, and running in the proper security state can correctly sign the
message, assurance of all of this is provided by the verification of the message signature.
The message cannot be spoofed by untrustworthy software, because the private-key
generation, public-key generation and signature functions are all implemented in
hardware, and the chip-specific data is supplied by secure-boot firmware. After the
signature over the message has been verified, the server can be assured that it is safe to
download proprietary data to the chip over a secured connection.

The authentication process takes place in three stages, implemented via three functions
built into the SEC hardware.

Table 12-5. Manufacturing-protection chip-authentication functions

Function name Abbreviation Authentication steps
implemented by function

Cross-reference

Manufacturing-protection
private-key generation
function

MPPrivK • Takes input data to be
authenticated and
hashes that data with a
secret value embedded
in the silicon. The result
is an ECDSA private
key that is securely
stored in the MPPKR.

MPPrivK-generation function

Manufacturing-protection
public-key generation function

MPPubK • Generates an ECDSA
public key that matches
the private key in
MPPKR and outputs
that public key.1

MPPubK-generation function

Manufacturing-protection sign
function

MPSign • Takes the value in the
MPMsg register and
concatenates any
additional data supplied
as ordinary input to the
MPSign function

• Signs the concatenated
message data using the
private key that was
stored in the MPPKR by

MPSign function

Manufacturing-protection chip-authentication process

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

676 NXP Semiconductors

Table 12-5. Manufacturing-protection chip-authentication functions

Function name Abbreviation Authentication steps
implemented by function

Cross-reference

the MPPrivK Generation
function

• Outputs the signed
message, along with the
message
representative.
Software running on the
chip sends this signed
message to the OEM's
server, which then
verifies the signature by
means of the public key
output earlier by the
MPPubK Generation
function.

1. The MPPubK-generation function is run once on a single chip at the OEM's facility, and the OEM's server retains a copy of
this public key to be used later in the authentication process.

12.8.1 Providing data to the manufacturing-protection
authentication process

The purpose of the manufacturing-protection authentication process is to authenticate
certain information, such as the chip's part number, serial number, and the super root key
hash, by signing it with a private key that can be used only in a legitimate NXP chip of
the correct type running in the secure or trusted states.

The following sections describe how data is input to the manufacturing-protection
process.

12.8.1.1 Providing data to the MPPrivK-generation function

The MPPrivK-generation function is expected to be run only by the secure boot
firmware.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 677

12.8.1.2 Providing data to the MPPubK-generation function

The only inputs to the MPPubK-generation function are the manufacturing protection
private key from the MPPKR, and the elliptic curve selection from the CSEL field in the
PDB. The hardware guarantees the correctness of both of these inputs because the
MPPKR is accessible only to hardware, and the value in the CSEL field must match the
value used in the MPPrivK-generation function.

12.8.1.3 Providing data to the MPSign function

To provide data to the MPSign function, the secure boot firmware writes some or all of
the data into the MPMR, then locks it by setting the MPMRL bit in the Security
Configuration Register. Additional data can be provided as ordinary message input to the
MPSign function. This additional data will be appended to the content of the MPMR
before the data is hashed and signed. All this data is authenticated as having originated
from a legitimate NXP chip of a specific type, because the data is signed with the
manufacturing-protection private key when the MPSign function is invoked. But only the
portion of the data that was written into the MPMR is guaranteed to have originated from
trusted firmware. Since the MPSign function is intended to be invoked by software that
has not yet been authenticated, the extra data supplied as ordinary message input to the
MPSign function should be treated skeptically until the authentication process is
complete.

12.8.1.4 Role of the ROM-resident secure boot firmware

Because the ROM-resident secure boot firmware is the only software that is known to be
trusted prior to authentication, it plays a crucial role in the manufacturing-protection
authentication process. The ROM-resident boot firmware reads fuse-resident data that
needs to be authenticated and either supplies some or all of it as data to the MPPrivK
generation function or writes some or all of the data to the MPMR. Note that all of the
data needed to authenticate the software image that will be booted must be supplied by
the ROM-resident firmware using either the MPPrivK generation function or the MPMR.

The MPSign function is intended to be invoked by untrusted software that has just
booted, which is why the data to be authenticated via the MPSign function must be
supplied in advance by trusted ROM-resident secure boot software and then securely
conveyed to the MPSign function via the MPMR. After the operating system has booted
and is able to run a network-protocol stack, application software establishes a
communication session with the OEM's server. The application software then runs a
descriptor that invokes the MPSign protocol, which uses the ECDSA private key stored
in MPPKR to sign a message composed of the content of MPMR followed by other

Manufacturing-protection chip-authentication process

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

678 NXP Semiconductors

optional data. Note that this additional optional data is supplied by potential
untrustworthy software, so it can be relied on only if data authenticated via the MPPrivK-
generation function or via the MPMR has demonstrated that the software that supplied
the data was properly authenticated via the super root key hash.

12.8.2 MPPrivK-generation function

The MPPrivK-generation function uses supplied input data together with a secret value
embedded in the silicon to generate an elliptic-curve DSA private key. The function
stores the private key in the MPPKR and then the MPPKR is locked to prevent reading or
writing from the register bus. The private key is later used in the MPPubK-generation
function and the MPSign function. Note that an error is generated if the MPPrivK
Generation function is run a second time in the same power-on session.

12.8.2.1 Differences between the MPPrivK-generation function and
the DL KEY PAIR GEN function

The MPPrivK generation function is a specialized version of the DL KEY PAIR GEN
function. The following list summarizes the key differences between the two functions.

• The MPPrivK generation function generates only ECDSA private keys, not DSA
keypairs.

• The MPPrivK generation function generates the private key by applying a key
generation function to the input message data and a secret value embedded in the
silicon. The secret value is different in each chip type. The DL KEY PAIR GEN
function cannot use the secret value embedded in the silicon.

• The MPPrivK generation function uses predefined ECC curves embedded in
hardware. The choice of curve is specified by the CSEL field in the PDB. The DL
KEY PAIR GEN function uses curve parameters supplied via the PDB.

• The MPPrivK generation function keeps the private key secret by storing it in the
MPPrivK register. The DL KEY PAIR GEN function outputs the private key to
memory (along with the public key).

12.8.2.2 MPPrivK-generation function parameters and operation

This table describes the MPPrivK-generation parameters.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 679

Table 12-6. MPPrivK-generation function parameters

Parameter Source/Destination Length Definition

q Built-in L Prime number or irreducible
polynomial that creates the
field

r Built-in N Order of the field of private
keys

a,b Built-in 2*L ECC curve parameters.

Gx,y Built-in 2*L Generator point

m Input - The message data to be input
to the private-key generator
function

s Stored in MPPKR N Private key

This table describes the inputs, outputs and operation of the MPPrivK function.

Table 12-7. MPPrivK-generation function inputs, outputs, and operation

Property Value

Inputs • Message data to be input to the private key generation function.
• The Csel field in the PDB, selecting a predefined ECC curve.

Outputs • The manufacturing protection private key s, which is stored in the MPPrivK register.

Operation • Generate a private key s, in the range 1≤s<r. (Hash the supplied message data and the built-in secret
value to yield s. If s=0, alter the input to the generation function by a constant and generate a new s.)

• Store s in MPKeyR as the private key.

12.8.2.3 Protocol data block (PDB) for the MPPrivK-generation
function

This figure shows the PDB for the MPPrivK-generation function.

Table 12-8. MPPrivK-generation PDB

SGF

(1 bit)

Reserved

(10 bits)

Csel

(4 bits)

Reserved

(17 bits)

Pointer to m

Message length

This figure shows the format of the SGF field.

Table 12-9. MPPrivK-generation function PDB-format of the SGF field

31

Table continues on the next page...

Manufacturing-protection chip-authentication process

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

680 NXP Semiconductors

Table 12-9. MPPrivK-generation function PDB-format of the SGF field (continued)

ref m SGF (Scatter Gather Flag) If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is
not set, the argument is referenced via a direct-address pointer.

This figure shows the format of the CSEL field.

Table 12-10. MPPrivK-generation function PDB-format of the CSEL field

20-17

CSEL (Curve Select)

• 0011 = P256
• 0100 = P384
• 0101 = P521

All other values are reserved.

12.8.3 MPPubK-generation function

The MPPubK-generation function uses the private key value stored in the MPPrivK
register by the MPPrivK-generation function to generate a matching elliptic-curve DSA
public key. The curve selected via the Csel field in the PDB must match the curve used
by the MPPrivK-generation function, else an error is generated. The public key created
by the MPPubK-generation function is written out to the specified results destination.
Note that the MPPubK Generation function is intended to be run just once, at the OEM's
facility, but no harm is done if it is run at other times.

12.8.3.1 Differences between the MPPubK-generation function and
the DL KEY PAIR GEN function

The MPPubK generation function is a specialized version of the DL KEY PAIR GEN
function. The following list summarizes the key differences between the two functions.

• The MPPubK generation function generates only an ECDSA public key, not DSA or
ECDSA keypairs.

• The MPPubK generation function creates a public key to match the private key value
that was stored in the MPPrivK register by the MPPrivK generation function.

• The MPPubK generation function uses predefined ECC curves embedded in
hardware. The choice of curve is specified by the Csel field in the PDB.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 681

• The MPPubK generation function outputs only the public key. Unlike the DL KEY
PAIR GEN funciton it does not output the private key.

• The private key stored in the MPPrivK register by the MPPrivK generation function
is not altered, and remains available for use in the MPSign function.

12.8.3.2 MPPubK-generation function parameters and operation

This table describes the MPPubK-generation parameters.

Table 12-11. MPPubK-generation function parameters

Parameter Source/Destination Length Definition

q Built-in L Prime number or irreducible polynomial that creates the field

r Built-in N Order of the field of private keys

a,b Built-in 2*L ECC curve parameters.

Gx,y Built-in 2*L Generator point

s Read from MPPKR N Private key

Wx,y Output 2*L Public key

This table describes the inputs, outputs and operation of the MPPubK function.

Table 12-12. MPPubK-generation function inputs, outputs, and operation

Property Value

Inputs • The Csel field in the PDB, selecting a predefined ECC curve.
• The manufacturing protection private key s, which is read from the MPPrivK register

Outputs • The manufacturing protection public key Wx,y, which is output to memory.

Operation • Compute Wx,y = sGx,y
• Output Wx,y as the public key.

12.8.3.3 Protocol data block (PDB) for the MPPubK-generation
function

This figure shows the PDB for the MPPubK-generation function.

Table 12-13. MPPubK-generation PDB

SGF

(1 bits)

Reserved

(10 bits)

Csel

(4 bits)

Reserved

(17 bits)

Pointer to Wx,y

Message length

Manufacturing-protection chip-authentication process

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

682 NXP Semiconductors

This figure shows the format of the SGF field.

Table 12-14. MPPubK-generation function PDB-format of the SGF field

31

ref Wx,y SGF (Scatter Gather Flag) - If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit
is not set, the argument is referenced via a direct-address pointer.

This figure shows the format of the CSEL field.

Table 12-15. MPPubK-generation function PDB-format of the CSEL field

20-17

CSEL (Curve Select)

• 0011 = P256
• 0100 = P384
• 0101 = P521

All other values are reserved.

12.8.3.4 Running the MPPubK generation function at the OEM's
facility

When a chip is first adopted by an OEM, the OEM runs the MPPubK-generation function
on a sample of the chip and saves the public key of the manufacturing protection keypair
on the OEM's server. Running the MPPubK-generation function at the OEM's facility this
one time guarantees that the public key is authentic, that is, that it matches the private key
that is used to sign messages generated by properly configured NXP chips of this type.
The OEM will first have programmed the trusted root public key into fuses, and then
reboot the chip. The secure boot firmware will run the MPPrivK-generation function at
POR and store the manufacturing protection private key in the MPPrivK register. The
MPPubK-generation function will read the manufacturing protection private key from the
MPPrivK register and generate a matching public key. Later when the identically
configured chips are booted within the contract manufacturing facility, the identical
private key will be generated by the MPPrivK generation function. The MPPrivK-
generation function stores the private key in the MPPKR for use in the MPSign function.
The message signed by the MPSign function can be authenticated against the
manufacturing protection public key stored on the OEM's seerver.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 683

12.8.4 MPSign function

MPSign is the elliptic-curve, digital-signature algorithm (ECDSA) signing function used
in the manufacturing protection authentication process. See Manufacturing-protection
chip-authentication process for a discussion of this process. MPSign supports only
ECDSA in prime fields. This function takes message data as input, and outputs a
signature over a message composed of the content of the MPMR, followed by the input-
data message.

Note that the curve specified via the Csel field in the PDB must match the curve used in
the MPPrivK-generation function. This table lists the MPSign protocol parameters.

12.8.4.1 MPSign function parameters and operation

This table describes the MPSign function parameters.

Table 12-16. MPSign function parameters

Paramete
r

Source/Destination Lengt
h

Definition

q Built-in L Prime number or irreducible polynomial that creates the field

r Built-in N Order of the field of private keys

a,b Built-in 2*L ECC curve parameters

Gx,y Built-in 2*L Generator point

s Read from MPPKR N Private key

m Input - The message data to be signed.

C Output N First part of digital signature

d Output N Second part of digital signature. The buffer for d must be a multiple of 16 bytes,
as it is used to store an encrypted intermediate result, which may include
padding.

mes-rep Output 256 The hash of the MPMR concatenated with m.

This table describes the inputs, outputs and operation of the MPSign function.

Table 12-17. MPSign function inputs, outputs, and operation

Property Value

Inputs • m, the message data to be signed
• u, the private key (from the MPPrivK register)
• a,b, the curve parameters (selected via the Csel field in the PDB)

Outputs • The signature over the signed message.
• mes-rep, the hash of MPMR concatentated with the message data

Operation • Compute Vx,y = u Gx,y, c = Vx mod r. If c=0, try again with a new u.
• Compute d = u-1(f+sc) mod r. If d=0, try again with a new u.
• Output (C, d) as the signature.

Manufacturing-protection chip-authentication process

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

684 NXP Semiconductors

12.8.4.2 Protocol data block (PDB) MPSign function

This figure shows the MPSign function PDB.

Table 12-18. MPSign function PDB

SGF

(4 bits)

Reserved

(7 bits)

Csel

(4 bits)

Reserved

(17 bits)

Pointer to m

Pointer to mes-rep

Pointer to C

Pointer to d

Message length

This figure shows the format of the SGF field.

Table 12-19. MPSign function PDB-format of the SGF field

31 30 29 28

ref m ref mes-rep ref C ref d

NOTE: If the SGF bit is set, the argument is referenced via a scatter/gather table. If the SGF bit is not set, the argument is
referenced via a direct-address pointer.

This figure shows the format of the CSEL field.

Table 12-20. MPSign function function PDB-format of the CSEL field

20-17

CSEL (Curve Select)
• 0011 = P256
• 0100 = P384
• 0101 = P521

All other values are reserved.

Chapter 12 Trust Architecture modules

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 685

Manufacturing-protection chip-authentication process

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

686 NXP Semiconductors

Chapter 13
SEC register descriptions

The SEC's memory map is divided into the following register address blocks, listed in the
table below. Each block is aligned to a 64 KB page boundary.

Table 13-1. SEC Register Address Block Identifiers

Block Identifier Included registers

0 General registers (for example, configuration, control,
debugging, and RNG)

1-4 Job Ring registers (JR0-3)

6 Real-time integrity check registers

7 Queue interface registers

8-10 Descriptor controller DECO 0-2 and CHA control block CCB
0-2

All reads of undefined and write-only addresses always return zero. Writes to undefined
and read-only addresses are ignored. SEC will never generate a transfer error on the
register bus. Although many of the SEC registers hold more than 32 bits, the register
addresses shown in the Memory Map below represent how these registers are accessed
over the register bus as 32-bit words.

NOTE
SEC performs certain actions automatically immediately after
POR, and SEC may be used by the boot firmware at boot time.
As a consequence, by the time software reads the SEC registers
their reset values may already have been changed from the POR
values.

NOTE
The SEC address space is divided into 16 64 KB pages to
match the access granularity of the MMU. Registers that are
intended to be accessed by a specific processor or process are
grouped into one of these 16 pages so that access to these

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 687

registers can be restricted via SMMUs or via the CPU's MMU.
For instance, the general configuration and status registers are
located within page 0 and are intended to be accessed only by
privileged software. The registers that control each job ring are
located in separate address blocks so that access to each job
ring can be restricted to a particular process. Some registers,
such as the version ID registers, are intended to be shared
among processes. Rather than require each SEC driver process
to have two MMU page entries, one page for its private
registers and one for the shared registers, SEC "aliases" these
shared registers into the upper section of each of the 16 address
blocks. Reading any one of the address aliases for the same
register returns the same information. Some of these aliased
registers are writable, so access to these registers may require
that software implement a concurrency control construct, as
would be the case with any register that is read/write accessible
by multiple processes.

NOTE
The reset value of some registers differs between different
versions of SEC. To ensure driver compatibility across different
versions of SEC, when updating fields within registers the
registers should first be read, the required fields updated, and
then the register should be written. This will avoid
inadvertently changing the settings of other fields in the same
register.

Most of SEC's configuration registers are accessible in block 0 of SEC's register space, as
indicated in the following table. These registers are intended to be accessed by privileged
software (e.g. boot software, hypervisor, secure operating system).

The format and fields in each SEC register are defined below. Some of the register format
figures apply to several different registers. In such cases a different register name will be
associated with each of the register offset addresses that appear at the top of the register
format figure. Although these registers share the same format, they are independent
registers. In addition, many registers can be accessed at multiple addresses. In these cases
there will be a single register name and the list of addresses at which that register is
accessible will be indicated as aliases. Unless noted in the individual register
descriptions, registers are reset only at Power-On Reset (POR).

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

688 NXP Semiconductors

Although many of the SEC registers hold more than 32 bits, these registers are accessed
over the register bus as 32-bit words. Note that all registers other than the CCB/DECO
registers must be accessed only as full 32-bit words. Byte enables are permitted only for
the CCB/DECO registers. All addresses not shown are reserved.

NOTE
In order to facilitate software compatibility across both big-
endian and little-endian SoCs, SEC can be set to double-word
swap registers that are indicated in the Memory Map as 64 bits.
(See MCFGR[DWT].) These registers hold address pointers or
integers larger than 32 bits, so setting the DWT bit
appropriately will cause 64-bit read or write transactions to
place the most-significant and least-significant words in the
proper positions in 64-bit registers. A register whose width is
shown as 32 bits in the Memory Map should be accessed as a
single 32-bit bus transaction, even if there is an adjacent related
32-bit register (e.g. CHANUM_MS and CHANUM_LS). SEC
does not double-word swap the addresses of such register pairs,
so accessing them via 32-bit bus transactions will facilitate
software portability across big-endian and little-endian SoCs.

Data read from and written to QI and DECO registers by software is treated as control
data for the purpose of endianness conversion.

13.1 SEC Memory map
SEC base address: 170_0000h

Offset Register Width

(In bits)

Access Reset value

4h Master Configuration Register (MCFGR) 32 RW 0000_2301h

Ch Security Configuration Register (SCFGR) 32 RW 0000_0000h

10h Job Ring 0 ICID Register - most significant half (JR0ICID_MS) 32 RW 0000_0000h

14h Job Ring 0 ICID Register - least significant half (JR0ICID_LS) 32 RW 0000_0000h

18h Job Ring 1 ICID Register - most significant half (JR1ICID_MS) 32 RW 0000_0000h

1Ch Job Ring 1 ICID Register - least significant half (JR1ICID_LS) 32 RW 0000_0000h

20h Job Ring 2 ICID Register - most significant half (JR2ICID_MS) 32 RW 0000_0000h

24h Job Ring 2 ICID Register - least significant half (JR2ICID_LS) 32 RW 0000_0000h

28h Job Ring 3 ICID Register - most significant half (JR3ICID_MS) 32 RW 0000_0000h

2Ch Job Ring 3 ICID Register - least significant half (JR3ICID_LS) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 689

Offset Register Width

(In bits)

Access Reset value

50h Queue Manager Interface SDID Register (QISDID) 32 RW 0000_0000h

58h Debug Control Register (DEBUGCTL) 32 RW 0000_0000h

5Ch Job Ring Start Register (JRSTARTR) 32 RW 0000_0000h

60h RTIC ICID Register for Block A - most significant half (RTICAICID_
MS)

32 RW 0000_0000h

64h RTIC ICID Register for Block A - least significant half (RTICAICID_
LS)

32 RW 0000_0000h

68h RTIC ICID Register for Block B - most significant half (RTICBICID_
MS)

32 RW 0000_0000h

6Ch RTIC ICID Register for Block B - least significant half (RTICBICID_
LS)

32 RW 0000_0000h

70h RTIC ICID Register for Block C - most significant half (RTICCICID_
MS)

32 RW 0000_0000h

74h RTIC ICID Register for Block C - least significant half (RTICCICID_
LS)

32 RW 0000_0000h

78h RTIC ICID Register for Block D - most significant half (RTICDICID_
MS)

32 RW 0000_0000h

7Ch RTIC ICID Register for Block D - least significant half (RTICDICID_
LS)

32 RW 0000_0000h

94h DECO Request Source Register (DECORSR) 32 RW 0000_0000h

9Ch DECO Request Register (DECORR) 32 RW 0000_0000h

A0h DECO0 ICID Register - most significant half (DECO0ICID_MS) 32 RW 0000_0000h

A4h DECO0 ICID Register - least significant half (DECO0ICID_LS) 32 RW 0000_0000h

A8h DECO1 ICID Register - most significant half (DECO1ICID_MS) 32 RW 0000_0000h

ACh DECO1 ICID Register - least significant half (DECO1ICID_LS) 32 RW 0000_0000h

B0h DECO2 ICID Register - most significant half (DECO2ICID_MS) 32 RW 0000_0000h

B4h DECO2 ICID Register - least significant half (DECO2ICID_LS) 32 RW 0000_0000h

120h DECO Availability Register (DAR) 32 RW 0000_0000h

124h DECO Reset Register (DRR) 32 WO 0000_0000h

204h DMA Control Register (DMAC) 32 RW 0000_0003h

220h Peak Bandwidth Smoothing Limit Register (PBSL) 32 RW 0000_0000h

240h DMA0_AIDL_MAP_MS (DMA0_AIDL_MAP_MS) 32 RO See
description.

244h DMA0_AIDL_MAP_LS (DMA0_AIDL_MAP_LS) 32 RO See
description.

248h DMA0_AIDM_MAP_MS (DMA0_AIDM_MAP_MS) 32 RO See
description.

24Ch DMA0_AIDM_MAP_LS (DMA0_AIDM_MAP_LS) 32 RO See
description.

250h DMA0 AXI ID Enable Register (DMA0_AID_ENB) 32 RO See
description.

260h DMA0 AXI Read Timing Check Register (DMA0_ARD_TC) 64 RW 0000_0000_00
00_0000h

26Ch DMA0 Read Timing Check Latency Register (DMA0_ARD_LAT) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

690 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

270h DMA0 AXI Write Timing Check Register (DMA0_AWR_TC) 64 RW 0000_0000_00
00_0000h

27Ch DMA0 Write Timing Check Latency Register (DMA0_AWR_LAT) 32 RW 0000_0000h

300h - 33Fh Manufacturing Protection Private Key Register (MPPKR0 - MPPK
R63)

8 RW 00h

380h - 39Fh Manufacturing Protection Message Register (MPMR0 - MPMR31) 8 RW 00h

3C0h - 3DFh Manufacturing Protection Test Register (MPTESTR0 - MPTESTR31) 8 RO 00h

400h - 41Ch Job Descriptor Key Encryption Key Register (JDKEKR0 - JDKEKR7) 32 RW See
description.

420h - 43Ch Trusted Descriptor Key Encryption Key Register (TDKEKR0 - TDKE
KR7)

32 RW See
description.

440h - 45Ch Trusted Descriptor Signing Key Register (TDSKR0 - TDSKR7) 32 RW See
description.

4E0h Secure Key Nonce Register (SKNR) 64 RW 0000_0000_00
00_0000h

504h DMA Control Register (DMA_CTRL) 32 RW 0000_0003h

50Ch DMA Status Register (DMA_STA) 32 RO 0000_0000h

510h DMA_X_AID_7_4_MAP (DMA_X_AID_7_4_MAP) 32 RO See
description.

514h DMA_X_AID_3_0_MAP (DMA_X_AID_3_0_MAP) 32 RO See
description.

518h DMA_X_AID_15_12_MAP (DMA_X_AID_15_12_MAP) 32 RO See
description.

51Ch DMA_X_AID_11_8_MAP (DMA_X_AID_11_8_MAP) 32 RO See
description.

524h DMA_X AXI ID Map Enable Register (DMA_X_AID_15_0_EN) 32 RO 0000_0000h

530h DMA_X AXI Read Timing Check Control Register (DMA_X_ARTC_C
TL)

32 RW 0000_0000h

534h DMA_X AXI Read Timing Check Late Count Register (DMA_X_AR
TC_LC)

32 RW 0000_0000h

538h DMA_X AXI Read Timing Check Sample Count Register (DMA_X_
ARTC_SC)

32 RW 0000_0000h

53Ch DMA_X Read Timing Check Latency Register (DMA_X_ARTC_LAT) 32 RW 0000_0000h

540h DMA_X AXI Write Timing Check Control Register (DMA_X_AWTC_C
TL)

32 RW 0000_0000h

544h DMA_X AXI Write Timing Check Late Count Register (DMA_X_AW
TC_LC)

32 RW 0000_0000h

548h DMA_X AXI Write Timing Check Sample Count Register (DMA_X_
AWTC_SC)

32 RW 0000_0000h

54Ch DMA_X Write Timing Check Latency Register (DMA_X_AWTC_LAT) 32 RW 0000_0000h

600h RNG TRNG Miscellaneous Control Register (RTMCTL) 32 RW 0000_0001h

604h RNG TRNG Statistical Check Miscellaneous Register (RTSCMISC) 32 RW 0001_0022h

608h RNG TRNG Poker Range Register (RTPKRRNG) 32 RW 0000_09A3h

60Ch RNG TRNG Poker Maximum Limit Register (RTPKRMAX) 32 RW 0000_6920h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 691

Offset Register Width

(In bits)

Access Reset value

60Ch RNG TRNG Poker Square Calculation Result Register (RTPKRSQ) 32 RO 0000_0000h

610h RNG TRNG Seed Control Register (RTSDCTL) 32 RW 0C80_09C4h

614h RNG TRNG Sparse Bit Limit Register (RTSBLIM) 32 RW 0000_003Fh

614h RNG TRNG Total Samples Register (RTTOTSAM) 32 RO 0000_0000h

618h RNG TRNG Frequency Count Minimum Limit Register (RTFRQMIN) 32 RW 0000_0190h

61Ch RNG TRNG Frequency Count Register (RTFRQCNT) 32 RO 0000_0000h

61Ch RNG TRNG Frequency Count Maximum Limit Register (RTFRQMAX) 32 RW 0000_1900h

620h RNG TRNG Statistical Check Monobit Count Register (RTSCMC) 32 RO 0000_0000h

620h RNG TRNG Statistical Check Monobit Limit Register (RTSCML) 32 RW 010C_0568h

624h RNG TRNG Statistical Check Run Length 1 Count Register (RTSC
R1C)

32 RO 0000_0000h

624h RNG TRNG Statistical Check Run Length 1 Limit Register (RTSC
R1L)

32 RW 00B2_0195h

628h RNG TRNG Statistical Check Run Length 2 Count Register (RTSC
R2C)

32 RO 0000_0000h

628h RNG TRNG Statistical Check Run Length 2 Limit Register (RTSC
R2L)

32 RW 007A_00DCh

62Ch RNG TRNG Statistical Check Run Length 3 Count Register (RTSC
R3C)

32 RO 0000_0000h

62Ch RNG TRNG Statistical Check Run Length 3 Limit Register (RTSC
R3L)

32 RW 0058_007Dh

630h RNG TRNG Statistical Check Run Length 4 Count Register (RTSC
R4C)

32 RO 0000_0000h

630h RNG TRNG Statistical Check Run Length 4 Limit Register (RTSC
R4L)

32 RW 0040_004Bh

634h RNG TRNG Statistical Check Run Length 5 Count Register (RTSC
R5C)

32 RO 0000_0000h

634h RNG TRNG Statistical Check Run Length 5 Limit Register (RTSC
R5L)

32 RW 002E_002Fh

638h RNG TRNG Statistical Check Run Length 6+ Count Register (RTSC
R6PC)

32 RO 0000_0000h

638h RNG TRNG Statistical Check Run Length 6+ Limit Register (RTSC
R6PL)

32 RW 002E_002Fh

63Ch RNG TRNG Status Register (RTSTATUS) 32 RO 0000_0000h

640h - 67Ch RNG TRNG Entropy Read Register (RTENT0 - RTENT15) 32 RO 0000_0000h

680h RNG TRNG Statistical Check Poker Count 1 and 0 Register (RTPK
RCNT10)

32 RO 0000_0000h

684h RNG TRNG Statistical Check Poker Count 3 and 2 Register (RTPK
RCNT32)

32 RO 0000_0000h

688h RNG TRNG Statistical Check Poker Count 5 and 4 Register (RTPK
RCNT54)

32 RO 0000_0000h

68Ch RNG TRNG Statistical Check Poker Count 7 and 6 Register (RTPK
RCNT76)

32 RO 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

692 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

690h RNG TRNG Statistical Check Poker Count 9 and 8 Register (RTPK
RCNT98)

32 RO 0000_0000h

694h RNG TRNG Statistical Check Poker Count B and A Register (RTPK
RCNTBA)

32 RO 0000_0000h

698h RNG TRNG Statistical Check Poker Count D and C Register (RTPK
RCNTDC)

32 RO 0000_0000h

69Ch RNG TRNG Statistical Check Poker Count F and E Register (RTPK
RCNTFE)

32 RO 0000_0000h

6C0h RNG DRNG Status Register (RDSTA) 32 RO 0000_0000h

6D0h RNG DRNG State Handle 0 Reseed Interval Register (RDINT0) 32 RO 0000_0000h

6D4h RNG DRNG State Handle 1 Reseed Interval Register (RDINT1) 32 RO 0000_0000h

6E0h RNG DRNG Hash Control Register (RDHCNTL) 32 RW 0000_0000h

6E4h RNG DRNG Hash Digest Register (RDHDIG) 32 RO 0000_0000h

6E8h RNG DRNG Hash Buffer Register (RDHBUF) 32 WO 0000_0000h

B00h Recoverable Error Indication Status (REIS) 32 W1C 0000_0000h

B0Ch Recoverable Error Indication Halt (REIH) 32 RW 0000_0000h

BF8h (alias) SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

BFCh (alias) SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

C00h Holding Tank 0 Job Descriptor Address (HT0_JD_ADDR) 64 RO 0000_0000_00
00_0000h

C08h Holding Tank 0 Shared Descriptor Address (HT0_SD_ADDR) 64 RO 0000_0000_00
00_0000h

C10h Holding Tank 0 Job Queue Control, most-significant half (HT0_JQ_C
TRL_MS)

32 RO 0000_0000h

C14h Holding Tank 0 Job Queue Control, least-significant half (HT0_JQ_C
TRL_LS)

32 RO 0000_0000h

C1Ch Holding Tank Status (HT0_STATUS) 32 RO 0000_0000h

C24h Job Queue Debug Select Register (JQ_DEBUG_SEL) 32 RW 0000_0000h

DBCh Job Ring Job IDs in Use Register, least-significant half (JRJIDU_LS) 32 RO 0000_0000h

DC0h Job Ring Job-Done Job ID FIFO BC (JRJDJIFBC) 32 RO 0000_0000h

DC4h Job Ring Job-Done Job ID FIFO (JRJDJIF) 32 RO 0000_0000h

DE4h Job Ring Job-Done Source 1 (JRJDS1) 32 RO 0000_0000h

E00h Job Ring Job-Done Descriptor Address 0 Register (JRJDDA) 64 RO 0000_0000_00
00_0000h

F00h (alias) Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

F08h (alias) Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

F10h (alias) Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

F18h (alias) Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

F20h (alias) Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 693

Offset Register Width

(In bits)

Access Reset value

F28h (alias) Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

F30h (alias) Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

FA0h (alias) CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

FA4h (alias) CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

FA8h (alias) Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

FACh (alias) Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

FC0h (alias) Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

FC8h (alias) Fault Address ICID Register (FAICID) 32 RO 0000_0000h

FCCh (alias) Fault Address Detail Register (FADR) 32 RO 0000_0000h

FD4h (alias) SEC Status Register (SSTA) 32 RO 0000_0402h

FE0h (alias) RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

FE4h (alias) CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

FE8h (alias) CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

FECh (alias) CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

FF0h (alias) CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

FF4h (alias) CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

FF8h (alias) SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

FFCh (alias) SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

1_0000h Input Ring Base Address Register for Job Ring 0 (IRBAR_JR0) 64 RW 0000_0000_00
00_0000h

1_000Ch Input Ring Size Register for Job Ring 0 (IRSR_JR0) 32 RW 0000_0000h

1_0014h Input Ring Slots Available Register for Job Ring 0 (IRSAR_JR0) 32 RW 0000_0000h

1_001Ch Input Ring Jobs Added Register for Job Ring0 (IRJAR_JR0) 32 RW 0000_0000h

1_0020h Output Ring Base Address Register for Job Ring 0 (ORBAR_JR0) 64 RW 0000_0000_00
00_0000h

1_002Ch Output Ring Size Register for Job Ring 0 (ORSR_JR0) 32 RW 0000_0000h

1_0034h Output Ring Jobs Removed Register for Job Ring 0 (ORJRR_JR0) 32 RW 0000_0000h

1_003Ch Output Ring Slots Full Register for Job Ring 0 (ORSFR_JR0) 32 RW 0000_0000h

1_0044h Job Ring Output Status Register for Job Ring 0 (JRSTAR_JR0) 32 RO 0000_0000h

1_004Ch Job Ring Interrupt Status Register for Job Ring 0 (JRINTR_JR0) 32 W1C 0000_0000h

1_0050h Job Ring Configuration Register for Job Ring 0, most-significant half
(JRCFGR_JR0_MS)

32 RW 0000_0000h

1_0054h Job Ring Configuration Register for Job Ring 0, least-significant half
(JRCFGR_JR0_LS)

32 RW 0000_0000h

1_005Ch Input Ring Read Index Register for Job Ring 0 (IRRIR_JR0) 32 RW 0000_0000h

1_0064h Output Ring Write Index Register for Job Ring 0 (ORWIR_JR0) 32 RW 0000_0000h

1_006Ch Job Ring Command Register for Job Ring 0 (JRCR_JR0) 32 WO 0000_0000h

1_0704h Job Ring 0 Address-Array Valid Register (JR0AAV) 32 RO 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

694 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

1_0800h Job Ring 0 Address-Array Address 0 Register (JR0AAA0) 64 RO 0000_0000_00
00_0000h

1_0808h Job Ring 0 Address-Array Address 1 Register (JR0AAA1) 64 RO 0000_0000_00
00_0000h

1_0810h Job Ring 0 Address-Array Address 2 Register (JR0AAA2) 64 RO 0000_0000_00
00_0000h

1_0818h Job Ring 0 Address-Array Address 3 Register (JR0AAA3) 64 RO 0000_0000_00
00_0000h

1_0820h Job Ring 0 Address-Array Address 4 Register (JR0AAA4) 64 RO 0000_0000_00
00_0000h

1_0828h Job Ring 0 Address-Array Address 5 Register (JR0AAA5) 64 RO 0000_0000_00
00_0000h

1_0830h Job Ring 0 Address-Array Address 6 Register (JR0AAA6) 64 RO 0000_0000_00
00_0000h

1_0838h Job Ring 0 Address-Array Address 7 Register (JR0AAA7) 64 RO 0000_0000_00
00_0000h

1_0E00h Recoverable Error Indication Record 0 for Job Ring 0 (REIR0JR0) 32 RO 0000_0000h

1_0E08h Recoverable Error Indication Record 2 for Job Ring 0 (REIR2JR0) 64 RO 0000_0000_00
00_0000h

1_0E10h Recoverable Error Indication Record 4 for Job Ring 0 (REIR4JR0) 32 RO 0000_0000h

1_0E14h Recoverable Error Indication Record 5 for Job Ring 0 (REIR5JR0) 32 RO 0000_0000h

1_0F00h
(alias)

Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

1_0F08h
(alias)

Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

1_0F10h
(alias)

Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

1_0F18h
(alias)

Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

1_0F20h
(alias)

Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

1_0F28h
(alias)

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

1_0F30h
(alias)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

1_0FA0h
(alias)

CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

1_0FA4h
(alias)

CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

1_0FA8h
(alias)

Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

1_0FACh
(alias)

Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

1_0FC0h
(alias)

Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 695

Offset Register Width

(In bits)

Access Reset value

1_0FC8h
(alias)

Fault Address ICID Register (FAICID) 32 RO 0000_0000h

1_0FCCh
(alias)

Fault Address Detail Register (FADR) 32 RO 0000_0000h

1_0FD4h
(alias)

SEC Status Register (SSTA) 32 RO 0000_0402h

1_0FE0h
(alias)

RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

1_0FE4h
(alias)

CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

1_0FE8h
(alias)

CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

1_0FECh
(alias)

CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

1_0FF0h
(alias)

CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

1_0FF4h
(alias)

CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

1_0FF8h
(alias)

SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

1_0FFCh
(alias)

SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

2_0000h Input Ring Base Address Register for Job Ring 1 (IRBAR_JR1) 64 RW 0000_0000_00
00_0000h

2_000Ch Input Ring Size Register for Job Ring 1 (IRSR_JR1) 32 RW 0000_0000h

2_0014h Input Ring Slots Available Register for Job Ring 1 (IRSAR_JR1) 32 RW 0000_0000h

2_001Ch Input Ring Jobs Added Register for Job Ring1 (IRJAR_JR1) 32 RW 0000_0000h

2_0020h Output Ring Base Address Register for Job Ring 1 (ORBAR_JR1) 64 RW 0000_0000_00
00_0000h

2_002Ch Output Ring Size Register for Job Ring 1 (ORSR_JR1) 32 RW 0000_0000h

2_0034h Output Ring Jobs Removed Register for Job Ring 1 (ORJRR_JR1) 32 RW 0000_0000h

2_003Ch Output Ring Slots Full Register for Job Ring 1 (ORSFR_JR1) 32 RW 0000_0000h

2_0044h Job Ring Output Status Register for Job Ring 1 (JRSTAR_JR1) 32 RO 0000_0000h

2_004Ch Job Ring Interrupt Status Register for Job Ring 1 (JRINTR_JR1) 32 W1C 0000_0000h

2_0050h Job Ring Configuration Register for Job Ring 1, most-significant half
(JRCFGR_JR1_MS)

32 RW 0000_0000h

2_0054h Job Ring Configuration Register for Job Ring 1, least-significant half
(JRCFGR_JR1_LS)

32 RW 0000_0000h

2_005Ch Input Ring Read Index Register for Job Ring 1 (IRRIR_JR1) 32 RW 0000_0000h

2_0064h Output Ring Write Index Register for Job Ring 1 (ORWIR_JR1) 32 RW 0000_0000h

2_006Ch Job Ring Command Register for Job Ring 1 (JRCR_JR1) 32 WO 0000_0000h

2_0704h Job Ring 1 Address-Array Valid Register (JR1AAV) 32 RO 0000_0000h

2_0800h Job Ring 1 Address-Array Address 0 Register (JR1AAA0) 64 RO 0000_0000_00
00_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

696 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

2_0808h Job Ring 1 Address-Array Address 1 Register (JR1AAA1) 64 RO 0000_0000_00
00_0000h

2_0810h Job Ring 1 Address-Array Address 2 Register (JR1AAA2) 64 RO 0000_0000_00
00_0000h

2_0818h Job Ring 1 Address-Array Address 3 Register (JR1AAA3) 64 RO 0000_0000_00
00_0000h

2_0820h Job Ring 1 Address-Array Address 4 Register (JR1AAA4) 64 RO 0000_0000_00
00_0000h

2_0828h Job Ring 1 Address-Array Address 5 Register (JR1AAA5) 64 RO 0000_0000_00
00_0000h

2_0830h Job Ring 1 Address-Array Address 6 Register (JR1AAA6) 64 RO 0000_0000_00
00_0000h

2_0838h Job Ring 1 Address-Array Address 7 Register (JR1AAA7) 64 RO 0000_0000_00
00_0000h

2_0E00h Recoverable Error Indication Record 0 for Job Ring 1 (REIR0JR1) 32 RO 0000_0000h

2_0E08h Recoverable Error Indication Record 2 for Job Ring 1 (REIR2JR1) 64 RO 0000_0000_00
00_0000h

2_0E10h Recoverable Error Indication Record 4 for Job Ring 1 (REIR4JR1) 32 RO 0000_0000h

2_0E14h Recoverable Error Indication Record 5 for Job Ring 1 (REIR5JR1) 32 RO 0000_0000h

2_0F00h
(alias)

Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

2_0F08h
(alias)

Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

2_0F10h
(alias)

Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

2_0F18h
(alias)

Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

2_0F20h
(alias)

Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

2_0F28h
(alias)

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

2_0F30h
(alias)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

2_0FA0h
(alias)

CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

2_0FA4h
(alias)

CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

2_0FA8h
(alias)

Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

2_0FACh
(alias)

Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

2_0FC0h
(alias)

Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

2_0FC8h
(alias)

Fault Address ICID Register (FAICID) 32 RO 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 697

Offset Register Width

(In bits)

Access Reset value

2_0FCCh
(alias)

Fault Address Detail Register (FADR) 32 RO 0000_0000h

2_0FD4h
(alias)

SEC Status Register (SSTA) 32 RO 0000_0402h

2_0FE0h
(alias)

RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

2_0FE4h
(alias)

CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

2_0FE8h
(alias)

CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

2_0FECh
(alias)

CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

2_0FF0h
(alias)

CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

2_0FF4h
(alias)

CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

2_0FF8h
(alias)

SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

2_0FFCh
(alias)

SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

3_0000h Input Ring Base Address Register for Job Ring 2 (IRBAR_JR2) 64 RW 0000_0000_00
00_0000h

3_000Ch Input Ring Size Register for Job Ring 2 (IRSR_JR2) 32 RW 0000_0000h

3_0014h Input Ring Slots Available Register for Job Ring 2 (IRSAR_JR2) 32 RW 0000_0000h

3_001Ch Input Ring Jobs Added Register for Job Ring2 (IRJAR_JR2) 32 RW 0000_0000h

3_0020h Output Ring Base Address Register for Job Ring 2 (ORBAR_JR2) 64 RW 0000_0000_00
00_0000h

3_002Ch Output Ring Size Register for Job Ring 2 (ORSR_JR2) 32 RW 0000_0000h

3_0034h Output Ring Jobs Removed Register for Job Ring 2 (ORJRR_JR2) 32 RW 0000_0000h

3_003Ch Output Ring Slots Full Register for Job Ring 2 (ORSFR_JR2) 32 RW 0000_0000h

3_0044h Job Ring Output Status Register for Job Ring 2 (JRSTAR_JR2) 32 RO 0000_0000h

3_004Ch Job Ring Interrupt Status Register for Job Ring 2 (JRINTR_JR2) 32 W1C 0000_0000h

3_0050h Job Ring Configuration Register for Job Ring 2, most-significant half
(JRCFGR_JR2_MS)

32 RW 0000_0000h

3_0054h Job Ring Configuration Register for Job Ring 2, least-significant half
(JRCFGR_JR2_LS)

32 RW 0000_0000h

3_005Ch Input Ring Read Index Register for Job Ring 2 (IRRIR_JR2) 32 RW 0000_0000h

3_0064h Output Ring Write Index Register for Job Ring 2 (ORWIR_JR2) 32 RW 0000_0000h

3_006Ch Job Ring Command Register for Job Ring 2 (JRCR_JR2) 32 WO 0000_0000h

3_0704h Job Ring 2 Address-Array Valid Register (JR2AAV) 32 RO 0000_0000h

3_0800h Job Ring 2 Address-Array Address 0 Register (JR2AAA0) 64 RO 0000_0000_00
00_0000h

3_0808h Job Ring 2 Address-Array Address 1 Register (JR2AAA1) 64 RO 0000_0000_00
00_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

698 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

3_0810h Job Ring 2 Address-Array Address 2 Register (JR2AAA2) 64 RO 0000_0000_00
00_0000h

3_0818h Job Ring 2 Address-Array Address 3 Register (JR2AAA3) 64 RO 0000_0000_00
00_0000h

3_0820h Job Ring 2 Address-Array Address 4 Register (JR2AAA4) 64 RO 0000_0000_00
00_0000h

3_0828h Job Ring 2 Address-Array Address 5 Register (JR2AAA5) 64 RO 0000_0000_00
00_0000h

3_0830h Job Ring 2 Address-Array Address 6 Register (JR2AAA6) 64 RO 0000_0000_00
00_0000h

3_0838h Job Ring 2 Address-Array Address 7 Register (JR2AAA7) 64 RO 0000_0000_00
00_0000h

3_0E00h Recoverable Error Indication Record 0 for Job Ring 2 (REIR0JR2) 32 RO 0000_0000h

3_0E08h Recoverable Error Indication Record 2 for Job Ring 2 (REIR2JR2) 64 RO 0000_0000_00
00_0000h

3_0E10h Recoverable Error Indication Record 4 for Job Ring 2 (REIR4JR2) 32 RO 0000_0000h

3_0E14h Recoverable Error Indication Record 5 for Job Ring 2 (REIR5JR2) 32 RO 0000_0000h

3_0F00h
(alias)

Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

3_0F08h
(alias)

Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

3_0F10h
(alias)

Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

3_0F18h
(alias)

Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

3_0F20h
(alias)

Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

3_0F28h
(alias)

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

3_0F30h
(alias)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

3_0FA0h
(alias)

CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

3_0FA4h
(alias)

CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

3_0FA8h
(alias)

Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

3_0FACh
(alias)

Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

3_0FC0h
(alias)

Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

3_0FC8h
(alias)

Fault Address ICID Register (FAICID) 32 RO 0000_0000h

3_0FCCh
(alias)

Fault Address Detail Register (FADR) 32 RO 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 699

Offset Register Width

(In bits)

Access Reset value

3_0FD4h
(alias)

SEC Status Register (SSTA) 32 RO 0000_0402h

3_0FE0h
(alias)

RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

3_0FE4h
(alias)

CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

3_0FE8h
(alias)

CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

3_0FECh
(alias)

CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

3_0FF0h
(alias)

CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

3_0FF4h
(alias)

CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

3_0FF8h
(alias)

SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

3_0FFCh
(alias)

SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

4_0000h Input Ring Base Address Register for Job Ring 3 (IRBAR_JR3) 64 RW 0000_0000_00
00_0000h

4_000Ch Input Ring Size Register for Job Ring 3 (IRSR_JR3) 32 RW 0000_0000h

4_0014h Input Ring Slots Available Register for Job Ring 3 (IRSAR_JR3) 32 RW 0000_0000h

4_001Ch Input Ring Jobs Added Register for Job Ring3 (IRJAR_JR3) 32 RW 0000_0000h

4_0020h Output Ring Base Address Register for Job Ring 3 (ORBAR_JR3) 64 RW 0000_0000_00
00_0000h

4_002Ch Output Ring Size Register for Job Ring 3 (ORSR_JR3) 32 RW 0000_0000h

4_0034h Output Ring Jobs Removed Register for Job Ring 3 (ORJRR_JR3) 32 RW 0000_0000h

4_003Ch Output Ring Slots Full Register for Job Ring 3 (ORSFR_JR3) 32 RW 0000_0000h

4_0044h Job Ring Output Status Register for Job Ring 3 (JRSTAR_JR3) 32 RO 0000_0000h

4_004Ch Job Ring Interrupt Status Register for Job Ring 3 (JRINTR_JR3) 32 W1C 0000_0000h

4_0050h Job Ring Configuration Register for Job Ring 3, most-significant half
(JRCFGR_JR3_MS)

32 RW 0000_0000h

4_0054h Job Ring Configuration Register for Job Ring 3, least-significant half
(JRCFGR_JR3_LS)

32 RW 0000_0000h

4_005Ch Input Ring Read Index Register for Job Ring 3 (IRRIR_JR3) 32 RW 0000_0000h

4_0064h Output Ring Write Index Register for Job Ring 3 (ORWIR_JR3) 32 RW 0000_0000h

4_006Ch Job Ring Command Register for Job Ring 3 (JRCR_JR3) 32 WO 0000_0000h

4_0704h Job Ring 3 Address-Array Valid Register (JR3AAV) 32 RO 0000_0000h

4_0800h Job Ring 3 Address-Array Address 0 Register (JR3AAA0) 64 RO 0000_0000_00
00_0000h

4_0808h Job Ring 3 Address-Array Address 1 Register (JR3AAA1) 64 RO 0000_0000_00
00_0000h

4_0810h Job Ring 3 Address-Array Address 2 Register (JR3AAA2) 64 RO 0000_0000_00
00_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

700 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

4_0818h Job Ring 3 Address-Array Address 3 Register (JR3AAA3) 64 RO 0000_0000_00
00_0000h

4_0820h Job Ring 3 Address-Array Address 4 Register (JR3AAA4) 64 RO 0000_0000_00
00_0000h

4_0828h Job Ring 3 Address-Array Address 5 Register (JR3AAA5) 64 RO 0000_0000_00
00_0000h

4_0830h Job Ring 3 Address-Array Address 6 Register (JR3AAA6) 64 RO 0000_0000_00
00_0000h

4_0838h Job Ring 3 Address-Array Address 7 Register (JR3AAA7) 64 RO 0000_0000_00
00_0000h

4_0E00h Recoverable Error Indication Record 0 for Job Ring 3 (REIR0JR3) 32 RO 0000_0000h

4_0E08h Recoverable Error Indication Record 2 for Job Ring 3 (REIR2JR3) 64 RO 0000_0000_00
00_0000h

4_0E10h Recoverable Error Indication Record 4 for Job Ring 3 (REIR4JR3) 32 RO 0000_0000h

4_0E14h Recoverable Error Indication Record 5 for Job Ring 3 (REIR5JR3) 32 RO 0000_0000h

4_0F00h
(alias)

Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

4_0F08h
(alias)

Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

4_0F10h
(alias)

Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

4_0F18h
(alias)

Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

4_0F20h
(alias)

Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

4_0F28h
(alias)

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

4_0F30h
(alias)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

4_0FA0h
(alias)

CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

4_0FA4h
(alias)

CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

4_0FA8h
(alias)

Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

4_0FACh
(alias)

Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

4_0FC0h
(alias)

Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

4_0FC8h
(alias)

Fault Address ICID Register (FAICID) 32 RO 0000_0000h

4_0FCCh
(alias)

Fault Address Detail Register (FADR) 32 RO 0000_0000h

4_0FD4h
(alias)

SEC Status Register (SSTA) 32 RO 0000_0402h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 701

Offset Register Width

(In bits)

Access Reset value

4_0FE0h
(alias)

RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

4_0FE4h
(alias)

CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

4_0FE8h
(alias)

CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

4_0FECh
(alias)

CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

4_0FF0h
(alias)

CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

4_0FF4h
(alias)

CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

4_0FF8h
(alias)

SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

4_0FFCh
(alias)

SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

6_0004h RTIC Status Register (RSTA) 32 RO 0000_0000h

6_000Ch RTIC Command Register (RCMD) 32 RW 0000_0000h

6_0014h RTIC Control Register (RCTL) 32 RW 0000_0000h

6_001Ch RTIC Throttle Register (RTHR) 32 RW 0000_0000h

6_0028h RTIC Watchdog Timer (RWDOG) 64 RW 0000_0000_00
00_0000h

6_0034h RTIC Endian Register (REND) 32 RW 0000_0000h

6_0100h RTIC Memory Block A Address 0 Register (RMAA0) 64 RW 0000_0000_00
00_0000h

6_010Ch RTIC Memory Block A Length 0 Register (RMAL0) 32 RW 0000_0000h

6_0110h RTIC Memory Block A Address 1 Register (RMAA1) 64 RW 0000_0000_00
00_0000h

6_011Ch RTIC Memory Block A Length 1 Register (RMAL1) 32 RW 0000_0000h

6_0120h RTIC Memory Block B Address 0 Register (RMBA0) 64 RW 0000_0000_00
00_0000h

6_012Ch RTIC Memory Block B Length 0 Register (RMBL0) 32 RW 0000_0000h

6_0130h RTIC Memory Block B Address 1 Register (RMBA1) 64 RW 0000_0000_00
00_0000h

6_013Ch RTIC Memory Block B Length 1 Register (RMBL1) 32 RW 0000_0000h

6_0140h RTIC Memory Block C Address 0 Register (RMCA0) 64 RW 0000_0000_00
00_0000h

6_014Ch RTIC Memory Block C Length 0 Register (RMCL0) 32 RW 0000_0000h

6_0150h RTIC Memory Block C Address 1 Register (RMCA1) 64 RW 0000_0000_00
00_0000h

6_015Ch RTIC Memory Block C Length 1 Register (RMCL1) 32 RW 0000_0000h

6_0160h RTIC Memory Block D Address 0 Register (RMDA0) 64 RW 0000_0000_00
00_0000h

6_016Ch RTIC Memory Block D Length 0 Register (RMDL0) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

702 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

6_0170h RTIC Memory Block D Address 1 Register (RMDA1) 64 RW 0000_0000_00
00_0000h

6_017Ch RTIC Memory Block D Length 1 Register (RMDL1) 32 RW 0000_0000h

6_0200h RTIC Memory Block A Big Endian Hash Result Word 0 (RAMDB_0) 32 RW 0000_0000h

6_0204h RTIC Memory Block A Big Endian Hash Result Word 1 (RAMDB_1) 32 RW 0000_0000h

6_0208h RTIC Memory Block A Big Endian Hash Result Word 2 (RAMDB_2) 32 RW 0000_0000h

6_020Ch RTIC Memory Block A Big Endian Hash Result Word 3 (RAMDB_3) 32 RW 0000_0000h

6_0210h RTIC Memory Block A Big Endian Hash Result Word 4 (RAMDB_4) 32 RW 0000_0000h

6_0214h RTIC Memory Block A Big Endian Hash Result Word 5 (RAMDB_5) 32 RW 0000_0000h

6_0218h RTIC Memory Block A Big Endian Hash Result Word 6 (RAMDB_6) 32 RW 0000_0000h

6_021Ch RTIC Memory Block A Big Endian Hash Result Word 7 (RAMDB_7) 32 RW 0000_0000h

6_0220h RTIC Memory Block A Big Endian Hash Result Word 8 (RAMDB_8) 32 RW 0000_0000h

6_0224h RTIC Memory Block A Big Endian Hash Result Word 9 (RAMDB_9) 32 RW 0000_0000h

6_0228h RTIC Memory Block A Big Endian Hash Result Word 10 (RAMDB_
10)

32 RW 0000_0000h

6_022Ch RTIC Memory Block A Big Endian Hash Result Word 11 (RAMDB_
11)

32 RW 0000_0000h

6_0230h RTIC Memory Block A Big Endian Hash Result Word 12 (RAMDB_
12)

32 RW 0000_0000h

6_0234h RTIC Memory Block A Big Endian Hash Result Word 13 (RAMDB_
13)

32 RW 0000_0000h

6_0238h RTIC Memory Block A Big Endian Hash Result Word 14 (RAMDB_
14)

32 RW 0000_0000h

6_023Ch RTIC Memory Block A Big Endian Hash Result Word 15 (RAMDB_
15)

32 RW 0000_0000h

6_0240h RTIC Memory Block A Big Endian Hash Result Word 16 (RAMDB_
16)

32 RW 0000_0000h

6_0244h RTIC Memory Block A Big Endian Hash Result Word 17 (RAMDB_
17)

32 RW 0000_0000h

6_0248h RTIC Memory Block A Big Endian Hash Result Word 18 (RAMDB_
18)

32 RW 0000_0000h

6_024Ch RTIC Memory Block A Big Endian Hash Result Word 19 (RAMDB_
19)

32 RW 0000_0000h

6_0250h RTIC Memory Block A Big Endian Hash Result Word 20 (RAMDB_
20)

32 RW 0000_0000h

6_0254h RTIC Memory Block A Big Endian Hash Result Word 21 (RAMDB_
21)

32 RW 0000_0000h

6_0258h RTIC Memory Block A Big Endian Hash Result Word 22 (RAMDB_
22)

32 RW 0000_0000h

6_025Ch RTIC Memory Block A Big Endian Hash Result Word 23 (RAMDB_
23)

32 RW 0000_0000h

6_0260h RTIC Memory Block A Big Endian Hash Result Word 24 (RAMDB_
24)

32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 703

Offset Register Width

(In bits)

Access Reset value

6_0264h RTIC Memory Block A Big Endian Hash Result Word 25 (RAMDB_
25)

32 RW 0000_0000h

6_0268h RTIC Memory Block A Big Endian Hash Result Word 26 (RAMDB_
26)

32 RW 0000_0000h

6_026Ch RTIC Memory Block A Big Endian Hash Result Word 27 (RAMDB_
27)

32 RW 0000_0000h

6_0270h RTIC Memory Block A Big Endian Hash Result Word 28 (RAMDB_
28)

32 RW 0000_0000h

6_0274h RTIC Memory Block A Big Endian Hash Result Word 29 (RAMDB_
29)

32 RW 0000_0000h

6_0278h RTIC Memory Block A Big Endian Hash Result Word 30 (RAMDB_
30)

32 RW 0000_0000h

6_027Ch RTIC Memory Block A Big Endian Hash Result Word 31 (RAMDB_
31)

32 RW 0000_0000h

6_0280h RTIC Memory Block A Little Endian Hash Result Word 0 (RAMDL_0) 32 RW 0000_0000h

6_0284h RTIC Memory Block A Little Endian Hash Result Word 1 (RAMDL_1) 32 RW 0000_0000h

6_0288h RTIC Memory Block A Little Endian Hash Result Word 2 (RAMDL_2) 32 RW 0000_0000h

6_028Ch RTIC Memory Block A Little Endian Hash Result Word 3 (RAMDL_3) 32 RW 0000_0000h

6_0290h RTIC Memory Block A Little Endian Hash Result Word 4 (RAMDL_4) 32 RW 0000_0000h

6_0294h RTIC Memory Block A Little Endian Hash Result Word 5 (RAMDL_5) 32 RW 0000_0000h

6_0298h RTIC Memory Block A Little Endian Hash Result Word 6 (RAMDL_6) 32 RW 0000_0000h

6_029Ch RTIC Memory Block A Little Endian Hash Result Word 7 (RAMDL_7) 32 RW 0000_0000h

6_02A0h RTIC Memory Block A Little Endian Hash Result Word 8 (RAMDL_8) 32 RW 0000_0000h

6_02A4h RTIC Memory Block A Little Endian Hash Result Word 9 (RAMDL_9) 32 RW 0000_0000h

6_02A8h RTIC Memory Block A Little Endian Hash Result Word 10 (RAMDL_
10)

32 RW 0000_0000h

6_02ACh RTIC Memory Block A Little Endian Hash Result Word 11 (RAMDL_
11)

32 RW 0000_0000h

6_02B0h RTIC Memory Block A Little Endian Hash Result Word 12 (RAMDL_
12)

32 RW 0000_0000h

6_02B4h RTIC Memory Block A Little Endian Hash Result Word 13 (RAMDL_
13)

32 RW 0000_0000h

6_02B8h RTIC Memory Block A Little Endian Hash Result Word 14 (RAMDL_
14)

32 RW 0000_0000h

6_02BCh RTIC Memory Block A Little Endian Hash Result Word 15 (RAMDL_
15)

32 RW 0000_0000h

6_02C0h RTIC Memory Block A Little Endian Hash Result Word 16 (RAMDL_
16)

32 RW 0000_0000h

6_02C4h RTIC Memory Block A Little Endian Hash Result Word 17 (RAMDL_
17)

32 RW 0000_0000h

6_02C8h RTIC Memory Block A Little Endian Hash Result Word 18 (RAMDL_
18)

32 RW 0000_0000h

6_02CCh RTIC Memory Block A Little Endian Hash Result Word 19 (RAMDL_
19)

32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

704 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

6_02D0h RTIC Memory Block A Little Endian Hash Result Word 20 (RAMDL_
20)

32 RW 0000_0000h

6_02D4h RTIC Memory Block A Little Endian Hash Result Word 21 (RAMDL_
21)

32 RW 0000_0000h

6_02D8h RTIC Memory Block A Little Endian Hash Result Word 22 (RAMDL_
22)

32 RW 0000_0000h

6_02DCh RTIC Memory Block A Little Endian Hash Result Word 23 (RAMDL_
23)

32 RW 0000_0000h

6_02E0h RTIC Memory Block A Little Endian Hash Result Word 24 (RAMDL_
24)

32 RW 0000_0000h

6_02E4h RTIC Memory Block A Little Endian Hash Result Word 25 (RAMDL_
25)

32 RW 0000_0000h

6_02E8h RTIC Memory Block A Little Endian Hash Result Word 26 (RAMDL_
26)

32 RW 0000_0000h

6_02ECh RTIC Memory Block A Little Endian Hash Result Word 27 (RAMDL_
27)

32 RW 0000_0000h

6_02F0h RTIC Memory Block A Little Endian Hash Result Word 28 (RAMDL_
28)

32 RW 0000_0000h

6_02F4h RTIC Memory Block A Little Endian Hash Result Word 29 (RAMDL_
29)

32 RW 0000_0000h

6_02F8h RTIC Memory Block A Little Endian Hash Result Word 30 (RAMDL_
30)

32 RW 0000_0000h

6_02FCh RTIC Memory Block A Little Endian Hash Result Word 31 (RAMDL_
31)

32 RW 0000_0000h

6_0300h RTIC Memory Block B Big Endian Hash Result Word 0 (RBMDB_0) 32 RW 0000_0000h

6_0304h RTIC Memory Block B Big Endian Hash Result Word 1 (RBMDB_1) 32 RW 0000_0000h

6_0308h RTIC Memory Block B Big Endian Hash Result Word 2 (RBMDB_2) 32 RW 0000_0000h

6_030Ch RTIC Memory Block B Big Endian Hash Result Word 3 (RBMDB_3) 32 RW 0000_0000h

6_0310h RTIC Memory Block B Big Endian Hash Result Word 4 (RBMDB_4) 32 RW 0000_0000h

6_0314h RTIC Memory Block B Big Endian Hash Result Word 5 (RBMDB_5) 32 RW 0000_0000h

6_0318h RTIC Memory Block B Big Endian Hash Result Word 6 (RBMDB_6) 32 RW 0000_0000h

6_031Ch RTIC Memory Block B Big Endian Hash Result Word 7 (RBMDB_7) 32 RW 0000_0000h

6_0320h RTIC Memory Block B Big Endian Hash Result Word 8 (RBMDB_8) 32 RW 0000_0000h

6_0324h RTIC Memory Block B Big Endian Hash Result Word 9 (RBMDB_9) 32 RW 0000_0000h

6_0328h RTIC Memory Block B Big Endian Hash Result Word 10 (RBMDB_
10)

32 RW 0000_0000h

6_032Ch RTIC Memory Block B Big Endian Hash Result Word 11 (RBMDB_
11)

32 RW 0000_0000h

6_0330h RTIC Memory Block B Big Endian Hash Result Word 12 (RBMDB_
12)

32 RW 0000_0000h

6_0334h RTIC Memory Block B Big Endian Hash Result Word 13 (RBMDB_
13)

32 RW 0000_0000h

6_0338h RTIC Memory Block B Big Endian Hash Result Word 14 (RBMDB_
14)

32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 705

Offset Register Width

(In bits)

Access Reset value

6_033Ch RTIC Memory Block B Big Endian Hash Result Word 15 (RBMDB_
15)

32 RW 0000_0000h

6_0340h RTIC Memory Block B Big Endian Hash Result Word 16 (RBMDB_
16)

32 RW 0000_0000h

6_0344h RTIC Memory Block B Big Endian Hash Result Word 17 (RBMDB_
17)

32 RW 0000_0000h

6_0348h RTIC Memory Block B Big Endian Hash Result Word 18 (RBMDB_
18)

32 RW 0000_0000h

6_034Ch RTIC Memory Block B Big Endian Hash Result Word 19 (RBMDB_
19)

32 RW 0000_0000h

6_0350h RTIC Memory Block B Big Endian Hash Result Word 20 (RBMDB_
20)

32 RW 0000_0000h

6_0354h RTIC Memory Block B Big Endian Hash Result Word 21 (RBMDB_
21)

32 RW 0000_0000h

6_0358h RTIC Memory Block B Big Endian Hash Result Word 22 (RBMDB_
22)

32 RW 0000_0000h

6_035Ch RTIC Memory Block B Big Endian Hash Result Word 23 (RBMDB_
23)

32 RW 0000_0000h

6_0360h RTIC Memory Block B Big Endian Hash Result Word 24 (RBMDB_
24)

32 RW 0000_0000h

6_0364h RTIC Memory Block B Big Endian Hash Result Word 25 (RBMDB_
25)

32 RW 0000_0000h

6_0368h RTIC Memory Block B Big Endian Hash Result Word 26 (RBMDB_
26)

32 RW 0000_0000h

6_036Ch RTIC Memory Block B Big Endian Hash Result Word 27 (RBMDB_
27)

32 RW 0000_0000h

6_0370h RTIC Memory Block B Big Endian Hash Result Word 28 (RBMDB_
28)

32 RW 0000_0000h

6_0374h RTIC Memory Block B Big Endian Hash Result Word 29 (RBMDB_
29)

32 RW 0000_0000h

6_0378h RTIC Memory Block B Big Endian Hash Result Word 30 (RBMDB_
30)

32 RW 0000_0000h

6_037Ch RTIC Memory Block B Big Endian Hash Result Word 31 (RBMDB_
31)

32 RW 0000_0000h

6_0380h RTIC Memory Block B Little Endian Hash Result Word 0 (RBMDL_0) 32 RW 0000_0000h

6_0384h RTIC Memory Block B Little Endian Hash Result Word 1 (RBMDL_1) 32 RW 0000_0000h

6_0388h RTIC Memory Block B Little Endian Hash Result Word 2 (RBMDL_2) 32 RW 0000_0000h

6_038Ch RTIC Memory Block B Little Endian Hash Result Word 3 (RBMDL_3) 32 RW 0000_0000h

6_0390h RTIC Memory Block B Little Endian Hash Result Word 4 (RBMDL_4) 32 RW 0000_0000h

6_0394h RTIC Memory Block B Little Endian Hash Result Word 5 (RBMDL_5) 32 RW 0000_0000h

6_0398h RTIC Memory Block B Little Endian Hash Result Word 6 (RBMDL_6) 32 RW 0000_0000h

6_039Ch RTIC Memory Block B Little Endian Hash Result Word 7 (RBMDL_7) 32 RW 0000_0000h

6_03A0h RTIC Memory Block B Little Endian Hash Result Word 8 (RBMDL_8) 32 RW 0000_0000h

6_03A4h RTIC Memory Block B Little Endian Hash Result Word 9 (RBMDL_9) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

706 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

6_03A8h RTIC Memory Block B Little Endian Hash Result Word 10 (RBMDL_
10)

32 RW 0000_0000h

6_03ACh RTIC Memory Block B Little Endian Hash Result Word 11 (RBMDL_
11)

32 RW 0000_0000h

6_03B0h RTIC Memory Block B Little Endian Hash Result Word 12 (RBMDL_
12)

32 RW 0000_0000h

6_03B4h RTIC Memory Block B Little Endian Hash Result Word 13 (RBMDL_
13)

32 RW 0000_0000h

6_03B8h RTIC Memory Block B Little Endian Hash Result Word 14 (RBMDL_
14)

32 RW 0000_0000h

6_03BCh RTIC Memory Block B Little Endian Hash Result Word 15 (RBMDL_
15)

32 RW 0000_0000h

6_03C0h RTIC Memory Block B Little Endian Hash Result Word 16 (RBMDL_
16)

32 RW 0000_0000h

6_03C4h RTIC Memory Block B Little Endian Hash Result Word 17 (RBMDL_
17)

32 RW 0000_0000h

6_03C8h RTIC Memory Block B Little Endian Hash Result Word 18 (RBMDL_
18)

32 RW 0000_0000h

6_03CCh RTIC Memory Block B Little Endian Hash Result Word 19 (RBMDL_
19)

32 RW 0000_0000h

6_03D0h RTIC Memory Block B Little Endian Hash Result Word 20 (RBMDL_
20)

32 RW 0000_0000h

6_03D4h RTIC Memory Block B Little Endian Hash Result Word 21 (RBMDL_
21)

32 RW 0000_0000h

6_03D8h RTIC Memory Block B Little Endian Hash Result Word 22 (RBMDL_
22)

32 RW 0000_0000h

6_03DCh RTIC Memory Block B Little Endian Hash Result Word 23 (RBMDL_
23)

32 RW 0000_0000h

6_03E0h RTIC Memory Block B Little Endian Hash Result Word 24 (RBMDL_
24)

32 RW 0000_0000h

6_03E4h RTIC Memory Block B Little Endian Hash Result Word 25 (RBMDL_
25)

32 RW 0000_0000h

6_03E8h RTIC Memory Block B Little Endian Hash Result Word 26 (RBMDL_
26)

32 RW 0000_0000h

6_03ECh RTIC Memory Block B Little Endian Hash Result Word 27 (RBMDL_
27)

32 RW 0000_0000h

6_03F0h RTIC Memory Block B Little Endian Hash Result Word 28 (RBMDL_
28)

32 RW 0000_0000h

6_03F4h RTIC Memory Block B Little Endian Hash Result Word 29 (RBMDL_
29)

32 RW 0000_0000h

6_03F8h RTIC Memory Block B Little Endian Hash Result Word 30 (RBMDL_
30)

32 RW 0000_0000h

6_03FCh RTIC Memory Block B Little Endian Hash Result Word 31 (RBMDL_
31)

32 RW 0000_0000h

6_0400h RTIC Memory Block C Big Endian Hash Result Word 0 (RCMDB_0) 32 RW 0000_0000h

6_0404h RTIC Memory Block C Big Endian Hash Result Word 1 (RCMDB_1) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 707

Offset Register Width

(In bits)

Access Reset value

6_0408h RTIC Memory Block C Big Endian Hash Result Word 2 (RCMDB_2) 32 RW 0000_0000h

6_040Ch RTIC Memory Block C Big Endian Hash Result Word 3 (RCMDB_3) 32 RW 0000_0000h

6_0410h RTIC Memory Block C Big Endian Hash Result Word 4 (RCMDB_4) 32 RW 0000_0000h

6_0414h RTIC Memory Block C Big Endian Hash Result Word 5 (RCMDB_5) 32 RW 0000_0000h

6_0418h RTIC Memory Block C Big Endian Hash Result Word 6 (RCMDB_6) 32 RW 0000_0000h

6_041Ch RTIC Memory Block C Big Endian Hash Result Word 7 (RCMDB_7) 32 RW 0000_0000h

6_0420h RTIC Memory Block C Big Endian Hash Result Word 8 (RCMDB_8) 32 RW 0000_0000h

6_0424h RTIC Memory Block C Big Endian Hash Result Word 9 (RCMDB_9) 32 RW 0000_0000h

6_0428h RTIC Memory Block C Big Endian Hash Result Word 10 (RCMDB_
10)

32 RW 0000_0000h

6_042Ch RTIC Memory Block C Big Endian Hash Result Word 11 (RCMDB_
11)

32 RW 0000_0000h

6_0430h RTIC Memory Block C Big Endian Hash Result Word 12 (RCMDB_
12)

32 RW 0000_0000h

6_0434h RTIC Memory Block C Big Endian Hash Result Word 13 (RCMDB_
13)

32 RW 0000_0000h

6_0438h RTIC Memory Block C Big Endian Hash Result Word 14 (RCMDB_
14)

32 RW 0000_0000h

6_043Ch RTIC Memory Block C Big Endian Hash Result Word 15 (RCMDB_
15)

32 RW 0000_0000h

6_0440h RTIC Memory Block C Big Endian Hash Result Word 16 (RCMDB_
16)

32 RW 0000_0000h

6_0444h RTIC Memory Block C Big Endian Hash Result Word 17 (RCMDB_
17)

32 RW 0000_0000h

6_0448h RTIC Memory Block C Big Endian Hash Result Word 18 (RCMDB_
18)

32 RW 0000_0000h

6_044Ch RTIC Memory Block C Big Endian Hash Result Word 19 (RCMDB_
19)

32 RW 0000_0000h

6_0450h RTIC Memory Block C Big Endian Hash Result Word 20 (RCMDB_
20)

32 RW 0000_0000h

6_0454h RTIC Memory Block C Big Endian Hash Result Word 21 (RCMDB_
21)

32 RW 0000_0000h

6_0458h RTIC Memory Block C Big Endian Hash Result Word 22 (RCMDB_
22)

32 RW 0000_0000h

6_045Ch RTIC Memory Block C Big Endian Hash Result Word 23 (RCMDB_
23)

32 RW 0000_0000h

6_0460h RTIC Memory Block C Big Endian Hash Result Word 24 (RCMDB_
24)

32 RW 0000_0000h

6_0464h RTIC Memory Block C Big Endian Hash Result Word 25 (RCMDB_
25)

32 RW 0000_0000h

6_0468h RTIC Memory Block C Big Endian Hash Result Word 26 (RCMDB_
26)

32 RW 0000_0000h

6_046Ch RTIC Memory Block C Big Endian Hash Result Word 27 (RCMDB_
27)

32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

708 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

6_0470h RTIC Memory Block C Big Endian Hash Result Word 28 (RCMDB_
28)

32 RW 0000_0000h

6_0474h RTIC Memory Block C Big Endian Hash Result Word 29 (RCMDB_
29)

32 RW 0000_0000h

6_0478h RTIC Memory Block C Big Endian Hash Result Word 30 (RCMDB_
30)

32 RW 0000_0000h

6_047Ch RTIC Memory Block C Big Endian Hash Result Word 31 (RCMDB_
31)

32 RW 0000_0000h

6_0480h RTIC Memory Block C Little Endian Hash Result Word 0 (RCMDL_0) 32 RW 0000_0000h

6_0484h RTIC Memory Block C Little Endian Hash Result Word 1 (RCMDL_1) 32 RW 0000_0000h

6_0488h RTIC Memory Block C Little Endian Hash Result Word 2 (RCMDL_2) 32 RW 0000_0000h

6_048Ch RTIC Memory Block C Little Endian Hash Result Word 3 (RCMDL_3) 32 RW 0000_0000h

6_0490h RTIC Memory Block C Little Endian Hash Result Word 4 (RCMDL_4) 32 RW 0000_0000h

6_0494h RTIC Memory Block C Little Endian Hash Result Word 5 (RCMDL_5) 32 RW 0000_0000h

6_0498h RTIC Memory Block C Little Endian Hash Result Word 6 (RCMDL_6) 32 RW 0000_0000h

6_049Ch RTIC Memory Block C Little Endian Hash Result Word 7 (RCMDL_7) 32 RW 0000_0000h

6_04A0h RTIC Memory Block C Little Endian Hash Result Word 8 (RCMDL_8) 32 RW 0000_0000h

6_04A4h RTIC Memory Block C Little Endian Hash Result Word 9 (RCMDL_9) 32 RW 0000_0000h

6_04A8h RTIC Memory Block C Little Endian Hash Result Word 10 (RCMDL_
10)

32 RW 0000_0000h

6_04ACh RTIC Memory Block C Little Endian Hash Result Word 11 (RCMDL_
11)

32 RW 0000_0000h

6_04B0h RTIC Memory Block C Little Endian Hash Result Word 12 (RCMDL_
12)

32 RW 0000_0000h

6_04B4h RTIC Memory Block C Little Endian Hash Result Word 13 (RCMDL_
13)

32 RW 0000_0000h

6_04B8h RTIC Memory Block C Little Endian Hash Result Word 14 (RCMDL_
14)

32 RW 0000_0000h

6_04BCh RTIC Memory Block C Little Endian Hash Result Word 15 (RCMDL_
15)

32 RW 0000_0000h

6_04C0h RTIC Memory Block C Little Endian Hash Result Word 16 (RCMDL_
16)

32 RW 0000_0000h

6_04C4h RTIC Memory Block C Little Endian Hash Result Word 17 (RCMDL_
17)

32 RW 0000_0000h

6_04C8h RTIC Memory Block C Little Endian Hash Result Word 18 (RCMDL_
18)

32 RW 0000_0000h

6_04CCh RTIC Memory Block C Little Endian Hash Result Word 19 (RCMDL_
19)

32 RW 0000_0000h

6_04D0h RTIC Memory Block C Little Endian Hash Result Word 20 (RCMDL_
20)

32 RW 0000_0000h

6_04D4h RTIC Memory Block C Little Endian Hash Result Word 21 (RCMDL_
21)

32 RW 0000_0000h

6_04D8h RTIC Memory Block C Little Endian Hash Result Word 22 (RCMDL_
22)

32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 709

Offset Register Width

(In bits)

Access Reset value

6_04DCh RTIC Memory Block C Little Endian Hash Result Word 23 (RCMDL_
23)

32 RW 0000_0000h

6_04E0h RTIC Memory Block C Little Endian Hash Result Word 24 (RCMDL_
24)

32 RW 0000_0000h

6_04E4h RTIC Memory Block C Little Endian Hash Result Word 25 (RCMDL_
25)

32 RW 0000_0000h

6_04E8h RTIC Memory Block C Little Endian Hash Result Word 26 (RCMDL_
26)

32 RW 0000_0000h

6_04ECh RTIC Memory Block C Little Endian Hash Result Word 27 (RCMDL_
27)

32 RW 0000_0000h

6_04F0h RTIC Memory Block C Little Endian Hash Result Word 28 (RCMDL_
28)

32 RW 0000_0000h

6_04F4h RTIC Memory Block C Little Endian Hash Result Word 29 (RCMDL_
29)

32 RW 0000_0000h

6_04F8h RTIC Memory Block C Little Endian Hash Result Word 30 (RCMDL_
30)

32 RW 0000_0000h

6_04FCh RTIC Memory Block C Little Endian Hash Result Word 31 (RCMDL_
31)

32 RW 0000_0000h

6_0500h RTIC Memory Block D Big Endian Hash Result Word 0 (RDMDB_0) 32 RW 0000_0000h

6_0504h RTIC Memory Block D Big Endian Hash Result Word 1 (RDMDB_1) 32 RW 0000_0000h

6_0508h RTIC Memory Block D Big Endian Hash Result Word 2 (RDMDB_2) 32 RW 0000_0000h

6_050Ch RTIC Memory Block D Big Endian Hash Result Word 3 (RDMDB_3) 32 RW 0000_0000h

6_0510h RTIC Memory Block D Big Endian Hash Result Word 4 (RDMDB_4) 32 RW 0000_0000h

6_0514h RTIC Memory Block D Big Endian Hash Result Word 5 (RDMDB_5) 32 RW 0000_0000h

6_0518h RTIC Memory Block D Big Endian Hash Result Word 6 (RDMDB_6) 32 RW 0000_0000h

6_051Ch RTIC Memory Block D Big Endian Hash Result Word 7 (RDMDB_7) 32 RW 0000_0000h

6_0520h RTIC Memory Block D Big Endian Hash Result Word 8 (RDMDB_8) 32 RW 0000_0000h

6_0524h RTIC Memory Block D Big Endian Hash Result Word 9 (RDMDB_9) 32 RW 0000_0000h

6_0528h RTIC Memory Block D Big Endian Hash Result Word 10 (RDMDB_
10)

32 RW 0000_0000h

6_052Ch RTIC Memory Block D Big Endian Hash Result Word 11 (RDMDB_
11)

32 RW 0000_0000h

6_0530h RTIC Memory Block D Big Endian Hash Result Word 12 (RDMDB_
12)

32 RW 0000_0000h

6_0534h RTIC Memory Block D Big Endian Hash Result Word 13 (RDMDB_
13)

32 RW 0000_0000h

6_0538h RTIC Memory Block D Big Endian Hash Result Word 14 (RDMDB_
14)

32 RW 0000_0000h

6_053Ch RTIC Memory Block D Big Endian Hash Result Word 15 (RDMDB_
15)

32 RW 0000_0000h

6_0540h RTIC Memory Block D Big Endian Hash Result Word 16 (RDMDB_
16)

32 RW 0000_0000h

6_0544h RTIC Memory Block D Big Endian Hash Result Word 17 (RDMDB_
17)

32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

710 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

6_0548h RTIC Memory Block D Big Endian Hash Result Word 18 (RDMDB_
18)

32 RW 0000_0000h

6_054Ch RTIC Memory Block D Big Endian Hash Result Word 19 (RDMDB_
19)

32 RW 0000_0000h

6_0550h RTIC Memory Block D Big Endian Hash Result Word 20 (RDMDB_
20)

32 RW 0000_0000h

6_0554h RTIC Memory Block D Big Endian Hash Result Word 21 (RDMDB_
21)

32 RW 0000_0000h

6_0558h RTIC Memory Block D Big Endian Hash Result Word 22 (RDMDB_
22)

32 RW 0000_0000h

6_055Ch RTIC Memory Block D Big Endian Hash Result Word 23 (RDMDB_
23)

32 RW 0000_0000h

6_0560h RTIC Memory Block D Big Endian Hash Result Word 24 (RDMDB_
24)

32 RW 0000_0000h

6_0564h RTIC Memory Block D Big Endian Hash Result Word 25 (RDMDB_
25)

32 RW 0000_0000h

6_0568h RTIC Memory Block D Big Endian Hash Result Word 26 (RDMDB_
26)

32 RW 0000_0000h

6_056Ch RTIC Memory Block D Big Endian Hash Result Word 27 (RDMDB_
27)

32 RW 0000_0000h

6_0570h RTIC Memory Block D Big Endian Hash Result Word 28 (RDMDB_
28)

32 RW 0000_0000h

6_0574h RTIC Memory Block D Big Endian Hash Result Word 29 (RDMDB_
29)

32 RW 0000_0000h

6_0578h RTIC Memory Block D Big Endian Hash Result Word 30 (RDMDB_
30)

32 RW 0000_0000h

6_057Ch RTIC Memory Block D Big Endian Hash Result Word 31 (RDMDB_
31)

32 RW 0000_0000h

6_0580h RTIC Memory Block D Little Endian Hash Result Word 0 (RDMDL_0) 32 RW 0000_0000h

6_0584h RTIC Memory Block D Little Endian Hash Result Word 1 (RDMDL_1) 32 RW 0000_0000h

6_0588h RTIC Memory Block D Little Endian Hash Result Word 2 (RDMDL_2) 32 RW 0000_0000h

6_058Ch RTIC Memory Block D Little Endian Hash Result Word 3 (RDMDL_3) 32 RW 0000_0000h

6_0590h RTIC Memory Block D Little Endian Hash Result Word 4 (RDMDL_4) 32 RW 0000_0000h

6_0594h RTIC Memory Block D Little Endian Hash Result Word 5 (RDMDL_5) 32 RW 0000_0000h

6_0598h RTIC Memory Block D Little Endian Hash Result Word 6 (RDMDL_6) 32 RW 0000_0000h

6_059Ch RTIC Memory Block D Little Endian Hash Result Word 7 (RDMDL_7) 32 RW 0000_0000h

6_05A0h RTIC Memory Block D Little Endian Hash Result Word 8 (RDMDL_8) 32 RW 0000_0000h

6_05A4h RTIC Memory Block D Little Endian Hash Result Word 9 (RDMDL_9) 32 RW 0000_0000h

6_05A8h RTIC Memory Block D Little Endian Hash Result Word 10 (RDMDL_
10)

32 RW 0000_0000h

6_05ACh RTIC Memory Block D Little Endian Hash Result Word 11 (RDMDL_
11)

32 RW 0000_0000h

6_05B0h RTIC Memory Block D Little Endian Hash Result Word 12 (RDMDL_
12)

32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 711

Offset Register Width

(In bits)

Access Reset value

6_05B4h RTIC Memory Block D Little Endian Hash Result Word 13 (RDMDL_
13)

32 RW 0000_0000h

6_05B8h RTIC Memory Block D Little Endian Hash Result Word 14 (RDMDL_
14)

32 RW 0000_0000h

6_05BCh RTIC Memory Block D Little Endian Hash Result Word 15 (RDMDL_
15)

32 RW 0000_0000h

6_05C0h RTIC Memory Block D Little Endian Hash Result Word 16 (RDMDL_
16)

32 RW 0000_0000h

6_05C4h RTIC Memory Block D Little Endian Hash Result Word 17 (RDMDL_
17)

32 RW 0000_0000h

6_05C8h RTIC Memory Block D Little Endian Hash Result Word 18 (RDMDL_
18)

32 RW 0000_0000h

6_05CCh RTIC Memory Block D Little Endian Hash Result Word 19 (RDMDL_
19)

32 RW 0000_0000h

6_05D0h RTIC Memory Block D Little Endian Hash Result Word 20 (RDMDL_
20)

32 RW 0000_0000h

6_05D4h RTIC Memory Block D Little Endian Hash Result Word 21 (RDMDL_
21)

32 RW 0000_0000h

6_05D8h RTIC Memory Block D Little Endian Hash Result Word 22 (RDMDL_
22)

32 RW 0000_0000h

6_05DCh RTIC Memory Block D Little Endian Hash Result Word 23 (RDMDL_
23)

32 RW 0000_0000h

6_05E0h RTIC Memory Block D Little Endian Hash Result Word 24 (RDMDL_
24)

32 RW 0000_0000h

6_05E4h RTIC Memory Block D Little Endian Hash Result Word 25 (RDMDL_
25)

32 RW 0000_0000h

6_05E8h RTIC Memory Block D Little Endian Hash Result Word 26 (RDMDL_
26)

32 RW 0000_0000h

6_05ECh RTIC Memory Block D Little Endian Hash Result Word 27 (RDMDL_
27)

32 RW 0000_0000h

6_05F0h RTIC Memory Block D Little Endian Hash Result Word 28 (RDMDL_
28)

32 RW 0000_0000h

6_05F4h RTIC Memory Block D Little Endian Hash Result Word 29 (RDMDL_
29)

32 RW 0000_0000h

6_05F8h RTIC Memory Block D Little Endian Hash Result Word 30 (RDMDL_
30)

32 RW 0000_0000h

6_05FCh RTIC Memory Block D Little Endian Hash Result Word 31 (RDMDL_
31)

32 RW 0000_0000h

6_0E00h Recoverable Error Indication Record 0 for RTIC (REIR0RTIC) 32 RO 0000_0000h

6_0E08h Recoverable Error Indication Record 2 for RTIC (REIR2RTIC) 64 RO 0000_0000_00
00_0000h

6_0E10h Recoverable Error Indication Record 4 for RTIC (REIR4RTIC) 32 RO 0000_0000h

6_0E14h Recoverable Error Indication Record 5 for RTIC (REIR5RTIC) 32 RO 0000_0000h

6_0F00h
(alias)

Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

712 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

6_0F08h
(alias)

Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

6_0F10h
(alias)

Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

6_0F18h
(alias)

Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

6_0F20h
(alias)

Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

6_0F28h
(alias)

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

6_0F30h
(alias)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

6_0FA0h
(alias)

CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

6_0FA4h
(alias)

CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

6_0FA8h
(alias)

Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

6_0FACh
(alias)

Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

6_0FC0h
(alias)

Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

6_0FC8h
(alias)

Fault Address ICID Register (FAICID) 32 RO 0000_0000h

6_0FCCh
(alias)

Fault Address Detail Register (FADR) 32 RO 0000_0000h

6_0FD4h
(alias)

SEC Status Register (SSTA) 32 RO 0000_0402h

6_0FE0h
(alias)

RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

6_0FE4h
(alias)

CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

6_0FE8h
(alias)

CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

6_0FECh
(alias)

CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

6_0FF0h
(alias)

CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

6_0FF4h
(alias)

CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

6_0FF8h
(alias)

SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

6_0FFCh
(alias)

SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

7_0000h Queue Interface Control Register, most-significant (QICTL_MS) 32 RW 0000_0000h

7_0004h Queue Interface Control Register, least-significant (QICTL_LS) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 713

Offset Register Width

(In bits)

Access Reset value

7_000Ch Queue Interface Status Register (QISTA) 32 W1C 0000_0000h

7_0010h Queue Interface Dequeue Configuration Register, most-significant
half (QIDQC_MS)

32 RW 0400_FFFFh

7_0014h Queue Interface Dequeue Configuration Register, least-significant
half (QIDQC_LS)

32 RW 0000_0011h

7_0018h Queue Interface Enqueue Configuration Register, most-significant
half (QIEQC_MS)

32 RW 0000_0003h

7_001Ch Queue Interface Enqueue Configuration Register, least-significant
half (QIEQC_LS)

32 RW 0000_0000h

7_0020h Queue Interface ICID Configuration Register, most-significant half
(QIIC_MS)

32 RW 03FF_0000h

7_0024h Queue Interface ICID Configuration Register, least-significant half
(QIIC_LS)

32 RW 0000_0000h

7_0100h Queue Interface Descriptor Word 0 Register (QIDESC0) 32 RO 0000_0000h

7_0104h -
7_0130h

Queue Interface Descriptor Word a Registers (QIDESC1 - QIDE
SC12)

32 RO 0000_0000h

7_0210h Queue Interface Compound Frame Scatter/Gather Table Registers
(QICFOFH_MS)

32 RO 0000_0000h

7_0214h Queue Interface Compound Frame Scatter/Gather Table Registers
(QICFOFH_LS)

32 RO 0000_0000h

7_0218h Queue Interface Compound Frame Scatter/Gather Table Registers
(QICFOFL_MS)

32 RO 0000_0000h

7_021Ch Queue Interface Compound Frame Scatter/Gather Table Registers
(QICFOFL_LS)

32 RO 0000_0000h

7_0220h Queue Interface Compound Frame Scatter/Gather Table Registers
(QICFIFH_MS)

32 RO 0000_0000h

7_0224h Queue Interface Compound Frame Scatter/Gather Table Registers
(QICFIFH_LS)

32 RO 0000_0000h

7_0228h Queue Interface Compound Frame Scatter/Gather Table Registers
(QICFIFL_MS)

32 RO 0000_0000h

7_022Ch Queue Interface Compound Frame Scatter/Gather Table Registers
(QICFIFL_LS)

32 RO 0000_0000h

7_0300h Queue Interface Job ID Valid Register (QIJIDVALID) 64 RO 0000_0000_00
00_0000h

7_0308h Queue Interface Job ID Job Ready Register (QIJIDRDY) 64 RO 0000_0000_00
00_0000h

7_0700h Recoverable Error Indication Record 0 for the Queue Interface (REIR
0QI)

32 RO 0000_0000h

7_0704h Recoverable Error Indication Record 1 for the Queue Interface (REIR
1QI)

32 RO 0000_0000h

7_0708h Recoverable Error Indication Record 2 for the Queue Interface (REIR
2QI)

64 RO 0000_0000_00
00_0000h

7_0710h Recoverable Error Indication Record 4 for the Queue Interface (REIR
4QI)

32 RO 0000_0000h

7_0714h Recoverable Error Indication Record 5 for the Queue Interface (REIR
5QI)

32 RO 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

714 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

7_0F00h
(alias)

Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

7_0F08h
(alias)

Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

7_0F10h
(alias)

Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

7_0F18h
(alias)

Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

7_0F20h
(alias)

Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

7_0F28h
(alias)

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

7_0F30h
(alias)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

7_0FA0h
(alias)

CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

7_0FA4h
(alias)

CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

7_0FA8h
(alias)

Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

7_0FACh
(alias)

Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

7_0FC0h
(alias)

Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

7_0FC8h
(alias)

Fault Address ICID Register (FAICID) 32 RO 0000_0000h

7_0FCCh
(alias)

Fault Address Detail Register (FADR) 32 RO 0000_0000h

7_0FD4h
(alias)

SEC Status Register (SSTA) 32 RO 0000_0402h

7_0FE0h
(alias)

RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

7_0FE4h
(alias)

CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

7_0FE8h
(alias)

CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

7_0FECh
(alias)

CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

7_0FF0h
(alias)

CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

7_0FF4h
(alias)

CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

7_0FF8h
(alias)

SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

7_0FFCh
(alias)

SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 715

Offset Register Width

(In bits)

Access Reset value

8_0004h CCB 0 Class 1 Mode Register Format for Non-Public Key Algorithms
(C0C1MR_NPK)

32 RW 0000_0000h

8_0004h CCB 0 Class 1 Mode Register Format for Public Key Algorithms
(C0C1MR_PK)

32 RW 0000_0000h

8_0004h CCB 0 Class 1 Mode Register Format for RNG4 (C0C1MR_RNG) 32 RW 0000_0000h

8_000Ch CCB 0 Class 1 Key Size Register (C0C1KSR) 32 RW 0000_0000h

8_0010h CCB 0 Class 1 Data Size Register (C0C1DSR) 64 RW 0000_0000_00
00_0000h

8_001Ch CCB 0 Class 1 ICV Size Register (C0C1ICVSR) 32 RW 0000_0000h

8_0034h CCB 0 CHA Control Register (C0CCTRL) 32 WO 0000_0000h

8_003Ch CCB 0 Interrupt Control Register (C0ICTL) 32 W1C 0000_0000h

8_0044h CCB 0 Clear Written Register (C0CWR) 32 WO 0000_0000h

8_0048h CCB 0 Status and Error Register, most-significant half (C0CSTA_MS) 32 RO 0000_0000h

8_004Ch CCB 0 Status and Error Register, least-significant half (C0CSTA_LS) 32 RO 0000_0000h

8_005Ch CCB 0 AAD Size Register (C0AADSZR) 32 RW 0000_0000h

8_0064h Class 1 IV Size Register (C0C1IVSZR) 32 RW 0000_0000h

8_0084h PKHA A Size Register (C0PKASZR) 32 RW 0000_0000h

8_008Ch PKHA B Size Register (C0PKBSZR) 32 RW 0000_0000h

8_0094h PKHA N Size Register (C0PKNSZR) 32 RW 0000_0000h

8_009Ch PKHA E Size Register (C0PKESZR) 32 RW 0000_0000h

8_0100h CCB 0 Class 1 Context Register Word 0 (C0C1CTXR0) 32 RW 0000_0000h

8_0104h CCB 0 Class 1 Context Register Word 1 (C0C1CTXR1) 32 RW 0000_0000h

8_0108h CCB 0 Class 1 Context Register Word 2 (C0C1CTXR2) 32 RW 0000_0000h

8_010Ch CCB 0 Class 1 Context Register Word 3 (C0C1CTXR3) 32 RW 0000_0000h

8_0110h CCB 0 Class 1 Context Register Word 4 (C0C1CTXR4) 32 RW 0000_0000h

8_0114h CCB 0 Class 1 Context Register Word 5 (C0C1CTXR5) 32 RW 0000_0000h

8_0118h CCB 0 Class 1 Context Register Word 6 (C0C1CTXR6) 32 RW 0000_0000h

8_011Ch CCB 0 Class 1 Context Register Word 7 (C0C1CTXR7) 32 RW 0000_0000h

8_0120h CCB 0 Class 1 Context Register Word 8 (C0C1CTXR8) 32 RW 0000_0000h

8_0124h CCB 0 Class 1 Context Register Word 9 (C0C1CTXR9) 32 RW 0000_0000h

8_0128h CCB 0 Class 1 Context Register Word 10 (C0C1CTXR10) 32 RW 0000_0000h

8_012Ch CCB 0 Class 1 Context Register Word 11 (C0C1CTXR11) 32 RW 0000_0000h

8_0130h CCB 0 Class 1 Context Register Word 12 (C0C1CTXR12) 32 RW 0000_0000h

8_0134h CCB 0 Class 1 Context Register Word 13 (C0C1CTXR13) 32 RW 0000_0000h

8_0138h CCB 0 Class 1 Context Register Word 14 (C0C1CTXR14) 32 RW 0000_0000h

8_013Ch CCB 0 Class 1 Context Register Word 15 (C0C1CTXR15) 32 RW 0000_0000h

8_0200h CCB 0 Class 1 Key Registers Word 0 (C0C1KR0) 32 RW 0000_0000h

8_0204h CCB 0 Class 1 Key Registers Word 1 (C0C1KR1) 32 RW 0000_0000h

8_0208h CCB 0 Class 1 Key Registers Word 2 (C0C1KR2) 32 RW 0000_0000h

8_020Ch CCB 0 Class 1 Key Registers Word 3 (C0C1KR3) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

716 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

8_0210h CCB 0 Class 1 Key Registers Word 4 (C0C1KR4) 32 RW 0000_0000h

8_0214h CCB 0 Class 1 Key Registers Word 5 (C0C1KR5) 32 RW 0000_0000h

8_0218h CCB 0 Class 1 Key Registers Word 6 (C0C1KR6) 32 RW 0000_0000h

8_021Ch CCB 0 Class 1 Key Registers Word 7 (C0C1KR7) 32 RW 0000_0000h

8_0404h CCB 0 Class 2 Mode Register (C0C2MR) 32 RW 0000_0000h

8_040Ch CCB 0 Class 2 Key Size Register (C0C2KSR) 32 RW 0000_0000h

8_0410h CCB 0 Class 2 Data Size Register (C0C2DSR) 64 RW 0000_0000_00
00_0000h

8_041Ch CCB 0 Class 2 ICV Size Register (C0C2ICVSZR) 32 RW 0000_0000h

8_0500h CCB 0 Class 2 Context Register Word 0 (C0C2CTXR0) 32 RW 0000_0000h

8_0504h CCB 0 Class 2 Context Register Word 1 (C0C2CTXR1) 32 RW 0000_0000h

8_0508h CCB 0 Class 2 Context Register Word 2 (C0C2CTXR2) 32 RW 0000_0000h

8_050Ch CCB 0 Class 2 Context Register Word 3 (C0C2CTXR3) 32 RW 0000_0000h

8_0510h CCB 0 Class 2 Context Register Word 4 (C0C2CTXR4) 32 RW 0000_0000h

8_0514h CCB 0 Class 2 Context Register Word 5 (C0C2CTXR5) 32 RW 0000_0000h

8_0518h CCB 0 Class 2 Context Register Word 6 (C0C2CTXR6) 32 RW 0000_0000h

8_051Ch CCB 0 Class 2 Context Register Word 7 (C0C2CTXR7) 32 RW 0000_0000h

8_0520h CCB 0 Class 2 Context Register Word 8 (C0C2CTXR8) 32 RW 0000_0000h

8_0524h CCB 0 Class 2 Context Register Word 9 (C0C2CTXR9) 32 RW 0000_0000h

8_0528h CCB 0 Class 2 Context Register Word 10 (C0C2CTXR10) 32 RW 0000_0000h

8_052Ch CCB 0 Class 2 Context Register Word 11 (C0C2CTXR11) 32 RW 0000_0000h

8_0530h CCB 0 Class 2 Context Register Word 12 (C0C2CTXR12) 32 RW 0000_0000h

8_0534h CCB 0 Class 2 Context Register Word 13 (C0C2CTXR13) 32 RW 0000_0000h

8_0538h CCB 0 Class 2 Context Register Word 14 (C0C2CTXR14) 32 RW 0000_0000h

8_053Ch CCB 0 Class 2 Context Register Word 15 (C0C2CTXR15) 32 RW 0000_0000h

8_0540h CCB 0 Class 2 Context Register Word 16 (C0C2CTXR16) 32 RW 0000_0000h

8_0544h CCB 0 Class 2 Context Register Word 17 (C0C2CTXR17) 32 RW 0000_0000h

8_0600h CCB 0 Class 2 Key Register Word 0 (C0C2KEYR0) 32 RW 0000_0000h

8_0604h CCB 0 Class 2 Key Register Word 1 (C0C2KEYR1) 32 RW 0000_0000h

8_0608h CCB 0 Class 2 Key Register Word 2 (C0C2KEYR2) 32 RW 0000_0000h

8_060Ch CCB 0 Class 2 Key Register Word 3 (C0C2KEYR3) 32 RW 0000_0000h

8_0610h CCB 0 Class 2 Key Register Word 4 (C0C2KEYR4) 32 RW 0000_0000h

8_0614h CCB 0 Class 2 Key Register Word 5 (C0C2KEYR5) 32 RW 0000_0000h

8_0618h CCB 0 Class 2 Key Register Word 6 (C0C2KEYR6) 32 RW 0000_0000h

8_061Ch CCB 0 Class 2 Key Register Word 7 (C0C2KEYR7) 32 RW 0000_0000h

8_0620h CCB 0 Class 2 Key Register Word 8 (C0C2KEYR8) 32 RW 0000_0000h

8_0624h CCB 0 Class 2 Key Register Word 9 (C0C2KEYR9) 32 RW 0000_0000h

8_0628h CCB 0 Class 2 Key Register Word 10 (C0C2KEYR10) 32 RW 0000_0000h

8_062Ch CCB 0 Class 2 Key Register Word 11 (C0C2KEYR11) 32 RW 0000_0000h

8_0630h CCB 0 Class 2 Key Register Word 12 (C0C2KEYR12) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 717

Offset Register Width

(In bits)

Access Reset value

8_0634h CCB 0 Class 2 Key Register Word 13 (C0C2KEYR13) 32 RW 0000_0000h

8_0638h CCB 0 Class 2 Key Register Word 14 (C0C2KEYR14) 32 RW 0000_0000h

8_063Ch CCB 0 Class 2 Key Register Word 15 (C0C2KEYR15) 32 RW 0000_0000h

8_0640h CCB 0 Class 2 Key Register Word 16 (C0C2KEYR16) 32 RW 0000_0000h

8_0644h CCB 0 Class 2 Key Register Word 17 (C0C2KEYR17) 32 RW 0000_0000h

8_0648h CCB 0 Class 2 Key Register Word 18 (C0C2KEYR18) 32 RW 0000_0000h

8_064Ch CCB 0 Class 2 Key Register Word 19 (C0C2KEYR19) 32 RW 0000_0000h

8_0650h CCB 0 Class 2 Key Register Word 20 (C0C2KEYR20) 32 RW 0000_0000h

8_0654h CCB 0 Class 2 Key Register Word 21 (C0C2KEYR21) 32 RW 0000_0000h

8_0658h CCB 0 Class 2 Key Register Word 22 (C0C2KEYR22) 32 RW 0000_0000h

8_065Ch CCB 0 Class 2 Key Register Word 23 (C0C2KEYR23) 32 RW 0000_0000h

8_0660h CCB 0 Class 2 Key Register Word 24 (C0C2KEYR24) 32 RW 0000_0000h

8_0664h CCB 0 Class 2 Key Register Word 25 (C0C2KEYR25) 32 RW 0000_0000h

8_0668h CCB 0 Class 2 Key Register Word 26 (C0C2KEYR26) 32 RW 0000_0000h

8_066Ch CCB 0 Class 2 Key Register Word 27 (C0C2KEYR27) 32 RW 0000_0000h

8_0670h CCB 0 Class 2 Key Register Word 28 (C0C2KEYR28) 32 RW 0000_0000h

8_0674h CCB 0 Class 2 Key Register Word 29 (C0C2KEYR29) 32 RW 0000_0000h

8_0678h CCB 0 Class 2 Key Register Word 30 (C0C2KEYR30) 32 RW 0000_0000h

8_067Ch CCB 0 Class 2 Key Register Word 31 (C0C2KEYR31) 32 RW 0000_0000h

8_07C0h CCB 0 FIFO Status (C0FIFOSTA) 32 RO 0000_0000h

8_07D0h CCB 0 iNformation FIFO When STYPE Is Not 10 (C0NFIFO) 32 WO 0000_0000h

8_07D0h CCB 0 iNformation FIFO When STYPE Is 10 (C0NFIFO_2) 32 WO 0000_0000h

8_07E0h CCB 0 Input Data FIFO (C0IFIFO) 32 WO 0000_0000h

8_07F0h CCB 0 Output Data FIFO (C0OFIFO) 64 RO 0000_0000_00
00_0000h

8_0800h DECO0 Job Queue Control Register, most-significant half (D0JQCR_
MS)

32 RW 0000_0000h

8_0804h DECO0 Job Queue Control Register, least-significant half (D0JQCR_
LS)

32 RO 0000_0000h

8_0808h DECO0 Descriptor Address Register (D0DAR) 64 RO 0000_0000_00
00_0000h

8_0810h DECO0 Operation Status Register, most-significant half (D0OPSTA_
MS)

32 RO 0000_0000h

8_0814h DECO0 Operation Status Register, least-significant half (D0OPSTA_
LS)

32 RO 0000_0000h

8_0818h DECO0 Checksum Register (D0CKSUMR) 32 RW 0000_0000h

8_0820h DECO0 ICID Status Register (D0ISR) 32 RO 0000_0000h

8_0820h DECO0 SDID / Trusted ICID Status Register (D0SDIDSR) 32 RW 0000_0000h

8_0840h DECO0 Math Register 0_MS (D0MTH0_MS) 32 RW 0000_0000h

8_0844h DECO0 Math Register 0_LS (D0MTH0_LS) 32 RW 0000_0000h

8_0848h DECO0 Math Register 1_MS (D0MTH1_MS) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

718 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

8_084Ch DECO0 Math Register 1_LS (D0MTH1_LS) 32 RW 0000_0000h

8_0850h DECO0 Math Register 2_MS (D0MTH2_MS) 32 RW 0000_0000h

8_0854h DECO0 Math Register 2_LS (D0MTH2_LS) 32 RW 0000_0000h

8_0858h DECO0 Math Register 3_MS (D0MTH3_MS) 32 RW 0000_0000h

8_085Ch DECO0 Math Register 3_LS (D0MTH3_LS) 32 RW 0000_0000h

8_0860h DECO0 Math Register 4_MS (D0MTH4_MS) 32 RW 0000_0000h

8_0864h DECO0 Math Register 4_LS (D0MTH4_LS) 32 RW 0000_0000h

8_0868h DECO0 Math Register 5_MS (D0MTH5_MS) 32 RW 0000_0000h

8_086Ch DECO0 Math Register 5_LS (D0MTH5_LS) 32 RW 0000_0000h

8_0870h DECO0 Math Register 6_MS (D0MTH6_MS) 32 RW 0000_0000h

8_0874h DECO0 Math Register 6_LS (D0MTH6_LS) 32 RW 0000_0000h

8_0878h DECO0 Math Register 7_MS (D0MTH7_MS) 32 RW 0000_0000h

8_087Ch DECO0 Math Register 7_LS (D0MTH7_LS) 32 RW 0000_0000h

8_0880h DECO0 Gather Table Register 0 Word 0 (D0GTR0_0) 32 RW 0000_0000h

8_0884h DECO0 Gather Table Register 0 Word 1 (D0GTR0_1) 32 RW 0000_0000h

8_0888h DECO0 Gather Table Register 0 Word 2 (D0GTR0_2) 32 RW 0000_0000h

8_088Ch DECO0 Gather Table Register 0 Word 3 (D0GTR0_3) 32 RW 0000_0000h

8_0890h DECO0 Gather Table Register 1 Word 0 (D0GTR1_0) 32 RW 0000_0000h

8_0894h DECO0 Gather Table Register 1 Word 1 (D0GTR1_1) 32 RW 0000_0000h

8_0898h DECO0 Gather Table Register 1 Word 2 (D0GTR1_2) 32 RW 0000_0000h

8_089Ch DECO0 Gather Table Register 1 Word 3 (D0GTR1_3) 32 RW 0000_0000h

8_08A0h DECO0 Gather Table Register 2 Word 0 (D0GTR2_0) 32 RW 0000_0000h

8_08A4h DECO0 Gather Table Register 2 Word 1 (D0GTR2_1) 32 RW 0000_0000h

8_08A8h DECO0 Gather Table Register 2 Word 2 (D0GTR2_2) 32 RW 0000_0000h

8_08ACh DECO0 Gather Table Register 2 Word 3 (D0GTR2_3) 32 RW 0000_0000h

8_08B0h DECO0 Gather Table Register 3 Word 0 (D0GTR3_0) 32 RW 0000_0000h

8_08B4h DECO0 Gather Table Register 3 Word 1 (D0GTR3_1) 32 RW 0000_0000h

8_08B8h DECO0 Gather Table Register 3 Word 2 (D0GTR3_2) 32 RW 0000_0000h

8_08BCh DECO0 Gather Table Register 3 Word 3 (D0GTR3_3) 32 RW 0000_0000h

8_0900h DECO0 Scatter Table Register 0 Word 0 (D0STR0_0) 32 RW 0000_0000h

8_0904h DECO0 Scatter Table Register 0 Word 1 (D0STR0_1) 32 RW 0000_0000h

8_0908h DECO0 Scatter Table Register 0 Word 2 (D0STR0_2) 32 RW 0000_0000h

8_090Ch DECO0 Scatter Table Register 0 Word 3 (D0STR0_3) 32 RW 0000_0000h

8_0910h DECO0 Scatter Table Register 1 Word 0 (D0STR1_0) 32 RW 0000_0000h

8_0914h DECO0 Scatter Table Register 1 Word 1 (D0STR1_1) 32 RW 0000_0000h

8_0918h DECO0 Scatter Table Register 1 Word 2 (D0STR1_2) 32 RW 0000_0000h

8_091Ch DECO0 Scatter Table Register 1 Word 3 (D0STR1_3) 32 RW 0000_0000h

8_0920h DECO0 Scatter Table Register 2 Word 0 (D0STR2_0) 32 RW 0000_0000h

8_0924h DECO0 Scatter Table Register 2 Word 1 (D0STR2_1) 32 RW 0000_0000h

8_0928h DECO0 Scatter Table Register 2 Word 2 (D0STR2_2) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 719

Offset Register Width

(In bits)

Access Reset value

8_092Ch DECO0 Scatter Table Register 2 Word 3 (D0STR2_3) 32 RW 0000_0000h

8_0930h DECO0 Scatter Table Register 3 Word 0 (D0STR3_0) 32 RW 0000_0000h

8_0934h DECO0 Scatter Table Register 3 Word 1 (D0STR3_1) 32 RW 0000_0000h

8_0938h DECO0 Scatter Table Register 3 Word 2 (D0STR3_2) 32 RW 0000_0000h

8_093Ch DECO0 Scatter Table Register 3 Word 3 (D0STR3_3) 32 RW 0000_0000h

8_0A00h DECO0 Descriptor Buffer Word 0 (D0DESB0) 32 RW 0000_0000h

8_0A04h DECO0 Descriptor Buffer Word 1 (D0DESB1) 32 RW 0000_0000h

8_0A08h DECO0 Descriptor Buffer Word 2 (D0DESB2) 32 RW 0000_0000h

8_0A0Ch DECO0 Descriptor Buffer Word 3 (D0DESB3) 32 RW 0000_0000h

8_0A10h DECO0 Descriptor Buffer Word 4 (D0DESB4) 32 RW 0000_0000h

8_0A14h DECO0 Descriptor Buffer Word 5 (D0DESB5) 32 RW 0000_0000h

8_0A18h DECO0 Descriptor Buffer Word 6 (D0DESB6) 32 RW 0000_0000h

8_0A1Ch DECO0 Descriptor Buffer Word 7 (D0DESB7) 32 RW 0000_0000h

8_0A20h DECO0 Descriptor Buffer Word 8 (D0DESB8) 32 RW 0000_0000h

8_0A24h DECO0 Descriptor Buffer Word 9 (D0DESB9) 32 RW 0000_0000h

8_0A28h DECO0 Descriptor Buffer Word 10 (D0DESB10) 32 RW 0000_0000h

8_0A2Ch DECO0 Descriptor Buffer Word 11 (D0DESB11) 32 RW 0000_0000h

8_0A30h DECO0 Descriptor Buffer Word 12 (D0DESB12) 32 RW 0000_0000h

8_0A34h DECO0 Descriptor Buffer Word 13 (D0DESB13) 32 RW 0000_0000h

8_0A38h DECO0 Descriptor Buffer Word 14 (D0DESB14) 32 RW 0000_0000h

8_0A3Ch DECO0 Descriptor Buffer Word 15 (D0DESB15) 32 RW 0000_0000h

8_0A40h DECO0 Descriptor Buffer Word 16 (D0DESB16) 32 RW 0000_0000h

8_0A44h DECO0 Descriptor Buffer Word 17 (D0DESB17) 32 RW 0000_0000h

8_0A48h DECO0 Descriptor Buffer Word 18 (D0DESB18) 32 RW 0000_0000h

8_0A4Ch DECO0 Descriptor Buffer Word 19 (D0DESB19) 32 RW 0000_0000h

8_0A50h DECO0 Descriptor Buffer Word 20 (D0DESB20) 32 RW 0000_0000h

8_0A54h DECO0 Descriptor Buffer Word 21 (D0DESB21) 32 RW 0000_0000h

8_0A58h DECO0 Descriptor Buffer Word 22 (D0DESB22) 32 RW 0000_0000h

8_0A5Ch DECO0 Descriptor Buffer Word 23 (D0DESB23) 32 RW 0000_0000h

8_0A60h DECO0 Descriptor Buffer Word 24 (D0DESB24) 32 RW 0000_0000h

8_0A64h DECO0 Descriptor Buffer Word 25 (D0DESB25) 32 RW 0000_0000h

8_0A68h DECO0 Descriptor Buffer Word 26 (D0DESB26) 32 RW 0000_0000h

8_0A6Ch DECO0 Descriptor Buffer Word 27 (D0DESB27) 32 RW 0000_0000h

8_0A70h DECO0 Descriptor Buffer Word 28 (D0DESB28) 32 RW 0000_0000h

8_0A74h DECO0 Descriptor Buffer Word 29 (D0DESB29) 32 RW 0000_0000h

8_0A78h DECO0 Descriptor Buffer Word 30 (D0DESB30) 32 RW 0000_0000h

8_0A7Ch DECO0 Descriptor Buffer Word 31 (D0DESB31) 32 RW 0000_0000h

8_0A80h DECO0 Descriptor Buffer Word 32 (D0DESB32) 32 RW 0000_0000h

8_0A84h DECO0 Descriptor Buffer Word 33 (D0DESB33) 32 RW 0000_0000h

8_0A88h DECO0 Descriptor Buffer Word 34 (D0DESB34) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

720 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

8_0A8Ch DECO0 Descriptor Buffer Word 35 (D0DESB35) 32 RW 0000_0000h

8_0A90h DECO0 Descriptor Buffer Word 36 (D0DESB36) 32 RW 0000_0000h

8_0A94h DECO0 Descriptor Buffer Word 37 (D0DESB37) 32 RW 0000_0000h

8_0A98h DECO0 Descriptor Buffer Word 38 (D0DESB38) 32 RW 0000_0000h

8_0A9Ch DECO0 Descriptor Buffer Word 39 (D0DESB39) 32 RW 0000_0000h

8_0AA0h DECO0 Descriptor Buffer Word 40 (D0DESB40) 32 RW 0000_0000h

8_0AA4h DECO0 Descriptor Buffer Word 41 (D0DESB41) 32 RW 0000_0000h

8_0AA8h DECO0 Descriptor Buffer Word 42 (D0DESB42) 32 RW 0000_0000h

8_0AACh DECO0 Descriptor Buffer Word 43 (D0DESB43) 32 RW 0000_0000h

8_0AB0h DECO0 Descriptor Buffer Word 44 (D0DESB44) 32 RW 0000_0000h

8_0AB4h DECO0 Descriptor Buffer Word 45 (D0DESB45) 32 RW 0000_0000h

8_0AB8h DECO0 Descriptor Buffer Word 46 (D0DESB46) 32 RW 0000_0000h

8_0ABCh DECO0 Descriptor Buffer Word 47 (D0DESB47) 32 RW 0000_0000h

8_0AC0h DECO0 Descriptor Buffer Word 48 (D0DESB48) 32 RW 0000_0000h

8_0AC4h DECO0 Descriptor Buffer Word 49 (D0DESB49) 32 RW 0000_0000h

8_0AC8h DECO0 Descriptor Buffer Word 50 (D0DESB50) 32 RW 0000_0000h

8_0ACCh DECO0 Descriptor Buffer Word 51 (D0DESB51) 32 RW 0000_0000h

8_0AD0h DECO0 Descriptor Buffer Word 52 (D0DESB52) 32 RW 0000_0000h

8_0AD4h DECO0 Descriptor Buffer Word 53 (D0DESB53) 32 RW 0000_0000h

8_0AD8h DECO0 Descriptor Buffer Word 54 (D0DESB54) 32 RW 0000_0000h

8_0ADCh DECO0 Descriptor Buffer Word 55 (D0DESB55) 32 RW 0000_0000h

8_0AE0h DECO0 Descriptor Buffer Word 56 (D0DESB56) 32 RW 0000_0000h

8_0AE4h DECO0 Descriptor Buffer Word 57 (D0DESB57) 32 RW 0000_0000h

8_0AE8h DECO0 Descriptor Buffer Word 58 (D0DESB58) 32 RW 0000_0000h

8_0AECh DECO0 Descriptor Buffer Word 59 (D0DESB59) 32 RW 0000_0000h

8_0AF0h DECO0 Descriptor Buffer Word 60 (D0DESB60) 32 RW 0000_0000h

8_0AF4h DECO0 Descriptor Buffer Word 61 (D0DESB61) 32 RW 0000_0000h

8_0AF8h DECO0 Descriptor Buffer Word 62 (D0DESB62) 32 RW 0000_0000h

8_0AFCh DECO0 Descriptor Buffer Word 63 (D0DESB63) 32 RW 0000_0000h

8_0E00h DECO0 Debug Job (D0DJR) 32 RO 0000_0000h

8_0E04h DECO0 Debug DECO (D0DDR) 32 RO 0000_0000h

8_0E08h DECO0 Debug Job Pointer (D0DJP) 64 RO 0000_0000_00
00_0000h

8_0E10h DECO0 Debug Shared Pointer (D0SDP) 64 RO 0000_0000_00
00_0000h

8_0E18h DECO0 Debug_ICID, most-significant half (D0DIR_MS) 32 RO 0000_0000h

8_0E20h Sequence Output Length Register (SOL0) 32 RW 0000_0000h

8_0E24h Variable Sequence Output Length Register (VSOL0) 32 RW 0000_0000h

8_0E28h Sequence Input Length Register (SIL0) 32 RW 0000_0000h

8_0E2Ch Variable Sequence Input Length Register (VSIL0) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 721

Offset Register Width

(In bits)

Access Reset value

8_0E30h Protocol Override Register (D0POVRD) 32 RW 0000_0000h

8_0E34h Variable Sequence Output Length Register; Upper 32 bits (UVSOL0) 32 RW 0000_0000h

8_0E38h Variable Sequence Input Length Register; Upper 32 bits (UVSIL0) 32 RW 0000_0000h

8_0F00h
(alias)

Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

8_0F08h
(alias)

Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

8_0F10h
(alias)

Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

8_0F18h
(alias)

Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

8_0F20h
(alias)

Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

8_0F28h
(alias)

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

8_0F30h
(alias)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

8_0FA0h
(alias)

CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

8_0FA4h
(alias)

CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

8_0FA8h
(alias)

Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

8_0FACh
(alias)

Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

8_0FC0h
(alias)

Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

8_0FC8h
(alias)

Fault Address ICID Register (FAICID) 32 RO 0000_0000h

8_0FCCh
(alias)

Fault Address Detail Register (FADR) 32 RO 0000_0000h

8_0FD4h
(alias)

SEC Status Register (SSTA) 32 RO 0000_0402h

8_0FE0h
(alias)

RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

8_0FE4h
(alias)

CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

8_0FE8h
(alias)

CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

8_0FECh
(alias)

CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

8_0FF0h
(alias)

CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

8_0FF4h
(alias)

CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

722 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

8_0FF8h
(alias)

SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

8_0FFCh
(alias)

SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

9_0004h CCB 1 Class 1 Mode Register Format for Non-Public Key Algorithms
(C1C1MR_NPK)

32 RW 0000_0000h

9_0004h CCB 1 Class 1 Mode Register Format for Public Key Algorithms
(C1C1MR_PK)

32 RW 0000_0000h

9_0004h CCB 1 Class 1 Mode Register Format for RNG4 (C1C1MR_RNG) 32 RW 0000_0000h

9_000Ch CCB 1 Class 1 Key Size Register (C1C1KSR) 32 RW 0000_0000h

9_0010h CCB 1 Class 1 Data Size Register (C1C1DSR) 64 RW 0000_0000_00
00_0000h

9_001Ch CCB 1 Class 1 ICV Size Register (C1C1ICVSR) 32 RW 0000_0000h

9_0034h CCB 1 CHA Control Register (C1CCTRL) 32 WO 0000_0000h

9_003Ch CCB 1 Interrupt Control Register (C1ICTL) 32 W1C 0000_0000h

9_0044h CCB 1 Clear Written Register (C1CWR) 32 WO 0000_0000h

9_0048h CCB 1 Status and Error Register, most-significant half (C1CSTA_MS) 32 RO 0000_0000h

9_004Ch CCB 1 Status and Error Register, least-significant half (C1CSTA_LS) 32 RO 0000_0000h

9_005Ch CCB 1 AAD Size Register (C1AADSZR) 32 RW 0000_0000h

9_0064h Class 1 IV Size Register (C1C1IVSZR) 32 RW 0000_0000h

9_0084h PKHA A Size Register (C1PKASZR) 32 RW 0000_0000h

9_008Ch PKHA B Size Register (C1PKBSZR) 32 RW 0000_0000h

9_0094h PKHA N Size Register (C1PKNSZR) 32 RW 0000_0000h

9_009Ch PKHA E Size Register (C1PKESZR) 32 RW 0000_0000h

9_0100h CCB 1 Class 1 Context Register Word 0 (C1C1CTXR0) 32 RW 0000_0000h

9_0104h CCB 1 Class 1 Context Register Word 1 (C1C1CTXR1) 32 RW 0000_0000h

9_0108h CCB 1 Class 1 Context Register Word 2 (C1C1CTXR2) 32 RW 0000_0000h

9_010Ch CCB 1 Class 1 Context Register Word 3 (C1C1CTXR3) 32 RW 0000_0000h

9_0110h CCB 1 Class 1 Context Register Word 4 (C1C1CTXR4) 32 RW 0000_0000h

9_0114h CCB 1 Class 1 Context Register Word 5 (C1C1CTXR5) 32 RW 0000_0000h

9_0118h CCB 1 Class 1 Context Register Word 6 (C1C1CTXR6) 32 RW 0000_0000h

9_011Ch CCB 1 Class 1 Context Register Word 7 (C1C1CTXR7) 32 RW 0000_0000h

9_0120h CCB 1 Class 1 Context Register Word 8 (C1C1CTXR8) 32 RW 0000_0000h

9_0124h CCB 1 Class 1 Context Register Word 9 (C1C1CTXR9) 32 RW 0000_0000h

9_0128h CCB 1 Class 1 Context Register Word 10 (C1C1CTXR10) 32 RW 0000_0000h

9_012Ch CCB 1 Class 1 Context Register Word 11 (C1C1CTXR11) 32 RW 0000_0000h

9_0130h CCB 1 Class 1 Context Register Word 12 (C1C1CTXR12) 32 RW 0000_0000h

9_0134h CCB 1 Class 1 Context Register Word 13 (C1C1CTXR13) 32 RW 0000_0000h

9_0138h CCB 1 Class 1 Context Register Word 14 (C1C1CTXR14) 32 RW 0000_0000h

9_013Ch CCB 1 Class 1 Context Register Word 15 (C1C1CTXR15) 32 RW 0000_0000h

9_0200h CCB 1 Class 1 Key Registers Word 0 (C1C1KR0) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 723

Offset Register Width

(In bits)

Access Reset value

9_0204h CCB 1 Class 1 Key Registers Word 1 (C1C1KR1) 32 RW 0000_0000h

9_0208h CCB 1 Class 1 Key Registers Word 2 (C1C1KR2) 32 RW 0000_0000h

9_020Ch CCB 1 Class 1 Key Registers Word 3 (C1C1KR3) 32 RW 0000_0000h

9_0210h CCB 1 Class 1 Key Registers Word 4 (C1C1KR4) 32 RW 0000_0000h

9_0214h CCB 1 Class 1 Key Registers Word 5 (C1C1KR5) 32 RW 0000_0000h

9_0218h CCB 1 Class 1 Key Registers Word 6 (C1C1KR6) 32 RW 0000_0000h

9_021Ch CCB 1 Class 1 Key Registers Word 7 (C1C1KR7) 32 RW 0000_0000h

9_0404h CCB 1 Class 2 Mode Register (C1C2MR) 32 RW 0000_0000h

9_040Ch CCB 1 Class 2 Key Size Register (C1C2KSR) 32 RW 0000_0000h

9_0410h CCB 1 Class 2 Data Size Register (C1C2DSR) 64 RW 0000_0000_00
00_0000h

9_041Ch CCB 1 Class 2 ICV Size Register (C1C2ICVSZR) 32 RW 0000_0000h

9_0500h CCB 1 Class 2 Context Register Word 0 (C1C2CTXR0) 32 RW 0000_0000h

9_0504h CCB 1 Class 2 Context Register Word 1 (C1C2CTXR1) 32 RW 0000_0000h

9_0508h CCB 1 Class 2 Context Register Word 2 (C1C2CTXR2) 32 RW 0000_0000h

9_050Ch CCB 1 Class 2 Context Register Word 3 (C1C2CTXR3) 32 RW 0000_0000h

9_0510h CCB 1 Class 2 Context Register Word 4 (C1C2CTXR4) 32 RW 0000_0000h

9_0514h CCB 1 Class 2 Context Register Word 5 (C1C2CTXR5) 32 RW 0000_0000h

9_0518h CCB 1 Class 2 Context Register Word 6 (C1C2CTXR6) 32 RW 0000_0000h

9_051Ch CCB 1 Class 2 Context Register Word 7 (C1C2CTXR7) 32 RW 0000_0000h

9_0520h CCB 1 Class 2 Context Register Word 8 (C1C2CTXR8) 32 RW 0000_0000h

9_0524h CCB 1 Class 2 Context Register Word 9 (C1C2CTXR9) 32 RW 0000_0000h

9_0528h CCB 1 Class 2 Context Register Word 10 (C1C2CTXR10) 32 RW 0000_0000h

9_052Ch CCB 1 Class 2 Context Register Word 11 (C1C2CTXR11) 32 RW 0000_0000h

9_0530h CCB 1 Class 2 Context Register Word 12 (C1C2CTXR12) 32 RW 0000_0000h

9_0534h CCB 1 Class 2 Context Register Word 13 (C1C2CTXR13) 32 RW 0000_0000h

9_0538h CCB 1 Class 2 Context Register Word 14 (C1C2CTXR14) 32 RW 0000_0000h

9_053Ch CCB 1 Class 2 Context Register Word 15 (C1C2CTXR15) 32 RW 0000_0000h

9_0540h CCB 1 Class 2 Context Register Word 16 (C1C2CTXR16) 32 RW 0000_0000h

9_0544h CCB 1 Class 2 Context Register Word 17 (C1C2CTXR17) 32 RW 0000_0000h

9_0600h CCB 1 Class 2 Key Register Word 0 (C1C2KEYR0) 32 RW 0000_0000h

9_0604h CCB 1 Class 2 Key Register Word 1 (C1C2KEYR1) 32 RW 0000_0000h

9_0608h CCB 1 Class 2 Key Register Word 2 (C1C2KEYR2) 32 RW 0000_0000h

9_060Ch CCB 1 Class 2 Key Register Word 3 (C1C2KEYR3) 32 RW 0000_0000h

9_0610h CCB 1 Class 2 Key Register Word 4 (C1C2KEYR4) 32 RW 0000_0000h

9_0614h CCB 1 Class 2 Key Register Word 5 (C1C2KEYR5) 32 RW 0000_0000h

9_0618h CCB 1 Class 2 Key Register Word 6 (C1C2KEYR6) 32 RW 0000_0000h

9_061Ch CCB 1 Class 2 Key Register Word 7 (C1C2KEYR7) 32 RW 0000_0000h

9_0620h CCB 1 Class 2 Key Register Word 8 (C1C2KEYR8) 32 RW 0000_0000h

9_0624h CCB 1 Class 2 Key Register Word 9 (C1C2KEYR9) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

724 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

9_0628h CCB 1 Class 2 Key Register Word 10 (C1C2KEYR10) 32 RW 0000_0000h

9_062Ch CCB 1 Class 2 Key Register Word 11 (C1C2KEYR11) 32 RW 0000_0000h

9_0630h CCB 1 Class 2 Key Register Word 12 (C1C2KEYR12) 32 RW 0000_0000h

9_0634h CCB 1 Class 2 Key Register Word 13 (C1C2KEYR13) 32 RW 0000_0000h

9_0638h CCB 1 Class 2 Key Register Word 14 (C1C2KEYR14) 32 RW 0000_0000h

9_063Ch CCB 1 Class 2 Key Register Word 15 (C1C2KEYR15) 32 RW 0000_0000h

9_0640h CCB 1 Class 2 Key Register Word 16 (C1C2KEYR16) 32 RW 0000_0000h

9_0644h CCB 1 Class 2 Key Register Word 17 (C1C2KEYR17) 32 RW 0000_0000h

9_0648h CCB 1 Class 2 Key Register Word 18 (C1C2KEYR18) 32 RW 0000_0000h

9_064Ch CCB 1 Class 2 Key Register Word 19 (C1C2KEYR19) 32 RW 0000_0000h

9_0650h CCB 1 Class 2 Key Register Word 20 (C1C2KEYR20) 32 RW 0000_0000h

9_0654h CCB 1 Class 2 Key Register Word 21 (C1C2KEYR21) 32 RW 0000_0000h

9_0658h CCB 1 Class 2 Key Register Word 22 (C1C2KEYR22) 32 RW 0000_0000h

9_065Ch CCB 1 Class 2 Key Register Word 23 (C1C2KEYR23) 32 RW 0000_0000h

9_0660h CCB 1 Class 2 Key Register Word 24 (C1C2KEYR24) 32 RW 0000_0000h

9_0664h CCB 1 Class 2 Key Register Word 25 (C1C2KEYR25) 32 RW 0000_0000h

9_0668h CCB 1 Class 2 Key Register Word 26 (C1C2KEYR26) 32 RW 0000_0000h

9_066Ch CCB 1 Class 2 Key Register Word 27 (C1C2KEYR27) 32 RW 0000_0000h

9_0670h CCB 1 Class 2 Key Register Word 28 (C1C2KEYR28) 32 RW 0000_0000h

9_0674h CCB 1 Class 2 Key Register Word 29 (C1C2KEYR29) 32 RW 0000_0000h

9_0678h CCB 1 Class 2 Key Register Word 30 (C1C2KEYR30) 32 RW 0000_0000h

9_067Ch CCB 1 Class 2 Key Register Word 31 (C1C2KEYR31) 32 RW 0000_0000h

9_07C0h CCB 1 FIFO Status (C1FIFOSTA) 32 RO 0000_0000h

9_07D0h CCB 1 iNformation FIFO When STYPE Is Not 10 (C1NFIFO) 32 WO 0000_0000h

9_07D0h CCB 1 iNformation FIFO When STYPE Is 10 (C1NFIFO_2) 32 WO 0000_0000h

9_07E0h CCB 1 Input Data FIFO (C1IFIFO) 32 WO 0000_0000h

9_07F0h CCB 1 Output Data FIFO (C1OFIFO) 64 RO 0000_0000_00
00_0000h

9_0800h DECO1 Job Queue Control Register, most-significant half (D1JQCR_
MS)

32 RW 0000_0000h

9_0804h DECO1 Job Queue Control Register, least-significant half (D1JQCR_
LS)

32 RO 0000_0000h

9_0808h DECO1 Descriptor Address Register (D1DAR) 64 RO 0000_0000_00
00_0000h

9_0810h DECO1 Operation Status Register, most-significant half (D1OPSTA_
MS)

32 RO 0000_0000h

9_0814h DECO1 Operation Status Register, least-significant half (D1OPSTA_
LS)

32 RO 0000_0000h

9_0818h DECO1 Checksum Register (D1CKSUMR) 32 RW 0000_0000h

9_0820h DECO1 ICID Status Register (D1ISR) 32 RO 0000_0000h

9_0820h DECO1 SDID / Trusted ICID Status Register (D1SDIDSR) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 725

Offset Register Width

(In bits)

Access Reset value

9_0840h DECO1 Math Register 0_MS (D1MTH0_MS) 32 RW 0000_0000h

9_0844h DECO1 Math Register 0_LS (D1MTH0_LS) 32 RW 0000_0000h

9_0848h DECO1 Math Register 1_MS (D1MTH1_MS) 32 RW 0000_0000h

9_084Ch DECO1 Math Register 1_LS (D1MTH1_LS) 32 RW 0000_0000h

9_0850h DECO1 Math Register 2_MS (D1MTH2_MS) 32 RW 0000_0000h

9_0854h DECO1 Math Register 2_LS (D1MTH2_LS) 32 RW 0000_0000h

9_0858h DECO1 Math Register 3_MS (D1MTH3_MS) 32 RW 0000_0000h

9_085Ch DECO1 Math Register 3_LS (D1MTH3_LS) 32 RW 0000_0000h

9_0860h DECO1 Math Register 4_MS (D1MTH4_MS) 32 RW 0000_0000h

9_0864h DECO1 Math Register 4_LS (D1MTH4_LS) 32 RW 0000_0000h

9_0868h DECO1 Math Register 5_MS (D1MTH5_MS) 32 RW 0000_0000h

9_086Ch DECO1 Math Register 5_LS (D1MTH5_LS) 32 RW 0000_0000h

9_0870h DECO1 Math Register 6_MS (D1MTH6_MS) 32 RW 0000_0000h

9_0874h DECO1 Math Register 6_LS (D1MTH6_LS) 32 RW 0000_0000h

9_0878h DECO1 Math Register 7_MS (D1MTH7_MS) 32 RW 0000_0000h

9_087Ch DECO1 Math Register 7_LS (D1MTH7_LS) 32 RW 0000_0000h

9_0880h DECO1 Gather Table Register 0 Word 0 (D1GTR0_0) 32 RW 0000_0000h

9_0884h DECO1 Gather Table Register 0 Word 1 (D1GTR0_1) 32 RW 0000_0000h

9_0888h DECO1 Gather Table Register 0 Word 2 (D1GTR0_2) 32 RW 0000_0000h

9_088Ch DECO1 Gather Table Register 0 Word 3 (D1GTR0_3) 32 RW 0000_0000h

9_0890h DECO1 Gather Table Register 1 Word 0 (D1GTR1_0) 32 RW 0000_0000h

9_0894h DECO1 Gather Table Register 1 Word 1 (D1GTR1_1) 32 RW 0000_0000h

9_0898h DECO1 Gather Table Register 1 Word 2 (D1GTR1_2) 32 RW 0000_0000h

9_089Ch DECO1 Gather Table Register 1 Word 3 (D1GTR1_3) 32 RW 0000_0000h

9_08A0h DECO1 Gather Table Register 2 Word 0 (D1GTR2_0) 32 RW 0000_0000h

9_08A4h DECO1 Gather Table Register 2 Word 1 (D1GTR2_1) 32 RW 0000_0000h

9_08A8h DECO1 Gather Table Register 2 Word 2 (D1GTR2_2) 32 RW 0000_0000h

9_08ACh DECO1 Gather Table Register 2 Word 3 (D1GTR2_3) 32 RW 0000_0000h

9_08B0h DECO1 Gather Table Register 3 Word 0 (D1GTR3_0) 32 RW 0000_0000h

9_08B4h DECO1 Gather Table Register 3 Word 1 (D1GTR3_1) 32 RW 0000_0000h

9_08B8h DECO1 Gather Table Register 3 Word 2 (D1GTR3_2) 32 RW 0000_0000h

9_08BCh DECO1 Gather Table Register 3 Word 3 (D1GTR3_3) 32 RW 0000_0000h

9_0900h DECO1 Scatter Table Register 0 Word 0 (D1STR0_0) 32 RW 0000_0000h

9_0904h DECO1 Scatter Table Register 0 Word 1 (D1STR0_1) 32 RW 0000_0000h

9_0908h DECO1 Scatter Table Register 0 Word 2 (D1STR0_2) 32 RW 0000_0000h

9_090Ch DECO1 Scatter Table Register 0 Word 3 (D1STR0_3) 32 RW 0000_0000h

9_0910h DECO1 Scatter Table Register 1 Word 0 (D1STR1_0) 32 RW 0000_0000h

9_0914h DECO1 Scatter Table Register 1 Word 1 (D1STR1_1) 32 RW 0000_0000h

9_0918h DECO1 Scatter Table Register 1 Word 2 (D1STR1_2) 32 RW 0000_0000h

9_091Ch DECO1 Scatter Table Register 1 Word 3 (D1STR1_3) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

726 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

9_0920h DECO1 Scatter Table Register 2 Word 0 (D1STR2_0) 32 RW 0000_0000h

9_0924h DECO1 Scatter Table Register 2 Word 1 (D1STR2_1) 32 RW 0000_0000h

9_0928h DECO1 Scatter Table Register 2 Word 2 (D1STR2_2) 32 RW 0000_0000h

9_092Ch DECO1 Scatter Table Register 2 Word 3 (D1STR2_3) 32 RW 0000_0000h

9_0930h DECO1 Scatter Table Register 3 Word 0 (D1STR3_0) 32 RW 0000_0000h

9_0934h DECO1 Scatter Table Register 3 Word 1 (D1STR3_1) 32 RW 0000_0000h

9_0938h DECO1 Scatter Table Register 3 Word 2 (D1STR3_2) 32 RW 0000_0000h

9_093Ch DECO1 Scatter Table Register 3 Word 3 (D1STR3_3) 32 RW 0000_0000h

9_0A00h DECO1 Descriptor Buffer Word 0 (D1DESB0) 32 RW 0000_0000h

9_0A04h DECO1 Descriptor Buffer Word 1 (D1DESB1) 32 RW 0000_0000h

9_0A08h DECO1 Descriptor Buffer Word 2 (D1DESB2) 32 RW 0000_0000h

9_0A0Ch DECO1 Descriptor Buffer Word 3 (D1DESB3) 32 RW 0000_0000h

9_0A10h DECO1 Descriptor Buffer Word 4 (D1DESB4) 32 RW 0000_0000h

9_0A14h DECO1 Descriptor Buffer Word 5 (D1DESB5) 32 RW 0000_0000h

9_0A18h DECO1 Descriptor Buffer Word 6 (D1DESB6) 32 RW 0000_0000h

9_0A1Ch DECO1 Descriptor Buffer Word 7 (D1DESB7) 32 RW 0000_0000h

9_0A20h DECO1 Descriptor Buffer Word 8 (D1DESB8) 32 RW 0000_0000h

9_0A24h DECO1 Descriptor Buffer Word 9 (D1DESB9) 32 RW 0000_0000h

9_0A28h DECO1 Descriptor Buffer Word 10 (D1DESB10) 32 RW 0000_0000h

9_0A2Ch DECO1 Descriptor Buffer Word 11 (D1DESB11) 32 RW 0000_0000h

9_0A30h DECO1 Descriptor Buffer Word 12 (D1DESB12) 32 RW 0000_0000h

9_0A34h DECO1 Descriptor Buffer Word 13 (D1DESB13) 32 RW 0000_0000h

9_0A38h DECO1 Descriptor Buffer Word 14 (D1DESB14) 32 RW 0000_0000h

9_0A3Ch DECO1 Descriptor Buffer Word 15 (D1DESB15) 32 RW 0000_0000h

9_0A40h DECO1 Descriptor Buffer Word 16 (D1DESB16) 32 RW 0000_0000h

9_0A44h DECO1 Descriptor Buffer Word 17 (D1DESB17) 32 RW 0000_0000h

9_0A48h DECO1 Descriptor Buffer Word 18 (D1DESB18) 32 RW 0000_0000h

9_0A4Ch DECO1 Descriptor Buffer Word 19 (D1DESB19) 32 RW 0000_0000h

9_0A50h DECO1 Descriptor Buffer Word 20 (D1DESB20) 32 RW 0000_0000h

9_0A54h DECO1 Descriptor Buffer Word 21 (D1DESB21) 32 RW 0000_0000h

9_0A58h DECO1 Descriptor Buffer Word 22 (D1DESB22) 32 RW 0000_0000h

9_0A5Ch DECO1 Descriptor Buffer Word 23 (D1DESB23) 32 RW 0000_0000h

9_0A60h DECO1 Descriptor Buffer Word 24 (D1DESB24) 32 RW 0000_0000h

9_0A64h DECO1 Descriptor Buffer Word 25 (D1DESB25) 32 RW 0000_0000h

9_0A68h DECO1 Descriptor Buffer Word 26 (D1DESB26) 32 RW 0000_0000h

9_0A6Ch DECO1 Descriptor Buffer Word 27 (D1DESB27) 32 RW 0000_0000h

9_0A70h DECO1 Descriptor Buffer Word 28 (D1DESB28) 32 RW 0000_0000h

9_0A74h DECO1 Descriptor Buffer Word 29 (D1DESB29) 32 RW 0000_0000h

9_0A78h DECO1 Descriptor Buffer Word 30 (D1DESB30) 32 RW 0000_0000h

9_0A7Ch DECO1 Descriptor Buffer Word 31 (D1DESB31) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 727

Offset Register Width

(In bits)

Access Reset value

9_0A80h DECO1 Descriptor Buffer Word 32 (D1DESB32) 32 RW 0000_0000h

9_0A84h DECO1 Descriptor Buffer Word 33 (D1DESB33) 32 RW 0000_0000h

9_0A88h DECO1 Descriptor Buffer Word 34 (D1DESB34) 32 RW 0000_0000h

9_0A8Ch DECO1 Descriptor Buffer Word 35 (D1DESB35) 32 RW 0000_0000h

9_0A90h DECO1 Descriptor Buffer Word 36 (D1DESB36) 32 RW 0000_0000h

9_0A94h DECO1 Descriptor Buffer Word 37 (D1DESB37) 32 RW 0000_0000h

9_0A98h DECO1 Descriptor Buffer Word 38 (D1DESB38) 32 RW 0000_0000h

9_0A9Ch DECO1 Descriptor Buffer Word 39 (D1DESB39) 32 RW 0000_0000h

9_0AA0h DECO1 Descriptor Buffer Word 40 (D1DESB40) 32 RW 0000_0000h

9_0AA4h DECO1 Descriptor Buffer Word 41 (D1DESB41) 32 RW 0000_0000h

9_0AA8h DECO1 Descriptor Buffer Word 42 (D1DESB42) 32 RW 0000_0000h

9_0AACh DECO1 Descriptor Buffer Word 43 (D1DESB43) 32 RW 0000_0000h

9_0AB0h DECO1 Descriptor Buffer Word 44 (D1DESB44) 32 RW 0000_0000h

9_0AB4h DECO1 Descriptor Buffer Word 45 (D1DESB45) 32 RW 0000_0000h

9_0AB8h DECO1 Descriptor Buffer Word 46 (D1DESB46) 32 RW 0000_0000h

9_0ABCh DECO1 Descriptor Buffer Word 47 (D1DESB47) 32 RW 0000_0000h

9_0AC0h DECO1 Descriptor Buffer Word 48 (D1DESB48) 32 RW 0000_0000h

9_0AC4h DECO1 Descriptor Buffer Word 49 (D1DESB49) 32 RW 0000_0000h

9_0AC8h DECO1 Descriptor Buffer Word 50 (D1DESB50) 32 RW 0000_0000h

9_0ACCh DECO1 Descriptor Buffer Word 51 (D1DESB51) 32 RW 0000_0000h

9_0AD0h DECO1 Descriptor Buffer Word 52 (D1DESB52) 32 RW 0000_0000h

9_0AD4h DECO1 Descriptor Buffer Word 53 (D1DESB53) 32 RW 0000_0000h

9_0AD8h DECO1 Descriptor Buffer Word 54 (D1DESB54) 32 RW 0000_0000h

9_0ADCh DECO1 Descriptor Buffer Word 55 (D1DESB55) 32 RW 0000_0000h

9_0AE0h DECO1 Descriptor Buffer Word 56 (D1DESB56) 32 RW 0000_0000h

9_0AE4h DECO1 Descriptor Buffer Word 57 (D1DESB57) 32 RW 0000_0000h

9_0AE8h DECO1 Descriptor Buffer Word 58 (D1DESB58) 32 RW 0000_0000h

9_0AECh DECO1 Descriptor Buffer Word 59 (D1DESB59) 32 RW 0000_0000h

9_0AF0h DECO1 Descriptor Buffer Word 60 (D1DESB60) 32 RW 0000_0000h

9_0AF4h DECO1 Descriptor Buffer Word 61 (D1DESB61) 32 RW 0000_0000h

9_0AF8h DECO1 Descriptor Buffer Word 62 (D1DESB62) 32 RW 0000_0000h

9_0AFCh DECO1 Descriptor Buffer Word 63 (D1DESB63) 32 RW 0000_0000h

9_0E00h DECO1 Debug Job (D1DJR) 32 RO 0000_0000h

9_0E04h DECO1 Debug DECO (D1DDR) 32 RO 0000_0000h

9_0E08h DECO1 Debug Job Pointer (D1DJP) 64 RO 0000_0000_00
00_0000h

9_0E10h DECO1 Debug Shared Pointer (D1SDP) 64 RO 0000_0000_00
00_0000h

9_0E18h DECO1 Debug_ICID, most-significant half (D1DIR_MS) 32 RO 0000_0000h

9_0E20h Sequence Output Length Register (SOL1) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

728 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

9_0E24h Variable Sequence Output Length Register (VSOL1) 32 RW 0000_0000h

9_0E28h Sequence Input Length Register (SIL1) 32 RW 0000_0000h

9_0E2Ch Variable Sequence Input Length Register (VSIL1) 32 RW 0000_0000h

9_0E30h Protocol Override Register (D1POVRD) 32 RW 0000_0000h

9_0E34h Variable Sequence Output Length Register; Upper 32 bits (UVSOL1) 32 RW 0000_0000h

9_0E38h Variable Sequence Input Length Register; Upper 32 bits (UVSIL1) 32 RW 0000_0000h

9_0F00h
(alias)

Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

9_0F08h
(alias)

Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

9_0F10h
(alias)

Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

9_0F18h
(alias)

Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

9_0F20h
(alias)

Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

9_0F28h
(alias)

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

9_0F30h
(alias)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

9_0FA0h
(alias)

CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

9_0FA4h
(alias)

CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

9_0FA8h
(alias)

Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

9_0FACh
(alias)

Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

9_0FC0h
(alias)

Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

9_0FC8h
(alias)

Fault Address ICID Register (FAICID) 32 RO 0000_0000h

9_0FCCh
(alias)

Fault Address Detail Register (FADR) 32 RO 0000_0000h

9_0FD4h
(alias)

SEC Status Register (SSTA) 32 RO 0000_0402h

9_0FE0h
(alias)

RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

9_0FE4h
(alias)

CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

9_0FE8h
(alias)

CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

9_0FECh
(alias)

CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 729

Offset Register Width

(In bits)

Access Reset value

9_0FF0h
(alias)

CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

9_0FF4h
(alias)

CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

9_0FF8h
(alias)

SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

9_0FFCh
(alias)

SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

A_0004h CCB 2 Class 1 Mode Register Format for Non-Public Key Algorithms
(C2C1MR_NPK)

32 RW 0000_0000h

A_0004h CCB 2 Class 1 Mode Register Format for Public Key Algorithms
(C2C1MR_PK)

32 RW 0000_0000h

A_0004h CCB 2 Class 1 Mode Register Format for RNG4 (C2C1MR_RNG) 32 RW 0000_0000h

A_000Ch CCB 2 Class 1 Key Size Register (C2C1KSR) 32 RW 0000_0000h

A_0010h CCB 2 Class 1 Data Size Register (C2C1DSR) 64 RW 0000_0000_00
00_0000h

A_001Ch CCB 2 Class 1 ICV Size Register (C2C1ICVSR) 32 RW 0000_0000h

A_0034h CCB 2 CHA Control Register (C2CCTRL) 32 WO 0000_0000h

A_003Ch CCB 2 Interrupt Control Register (C2ICTL) 32 W1C 0000_0000h

A_0044h CCB 2 Clear Written Register (C2CWR) 32 WO 0000_0000h

A_0048h CCB 2 Status and Error Register, most-significant half (C2CSTA_MS) 32 RO 0000_0000h

A_004Ch CCB 2 Status and Error Register, least-significant half (C2CSTA_LS) 32 RO 0000_0000h

A_005Ch CCB 2 AAD Size Register (C2AADSZR) 32 RW 0000_0000h

A_0064h Class 1 IV Size Register (C2C1IVSZR) 32 RW 0000_0000h

A_0084h PKHA A Size Register (C2PKASZR) 32 RW 0000_0000h

A_008Ch PKHA B Size Register (C2PKBSZR) 32 RW 0000_0000h

A_0094h PKHA N Size Register (C2PKNSZR) 32 RW 0000_0000h

A_009Ch PKHA E Size Register (C2PKESZR) 32 RW 0000_0000h

A_0100h CCB 2 Class 1 Context Register Word 0 (C2C1CTXR0) 32 RW 0000_0000h

A_0104h CCB 2 Class 1 Context Register Word 1 (C2C1CTXR1) 32 RW 0000_0000h

A_0108h CCB 2 Class 1 Context Register Word 2 (C2C1CTXR2) 32 RW 0000_0000h

A_010Ch CCB 2 Class 1 Context Register Word 3 (C2C1CTXR3) 32 RW 0000_0000h

A_0110h CCB 2 Class 1 Context Register Word 4 (C2C1CTXR4) 32 RW 0000_0000h

A_0114h CCB 2 Class 1 Context Register Word 5 (C2C1CTXR5) 32 RW 0000_0000h

A_0118h CCB 2 Class 1 Context Register Word 6 (C2C1CTXR6) 32 RW 0000_0000h

A_011Ch CCB 2 Class 1 Context Register Word 7 (C2C1CTXR7) 32 RW 0000_0000h

A_0120h CCB 2 Class 1 Context Register Word 8 (C2C1CTXR8) 32 RW 0000_0000h

A_0124h CCB 2 Class 1 Context Register Word 9 (C2C1CTXR9) 32 RW 0000_0000h

A_0128h CCB 2 Class 1 Context Register Word 10 (C2C1CTXR10) 32 RW 0000_0000h

A_012Ch CCB 2 Class 1 Context Register Word 11 (C2C1CTXR11) 32 RW 0000_0000h

A_0130h CCB 2 Class 1 Context Register Word 12 (C2C1CTXR12) 32 RW 0000_0000h

A_0134h CCB 2 Class 1 Context Register Word 13 (C2C1CTXR13) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

730 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

A_0138h CCB 2 Class 1 Context Register Word 14 (C2C1CTXR14) 32 RW 0000_0000h

A_013Ch CCB 2 Class 1 Context Register Word 15 (C2C1CTXR15) 32 RW 0000_0000h

A_0200h CCB 2 Class 1 Key Registers Word 0 (C2C1KR0) 32 RW 0000_0000h

A_0204h CCB 2 Class 1 Key Registers Word 1 (C2C1KR1) 32 RW 0000_0000h

A_0208h CCB 2 Class 1 Key Registers Word 2 (C2C1KR2) 32 RW 0000_0000h

A_020Ch CCB 2 Class 1 Key Registers Word 3 (C2C1KR3) 32 RW 0000_0000h

A_0210h CCB 2 Class 1 Key Registers Word 4 (C2C1KR4) 32 RW 0000_0000h

A_0214h CCB 2 Class 1 Key Registers Word 5 (C2C1KR5) 32 RW 0000_0000h

A_0218h CCB 2 Class 1 Key Registers Word 6 (C2C1KR6) 32 RW 0000_0000h

A_021Ch CCB 2 Class 1 Key Registers Word 7 (C2C1KR7) 32 RW 0000_0000h

A_0404h CCB 2 Class 2 Mode Register (C2C2MR) 32 RW 0000_0000h

A_040Ch CCB 2 Class 2 Key Size Register (C2C2KSR) 32 RW 0000_0000h

A_0410h CCB 2 Class 2 Data Size Register (C2C2DSR) 64 RW 0000_0000_00
00_0000h

A_041Ch CCB 2 Class 2 ICV Size Register (C2C2ICVSZR) 32 RW 0000_0000h

A_0500h CCB 2 Class 2 Context Register Word 0 (C2C2CTXR0) 32 RW 0000_0000h

A_0504h CCB 2 Class 2 Context Register Word 1 (C2C2CTXR1) 32 RW 0000_0000h

A_0508h CCB 2 Class 2 Context Register Word 2 (C2C2CTXR2) 32 RW 0000_0000h

A_050Ch CCB 2 Class 2 Context Register Word 3 (C2C2CTXR3) 32 RW 0000_0000h

A_0510h CCB 2 Class 2 Context Register Word 4 (C2C2CTXR4) 32 RW 0000_0000h

A_0514h CCB 2 Class 2 Context Register Word 5 (C2C2CTXR5) 32 RW 0000_0000h

A_0518h CCB 2 Class 2 Context Register Word 6 (C2C2CTXR6) 32 RW 0000_0000h

A_051Ch CCB 2 Class 2 Context Register Word 7 (C2C2CTXR7) 32 RW 0000_0000h

A_0520h CCB 2 Class 2 Context Register Word 8 (C2C2CTXR8) 32 RW 0000_0000h

A_0524h CCB 2 Class 2 Context Register Word 9 (C2C2CTXR9) 32 RW 0000_0000h

A_0528h CCB 2 Class 2 Context Register Word 10 (C2C2CTXR10) 32 RW 0000_0000h

A_052Ch CCB 2 Class 2 Context Register Word 11 (C2C2CTXR11) 32 RW 0000_0000h

A_0530h CCB 2 Class 2 Context Register Word 12 (C2C2CTXR12) 32 RW 0000_0000h

A_0534h CCB 2 Class 2 Context Register Word 13 (C2C2CTXR13) 32 RW 0000_0000h

A_0538h CCB 2 Class 2 Context Register Word 14 (C2C2CTXR14) 32 RW 0000_0000h

A_053Ch CCB 2 Class 2 Context Register Word 15 (C2C2CTXR15) 32 RW 0000_0000h

A_0540h CCB 2 Class 2 Context Register Word 16 (C2C2CTXR16) 32 RW 0000_0000h

A_0544h CCB 2 Class 2 Context Register Word 17 (C2C2CTXR17) 32 RW 0000_0000h

A_0600h CCB 2 Class 2 Key Register Word 0 (C2C2KEYR0) 32 RW 0000_0000h

A_0604h CCB 2 Class 2 Key Register Word 1 (C2C2KEYR1) 32 RW 0000_0000h

A_0608h CCB 2 Class 2 Key Register Word 2 (C2C2KEYR2) 32 RW 0000_0000h

A_060Ch CCB 2 Class 2 Key Register Word 3 (C2C2KEYR3) 32 RW 0000_0000h

A_0610h CCB 2 Class 2 Key Register Word 4 (C2C2KEYR4) 32 RW 0000_0000h

A_0614h CCB 2 Class 2 Key Register Word 5 (C2C2KEYR5) 32 RW 0000_0000h

A_0618h CCB 2 Class 2 Key Register Word 6 (C2C2KEYR6) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 731

Offset Register Width

(In bits)

Access Reset value

A_061Ch CCB 2 Class 2 Key Register Word 7 (C2C2KEYR7) 32 RW 0000_0000h

A_0620h CCB 2 Class 2 Key Register Word 8 (C2C2KEYR8) 32 RW 0000_0000h

A_0624h CCB 2 Class 2 Key Register Word 9 (C2C2KEYR9) 32 RW 0000_0000h

A_0628h CCB 2 Class 2 Key Register Word 10 (C2C2KEYR10) 32 RW 0000_0000h

A_062Ch CCB 2 Class 2 Key Register Word 11 (C2C2KEYR11) 32 RW 0000_0000h

A_0630h CCB 2 Class 2 Key Register Word 12 (C2C2KEYR12) 32 RW 0000_0000h

A_0634h CCB 2 Class 2 Key Register Word 13 (C2C2KEYR13) 32 RW 0000_0000h

A_0638h CCB 2 Class 2 Key Register Word 14 (C2C2KEYR14) 32 RW 0000_0000h

A_063Ch CCB 2 Class 2 Key Register Word 15 (C2C2KEYR15) 32 RW 0000_0000h

A_0640h CCB 2 Class 2 Key Register Word 16 (C2C2KEYR16) 32 RW 0000_0000h

A_0644h CCB 2 Class 2 Key Register Word 17 (C2C2KEYR17) 32 RW 0000_0000h

A_0648h CCB 2 Class 2 Key Register Word 18 (C2C2KEYR18) 32 RW 0000_0000h

A_064Ch CCB 2 Class 2 Key Register Word 19 (C2C2KEYR19) 32 RW 0000_0000h

A_0650h CCB 2 Class 2 Key Register Word 20 (C2C2KEYR20) 32 RW 0000_0000h

A_0654h CCB 2 Class 2 Key Register Word 21 (C2C2KEYR21) 32 RW 0000_0000h

A_0658h CCB 2 Class 2 Key Register Word 22 (C2C2KEYR22) 32 RW 0000_0000h

A_065Ch CCB 2 Class 2 Key Register Word 23 (C2C2KEYR23) 32 RW 0000_0000h

A_0660h CCB 2 Class 2 Key Register Word 24 (C2C2KEYR24) 32 RW 0000_0000h

A_0664h CCB 2 Class 2 Key Register Word 25 (C2C2KEYR25) 32 RW 0000_0000h

A_0668h CCB 2 Class 2 Key Register Word 26 (C2C2KEYR26) 32 RW 0000_0000h

A_066Ch CCB 2 Class 2 Key Register Word 27 (C2C2KEYR27) 32 RW 0000_0000h

A_0670h CCB 2 Class 2 Key Register Word 28 (C2C2KEYR28) 32 RW 0000_0000h

A_0674h CCB 2 Class 2 Key Register Word 29 (C2C2KEYR29) 32 RW 0000_0000h

A_0678h CCB 2 Class 2 Key Register Word 30 (C2C2KEYR30) 32 RW 0000_0000h

A_067Ch CCB 2 Class 2 Key Register Word 31 (C2C2KEYR31) 32 RW 0000_0000h

A_07C0h CCB 2 FIFO Status (C2FIFOSTA) 32 RO 0000_0000h

A_07D0h CCB 2 iNformation FIFO When STYPE Is Not 10 (C2NFIFO) 32 WO 0000_0000h

A_07D0h CCB 2 iNformation FIFO When STYPE Is 10 (C2NFIFO_2) 32 WO 0000_0000h

A_07E0h CCB 2 Input Data FIFO (C2IFIFO) 32 WO 0000_0000h

A_07F0h CCB 2 Output Data FIFO (C2OFIFO) 64 RO 0000_0000_00
00_0000h

A_0800h DECO2 Job Queue Control Register, most-significant half (D2JQCR_
MS)

32 RW 0000_0000h

A_0804h DECO2 Job Queue Control Register, least-significant half (D2JQCR_
LS)

32 RO 0000_0000h

A_0808h DECO2 Descriptor Address Register (D2DAR) 64 RO 0000_0000_00
00_0000h

A_0810h DECO2 Operation Status Register, most-significant half (D2OPSTA_
MS)

32 RO 0000_0000h

A_0814h DECO2 Operation Status Register, least-significant half (D2OPSTA_
LS)

32 RO 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

732 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

A_0818h DECO2 Checksum Register (D2CKSUMR) 32 RW 0000_0000h

A_0820h DECO2 ICID Status Register (D2ISR) 32 RO 0000_0000h

A_0820h DECO2 SDID / Trusted ICID Status Register (D2SDIDSR) 32 RW 0000_0000h

A_0840h DECO2 Math Register 0_MS (D2MTH0_MS) 32 RW 0000_0000h

A_0844h DECO2 Math Register 0_LS (D2MTH0_LS) 32 RW 0000_0000h

A_0848h DECO2 Math Register 1_MS (D2MTH1_MS) 32 RW 0000_0000h

A_084Ch DECO2 Math Register 1_LS (D2MTH1_LS) 32 RW 0000_0000h

A_0850h DECO2 Math Register 2_MS (D2MTH2_MS) 32 RW 0000_0000h

A_0854h DECO2 Math Register 2_LS (D2MTH2_LS) 32 RW 0000_0000h

A_0858h DECO2 Math Register 3_MS (D2MTH3_MS) 32 RW 0000_0000h

A_085Ch DECO2 Math Register 3_LS (D2MTH3_LS) 32 RW 0000_0000h

A_0860h DECO2 Math Register 4_MS (D2MTH4_MS) 32 RW 0000_0000h

A_0864h DECO2 Math Register 4_LS (D2MTH4_LS) 32 RW 0000_0000h

A_0868h DECO2 Math Register 5_MS (D2MTH5_MS) 32 RW 0000_0000h

A_086Ch DECO2 Math Register 5_LS (D2MTH5_LS) 32 RW 0000_0000h

A_0870h DECO2 Math Register 6_MS (D2MTH6_MS) 32 RW 0000_0000h

A_0874h DECO2 Math Register 6_LS (D2MTH6_LS) 32 RW 0000_0000h

A_0878h DECO2 Math Register 7_MS (D2MTH7_MS) 32 RW 0000_0000h

A_087Ch DECO2 Math Register 7_LS (D2MTH7_LS) 32 RW 0000_0000h

A_0880h DECO2 Gather Table Register 0 Word 0 (D2GTR0_0) 32 RW 0000_0000h

A_0884h DECO2 Gather Table Register 0 Word 1 (D2GTR0_1) 32 RW 0000_0000h

A_0888h DECO2 Gather Table Register 0 Word 2 (D2GTR0_2) 32 RW 0000_0000h

A_088Ch DECO2 Gather Table Register 0 Word 3 (D2GTR0_3) 32 RW 0000_0000h

A_0890h DECO2 Gather Table Register 1 Word 0 (D2GTR1_0) 32 RW 0000_0000h

A_0894h DECO2 Gather Table Register 1 Word 1 (D2GTR1_1) 32 RW 0000_0000h

A_0898h DECO2 Gather Table Register 1 Word 2 (D2GTR1_2) 32 RW 0000_0000h

A_089Ch DECO2 Gather Table Register 1 Word 3 (D2GTR1_3) 32 RW 0000_0000h

A_08A0h DECO2 Gather Table Register 2 Word 0 (D2GTR2_0) 32 RW 0000_0000h

A_08A4h DECO2 Gather Table Register 2 Word 1 (D2GTR2_1) 32 RW 0000_0000h

A_08A8h DECO2 Gather Table Register 2 Word 2 (D2GTR2_2) 32 RW 0000_0000h

A_08ACh DECO2 Gather Table Register 2 Word 3 (D2GTR2_3) 32 RW 0000_0000h

A_08B0h DECO2 Gather Table Register 3 Word 0 (D2GTR3_0) 32 RW 0000_0000h

A_08B4h DECO2 Gather Table Register 3 Word 1 (D2GTR3_1) 32 RW 0000_0000h

A_08B8h DECO2 Gather Table Register 3 Word 2 (D2GTR3_2) 32 RW 0000_0000h

A_08BCh DECO2 Gather Table Register 3 Word 3 (D2GTR3_3) 32 RW 0000_0000h

A_0900h DECO2 Scatter Table Register 0 Word 0 (D2STR0_0) 32 RW 0000_0000h

A_0904h DECO2 Scatter Table Register 0 Word 1 (D2STR0_1) 32 RW 0000_0000h

A_0908h DECO2 Scatter Table Register 0 Word 2 (D2STR0_2) 32 RW 0000_0000h

A_090Ch DECO2 Scatter Table Register 0 Word 3 (D2STR0_3) 32 RW 0000_0000h

A_0910h DECO2 Scatter Table Register 1 Word 0 (D2STR1_0) 32 RW 0000_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 733

Offset Register Width

(In bits)

Access Reset value

A_0914h DECO2 Scatter Table Register 1 Word 1 (D2STR1_1) 32 RW 0000_0000h

A_0918h DECO2 Scatter Table Register 1 Word 2 (D2STR1_2) 32 RW 0000_0000h

A_091Ch DECO2 Scatter Table Register 1 Word 3 (D2STR1_3) 32 RW 0000_0000h

A_0920h DECO2 Scatter Table Register 2 Word 0 (D2STR2_0) 32 RW 0000_0000h

A_0924h DECO2 Scatter Table Register 2 Word 1 (D2STR2_1) 32 RW 0000_0000h

A_0928h DECO2 Scatter Table Register 2 Word 2 (D2STR2_2) 32 RW 0000_0000h

A_092Ch DECO2 Scatter Table Register 2 Word 3 (D2STR2_3) 32 RW 0000_0000h

A_0930h DECO2 Scatter Table Register 3 Word 0 (D2STR3_0) 32 RW 0000_0000h

A_0934h DECO2 Scatter Table Register 3 Word 1 (D2STR3_1) 32 RW 0000_0000h

A_0938h DECO2 Scatter Table Register 3 Word 2 (D2STR3_2) 32 RW 0000_0000h

A_093Ch DECO2 Scatter Table Register 3 Word 3 (D2STR3_3) 32 RW 0000_0000h

A_0A00h DECO2 Descriptor Buffer Word 0 (D2DESB0) 32 RW 0000_0000h

A_0A04h DECO2 Descriptor Buffer Word 1 (D2DESB1) 32 RW 0000_0000h

A_0A08h DECO2 Descriptor Buffer Word 2 (D2DESB2) 32 RW 0000_0000h

A_0A0Ch DECO2 Descriptor Buffer Word 3 (D2DESB3) 32 RW 0000_0000h

A_0A10h DECO2 Descriptor Buffer Word 4 (D2DESB4) 32 RW 0000_0000h

A_0A14h DECO2 Descriptor Buffer Word 5 (D2DESB5) 32 RW 0000_0000h

A_0A18h DECO2 Descriptor Buffer Word 6 (D2DESB6) 32 RW 0000_0000h

A_0A1Ch DECO2 Descriptor Buffer Word 7 (D2DESB7) 32 RW 0000_0000h

A_0A20h DECO2 Descriptor Buffer Word 8 (D2DESB8) 32 RW 0000_0000h

A_0A24h DECO2 Descriptor Buffer Word 9 (D2DESB9) 32 RW 0000_0000h

A_0A28h DECO2 Descriptor Buffer Word 10 (D2DESB10) 32 RW 0000_0000h

A_0A2Ch DECO2 Descriptor Buffer Word 11 (D2DESB11) 32 RW 0000_0000h

A_0A30h DECO2 Descriptor Buffer Word 12 (D2DESB12) 32 RW 0000_0000h

A_0A34h DECO2 Descriptor Buffer Word 13 (D2DESB13) 32 RW 0000_0000h

A_0A38h DECO2 Descriptor Buffer Word 14 (D2DESB14) 32 RW 0000_0000h

A_0A3Ch DECO2 Descriptor Buffer Word 15 (D2DESB15) 32 RW 0000_0000h

A_0A40h DECO2 Descriptor Buffer Word 16 (D2DESB16) 32 RW 0000_0000h

A_0A44h DECO2 Descriptor Buffer Word 17 (D2DESB17) 32 RW 0000_0000h

A_0A48h DECO2 Descriptor Buffer Word 18 (D2DESB18) 32 RW 0000_0000h

A_0A4Ch DECO2 Descriptor Buffer Word 19 (D2DESB19) 32 RW 0000_0000h

A_0A50h DECO2 Descriptor Buffer Word 20 (D2DESB20) 32 RW 0000_0000h

A_0A54h DECO2 Descriptor Buffer Word 21 (D2DESB21) 32 RW 0000_0000h

A_0A58h DECO2 Descriptor Buffer Word 22 (D2DESB22) 32 RW 0000_0000h

A_0A5Ch DECO2 Descriptor Buffer Word 23 (D2DESB23) 32 RW 0000_0000h

A_0A60h DECO2 Descriptor Buffer Word 24 (D2DESB24) 32 RW 0000_0000h

A_0A64h DECO2 Descriptor Buffer Word 25 (D2DESB25) 32 RW 0000_0000h

A_0A68h DECO2 Descriptor Buffer Word 26 (D2DESB26) 32 RW 0000_0000h

A_0A6Ch DECO2 Descriptor Buffer Word 27 (D2DESB27) 32 RW 0000_0000h

A_0A70h DECO2 Descriptor Buffer Word 28 (D2DESB28) 32 RW 0000_0000h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

734 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

A_0A74h DECO2 Descriptor Buffer Word 29 (D2DESB29) 32 RW 0000_0000h

A_0A78h DECO2 Descriptor Buffer Word 30 (D2DESB30) 32 RW 0000_0000h

A_0A7Ch DECO2 Descriptor Buffer Word 31 (D2DESB31) 32 RW 0000_0000h

A_0A80h DECO2 Descriptor Buffer Word 32 (D2DESB32) 32 RW 0000_0000h

A_0A84h DECO2 Descriptor Buffer Word 33 (D2DESB33) 32 RW 0000_0000h

A_0A88h DECO2 Descriptor Buffer Word 34 (D2DESB34) 32 RW 0000_0000h

A_0A8Ch DECO2 Descriptor Buffer Word 35 (D2DESB35) 32 RW 0000_0000h

A_0A90h DECO2 Descriptor Buffer Word 36 (D2DESB36) 32 RW 0000_0000h

A_0A94h DECO2 Descriptor Buffer Word 37 (D2DESB37) 32 RW 0000_0000h

A_0A98h DECO2 Descriptor Buffer Word 38 (D2DESB38) 32 RW 0000_0000h

A_0A9Ch DECO2 Descriptor Buffer Word 39 (D2DESB39) 32 RW 0000_0000h

A_0AA0h DECO2 Descriptor Buffer Word 40 (D2DESB40) 32 RW 0000_0000h

A_0AA4h DECO2 Descriptor Buffer Word 41 (D2DESB41) 32 RW 0000_0000h

A_0AA8h DECO2 Descriptor Buffer Word 42 (D2DESB42) 32 RW 0000_0000h

A_0AACh DECO2 Descriptor Buffer Word 43 (D2DESB43) 32 RW 0000_0000h

A_0AB0h DECO2 Descriptor Buffer Word 44 (D2DESB44) 32 RW 0000_0000h

A_0AB4h DECO2 Descriptor Buffer Word 45 (D2DESB45) 32 RW 0000_0000h

A_0AB8h DECO2 Descriptor Buffer Word 46 (D2DESB46) 32 RW 0000_0000h

A_0ABCh DECO2 Descriptor Buffer Word 47 (D2DESB47) 32 RW 0000_0000h

A_0AC0h DECO2 Descriptor Buffer Word 48 (D2DESB48) 32 RW 0000_0000h

A_0AC4h DECO2 Descriptor Buffer Word 49 (D2DESB49) 32 RW 0000_0000h

A_0AC8h DECO2 Descriptor Buffer Word 50 (D2DESB50) 32 RW 0000_0000h

A_0ACCh DECO2 Descriptor Buffer Word 51 (D2DESB51) 32 RW 0000_0000h

A_0AD0h DECO2 Descriptor Buffer Word 52 (D2DESB52) 32 RW 0000_0000h

A_0AD4h DECO2 Descriptor Buffer Word 53 (D2DESB53) 32 RW 0000_0000h

A_0AD8h DECO2 Descriptor Buffer Word 54 (D2DESB54) 32 RW 0000_0000h

A_0ADCh DECO2 Descriptor Buffer Word 55 (D2DESB55) 32 RW 0000_0000h

A_0AE0h DECO2 Descriptor Buffer Word 56 (D2DESB56) 32 RW 0000_0000h

A_0AE4h DECO2 Descriptor Buffer Word 57 (D2DESB57) 32 RW 0000_0000h

A_0AE8h DECO2 Descriptor Buffer Word 58 (D2DESB58) 32 RW 0000_0000h

A_0AECh DECO2 Descriptor Buffer Word 59 (D2DESB59) 32 RW 0000_0000h

A_0AF0h DECO2 Descriptor Buffer Word 60 (D2DESB60) 32 RW 0000_0000h

A_0AF4h DECO2 Descriptor Buffer Word 61 (D2DESB61) 32 RW 0000_0000h

A_0AF8h DECO2 Descriptor Buffer Word 62 (D2DESB62) 32 RW 0000_0000h

A_0AFCh DECO2 Descriptor Buffer Word 63 (D2DESB63) 32 RW 0000_0000h

A_0E00h DECO2 Debug Job (D2DJR) 32 RO 0000_0000h

A_0E04h DECO2 Debug DECO (D2DDR) 32 RO 0000_0000h

A_0E08h DECO2 Debug Job Pointer (D2DJP) 64 RO 0000_0000_00
00_0000h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 735

Offset Register Width

(In bits)

Access Reset value

A_0E10h DECO2 Debug Shared Pointer (D2SDP) 64 RO 0000_0000_00
00_0000h

A_0E18h DECO2 Debug_ICID, most-significant half (D2DIR_MS) 32 RO 0000_0000h

A_0E20h Sequence Output Length Register (SOL2) 32 RW 0000_0000h

A_0E24h Variable Sequence Output Length Register (VSOL2) 32 RW 0000_0000h

A_0E28h Sequence Input Length Register (SIL2) 32 RW 0000_0000h

A_0E2Ch Variable Sequence Input Length Register (VSIL2) 32 RW 0000_0000h

A_0E30h Protocol Override Register (D2POVRD) 32 RW 0000_0000h

A_0E34h Variable Sequence Output Length Register; Upper 32 bits (UVSOL2) 32 RW 0000_0000h

A_0E38h Variable Sequence Input Length Register; Upper 32 bits (UVSIL2) 32 RW 0000_0000h

A_0F00h
(alias)

Performance Counter, Number of Requests Dequeued (PC_REQ_D
EQ)

64 RW 0000_0000_00
00_0000h

A_0F08h
(alias)

Performance Counter, Number of Outbound Encrypt Requests (PC_
OB_ENC_REQ)

64 RW 0000_0000_00
00_0000h

A_0F10h
(alias)

Performance Counter, Number of Inbound Decrypt Requests (PC_I
B_DEC_REQ)

64 RW 0000_0000_00
00_0000h

A_0F18h
(alias)

Performance Counter, Number of Outbound Bytes Encrypted (PC_O
B_ENCRYPT)

64 RW 0000_0000_00
00_0000h

A_0F20h
(alias)

Performance Counter, Number of Outbound Bytes Protected (PC_O
B_PROTECT)

64 RW 0000_0000_00
00_0000h

A_0F28h
(alias)

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_
DECRYPT)

64 RW 0000_0000_00
00_0000h

A_0F30h
(alias)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_
VALIDATED)

64 RW 0000_0000_00
00_0000h

A_0FA0h
(alias)

CHA Revision Number Register, most-significant half (CRNR_MS) 32 RO 1000_1026h

A_0FA4h
(alias)

CHA Revision Number Register, least-significant half (CRNR_LS) 32 RO 4413_0017h

A_0FA8h
(alias)

Compile Time Parameters Register, most-significant half (CTPR_MS) 32 RO 0ABF_0211h

A_0FACh
(alias)

Compile Time Parameters Register, least-significant half (CTPR_LS) 32 RO 0000_7FFFh

A_0FC0h
(alias)

Fault Address Register (FAR) 64 RO 0000_0000_00
00_0000h

A_0FC8h
(alias)

Fault Address ICID Register (FAICID) 32 RO 0000_0000h

A_0FCCh
(alias)

Fault Address Detail Register (FADR) 32 RO 0000_0000h

A_0FD4h
(alias)

SEC Status Register (SSTA) 32 RO 0000_0402h

A_0FE0h
(alias)

RTIC Version ID Register (RVID) 32 RO 0F0A_0003h

A_0FE4h
(alias)

CHA Cluster Block Version ID Register (CCBVID) 32 RO 0800_0005h

Table continues on the next page...

SEC Memory map

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

736 NXP Semiconductors

Offset Register Width

(In bits)

Access Reset value

A_0FE8h
(alias)

CHA Version ID Register, most-significant half (CHAVID_MS) 32 RO 3400_0001h

A_0FECh
(alias)

CHA Version ID Register, least-significant half (CHAVID_LS) 32 RO 1014_3004h

A_0FF0h
(alias)

CHA Number Register, most-significant half (CHANUM_MS) 32 RO 4300_1113h

A_0FF4h
(alias)

CHA Number Register, least-significant half (CHANUM_LS) 32 RO 1111_3033h

A_0FF8h
(alias)

SEC Version ID Register, most-significant half (SECVID_MS) 32 RO 0A11_0301h

A_0FFCh
(alias)

SEC Version ID Register, least-significant half (SECVID_LS) 32 RO 0000_0000h

13.2 Master Configuration Register (MCFGR)

13.2.1 Offset

Register Offset

MCFGR 4h

13.2.2 Function

The Master Configuration Register is used to set some bus master configurations. This
register is typically written at boot time, and in some debug scenarios.

Register descriptions in this document are based on none.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 737

13.2.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

S
W

R
S

T W
D

E

W
D

F

W
R

H
D

R
es

er
ve

d

D
JP

C D
B

P
C

D
W

T

R
es

er
ve

d

N
S

P P SW

D
M

A
_R

S
T

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
R

C
A

C
H

E

A
W

C
A

C
H

E

A
X

IP
IP

E

R
es

er
ve

d

LA
R

G
E

_B
U

R
S

T

R
es

er
ve

d

N
O

R
M

A
L_

B
U

R
S

T

W

Reset 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1

13.2.4 Fields

Field Function

31

SWRST

Software Reset. Writing a 1 to this bit will cause most registers and state machines in SEC to reset. The
following SEC registers are not reset: MCFGR, SCFGR, JR0ICID_MS, JR0ICID_LS, JR1ICID_MS,
JR1ICID_LS, JR2ICID_MS, JR2ICID_LS, JR3ICID_MS, JR3ICID_LS, QIICID, JRSTARTR,
RTICAICID_MS, RTICAICID_LS, RTICBICID_MS, RTICBICID_LS, RTICCICID_MS, RTICCICID_LS,
RTICDICID_MS, RTICDICID_LS, DECO0ICID_MS, DECO0ICID_LS, DECO1ICID_MS, DECO1ICID_LS,
DECO2ICID_MS, DECO2ICID_LS, DECO3ICID_MS, DECO3ICID_LS, DAR, PBSL, JDKEKR_0 -
JDKEKR_7, TDKEKR_0 - TDKEKR_7, TDSKR_0 - TDSKR_7, SKNR, RTMCTL, RTSCMISC,
RTPKRRNG, RTPKRMAX, RTPKRSQ, RTSDCTL, RTTOTSAM, RTSBLIM, RTFRQMIN, RTFRQCNT,
RTFRQMAX, RTSCML, RTSCMC, RTSCR1L, RTSCR1C, RTSCR2C, RTSCR2L, RTSCR3L, RTSCR3C,
RTSCR4L, RTSCR4C, RTSCR5L, RTSCR5C, RTSCR6PC, RTSCR6PL, RTSTATUS, RTENT0 -
RTENT11, RTPKRCNT10, RTPKRCNT32, RTPKRCNT54, RTPKRCNT76, RTPKRCNT98,
RTPKRCNTBA, RTPKRCNTDC, RTPKRCNTFE, RDSTA, RDINT0, RDINT1, RDHCNTL, RDHDIG,
RDHBUF, but the remaining registers in SEC register page 0 are reset by SWRST. The Job Ring
registers in SEC register pages 1 .. 3 are reset by SWRST. The RTIC registers in SEC register page 6
are not reset by SWRST. (If an RTIC descriptor is in execution or is waiting for execution when SWRST
is requested, RTIC will abandon the current sweep through all the hash blocks and restart hashing at the
first hash block.) The Queue Manager Interface registers in SEC register page 7 are reset by SWRST.
The DECO and CCB registers in SEC register pages 8 -3 are reset by SWRST.

Note that SWRST will remain 1 (and the registers will be held in reset) until any outstanding SEC DMA
transactions complete. Writing a 1 to SWRST will not cause a reset of the SEC DMA unless SWRST is
already 1 and a 1 is also written to DMARST. Note that writing to MCFGR will overwrite the values in
LARGE_BURST, AXIPIPE, AWCACHE and ARCACHE, so to avoid disrupting outstanding DMA
transactions when initiating a SWRST, these fields should be written with their current values.

Table continues on the next page...

Master Configuration Register (MCFGR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

738 NXP Semiconductors

Field Function

30

WDE

DECO Watchdog Enable. Enables the DECO Watchdog Timer to run. The Timer is used to detect and
flush a job that has caused a DECO to hang. If the DECO Watchdog Timer expires, the hung job is
usually flushed from the DECO with an error status indication. In those cases in which a hung job is not
flushed automatically, software can reset the DECO via the DECO Reset Register. Note that the
watchdog expiration period is extended for certain DECO operations and for RNG reseeding, because
these can take longer than the normal watchdog expiration period.

29

WDF

Watchdog Fast. Causes the DECO Watchdog Timer to expire prematurely for testing purposes.

28

DMA_RST

DMA Reset. If SWRST is already 1, writing a 1 to DMARST and SWRST on the same cycle will cause the
DMA to be reset. The DMA will not be reset if SWRST is not already a 1 (i.e. a 1 was previously written to
SWRST but DMA transactions have not completed). Following a DMA reset, system software should
delay long enough for outstanding AXI transaction responses to finish. These orphaned responses will be
ignored.

27

WRHD

Write Handoff Disable. If WRHD=0, when DECO has initiated the last write transaction of the current job
DECO will go idle without waiting for the bus slave's response to that write transaction. This allows DECO
to start another job while awaiting the slave's response. If an error response is eventually received SEC
will update the transaction status appropriately. If WRHD=1 DECO will wait for the bus slave's response
to the last write transaction before DECO goes to the idle state. Setting WRHD=1 is intended for product
testing, so WRHD should normally be left at its PO reset value.

26-22

—

Reserved

21

DJPC

Disable Job Performance Counters. When DJPC=1 counting is disabled in the following Performance
Counter registers:

PC_REQ_DEQ

PC_OB_ENC_REQ

PC_IB_DEC_REQ

Note that these registers can still be read or written even if DJPC=1.

20

DBPC

Disable Byte Performance Counters. When DJPC=1 counting is disabled in the following Performance
Counter registers:

PC_OB_ENCRYPT

PC_OB_PROTECT

PC_IB_DECRYPT

PC_IB_VALIDATED

Note that these registers can still be read or written even if DBPC=1.

19

DWT

Double Word Transpose. Setting this bit affects whether the two words within a Dword are transposed
when a double-word register is accessed, or when DMA performs a Dword memory transaction or when
MOVEDW commands or certain MATH commands are executed.

When a double-word SEC register is read or written by software, the two words are transposed when

! (SSTAR[PLEND] XOR MCFGR[DWT]). That is,

• for a Little-Endian platform (PLEND=0), the two words will be transposed if DWT=1.
• for a Big-Endian platform (PLEND=1), the two words will be transposed if DWT=0.

When SEC DMA performs a DWord memory access, the two words are transposed when

! (SSTAR[PLEND] XOR MCFGR[DWT] XOR PEO XOR DWSO), where PEO and DWSO are from the
appropriate Job Ring Configuration Register (JRCFGR_JR) or from the Queue Interface Control
Registers (QICTL).

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 739

Field Function

That is,

• for a Little-Endian platform (PLEND=0), the two words will be transposed if DWT=0 and PEO =
DWSO.

• for a Big-Endian platform (PLEND=1), the two words will be transposed if DWT=1 and PEO =
DWSO.

For this chip PLEND=1 and DWT=0, so the most-significant half of 64-bit address registers will appear at
the lower address (the address given in the register description), unless the endianness has been
changed by setting the PEO or DWSO bits.

For an explanation of how DWT affects the MOVEDW command, see the MOVE, MOVEB, MOVEDW
and MOVE_LEN commands section.

For an explanation of how DWT affects the MATH command, see the MATH and MATHI command
section.

18

—

Reserved

17

NSP

No Snoop. This bit controls whether SEC marks all subsequent memory access transactions by default
as sharable or not sharable (coherent or non-coherent).

NOTE: The NSP configuration defines the SEC-generated default transaction attributes. The effective
transaction attributes utilized in the SoC interconnect are subject to SMMU attribute translation.

0b - All SEC transactions are marked to be snooped by the coherency control logic of the SoC.
1b - All SEC transactions are marked to be not snooped by the coherency control logic of the SoC.

16

PS

Pointer Size. This bit determines the size of address pointers. (see Address pointers).

0b - Pointers fit in one 32-bit word (pointers are 32-bit addresses).
1b - Pointers require two 32-bit words (pointers are 40-bit addresses).

15-12

ARCACHE

AXI Read Transaction Attributes. This field provides default values for the generation of the
ARCACHE[3:0] interface signals for read transactions. For a general description of ARCACHE signals
refer to the AXI3/4 protocol specification.

The following functionality, limitations, and extensions exist in this version of SEC:

• ARCACHE[0] (Bufferable):

This bit is intended to indicate whether read data may be fetched from an intermediate point in the
interconnect or must be fetched from the transaction target (for details see AXI4 specification).

• ARCACHE[1] (Cacheable/Modifiable):

A setting of 1 indicates the transaction attributes may be modified, e.g., to improve performance.

NOTE: ARCACHE[1] must be set if the transaction is marked as sharable (coherent).

NOTE: SEC may drive the ARCACHE[1] signal to 1 if read-safe is enabled,
independent of the value of the ARCACHE[1] bit configuration.

• ARCACHE[3:2] (Cache check and allocate controls):

This setting and associated signal assertions are irrelevant because this SoC does not have a
downstream cache.

NOTE: The ARCACHE[3:0] configuration defines the SEC-generated default transaction attributes. The
effective transaction attributes utilized in the SoC interconnect are subject to SMMU attribute
translation.

11-8

AWCACHE

AXI Write Transaction Attributes. This field provides default values for the generation of the
AWCACHE[3:0] interface signals for write transactions. For a general description of AWCACHE signals
refer to the AXI3/4 protocol specifications.

The following functionality, limitations, and extensions exist for this version of SEC:

Table continues on the next page...

Master Configuration Register (MCFGR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

740 NXP Semiconductors

Field Function

• AWCACHE[0] (Bufferable):

A setting of 1 indicates the transaction response may be generated from an intermediate point and
the transaction may be delayed reaching its final destination (this setting is intended to reduce
transaction latency and improve performance).

NOTE: This SoC ignores SEC-generated AWCACHE[0] signals and marks all write
transactions as bufferable while guaranteeing that a response is generated
only after write data using the same AWID has been made visible to other
masters and in the order the transactions were issued.

• AWCACHE[1] (Cacheable/Modifiable):

A setting of 1 indicates the transaction attributes may be modified, e.g., to improve performance.

NOTE: AWCACHE[1] must be set if the transaction is marked as sharable (coherent).
• AWCACHE[3:2] (Cache check and allocate controls):

This setting and associated signal assertions are irrelevant because this SoC does not have a
downstream cache.

NOTE: The AWCACHE[3:0] configuration defines the SEC-generated default transaction attributes. The
effective transaction attributes utilized in the SoC interconnect are subject to SMMU attribute
translation.

7-4

AXIPIPE

AXI Pipeline Depth.

The AXIPIPE field is a debug field used to adjust the maximum number of outstanding DMA transactions
that SEC is able to queue. Optimal performance will be achieved by retaining the default value of this
field.

3

—

Reserved

2

LARGE_BURST

Enable Large Bursts. When LARGE_BURST=1, Job Descriptor reads, Shared Descriptor reads and
reads of data for the Data FIFO can use transactions as large as the maximum AXI interface transaction
size, which equals 16 times the width of the AXI data buses (i.e. 256 bytes for 128-bit data buses). When
LARGE_BURST=0, all master bus transactions use the normal burst size. Changes to LARGE_BURST
should be made only when SEC is not processing jobs.

1

—

Reserved

0

NORMAL_BUR
ST

Normal Burst Size

This field indicates the normal burst (e.g. transaction) size limits for SEC's read and write accesses to
memory. (Note that this field was writable in earlier versions of SEC, but this capability is now obsolete.)

0b - 32 byte burst size
1b - 64 byte burst size

13.3 Security Configuration Register (SCFGR)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 741

13.3.1 Offset

Register Offset

SCFGR Ch

13.3.2 Function

The Security Configuration Register is used to set security-related mode bits. These bits
are used to switch from special boot-time operating modes to normal operating modes. At
POR, all bits in SCFGR reset to 0.

When RNGSH0 is 0, RNG DRNG State Handle 0 can be instantiated in deterministic
mode. This allows the secure boot software to run deterministic tests on the RNG and its
State Handle 0 logic. Once the tests have been completed, the secure boot software can
write a 1 to RNGSH0 to prevent State Handle 0 from being instantiated in deterministic
mode. This ensures that random data, rather than deterministic data, is used for the
Zeroizable Master Key Register in the low-power section of Security Monitor, the
Differential Power Analysis Resistance Mask in the AESA, the Job Descriptor Key
Encryption Register, the Trusted Decriptor Key Encryption Register, the Trusted
Descriptor Signing Key Register and the random padding used by built-in protocols.

At POR the AESA will seed its Differential Power Analysis Resistance Mask using a
default deterministic value. Writing a 1 to the RANDDPAR bit will cause the AESA to
reseed its Differential Power Analysis Resistance Mask using data from RNG DRNG
State Handle 0. Typically the secure boot software will write a 1 to RANDDPAR after
RNG DRNG State Handle 0 has been instantiated in a non-deterministic mode. Once a 1
has been written to RANDDPAR, this bit will remain 1 until the next POR. Software can
read this bit to determine whether the Differential Power Analysis Resistance Mask was
seeded from the RNG.

The PRIBLOB field is used to select a private blob type during Trusted Mode. When a
General Memory Blob or Secure Memory Blob is encapsulated or decapsulated during
Trusted Mode, the PRIBLOB bits are used to modify the derivation of the Blob Key
Encryption Key (see Blob encapsulation). This is used to enforce cryptographic
separation of private blob types during the boot process (and thereafter). These bits reset
to 0 at POR, but when a PRIBLOB bit is written to a 1, it remains a 1 until the next POR.

The PRIBLOB=00 setting allows secure boot software to have its own private blobs that
cannot be decapsulated or encapsulated by other software, even software that later runs in
Trusted Mode. This feature can be used to safeguard boot reference metrics (e.g. hash
values over software). In this use case, the reference metrics might be initially verified

Security Configuration Register (SCFGR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

742 NXP Semiconductors

via a public key signature and then encapsulated in a private secure boot blob. On
subsequent boot cycles the protected reference metrics would be obtained by
decapsulating the private secure boot blob, obviating the time-consuming public key
signature verification process.

The PRIBLOB=01 and PRIBLOB=10 settings allow trusted provisioning software (e.g.
software that handles DRM keys) to have private blobs that cannot be decapsulated or
encapsulated by software that runs later in the boot process, even if that software runs in
Trusted Mode.

As illustrated in Figure 13-1, typically the secure boot software would enter Trusted
Mode, then encapsulate or decapsulate all of its private blobs, and then would write either
a 01, 10 or 11 to PRIBLOB. For the remainder of the current power-on session, private
secure boot blobs could no longer be encapsulated or decapsulated. The secure boot
software would then either run provisioning software with the 10 or 01 setting, or would
skip the provisioning software and run the normal boot software with the 11 setting. If the
provisioning software runs, it would encapsulate or decapsulate its own private blobs and
then write 11 to PRIBLOB. At this point PRIBLOB=11 for the remainder of the current
power on session, and no software can encapsulate or decapsulate private secure boot
software blobs or either type of private provisioning blobs.

Figure 13-1. Process for Managing Private Blobs

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 743

13.3.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

M
P

C
U

R
V

E

M
P

M
R

L

R
es

er
ve

d

W

M
P

P
K

R
C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

V
IR

T
_E

N

R
es

er
ve

d

LC
K

_T
R

N
G

R
D

B

R
N

G
S

H
0

R
A

N
D

D
P

A
R

R
es

er
ve

d

P
R

IB
LO

B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.3.4 Fields

Field Function

31-28

MPCURVE

Manufacturing Protection Curve. This shows the elliptic curve that was selected when the MPPrivK
Generation protocol was run.

27

MPPKRC

Manufacturing Protection Private Key Register Clear. Writing a 1 to this bit clears the Manufacturing
Protection Private Key Register.

26

MPMRL

Manufacturing Protection Message Register Lock. Writing a 1 to this bit locks the Manufacturing
Protection Message Register for writing. The register remains locked until the next POR.

25-16

—

Reserved

15

VIRT_EN

Virtualization enable. Virtualization is disabled by default. Writing a 1 to this bit enables job ring
virtualization. When job ring virtualization in enabled, the Start_JRa bits in the JRSTART register must be
used to switch between writing the job ring registers in register page 0 and writing the job ring registers in
register pages 1....4.

Note that the LAMTD bit in the JRaICID register cannot be written unless VIRT_EN is 1.

14-12

—

Reserved

11

LCK_TRNG

Lock TRNG Program Mode. Writing a 1 to this bit locks the TRNG. That is, when this bit is set TRNG
can't go into program mode. If it is in program mode when this bit is set, the TRNG will immediately leave
program mode. Once this bit has been written to a 1, it cannot be changed to a 0 until the next power on
reset.

Table continues on the next page...

Security Configuration Register (SCFGR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

744 NXP Semiconductors

Field Function

10

RDB

Enable random data buffer. Set this bit to 1 to enable a buffer for data obtained from the RNG. This is a
196-byte buffer that is intended to improve performance when built-in protocols request random data to
be used for initialization vectors or padding. When the buffer contains 64 or fewer bytes of random data,
another 128 bytes is obtained from RNG State Handle 0. This bit would typically be set to 1 after any
boot-time RNG testing has been completed and State Handle 0 has been instantiated in non-
deterministic mode. Once this bit has been written to a 1, it cannot be changed to a 0 until the next power
on reset.

9

RNGSH0

Random Number Generator State Handle 0.

0b - When RNGSH0 is 0, RNG DRNG State Handle 0 can be instantiated in any mode. RNGSH0 is
set to 0 only for testing.
1b - When RNGSH0 is 1, RNG DRNG State Handle 0 cannot be instantiated in deterministic (test)
mode. RNGSHO should be set to 1 before the RNG is instantiated. If it is currently instantiated in a
deterministic mode, it will be un-instantiated. Once this bit has been written to a 1, it cannot be
changed to a 0 until the next power on reset.

8

RANDDPAR

Random Differential Power Analysis Resistance (DPAR) Mask. After RNGSH0 has been set and the
RNG has been instantiated, RANDPAR should be set to 1.

0b - The AESA DPAR Mask was seeded using the default deterministic seed. This mode is used
for testing.
1b - When RANDDPAR is written with a 1, the AESA DPAR Mask is reseeded from RNG DRNG
State Handle 0. This is the normal runtime mode. Once RANDDPAR has been written with a 1, it
cannot be changed to a 0 until the next power on reset.

7-2

—

Reserved

1-0

PRIBLOB

Private Blob. This field selects one of four different types of private blobs during Trusted Mode. All blobs
encapsulated or decapsulated during Trusted Mode will be of the type specified in this field, until a 1 is
written to any or the bits, or until the next POR. The bits of this field are "sticky", i.e. once a bit has been
written to a 1, it cannot be changed to a 0 until the next power on reset.

00b - private secure boot software blobs
01b - private provisioning type 1 blobs
10b - private provisioning type 2 blobs
11b - normal operation blobs

13.4 Job Ring a ICID Register - most significant half (JR0I
CID_MS - JR3ICID_MS)

13.4.1 Offset

For a = 0 to 3:

Register Offset Description

JRaICID_MS 10h + (a × 8h) used with job ring a

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 745

13.4.2 Function

There is one JRaICID register per job ring and it is used to indicate the Security Domain
that currently owns the job ring and to specify the ICID values that the SEC DMA asserts
when reading or writing memory on behalf of descriptors fetched from a particular job
ring.TrustZone SecureWorld can reserve a Job Ring for itself by setting the TZ bit to 1.
Note that TZ can be set to 1 only if the register is written using a SecureWorld bus
transaction. If the Job Ring is reserved by SecureWorld the Job Ring registers associated
with this ring can be written only via SecureWorld bus transactions. NonSecureWorld
writes to Job Ring registers reserved by SecureWorld will be ignored.

This register also contains a bit that grants permission for Trusted Descriptors to be
created in this job ring. If the job ring is owned by TrustZone SecureWorld (TZ=1), any
TrustedDescriptor created in this job ring is marked as a TrustZone Trusted Descriptor
(see TDES field in HEADER command. Once a TrustZone Trusted Descriptor has been
created, it can be executed in any job ring. If the job ring is not owned by TrustZone
SecureWorld, any Trusted Descriptor created in this job ring is marked as a
nonTrustZone Trusted Descriptor.

If virtualization mode is disabled in the Security Configuration register, the SDID field is
not writable and will remain at the default all-0 value.

13.4.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

LI
C

ID

R
es

er
ve

d

LA
M

T
D

A
M

T
D

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TZ Reserved SDID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Job Ring a ICID Register - most significant half (JR0ICID_MS - JR3ICID_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

746 NXP Semiconductors

13.4.4 Fields

Field Function

31

LICID

Lock ICIDs. Once LICID has been set, no further changes can be made to the LICID, SEQ_ICID or
NONSEQ_ICID fields until reset. The SDID field is not locked, and the AMTD is locked only if LAMTD=1.

30-18

—

Reserved

17

LAMTD

Lock AMTD. Once LAMTD has been set, no further changes can be made to the AMTD field. Note that
the LAMTD bit cannot be written unless virtualization mode is enabled (SCFGR[VIRT_EN]=1).

16

AMTD

Allow Make Trusted Descriptor.

If AMTD is set, the job ring associated with this register is permitted to issue jobs that create Trusted
Descriptors. When DECO encounters a descriptor header with the MTD bit set, the options specified in
the SIGNATURE command at the end of the descriptor determine whether DECO will execute the
commands in the descriptor, or append a signature to the descriptor, or both. If the job ring is owned by
TrustZone SecureWorld, the descriptor will be treated as a TrustZone Trusted Descriptor, otherwise the
descriptor will be treated as a non-SecureWorld Trusted Descriptor.

If AMTD is not set, then executing a descriptor with the MTD bit set in the descriptor's header will result in
an error, and no signature will be generated.

15

TZ

TrustZone SecureWorld. This bit can be written only by TrustZone SecureWorld (i.e. a bus transaction
with ns=0). If TZ=1, this job ring is owned by TrustZone SecureWorld and the SDID field is forced to all
0s. If TZ=0 this job ring is owned by non-SecureWorld and the SDID field is writable.

14-12

—

Reserved

11-0

SDID

Security Domain Identifier. If TZ=0, SDID indicates the Security Domain Identifier that owns this job ring.
The 12-bit SDID value is used to tag Black Keys, Blobs and Trusted Descriptors so they can be used only
by this Security Domain. If TZ=1, the SDID value is forced to all 0s and Black Keys, Blobs and Trusted
Descriptors are tagged with the special TrustZone SecureWorld tag. If virtualization mode is disabled, the
SDID is forced to all 0s.

13.5 Job Ring a ICID Register - least significant half (JR0I
CID_LS - JR3ICID_LS)

13.5.1 Offset

For a = 0 to 3:

Register Offset Description

JRaICID_LS 14h + (a × 8h) used with job ring a

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 747

13.5.2 Function

There is one JRaICID register per job ring and it is used to indicate the Security Domain
that currently owns the job ring and to specify the ICID values that the SEC DMA asserts
when reading or writing memory on behalf of descriptors fetched from a particular job
ring. TrustZone SecureWorld can reserve a Job Ring for itself by setting the TZ bit to 1.
Note that TZ can be set to 1 only if the register is written using a SecureWorld bus
transaction. If the Job Ring is reserved by SecureWorld the Job Ring registers associated
with this ring can be written only via SecureWorld bus transactions. NonSecureWorld
writes to Job Ring registers reserved by SecureWorld will be ignored.

This register also contains a bit that grants permission for Trusted Descriptors to be
created in this job ring. If the job ring is owned by TrustZone SecureWorld (TZ=1), any
Trusted Descriptor created in this job ring is marked as a TrustZone Trusted Descriptor
(see TDES field in HEADER command. Once a TrustZone Trusted Descriptor has been
created, it can be executed in any job ring. If the job ring is not owned by TrustZone
SecureWorld, any Trusted Descriptor created in this job ring is marked as a
nonTrustZone Trusted Descriptor. The SEQ_ICID and NONSEQ_ICID fields are
typically written at boot time and then locked.

If virtualization mode is disabled in the Security Configuration register, the SDID and
LAMTD fields are not writable, and the SDID will remain at the default all 0 value.

13.5.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved NONSEQ_ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved SEQ_ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.5.4 Fields

Field Function

31-28 Reserved

Table continues on the next page...

Job Ring a ICID Register - least significant half (JR0ICID_LS - JR3ICID_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

748 NXP Semiconductors

Field Function

—

27-16

NONSEQ_ICID

Job Ring Non-SEQ ICID. This field defines the ICID value asserted for DMA transactions associated with
external memory accesses for non-sequence commands, such as KEY, LOAD, and STORE. By default
the Job Descriptor is read using this ICID, although that behavior can be changed by setting the JDIS bit
in the corresponding job ring Configuration Register. Once the LICID bit in the JRaICID_MS register has
been set to 1, until reset no further changes can be made to the NONSEQ_ICID field.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

15-12

—

Reserved

11-0

SEQ_ICID

SEQ ICID. This field defines the ICID value asserted for DMA transactions associated with external
memory accesses for sequence commands, such as SEQ_KEY, SEQ_LOAD, and SEQ_STORE. Setting
the JDIS bit in the corresponding job ring Configuration Register will cause the Job Queue to use this
ICID for Job Descriptor reads. Once the LICID bit in the JRaICID_MS register has been set to 1, until
reset no further changes can be made to the SEQ ICID field.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.6 Queue Manager Interface SDID Register (QISDID)

13.6.1 Offset

Register Offset

QISDID 50h

13.6.2 Function

The QISDID Register is used to indicate the Security Domain that is associated with the
Queue Manager Interface. This SDID value is used to tag Black Keys and blobs that are
referenced by descriptors executed via the Queue Manager Interface.

If virtualization mode is disabled in the Security Configuration register, the SDID field is
not writable and will remain at the default all 0 value.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 749

13.6.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TZ Reserved SDID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.6.4 Fields

Field Function

31-16

—

Reserved

15

TZ

TrustZone SecureWorld. This bit can be written only by TrustZone SecureWorld (i.e. a bus transaction
with ns=0). If TZ=1, the Queue Manager Interface is associated with TrustZone SecureWorld and the
SDID field is forced to all 0s. If TZ=0 the Queue Manager Interface is associated with non-SecureWorld
and the SDID field is writable.

14-12

—

Reserved

11-0

SDID

Security Domain Identifier. If TZ=0, SDID indicates the Security Domain associated with the Queue
Manager Interface. The SDID value is used to tag Black Keys, Blobs and Trusted Descriptors so they can
be used only by this Security Domain. If TZ=1, the SDID value is forced to all 0s and Black Keys, Blobs
and Trusted Descriptors are tagged with the special TrustZone SecureWorld tag. If virtualization mode is
disabled, the SDID is forced to all 0s.

13.7 Debug Control Register (DEBUGCTL)

13.7.1 Offset

Register Offset

DEBUGCTL 58h

Debug Control Register (DEBUGCTL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

750 NXP Semiconductors

13.7.2 Function

The DEBUGCTL Register is used to stop SEC from processing jobs so that a consistent
read of the debug registers can be performed.

13.7.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

S
T

O
P

_A
C

K

S
T

O
P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.7.4 Fields

Field Function

31-18

—

Reserved

17

STOP_ACK

STOP_ACK will assert when the job queue controller and QI acknowledge that they are stopped.

16

STOP

STOP is written to 1 to request that SEC stop processing jobs. This is intended to be a graceful halt. SEC
will shut down in such a way that it will be able to resume processing where it left off once software has
finished reading the debug registers. Note that the RTIC watchdog timer will continue to run during the
halt. It is recommended that the DECO watchdog timer be turned off (see Master Config Register) prior to
stopping SEC in order to prevent a possible watchdog error from a job in a stopped DECO. When STOP
is asserted, the DECO Availability register can be used to monitor which DECOs are stopped or are
available.

15-0

—

Reserved.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 751

13.8 Job Ring Start Register (JRSTARTR)

13.8.1 Offset

Register Offset

JRSTARTR 5Ch

13.8.2 Function

The Job Ring Start register is used by the system software or TrustZone SecureWorld
when configuring a job ring for a new user. Before the job ring is configured for a new
user, the job ring must be in stop mode. Before the new user can set up the job ring and
begin using it, the job ring must be in start mode.

The Job Ring Start register is not used and is not writable when virtualization mode is
disabled in the Security Configuration register. All bits in this register will remain at the
default 0 value when virtualization mode is disabled.

13.8.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

S
ta

rt
_J

R
3

S
ta

rt
_J

R
2

S
ta

rt
_J

R
1

S
ta

rt
_J

R
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.8.4 Fields

Field Function

31-4 Reserved

Table continues on the next page...

Job Ring Start Register (JRSTARTR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

752 NXP Semiconductors

Field Function

—

3

Start_JR3

Start Job Ring 3. This bit is not writable if virtualization mode is disabled (SCFGR[VIRT_EN]=0).If Job
Ring 3 is allocated to TrustZone SecureWorld (JR3ICID[TZ]=1), Start_JR3 can be changed only by
writing to JRSTARTR via a bus transaction that has ns=0.

0b - Stop Mode. The JR3ICID register for Job Ring 3 can be written but the IRBAR, IRSR, IRSAR,
IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 3 are NOT accessible. If Job
Ring 3 is allocated to TrustZone SecureWorld (JR3ICID[TZ]=1), the JR3ICID register can be written
only via a bus transaction that has ns=0.
1b - Start Mode. The JR3ICID register for Job Ring 3 CANNOT be written but the IRBAR, IRSR,
IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 3 ARE accessible. If
Job Ring 3 is allocated to TrustZone SecureWorld (JR3ICID[TZ]=1), then the IRBAR, IRSR,
IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR registers for Job Ring 3 can be
written only via a bus transaction that has ns=0.

2

Start_JR2

Start Job Ring 2. This bit is not writable if virtualization mode is disabled (SCFGR[VIRT_EN]=0).If Job
Ring 2 is allocated to TrustZone SecureWorld (JR2ICID[TZ]=1), Start_JR2 can be changed only by
writing to JRSTARTR via a bus transaction that has ns=0.

0b - Stop Mode. The JR2ICID register for Job Ring 2 can be written but the IRBAR, IRSR, IRSAR,
IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 2 are NOT accessible. If Job
Ring 2 is allocated to TrustZone SecureWorld (JR2ICID[TZ]=1), the JR2ICID register can be written
only via a bus transaction that has ns=0.
1b - Start Mode. The JR2ICID register for Job Ring 2 CANNOT be written but the IRBAR, IRSR,
IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 2 ARE accessible. If
Job Ring 2 is allocated to TrustZone SecureWorld (JR2ICID[TZ]=1), then the IRBAR, IRSR,
IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR registers for Job Ring 2 can be
written only via a bus transaction that has ns=0.

1

Start_JR1

Start Job Ring 1. This bit is not writable if virtualization mode is disabled (SCFGR[VIRT_EN]=0).If Job
Ring 1 is allocated to TrustZone SecureWorld (JR1ICID[TZ]=1), Start_JR1 can be changed only by
writing to JRSTARTR via a bus transaction that has ns=0.

0b - Stop Mode. The JR1ICID register for Job Ring 1 can be written but the IRBAR, IRSR, IRSAR,
IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 1 are NOT accessible. If Job
Ring 1 is allocated to TrustZone SecureWorld (JR1ICID[TZ]=1), the JR1ICID register can be written
only via a bus transaction that has ns=0.
1b - Start Mode. The JR1ICID register for Job Ring 1 CANNOT be written but the IRBAR, IRSR,
IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 1 ARE accessible. If
Job Ring 1 is allocated to TrustZone SecureWorld (JR1ICID[TZ]=1), then the IRBAR, IRSR,
IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR registers for Job Ring 1 can be
written only via a bus transaction that has ns=0.

0

Start_JR0

Start Job Ring 0. This bit is not writable if virtualization mode is disabled (SCFGR[VIRT_EN]=0).If Job
Ring 0 is allocated to TrustZone SecureWorld (JR0ICID[TZ]=1), Start_JR0 can be changed only by
writing to JRSTARTR via a bus transaction that has ns=0.

0b - Stop Mode. The JR0ICID register for Job Ring 0 can be written but the IRBAR, IRSR, IRSAR,
IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 0 are NOT accessible. If Job
Ring 0 is allocated to TrustZone SecureWorld (JR0ICID[TZ]=1), the JR0ICID register can be written
only via a bus transaction that has ns=0.
1b - Start Mode. The JR0ICID register for Job Ring 0 CANNOT be written but the IRBAR, IRSR,
IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR for Job Ring 0 ARE accessible. If
Job Ring 0 is allocated to TrustZone SecureWorld (JR0ICID[TZ]=1), then the IRBAR, IRSR,
IRSAR, IRJAR, ORBAR, ORSR, ORJRR, ORSFR and JRSTAR registers for Job Ring 0 can be
written only via a bus transaction that has ns=0.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 753

13.9 RTIC ICID Register for Block a - most significant half
(RTICAICID_MS - RTICDICID_MS)

13.9.1 Offset

For a = A to D (0 to 3):

Register Offset Description

RTICaICID_MS 60h + (a × 8h) used with Block a

13.9.2 Function

There is one RTICaICID register per RTIC hash block. The RTIC ICID Register is used
to specify the AXI bus ICID value that the SEC DMA asserts when reading a particular
RTIC hash block from memory external to SEC. This register is typically written at boot
time and then locked.

13.9.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

LC
K

T
Z

C
T

L

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.9.4 Fields

Field Function

31

LCK

RTIC ICID Lock. Once LCK has been set, no further changes can be made to RTICICID (including
changes to LCK) until the next POR.

Table continues on the next page...

RTIC ICID Register for Block a - most significant half (RTICAICID_MS - RTICDICID_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

754 NXP Semiconductors

Field Function

30

TZCTL

TrustZone Control. The TZCTL field exists only in the RTICAICID register. This bit is reserved in
RTICBICID, RTICCICID, and RTICDICID. The TZCTL bit can be written only if ips_nonsecure_access=0
(i.e. only via a TrustZone SecureWorld bus transaction). Software sets the TZCTL bit to 1 to indicate that
TrustZone SecureWorld owns RTIC. If TZCTL=1 the RTIC registers (offsets 60h ... 7Ch and offsets
60000h .. 6FFFFh can be written only via a TrustZone SecureWorld bus transaction. If TZCTL=1 the
RTICICID[TZ] bits can be written with either a 1 or a 0 (i.e. TrustZone SecureWorld software can decide
whether SecureWorld or NonSecureWorld bus transactions are asserted for a particular RTIC memory
block). If TZCTL=0 all RTICICID[TZ] bits are forced to 0 and all RTIC bus transactions are
NonSecureWorld.

29-0

—

Reserved

13.10 RTIC ICID Register for Block a - least significant half
(RTICAICID_LS - RTICDICID_LS)

13.10.1 Offset

For a = A to D (0 to 3):

Register Offset Description

RTICaICID_LS 64h + (a × 8h) used with Block a

13.10.2 Function

There is one RTICaICID register per RTIC hash block. The RTIC ICID Register is used
to specify the AXI bus ICID value that the SEC DMA asserts when reading a particular
RTIC hash block from memory external to SEC. This register is typically written at boot
time and then locked.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 755

13.10.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved R_ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.10.4 Fields

Field Function

31-12

—

Reserved

11-0

R_ICID

RTIC ICID. This field defines the ICID value asserted when RTIC accesses the addresses in the hash
block a regions of memory.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.11 DECO Request Source Register (DECORSR)

13.11.1 Offset

Register Offset

DECORSR 94h

13.11.2 Function

The DECO Request Source Register is used to indicate a particular job ring whose
JRaICID register will be used to supply the ICID, TZ and SDID values when descriptor
commands are executed under direct software control. The selected job ring will be used
for all DECOs that are presently under direct software control regardless of whether those

DECO Request Source Register (DECORSR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

756 NXP Semiconductors

DECOs were requested via a single write or via multiple writes to the DECO Request
Register. The DECO Request Source Register is writable only when all bits in the DECO
Request Register are 0 (i.e. no DECOs are requested or already under direct software
control). If the job ring selected via the DECORSR is later changed to stop mode, all
DECOs that are under direct software control are reset and returned to the pool of
DECOs available for processing normal jobs.

Note that the DECO Request Source register is not used and is not writable when
virtualization is disabled.

13.11.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

V
A

LI
D

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved JR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.11.4 Fields

Field Function

31

VALID

Valid. This bit will be set to 1 to indicate that the JR field contains a valid job ring number. If an invalid job
ring number is written to JR, the VALID bit will be 0. The VALID bit will always remain 0 if virtualization
mode is disabled.

30-2

—

Reserved

1-0

JR

Job Ring number. This job ring's JRaICID register will be used to supply the ICID, TZ and SDID values
when decriptor commands are executed under direct software control. If the specified job ring is not
implemented or not in start mode, the JR field will not be changed and the VALID bit will remain 0. If the
DECORSR is written via a bus transaction that has ns=0, any implemented job ring can be selected. But
if the bus transaction has ns=1, then only job rings with TZ=0 can be selected. If a TrustZone job ring
number is written via an ns=1 bus write to DECORSR the JR field will not be changed and the VALID bit
will remain 0. This field is not writable if virtualization mode is disabled.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 757

13.12 DECO Request Register (DECORR)

13.12.1 Offset

Register Offset

DECORR 9Ch

13.12.2 Function

This register is used when software wants to bypass the normal job queue controller
mechanism and directly access one of DECO/CCB blocks. This interface would normally
be used only for debugging and testing purposes since it is not as efficient as the Queue
Manager Interface or Job Ring Interface. Note that multiple DECOs can be requested via
a single write to DECORR, and additional DECOs can be requested by writing to
DECORR multiple times. DECORR may be written only when all DECOs that have been
requested have had that access granted (DENn=RQDn). The procedure for directly
accessing a DECO/CCB block is described in detail in Register-based service interface.

Note that, unless virtualization mode is disabled in the Security Configuration register, a
job ring that is in the start mode must be selected via the DECO Request Source Register
prior to requesting a DECO via DECORR. If the DECO Request Source Register's
VALID bit is not set, or if the selected job ring is not in start mode, the DECO Request
Register cannot be written. The ICID, TZ and SDID value from the selected job ring's
JRaICID register will be used when descriptor commands are executed under direct
software control. If the job ring selected via the DECORSR is later changed to stop
mode, all DECOs that are under direct software control are reset and returned to the pool
of DECOs available for processing normal jobs.

If virtualization mode is disabled the DECO ICID registers supply the ICID values used
when descriptor commands are executed under direct software control, and an all-zero
SDID is used. The DECO Request Source register is not used when virtualization is
disabled.

DECO Request Register (DECORR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

758 NXP Semiconductors

13.12.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

D
E

N
2

D
E

N
1

D
E

N
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
Q

D
2

R
Q

D
1

R
Q

D
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.12.4 Fields

Field Function

31-19

—

Reserved. Always 0.

18

DEN2

The job queue controller asserts this bit when permission is granted for the software to directly access
DECO 2/CCB 2.

17

DEN1

The job queue controller asserts this bit when permission is granted for the software to directly access
DECO 1/CCB 1.

16

DEN0

The job queue controller asserts this bit when permission is granted for the software to directly access
DECO 0/CCB 0.

15-3

—

Reserved. Always 0.

2

RQD2

This bit is set by software to request direct access to DECO 2/CCB 2. It cannot be cleared until the direct
access operation is complete or SEC gets a software reset.

1

RQD1

This bit is set by software to request direct access to DECO 1/CCB 1. It cannot be cleared until the direct
access operation is complete or SEC gets a software reset.

0

RQD0

This bit is set by software to request direct access to DECO 0/CCB 0. It cannot be cleared until the direct
access operation is complete or SEC gets a software reset.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 759

13.13 DECOa ICID Register - most significant half (DECO0ICI
D_MS - DECO2ICID_MS)

13.13.1 Offset

For a = 0 to 2:

Register Offset Description

DECOaICID_MS A0h + (a × 8h) used with DECOa

13.13.2 Function

This register is used when virtualization is disabled via the VIRT_EN bit in the Security
Configuration Register. In that case this register specifies various bus signal values that
SEC's DMA will assert when a DECO is under direct software control. When
virtualization is enabled, this register is not used and instead the DECO Request Source
Register is used to select one of the Job Rings whose JRaICID register will supply these
bus signal values. The DECO ICID register is used to specify the ICID values that the
SEC DMA asserts when reading or writing memory on behalf of a DECO that is under
the direct control of software. This register is intended to be written by the same
processor that writes to the DECORR.

13.13.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
LCK Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DECOa ICID Register - most significant half (DECO0ICID_MS - DECO2ICID_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

760 NXP Semiconductors

13.13.4 Fields

Field Function

31

LCK

Lock. Once LCK is set, no further changes can be made to DECOaICID (including any changes to LCK).
LCK is not writable when virtualization mode is enabled.

30-0

—

Reserved

13.14 DECOa ICID Register - least significant half (DECO0ICI
D_LS - DECO2ICID_LS)

13.14.1 Offset

For a = 0 to 2:

Register Offset Description

DECOaICID_LS A4h + (a × 8h) used with DECOa

13.14.2 Function

This register is used when virtualization is disabled via the VIRT_EN bit in the Security
Configuration Register. In that case this register specifies various bus signal values that
SEC's DMA will assert when a DECO is under direct software control. When
virtualization is enabled, this register is not used and instead the DECO Request Source
Register is used to select one of the Job Rings whose JRaICID register will supply these
bus signal values. The DECO ICID register is used to specify the ICID values that the
SEC DMA asserts when reading or writing memory on behalf of a DECO that is under
the direct control of software. This register is intended to be written by the same
processor that writes to the DECORR.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 761

13.14.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved DNSEQ_ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved DSEQ_ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.14.4 Fields

Field Function

31-28

—

Reserved

27-16

DNSEQ_ICID

DECO Non-SEQ ICID. This field defines the ICID value asserted for DMA transactions associated with
external memory accesses for non-sequence commands, such as KEY, LOAD, and STORE, when this
DECO is under the direct control of software.

This field is not writable when virtualization mode is enabled.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

15-12

—

Reserved

11-0

DSEQ_ICID

DECO SEQ ICID. This field defines the ICID value asserted for DMA transactions associated with
external memory accesses for sequence commands, such as SEQ_KEY, SEQ_LOAD, and
SEQ_STORE, when this DECO is under the direct control of software.

This field is not writable when virtualization mode is enabled.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.15 DECO Availability Register (DAR)

13.15.1 Offset

Register Offset

DAR 120h

DECO Availability Register (DAR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

762 NXP Semiconductors

13.15.2 Function

The DECO Availability Register can be used to determine whether DECOs are hung. If
software writes a 1 to the DECO's NYA field, the corresponding DECO will clear that bit
whenever the DECO is, or becomes, available. The bit can be polled to determine if the
DECO is completing jobs. If STOP is asserted in the DEBUG Control register, the DECO
Availability Register cannot be written. While STOP is asserted DECO Availability
provides a status for whether each DECO is stopped or available. Any bit that is zero in
this case indicates a DECO that is still running and needs to stop before the Debug
Control Register can assert STOP_ACK.

13.15.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

N
Y

A
2

N
Y

A
1

N
Y

A
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.15.4 Fields

Field Function

31-3

—

Reserved. Always 0.

2

NYA2

This bit is set by software to start polling for the availability of DECO 2. This bit will be reset when DECO
2 is or becomes, available.

1

NYA1

This bit is set by software to start polling for the availability of DECO 1. This bit will be reset when DECO
1 is or becomes, available.

0

NYA0

This bit is set by software to start polling for the availability of DECO 0. This bit will be reset when DECO
0 is or becomes, available.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 763

13.16 DECO Reset Register (DRR)

13.16.1 Offset

Register Offset

DRR 124h

13.16.2 Function

The DECO Reset Register can be used to force a soft reset of one or more DECOs with
appropriate status write back (error code 20h). Note that using this can result in lost DMA
transactions and/or memory leaks. In some cases a soft reset of a DECO will not result in
a status write back, or may not free a hung DECO. If a hung DECO cannot be freed via a
soft DECO reset, then a software SEC reset or a POR will be required.

13.16.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

W

R
S

T
2 R

S
T

1 R
S

T
0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.16.4 Fields

Field Function

31-3 Reserved. Always 0.

Table continues on the next page...

DECO Reset Register (DRR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

764 NXP Semiconductors

Field Function

—

2

RST2

Software writes a 1 to this bit to initiate a soft reset of DECO 2. This bit is self-clearing after one Clock
cycle.

1

RST1

Software writes a 1 to this bit to initiate a soft reset of DECO 1. This bit is self-clearing after one clock
cycle.

0

RST0

Software writes a 1 to this bit to initiate a soft reset of DECO 0. This bit is self-clearing after one clock
cycle.

13.17 DMA Control Register (DMAC - DMA_CTRL)

13.17.1 Offset

Register Offset Description

DMAC 204h DMA_CTRL is an alias of DMAC. DMAC is provided
only for backward compatibility. Its usage is
deprecated.

DMA_CTRL 504h For new software the usage of DMA_CTRL is
preferred over DMAC.

13.17.2 Function

The DMA Control register is used to configure the behavior of the DMA engine.

NOTE
Note that for backward compatibility the same registers are
readable at two different addresses. The preferred addresses are
in the range 00500..005FF. Usage of the legacy addresses in the
range 00240..002CF is deprecated.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 765

13.17.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved WSE RSE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

13.17.4 Fields

Field Function

31-2

—

Reserved

1

WSE

Write Safe Enable. When WSE=1, the Write Safe feature is enabled for the DMA engine(s). When
WSE=0, the Write Safe feature is disabled for the DMA engine(s). (see DMA interface write-safe
transactions

0

RSE

Read Safe Enable. When RSE=1, the Read Safe feature is enabled for the DMA engine(s). When
RSE=0, the Read Safe feature is disabled for the DMA engine(s). (see DMA read-safe transactions

13.18 Peak Bandwidth Smoothing Limit Register (PBSL)

13.18.1 Offset

Register Offset

PBSL 220h

13.18.2 Function

The Peak Bandwidth Smoothing Limit Register is used to limit the maximum bus
bandwidth consumed by SEC.

Peak Bandwidth Smoothing Limit Register (PBSL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

766 NXP Semiconductors

13.18.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PBSL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.18.4 Fields

Field Function

31-7

—

Reserved

6-0

PBSL

Whenever the number of outstanding AXI read bursts exceeds the value programmed in this field, the QI
and Job Rings will be prevented from issuing additional AXI reads. While the number of outstanding AXI
read burst exceeds the PBSL, DECOs may continue to issue additional AXI read requests. The QI and
Job Rings will be allowed to issue additional AXI reads only when the number of outstanding AXI read
bursts drops to, or below, the PBSL. Throttling the AXI reads reduces the SEC peak bandwidth on the
AXI bus, and giving priority to DECOs improves SEC performance when SEC is heavily loaded with jobs.
A limit of PBSL=0 indicates that no AXI read smoothing will be performed.

13.19 DMA0_AIDL_MAP_MS (DMA0_AIDL_MAP_MS)

13.19.1 Offset

Register Offset Description

DMA0_AIDL_MAP_MS 240h Mapping for DMA AXI IDs 7 ... 4

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 767

13.19.2 Function

The four registers DMAn_AIDL_MAP_MS, DMAn_AIDL_MAP_LS,
DMAn_AIDM_MAP_MS and DMAn_AIDM_MAP_LS show the mapping of AXI
transaction IDs to SEC internal blocks. These assignments are made via hardwired
signals and are SoC-specific. The value of each 8-bit field indicates the internal ID of the
SEC block that will use the AXI ID corresponding to the field. For example,
AID2BID=00001000 means that AXI ID 2 (0010) will be used for all AXI transactions
by DECO0 (internal block ID 00001000). (Note that the DMAn AXI ID Enable Register
shows which of the 16 possible AXI transaction IDs are available for use by the DMA. If
a particular AXI transaction ID is disabled, then the corresponding AIDxBID field will
read as 00000000.)

NOTE
The values read from this register are determined by hardwired
inputs to SEC and are SoC-specific.

The SEC internal block IDs are encoded as follows:

Internal Block
ID

Internal Logic Block

00000001b Job Rings (The block ID for Job Ring 0 is used to represent all of the Job
Rings.)

00000100b Burst Buffer

00000111b Queue Interface

00001000b DECO0

00001001b DECO1

00001010b DECO2

All other values are reserved.

NOTE
For backward compatibility the same registers are readable at
two different addresses. The preferred addresses are in the
range 00500..005FF. The addresses in the range 00240..002CF
are deprecated.

DMA0_AIDL_MAP_MS (DMA0_AIDL_MAP_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

768 NXP Semiconductors

13.19.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID7_BID AID6_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID5_BID AID4_BID

W

Reset u u u u u u u u u u u u u u u u

13.19.4 Fields

Field Function

31-24

AID7_BID

This field shows the SEC Block ID that uses AXI ID 7.

23-16

AID6_BID

This field shows the SEC Block ID that uses AXI ID 6.

15-8

AID5_BID

This field shows the SEC Block ID that uses AXI ID 5.

7-0

AID4_BID

This field shows the SEC Block ID that uses AXI ID 4.

13.20 DMA0_AIDL_MAP_LS (DMA0_AIDL_MAP_LS)

13.20.1 Offset

Register Offset Description

DMA0_AIDL_MAP_LS 244h Mapping for DMA AXI IDs 3 ... 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 769

13.20.2 Function

The four registers DMAn_AIDL_MAP_MS, DMAn_AIDL_MAP_LS,
DMAn_AIDM_MAP_MS and DMAn_AIDM_MAP_LS show the mapping of AXI
transaction IDs to SEC internal blocks. See the description for register
DMAn_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to SEC and are SoC-specific.

13.20.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID3_BID AID2_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID1_BID AID0_BID

W

Reset u u u u u u u u u u u u u u u u

13.20.4 Fields

Field Function

31-24

AID3_BID

This field shows the SEC Block ID that uses AXI ID 3.

23-16

AID2_BID

This field shows the SEC Block ID that uses AXI ID 2.

15-8

AID1_BID

This field shows the SEC Block ID that uses AXI ID 1.

7-0

AID0_BID

This field shows the SEC Block ID that uses AXI ID 0.

DMA0_AIDM_MAP_MS (DMA0_AIDM_MAP_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

770 NXP Semiconductors

13.21 DMA0_AIDM_MAP_MS (DMA0_AIDM_MAP_MS)

13.21.1 Offset

Register Offset Description

DMA0_AIDM_MAP_MS 248h Mapping for DMA AXI IDs 15 ... 12

13.21.2 Function

The four registers DMAn_AIDL_MAP_MS, DMAn_AIDL_MAP_LS,
DMAn_AIDM_MAP_MS and DMAn_AIDM_MAP_LS show the mapping of AXI
transaction IDs to SEC internal blocks. See the description for register
DMAn_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to SEC and are SoC-specific.

13.21.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID15_BID AID14_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID13_BID AID12_BID

W

Reset u u u u u u u u u u u u u u u u

13.21.4 Fields

Field Function

31-24

AID15_BID

This field shows the SEC Block ID that uses AXI ID 15.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 771

Field Function

23-16

AID14_BID

This field shows the SEC Block ID that uses AXI ID 14.

15-8

AID13_BID

This field shows the SEC Block ID that uses AXI ID 13.

7-0

AID12_BID

This field shows the SEC Block ID that uses AXI ID 12.

13.22 DMA0_AIDM_MAP_LS (DMA0_AIDM_MAP_LS)

13.22.1 Offset

Register Offset Description

DMA0_AIDM_MAP_LS 24Ch Mapping for DMA AXI IDs 11 ... 8

13.22.2 Function

The four registers DMAn_AIDL_MAP_MS, DMAn_AIDL_MAP_LS,
DMAn_AIDM_MAP_MS and DMAn_AIDM_MAP_LS show the mapping of AXI
transaction IDs to SEC internal blocks. See the description for register
DMAn_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to SEC and are SoC-specific.

DMA0_AIDM_MAP_LS (DMA0_AIDM_MAP_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

772 NXP Semiconductors

13.22.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID11_BID AID10_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID9_BID AID8_BID

W

Reset u u u u u u u u u u u u u u u u

13.22.4 Fields

Field Function

31-24

AID11_BID

This field shows the SEC Block ID that uses AXI ID 11.

23-16

AID10_BID

This field shows the SEC Block ID that uses AXI ID 10.

15-8

AID9_BID

This field shows the SEC Block ID that uses AXI ID 9.

7-0

AID8_BID

This field shows the SEC Block ID that uses AXI ID 8.

13.23 DMA0 AXI ID Enable Register (DMA0_AID_ENB)

13.23.1 Offset

Register Offset Description

DMA0_AID_ENB 250h Use of this register alias is deprecated. Instead, use
the register alias DMA_X_AID_15_0_EN

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 773

13.23.2 Function

The DMA AXI ID Enable register can be read to determine which AXI transaction IDs
are available for use by the DMAs. These enables are configured via hardwired signals
and are SOC-specific. The DMA will use a unique AXI ID for each SEC internal
connected to it. The assignments are made using the lowest-numbered, available IDs.

NOTE
Note that for backward compatibility the same register is
readable at two different addresses.

NOTE
The values read from this register are determined by hardwired
inputs to SEC and are SoC-specific.

13.23.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
ID

15
E

A
ID

14
E

A
ID

13
E

A
ID

12
E

A
ID

11
E

A
ID

10
E

A
ID

9E

A
ID

8E

A
ID

7E

A
ID

6E

A
ID

5E

A
ID

4E

A
ID

3E

A
ID

2E

A
ID

1E

A
ID

0E

W

Reset u u u u u u u u u u u u u u u u

13.23.4 Fields

Field Function

31-16

—

Reserved.

15

AID15E

If AID15E=1 then AXI ID 15 is enabled for this DMA engine.

14

AID14E

If AID14E=1 then AXI ID 14 is enabled for this DMA engine.

13 If AID13E=1 then AXI ID 13 is enabled for this DMA engine.

Table continues on the next page...

DMA0 AXI ID Enable Register (DMA0_AID_ENB)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

774 NXP Semiconductors

Field Function

AID13E

12

AID12E

If AID12E=1 then AXI ID 12 is enabled for this DMA engine.

11

AID11E

If AID11E=1 then AXI ID 11 is enabled for this DMA engine.

10

AID10E

If AID10E=1 then AXI ID 10 is enabled for this DMA engine.

9

AID9E

If AID9E=1 then AXI ID 9 is enabled for this DMA engine.

8

AID8E

If AID8E=1 then AXI ID 8 is enabled for this DMA engine.

7

AID7E

If AID7E=1 then AXI ID 7 is enabled for this DMA engine.

6

AID6E

If AID6E=1 then AXI ID 6 is enabled for this DMA engine.

5

AID5E

If AID5E=1 then AXI ID 5 is enabled for this DMA engine.

4

AID4E

If AID4E=1 then AXI ID 4 is enabled for this DMA engine.

3

AID3E

If AID3E=1 then AXI ID 3 is enabled for this DMA engine.

2

AID2E

If AID2E=1 then AXI ID 2 is enabled for this DMA engine.

1

AID1E

If AID1E=1 then AXI ID 1 is enabled for this DMA engine.

0

AID0E

If AID0E=1 then AXI ID 0 is enabled for this DMA engine.

13.24 DMA0 AXI Read Timing Check Register (DMA0_ARD_
TC)

13.24.1 Offset

Register Offset Description

DMA0_ARD_TC 260h The addresses of the two halves of the register are
unaffected by the endianness configuration.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 775

13.24.2 Function

When AXI Read Timing Checks are enabled, the DMA measures the latencies of selected
AXI read transactions. A timer measures the latency by counting the number of AXI
clock cycles from the read address transaction to the beginning of the corresponding read
data transaction. The sample count is incremented and, if the latency equals or exceeds
the programmed limit, the late count is incremented. The latency value is added to the
running total of latencies. After completion of each timing check, the process is repeated
for the next AXI read. Timing checks are suspended when:

• the AXI read sample count value reaches FFFFFh, or
• the AXI read latency total reaches FFFFFFFFh, or
• the AXI Read Timing Check Register is read

After the AXI Read Latency Register is read, the sample count, late count, and latency
total are cleared and read timing checks resume with the next AXI read.

NOTE
Note that the DMA_X_ARTC_CTL register located in the
address range 00530..005DF provides functionality similar to
the DMAn_ARD_TC register located in the address range
00260..002EF. Writing to either register affects the
corresponding fields in the other register. But note that some
fields in the DMAn_ARD_TC register have been rearranged in
the DMA_X_ARTC_CTL register or moved to the new
DMA_X_ARTC_LC register or DMA_X_ARTC_SC register.
The preferred registers are located in the address range
00530..005DF. The use of the DMAn_ARD_TC register
located in the address range 00260..002EF is deprecated.

DMA0 AXI Read Timing Check Register (DMA0_ARD_TC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

776 NXP Semiconductors

13.24.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R

A
R

T
C

E

A
R

C
T

A
R

T
T

A
R

T
L

A
R

L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved ARLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ARLC Reserved ARSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ARSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.24.4 Fields

Field Function

63

ARTCE

AXI Read Timing Check Enable. When ARTCE=0, ARL, ARLC, and ARSC in DMAn_ARD_TC and SARL
in DMAn_SARL and ARL in DMA_X_ARTC_CTL, ARLC in DMA_X_ARTC_LC, ARSC in
DMA_X_ARTC_SC and SARL in DMA_X_ARTC_LC are writeable. When ARTCE=1, AXI read timing
checks are enabled and these fields are read-only. Note that writing ARTCE in either DMAn_ARD_TC or
DMA_X_ARTC_CTL has the same effect.

62

ARCT

AXI Read Counter Test. When ARCT=1, ARLC and ARSC in DMAn_ARD_TC, ARLC in
DMA_X_ARTC_LC, ARSC in DMA_X_ARTC_SC, and SARL in DMAn_SARL and DMA_X_ARTC_LC,
are not cleared when timing checks are enabled and when timing checks resume after reading
DMAn_ARD_TC and DMAn_SARL or DMA_X_ARTC_LC, DMA_X_ARTC_SC and DMA_X_SARL. This
bit is used only for manufacturing test. It allows the counters to be initialized to non-zero values for the
start of timing checks. This shortens the counting range so that terminal count behavior can be tested.

61

ARTT

AXI Read Timer Test. When ARTT=1, the 12-bit timer used for each timing measurement is initialized to
FF0h instead of 000h. This bit is used only for manufacturing test. The timer counts the number of AXI
clock cycles from the AXI read address transaction to the beginning of the corresponding read data
transaction. The count can optionally be modified to count until the last beat of data instead of the first by
setting the ARTL (AXI Read Timer Last) bit. The test bit shortens the number of cycles to reach the
terminal value FFFh. The timer stops at the terminal value until the next timing check starts. Note that bit
field ARTT in the DMAn_ARD_TC register is aliased to bit field ARTT in the DMA_X_ARTC_CTL register,
i.e. writing to either ARTT bit field alters the ARTT value in the other register.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 777

Field Function

60

ARTL

AXI Read Timer Last. This bit controls whether the last or first beat of data signals the end of a
transaction's counter measurement.

0b - A read transaction counter measurement is stopped when the first beat of data arrives

1b - A read transaction counter measurement is stopped when the last beat of data arrives

59-48

ARL

AXI Read Limit. The AXI Read Timer measures latency by counting the number of AXI clock cycles from
the AXI read address transaction to the beginning of the corresponding read data transaction. If the
latency equals or exceeds the AXI Read Limit, the read response is considered late and the AXI Read
Late Count (ARLC) is incremented along with the AXI Read Sample Count (ARSC). The latency is added
to the Sum of AXI Read Latencies (SARL) in DMAn_SARL /DMA_X_ARTC_LAT. This field is writeable
only when ARTCE=0.Note that bit field ARL in the DMAn_ARD_TC register is aliased to bit field ARL in
the DMA_X_ARTC_CTL register, i.e. writing to either ARL bit field alters the ARL value in the other
register.

47-44

—

Reserved

43-24

ARLC

AXI Read Late Count. This field is incremented whenever the AXI Read Timer equals or exceeds the AXI
Read Limit. AXI read timing checks are suspended when ARLC=FFFFFh. This field is writeable only
when ARTCE=0.

23-20

—

Reserved

19-0

ARSC

AXI Read Sample Count. This field is incremented after each read timing check. AXI read timing checks
are suspended when ARSC=FFFFFh. This field is writeable only when ARTCE=0.

13.25 DMA0 Read Timing Check Latency Register (DMA0_
ARD_LAT)

13.25.1 Offset

Register Offset

DMA0_ARD_LAT 26Ch

13.25.2 Function

While AXI Read Timing Checks are enabled and not suspended, this register maintains a
running total of AXI read latencies.

NOTE
Note that the DMAn_ARTC_LAT register located in the
address range 0053C..005DF is identical to the DMAn_SARL

DMA0 Read Timing Check Latency Register (DMA0_ARD_LAT)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

778 NXP Semiconductors

register located in the address range 00260..002EF. The register
has simply been given two different addresses in order to
consolidate legacy registers and new registers into two different
continuous address ranges. Some registers in the 00500 address
range have been reorganized to facilitate operation in both big-
endian and little-endian SoCs.

13.25.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SARL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SARL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.25.4 Fields

Field Function

31-0

SARL

Sum of the AXI Read Latencies. After each AXI read timing check, the latency is added to the Sum of AXI
Read Latencies (SARL) in DMAn_SARL. This field is writeable only when ARTCE=0.

13.26 DMA0 AXI Write Timing Check Register (DMA0_AWR_
TC)

13.26.1 Offset

Register Offset Description

DMA0_AWR_TC 270h The addresses of the two halves of the register are
unaffected by the endianness configuration.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 779

13.26.2 Function

When AXI Write Timing Checks are enabled, the DMA measures the latencies of
selected AXI write transactions. A timer measures the latency by counting the number of
AXI clock cycles from the write address transaction to the write response. The sample
count is incremented and, if the latency equals or exceeds the programmed limit, the late
count is incremented. This count can optionally be modified to count until the last beat of
data by setting the ARTL (AXI Read Timer Last) bit. The latency value is added to the
running total of latencies. After completion of each timing check, the process is repeated
for the next AXI write. Timing checks are suspended when:

• the AXI write sample count value reaches FFFFFh, or
• the AXI write latency total reaches FFFFFFFFh, or
• the AXI Write Timing Check Register is read

After the AXI Write Latency Register is read, the sample count, late count, and latency
total are cleared and write timing checks resume with the next AXI write.

NOTE
Note that the DMA_X_AWTC_CTL register located in the
address range 00540..005DF provides functionality similar to
the DMAn_AWR_TC register located in the address range
00270..002EF. Writing to either register affects the
corresponding fields in the other register. But note that some
fields in the DMAn_AWR_TC register have been rearranged in
the DMA_X_AWTC_CTL register or moved to the new
DMA_X_TC_SAWL register or DMA_X_AWTC_SC register.
The preferred registers are located in the address range
00540..005DF. The use of the DMAn_AWR_TC register
located in the address range 00270..002EF is deprecated.

DMA0 AXI Write Timing Check Register (DMA0_AWR_TC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

780 NXP Semiconductors

13.26.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R

A
W

T
C

E

A
W

C
T

A
W

T
T

R
es

er
ve

d

A
W

L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved AWLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
AWLC Reserved AWSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
AWSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.26.4 Fields

Field Function

63

AWTCE

AXI Write Timing Check Enable. When AWTCE=0, AWL, AWLC, and AWSC in DMAn_AWR_TC and
SAWL in DMAn_AWL and AWL in DMA_X_AWTC_CTL, AWLC in DMA_X_TC_SAWL, AWSC in
DMA_X_AWTC_SC and SAWL in DMA_X_TC_SAWL are writeable. When AWTCE=1, AXI write timing
checks are enabled and these fields are read-only. Note that writing AWTCE in either DMAn_AWR_TC or
DMA_X_AWTC_CTL has the same effect.

62

AWCT

AXI Write Counter Test. When AWCT=1, AWLC and AWSC in DMAn_AWR_TC, AWLC in
DMA_X_TC_SAWL, AWSC in DMA_X_AWTC_SC, and SAWL in DMAn_AWL and DMA_X_TC_SAWL,
are not cleared when timing checks are enabled and when timing checks resume after writing
DMAn_AWR_TC and DMAn_AWL or DMA_X_TC_SAWL, DMA_X_AWTC_SC and DMA_X_AWL. This
bit is used only for manufacturing test. It allows the counters to be initialized to non-zero values for the
start of timing checks. This shortens the counting range so that terminal count behavior can be tested.

61

AWTT

AXI Write Timer Test. When AWTT=1, the 12-bit timer used for each timing measurement is initialized to
FF0h instead of 000h. This bit is used only for manufacturing test. The timer counts the number of AXI
clock cycles from the AXI Write address transaction to the beginning of the corresponding Write data
transaction. The test bit shortens the number of cycles to reach the terminal value FFFh. The timer stops
at the terminal value until the next timing check starts. Note that bit field AWTT in the DMAn_AWR_TC
register is aliased to bit field AWTT in the DMA_X_AWTC_CTL register, i.e. writing to either AWTT bit
field alters the AWTT value in the other register.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 781

Field Function

60

—

Reserved

59-48

AWL

AXI Write Limit. The AXI Write Timer measures latency by counting the number of AXI clock cycles from
the AXI Write address transaction to the beginning of the corresponding Write data transaction. If the
latency equals or exceeds the AXI Write Limit, the Write response is considered late and the AXI Write
Late Count (AWLC) is incremented along with the AXI Write Sample Count (AWSC). The latency is
added to the Sum of AXI Write Latencies (SAWL) in DMAn_AWL /DMA_X_AWTC_LAT. This field is
writeable only when ARTCE=0.Note that bit field AWL in the DMAn_AWR_TC register is aliased to bit
field AWL in the DMA_X_AWTC_CTL register, i.e. writing to either AWL bit field alters the AWL value in
the other register.

47-44

—

Reserved

43-24

AWLC

AXI Write Late Count. This field is incremented whenever the AXI Write Timer equals or exceeds the AXI
Write Limit. AXI write timing checks are suspended when AWLC=FFFFFh. This field is writeable only
when AWTCE=0.

23-20

—

Reserved

19-0

AWSC

AXI Write Sample Count. This field is incremented after each write timing check. AXI write timing checks
are suspended when AWSC=FFFFFh. This field is writeable only when AWTCE=0.

13.27 DMA0 Write Timing Check Latency Register (DMA0_
AWR_LAT)

13.27.1 Offset

Register Offset

DMA0_AWR_LAT 27Ch

13.27.2 Function

While AXI Write Timing Checks are enabled and not suspended, this register maintains a
running total of AXI write latencies.

NOTE
Note that the DMAn_AWTC_LAT register located in the
address range 0053C..005DF is identical to the DMAn_AWL
register located in the address range 00260..002EF. The register

DMA0 Write Timing Check Latency Register (DMA0_AWR_LAT)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

782 NXP Semiconductors

has simply been given two different addresses in order to
consolidate legacy registers and new registers into two different
continuous address ranges. Some registers in the 00500 address
range have been reorganized to facilitate operation in both big-
endian and little-endian SoCs.

13.27.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SAWL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAWL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.27.4 Fields

Field Function

31-0

SAWL

Sum of the AXI Write Latencies. After each AXI read timing check, the latency is added to the Sum of AXI
Write Latencies (SAWL) in DMAn_AWL. This field is writeable only when AWTCE=0.

13.28 Manufacturing Protection Private Key Register (MPPK
R0 - MPPKR63)

13.28.1 Offset

For a = 0 to 63:

Register Offset

MPPKRa 300h + (a × 1h)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 783

13.28.2 Function

The Manufacturing Protection Private Key register is used when authenticating the SOC
to the OEM's server. This authentication process can be used to ensure that the SOC is a
genuine NXP part, is the correct part type, has been properly configured via fuses, is
running authenticated OEM software, and is currently in the Secure or Trusted mode. The
SOC attests to all this by signing a message using the private key stored in the MPPKR.
Software running on the SOC then sends this attestation message to the OEM's server.
The OEM's server can verify that all this information is correct by verifying the signature
over the signed message. The server can then be assured that it is safe to download
proprietary data to the SOC over a secured connection.

13.28.3 Diagram

Bits 7 6 5 4 3 2 1 0

R
MPPrivK

W

Reset 0 0 0 0 0 0 0 0

13.28.4 Fields

Field Function

7-0

MPPrivK

MPPrivK. The 512-bit Manufacturing Protection Private Key.

13.29 Manufacturing Protection Message Register (MPMR0 -
MPMR31)

13.29.1 Offset

For a = 0 to 31:

Register Offset

MPMRa 380h + (a × 1h)

Manufacturing Protection Message Register (MPMR0 - MPMR31)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

784 NXP Semiconductors

13.29.2 Function

The Manufacturing Protection Message register is used when authenticating the SOC to
the OEM’s server. This authentication process can be used to ensure that the SOC is a
genuine NXP part, is the correct part type, has been properly configured via fuses, is
running authenticated OEM software, and is currently in the Secure or Trusted mode. The
SOC attests to this by signing a message using the private key stored in the MPPKR. The
message is composed, in part, of the content of the MPMR. The value in the MPMR is
written by ROM-resident boot software. The value normally includes the hash of the
public key used to verify the signature over the signed code image. Software running on
the SOC then sends this signed message to the OEM’s server. The OEM’s server can
confirm that all this information is correct by verifying the signature over the signed
message. The server can then be assured that it is safe to download proprietary data to the
SOC over a secured connection.

13.29.3 Diagram

Bits 7 6 5 4 3 2 1 0

R
MPMSG

W

Reset 0 0 0 0 0 0 0 0

13.29.4 Fields

Field Function

7-0

MPMSG

Holds 256 bits of message data that will be prepended to the input data to the MPSIGN operation. When
accessed via the register bus this should be treated as a byte array (although it must be accessed as
eight 32-bit words).

13.30 Manufacturing Protection Test Register (MPTESTR0 -
MPTESTR31)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 785

13.30.1 Offset

For a = 0 to 31:

Register Offset

MPTESTRa 3C0h + (a × 1h)

13.30.2 Function

The Manufacturing Protection TEST register is used only for hardware verification.

13.30.3 Diagram

Bits 7 6 5 4 3 2 1 0

R TEST_VALUE

W

Reset 0 0 0 0 0 0 0 0

13.30.4 Fields

Field Function

7-0

TEST_VALUE

TEST_VALUE. When accessed via the register bus this should be treated as a byte array with the first
byte in offset 3C0h (although it must be accessed as eight 32-bit words).(

13.31 Job Descriptor Key Encryption Key Register (JDKE
KR0 - JDKEKR7)

13.31.1 Offset

For a = 0 to 7:

Job Descriptor Key Encryption Key Register (JDKEKR0 - JDKEKR7)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

786 NXP Semiconductors

Register Offset

JDKEKRa 400h + (a × 4h)

13.31.2 Function

The Job Descriptor Key Encryption Key Register contains the Job Descriptor Key
Encryption Key (JDKEK), which can be used when encrypting or decrypting Black Keys
(see Black keys). Since Black Keys are not intended for storage of keys across SOC
power cycles (SEC's Blob mechanism is intended for this purpose), the value in the
JDKEKR is not preserved at SOC power-down. Instead, a new 256-bit secret value is
loaded into the JDKEKR from the RNG for use during the new power-on session. The
JDKEKR cannot be read or written from the register bus while SEC is in Secure Mode or
Trusted Mode, but JDKEKR can be read and written while SEC is in Non-secure
Mode.The JDKEK is loaded by executing a special descriptor, which can be run in any
security mode. (see RNG functional description)

Note that the Secure Mode/Trusted Mode value in JDKEKR is not available when SEC is
in Non-secure Mode because the only possible transitions between Trusted Mode or
Secure Mode that lead to Non-secure Mode cause SEC to pass through Fail Mode, and
JDKEKR is cleared whenever SEC enters Fail Mode.

The Job Descriptor Key Encryption Key is 256 bits, so it is read or written via eight 32-
bit word addresses. The first byte is in offset 400h.

NOTE
The register resets to all 0 at POR, but then is immediately
loaded with a random value obtained from the RNG.

13.31.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
JDKEK

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
JDKEK

W

Reset u u u u u u u u u u u u u u u u

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 787

13.31.4 Fields

Field Function

31-0

JDKEK

The 256-bit Job Descriptor Key Encryption Key used to encrypt and decrypt Black Keys.

13.32 Trusted Descriptor Key Encryption Key Register (TDKE
KR0 - TDKEKR7)

13.32.1 Offset

For a = 0 to 7:

Register Offset

TDKEKRa 420h + (a × 4h)

13.32.2 Function

The Trusted Descriptor Key Encryption Key Register contains the Trusted Descriptor
Key Encryption Key (TDKEK), which can be used when encrypting or decrypting Black
Keys (see Black keys. The TDKEKR operates exactly like the JDKEKR, except that the
TDKEKR is usable only by Trusted Descriptors. This allows Trusted Descriptors to
protect particularly sensitive keys from access by Job Descriptors. Trusted Descriptors
can use either the JDKEKR or the TDKEKR, so Trusted Descriptors can be used to
derive non-Trusted Black keys for use by Job Descriptors from Trusted Black Keys that
contain master secrets. The Trusted Descriptor Key Encryption Key is 256 bits, so it is
read or written via eight 32-bit word addresses. The first byte is in offset 420h.

NOTE
The register resets to all 0 at POR, but then is immediately
loaded with a random value obtained from the RNG.

Trusted Descriptor Key Encryption Key Register (TDKEKR0 - TDKEKR7)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

788 NXP Semiconductors

13.32.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TDKEK

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TDKEK

W

Reset u u u u u u u u u u u u u u u u

13.32.4 Fields

Field Function

31-0

TDKEK

The 256-bit Trusted Descriptor Key Encryption Key used to encrypt and decrypt Black Keys.

13.33 Trusted Descriptor Signing Key Register (TDSKR0 -
TDSKR7)

13.33.1 Offset

For a = 0 to 7:

Register Offset

TDSKRa 440h + (a × 4h)

13.33.2 Function

The Trusted Descriptor Signing Key Register contains the TDSK, which is used to
generate and verify signatures on Trusted Descriptors. The TDSKR is loaded in the same
fashion as the JDKEK. The TDSK is 256 bits, so it is read or written via eight 32-bit
word addresses. The first byte is in offset 440h.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 789

NOTE
The register resets to all 0 at POR, but then is immediately
loaded with a random value obtained from the RNG.

13.33.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TDSK

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TDSK

W

Reset u u u u u u u u u u u u u u u u

13.33.4 Fields

Field Function

31-0

TDSK

The 256-bit Trusted Descriptor Signing Key used to sign and verify Trusted Descriptors.

13.34 Secure Key Nonce Register (SKNR)

13.34.1 Offset

Register Offset Description

SKNR 4E0h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

Secure Key Nonce Register (SKNR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

790 NXP Semiconductors

13.34.2 Function

The Secure Key Nonce Register holds a nonce value that is used for Black Key
encryption. To ensure that a nonce is never reused during a power-on session, the nonce
is used and incremented whenever a Black Key is encrypted using AES-CCM encryption
(i.e. a FIFO STORE with EKT=1, of the PKHA E Memory, the Class 1 Key Register or
the Class 2 Key Register.) The SKNR is reset to all 0 at power on reset or when SEC
enters Fail mode, but it is not reset at software-initiated SEC reset. Since the SKNR holds
more than 32 bits, it is accessed over the IP bus as two 32-bit words. Note that two or
more DECOs could encrypt a Black Key at the same time and since all DECOs share the
same SKNR, the DECO identification number is concatenated with the value in the
SKNR to ensure that each Black Key is encrypted using a unique nonce.

NOTE
This register is writable only when SEC is in NonSecure mode.

13.34.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R

R
es

er
ve

d

S
K

_N
O

N
C

E
_M

S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SK_NONCE_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SK_NONCE_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 791

13.34.4 Fields

Field Function

63-46

—

Reserved

45-32

SK_NONCE_M
S

Secure Key Nonce - Most Significant Bits. This field holds the 14 most-significant bits of the auto-
incrementing secure key nonce field. See the description of the SK_NONCE_LS field for more
information.

31-0

SK_NONCE_LS

Secure Key Nonce - Least Significant Bits. This field holds the 32 least-significant bits of the auto-
incrementing secure key nonce field. The actual nonce value that is used during AES-CCM encryption of
Black Keys consists of the SK_NONCE_MS, the SK_NONCE_LS and the DECO_ID. The DECO_ID
indicates which DECO is requesting a nonce. If two or more DECOs happen to request a nonce during
the same clock cycle, this ensures that each DECO receives a different nonce.

13.35 DMA Status Register (DMA_STA)

13.35.1 Offset

Register Offset

DMA_STA 50Ch

13.35.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

D
M

A
0_

ID
LE

R
es

er
ve

d

D
M

A
0_

E
T

IF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Status Register (DMA_STA)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

792 NXP Semiconductors

13.35.3 Fields

Field Function

31-8

—

Reserved

7

DMA0_IDLE

DMA0 is idle. DMA0’s command queue is empty.

6-5

—

Reserved

4-0

DMA0_ETIF

DMA0 External Transactions in Flight. DMA0_ETIF indicates the number of transactions the DMA0
engine currently has in flight on SEC’s external AXI bus.

13.36 DMA_X_AID_7_4_MAP (DMA_X_AID_7_4_MAP)

13.36.1 Offset

Register Offset Description

DMA_X_AID_7_4_MAP 510h Mapping for DMA AXI IDs 7 ... 4

13.36.2 Function

The four registers DMA_X_AID_7_4_MAP, DMA_X_AID_3_0_MAP,
DMA_X_AID_15_12_MAP and DMA_X_AID_11_8_MAP show the mapping of AXI
transaction IDs to SEC internal blocks. These assignments are made via hardwired
signals and are SOC-specific. The value of each 8-bit field indicates the internal ID of the
SEC block that will use the AXI ID corresponding to the field. For example,
AID2BID=00001000 means that AXI ID 2 (0010) will be used for all AXI transactions
by DECO0 (internal block ID 00001000). (Note that the DMA_X_ AXI ID Enable
Register shows which of the 16 possible AXI transaction IDs are available for use by the
DMA. If a particular AXI transaction ID is disabled, then the corresponding AIDxBID
field will read as 00000000.)

The SEC internal block IDs are encoded as follows:

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 793

Internal Block
ID

Internal Logic Block

00000001b Job Rings (The block ID for Job Ring 0 is used to represent all of the Job
Rings.)

00000100b Burst Buffer

00000111b Queue Interface

00001000b DECO0

00001001b DECO1

00001010b DECO2

All other values are reserved.

NOTE
For backward compatibility the same registers are readable at
two different addresses. The preferred addresses are in the
range 00500..005FF. The addresses in the range 00240..002CF
are deprecated.

NOTE
The values read from this register are determined by hardwired
inputs to SEC and are SoC-specific.

13.36.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID7_BID AID6_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID5_BID AID4_BID

W

Reset u u u u u u u u u u u u u u u u

13.36.4 Fields

Field Function

31-24

AID7_BID

This field shows the SEC Block ID that uses AXI ID 7.

23-16 This field shows the SEC Block ID that uses AXI ID 6.

Table continues on the next page...

DMA_X_AID_7_4_MAP (DMA_X_AID_7_4_MAP)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

794 NXP Semiconductors

Field Function

AID6_BID

15-8

AID5_BID

This field shows the SEC Block ID that uses AXI ID 5.

7-0

AID4_BID

This field shows the SEC Block ID that uses AXI ID 4.

13.37 DMA_X_AID_3_0_MAP (DMA_X_AID_3_0_MAP)

13.37.1 Offset

Register Offset Description

DMA_X_AID_3_0_MAP 514h Mapping for DMA AXI IDs 3 ... 0

13.37.2 Function

The four registers DMA_X_AID_7_4_MAP, DMA_X_AID_3_0_MAP,
DMA_X_AID_15_12_MAP and DMA_X_AID_11_8_MAP show the mapping of AXI
transaction IDs to SEC internal blocks. See the description for register
DMA_X_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to SEC and are SoC-specific.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 795

13.37.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID3_BID AID2_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID1_BID AID0_BID

W

Reset u u u u u u u u u u u u u u u u

13.37.4 Fields

Field Function

31-24

AID3_BID

This field shows the SEC Block ID that uses AXI ID 3.

23-16

AID2_BID

This field shows the SEC Block ID that uses AXI ID 2.

15-8

AID1_BID

This field shows the SEC Block ID that uses AXI ID 1.

7-0

AID0_BID

This field shows the SEC Block ID that uses AXI ID 0.

13.38 DMA_X_AID_15_12_MAP (DMA_X_AID_15_12_MAP)

13.38.1 Offset

Register Offset Description

DMA_X_AID_15_12_
MAP

518h Mapping for DMA AXI IDs 15 ... 12

DMA_X_AID_15_12_MAP (DMA_X_AID_15_12_MAP)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

796 NXP Semiconductors

13.38.2 Function

The four registers DMA_X_AID_7_4_MAP, DMA_X_AID_3_0_MAP,
DMA_X_AID_15_12_MAP and DMA_X_AID_11_8_MAP show the mapping of AXI
transaction IDs to SEC internal blocks. See the description for register
DMA_X_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to SEC and are SoC-specific.

13.38.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID15_BID AID14_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID13_BID AID12_BID

W

Reset u u u u u u u u u u u u u u u u

13.38.4 Fields

Field Function

31-24

AID15_BID

This field shows the SEC Block ID that uses AXI ID 15.

23-16

AID14_BID

This field shows the SEC Block ID that uses AXI ID 14.

15-8

AID13_BID

This field shows the SEC Block ID that uses AXI ID 13.

7-0

AID12_BID

This field shows the SEC Block ID that uses AXI ID 12.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 797

13.39 DMA_X_AID_11_8_MAP (DMA_X_AID_11_8_MAP)

13.39.1 Offset

Register Offset Description

DMA_X_AID_11_8_MAP 51Ch Mapping for DMA AXI IDs 11 ... 8

13.39.2 Function

The four registers DMA_X_AID_7_4_MAP, DMA_X_AID_3_0_MAP,
DMA_X_AID_15_12_MAP and DMA_X_AID_11_8_MAP show the mapping of AXI
transaction IDs to SEC internal blocks. See the description for register
DMA_X_AID_7_4_MAP for additional details.

NOTE
The values read from this register are determined by hardwired
inputs to SEC and are SoC-specific.

13.39.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AID11_BID AID10_BID

W

Reset u u u u u u u u u u u u u u u u

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AID9_BID AID8_BID

W

Reset u u u u u u u u u u u u u u u u

13.39.4 Fields

Field Function

31-24

AID11_BID

This field shows the SEC Block ID that uses AXI ID 11.

Table continues on the next page...

DMA_X_AID_11_8_MAP (DMA_X_AID_11_8_MAP)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

798 NXP Semiconductors

Field Function

23-16

AID10_BID

This field shows the SEC Block ID that uses AXI ID 10.

15-8

AID9_BID

This field shows the SEC Block ID that uses AXI ID 9.

7-0

AID8_BID

This field shows the SEC Block ID that uses AXI ID 8.

13.40 DMA_X AXI ID Map Enable Register (DMA_X_AID_15_
0_EN)

13.40.1 Offset

Register Offset Description

DMA_X_AID_15_0_EN 524h For new software DMA_X_AID_15_0_EN (address
510h) should be used rather than DMA_0_AID_ENB
(address 250h).

NOTE: The values read from this register are
determined by hardwired inputs to SEC and
are SoC-specific.

13.40.2 Function

The DMA_X_AID_15_0_EN register can be read to determine which AXI transaction
IDs are available for use by the DMAs. These enables are configured via hardwired
signals and are SOC-specific. The DMA will use a unique AXI ID for each SEC internal
connected to it. The assignments are made using the lowest-numbered, available IDs.

NOTE
Note that for backward compatibility the same information is
readable at two different addresses, 250h and 524h. The 250h
address is deprecated.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 799

13.40.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
ID

15
E

A
ID

14
E

A
ID

13
E

A
ID

12
E

A
ID

11
E

A
ID

10
E

A
ID

9E

A
ID

8E

A
ID

7E

A
ID

6E

A
ID

5E

A
ID

4E

A
ID

3E

A
ID

2E

A
ID

1E

A
ID

0E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.40.4 Fields

Field Function

31-16

—

Reserved.

15

AID15E

If AID15E=1 then AXI ID 15 is enabled for this DMA engine.

14

AID14E

If AID14E=1 then AXI ID 14 is enabled for this DMA engine.

13

AID13E

If AID13E=1 then AXI ID 13 is enabled for this DMA engine.

12

AID12E

If AID12E=1 then AXI ID 12 is enabled for this DMA engine.

11

AID11E

If AID11E=1 then AXI ID 11 is enabled for this DMA engine.

10

AID10E

If AID10E=1 then AXI ID 10 is enabled for this DMA engine.

9

AID9E

If AID9E=1 then AXI ID 9 is enabled for this DMA engine.

8

AID8E

If AID8E=1 then AXI ID 8 is enabled for this DMA engine.

7

AID7E

If AID7E=1 then AXI ID 7 is enabled for this DMA engine.

6

AID6E

If AID6E=1 then AXI ID 6 is enabled for this DMA engine.

Table continues on the next page...

DMA_X AXI ID Map Enable Register (DMA_X_AID_15_0_EN)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

800 NXP Semiconductors

Field Function

5

AID5E

If AID5E=1 then AXI ID 5 is enabled for this DMA engine.

4

AID4E

If AID4E=1 then AXI ID 4 is enabled for this DMA engine.

3

AID3E

If AID3E=1 then AXI ID 3 is enabled for this DMA engine.

2

AID2E

If AID2E=1 then AXI ID 2 is enabled for this DMA engine.

1

AID1E

If AID1E=1 then AXI ID 1 is enabled for this DMA engine.

0

AID0E

If AID0E=1 then AXI ID 0 is enabled for this DMA engine.

13.41 DMA_X AXI Read Timing Check Control Register
(DMA_X_ARTC_CTL)

13.41.1 Offset

Register Offset

DMA_X_ARTC_CTL 530h

13.41.2 Function

When AXI Read Timing Checks are enabled, the DMA measures the latencies of selected
AXI read transactions. A timer measures the latency by counting the number of AXI
clock cycles from the read address transaction to the beginning of the corresponding read
data transaction. This count can optionally be modified to count until the last beat of data
by setting the ARTL (AXI Read Timer Last) bit. The sample count is incremented and, if
the latency equals or exceeds the programmed limit, the late count is incremented. The
latency value is added to the running total of latencies. After completion of each timing
check, the process is repeated for the next AXI read. Timing checks are suspended when:

• the AXI read sample count value reaches FFFFFh, or
• the AXI read latency total reaches FFFFFFFFh, or
• the AXI Read Timing Check Register is read

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 801

After the DMA_X AXI Read Latency Register or DMA_X Read Timing Check Latency
Register is read, the sample count, late count, and latency total are cleared and read
timing checks resume with the next AXI read.

NOTE
Note that the DMA_X_ARTC_CTL register located in the
address range 00530..005DF provides functionality similar to
the DMAn_ARD_TC register located in the address range
00260..002EF. Some of the fields are aliased, i.e. writing to
these fields in either register affects the corresponding fields in
the other register. But note that some fields in the
DMAn_ARD_TC register have been rearranged in the
DMA_X_ARTC_CTL register or moved to the new
DMA_X_ARTC_LC register or the DMA_X_ARTC_SC
register.

13.41.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

A
R

T
C

E

A
R

C
T

A
R

T
T

A
R

T
L

A
R

L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ART

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.41.4 Fields

Field Function

31

ARTCE

AXI Read Timing Check Enable. When ARTCE=0, ARL, ARLC, and ARSC in DMA_X_ARTC and SARL
in DMAn_ARD_LAT and ARL in DMA_X_ARTC_CTL, ARLC in DMA0_ARTC_LC, ARSC in
DMA0ARTC_SC and SARL in DMA0ARL_LAT are writeable. When ARTCE=1, AXI read timing checks
are enabled and these fields are read-only.

NOTE: Note that writing ARTCE in either DMA_X_ARTC_B or DMA_X_ARTC_CTL has the same
effect.

30

ARCT

AXI Read Counter Test. When ARCT=1, ARLC and ARSC in DMA_X_ARTC_CTL, ARLC in
DMA_X_ARTC_LC, ARSC in DMA_X_ARTC_SC, and SARL in DMAn_ARD_LAT and
DMA_X_ARTC_LC, are not cleared when timing checks are enabled and when timing checks resume

Table continues on the next page...

DMA_X AXI Read Timing Check Control Register (DMA_X_ARTC_CTL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

802 NXP Semiconductors

Field Function

after reading DMAn_ARD_TC and DMAn_ARD_LAT or DMA_X_ARTC_LC, DMA_X_ARTC_SC and
DMAn_ARD_LAT. This bit is used only for manufacturing test. It allows the counters to be initialized to
non-zero values for the start of timing checks. This shortens the counting range so that terminal count
behavior can be tested.

29

ARTT

AXI Read Timer Test. When ARTT=1, the 12-bit timer used for each timing measurement is initialized to
FF0h instead of 000h. This bit is used only for manufacturing test. The timer counts the number of AXI
clock cycles from the AXI read address transaction to the beginning of the corresponding read data
transaction. The test bit shortens the number of cycles to reach the terminal value FFFh. The timer stops
at the terminal value until the next timing check starts. Note that bit field ARTT in the DMA_X_ARTC_CTL
register is aliased to bit field ARTT in the DMAn_ARD_TC register, i.e. writing to either ARTT bit field
alters the ARTT value in the other register.

28

ARTL

AXI Read Timer Last. This bit controls whether the last or first beat of data signals the end of a
transaction's counter measurement.

0b - A read transaction counter measurement is stopped when the first beat of data arrives

1b - A read transaction counter measurement is stopped when the last beat of data arrives

27-16

ARL

AXI Read Limit. The AXI Read Timer measures latency by counting the number of AXI clock cycles from
the AXI read address transaction to the beginning of the corresponding read data transaction. If the
latency equals or exceeds the AXI Read Limit, the read response is considered late and the AXI Read
Late Count (ARLC) is incremented along with the AXI Read Sample Count (ARSC). The latency is added
to the Sum of AXI Read Latencies (SARL) in DMAn_ARD_LAT/DMA_X_ARTC_LAT. This field is
writeable only when ARTCE=0. Note that bit field ARL in the DMA_X_ARTC_CTL register is aliased to bit
field ARL in the DMAn_ARD_TC register, i.e. writing to either ARL bit field alters the ARL value in the
other register.

15-12

—

Reserved

11-0

ART

AXI Read Timer. The number of AXI clock cycles from the latest external AXI read address transaction
initiated by this DMA to the beginning of the corresponding read data transaction. This field is writeable
only when ARTCE=0.

13.42 DMA_X AXI Read Timing Check Late Count Register
(DMA_X_ARTC_LC)

13.42.1 Offset

Register Offset

DMA_X_ARTC_LC 534h

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 803

13.42.2 Function

When AXI Read Timing Checks are enabled, the DMA measures the latencies of selected
AXI read transactions. A timer measures the latency by counting the number of AXI
clock cycles from the read address transaction to the beginning of the corresponding read
data transaction. The sample count is incremented and, if the latency equals or exceeds
the programmed limit, the ARTC_LC register is incremented. The latency value is added
to the running total of latencies. After completion of each timing check, the process is
repeated for the next AXI read. Timing checks are suspended when:

• the AXI read sample count value reaches FFFFFh, or
• the AXI read latency total reaches FFFFFFFFh, or
• the AXI Read Timing Check Register is read

NOTE
Note that the DMA_X_ARTC_LC register provides
functionality similar to the AXI Read Timing Late Check fields
in the DMAn_ARD_TC register located in the address range
00260..002EF, but the fields have been rearranged. Usage of
the DMAn_ARD_TC register is deprecated.

13.42.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ARLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ARLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.42.4 Fields

Field Function

31-20

—

Reserved

Table continues on the next page...

DMA_X AXI Read Timing Check Late Count Register (DMA_X_ARTC_LC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

804 NXP Semiconductors

Field Function

19-0

ARLC

AXI Read Late Count. This field is incremented each time that the ART field exceeds the ARL field in the
DMA_X AXI Read Timing Check Control Register. AXI read timing checks are suspended when
ARLC=FFFFFh. Note that this field is an alias of the ARLC field in the DMAn_ARD_TC Register. Reading
or writing the ARLC field in either the 00200 address block or the 00500 address block will yield identical
results, and the value written can be read from the other register. When DMAn_ARD_TC/
DMA_X_ARTC_TC[ARTCE]=0, the ARLC bit field in DMAn_ARD_TC and the DMA_X_ARTC_LC
register are writeable. When ARTCE=1, AXI read timing checks are enabled and the ARLC bit fields are
read-only.

13.43 DMA_X AXI Read Timing Check Sample Count Register
(DMA_X_ARTC_SC)

13.43.1 Offset

Register Offset

DMA_X_ARTC_SC 538h

13.43.2 Function

When AXI Read Timing Checks are enabled, the DMA measures the latencies of selected
AXI read transactions. A timer measures the latency by counting the number of AXI
clock cycles from the read address transaction to the beginning of the corresponding read
data transaction. The sample count is incremented and, if the latency equals or exceeds
the programmed limit, the late count is incremented. The latency value is added to the
running total of latencies. After completion of each timing check, the process is repeated
for the next AXI read. Timing checks are suspended when:

• the AXI read sample count value reaches FFFFFh, or
• the AXI read latency total reaches FFFFFFFFh, or
• the AXI Read Timing Check Register is read

After the AXI Read Latency Register is read, the sample count, late count, and latency
total are cleared and read timing checks resume with the next AXI read.

NOTE
Note that the ARSC field in the DMA_X_ARTC_SC register
located in the address range 00530..005DF provides
functionality equivalent to the ARSC field in the

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 805

DMAn_ARD_TC register located in the address range
00260..002EF. Writing to the ARSC bit field in either register
affects the ARSC bit field in the other register.

13.43.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ARSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ARSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.43.4 Fields

Field Function

31-20

—

Reserved.

19-0

ARSC

AXI Read Sample Count. This field is incremented after each read timing check. AXI read timing checks
are suspended when ARSC=FFFFFh. This field is writeable only when ARTCE=0.

13.44 DMA_X Read Timing Check Latency Register (DMA_X_
ARTC_LAT)

13.44.1 Offset

Register Offset

DMA_X_ARTC_LAT 53Ch

DMA_X Read Timing Check Latency Register (DMA_X_ARTC_LAT)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

806 NXP Semiconductors

13.44.2 Function

While AXI Read Timing Checks are enabled and not suspended, this register maintains a
running total of AXI read latencies.

NOTE
Note that the DMA_X_ARTC_LAT register located in the
address range 0053C..005DF is identical to the DMAn_SARL
register located in the address range 00260..002EF. The register
has simply been given two different addresses in order to
consolidate legacy registers and new registers into two different
continuous address ranges. Some registers in the 00500 address
range have been reorganized to facilitate operation in both big-
endian and little-endian SoCs.

13.44.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SARL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SARL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.44.4 Fields

Field Function

31-0

SARL

Sum of the AXI Read Latencies. After each AXI read timing check, the latency is added to the Sum of AXI
Read Latencies (SARL) in DMAn_SARL. This field is writeable only when ARTCE=0.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 807

13.45 DMA_X AXI Write Timing Check Control Register
(DMA_X_AWTC_CTL)

13.45.1 Offset

Register Offset

DMA_X_AWTC_CTL 540h

13.45.2 Function

When AXI Write Timing Checks are enabled, the DMA measures the latencies of
selected AXI write transactions. A timer measures the latency by counting the number of
AXI clock cycles from the write address transaction to the beginning of the
corresponding write data transaction. The sample count is incremented and, if the latency
equals or exceeds the programmed limit, the late count is incremented. The latency value
is added to the running total of latencies. After completion of each timing check, the
process is repeated for the next AXI write. Timing checks are suspended when:

• the AXI write sample count value reaches FFFFFh, or
• the AXI write latency total reaches FFFFFFFFh, or
• the AXI Write Timing Check Register is read

After the DMA_X AXI Write Latency Register or DMA_X Write Timing Check Latency
Register is read, the sample count, late count, and latency total are cleared and write
timing checks resume with the next AXI write.

NOTE
Note that the DMA_X_AWTC_CTL register located in the
address range 00540..005DF provides functionality similar to
the DMAn_AWR_TC register located in the address range
00270..002EF. Some of the fields are aliased, i.e. writing to
these fields in either register affects the corresponding fields in
the other register. But note that some fields in the
DMAn_AWR_TC register have been rearranged in the
DMA_X_AWTC_CTL register or moved to the new
DMA_X_AWTC_LC register or the DMA_X_AWTC_SC
register.

DMA_X AXI Write Timing Check Control Register (DMA_X_AWTC_CTL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

808 NXP Semiconductors

13.45.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

A
W

T
C

E

A
W

C
T

A
W

T
T

R
es

er
ve

d

A
W

L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved AWT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.45.4 Fields

Field Function

31

AWTCE

AXI Write Timing Check Enable. When AWTCE=0, AWL, AWLC, and AWSC in DMA_X_AWTC and
SAWL in DMAn_AWR_LAT and AWL in DMA_X_AWTC_CTL, AWLC in DMA0_AWTC_LC, AWSC in
DMA0AWTC_SC and SARL in DMA0AWL_LAT are writeable. When AWTCE=1, AXI Write timing checks
are enabled and these fields are Write-only.

NOTE: Note that writing AWTCE in either DMAn_AWR_TC or DMA_X_AWTC_CTL has the same
effect.

30

AWCT

AXI Write Counter Test. When AWCT=1, AWLC and AWSC in DMA_X_AWTC_CTL, AWLC in
DMA_X_AWTC_LC, ARSC in DMA_X_WRTC_SC, and SAWL in DMAn_AWR_LAT and
DMA_X_ARTC_LC, are not cleared when timing checks are enabled and when timing checks resume
after reading DMAn_AWR_TC and DMAn_AWR_LAT or DMA_X_AWTC_LC, DMA_X_AWTC_SC and
DMA_X_AWTC_LAT. This bit is used only for manufacturing test. It allows the counters to be initialized to
non-zero values for the start of timing checks. This shortens the counting range so that terminal count
behavior can be tested.

29

AWTT

AXI Write Timer Test. When AWTT=1, the 12-bit timer used for each timing measurement is initialized to
FF0h instead of 000h. This bit is used only for manufacturing test. The timer counts the number of AXI
clock cycles from the AXI Write address transaction to the beginning of the corresponding Write data
transaction. The test bit shortens the number of cycles to reach the terminal value FFFh. The timer stops
at the terminal value until the next timing check starts. Note that bit field AWTT in the
DMA_X_AWTC_CTL register is aliased to bit field AWTT in the DMAn_AWR_TC register, i.e. writing to
either AWTT bit field alters the AWTT value in the other register.

28

—

Reserved

27-16

AWL

AXI Write Limit. The AXI Write Timer measures latency by counting the number of AXI clock cycles from
the AXI Write address transaction to the beginning of the corresponding write data transaction. If the
latency equals or exceeds the AXI Write Limit, the write response is considered late and the AXI Write
Late Count (AWLC) is incremented along with the AXI Write Sample Count (AWSC). The latency is
added to the Sum of AXI Write Latencies (SAWL) in DMAn_AWR_LAT/DMA_X_ARTC_LAT. This field is
writeable only when AWTCE=0. Note that bit field AWL in the DMA_X_AWTC_CTL register is aliased to
bit field AWL in the DMAn_AWR_TC register, i.e. writing to either AWL bit field alters the AWL value in
the other register.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 809

Field Function

15-12

—

Reserved

11-0

AWT

AXI Write Timer. The number of AXI clock cycles from the latest external AXI write address transaction
initiated by this DMA to the beginning of the corresponding write data transaction. This field is writeable
only when AWTCE=0.

13.46 DMA_X AXI Write Timing Check Late Count Register
(DMA_X_AWTC_LC)

13.46.1 Offset

Register Offset

DMA_X_AWTC_LC 544h

13.46.2 Function

When AXI Write Timing Checks are enabled, the DMA measures the latencies of
selected AXI write transactions. A timer measures the latency by counting the number of
AXI clock cycles from the write address transaction to the beginning of the
corresponding write data transaction. The sample count is incremented and, if the latency
equals or exceeds the programmed limit, the AWTC_LC register is incremented. The
latency value is added to the running total of latencies. After completion of each timing
check, the process is repeated for the next AXI write. Timing checks are suspended
when:

• the AXI write sample count value reaches FFFFFh, or
• the AXI write latency total reaches FFFFFFFFh, or
• the AXI Write Timing Check Register is Write

NOTE
Note that the DMA_X_AWTC_LC register provides
functionality similar to the AXI Write Timing Late Check fields
in the DMAn_AWR_TC register located in the address range
00270..002EF, but the fields have been rearranged. Usage of
the DMAn_AWR_TC register is deprecated.

DMA_X AXI Write Timing Check Late Count Register (DMA_X_AWTC_LC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

810 NXP Semiconductors

13.46.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved AWLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
AWLC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.46.4 Fields

Field Function

31-20

—

Reserved

19-0

AWLC

AXI Write Late Count. This field is incremented each time that the ART field exceeds the ARL field in the
DMA_X AXI Write Timing Check Control Register. AXI Write timing checks are suspended when
AWLC=FFFFFh. Note that this field is an alias of the AWLC field in the DMAn_AWR_TC Register.
Reading or writing the AWLC field in either the 00200 address block or the 00500 address block will yield
identical results, and the value written can be read from the other register. When DMAn_AWR_TC/
DMA_X_AWTC_TC[AWTCE]=0, the AWLC bit field in DMAn_AWR_TC and the DMA_X_AWTC_LC
register are writeable. When AWTCE=1, AXI write timing checks are enabled and the AWLC bit fields are
read-only.

13.47 DMA_X AXI Write Timing Check Sample Count
Register (DMA_X_AWTC_SC)

13.47.1 Offset

Register Offset

DMA_X_AWTC_SC 548h

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 811

13.47.2 Function

When AXI Write Timing Checks are enabled, the DMA measures the latencies of
selected AXI write transactions. A timer measures the latency by counting the number of
AXI clock cycles from the write address transaction to the beginning of the
corresponding write data transaction. The sample count is incremented and, if the latency
equals or exceeds the programmed limit, the late count is incremented. The latency value
is added to the running total of latencies. After completion of each timing check, the
process is repeated for the next AXI write. Timing checks are suspended when:

• the AXI write sample count value reaches FFFFFh, or
• the AXI write latency total reaches FFFFFFFFh, or
• the AXI Write Timing Check Register is read

After the AXI Write Latency Register is read, the sample count, late count, and latency
total are cleared and write timing checks resume with the next AXI write.

NOTE
Note that the AWSC field in the DMA_X_AWTC_SC register
located in the address range 00530..005DF provides
functionality equivalent to the AWSC field in the
DMAn_AWR_TC register located in the address range
00260..002EF. Writing to the AWSC bit field in either register
affects the AWSC bit field in the other register.

13.47.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved AWSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
AWSC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA_X AXI Write Timing Check Sample Count Register (DMA_X_AWTC_SC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

812 NXP Semiconductors

13.47.4 Fields

Field Function

31-20

—

Reserved.

19-0

AWSC

AXI Write Sample Count. This field is incremented after each write timing check. AXI write timing checks
are suspended when AWSC=FFFFFh. This field is writeable only when AWTCE=0.

13.48 DMA_X Write Timing Check Latency Register (DMA_X_
AWTC_LAT)

13.48.1 Offset

Register Offset

DMA_X_AWTC_LAT 54Ch

13.48.2 Function

While AXI Write Timing Checks are enabled and not suspended, this register maintains a
running total of AXI write latencies.

NOTE
Note that the DMA_X_AWTC_LAT register located in the
address range 0053C..005DF is identical to the DMAn_AWL
register located in the address range 00260..002EF. The register
has simply been given two different addresses in order to
consolidate legacy registers and new registers into two different
continuous address ranges. Some registers in the 00500 address
range have been reorganized to facilitate operation in both big-
endian and little-endian SoCs.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 813

13.48.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SAWL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAWL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.48.4 Fields

Field Function

31-0

SAWL

Sum of the AXI Write Latencies. After each AXI read timing check, the latency is added to the Sum of AXI
Write Latencies (SAWL) in DMAn_AWL. This field is writeable only when AWTCE=0.

13.49 RNG TRNG Miscellaneous Control Register (RTMCTL)

13.49.1 Offset

Register Offset

RTMCTL 600h

13.49.2 Function

These registers are intended to be used when testing the RNG. They would not be used
during normal operation. During normal operation the RNG is configured and data is
obtained from the RNG via Job Descriptors.

The RNG TRNG Miscellaneous Control Register is a read/write register used to control
the RNG's True Random Number Generator (TRNG) access, operation and test.

RNG TRNG Miscellaneous Control Register (RTMCTL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

814 NXP Semiconductors

NOTE
Note that in many cases two RNG registers share the same
address, and a particular register at the shared address is
selected based upon the value in the PRGM field of the
RTMCTL register.

13.49.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

P
R

G
M

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

T
S

T
O

P
_O

K

E
R

R

T
S

T
_O

U
T

E
N

T
_V

A
L

F
C

T
_V

A
L

F
C

T
_F

A
IL

F
O

R
C

E
_S

Y
S

C
L

K

T
R

N
G

_A
C

C

C
LK

_O
U

T
_E

N

O
S

C
_D

IV

S
A

M
P

_M
O

D
E

W

W
1C

R
S

T
_D

E
F

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

13.49.4 Fields

Field Function

31-17

—

Reserved.

16

PRGM

Programming Mode Select. When this bit is 1, the TRNG is in Program Mode, otherwise it is in Run
Mode. No Entropy value will be generated while the TRNG is in Program Mode. Note that different RNG
registers are accessible at the same address depending on whether PRGM is set to 1 or 0. This is noted
in the RNG register descriptions.

15-14

—

Reserved.

13

TSTOP_OK

TRNG_OK_TO_STOP. Software should check that this bit is a 1 before transitioning SEC to low power
mode (SEC clock stopped). SEC turns on the TRNG free-running ring oscillator whenever new entropy is
being generated and turns off the ring oscillator when entropy generation is complete. If the SEC clock is
stopped while the TRNG ring oscillator is running, the oscillator will continue running even though the
SEC clock is stopped. TSTOP_OK is asserted when the TRNG ring oscillator is not running. and
therefore it is OK to stop the SEC clock.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 815

Field Function

12

ERR

Read: Error status. 1 = error detected. 0 = no error.

Write: Write 1 to clear errors. Writing 0 has no effect.

11

TST_OUT

Read only: Test point inside ring oscillator.

10

ENT_VAL

Read only: Entropy Valid. Will assert only if TRNG ACC bit is set, and then after an entropy value is
generated. Will be cleared when RTENT15 is read. (RTENT0 through RTENT14 should be read before
reading RTENT15).

9

FCT_VAL

Read only: Frequency Count Valid. Indicates that a valid frequency count may be read from RTFRQCNT.

8

FCT_FAIL

Read only: Frequency Count Fail. The frequency counter has detected a failure. This may be due to
improper programming of the RTFRQMAX and/or RTFRQMIN registers, or a hardware failure in the ring
oscillator. This error may be cleared by writing a 1 to the ERR bit.

7

FORCE_SYSCL
K

Force System Clock. If set, the system clock is used to operate the TRNG, instead of the ring oscillator.
This is for test use only, and indeterminate results may occur. This bit is writable only if PRGM bit is 1, or
PRGM bit is being written to 1 simultaneously to writing this bit. This bit is cleared by writing the
RST_DEF bit to 1.

6

RST_DEF

Reset Defaults. Writing a 1 to this bit clears various TRNG registers, and bits within registers, to their
default state. This bit is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously to
writing this bit. Reading this bit always produces a 0.

5

TRNG_ACC

TRNG Access Mode. If this bit is set to 1, the TRNG will generate an Entropy value that can be read via
the RTENT registers. The Entropy value may be read once the ENT VAL bit is asserted. This Entropy
value will never be used by the RNG.

IMPORTANT: If this bit is set, no Entropy value can be generated for the RNG, which can prevent the
RNG from generating data for the SEC system.

4

CLK_OUT_EN

Clock Output Enable. If set, the ring oscillator output is gated to an output pad. If this bit is set and PRGM
mode is selected, this allows external viewing of the ring oscillator.

3-2

OSC_DIV

Oscillator Divide. Determines the amount of dividing done to the ring oscillator before it is used by the
TRNG.

This field is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously to writing this
field. This field is cleared to 00 by writing the RST_DEF bit to 1.

00b - use ring oscillator with no divide
01b - use ring oscillator divided-by-2
10b - use ring oscillator divided-by-4
11b - use ring oscillator divided-by-8

1-0

SAMP_MODE

Sample Mode. Determines the method of sampling the ring oscillator while generating the Entropy value:

This field is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously with writing
this field. This field is cleared to 01 by writing the RST_DEF bit to 1.

00b - use Von Neumann data into both Entropy shifter and Statistical Checker
01b - use raw data into both Entropy shifter and Statistical Checker
10b - use Von Neumann data into Entropy shifter. Use raw data into Statistical Checker
11b - undefined/reserved.

RNG TRNG Statistical Check Miscellaneous Register (RTSCMISC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

816 NXP Semiconductors

13.50 RNG TRNG Statistical Check Miscellaneous Register
(RTSCMISC)

13.50.1 Offset

Register Offset

RTSCMISC 604h

13.50.2 Function

The RNG TRNG Statistical Check Miscellaneous Register contains the Long Run
Maximum Limit value and the Retry Count value. This register is accessible only when
the RTMCTL[PRGM] bit is 1, otherwise this register will read zeroes, and cannot be
written.

NOTE
Reset occurs at POR, and when RTMCTL[RST_DEF] is
written to 1.

13.50.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RTY_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved LRUN_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

13.50.4 Fields

Field Function

31-20 Reserved

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 817

Field Function

—

19-16

RTY_CNT

RETRY COUNT. If a statistical check fails during the TRNG Entropy Generation, the RTY_CNT value
indicates the number of times a retry should occur before generating an error. This field is writable only if
RTMCTL[PRGM] bit is 1. This field will read zeroes if RTMCTL[PRGM] = 0. This field is cleared to 1h by
writing the RTMCTL[RST_DEF] bit to 1.

15-8

—

Reserved.

7-0

LRUN_MAX

LONG RUN MAX LIMIT. This value is the largest allowable number of consecutive samples of all 1, or all
0, that is allowed during the Entropy generation. This field is writable only if RTMCTL[PRGM] bit is 1. This
field will read zeroes if RTMCTL[PRGM] = 0. This field is cleared to 34 by writing the RTMCTL[RST_DEF]
bit to 1.

13.51 RNG TRNG Poker Range Register (RTPKRRNG)

13.51.1 Offset

Register Offset

RTPKRRNG 608h

13.51.2 Function

The RNG TRNG Poker Range Register defines the difference between the TRNG Poker
Maximum Limit and the minimum limit. These limits are used during the TRNG
Statistical Check Poker Test.

13.51.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PKR_RNG

W

Reset 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1

RNG TRNG Poker Range Register (RTPKRRNG)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

818 NXP Semiconductors

13.51.4 Fields

Field Function

31-16

—

Reserved. Always 0.

15-0

PKR_RNG

Poker Range. During the TRNG Statistical Checks, a "Poker Test" is run which requires a maximum and
minimum limit. The maximum is programmed in the RTPKRMAX[PKR_MAX] register, and the minimum is
derived by subtracting the PKR_RNG value from the programmed maximum value. This field is writable
only if RTMCTL[PRGM] bit is 1. This field will read zeroes if RTMCTL[PRGM] = 0. This field is cleared to
09A3h (decimal 2467) by writing the RTMCTL[RST_DEF] bit to 1. Note that the minimum allowable Poker
result is PKR_MAX - PKR_RNG + 1.

13.52 RNG TRNG Poker Square Calculation Result Register
(RTPKRSQ)

13.52.1 Offset

Register Offset Description

RTPKRSQ 60Ch Accessible at this address when RTMCTL[PRGM] =
0]

13.52.2 Function

The RNG TRNG Poker Square Calculation Result Register is a read-only register used to
read the result of the TRNG Statistical Check Poker Test's Square Calculation. This test
starts with the RTPKRMAX value and decreases towards a final result, which is read
here. For the Poker Test to pass, this final result must be less than the programmed
RTPKRRNG value. Note that this offset (060Ch) is used as RTPKRMAX if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is used as RTPKRSQ
readback register, as described here.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 819

13.52.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

PKR_SQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_SQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.52.4 Fields

Field Function

31-24

—

Reserved. Always 0.

23-0

PKR_SQ

Poker Square Calculation Result. During the TRNG Statistical Checks, a "Poker Test" is run which starts
with the value RTPKRMAX[PKR_MAX]. This value decreases according to a "sum of squares" algorithm,
and must remain greater than zero, but less than the RTPKRRNG[PKR_RNG] limit. The resulting value
may be read through this register, if RTMCTL[PRGM] bit is 0. Note that if RTMCTL[PRGM] bit is 1, this
register address is used to access the Poker Test Maximum Limit in register RTPKRMAX, as defined in
the previous section.

13.53 RNG TRNG Poker Maximum Limit Register (RTPK
RMAX)

13.53.1 Offset

Register Offset Description

RTPKRMAX 60Ch Accessible at this address when RTMCTL[PRGM] =
1]

RNG TRNG Poker Maximum Limit Register (RTPKRMAX)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

820 NXP Semiconductors

13.53.2 Function

The RNG TRNG Poker Maximum Limit Register defines Maximum Limit allowable
during the TRNG Statistical Check Poker Test. Note that this offset (060Ch) is used as
RTPKRMAX only if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is
used as RTPKRSQ readback register.

13.53.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved PKR_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PKR_MAX

W

Reset 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0

13.53.4 Fields

Field Function

31-24

—

Reserved. Always 0.

23-0

PKR_MAX

Poker Maximum Limit. During the TRNG Statistical Checks, a "Poker Test" is run which requires a
maximum and minimum limit. The maximum allowable result is programmed in the
RTPKRMAX[PKR_MAX] register. This field is writable only if RTMCTL[PRGM] bit is 1. This register is
cleared to 006920h (decimal 26912) by writing the RTMCTL[RST_DEF] bit to 1. Note that the
RTPKRMAX and RTPKRRNG registers combined are used to define the minimum allowable Poker
result, which is PKR_MAX - PKR_RNG + 1. Note that if RTMCTL[PRGM] bit is 0, this register address is
used to read the Poker Test Square Calculation result in register RTPKRSQ, as defined in the following
section.

13.54 RNG TRNG Seed Control Register (RTSDCTL)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 821

13.54.1 Offset

Register Offset

RTSDCTL 610h

13.54.2 Function

The RNG TRNG Seed Control Register contains two fields. One field defines the length
(in system clocks) of each Entropy sample (ENT_DLY), and the other field indicates the
number of samples that will be taken during each TRNG Entropy generation
(SAMP_SIZE).

13.54.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ENT_DLY

W

Reset 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAMP_SIZE

W

Reset 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0

13.54.4 Fields

Field Function

31-16

ENT_DLY

Entropy Delay. Defines the length (in system clocks) of each Entropy sample taken. This field is writable
only if RTMCTL[PRGM] bit is 1. This field will read zeroes if RTMCTL[PRGM] = 0. This field is cleared to
00C80h (decimal 3200) by writing the RTMCTL[RST_DEF] bit to 1.

15-0

SAMP_SIZE

Sample Size. Defines the total number of Entropy samples that will be taken during Entropy generation.
This field is writable only if RTMCTL[PRGM] bit is 1. This field will read zeroes if RTMCTL[PRGM] = 0.
This field is cleared to 09C4h (decimal 2500) by writing the RTMCTL[RST_DEF] bit to 1.

RNG TRNG Total Samples Register (RTTOTSAM)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

822 NXP Semiconductors

13.55 RNG TRNG Total Samples Register (RTTOTSAM)

13.55.1 Offset

Register Offset Description

RTTOTSAM 614h Accessible at this address when RTMCTL[PRGM] =
0]

13.55.2 Function

The RNG TRNG Total Samples Register is a read-only register used to read the total
number of samples taken during Entropy generation. It is used to give an indication of
how often a sample is actually used during Von Neumann sampling. Note that this offset
(0614h) is used as RTSBLIM if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this
offset is used as RTTOTSAM readback register, as described here.

13.55.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

TOT_SAM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TOT_SAM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.55.4 Fields

Field Function

31-20

—

Reserved. Always 0.

19-0

TOT_SAM

Total Samples. During Entropy generation, the total number of raw samples is counted. This count is
useful in determining how often a sample is used during Von Neumann sampling. The count may be read
through this register, if RTMCTL[PRGM] bit is 0. Note that if RTMCTL[PRGM] bit is 1, this register
address is used to access the Sparse Bit Limit in register RTSBLIM, as defined in the previous section.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 823

13.56 RNG TRNG Sparse Bit Limit Register (RTSBLIM)

13.56.1 Offset

Register Offset Description

RTSBLIM 614h Accessible at this address when RTMCTL[PRGM] =
1]

13.56.2 Function

The RNG TRNG Sparse Bit Limit Register is used when Von Neumann sampling is
selected during Entropy Generation. It defines the maximum number of consecutive Von
Neumann samples which may be discarded before an error is generated. Note that this
address (0614h) is used as RTSBLIM only if RTMCTL[PRGM] is 1. If
RTMCTL[PRGM] is 0, this address is used as RTTOTSAM readback register.

13.56.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved SB_LIM

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

13.56.4 Fields

Field Function

31-10 Reserved. Always 0.

Table continues on the next page...

RNG TRNG Sparse Bit Limit Register (RTSBLIM)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

824 NXP Semiconductors

Field Function

—

9-0

SB_LIM

Sparse Bit Limit. During Von Neumann sampling (if enabled by RTMCTL[SAMP_MODE], samples are
discarded if two consecutive raw samples are both 0 or both 1. If this discarding occurs for a long period
of time, it indicates that there is insufficient Entropy. The Sparse Bit Limit defines the maximum number of
consecutive samples that may be discarded before an error is generated. This field is writable only if
RTMCTL[PRGM] bit is 1. This register is cleared to 03hF by writing the RTMCTL[RST_DEF] bit to 1. Note
that if RTMCTL[PRGM] bit is 0, this register address is used to read the Total Samples count in register
RTTOTSAM, as defined in the following section.

13.57 RNG TRNG Frequency Count Minimum Limit Register
(RTFRQMIN)

13.57.1 Offset

Register Offset

RTFRQMIN 618h

13.57.2 Function

The RNG TRNG Frequency Count Minimum Limit Register defines the minimum
allowable count taken by the Entropy sample counter during each Entropy sample.
During any sample period, if the count is less than this programmed minimum, a
Frequency Count Fail is flagged in RTMCTL[FCT_FAIL] and an error is generated.

13.57.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved FRQ_MIN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FRQ_MIN

W

Reset 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 825

13.57.4 Fields

Field Function

31-22

—

Reserved. Always 0.

21-0

FRQ_MIN

Frequency Count Minimum Limit. Defines the minimum allowable count taken during each entropy
sample. This field is writable only if RTMCTL[PRGM] bit is 1. This field will read zeroes if
RTMCTL[PRGM] = 0. This field is cleared to 000190h by writing the RTMCTL[RST_DEF] bit to 1.

13.58 RNG TRNG Frequency Count Register (RTFRQCNT)

13.58.1 Offset

Register Offset Description

RTFRQCNT 61Ch RNG TRNG Frequency Count accessible at this
address when RTMCTL[PRGM] = 0]

13.58.2 Function

The RNG TRNG Frequency Count Register is a read-only register used to read the
frequency counter within the TRNG entropy generator. It will read all zeroes unless
RTMCTL[TRNG_ACC] = 1. Note that this offset (061Ch) is used as RTFRQMAX if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is used as RTFRQCNT
readback register, as described here.

RNG TRNG Frequency Count Register (RTFRQCNT)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

826 NXP Semiconductors

13.58.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

FRQ_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FRQ_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.58.4 Fields

Field Function

31-22

—

Reserved. Always 0.

21-0

FRQ_CNT

Frequency Count. If RTMCTL[TRNG_ACC] = 1, reads a sample frequency count taken during entropy
generation. Requires RTMCTL[PRGM] = 0. The value read from FRQ_CNT is valid only if
RTMCTL[FCT_VAL] = 1.

13.59 RNG TRNG Frequency Count Maximum Limit Register
(RTFRQMAX)

13.59.1 Offset

Register Offset Description

RTFRQMAX 61Ch Accessible at this address when RTMCTL[PRGM] =
1]

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 827

13.59.2 Function

The RNG TRNG Frequency Count Maximum Limit Register defines the maximum
allowable count taken by the Entropy sample counter during each Entropy sample.
During any sample period, if the count is greater than this programmed maximum, a
Frequency Count Fail is flagged in RTMCTL[FCT_FAIL] and an error is generated.
Note that this address (061C) is used as RTFRQMAX only if RTMCTL[PRGM] is 1. If
RTMCTL[PRGM] is 0, this address is used as RTFRQCNT readback register.

13.59.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved FRQ_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FRQ_MAX

W

Reset 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

13.59.4 Fields

Field Function

31-22

—

Reserved. Always 0.

21-0

FRQ_MAX

Frequency Counter Maximum Limit. Defines the maximum allowable count taken during each entropy
sample. This field is writable only if RTMCTL[PRGM] bit is 1. This register is cleared to 00190h by writing
the RTMCTL[RST_DEF] bit to 1. Note that if RTMCTL[PRGM] bit is 0, this register address is used to
read the Frequency Count result in register RTFRQCNT, as defined in the following section.

13.60 RNG TRNG Statistical Check Monobit Count Register
(RTSCMC)

RNG TRNG Statistical Check Monobit Count Register (RTSCMC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

828 NXP Semiconductors

13.60.1 Offset

Register Offset Description

RTSCMC 620h Accessible at this address when RTMCTL[PRGM] =
0]

13.60.2 Function

The RNG TRNG Statistical Check Monobit Count Register is a read-only register used to
read the final monobit count after entropy generation. This counter starts with the value
in RTSCML[MONO_MAX], and is decremented each time a one is sampled. Note that
this offset (0620h) is used as RTSCML if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is
0, this offset is used as RTSCMC readback register, as described here.

13.60.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MONO_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.60.4 Fields

Field Function

31-16

—

Reserved. Always 0.

15-0

MONO_CNT

Monobit Count. Reads the final Monobit count after entropy generation. Requires RTMCTL[PRGM] = 0.
Note that if RTMCTL[PRGM] bit is 1, this register address is used to access the Statistical Check Monobit
Limit in register RTSCML, as defined in the previous section.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 829

13.61 RNG TRNG Statistical Check Monobit Limit Register
(RTSCML)

13.61.1 Offset

Register Offset Description

RTSCML 620h Accessible at this address when RTMCTL[PRGM] =
1]

13.61.2 Function

The RNG TRNG Statistical Check Monobit Limit Register defines the allowable
maximum and minimum number of ones/zero detected during entropy generation. To
pass the test, the number of ones/zeroes generated must be less than the programmed
maximum value, and the number of ones/zeroes generated must be greater than
(maximum - range). If this test fails, the Retry Counter in RTSCMISC will be
decremented, and a retry will occur if the Retry Count has not reached zero. If the Retry
Count has reached zero, an error will be generated. Note that this offset (0620h) is used
as RTSCML only if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is used
as RTSCMC readback register.

13.61.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MONO_RNG

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MONO_MAX

W

Reset 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0

RNG TRNG Statistical Check Monobit Limit Register (RTSCML)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

830 NXP Semiconductors

13.61.4 Fields

Field Function

31-16

MONO_RNG

Monobit Range. The number of ones/zeroes detected during entropy generation must be greater than
MONO_MAX - MONO_RNG, else a retry or error will occur. This register is cleared to 000112h (decimal
274) by writing the RTMCTL[RST_DEF] bit to 1.

15-0

MONO_MAX

Monobit Maximum Limit. Defines the maximum allowable count taken during entropy generation. The
number of ones/zeroes detected during entropy generation must be less than MONO_MAX, else a retry
or error will occur. This register is cleared to 00056Bh (decimal 1387) by writing the RTMCTL[RST_DEF]
bit to 1.

13.62 RNG TRNG Statistical Check Run Length 1 Count
Register (RTSCR1C)

13.62.1 Offset

Register Offset Description

RTSCR1C 624h Accessible at this address when RTMCTL[PRGM] =
0]

13.62.2 Function

The RNG TRNG Statistical Check Run Length 1 Counters Register is a read-only
register used to read the final Run Length 1 counts after entropy generation. These
counters start with the value in RTSCR1L[RUN1_MAX]. The R1_1_COUNT
decrements each time a single one is sampled (preceded by a zero and followed by a
zero). The R1_0_COUNT decrements each time a single zero is sampled (preceded by a
one and followed by a one). Note that this offset (0624h) is used as RTSCR1L if
RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is used as RTSCR1C
readback register, as described here.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 831

13.62.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
1_

1_
C

O
U

N
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
1_

0_
C

O
U

N
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.62.4 Fields

Field Function

31

—

Reserved. Always 0.

30-16

R1_1_COUNT

Runs of One, Length 1 Count. Reads the final Runs of Ones, length 1 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15

—

Reserved. Always 0.

14-0

R1_0_COUNT

Runs of Zero, Length 1 Count. Reads the final Runs of Zeroes, length 1 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

13.63 RNG TRNG Statistical Check Run Length 1 Limit
Register (RTSCR1L)

RNG TRNG Statistical Check Run Length 1 Limit Register (RTSCR1L)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

832 NXP Semiconductors

13.63.1 Offset

Register Offset Description

RTSCR1L 624h Accessible at this address when RTMCTL[PRGM] =
1]

13.63.2 Function

The RNG TRNG Statistical Check Run Length 1 Limit Register defines the allowable
maximum and minimum number of runs of length 1 detected during entropy generation.
To pass the test, the number of runs of length 1 (for samples of both 0 and 1) must be less
than the programmed maximum value, and the number of runs of length 1 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated. Note that this address (0624h)
is used as RTSCR1L only if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this
address is used as RTSCR1C readback register.

13.63.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
U

N
1_

R
N

G

W

Reset 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
U

N
1_

M
A

X

W

Reset 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 833

13.63.4 Fields

Field Function

31

—

Reserved. Always 0.

30-16

RUN1_RNG

Run Length 1 Range. The number of runs of length 1 (for both 0 and 1) detected during entropy
generation must be greater than RUN1_MAX - RUN1_RNG, else a retry or error will occur. This register
is cleared to 0102h (decimal 258) by writing the RTMCTL[RST_DEF] bit to 1.

15

—

Reserved. Always 0.

14-0

RUN1_MAX

Run Length 1 Maximum Limit. Defines the maximum allowable runs of length 1 (for both 0 and 1)
detected during entropy generation. The number of runs of length 1 detected during entropy generation
must be less than RUN1_MAX, else a retry or error will occur. This register is cleared to 01E5h (decimal
485) by writing the RTMCTL[RST_DEF] bit to 1.

13.64 RNG TRNG Statistical Check Run Length 2 Count
Register (RTSCR2C)

13.64.1 Offset

Register Offset Description

RTSCR2C 628h Accessible at this address when RTMCTL[PRGM] =
0]

13.64.2 Function

The RNG TRNG Statistical Check Run Length 2 Counters Register is a read-only
register used to read the final Run Length 2 counts after entropy generation. These
counters start with the value in RTSCR2L[RUN2_MAX]. The R2_1_COUNT
decrements each time two consecutive ones are sampled (preceded by a zero and
followed by a zero). The R2_0_COUNT decrements each time two consecutive zeroes
are sampled (preceded by a one and followed by a one). Note that this offset (0628h) is
used as RTSCR2L if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is used
as RTSCR2C readback register, as described here.

RNG TRNG Statistical Check Run Length 2 Count Register (RTSCR2C)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

834 NXP Semiconductors

13.64.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
2_

1_
C

O
U

N
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
2_

0_
C

O
U

N
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.64.4 Fields

Field Function

31-30

—

Reserved. Always 0.

29-16

R2_1_COUNT

Runs of One, Length 2 Count. Reads the final Runs of Ones, length 2 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-14

—

Reserved. Always 0.

13-0

R2_0_COUNT

Runs of Zero, Length 2 Count. Reads the final Runs of Zeroes, length 2 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

13.65 RNG TRNG Statistical Check Run Length 2 Limit
Register (RTSCR2L)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 835

13.65.1 Offset

Register Offset Description

RTSCR2L 628h Accessible at this address when RTMCTL[PRGM] =
1]

13.65.2 Function

The RNG TRNG Statistical Check Run Length 2 Limit Register defines the allowable
maximum and minimum number of runs of length 2 detected during entropy generation.
To pass the test, the number of runs of length 2 (for samples of both 0 and 1) must be less
than the programmed maximum value, and the number of runs of length 2 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated. Note that this address (0628h)
is used as RTSCR2L only if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this
address is used as RTSCR2C readback register.

13.65.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
U

N
2_

R
N

G

W

Reset 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
U

N
2_

M
A

X

W

Reset 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0

RNG TRNG Statistical Check Run Length 2 Limit Register (RTSCR2L)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

836 NXP Semiconductors

13.65.4 Fields

Field Function

31-30

—

Reserved. Always 0.

29-16

RUN2_RNG

Run Length 2 Range. The number of runs of length 2 (for both 0 and 1) detected during entropy
generation must be greater than RUN2_MAX - RUN2_RNG, else a retry or error will occur. This register
is cleared to 007Ah (decimal 122) by writing the RTMCTL[RST_DEF] bit to 1.

15-14

—

Reserved. Always 0.

13-0

RUN2_MAX

Run Length 2 Maximum Limit. Defines the maximum allowable runs of length 2 (for both 0 and 1)
detected during entropy generation. The number of runs of length 2 detected during entropy generation
must be less than RUN2_MAX, else a retry or error will occur. This register is cleared to 00DCh (decimal
220) by writing the RTMCTL[RST_DEF] bit to 1.

13.66 RNG TRNG Statistical Check Run Length 3 Limit
Register (RTSCR3L)

13.66.1 Offset

Register Offset Description

RTSCR3L 62Ch Accessible at this address when RTMCTL[PRGM] =
1]

13.66.2 Function

The RNG TRNG Statistical Check Run Length 3 Limit Register defines the allowable
maximum and minimum number of runs of length 3 detected during entropy generation.
To pass the test, the number of runs of length 3 (for samples of both 0 and 1) must be less
than the programmed maximum value, and the number of runs of length 3 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated. Note that this address (062Ch)
is used as RTSCR3L only if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this
address is used as RTSCR3C readback register.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 837

13.66.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RUN3_RNG

W

Reset 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved RUN3_MAX

W

Reset 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1

13.66.4 Fields

Field Function

31-29

—

Reserved. Always 0.

28-16

RUN3_RNG

Run Length 3 Range. The number of runs of length 3 (for both 0 and 1) detected during entropy
generation must be greater than RUN3_MAX - RUN3_RNG, else a retry or error will occur. This register
is cleared to 0058h (decimal 88) by writing the RTMCTL[RST_DEF] bit to 1.

15-13

—

Reserved. Always 0.

12-0

RUN3_MAX

Run Length 3 Maximum Limit. Defines the maximum allowable runs of length 3 (for both 0 and 1)
detected during entropy generation. The number of runs of length 3 detected during entropy generation
must be less than RUN3_MAX, else a retry or error will occur. This register is cleared to 007Dh (decimal
125) by writing the RTMCTL[RST_DEF] bit to 1.

13.67 RNG TRNG Statistical Check Run Length 3 Count
Register (RTSCR3C)

13.67.1 Offset

Register Offset Description

RTSCR3C 62Ch Accessible at this address when RTMCTL[PRGM] =
0]

RNG TRNG Statistical Check Run Length 3 Count Register (RTSCR3C)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

838 NXP Semiconductors

13.67.2 Function

The RNG TRNG Statistical Check Run Length 3 Counters Register is a read-only
register used to read the final Run Length 3 counts after entropy generation. These
counters start with the value in RTSCR3L[RUN3_MAX]. The R3_1_COUNT
decrements each time three consecutive ones are sampled (preceded by a zero and
followed by a zero). The R3_0_COUNT decrements each time three consecutive zeroes
are sampled (preceded by a one and followed by a one). Note that this offset (062Ch) is
used as RTSCR3L if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is used
as RTSCR3C readback register, as described here.

13.67.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

R3_1_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

R3_0_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.67.4 Fields

Field Function

31-29

—

Reserved. Always 0.

28-16

R3_1_COUNT

Runs of Ones, Length 3 Count. Reads the final Runs of Ones, length 3 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-13

—

Reserved. Always 0.

12-0

R3_0_COUNT

Runs of Zeroes, Length 3 Count. Reads the final Runs of Zeroes, length 3 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 839

13.68 RNG TRNG Statistical Check Run Length 4 Limit
Register (RTSCR4L)

13.68.1 Offset

Register Offset Description

RTSCR4L 630h Accessible at this address when RTMCTL[PRGM] =
1]

13.68.2 Function

The RNG TRNG Statistical Check Run Length 4 Limit Register defines the allowable
maximum and minimum number of runs of length 4 detected during entropy generation.
To pass the test, the number of runs of length 4 (for samples of both 0 and 1) must be less
than the programmed maximum value, and the number of runs of length 4 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated. Note that this address (0630h)
is used as RTSCR4L only if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this
address is used as RTSCR4C readback register.

13.68.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RUN4_RNG

W

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved RUN4_MAX

W

Reset 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1

RNG TRNG Statistical Check Run Length 4 Limit Register (RTSCR4L)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

840 NXP Semiconductors

13.68.4 Fields

Field Function

31-28

—

Reserved. Always 0.

27-16

RUN4_RNG

Run Length 4 Range. The number of runs of length 4 (for both 0 and 1) detected during entropy
generation must be greater than RUN4_MAX - RUN4_RNG, else a retry or error will occur. This register
is cleared to 0040h (decimal 64) by writing the RTMCTL[RST_DEF] bit to 1.

15-12

—

Reserved. Always 0.

11-0

RUN4_MAX

Run Length 4 Maximum Limit. Defines the maximum allowable runs of length 4 (for both 0 and 1)
detected during entropy generation. The number of runs of length 4 detected during entropy generation
must be less than RUN4_MAX, else a retry or error will occur. This register is cleared to 004Bh (decimal
75) by writing the RTMCTL[RST_DEF] bit to 1.

13.69 RNG TRNG Statistical Check Run Length 4 Count
Register (RTSCR4C)

13.69.1 Offset

Register Offset Description

RTSCR4C 630h Accessible at this address when RTMCTL[PRGM] =
0]

13.69.2 Function

The RNG TRNG Statistical Check Run Length 4 Counters Register is a read-only
register used to read the final Run Length 4 counts after entropy generation. These
counters start with the value in RTSCR4L[RUN4_MAX]. The R4_1_COUNT
decrements each time four consecutive ones are sampled (preceded by a zero and
followed by a zero). The R4_0_COUNT decrements each time four consecutive zeroes
are sampled (preceded by a one and followed by a one). Note that this offset (0630h) is
used as RTSCR4L if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is used
as RTSCR4C readback register, as described here.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 841

13.69.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

R4_1_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

R4_0_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.69.4 Fields

Field Function

31-28

—

Reserved. Always 0.

27-16

R4_1_COUNT

Runs of One, Length 4 Count. Reads the final Runs of Ones, length 4 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-12

—

Reserved. Always 0.

11-0

R4_0_COUNT

Runs of Zero, Length 4 Count. Reads the final Runs of Ones, length 4 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

13.70 RNG TRNG Statistical Check Run Length 5 Count
Register (RTSCR5C)

13.70.1 Offset

Register Offset Description

RTSCR5C 634h Accessible at this address when RTMCTL[PRGM] =
0]

RNG TRNG Statistical Check Run Length 5 Count Register (RTSCR5C)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

842 NXP Semiconductors

13.70.2 Function

The RNG TRNG Statistical Check Run Length 5 Counters Register is a read-only
register used to read the final Run Length 5 counts after entropy generation. These
counters start with the value in RTSCR5L[RUN5_MAX]. The R5_1_COUNT
decrements each time five consecutive ones are sampled (preceded by a zero and
followed by a zero). The R5_0_COUNT decrements each time five consecutive zeroes
are sampled (preceded by a one and followed by a one). Note that this offset (0634h) is
used as RTSCR5L if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this offset is used
as RTSCR5C readback register, as described here.

13.70.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

R5_1_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

R5_0_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.70.4 Fields

Field Function

31-27

—

Reserved. Always 0.

26-16

R5_1_COUNT

Runs of One, Length 5 Count. Reads the final Runs of Ones, length 5 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-11

—

Reserved. Always 0.

10-0

R5_0_COUNT

Runs of Zero, Length 5 Count. Reads the final Runs of Ones, length 5 count after entropy generation.
Requires RTMCTL[PRGM] = 0.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 843

13.71 RNG TRNG Statistical Check Run Length 5 Limit
Register (RTSCR5L)

13.71.1 Offset

Register Offset Description

RTSCR5L 634h Accessible at this address when RTMCTL[PRGM] =
1]

13.71.2 Function

The RNG TRNG Statistical Check Run Length 5 Limit Register defines the allowable
maximum and minimum number of runs of length 5 detected during entropy generation.
To pass the test, the number of runs of length 5 (for samples of both 0 and 1) must be less
than the programmed maximum value, and the number of runs of length 5 must be
greater than (maximum - range). If this test fails, the Retry Counter in RTSCMISC will
be decremented, and a retry will occur if the Retry Count has not reached zero. If the
Retry Count has reached zero, an error will be generated. Note that this address (0634h)
is used as RTSCR5L only if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this
address is used as RTSCR5C readback register.

13.71.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RUN5_RNG

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved RUN5_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

RNG TRNG Statistical Check Run Length 5 Limit Register (RTSCR5L)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

844 NXP Semiconductors

13.71.4 Fields

Field Function

31-27

—

Reserved. Always 0.

26-16

RUN5_RNG

Run Length 5 Range. The number of runs of length 5 (for both 0 and 1) detected during entropy
generation must be greater than RUN5_MAX - RUN5_RNG, else a retry or error will occur. This register
is cleared to 002Eh (decimal 46) by writing the RTMCTL[RST_DEF] bit to 1.

15-11

—

Reserved. Always 0.

10-0

RUN5_MAX

Run Length 5 Maximum Limit. Defines the maximum allowable runs of length 5 (for both 0 and 1)
detected during entropy generation. The number of runs of length 5 detected during entropy generation
must be less than RUN5_MAX, else a retry or error will occur. This register is cleared to 002Fh (decimal
47) by writing the RTMCTL[RST_DEF] bit to 1.

13.72 RNG TRNG Statistical Check Run Length 6+ Limit
Register (RTSCR6PL)

13.72.1 Offset

Register Offset Description

RTSCR6PL 638h Accessible at this address when RTMCTL[PRGM] =
1]

13.72.2 Function

The RNG TRNG Statistical Check Run Length 6+ Limit Register defines the allowable
maximum and minimum number of runs of length 6 or more detected during entropy
generation. To pass the test, the number of runs of length 6 or more (for samples of both
0 and 1) must be less than the programmed maximum value, and the number of runs of
length 6 or more must be greater than (maximum - range). If this test fails, the Retry
Counter in RTSCMISC will be decremented, and a retry will occur if the Retry Count has
not reached zero. If the Retry Count has reached zero, an error will be generated. Note
that this offset (0638h) is used as RTSCR6PL only if RTMCTL[PRGM] is 1. If
RTMCTL[PRGM] is 0, this offset is used as RTSCR6PC readback register.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 845

13.72.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RUN6P_RNG

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved RUN6P_MAX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

13.72.4 Fields

Field Function

31-27

—

Reserved. Always 0.

26-16

RUN6P_RNG

Run Length 6+ Range. The number of runs of length 6 or more (for both 0 and 1) detected during entropy
generation must be greater than RUN6P_MAX - RUN6P_RNG, else a retry or error will occur. This
register is cleared to 002Eh (decimal 46) by writing the RTMCTL[RST_DEF] bit to 1.

15-11

—

Reserved. Always 0.

10-0

RUN6P_MAX

Run Length 6+ Maximum Limit. Defines the maximum allowable runs of length 6 or more (for both 0 and
1) detected during entropy generation. The number of runs of length 6 or more detected during entropy
generation must be less than RUN6P_MAX, else a retry or error will occur. This register is cleared to
002Fh (decimal 47) by writing the RTMCTL[RST_DEF] bit to 1.

13.73 RNG TRNG Statistical Check Run Length 6+ Count
Register (RTSCR6PC)

13.73.1 Offset

Register Offset Description

RTSCR6PC 638h Accessible at this address when RTMCTL[PRGM] =
0]

RNG TRNG Statistical Check Run Length 6+ Count Register (RTSCR6PC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

846 NXP Semiconductors

13.73.2 Function

The RNG TRNG Statistical Check Run Length 6+ Counters Register is a read-only
register used to read the final Run Length 6+ counts after entropy generation. These
counters start with the value in RTSCR6PL[RUN6P_MAX]. The R6P_1_COUNT
decrements each time six or more consecutive ones are sampled (preceded by a zero and
followed by a zero). The R6P_0_COUNT decrements each time six or more consecutive
zeroes are sampled (preceded by a one and followed by a one). Note that this offset
(0638h) is used as RTSCR6PL if RTMCTL[PRGM] is 1. If RTMCTL[PRGM] is 0, this
offset is used as RTSCR6PC readback register, as described here.

13.73.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

R6P_1_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

R6P_0_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.73.4 Fields

Field Function

31-27

—

Reserved. Always 0.

26-16

R6P_1_COUNT

Runs of One, Length 6+ Count. Reads the final Runs of Ones, length 6+ count after entropy generation.
Requires RTMCTL[PRGM] = 0.

15-11

—

Reserved. Always 0.

10-0

R6P_0_COUNT

Runs of Zero, Length 6+ Count. Reads the final Runs of Ones, length 6+ count after entropy generation.
Requires RTMCTL[PRGM] = 0.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 847

13.74 RNG TRNG Status Register (RTSTATUS)

13.74.1 Offset

Register Offset

RTSTATUS 63Ch

13.74.2 Function

Various statistical tests are run as a normal part of the TRNG's entropy generation
process. If the RNG TRNG Miscellaneous Control Register (RTMCTL) ERR field
indicates an error, the least-significant 16 bits of the RTSTATUS register will indicate
which test(s) have failed. The status of these bits will be valid when the TRNG has
finished its entropy generation process. Software can determine when this occurs by
polling the ENT_VAL bit in RTMCTL. If RTMCTL[ERR] indicates no error, then
RTSTATUS register does not contain valid test status data.

Note that there is a very small probability that a statistical test will fail even though the
TRNG is operating properly. If this happens the TRNG will automatically retry the entire
entropy generation process, including running all the statistical tests. The value in
RETRY_COUNT is decremented each time an entropy generation retry occurs. If a
statistical check fails when the retry count is nonzero, a retry is initiated. But if a
statistical check fails when the retry count is zero, an error is generated by the RNG. By
default RETRY_COUNT is initialized to 1, but software can increase the retry count by
writing to the RTY_CNT field in the RTSCMISC register (see RNG TRNG Statistical
Check Miscellaneous Register (RTSCMISC)).

All 0s will be returned if this register address is read while the RNG is in Program Mode
(see PRGM field in RTMCTL register (see RNG TRNG Miscellaneous Control Register
(RTMCTL)). If this register is read while the RNG is in Run Mode the value returned
will be formatted as follows.

RNG TRNG Status Register (RTSTATUS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

848 NXP Semiconductors

13.74.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

RETRY_COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

F
M

B
T

F

F
P

T
F F
LR

T
F F

S
B

T
F

F
6P

B
R

1T
F

F
6P

B
R

0T
F

F
5B

R
1T

F

F
5B

R
0T

F

F
4B

R
1T

F

F
4B

R
0T

F

F
3B

R
1T

F

F
3B

R
01

T
F

F
2B

R
1T

F

F
2B

R
0T

F

F
1B

R
1T

F

F
1B

R
0T

F

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.74.4 Fields

Field Function

31-20

—

Reserved. Always 0.

19-16

RETRY_COUNT

RETRY COUNT. This represents the current number of entropy generation retries left before a statistical
text failure will cause the RNG to generate an error condition.

15

FMBTF

Mono Bit Test Fail. If MBTF=1, the Mono Bit Test has failed.

14

FPTF

Poker Test Fail. If PTF=1, the Poker Test has failed.

13

FLRTF

Long Run Test Fail. If LRTF=1, the Long Run Test has failed.

12

FSBTF

Sparse Bit Test Fail. If SBTF=1, the Sparse Bit Test has failed.

11

F6PBR1TF

6 Plus Bit Run, Sampling 1s, Test Fail. If 6PBR1TF=1, the 6 Plus Bit Run, Sampling 1s Test has failed.

10

F6PBR0TF

6 Plus Bit Run, Sampling 0s, Test Fail. If 6PBR0TF=1, the 6 Plus Bit Run, Sampling 0s Test has failed.

9

F5BR1TF

5-Bit Run, Sampling 1s, Test Fail. If 5BR1TF=1, the 5-Bit Run, Sampling 1s Test has failed.

8

F5BR0TF

5-Bit Run, Sampling 0s, Test Fail. If 5BR0TF=1, the 5-Bit Run, Sampling 0s Test has failed.

7 4-Bit Run, Sampling 1s, Test Fail. If 4BR1TF=1, the 4-Bit Run, Sampling 1s Test has failed.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 849

Field Function

F4BR1TF

6

F4BR0TF

4-Bit Run, Sampling 0s, Test Fail. If 4BR0TF=1, the 4-Bit Run, Sampling 0s Test has failed.

5

F3BR1TF

3-Bit Run, Sampling 1s, Test Fail. If 3BR1TF=1, the 3-Bit Run, Sampling 1s Test has failed.

4

F3BR01TF

3-Bit Run, Sampling 0s, Test Fail. If 3BR0TF=1, the 3-Bit Run, Sampling 0s Test has failed.

3

F2BR1TF

2-Bit Run, Sampling 1s, Test Fail. If 2BR1TF=1, the 2-Bit Run, Sampling 1s Test has failed.

2

F2BR0TF

2-Bit Run, Sampling 0s, Test Fail. If 2BR0TF=1, the 2-Bit Run, Sampling 0s Test has failed.

1

F1BR1TF

1-Bit Run, Sampling 1s, Test Fail. If 1BR1TF=1, the 1-Bit Run, Sampling 1s Test has failed.

0

F1BR0TF

1-Bit Run, Sampling 0s, Test Fail. If 1BR0TF=1, the 1-Bit Run, Sampling 0s Test has failed.

13.75 RNG TRNG Entropy Read Register (RTENT0 - RTEN
T15)

13.75.1 Offset

For a = 0 to 15:

Register Offset

RTENTa 640h + (a × 4h)

13.75.2 Function

The RNG TRNG can be programmed to generate an entropy value that is readable via the
SkyBlue bus. To do this, set the RTMCTL[TRNG_ACC] bit to 1. Once the entropy value
has been generated, the RTMCTL[ENT_VAL] bit will be set to 1. At this point, RTENT0
through RTENT15 may be read to retrieve the 512-bit entropy value. Note that once
RTENT15 is read, the entropy value will be cleared and a new value will begin
generation, so it is important that RTENT15 be read last. Also note that the entropy value
read from the RTENT0 - RTENT15 registers will never be used by the SEC for any

RNG TRNG Entropy Read Register (RTENT0 - RTENT15)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

850 NXP Semiconductors

purpose other than to be read via these registers. Any entropy value used for any security
function cannot be read. These registers are readable only when RTMCTL[PRGM] = 0
(Run Mode), RTMCTL[TRNG_ACC] = 1 (TRNG access mode) and
RTMCTL[ENT_VAL] = 1, otherwise zeroes will be read.

13.75.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ENT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ENT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.75.4 Fields

Field Function

31-0

ENT

Entropy Value. Will be non-zero only if RTMCTL[PRGM] = 0 (Run Mode) and RTMCTL[ENT_VAL] = 1
(Entropy Valid). The most significant bits of the entropy are read from the lowest offset, and the least
significant bits are read from the highest offset. Note that reading the highest offset also clears the entire
entropy value, and starts a new entropy generation.

13.76 RNG TRNG Statistical Check Poker Count 1 and 0
Register (RTPKRCNT10)

13.76.1 Offset

Register Offset

RTPKRCNT10 680h

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 851

13.76.2 Function

The RNG TRNG Statistical Check Poker Count 1 and 0 Register is a read-only register
used to read the final Poker test counts of 1h and 0h patterns. The Poker 0h Count
increments each time a nibble of sample data is found to be 0h. The Poker 1h Count
increments each time a nibble of sample data is found to be 1h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

13.76.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_1_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_0_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.76.4 Fields

Field Function

31-16

PKR_1_CNT

Poker 1h Count. Total number of nibbles of sample data which were found to be 1h. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_0_CNT

Poker 0h Count. Total number of nibbles of sample data which were found to be 0h. Requires
RTMCTL[PRGM] = 0.

13.77 RNG TRNG Statistical Check Poker Count 3 and 2
Register (RTPKRCNT32)

RNG TRNG Statistical Check Poker Count 3 and 2 Register (RTPKRCNT32)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

852 NXP Semiconductors

13.77.1 Offset

Register Offset

RTPKRCNT32 684h

13.77.2 Function

The RNG TRNG Statistical Check Poker Count 3 and 2 Register is a read-only register
used to read the final Poker test counts of 3h and 2h patterns. The Poker 2h Count
increments each time a nibble of sample data is found to be 2h. The Poker 3h Count
increments each time a nibble of sample data is found to be 3h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

13.77.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_3_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_2_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.77.4 Fields

Field Function

31-16

PKR_3_CNT

Poker 3h Count. Total number of nibbles of sample data which were found to be 3h. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_2_CNT

Poker 2h Count. Total number of nibbles of sample data which were found to be 2h. Requires
RTMCTL[PRGM] = 0.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 853

13.78 RNG TRNG Statistical Check Poker Count 5 and 4
Register (RTPKRCNT54)

13.78.1 Offset

Register Offset

RTPKRCNT54 688h

13.78.2 Function

The RNG TRNG Statistical Check Poker Count 5 and 4 Register is a read-only register
used to read the final Poker test counts of 5h and 4h patterns. The Poker 4h Count
increments each time a nibble of sample data is found to be 4h. The Poker 5h Count
increments each time a nibble of sample data is found to be 5h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

13.78.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_5_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_4_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.78.4 Fields

Field Function

31-16

PKR_5_CNT

Poker 5h Count. Total number of nibbles of sample data which were found to be 5h. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_4_CNT

Poker 4h Count. Total number of nibbles of sample data which were found to be 4h. Requires
RTMCTL[PRGM] = 0.

RNG TRNG Statistical Check Poker Count 5 and 4 Register (RTPKRCNT54)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

854 NXP Semiconductors

13.79 RNG TRNG Statistical Check Poker Count 7 and 6
Register (RTPKRCNT76)

13.79.1 Offset

Register Offset

RTPKRCNT76 68Ch

13.79.2 Function

The RNG TRNG Statistical Check Poker Count 7 and 6 Register is a read-only register
used to read the final Poker test counts of 7h and 6h patterns. The Poker 6h Count
increments each time a nibble of sample data is found to be 6h. The Poker 7h Count
increments each time a nibble of sample data is found to be 7h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

13.79.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_7_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_6_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.79.4 Fields

Field Function

31-16 Poker 7h Count. Total number of nibbles of sample data which were found to be 7h. Requires
RTMCTL[PRGM] = 0.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 855

Field Function

PKR_7_CNT

15-0

PKR_6_CNT

Poker 6h Count. Total number of nibbles of sample data which were found to be 6h. Requires
RTMCTL[PRGM] = 0.

13.80 RNG TRNG Statistical Check Poker Count 9 and 8
Register (RTPKRCNT98)

13.80.1 Offset

Register Offset

RTPKRCNT98 690h

13.80.2 Function

The RNG TRNG Statistical Check Poker Count 9 and 8 Register is a read-only register
used to read the final Poker test counts of 9h and 8h patterns. The Poker 8h Count
increments each time a nibble of sample data is found to be 8h. The Poker 9h Count
increments each time a nibble of sample data is found to be 9h. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

13.80.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_9_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_8_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RNG TRNG Statistical Check Poker Count 9 and 8 Register (RTPKRCNT98)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

856 NXP Semiconductors

13.80.4 Fields

Field Function

31-16

PKR_9_CNT

Poker 9h Count. Total number of nibbles of sample data which were found to be 9h. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_8_CNT

Poker 8h Count. Total number of nibbles of sample data which were found to be 8h. Requires
RTMCTL[PRGM] = 0.

13.81 RNG TRNG Statistical Check Poker Count B and A
Register (RTPKRCNTBA)

13.81.1 Offset

Register Offset

RTPKRCNTBA 694h

13.81.2 Function

The RNG TRNG Statistical Check Poker Count B and A Register is a read-only register
used to read the final Poker test counts of Bh and Ah patterns. The Poker Ah Count
increments each time a nibble of sample data is found to be Ah. The Poker Bh Count
increments each time a nibble of sample data is found to be Bh. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 857

13.81.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_B_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_A_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.81.4 Fields

Field Function

31-16

PKR_B_CNT

Poker Bh Count. Total number of nibbles of sample data which were found to be Bh. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_A_CNT

Poker Ah Count. Total number of nibbles of sample data which were found to be Ah. Requires
RTMCTL[PRGM] = 0.

13.82 RNG TRNG Statistical Check Poker Count D and C
Register (RTPKRCNTDC)

13.82.1 Offset

Register Offset

RTPKRCNTDC 698h

RNG TRNG Statistical Check Poker Count D and C Register (RTPKRCNTDC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

858 NXP Semiconductors

13.82.2 Function

The RNG TRNG Statistical Check Poker Count D and C Register is a read-only register
used to read the final Poker test counts of Dh and Ch patterns. The Poker Ch Count
increments each time a nibble of sample data is found to be Ch. The Poker Dh Count
increments each time a nibble of sample data is found to be Dh. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

13.82.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_D_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_C_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.82.4 Fields

Field Function

31-16

PKR_D_CNT

Poker Dh Count. Total number of nibbles of sample data which were found to be Dh. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_C_CNT

Poker Ch Count. Total number of nibbles of sample data which were found to be Ch. Requires
RTMCTL[PRGM] = 0.

13.83 RNG TRNG Statistical Check Poker Count F and E
Register (RTPKRCNTFE)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 859

13.83.1 Offset

Register Offset

RTPKRCNTFE 69Ch

13.83.2 Function

The RNG TRNG Statistical Check Poker Count F and E Register is a read-only register
used to read the final Poker test counts of Fh and Eh patterns. The Poker Eh Count
increments each time a nibble of sample data is found to be Eh. The Poker Fh Count
increments each time a nibble of sample data is found to be Fh. Note that this register is
readable only if RTMCTL[PRGM] is 0, otherwise zeroes will be read.

13.83.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKR_F_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PKR_E_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.83.4 Fields

Field Function

31-16

PKR_F_CNT

Poker Fh Count. Total number of nibbles of sample data which were found to be Fh. Requires
RTMCTL[PRGM] = 0.

15-0

PKR_E_CNT

Poker Eh Count. Total number of nibbles of sample data which were found to be Eh. Requires
RTMCTL[PRGM] = 0.

RNG DRNG Status Register (RDSTA)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

860 NXP Semiconductors

13.84 RNG DRNG Status Register (RDSTA)

13.84.1 Offset

Register Offset Description

RDSTA 6C0h Accessible at this address when RTMCTL[PRGM] =
0]

13.84.2 Function

The RNG DRNG Status Register shows the current status of the DRNG portion of the
RNG.

13.84.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

S
K

V
T

S
K

V
N

R
es

er
ve

d

C E

E
R

R
C

O
D

E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

T
F

1

T
F

0

R
es

er
ve

d

P
R

1

P
R

0

R
es

er
ve

d

IF
1

IF
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.84.4 Fields

Field Function

31

SKVT

Secure Key Valid Test. The secure keys (JDKEK, TDKEK and TDSK) were generated by a test
(deterministic) instance.

30

SKVN

Secure Key Valid Non-Test. The secure keys (JDKEK, TDKEK and TDSK) were generated by a non-test
(non-deterministic) instance.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 861

Field Function

29-21

—

Reserved

20

CE

Catastrophic Error. A catastrophic error will occur when the RNG gets a hardware error while requesting
new entropy and the current State Handle is instantiated as a non-test (non-deterministic) instance.

19-16

ERRCODE

Error Code. These bits represent the current error in the RNG.

15-12

—

Reserved

11-10

—

Reserved

9

TF1

Test Flag State Handle 1. State handle 1 has been instantiated as a test (deterministic) instance.

8

TF0

Test Flag State Handle 0. State handle 0 has been instantiated as a test (deterministic) instance.

7-6

—

Reserved

5

PR1

Prediction Resistance Flag State Handle 1. State Handle 1 has been instantiated to support prediction
resistance.

4

PR0

Prediction Resistance Flag State Handle 0. State Handle 0 has been instantiated to support prediction
resistance.

3-2

—

Reserved

1

IF1

Instantiated Flag State Handle 1. State Handle 1 has been instantiated.

0

IF0

Instantiated Flag State Handle 0. State Handle 0 has been instantiated.

13.85 RNG DRNG State Handle 0 Reseed Interval Register
(RDINT0)

13.85.1 Offset

Register Offset

RDINT0 6D0h

RNG DRNG State Handle 0 Reseed Interval Register (RDINT0)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

862 NXP Semiconductors

13.85.2 Function

The RNG DRNG State Handle 0 Reseed Interval Register shows the current value of the
reseed interval for State Handle 0. This value represents the number of requests for
random data from this State Handle before this State Handle is automatically reseeded
with entropy from the TRNG. The reset value is zero, but a new reseed interval value is
loaded when the RNG State Handle is instantiated. If the value in the Class 1 Data Size
register is nonzero at the time that the instantiation command is executed, RDINT0 will
be loaded with this value. If the value in the Class 1 Data Size register is 0, the default
reseed interval value (10,000,000) is loaded into RDINT0. Note that the State Handle is
instantiated by executing a descriptor that contains an ALGORITHM OPERATION RNG
Instantiate command (see RNG operations).

13.85.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RESINT0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RESINT0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.85.4 Fields

Field Function

31-0

RESINT0

RESINT0. This read-only register holds the Reseed Interval for State Handle 0.

13.86 RNG DRNG State Handle 1 Reseed Interval Register
(RDINT1)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 863

13.86.1 Offset

Register Offset

RDINT1 6D4h

13.86.2 Function

The RNG DRNG State Handle 1 Reseed Interval Register shows the current value of the
reseed interval for State Handle 1. This value represents the number of requests for
random data from this State Handle before this State Handle is automatically reseeded
with entropy from the TRNG. The reset value is zero, but a new reseed interval value is
loaded when the RNG State Handle is instantiated. If the value in the Class 1 Data Size
register is nonzero at the time that the instantiation command is executed, RDINT1 will
be loaded with this value. If the value in the Class 1 Data Size register is 0, the default
reseed interval value (10,000,000) is loaded into RDINT1. Note that the State Handle is
instantiated by executing a descriptor that contains an ALGORITHM OPERATION RNG
Instantiate command (see RNG operations).

13.86.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RESINT1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RESINT1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.86.4 Fields

Field Function

31-0

RESINT1

RESINT1. This read-only register holds the Reseed Interval for State Handle 1.

RNG DRNG State Handle 1 Reseed Interval Register (RDINT1)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

864 NXP Semiconductors

13.87 RNG DRNG Hash Control Register (RDHCNTL)

13.87.1 Offset

Register Offset

RDHCNTL 6E0h

13.87.2 Function

The RNG DRNG Hash Control Register is used to gain control of the SHA-256 hashing
engine that is internal to the RNG. Once Hashing test mode is initialized then the user can
begin the hashing operation and poll for the done bit.

13.87.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved HTM

HD

W HTC HI HB

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.87.4 Fields

Field Function

31-5

—

Reserved

4

HTC

Hashing Test Mode Clear. Writing this bit will take the RNG out of hashing test mode.

3 Hashing Test Mode. Writing this bit will put RNG in Hashing Test Mode.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 865

Field Function

HTM

2

HI

Hashing Initialize. Writing to this bit will initialize the Hashing Engine.

1

HB

Hashing Begin. Writing this bit will causing the Hashing Engine to begin hashing.

0

HD

Hashing Done. This bit asserts when the hashing engine is done.

13.88 RNG DRNG Hash Digest Register (RDHDIG)

13.88.1 Offset

Register Offset

RDHDIG 6E4h

13.88.2 Function

The RNG DRNG Hash Digest Register allows user access to the eight 32-bit message
digest registers of the SHA-256 hashing engine that is internal to the RNG. All eight
registers are read in order from most-significant bits to least-significant bits by reading
this address eight times. These registers are only readable while in Hashing Test Mode
and when the Hashing Engine is done.

13.88.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R HASHMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HASHMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RNG DRNG Hash Digest Register (RDHDIG)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

866 NXP Semiconductors

13.88.4 Fields

Field Function

31-0

HASHMD

HASHMD. Hashing Message Digest Register. This register needs to be read 8 times to retrieve the entire
message digest.

13.89 RNG DRNG Hash Buffer Register (RDHBUF)

13.89.1 Offset

Register Offset

RDHBUF 6E8h

13.89.2 Function

The RNG DRNG Hash buffer allows access to the SHA-256 hashing engine that is
internal to the RNG for the purpose of conformance testing. To fill the buffer this register
must be written 16 times at this address. This register is writable only while the RNG is
in Hashing Test mode. This mode can be selected via the RNG DRNG Hash Control
Register.

13.89.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W HASHBUF

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W HASHBUF

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 867

13.89.4 Fields

Field Function

31-0

HASHBUF

HASHBUF. This write-only register provides access to the internal SHA-256 hashing engine's 64-byte
buffer. This register must be written 16 times to fill the buffer.

13.90 Recoverable Error Indication Status (REIS)

13.90.1 Offset

Register Offset

REIS B00h

13.90.2 Function
REIS indicates the assertion status of different SEC recoverable error indication sources
(1 bit per source). Software can clear a bit in REIS by writing a 1 to that bit.

13.90.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

JB
A

E
3 JB

A
E

2 JB
A

E
1 JB

A
E

0

R
es

er
ve

d

R
B

A
E

W

W
1C

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

Q
B

A
E

Q
H

LT

R
es

er
ve

d

C
W

D
E

W

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Recoverable Error Indication Status (REIS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

868 NXP Semiconductors

13.90.4 Fields

Field Function

31-28

—

Reserved

27

JBAE3

A job descriptor executed from Job Ring 3 caused a bus access error.

26

JBAE2

A job descriptor executed from Job Ring 2 caused a bus access error.

25

JBAE1

A job descriptor executed from Job Ring 1 caused a bus access error.

24

JBAE0

A job descriptor executed from Job Ring 0 caused a bus access error.

23-17

—

Reserved

16

RBAE

A bus transaction initiated by SEC RTIC resulted in a bus access error.

15-12

—

Reserved

11-10

—

Reserved

9

QBAE

A job initiated by SEC's Queue Manager Interface resulted in a bus access error.

8

QHLT

SEC's Queue Manager Interface halted due to stop or stop on error.

7-1

—

Reserved

0

CWDE

The SEC watchdog timer expired.

13.91 Recoverable Error Indication Halt (REIH)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 869

13.91.1 Offset

Register Offset

REIH B0Ch

13.91.2 Function
Writing a 1 to an REIH bit indicates that SEC should be halted if the associated
recoverable error occurs.

13.91.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

JB
A

E
3 JB

A
E

2 JB
A

E
1 JB

A
E

0

R
es

er
ve

d

R
B

A
EW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

Q
F

D
D

Q
IV

E

Q
B

A
E

Q
H

LT

R
es

er
ve

d

C
W

D
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.91.4 Fields

Field Function

31-28

—

Reserved

27

JBAE3

Halt SEC if JR3-initiated job execution caused bus access error.

26

JBAE2

Halt SEC if JR2-initiated job execution caused bus access error.

25

JBAE1

Halt SEC if JR1-initiated job execution caused bus access error.

Table continues on the next page...

Recoverable Error Indication Halt (REIH)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

870 NXP Semiconductors

Field Function

24

JBAE0

Halt SEC if JR0-initiated job execution caused bus access error.

23-17

—

Reserved

16

RBAE

Halt SEC if RTIC-initiated job execution caused bus access error.

15-12

—

Reserved

11

QFDD

Halt SEC if QI frame descriptor dropped.

10

QIVE

Halt SEC if QI isolation violation error.

9

QBAE

Halt SEC if QI-initiated job execution caused bus access error.

8

QHLT

Halt SEC if QI halted (due to stop or stop on error).

7-1

—

Reserved

0

CWDE

Halt SEC if SEC watchdog timer expires.

13.92 SEC Version ID Register, most-significant half (SECV
ID_MS)

13.92.1 Offset

Register Offset

SECVID_MS BF8h (alias)

SECVID_MS FF8h (alias)

SECVID_MS 1_0FF8h (alias)

SECVID_MS 2_0FF8h (alias)

SECVID_MS 3_0FF8h (alias)

SECVID_MS 4_0FF8h (alias)

SECVID_MS 6_0FF8h (alias)

SECVID_MS 7_0FF8h (alias)

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 871

Register Offset

SECVID_MS 8_0FF8h (alias)

SECVID_MS 9_0FF8h (alias)

SECVID_MS A_0FF8h (alias)

13.92.2 Function

This register contains the ID for SEC and major and minor revision numbers. It also
contains the integration options, ECO revision, and configuration options. Since this
register holds more than 32 bits, it holds a 48-bit value but registers are accessible only as
32-bit words, the counter accessed as two 32-bit words. Because this register may be of
interest to multiple software entities, this register is aliased to addresses in multiple 64KB
address spaces. The register and its fields are described in the figure and table below.

13.92.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R IP_ID

W

Reset 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MAJ_REV MIN_REV

W

Reset 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

13.92.4 Fields

Field Function

31-16

IP_ID

ID for SEC.

15-8

MAJ_REV

Major revision number for SEC.

7-0

MIN_REV

Minor revision number for SEC.

SEC Version ID Register, most-significant half (SECVID_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

872 NXP Semiconductors

13.93 SEC Version ID Register, least-significant half (SECV
ID_LS)

13.93.1 Offset

Register Offset

SECVID_LS BFCh (alias)

SECVID_LS FFCh (alias)

SECVID_LS 1_0FFCh (alias)

SECVID_LS 2_0FFCh (alias)

SECVID_LS 3_0FFCh (alias)

SECVID_LS 4_0FFCh (alias)

SECVID_LS 6_0FFCh (alias)

SECVID_LS 7_0FFCh (alias)

SECVID_LS 8_0FFCh (alias)

SECVID_LS 9_0FFCh (alias)

SECVID_LS A_0FFCh (alias)

13.93.2 Function

This register contains the ID for SEC and major and minor revision numbers. It also
contains the integration options, ECO revision, and configuration options. Since this
register holds more than 32 bits, it holds a 48-bit value but registers are accessible only as
32-bit words, the counter accessed as two 32-bit words. Because this register may be of
interest to multiple software entities, this register is aliased to addresses in multiple
64kbyte address spaces. The register and its fields are described in the figure and table
below.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 873

13.93.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R COMPILE_OPT INTG_OPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ECO_REV CONFIG_OPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.93.4 Fields

Field Function

31-24

COMPILE_OPT

Compile options for SEC.

23-16

INTG_OPT

Integration options for SEC.

15-8

ECO_REV

ECO revision for SEC.

7-0

CONFIG_OPT

Configuration options for SEC.

13.94 Holding Tank 0 Job Descriptor Address (HT0_JD_A
DDR)

13.94.1 Offset

Register Offset Description

HT0_JD_ADDR C00h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

Holding Tank 0 Job Descriptor Address (HT0_JD_ADDR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

874 NXP Semiconductors

13.94.2 Function

The HTa_JD_ADDR register holds the address of a Job Descriptor that is in a "holding
tank" waiting to be loaded into a DECO. The register is intended to be used when
debugging descriptor execution.

The Job Queue Debug Select Register (JQ_DEBUG_SEL) HT_SEL field controls which
holding tank supplies the Job Descriptor Address to the HTa_JD_ADDR.

13.94.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.94.4 Fields

Field Function

63-40

—

Reserved

39-0

JD_ADDR

Job Descriptor Address.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 875

13.95 Holding Tank 0 Shared Descriptor Address (HT0_SD_A
DDR)

13.95.1 Offset

Register Offset Description

HT0_SD_ADDR C08h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

13.95.2 Function

The HTa_SD_ADDR register holds the address of a Shared Descriptor that is in a
Holding Tank waiting to be loaded into a DECO. The register is intended to be used
when debugging descriptor execution via a job ring.

The Job Queue Debug Select Register (JQ_DEBUG_SEL) HT_SEL field controls which
holding tank supplies the Shared Descriptor Address to the HTa_SD_ADDR.

Holding Tank 0 Shared Descriptor Address (HT0_SD_ADDR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

876 NXP Semiconductors

13.95.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

SD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R SD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.95.4 Fields

Field Function

63-40

—

Reserved

39-0

SD_ADDR

Shared Descriptor Address.

13.96 Holding Tank 0 Job Queue Control, most-significant
half (HT0_JQ_CTRL_MS)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 877

13.96.1 Offset

Register Offset Description

HT0_JQ_CTRL_MS C10h Note that the addresses of the two halves of this
register are unaffected by the endianness
configuration.

13.96.2 Function

The HTa_JQ_CTRL register holds the control information for a descriptor that is in a
"holding tank" waiting to be loaded into a DECO. The register is intended to be used
when debugging descriptor execution. The most-significant half of HTa_JQ_CTRL is
formatted the same as the DECO Job Queue Control Register, except that there is no
STEP field or SING field as in the DECO Job Queue Control Register.

The Job Queue Debug Select Register (JQ_DEBUG_SEL) HT_SEL field controls which
holding tank supplies the Shared Descriptor Address to the HTa_SD_ADDR.

13.96.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

W
H

L

F
O

U
R

IL E

S
H

R
_F

R
O

M

R
es

er
ve

d

D
W

O
R

D
_S

W
A

P

H
T

_E
R

R
O

R

S
O

B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
M

T
D

JD
I

S

R
es

er
ve

d

S
R

C

R
es

er
ve

d

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Holding Tank 0 Job Queue Control, most-significant half (HT0_JQ_CTRL_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

878 NXP Semiconductors

13.96.4 Fields

Field Function

31-30

—

Reserved

29

WHL

Whole Descriptor. In versions of SEC that implement prefetching, the WHL field is interpreted in
combination with the SOB field. In versions that don't implement prefetching, WHL=1 indicates that HT is
passing the full job descriptor to DECO and therefore DECO does not need to fetch any additional Job
Descriptor words from external memory.

28

FOUR

Four Words. Job Queue Controller will pass at least 4 words of the descriptor to DECO.

27

ILE

Immediate Little Endian. This bit controls the byte-swapping of Immediate data embedded within
descriptors.

ILE = 0: No byte-swapping is performed for data transferred to or from the Descriptor Buffer.

ILE = 1: Byte-swapping is performed when data is transferred between the Descriptor Buffer and any of
the following byte-stream sources and destinations: Input Data FIFO, Output Data FIFO, and Class 1
Context, Class 2 Context, Class1 Key and Class 2 Key registers.

26-22

SHR_FROM

Share From. This is the DECO block from which the DECO block that runs this job will get the Shared
Descriptor. This field is only used if the job queue controller wants this DECO to use a Shared Descriptor
that is already in a DECO. This field is ignored when running descriptors via the IP bus (i.e. under the
direct control of software).

21-20

—

Reserved

19

DWORD_SWAP

Double Word Swap.

0b - DWords are in the order most-significant word, least-significant word.
1b - DWords are in the order least-significant word, most-significant word.

18-17

HT_ERROR

Holding Tank Error. (This field is implemented only in versions of SEC that support prefetching.)

00b - No error
01b - Job Descriptor or Shared Descriptor length error
10b - AXI_error while reading a job ring or QI Shared Descriptor or the remainder of a job ring Job
Descriptor
11b - AXI error while reading QI input frame data

16

SOB

Shared or Burst. (This field is implemented only in versions of SEC that support prefetching.) The SOB
field is interpreted along with the WHL field as follows:

SOB=0 WHL=0 - No prefetch, not whole descriptor

SOB=0 WHL=1 - Got whole Job Descriptor, no Shared Descriptor or input frame data

SOB=1 WHL=0 - Got Shared Descriptor, no input frame data

SOB=1 WHL=1 - Got whole Job Descriptor and input frame data

15

AMTD

Allow Make Trusted Descriptor. This field is read-only. If this bit is a 1, then a Job Descriptor with the
MTD (Make Trusted Descriptor) bit set is allowed to execute. The bit will be 1 only if the Job Descriptor
was run from a job ring with the AMTD bit set to 1 in the job ring’s JRaICID Register.

14

JDIS

Job Descriptor ICID Select. Determines whether the SEQ ICID or the Non-SEQ ICID is asserted when
reading the Job Descriptor from memory.

0b - Non-SEQ ICID
1b - SEQ ICID

13-11 Reserved

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 879

Field Function

—

10-8

SRC

Job Source. Source of the job. Determines which set of DMA configuration attributes (e.g.
JRCFGR_JRa_MS and endian configuration bits) the DMA should use for bus transactions. It is illegal
for the SRC field to have a value other than that of a job ring when running descriptors via the IP bus (i.e.
under the direct control of software).

000b - job ring 0
001b - job ring 1
010b - job ring 2
011b - job ring 3
100b - RTIC
101b - QI
110b - Reserved
111b - Reserved

7-4

—

Reserved

3-0

ID

Job ID. Unique tag given to each job by its source. Used to tell the source that the job has completed.

13.97 Holding Tank 0 Job Queue Control, least-significant
half (HT0_JQ_CTRL_LS)

13.97.1 Offset

Register Offset Description

HT0_JQ_CTRL_LS C14h Note that the addresses of the two halves of this
register are unaffected by the endianness
configuration.

13.97.2 Function

The HTa_JQ_CTRL register holds the control information for a descriptor that is in a
"holding tank" waiting to be loaded into a DECO. The register is intended to be used
when debugging descriptor execution. The most-significant half of HTa_JQ_CTRL is
formatted the same as the DECO Job Queue Control Register, except that there is no
STEP field or SING field as in the DECO Job Queue Control Register.

The Job Queue Debug Select Register (JQ_DEBUG_SEL) HT_SEL field controls which
holding tank supplies the Job Queue control data to the HTa_JQ_CTRL_MS.

Holding Tank 0 Job Queue Control, least-significant half (HT0_JQ_CTRL_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

880 NXP Semiconductors

13.97.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

NON_SEQ_ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

SEQ_ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.97.4 Fields

Field Function

31-28

—

Reserved.

27-16

NON_SEQ_ICID

Non-SEQ_ICID

This field defines the ICID value asserted for DMA transactions associated with external memory
accesses for non-sequence commands, such as KEY, LOAD, and STORE. By default the Job Descriptor
is read using this ICID value, although that behavior can be changed by setting the JDIS bit in the
corresponding Job Ring Configuration Register.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

15-12

—

Reserved.

11-0

SEQ_ICID

This field defines the ICID value asserted for DMA transactions associated with external memory
accesses for sequence commands, such as SEQ_KEY, SEQ_LOAD, and SEQ_STORE. Setting the JDIS
bit in the corresponding Job Ring Configuration Register will cause the Job Queue to use this ICID value
for Job Descriptor reads.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.98 Holding Tank Status (HT0_STATUS)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 881

13.98.1 Offset

Register Offset

HT0_STATUS C1Ch

13.98.2 Function

The HT0_STATUS register holds the status information for a Job Descriptor "holding
tank". The register is intended to be used when debugging descriptor execution.

The HT_SEL field in the Job Queue Debug Select Register (JQ_DEBUG_SEL) controls
which holding tank supplies the status information to the HT0_STATUS.

13.98.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R B
C

IN
_U

S
E

B
B

_I
N

_U
S

E

O
LD

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

P
E

N
D

_2

P
E

N
D

_1

P
E

N
D

_0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.98.4 Fields

Field Function

31

BC

Been Changed. When using the Holding Tank debug registers, the Holding Tank Job Descriptor Address
register should be the first register that is read. The BC ("Been Changed") bit is cleared when the Holding
Tank Job Descriptor Address register is read. If data in the holding tanks changes after that time but
before the HT Status register is read, the "Been Changed" bit is set. This indicates that the data read

Table continues on the next page...

Holding Tank Status (HT0_STATUS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

882 NXP Semiconductors

Field Function

from some of the HT debug registers may be inconsistent with data read from other HT debug registers.
In this case the HT debug registers should be reread, starting with the Holding Tank Job Descriptor
Address register.

30

IN_USE

In Use. The "In use" bit is set when the HT contains some or all of the information for a job that has not
yet been sent or not yet completely sent to a DECO.

29

BB_IN_USE

BB In Use. The "BB In use" bit is set when the burst buffer contains some or all of the input frame data for
a job that has not yet been sent or not yet completely sent to a DECO.

28

OLD

Old BB data. The "OLD" bit is set when the burst buffer contains input frame data for the job that was
previously in the associated HT. This input frame data has not yet been completely sent to a DECO, so
the burst buffer is not available for the job currently in the HT.

27-3

—

Reserved.

2

PEND_2

Pending for DECO 2. The PEND_2 bit for this holding tank is set if the shared descriptor in this holding
tank matches the shared descriptor currently in DECO 2. It is possible for more than one pending bit for
the holding tank to be set at the same time.

1

PEND_1

Pending for DECO 1. The PEND_1 bit for this holding tank is set if the shared descriptor in this holding
tank matches the shared descriptor currently in DECO 1. It is possible for more than one pending bit for
the holding tank to be set at the same time.

0

PEND_0

Pending for DECO 0. The PEND_0 bit for this holding tank is set if the shared descriptor in this holding
tank matches the shared descriptor currently in DECO 0. It is possible for more than one pending bit for
the holding tank to be set at the same time.

13.99 Job Queue Debug Select Register (JQ_DEBUG_SEL)

13.99.1 Offset

Register Offset

JQ_DEBUG_SEL C24h

13.99.2 Function

The Job Queue Debug Select register is used to select which holding tank is being
accessed in the holding tank debug registers (HTa Job Descriptor Address, HTa Shared
Descriptor Address, HTa JQ Control, and HTa Status registers). The Job Queue Debug
Select register is also used to select the ID of the job that is being queried in the Job Ring
Job-Done Source and Job Ring Job-Done Descriptor Address registers. Finally, it
specifies which FIFO index to report in the Job Ring Job-Done Job ID FIFO register.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 883

If the value written to the HT_SEL field is larger than the number of holding tanks in
SEC, a value of 0 will be stored in the HT_SEL field and Holding Tank 0 will be used by
the HTa Job Descriptor Address, HTa Shared Descriptor Address, HTa JQ Control, and
HTa Status registers.

13.99.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

JOB_ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved HT_SEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.99.4 Fields

Field Function

31-20

—

Reserved

19-16

JOB_ID

Job ID. Specifies a Job ID for which to return a Job Source in the Job Ring Job-Done Source FIFO
register or Descriptor address in the Job Ring Job-Done Descriptor Address register. Specifies a FIFO
index for the Job ID returned by the Job Ring Job-Done Job IDFIFO register, where a value of 0 indicates
the oldest job in the FIFO.

15-2

—

Reserved

1-0

HT_SEL

Holding Tank Select. Selects which holding tank is being accessed in the holding tank debug registers
(HTa Job Descriptor Address, HTa Shared Descriptor Address, HTa JQ Control, and HTa Status
registers).

13.100 Job Ring Job IDs in Use Register, least-significant
half (JRJIDU_LS)

Job Ring Job IDs in Use Register, least-significant half (JRJIDU_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

884 NXP Semiconductors

13.100.1 Offset

Register Offset

JRJIDU_LS DBCh

13.100.2 Function

The Job Ring Job IDs in Use register indicates which of the Job IDs tracked by the Job
Controller are currently in use (i.e. identifying a job that is present in a holding tank, in a
DECO, or in the completed Job Queue waiting for the Job Completion status to be
written to an output ring). The register is intended to be used when debugging descriptor
execution via a job ring. The JRJIDU contains a bit for each of the Job IDs, indicating
whether that Job ID is currently in use.

13.100.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

JI
D

11

JI
D

10

JI
D

09

JI
D

08

JI
D

07

JI
D

06

JI
D

05

JI
D

04

JI
D

03

JI
D

02

JI
D

01

JI
D

00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.100.4 Fields

Field Function

31-12

—

Reserved.

11

JID11

Job ID 11. Job ID 11 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

10 Job ID 10. Job ID 10 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 885

Field Function

JID10

9

JID09

Job ID 09. Job ID 09 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

8

JID08

Job ID 08. Job ID 08 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

7

JID07

Job ID 07. Job ID 07 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

6

JID06

Job ID 06. Job ID 06 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

5

JID05

Job ID 05. Job ID 05 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

4

JID04

Job ID 04. Job ID 04 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

3

JID03

Job ID 03. Job ID 03 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

2

JID02

Job ID 02. Job ID 02 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

1

JID01

Job ID 01. Job ID 01 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

0

JID00

Job ID 00. Job ID 00 is currently in use identifying a job that is present in a holding tank, in a DECO, or in
the completed Job Queue waiting for the Job Completion status to be written to an output ring.

13.101 Job Ring Job-Done Job ID FIFO BC (JRJDJIFBC)

13.101.1 Offset

Register Offset

JRJDJIFBC DC0h

13.101.2 Function

This register indicates whether consistent data has been read from the JRJDJI FIFO and
JRJDS and JRJDDA registers.

Job Ring Job-Done Job ID FIFO BC (JRJDJIFBC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

886 NXP Semiconductors

The Job Queue maintains an ordered list of Job IDs for the completed jobs whose
completion status is waiting to be written to a job ring output ring. The Job Ring Job-
Done Job ID FIFO register returns the Job ID located at the index specified in the
JOB_ID field of the Job Queue Debug Select Register (JQ_DEBUG_SEL). When the
JOB_ID field is set to 0, the oldest JOB_ID in the Job-Done FIFO is returned. See
Section Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 - JRSTAR_JR3).
Note that these Job IDs are not reset as job status is written to output rings, so the
completion status for some Job IDs that appear in these registers may already have been
written to output rings.

13.101.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BC
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.101.4 Fields

Field Function

31

BC

Been changed. The hardware sets BC to 0 when the job descriptor address for Job ID 0 is read from Job
Ring Job-Done Descriptor Address (JRJDDA). The hardware sets BC to 1 when any job is added or
removed from the Job-Done Job ID FIFO. After software reads the JRJDJIF, JRJIDU, JRJDS1, and
JRJDDA registers software should read BC. If the BC bit is 1, the results read from the JRJDJIF, JRJIDU,
JRJDS1, and JRJDDA may be inconsistent with each other.

30-0

—

Reserved

13.102 Job Ring Job-Done Job ID FIFO (JRJDJIF)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 887

13.102.1 Offset

Register Offset

JRJDJIF DC4h

13.102.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

JOB_ID_ENTRY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.102.3 Fields

Field Function

31-4

—

Reserved

3-0

JOB_ID_ENTRY

Job ID entry. This field contains the Job ID of a job whose completion status is located at the
JQ_DEBUG_SEL[JOB-ID] index in the Job-Done FIFO.

13.103 Job Ring Job-Done Source 1 (JRJDS1)

13.103.1 Offset

Register Offset Description

JRJDS1 DE4h The source for the job with the Job ID specified in
JQ_DEBUG_SEL[JOB-ID].

Job Ring Job-Done Source 1 (JRJDS1)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

888 NXP Semiconductors

13.103.2 Function

The Job Queue keeps track of the job source (job ring numbers) for each Job ID, and
values in this register are updated whenever a new job ring job starts in a holding tank.
Each entry in this register is matched to corresponding entries in the JRJDV and JRDDAa
registers.

13.103.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

V
A

LI
D

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.103.4 Fields

Field Function

31

VALID

Valid. If this bit is 1, the job located at the index specified by the JOB_ID field in the Job Queue Debug
Select register is complete, but its status has not yet been written to the output ring.

30-2

—

Reserved

1-0

SRC

Source. This field contains the number of the job ring that was the source of a job whose completion
status is waiting to be written to an output ring. The job is located in the FIFO at the index specified by the
JOB_ID field in the Job Queue Debug Select register.

13.104 Job Ring Job-Done Descriptor Address 0 Register
(JRJDDA)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 889

13.104.1 Offset

Register Offset Description

JRJDDA E00h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

13.104.2 Function

The JRJDDA register is used to store the address of a job descriptor when the job is sent
to a holding tank. The descriptor address read from JRJDDA is the one corresponding to
the Job ID specified in the JOB_ID field of the Job Queue Debug Select Register (JQ_D
EBUG_SEL). See Section Job Ring Output Status Register for Job Ring a (JRSTAR_JR0
- JRSTAR_JR3). Because these addresses are updated only when a new job starts in a
holding tank, some addresses read from this register may be for completed jobs that have
already been written to an output ring. This register is intended to be used when
debugging descriptor execution via a job ring.

13.104.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Job Ring Job-Done Descriptor Address 0 Register (JRJDDA)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

890 NXP Semiconductors

13.104.4 Fields

Field Function

63-40

—

Reserved

39-0

JD_ADDR

Job Descriptor Address.

13.105 Performance Counter, Number of Requests Dequeued
(PC_REQ_DEQ)

13.105.1 Offset

Register Offset Description

PC_REQ_DEQ F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_REQ_DEQ 1_0F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_REQ_DEQ 2_0F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_REQ_DEQ 3_0F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_REQ_DEQ 4_0F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_REQ_DEQ 6_0F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_REQ_DEQ 7_0F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_REQ_DEQ 8_0F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 891

Register Offset Description

PC_REQ_DEQ 9_0F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_REQ_DEQ A_0F00h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

13.105.2 Function

The PC_REQ_DEQ register counts the total number of DECO jobs that SEC has started.
The counter is incremented whenever the job queue controller register in DECO is
written to start a job. The job could originate from the Queue Manager Interface, one of
the job rings, from RTIC or from the register interface when the DECO is under the
direct control of software.

Since this register is greater than 32 bits, it must be accessed as two 32-bit words. When
reading or writing the register first access the lower address, then the higher address. This
ensures that a consistent 48-bit value is read or written despite the fact that the register
value may increment between accessing the two halves of the register.

13.105.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
PC_REQ_DEQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PC_REQ_DEQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PC_REQ_DEQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Performance Counter, Number of Requests Dequeued (PC_REQ_DEQ)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

892 NXP Semiconductors

13.105.4 Fields

Field Function

63-48

—

Reserved

47-0

PC_REQ_DEQ

Performance Counter Requests Dequeued.

13.106 Performance Counter, Number of Outbound Encrypt
Requests (PC_OB_ENC_REQ)

13.106.1 Offset

Register Offset Description

PC_OB_ENC_REQ F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENC_REQ 1_0F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENC_REQ 2_0F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENC_REQ 3_0F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENC_REQ 4_0F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENC_REQ 6_0F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENC_REQ 7_0F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENC_REQ 8_0F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 893

Register Offset Description

PC_OB_ENC_REQ 9_0F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENC_REQ A_0F08h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

13.106.2 Function

The PC_OB_ENC_REQ register counts the total number of requests for symmetric
encryption (excluding requests associated with blob encapsulations and encryption of
Black Keys). If a descriptor specifies an encryption operation, the register is incremented
at the time that the encryption operation completes. Note that a single descriptor
containing multiple encryption commands could cause this register to increment more
than once. The LSB of the Class 1 Mode register determines if this register or
PC_IB_DEC_REQ is incremented.

Since this register is greater than 32 bits, it must be accessed as two 32-bit words. When
reading or writing the register first access the lower address, then the higher address. This
ensures that a consistent 48-bit value is read or written despite the fact that the register
value may increment between accessing the two halves of the register.

Performance Counter, Number of Outbound Encrypt Requests (PC_OB_ENC_REQ)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

894 NXP Semiconductors

13.106.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
PC_OB_ENC_REQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PC_OB_ENC_REQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PC_OB_ENC_REQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.106.4 Fields

Field Function

63-48

—

Reserved

47-0

PC_OB_ENC_R
EQ

Performance Counter Outbound Encryption Requests.

13.107 Performance Counter, Number of Inbound Decrypt
Requests (PC_IB_DEC_REQ)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 895

13.107.1 Offset

Register Offset Description

PC_IB_DEC_REQ F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DEC_REQ 1_0F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DEC_REQ 2_0F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DEC_REQ 3_0F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DEC_REQ 4_0F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DEC_REQ 6_0F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DEC_REQ 7_0F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DEC_REQ 8_0F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DEC_REQ 9_0F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DEC_REQ A_0F10h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

13.107.2 Function

The PC_IB_DEC_REQ register counts the total number of requests for symmetric
decryptions (excluding blob decapsulations and decryptions of Black Keys). If a
descriptor specifies a decryption operation, the register is incremented at the time that the
decryption operation completes. Note that a single descriptor containing multiple
decryption commands could cause this register to increment more than once. The LSB of
the Class 1 Mode register determines if this register or PC_OB_ENC_REQ is
incremented.

Performance Counter, Number of Inbound Decrypt Requests (PC_IB_DEC_REQ)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

896 NXP Semiconductors

Since this register is greater than 32 bits, it must be accessed as two 32-bit words. When
reading or writing the register first access the lower address, then the higher address. This
ensures that a consistent 48-bit value is read or written despite the fact that the register
value may increment between accessing the two halves of the register.

13.107.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
PC_IB_DEC_REQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PC_IB_DEC_REQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PC_IB_DEC_REQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.107.4 Fields

Field Function

63-48

—

Reserved

47-0

PC_IB_DEC_R
EQ

Performance Counter Inbound Decryptions Requested

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 897

13.108 Performance Counter, Number of Outbound Bytes
Encrypted (PC_OB_ENCRYPT)

13.108.1 Offset

Register Offset Description

PC_OB_ENCRYPT F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENCRYPT 1_0F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENCRYPT 2_0F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENCRYPT 3_0F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENCRYPT 4_0F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENCRYPT 6_0F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENCRYPT 7_0F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENCRYPT 8_0F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENCRYPT 9_0F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_ENCRYPT A_0F18h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

13.108.2 Function

The PC_OB_ENCRYPT register counts the total number of bytes encrypted with a
symmetric key algorithm (excluding blob encapsulations and encryptions of Black Keys).
PC_OB_ENCRYPT is incremented by the value written to the Class 1 Data Size register
if the ENC bit in the Class 1 Mode register is set to 1, with the following exceptions. If
the operation is AES-CMAC or AES-XCBC-MAC with the “no encryption” option, or
the operation is Kasumi f9, the PC_OB_ENCRYPT register is not incremented but the

Performance Counter, Number of Outbound Bytes Encrypted (PC_OB_ENCRYPT)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

898 NXP Semiconductors

PC_OB_PROTECT register is incremented by the value written to the Class 1 Data Size
register if the ENC bit in the Class 1 Mode register is set to 1. PC_OB_PROTECT is
incremented by the value written to the “SAD Data Size” alias of the Class 1 Data Size
register if the ENC bit in the Class 1 Mode register is set to 1.

Since this register is greater than 32 bits, it must be accessed as two 32-bit words. When
reading or writing the register first access the lower address, then the higher address. This
ensures that a consistent 48-bit value is read or written despite the fact that the register
value may increment between accessing the two halves of the register.

13.108.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
PC_OB_ENCRYPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PC_OB_ENCRYPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PC_OB_ENCRYPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.108.4 Fields

Field Function

63-48

—

Reserved

47-0

PC_OB_ENCRY
PT

Performance Counter Outbound Bytes Encrypted.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 899

13.109 Performance Counter, Number of Outbound Bytes
Protected (PC_OB_PROTECT)

13.109.1 Offset

Register Offset Description

PC_OB_PROTECT F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_PROTECT 1_0F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_PROTECT 2_0F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_PROTECT 3_0F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_PROTECT 4_0F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_PROTECT 6_0F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_PROTECT 7_0F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_PROTECT 8_0F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_PROTECT 9_0F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_OB_PROTECT A_0F20h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

13.109.2 Function

The PC_OB_PROTECT register counts the total number of bytes protected—that is, the
number of outbound bytes over which an integrity check value (ICV) was computed (for
example, in HMAC and CMAC). (Note that this excludes blob encapsulations and CCM

Performance Counter, Number of Outbound Bytes Protected (PC_OB_PROTECT)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

900 NXP Semiconductors

encryptions of Black Keys.) PC_OB_PROTECT is incremented by the value written to
the Class 2 Data Size register if the AP bit in the Class 2 Mode register is set to 1.
PC_OB_PROTECT is incremented by the value written to the Class 1 Data Size register
if the ENC bit in the Class 1 Mode register is set to 1 and the operation is AES-CMAC or
AES-XCBC-MAC with the “no encryption” option, or the operation is Kasumi f9.
PC_OB_PROTECT is incremented by the value written to the “SAD Data Size” alias of
the Class 1 Data Size register if the ENC bit in the Class 1 Mode register is set to 1. For
AES-GCM, AES-CCM, AES-CBC-XCBC, AES-CTR-XCBC, AES-CBC-CMAC and
AES-CTR-CMAC operations both the PC_OB_PROTECT register and the
PC_OB_ENCRYPT register will be incremented by the value written to the Class 1 Data
Size register if the ENC bit in the Class 1 Mode register is set to 1.

Since this register is greater than 32 bits, it must be accessed as two 32-bit words. When
reading or writing the register first access the lower address, then the higher address. This
ensures that a consistent 48-bit value is read or written despite the fact that the register
value may increment between accessing the two halves of the register.

13.109.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
PC_OB_PROTECT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PC_OB_PROTECT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PC_OB_PROTECT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 901

13.109.4 Fields

Field Function

63-48

—

Reserved

47-0

PC_OB_PROTE
CT

Performance Counter Outbound Bytes Encrypted.

13.110 Performance Counter, Number of Inbound Bytes
Decrypted (PC_IB_DECRYPT)

13.110.1 Offset

Register Offset Description

PC_IB_DECRYPT F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DECRYPT 1_0F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DECRYPT 2_0F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DECRYPT 3_0F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DECRYPT 4_0F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DECRYPT 6_0F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DECRYPT 7_0F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DECRYPT 8_0F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_DECRYPT 9_0F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

Table continues on the next page...

Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_DECRYPT)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

902 NXP Semiconductors

Register Offset Description

PC_IB_DECRYPT A_0F28h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

13.110.2 Function

The PC_IB_DECRYPT register counts the total number of bytes decrypted with a
symmetric key algorithm (excluding blob decapsulations and decryptions of Black Keys).
PC_IB_DECRYPT is incremented by the value written to the Class 1 Data Size register if
the ENC bit in the Class 1 Mode register is set to 0, with the following exceptions. If the
operation is AES-CMAC or AES-XCBC-MAC with the “no encryption” option, or the
operation is Kasumi f9, the PC_IB_DECRYPT register is not incremented but the
PC_IB_VALIDATED register is incremented by the value written to the Class 1 Data
Size register if the ENC bit in the Class 1 Mode register is set to 0. Note that writing to
the “SAD Data Size” alias of the Class 1 Data Size register causes the
PC_IB_VALIDATED register to be incremented rather than the PC_IB_DECRYPT
register.

Since this register is greater than 32 bits, it must be accessed as two 32-bit words. When
reading or writing the register first access the lower address, then the higher address. This
ensures that a consistent 48-bit value is read or written despite the fact that the register
value may increment between accessing the two halves of the register.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 903

13.110.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
PC_IB_DECRYPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PC_IB_DECRYPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PC_IB_DECRYPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.110.4 Fields

Field Function

63-48

—

Reserved

47-0

PC_IB_DECRY
PT

Performance Counter Inbound Bytes Decrypted.

13.111 Performance Counter, Number of Inbound Bytes
Validated. (PC_IB_VALIDATED)

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_VALIDATED)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

904 NXP Semiconductors

13.111.1 Offset

Register Offset Description

PC_IB_VALIDATED F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_VALIDATED 1_0F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_VALIDATED 2_0F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_VALIDATED 3_0F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_VALIDATED 4_0F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_VALIDATED 6_0F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_VALIDATED 7_0F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_VALIDATED 8_0F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_VALIDATED 9_0F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

PC_IB_VALIDATED A_0F30h (alias) These addresses are for the least-significant 32 bits;
the most significant 32 bits can be accessed at these
addresses +4h.

13.111.2 Function

The PC_IB_VALIDATED register counts the total number of bytes validated (that is, the
number of inbound bytes over which an ICV was computed for comparison purposes).
PC_IB_VALIDATED is incremented by the value written to the Class 2 Data Size
register if the AP bit in the Class 2 Mode register is set to 0. PC_IB_VALIDATED is
incremented by the value written to the Class 1 Data Size register if the ENC bit in the
Class 1 Mode register is set to 0 and the operation is AES-CMAC or AES-XCBC-MAC
with the “no encryption” option, or the operation is Kasumi f9. PC_IB_VALIDATED is
incremented by the value written to the “SAD Data Size” alias of the Class 1 Data Size
register the ENC bit in the Class 1 Mode register is set to 0. For AES-GCM, AES-CCM,

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 905

AES-CBC-XCBC, AES-CTR-XCBC, AES-CBC-CMAC and AES-CTR-CMAC
operations both the PC_IB_VALIDATED register and the PC_IB_DECRYPT register
will be incremented by the value written to the Class 1 Data Size register if the ENC bit
in the Class 1 Mode register is set to 0.

Since this register is greater than 32 bits, it must be accessed as two 32-bit words. When
reading or writing the register first access the lower address, then the higher address. This
ensures that a consistent 48-bit value is read or written despite the fact that the register
value may increment between accessing the two halves of the register.

NOTE
This counter does not include the number of bytes of the
received ICV. Also, it increments whether the ICV comparison
was successful or not.

13.111.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
PC_IB_VALIDATED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PC_IB_VALIDATED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PC_IB_VALIDATED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.111.4 Fields

Field Function

63-48 Reserved

Table continues on the next page...

Performance Counter, Number of Inbound Bytes Validated. (PC_IB_VALIDATED)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

906 NXP Semiconductors

Field Function

—

47-0

PC_IB_VALIDA
TED

Performance Counter Inbound Bytes Validated.

13.112 CHA Revision Number Register, most-significant half
(CRNR_MS)

13.112.1 Offset

Register Offset

CRNR_MS FA0h (alias)

CRNR_MS 1_0FA0h (alias)

CRNR_MS 2_0FA0h (alias)

CRNR_MS 3_0FA0h (alias)

CRNR_MS 4_0FA0h (alias)

CRNR_MS 6_0FA0h (alias)

CRNR_MS 7_0FA0h (alias)

CRNR_MS 8_0FA0h (alias)

CRNR_MS 9_0FA0h (alias)

CRNR_MS A_0FA0h (alias)

13.112.2 Function

The CHA Revision Number register indicates the revision number of each CHA. The
revisions are numbered independently for each version of a particular CHA (see CHA
Version ID Register, most-significant half (CHAVID_MS)). Since the register is larger
than 32 bits, the CRNR fields are accessed as two 32-bit words. Because this register may
be of interest to multiple software entities, this register is aliased to addresses in multiple
pages. The register format is shown in the figure and table below.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 907

13.112.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JRRN DECORN
Reserved

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ZARN ZERN SNW9RN CRCRN

W

Reset 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0

13.112.4 Fields

Field Function

31-28

JRRN

Job Ring Revision Number

27-24

DECORN

DECO Revision Number

23-16

—

Reserved

15-12

ZARN

ZUC Authentication Hardware Accelerator Revision Number

11-8

ZERN

ZUC Encryption Hardware Accelerator Revision Number

7-4

SNW9RN

SNOW-f9 Hardware Accelerator Revision Number

3-0

CRCRN

CRC Hardware Accelerator Revision Number

13.113 CHA Revision Number Register, least-significant half
(CRNR_LS)

CHA Revision Number Register, least-significant half (CRNR_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

908 NXP Semiconductors

13.113.1 Offset

Register Offset

CRNR_LS FA4h (alias)

CRNR_LS 1_0FA4h (alias)

CRNR_LS 2_0FA4h (alias)

CRNR_LS 3_0FA4h (alias)

CRNR_LS 4_0FA4h (alias)

CRNR_LS 6_0FA4h (alias)

CRNR_LS 7_0FA4h (alias)

CRNR_LS 8_0FA4h (alias)

CRNR_LS 9_0FA4h (alias)

CRNR_LS A_0FA4h (alias)

13.113.2 Function

The CHA Revision Number register indicates the revision number of each CHA. The
revisions are numbered independently for each version of a particular CHA (see CHA
Version ID Register, most-significant half (CHAVID_MS)). Since the register is larger
than 32 bits, the CRNR fields are accessed as two 32-bit words. Because this register may
be of interest to multiple software entities, this register is aliased to addresses in multiple
pages. The register format is shown in the figure and table below.

13.113.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKRN KASRN SNW8RN RNGRN

W

Reset 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MDRN
Reserved

DESRN AESRN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 909

13.113.4 Fields

Field Function

31-28

PKRN

Public Key Hardware Accelerator Revision Number

For PKHA-XT, PKRN=1.

For PKHA-SD, see below.

0000b - PKHA-SDv1
0001b - PKHA-SDv2
0010b - PKHA-SDv3
0011b - PKHA-SDv4

27-24

KASRN

Kasumi f8/f9 Hardware Accelerator Revision Number

23-20

SNW8RN

SNOW-f8 Hardware Accelerator Revision Number

19-16

RNGRN

Random Number Generator Revision Number.

15-12

MDRN

Message Digest Hardware Accelerator module Revision Number.

11-8

—

Reserved

7-4

DESRN

DES Accelerator Revision Number.

3-0

AESRN

AES Accelerator Revision Number.

0000 No Differential Power Analysis resistance implemented

0001 Differential Power Analysis resistance implemented

For all other values when AESVID = 4, Differential Power Analysis resistance is implemented.

13.114 Compile Time Parameters Register, most-significant
half (CTPR_MS)

13.114.1 Offset

Register Offset

CTPR_MS FA8h (alias)

CTPR_MS 1_0FA8h (alias)

CTPR_MS 2_0FA8h (alias)

CTPR_MS 3_0FA8h (alias)

Table continues on the next page...

Compile Time Parameters Register, most-significant half (CTPR_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

910 NXP Semiconductors

Register Offset

CTPR_MS 4_0FA8h (alias)

CTPR_MS 6_0FA8h (alias)

CTPR_MS 7_0FA8h (alias)

CTPR_MS 8_0FA8h (alias)

CTPR_MS 9_0FA8h (alias)

CTPR_MS A_0FA8h (alias)

13.114.2 Function

The Compile Time Parameters register indicates the parameter settings at the time SEC
was compiled. Since the register is larger than 32 bits, the CTPR fields are accessed as
two 32-bit words. Because this register may be of interest to multiple software entities,
this register is aliased to addresses in multiple 64kbyte address spaces.

13.114.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

A
X

I_
P

IP
E

_D
E

P
T

H

A
X

I_
LI

O
D

N

A
X

I_
P

R
I

Q
I

A
C

C
_C

T
L

C
1C

2

R
es

er
ve

d

P
C

D
E

C
O

_W
D

P
M

_E
V

T
_B

U
S

S
G

8

M
C

F
G

_P
S

M
C

F
G

_B
U

R
S

T

W

Reset 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

IP
_C

LK

D
P

A
A

2

R
es

er
ve

d

A
I_

IN
C

L

R
N

G
_I

R
es

er
ve

d

R
E

G
_P

G
_S

IZ
E R

es
er

ve
d

V
IR

T
_E

N
_P

O
R

_V
A

LU
E

V
IR

T
_E

N
_I

N
C

L

W

Reset 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 911

13.114.4 Fields

Field Function

31-28

AXI_PIPE_DEP
TH

AXI Pipeline Depth. A value of 0b0000 indicates maximum value.

27

AXI_LIODN

LIODN logic included
1b - The logic to select LIODNs is included in SEC. Although this SoC uses ICIDs, the SEC
manipulates the ICID values in the same manner as LIODNs in older QorIQ SoCs.

26

AXI_PRI

AXI Master Priority
1b - The logic for the AXI Master Priority signals is included in SEC. Note that the presence of this
logic will NOT have an effect in this SoC.

25

QI

QMI included
1b - The Queue Manager Interface is included in SEC

24

ACC_CTL

MID/DID-based access control
1b - SEC implements MID-based or DID-based access control for the IP Bus registers

23

C1C2

Separate C1 and C2 registers
1b - SEC implements Class 2 Key and Context registers that are separate from the Class 1 Key
and Context registers

22

—

Reserved

21

PC

Performance Counter registers implemented
1b - SEC implements Performance Counter registers

20

DECO_WD

DECO Watchdog Counter implemented
1b - SEC implements a DECO Watchdog Counter

19

PM_EVT_BUS

Performance Monitor Event Bus.

1b - SEC implements a Performance Monitor Event Bus.

18

SG8

Eight Scatter-Gather Tables implemented
1b - SEC implements eight Scatter-Gather Tables, rather than just one.

17

MCFG_PS

Pointer Size field implemented
1b - The Master Configuration Register contains a Pointer Size field

16

MCFG_BURST

AXI Burst field implemented
1b - The Master Configuration Register contains an AXI Burst field.

15

—

Reserved

14

IP_CLK

IP Bus Slave Clock

0b - The frequency of SEC's IP Bus Slave Clock is the same as the frequency of SEC's AXI bus
clock.
1b - The frequency of SEC's IP Bus Slave Clock is one-half the frequency of SEC's AXI bus clock.

13

DPAA2

This version of SEC supports version 2 of the Data Path Acceleration Architecture (DPAA2).

12

—

Reserved

Table continues on the next page...

Compile Time Parameters Register, most-significant half (CTPR_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

912 NXP Semiconductors

Field Function

11

AI_INCL

0 : This version of SEC does not implement an AIOP interface.

1 : This version of SEC implements one or more AIOP interfaces.

10-8

RNG_I

RNG Instantiations. This indicates the number of RNG instantiations that are implemented. Note that
each instantiation is the data context for an independent RNG stream, and may share the same RNG
hardware as other instantiations. The number of hardware RNGs is indicated in the RNGNUM field of the
CHANUM register.

7-5

—

Reserved.

4

REG_PG_SIZE

SEC register page size.

0b - SEC uses 4Kbyte register pages.
1b - SEC uses 64Kbyte register pages.

3-2

—

Reserved

1

VIRT_EN_POR
_VALUE

Job Ring Virtualization POR state. If VIRT_EN_POR_VALUE=1, this indicates that job ring virtualization
is enabled at power up.

0

VIRT_EN_INCL

Job Ring Virtualization programmable. If this bit is 1, this indicates that job ring virtualization can be
programmed to be enabled or disabled by writing to the VIRT_EN bit in the Security Configuration
register. If this bit is 0, job ring virtualization is always enabled and the Security Configuration register
does not contain a VIRT_EN bit.

13.115 Compile Time Parameters Register, least-significant
half (CTPR_LS)

13.115.1 Offset

Register Offset

CTPR_LS FACh (alias)

CTPR_LS 1_0FACh (alias)

CTPR_LS 2_0FACh (alias)

CTPR_LS 3_0FACh (alias)

CTPR_LS 4_0FACh (alias)

CTPR_LS 6_0FACh (alias)

CTPR_LS 7_0FACh (alias)

CTPR_LS 8_0FACh (alias)

CTPR_LS 9_0FACh (alias)

CTPR_LS A_0FACh (alias)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 913

13.115.2 Function

The Compile Time Parameters register indicates the parameter settings at the time SEC
was compiled. Since the register is larger than 32 bits, the CTPR fields are accessed as
two 32-bit words. Because this register may be of interest to multiple software entities,
this register is aliased to addresses in multiple 64kbyte address spaces.

13.115.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

S
P

LI
T

_K
E

Y M
A

N
_P

R
O

T

D
B

L_
C

R
C

P
3G

_L
T

E

R
S

A

M
A

C
S

E
C

T
LS

_P
R

F S
S

L_
T

L
S

IK
E

IP
S

E
C S

R
T

P

W
IM

A
X

W
IF

I

B
LO

B

K
G

_D
S

W

Reset 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13.115.4 Fields

Field Function

31-15

—

Reserved.

14

SPLIT_KEY

Split key protocol
1b - SEC implements the split-key protocol.

13

MAN_PROT

Manufacturing Protection protocol
1b - SEC implements the two Manufacturing Protection functions.

12

DBL_CRC

DOuble CRC protocol
1b - SEC implements specialized support for 3G Double CRC.

11

P3G_LTE

3GPP/LTE protocol
1b - SEC implements specialized support for 3G and LTE protocols.

10 RSA protocol

Table continues on the next page...

Compile Time Parameters Register, least-significant half (CTPR_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

914 NXP Semiconductors

Field Function

RSA 1b - SEC implements specialized support for RSA encrypt and decrypt operations.

9

MACSEC

MACSEC protocol
1b - SEC implements specialized support for the MACSEC protocol.

8

TLS_PRF

TLS PRF protocol
1b - SEC implements specialized support for the TLS protocol pseudo-random function."

7

SSL_TLS

SSL/TLS protocol
1b - SEC implements specialized support for the SSL and TLS protocols.

6

IKE

IKE protocols
1b - SEC implements specialized support for the IKE protocol.

5

IPSEC

IPSEC protocols
1b - SEC implements specialized support for the IPSEC protocol.

4

SRTP

SRTP protocol
1b - SEC implements specialized support for the SRTP protocol.

3

WIMAX

WiMax protocol
1b - SEC implements specialized support for the WIMAX protocol.

2

WIFI

WiFi protocol
1b - SEC implements specialized support for the WIFI protocol.

1

BLOB

Blob protocol
1b - SEC implements specialized support for encapsulating and decapsulating cryptographic blobs.

0

KG_DS

PK generation and digital signature protcols
1b - SEC implements specialized support for Public Key Generation and Digital Signatures.

13.116 Fault Address Register (FAR)

13.116.1 Offset

Register Offset Description

FAR FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

FAR 1_0FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

FAR 2_0FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 915

Register Offset Description

description in Master Configuration Register (MCFG
R).

FAR 3_0FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

FAR 4_0FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

FAR 6_0FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

FAR 7_0FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

FAR 8_0FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

FAR 9_0FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

FAR A_0FC0h (alias) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

13.116.2 Function

The Fault Address Register is used for software debugging of external memory access
errors. This register will hold the value of the AXI address where a read or write error
occurred. The read error address is aligned to the data bus address boundary of the data
sample where the error occurred. The write error address is the starting address of the
transaction, aligned to the data bus address boundary. Additional details concerning the
bus transaction appear in the FADR (see Fault Address Detail Register (FADR)). The
associated ICID is in the Fault Address ICID Register (see Section Fault Address ICID
Register (FAICID)). Because this register may be of interest to multiple software entities,
this register is aliased to addresses in multiple 64kbyte address spaces. Because this
register may be of interest to multiple software entities, this register is aliased to
addresses in multiple 64kbyte address spaces. The values in the Fault Address Register,

Fault Address Register (FAR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

916 NXP Semiconductors

the Fault Address ICID Register and the Fault Address Detail Register are stored (and no
additional address fault data is recorded) until all these registers (including both halves of
FAR) have been read, in any order, whereupon all these registers will be cleared.

13.116.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

FAR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FAR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FAR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.116.4 Fields

Field Function

63-40

—

Reserved

39-0

FAR

Fault Address. This is the AXI address at which the error occurred. If multiple errors occur, this is the AXI
address at which the first error occurred. This address will remain in the register until software has read
both the upper and lower halves of the register.

13.117 Fault Address ICID Register (FAICID)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 917

13.117.1 Offset

Register Offset

FAICID FC8h (alias)

FAICID 1_0FC8h (alias)

FAICID 2_0FC8h (alias)

FAICID 3_0FC8h (alias)

FAICID 4_0FC8h (alias)

FAICID 6_0FC8h (alias)

FAICID 7_0FC8h (alias)

FAICID 8_0FC8h (alias)

FAICID 9_0FC8h (alias)

FAICID A_0FC8h (alias)

13.117.2 Function

The Fault Address ICID Register is used by software for debugging external memory
access errors. This register indicates the ICID associated with the AXI transaction where
the error occurred. The associated AXI address is in the Fault Address Register (see Fault
Address Register (FAR)) and additional details appear in the Fault Address Detail
Register (see Fault Address Detail Register (FADR)). Because this register may be of
interest to multiple software entities, this register is aliased to addresses in multiple
64kbyte address spaces. The values in the Fault Address Register, the Fault Address ICID
Register and the Fault Address Detail Register are stored (and no additional address fault
data is recorded) until all these registers (including both halves of FAR) have been read,
in any order, whereupon all these registers will be cleared.

13.117.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

FICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fault Address ICID Register (FAICID)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

918 NXP Semiconductors

13.117.4 Fields

Field Function

31-12

—

Reserved.

11-0

FICID

DMA transaction ICID. This was the ICID associated with the DMA transaction that failed.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.118 Fault Address Detail Register (FADR)

13.118.1 Offset

Register Offset

FADR FCCh (alias)

FADR 1_0FCCh (alias)

FADR 2_0FCCh (alias)

FADR 3_0FCCh (alias)

FADR 4_0FCCh (alias)

FADR 6_0FCCh (alias)

FADR 7_0FCCh (alias)

FADR 8_0FCCh (alias)

FADR 9_0FCCh (alias)

FADR A_0FCCh (alias)

13.118.2 Function

The Fault Address Detail Register is used by software for debugging external memory
access errors. This register will hold details about the AXI transaction where the error
occurred. The associated AXI address is in the Fault Address Register (FAR). The
associated ICID is in the Fault Address ICID Register (FAICID). Because this register
may be of interest to multiple software entities, this register is aliased to addresses in
multiple 64kbyte address spaces. The values in the Fault Address Register, the Fault

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 919

Address ICID Register and the Fault Address Detail Register are stored (and no
additional address fault data is recorded) until all these registers (including both halves of
FAR) have been read, in any order, whereupon all these registers will be cleared.

13.118.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FERR
Reserved Reserved

FSZ_EXT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

D
T

Y
P

JS
R

C B
LK

ID

T
Y

P

F
S

Z

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.118.4 Fields

Field Function

31-30

FERR

Fault Error Code. This is the AXI Error Response Code.

00b - OKAY - Normal Access
01b - Reserved
10b - SLVERR - Slave Error
11b - DECERR - Decode Error

29-24

—

Reserved. Always 0.

23-19

—

Reserved. Always 0.

18-16

FSZ_EXT

AXI Transaction Transfer Size - extended. This field holds the most significant bits of the transfer size,
measured in bytes, of the DMA transaction that resulted in an error.

15

DTYP

Data Type. The type of data being processed when the AXI transfer error occurred.

0b - message data
1b - control data

14-12

JSRC

Job Source. The source of the job whose AXI transfer ended with an error:

000b - job ring 0
001b - job ring 1
010b - job ring 2
011b - job ring 3
100b - RTIC

Table continues on the next page...

Fault Address Detail Register (FADR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

920 NXP Semiconductors

Field Function

101b - Queue Interface
110b - reserved
111b - reserved

11-8

BLKID

Block ID. The Block ID is the identifier of the block internal to SEC that initiated the DMA transfer that
resulted in an error. BLKID is interpreted as follows:

0100b - job queue controller Burst Buffer
0101b - One of the job rings (see JSRC field)
0111b - Queue Interface
1000b - DECO0
1001b - DECO1
1010b - DECO2

7

TYP

AXI Transaction Type. This is the type, read or write, of the DMA transaction that resulted in an error.

0b - Read.
1b - Write.

6-0

FSZ

AXI Transaction Transfer Size. This field holds the least-significant bits of the transfer size, measured in
bytes, of the DMA transaction that resulted in an error. For large transfers the most-significant bits are
held in field FSZ_EXT.

13.119 SEC Status Register (SSTA)

13.119.1 Offset

Register Offset

SSTA FD4h (alias)

SSTA 1_0FD4h (alias)

SSTA 2_0FD4h (alias)

SSTA 3_0FD4h (alias)

SSTA 4_0FD4h (alias)

SSTA 6_0FD4h (alias)

SSTA 7_0FD4h (alias)

SSTA 8_0FD4h (alias)

SSTA 9_0FD4h (alias)

SSTA A_0FD4h (alias)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 921

13.119.2 Function

The SEC Status Register indicates some status information that is relevant to the entire
SEC block. Because this register may be of interest to multiple software entities, this
register is aliased to addresses in multiple 64kbyte address spaces.

13.119.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

P
LE

N
D M

O
O

R
es

er
ve

d

T
R

N
G

_I
D

LE

ID
L

E B
S

Y

W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

13.119.4 Fields

Field Function

31-11

—

Reserved.

10

PLEND

Platform Endianness. This is a hardwired SOC-specific configuration. PLEND indicates whether the SEC
bus master views memory by default as big endian or little endian. Software can override the default for
particular data by setting bits in the Job Ring Configuration Register, the RTIC Endian Register, the
Queue Interface Control Register and the DECO Job Queue Control Register.

0b - Platform default is Little Endian
1b - Platform default is Big Endian

9-8

MOO

Mode of Operation. These bits indicate the Security Mode that SEC is currently working in. The Security
Mode is determined by the Security State Machine (see Security Monitor (SecMon) security states
located in the Security Monitor. The modes are defined in SEC modes of operation.

00b - Non-Secure
01b - Secure
10b - Trusted
11b - Fail

7-3

—

Reserved

Table continues on the next page...

SEC Status Register (SSTA)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

922 NXP Semiconductors

Field Function

2

TRNG_IDLE

If TRNG_IDLE=1, the TRNG portion of the RNG is idle. The free-running oscillator is stopped, so no
entropy is being generated.

1

IDLE

SEC is idle. IDLE=1 indicates that SEC is not currently processing any jobs from QI, from job rings, or
from RTIC and there are no pending interrupts (or the interrupts are masked) and the output job-ring
timers are not counting. There may still be results in the output rings that have not been removed. If the
RIDLE field in the RTIC Control Register=1, IDLE will be 0 if RTIC is in Run-Time Mode and one or more
Memory Blocks are enabled for Run-Time Mode (i.e. one or more of the RTME bits is 1). If RIDLE=0 and
SEC is otherwise idle, the IDLE will still occasionally be 0 while RTIC is actually hashing a chunk of
memory. That is, if RTIC is in Run-Time Mode and one or more memory blocks is enabled, RTIC's
Programmable DMA Throttle Timer may time out periodically and RTIC will launch a hashing job, which
will cause IDLE to briefly go to 0. Software should always check the output rings and Output FQs for
results prior to checking for IDLE.

0

BSY

SEC Busy. BSY=1 indicates that SEC is processing at least one Descriptor.

13.120 RTIC Version ID Register (RVID)

13.120.1 Offset

Register Offset

RVID FE0h (alias)

RVID 1_0FE0h (alias)

RVID 2_0FE0h (alias)

RVID 3_0FE0h (alias)

RVID 4_0FE0h (alias)

RVID 6_0FE0h (alias)

RVID 7_0FE0h (alias)

RVID 8_0FE0h (alias)

RVID 9_0FE0h (alias)

RVID A_0FE0h (alias)

13.120.2 Function

The Run Time Integrity Checking Version ID register can be used by software to
differentiate between different versions of the RTIC. Field RMJV is used for major
revisions, field RMNV is used for minor revisions and the remaining fields are used for

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 923

other revision information about the hardware. The bit assignments of this register appear
below. Because this register may be of interest to multiple software entities, this register
is aliased to addresses in multiple 64kbyte address spaces.

13.120.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

M
D

M
C

M
B

M
A

R
es

er
ve

d

S
H

A
_5

12

R
es

er
ve

d

S
H

A
_2

56

R
es

er
ve

d

W

Reset 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RMJV RMNV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

13.120.4 Fields

Field Function

31-28

—

Reserved

27

MD

Memory Block D Available. This bit indicates that Memory Block D is available for Hash Once and Run
Time Checking.

26

MC

Memory Block C Available. This bit indicates that Memory Block C is available for Hash Once and Run
Time Checking.

25

MB

Memory Block B Available. This bit indicates that Memory Block B is available for Hash Once and Run
Time Checking.

24

MA

Memory Block A Available. This bit indicates that Memory Block A is available for Hash Once and Run
Time Checking.

23-20

—

Reserved

19

SHA_512

SHA-512.

0b - RTIC cannot use the SHA-512 hashing algorithm.
1b - RTIC can use the SHA-512 hashing algorithm.

18

—

Reserved

Table continues on the next page...

RTIC Version ID Register (RVID)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

924 NXP Semiconductors

Field Function

17

SHA_256

SHA-256.

0b - RTIC cannot use the SHA-256 hashing algorithm.
1b - RTIC can use the SHA-256 hashing algorithm.

16

—

Reserved

15-8

RMJV

RTIC Major Version. Represents major revision number of RTIC. This value is incremented when major
functional changes are introduced or the programming model has changed.

7-0

RMNV

RTIC Minor Version. Represents minor revision number of RTIC. This value is incremented when minor
functional changes are made that do not change the programming model. Corrections that require
changes to the design are the typical reason for incrementing these bits.

13.121 CHA Cluster Block Version ID Register (CCBVID)

13.121.1 Offset

Register Offset

CCBVID FE4h (alias)

CCBVID 1_0FE4h (alias)

CCBVID 2_0FE4h (alias)

CCBVID 3_0FE4h (alias)

CCBVID 4_0FE4h (alias)

CCBVID 6_0FE4h (alias)

CCBVID 7_0FE4h (alias)

CCBVID 8_0FE4h (alias)

CCBVID 9_0FE4h (alias)

CCBVID A_0FE4h (alias)

13.121.2 Function

The CHA Cluster Block Version ID register can be used by software to differentiate
between different versions of the CCB. Because this register may be of interest to
multiple software entities, this register is aliased to addresses in multiple 64kbyte address
spaces.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 925

13.121.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R SEC_ERA
Reserved

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AMJV AMNV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

13.121.4 Fields

Field Function

31-24

SEC_ERA

SEC Era.

00000000b - This version of SEC is based on Era 5 or earlier RTL.
00000110b - This version of SEC is based on Era 6 RTL.
00000111b - This version of SEC is based on Era 7 RTL.
00001000b - This version of SEC is based on Era 8 RTL.

23-16

—

Reserved

15-8

AMJV

Accelerator Major Revision Number. This value will be incremented every time there is a major
architectural change to the CCB design. Incrementing this results in the AMNV being set back to 0.

7-0

AMNV

Accelerator Minor Revision Number. This value will be incremented every time an RTL change has been
made to the CCB module.

13.122 CHA Version ID Register, most-significant half (CHAV
ID_MS)

13.122.1 Offset

Register Offset

CHAVID_MS FE8h (alias)

CHAVID_MS 1_0FE8h (alias)

Table continues on the next page...

CHA Version ID Register, most-significant half (CHAVID_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

926 NXP Semiconductors

Register Offset

CHAVID_MS 2_0FE8h (alias)

CHAVID_MS 3_0FE8h (alias)

CHAVID_MS 4_0FE8h (alias)

CHAVID_MS 6_0FE8h (alias)

CHAVID_MS 7_0FE8h (alias)

CHAVID_MS 8_0FE8h (alias)

CHAVID_MS 9_0FE8h (alias)

CHAVID_MS A_0FE8h (alias)

13.122.2 Function

The CHA Version ID register can be used, along with the CCB Version ID, by software
to differentiate between different versions of the cryptographic hardware accelerators.
Since this register holds more than 32 bits, it is accessed as two 32-bit registers. Because
this register may be of interest to multiple software entities, this register is aliased to
addresses in multiple 64kbyte address spaces.

13.122.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JRVID DECOVID
Reserved

W

Reset 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ZAVID ZEVID SNW9VID CRCVID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

13.122.4 Fields

Field Function

31-28

JRVID

Job Ring Version ID

27-24 DECO Version ID

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 927

Field Function

DECOVID

23-16

—

Reserved

15-12

ZAVID

ZUC Authentication Hardware Accelerator Version ID

11-8

ZEVID

ZUC Encryption Hardware Accelerator Version ID

7-4

SNW9VID

SNOW-f9 Hardware Accelerator Version ID

3-0

CRCVID

CRC Hardware Accelerator Version ID

13.123 CHA Version ID Register, least-significant half (CHAV
ID_LS)

13.123.1 Offset

Register Offset

CHAVID_LS FECh (alias)

CHAVID_LS 1_0FECh (alias)

CHAVID_LS 2_0FECh (alias)

CHAVID_LS 3_0FECh (alias)

CHAVID_LS 4_0FECh (alias)

CHAVID_LS 6_0FECh (alias)

CHAVID_LS 7_0FECh (alias)

CHAVID_LS 8_0FECh (alias)

CHAVID_LS 9_0FECh (alias)

CHAVID_LS A_0FECh (alias)

CHA Version ID Register, least-significant half (CHAVID_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

928 NXP Semiconductors

13.123.2 Function

The CHA Version ID register can be used, along with the CCB Version ID, by software
to differentiate between different versions of the cryptographic hardware accelerators.
Since this register holds more than 32 bits, it is accessed as two 32-bit registers. Because
this register may be of interest to multiple software entities, this register is aliased to
addresses in multiple 64kbyte address spaces.

13.123.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKVID KASVID SNW8VID RNGVID

W

Reset 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MDVID
Reserved

DESVID AESVID

W

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0

13.123.4 Fields

Field Function

31-28

PKVID

Public Key Hardware Accelerator Version ID

The bit count is the size of the digit used during computation. The single-digit ("SD") versions allow a
minimum modulus size of one byte.

0000b - PKHA-XT (32-bit); minimum modulus five bytes
0001b - PKHA-SD (32-bit)
0010b - PKHA-SD (64-bit)
0011b - PKHA-SD (128-bit)

27-24

KASVID

Kasumi f8/f9 Hardware Accelerator Version ID

23-20

SNW8VID

SNOW-f8 Hardware Accelerator Version ID

19-16

RNGVID

Random Number Generator Version ID.

0010b - RNGB
0100b - RNG4

15-12

MDVID

Message Digest Hardware Accelerator Version ID.

0000b - low-power MDHA, with SHA-1, SHA-256, SHA 224, MD5 and HMAC

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 929

Field Function

0001b - low-power MDHA, with SHA-1, SHA-256, SHA 224, SHA-512, SHA-512/224,
SHA-512/256, SHA-384, MD5 and HMAC
0010b - medium-performance MDHA, with SHA-1, SHA-256, SHA 224, SHA-512, SHA-512/224,
SHA-512/256, SHA-384, MD5, HMAC & SMAC
0011b - high-performance MDHA, with SHA-1, SHA-256, SHA 224, SHA-512, SHA-512/224,
SHA-512/256, SHA-384, MD5, HMAC & SMAC

11-8

—

Reserved

7-4

DESVID

DES Accelerator Version ID.

3-0

AESVID

AES Accelerator Version ID

0011b - low-power AESA, implementing ECB, CBC, CFB128, OFB, CTR, CCM, CMAC, XCBC-
MAC, and GCM modes
0100b - high-performance AESA, implementing ECB, CBC, CFB128, OFB, CTR,CCM, CMAC,
XCBC-MAC, CBCXCBC, CTRXCBC, XTS, and GCM modes

13.124 CHA Number Register, most-significant half (CHAN
UM_MS)

13.124.1 Offset

Register Offset

CHANUM_MS FF0h (alias)

CHANUM_MS 1_0FF0h (alias)

CHANUM_MS 2_0FF0h (alias)

CHANUM_MS 3_0FF0h (alias)

CHANUM_MS 4_0FF0h (alias)

CHANUM_MS 6_0FF0h (alias)

CHANUM_MS 7_0FF0h (alias)

CHANUM_MS 8_0FF0h (alias)

CHANUM_MS 9_0FF0h (alias)

CHANUM_MS A_0FF0h (alias)

CHA Number Register, most-significant half (CHANUM_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

930 NXP Semiconductors

13.124.2 Function

The CHA Number register can be used by software to determine how many copies of
each type of cryptographic hardware accelerator are implemented in this version of SEC.
Since this register holds more than 32 bits, it is accessed as two 32-bit registers. Because
this register may be of interest to multiple software entities, this register is aliased to
addresses in multiple 64kbyte address spaces.

13.124.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JRNUM DECONUM
Reserved

W

Reset 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ZANUM ZENUM SNW9NUM CRCNUM

W

Reset 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1

13.124.4 Fields

Field Function

31-28

JRNUM

The number of copies of the job ring that are implemented in this version of SEC

27-24

DECONUM

The number of copies of the DECO that are implemented in this version of SEC

23-16

—

Reserved

15-12

ZANUM

The number of copies of ZUCA that are implemented in this version of SEC

11-8

ZENUM

The number of copies of ZUCE that are implemented in this version of SEC

7-4

SNW9NUM

The number of copies of the SNOW-f9 module that are implemented in this version of SEC

3-0

CRCNUM

The number of copies of the CRC module that are implemented in this version of SEC

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 931

13.125 CHA Number Register, least-significant half (CHAN
UM_LS)

13.125.1 Offset

Register Offset

CHANUM_LS FF4h (alias)

CHANUM_LS 1_0FF4h (alias)

CHANUM_LS 2_0FF4h (alias)

CHANUM_LS 3_0FF4h (alias)

CHANUM_LS 4_0FF4h (alias)

CHANUM_LS 6_0FF4h (alias)

CHANUM_LS 7_0FF4h (alias)

CHANUM_LS 8_0FF4h (alias)

CHANUM_LS 9_0FF4h (alias)

CHANUM_LS A_0FF4h (alias)

13.125.2 Function

The CHA Number register can be used by software to determine how many copies of
each type of cryptographic hardware accelerator are implemented in this version of SEC.
Since this register holds more than 32 bits, it is accessed as two 32-bit registers. Because
this register may be of interest to multiple software entities, this register is aliased to
addresses in multiple 64kbyte address spaces.

13.125.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PKNUM KASNUM SNW8NUM RNGNUM

W

Reset 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MDNUM ARC4NUM DESNUM AESNUM

W

Reset 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1

CHA Number Register, least-significant half (CHANUM_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

932 NXP Semiconductors

13.125.4 Fields

Field Function

31-28

PKNUM

The number of copies of the Public Key module that are implemented in this version of SEC

27-24

KASNUM

The number of copies of the Kasumi module that are implemented in this version of SEC

23-20

SNW8NUM

The number of copies of the SNOW-f8 module that are implemented in this version of SEC

19-16

RNGNUM

The number of copies of the Random Number Generator that are implemented in this version of SEC.

15-12

MDNUM

The number of copies of the MDHA (Hashing module) that are implemented in this version of SEC.

11-8

ARC4NUM

The number of copies of the ARC4 module that are implemented in this version of SEC.

7-4

DESNUM

The number of copies of the DES module that are implemented in this version of SEC.

3-0

AESNUM

The number of copies of the AES module that are implemented in this version of SEC.

13.126 Input Ring Base Address Register for Job Ring a
(IRBAR_JR0 - IRBAR_JR3)

13.126.1 Offset

For a = 0 to 3:

Register Offset Description

IRBAR_JRa 1_0000h + (a × 1_0000h) Used by JRa. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 933

13.126.2 Function

The Input Ring Base Address register holds the physical address of the input ring in
memory (see Address pointers. SEC will use the number of address bits configured by
the Pointer Size bit of the Master Configuration Register (MCFGR). Because there are 4
job rings, there are 4 copies of this register.

When the job ring is allocated to TrustZone SecureWorld, IRBAR may only be written
with a transaction with ns=0. Also, the job ring must be started, if virtualization is
enabled. The IRBAR register can be written only when there are no jobs in the input ring
or when the job ring is halted, else an input ring base address or size invalid write error
will result and a job ring reset or a power on reset will be required. Writing this register
resets the Input Ring Read Index register, therefore following a write to the IRBAR the
new head of the queue within the input ring will be located at the value just written to the
IRBAR. Note that if the input ring was not empty, software must relocate the queue
entries and write the number of these relocated entries to the Input Ring Jobs Added
Register or these jobs will be lost. The address written to the Input Ring Base Address
register must be 4-byte aligned, else an error will result and the job ring will not process
jobs until a valid address is written and the error is cleared. More information on job
management can be found in Job Ring interface.

13.126.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved IRBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IRBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IRBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Input Ring Base Address Register for Job Ring a (IRBAR_JR0 - IRBAR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

934 NXP Semiconductors

13.126.4 Fields

Field Function

63-40

—

Reserved

39-0

IRBA

Input Ring Base Address.

13.127 Input Ring Size Register for Job Ring a (IRSR_JR0 -
IRSR_JR3)

13.127.1 Offset

For a = 0 to 3:

Register Offset Description

IRSR_JRa 1_000Ch + (a × 1_0000h) (used by JR a)

13.127.2 Function

The Input Ring Size register holds the current size of the input ring, measured in number
of entries. Note that each entry will be one word if 32-bit pointers are in use, but will be
two words if pointers larger than 32-bits are in use. Because there are 4 job rings, there
are 4 copies of this register.

When the job ring is allocated to TrustZone SecureWorld, IRSR may only be written
with a transaction with ns=0. Also, the job ring must be started, if virtualization is
enabled, in order to write the register. See Section Job Ring Registers. This register can
be written only when there are no jobs in the input ring or when the job ring is halted,
else an input ring base address or size invalid write error (type 5h) will result and a Job
Ring reset or a power on reset will be required. Writing this register resets the Input Ring
Read Index register, therefore following a write to the IRSR the new head of the queue

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 935

within the input ring will be located at the value stored in the IRBAR. Note that if the
input ring was not empty, software must relocate the queue entries and write the number
of these relocated entries to the Input Ring Jobs Added Register or these jobs will be lost.

The size of the pointer entries in the ring is defined by the Pointer Size field of the (see
Master Configuration Register (MCFGR). See Address pointers for a discussion of
address pointers. More information on job management can be found in Job Ring
interface.

13.127.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IRS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.127.4 Fields

Field Function

31-10

—

Reserved. Must be 0.

9-0

IRS

Input Ring Size. (measured in number of entries)

13.128 Input Ring Slots Available Register for Job Ring a
(IRSAR_JR0 - IRSAR_JR3)

13.128.1 Offset

For a = 0 to 3:

Input Ring Slots Available Register for Job Ring a (IRSAR_JR0 - IRSAR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

936 NXP Semiconductors

Register Offset Description

IRSAR_JRa 1_0014h + (a × 1_0000h) (used by JR a)

13.128.2 Function

The Input Ring Slots Available Register gives the number of empty slots for jobs in the
input ring. Each slot is one word long if 32-bit pointers are in use, but is two words long
if pointers larger than 32 bits are in use. Because there are 4 job rings, there are 4 copies
of this register. This tells software how many more jobs it can submit to SEC before the
input ring would be full. SEC increments this register when it removes a job from the
input ring for processing. SEC decrements this register by the value in the Input Ring
Jobs Added Register (see Section Input Ring Jobs Added Register for Job Ringa (IRJA
R_JR0 - IRJAR_JR3)) when that register is updated. The value of the Input Ring Slots
Available Register will never be larger than the Input Ring Size Register (see Section
Input Ring Size Register for Job Ring a (IRSR_JR0 - IRSR_JR3)). More information on
job management can be found in Job Ring interface.

The job ring must be started in order to write the IRSAR register. This register is read-
only when virtualization is disabled. When the job ring is allocated to TrustZone
SecureWorld, IRSAR may only be written with a transaction with ns=0. See Section Job
Ring Registers.

13.128.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IRSA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 937

13.128.4 Fields

Field Function

31-10

—

Reserved. Must be 0.

9-0

IRSA

Input Ring Slots Available. (measured in number of available job slots)

13.129 Input Ring Jobs Added Register for Job Ringa (IRJA
R_JR0 - IRJAR_JR3)

13.129.1 Offset

For a = 0 to 3:

Register Offset Description

IRJAR_JRa 1_001Ch + (a × 1_0000h) (used by JR a)

13.129.2 Function

The Input Ring Jobs Added Register tells SEC how many new jobs were added to the
input ring. Because there are 4 job rings, there are 4 copies of this register. Software must
write into this register the number of Job Descriptor addresses that software has added to
the ring. When the Input Ring Jobs Added Register is written, SEC adds that new value
to its count of the jobs available for processing and decrements the Input Ring Slots
Available Register. The value in the Input Ring Jobs Added Register must not be larger
than the value of the Input Ring Slots Available Register (see Section Input Ring Slots
Available Register for Job Ring a (IRSAR_JR0 - IRSAR_JR3)). If more jobs are added
than the value in the Input Ring Slots Available Register an "Added too many jobs" error
(type 9h) will occur. This is a fatal error and will require a job ring reset or power on
reset to correct. More information on job management can be found in Job Ring interface.

When the job ring is allocated to TrustZone SecureWorld, IRJAR may only be written
with a transaction with ns=0. If virtualization is enabled, the job ring must be started in
order to write the register. See Section Job Ring Registers.

Input Ring Jobs Added Register for Job Ringa (IRJAR_JR0 - IRJAR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

938 NXP Semiconductors

13.129.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IRJA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.129.4 Fields

Field Function

31-10

—

Reserved. Must be 0.

9-0

IRJA

Input Ring Jobs Added. (measured in number of entries)

13.130 Output Ring Base Address Register for Job Ring a
(ORBAR_JR0 - ORBAR_JR3)

13.130.1 Offset

For a = 0 to 3:

Register Offset Description

ORBAR_JRa 1_0020h + (a × 1_0000h) Used by JRa. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 939

13.130.2 Function

The Output Ring Base Address Register holds the address of the output ring in memory
(see Job Ring interface). SEC will use the number of bits configured by the Pointer Size
bit of the Master Configuration Register (MCFGR). Because there are 4 job rings, there
are 4 copies of this register. When the job ring is allocated to TrustZone SecureWorld,
ORBAR may only be written with a transaction with ns=0. If virtualization is enabled,
the job ring must be started in order to write the register. See Section Job Ring Registers.
This register can be written only when the job ring is halted or when there are no jobs
from this ring in progress within SEC or in the input ring or output ring, else an output
ring base address or size invalid write error will result and a job ring reset, software SEC
reset or a power on reset will be required.

Writing this register resets the Output Ring Write Index register, therefore following a
write to the ORBAR the new tail of the queue within the output ring will be located at the
value just written to the ORBAR. If the JR was halted before writing to the ORBAR, all
jobs from that job ring will either still be in the input ring or will be completed and
written to the output ring. This gives software a chance to process all completed jobs
from the selected JR, and to query to see how many jobs are still in the input ring before
writing the new output ring base address. This would allow for a clean start with a new
empty output ring. Note that if the output ring was not empty at the time the ORBAR was
written, those old results entries will not be in the new output ring. The address written to
the Output Ring Base Address register must be 4-byte aligned, else an error will result
and the job ring will not process jobs until a valid address is written and the error is
cleared. More information on job management can be found in Job Ring interface.

Output Ring Base Address Register for Job Ring a (ORBAR_JR0 - ORBAR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

940 NXP Semiconductors

13.130.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved ORBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ORBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ORBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.130.4 Fields

Field Function

63-40

—

Reserved

39-0

ORBA

Output Ring Base Address.

13.131 Output Ring Size Register for Job Ring a (ORSR_JR0
- ORSR_JR3)

13.131.1 Offset

For a = 0 to 3:

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 941

Register Offset Description

ORSR_JRa 1_002Ch + (a × 1_0000h) (used by JR a)

13.131.2 Function

The Output Ring Size Register holds the current size of the output ring, measured in
number of entries. Each entry in the output ring consists of one descriptor address pointer
plus one 32-bit results status word, plus an optional word indicating the length of the
SEQ sequence, if any, associated with this job (see INCL_SEQ_OUT field in the section
Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_M
S - JRCFGR_JR3_MS)).The size of a descriptor pointer is defined by the Pointer Size bit
of the Master Configuration Register (MCFGR). If PS=0, pointers are 32 bits. If PS=1,
pointers are 40 bits. See Address pointers for a discussion of address pointers. Because
there are 4 job rings, there are 4 copies of this register. If virtualization is enabled, the job
ring must be started in order to write the register. See Section Job Ring Registers. This
register can be written only when the job ring is halted or when there are no jobs from
this ring in the input ring or output ring or in progress within SEC, else an output ring
base address or size invalid write error will result and a job ring reset, software SEC
reset or a power on reset will be required.

Writing this register resets the Output Ring Write Index register, therefore following a
write to the ORSR the new tail of the queue within the output ring will be located at the
value stored in the ORBAR. If the JR was halted before writing to the ORBAR, all jobs
from that job ring will either still be in the input ring or will be completed and written to
the output ring. This gives software a chance to process all completed jobs from the
selected JR, and to query to see how many jobs are still in the input ring before writing
the new output ring base address. This would allow for a clean start with a new empty
output ring. Note that if the output ring was not empty at the time the ORSR was written,
those old results entries will not be in the new output ring. If the output ring is not empty
when the ORSR is written, software may need to process or relocate those entries to
avoid losing job results.

More information on job management can be found in Job Ring interface.

Output Ring Size Register for Job Ring a (ORSR_JR0 - ORSR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

942 NXP Semiconductors

13.131.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ORS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.131.4 Fields

Field Function

31-10

—

Reserved. Must be 0.

9-0

ORS

Output Ring Size. (measured in number of entries)

13.132 Output Ring Jobs Removed Register for Job Ring a
(ORJRR_JR0 - ORJRR_JR3)

13.132.1 Offset

For a = 0 to 3:

Register Offset Description

ORJRR_JRa 1_0034h + (a × 1_0000h) (used by JR a)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 943

13.132.2 Function

The Output Ring Jobs Removed Register tells SEC how many jobs were removed from
the output ring for processing by software. Because there are 4 job rings, there are 4
copies of this register. Software must write into this register the number of entries that
software has removed from the ring. When the Output Ring Jobs Removed Register is
written, SEC will subtract this amount from the Output Ring Slots Full Register (see
Section Output Ring Slots Full Register for Job Ring a (ORSFR_JR0 - ORSFR_JR3)).
The value of the Output Ring Jobs Removed Register must not be larger than the value in
the Output Ring Slots Full Register. If a value larger than the Output Ring Slots Full
Register is written to the ORJRR, a removed too many jobs error will occur and a job
ring reset, software SEC reset or a power on reset will be required.

When the job ring is allocated to TrustZone SecureWorld, ORJRR may only be written
with a transaction with ns=0. If virtualization is enabled, the job ring must be started in
order to write the register. See Section Job Ring Registers.

More information on job management can be found in Job Ring interface.

13.132.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ORJR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.132.4 Fields

Field Function

31-10

—

Reserved. Must be 0.

9-0

ORJR

Output Ring Jobs Removed. (measured in number of entries)

Output Ring Jobs Removed Register for Job Ring a (ORJRR_JR0 - ORJRR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

944 NXP Semiconductors

13.133 Output Ring Slots Full Register for Job Ring a (ORSF
R_JR0 - ORSFR_JR3)

13.133.1 Offset

For a = 0 to 3:

Register Offset Description

ORSFR_JRa 1_003Ch + (a × 1_0000h) (used by JR a)

13.133.2 Function

The Output Ring Slots Full Register tells the software how many completed jobs SEC has
placed in the output ring. Because there are 4 job rings, there are 4 copies of this register.
SEC will increment this register as it completes a Descriptor and adds it to the output
ring. SEC will decrement this register when software writes a new value to the Output
Ring Jobs Removed Register (see Section Output Ring Jobs Removed Register for Job
Ring a (ORJRR_JR0 - ORJRR_JR3)). The value in the Output Ring Slots Full Register
cannot be larger than the value in the Output Ring Size Register (see Section Output Ring
Size Register for Job Ring a (ORSR_JR0 - ORSR_JR3)).

The job ring must be started in order to write the IRSAR register. This register is read-
only when virtualization is disabled. When the job ring is allocated to TrustZone
SecureWorld, ORSFR may only be written with a transaction with ns=0. See Section Job
Ring Registers.

More information on job management can be found in Job Ring interface.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 945

13.133.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ORSF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.133.4 Fields

Field Function

31-10

—

Reserved. Must be 0.

9-0

ORSF

Output Ring Slots Full. (measured in number of entries)

13.134 Job Ring Output Status Register for Job Ring a (JRST
AR_JR0 - JRSTAR_JR3)

13.134.1 Offset

For a = 0 to 3:

Register Offset Description

JRSTAR_JRa 1_0044h + (a × 1_0000h) (used by JR a)

Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 - JRSTAR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

946 NXP Semiconductors

13.134.2 Function

This register is used to show the status of the last job that was completed. Because there
are 4 job rings, there are 4 copies of this register. Although it is possible to read the job
completion status directly from this register, in normal circumstances this is not useful
because the status value will quickly be overwritten when the next job completes. Bits
0-31 of this register are written into the output ring after the completion of a job, and
software should read the status from there. More information on job ring management
can be found in Section Job Ring interface. Only one type of error will be valid at a time.
The status code and various other information related to the status are given in the SSED
field.

13.134.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R SSRC SSED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SSED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.134.4 Fields

Field Function

31-28

SSRC

Status source. These bits define which source is reporting the status.

All other values - reserved

0000b - No Status Source (No Error or Status Reported)
0001b - Reserved
0010b - CCB Status Source (CCB Error Reported)
0011b - Jump Halt User Status Source (User-Provided Status Reported)
0100b - DECO Status Source (DECO Error Reported)
0101b - QI Status Source (Queue Manager Interface Error Reported)
0110b - Job Ring Status Source (Job Ring Error Reported)
0111b - Jump Halt Condition Codes (Condition Code Status Reported)

27-0

SSED

Source-specific error details. The format of this field depends on the status source specified in the SSRC
field. The interpretation of the SSED field for all status sources is shown in Job termination status/error
codes.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 947

13.135 Job Ring Interrupt Status Register for Job Ring a
(JRINTR_JR0 - JRINTR_JR3)

13.135.1 Offset

For a = 0 to 3:

Register Offset Description

JRINTR_JRa 1_004Ch + (a × 1_0000h) (used by JR a)

13.135.2 Function

The Job Ring Interrupt Status Register indicates whether SEC has asserted an interrupt
for a particular job ring, whether software has requested that the Job Ring be halted,
whether the job ring is now halted, and whether there is an error in this job ring. If there
was an error, the type of error is indicated. The error bit in the JRINT Register doesn't
assert when there is a non-zero job completion status. It only asserts for the types of
errors reported in the ERR_TYPE field in this register. Because there are 4 job rings,
there are 4 copies of this register.

Job Ring Interrupt Status Register for Job Ring a (JRINTR_JR0 - JRINTR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

948 NXP Semiconductors

13.135.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

E
R

R
_O

R
W

I
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

E
R

R
_T

Y
P

E

R
es

er
ve

d

E
X

IT
_F

A
IL

E
N

T
E

R
_F

A
I

L

H
A

LT

JR E JR I

W

W
1C

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.135.4 Fields

Field Function

31-30

—

Reserved

29-16

ERR_ORWI

Output ring write index with error. Set only when ERR_TYPE=0001. This indicates the location in the
output ring that was being written when the error occurred. It is the offset in bytes from the Output Ring
Base Address (see Section Output Ring Base Address Register for Job Ring a (ORBAR_JR0 - ORBAR_
JR3)).

15-13

—

Reserved

12-8

ERR_TYPE

Error type. Set only when JRE bit is also set. Indicates the type of error when it cannot be reported in the
Job Ring Status Register (see Section Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 -
JRSTAR_JR3).)

00001b - Error writing status to Output Ring
00011b - Bad input ring base address (not on a 4-byte boundary).
00100b - Bad output ring base address (not on a 4-byte boundary).
00101b - Invalid write to Input Ring Base Address Register or Input Ring Size Register. Can be
written when there are no jobs in the input ring or when the job ring is halted. These are fatal and
will likely result in not being able to get all jobs out into the output ring for processing by software.
Resetting the job ring will almost certainly be necessary.
00110b - Invalid write to Output Ring Base Address Register or Output Ring Size Register. Can be
written when there are no jobs in the output ring and no jobs from this queue are already
processing in SEC (in the holding tanks or DECOs), or when the job ring is halted.
00111b - Job ring reset released before job ring is halted.
01000b - Removed too many jobs (ORJRR larger than ORSFR).

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 949

Field Function

01001b - Added too many jobs (IRJAR larger than IRSAR).
01010b - Writing ORSF > ORS In these error cases the write is ignored, the interrupt is asserted
(unless masked) and the error bit and error_type fields are set in the Job Ring Interrupt Status
Register.
01011b - Writing IRSA > IRS
01100b - Writing ORWI > ORS in bytes
01101b - Writing IRRI > IRS in bytes
01110b - Writing IRSA when ring is active
01111b - Writing IRRI when ring is active
10000b - Writing ORSF when ring is active
10001b - Writing ORWI when ring is active

7-6

—

Reserved

5

EXIT_FAIL

Exit SecMon Fail State. This bit asserts when SecMon Fail State is exited. If the FAIL_MODE bit is set in
the Job Ring Configuration register, the interrupt will also assert. Writing a 1 to the EXIT_FAIL bit will
clear it.

4

ENTER_FAIL

Enter SecMon Fail State. This bit asserts when SecMon Fail State is entered. If the FAIL_MODE bit is set
in the Job Ring Configuration register, the interrupt will also assert. Writing a 1 to the ENTER_FAIL bit will
clear it.

3-2

HALT

Halt the job ring.

If reading HALT returns 01:

Software has requested that SEC flush the jobs in this job ring and halt processing jobs in this job ring (by
writing to the RESET bit in the Job Ring Command register.).

If reading HALT returns 10:

SEC has flushed all jobs from this job ring and has halted processing jobs in this job ring. If there is not
enough room in the output ring for all the flushed jobs, HALT will continue to return 01 until software has
removed enough jobs so that all the flushed jobs can be written to the output ring.

Software writes a "1" to the MSB of HALT (bit 3) to clear the HALT field and resume processing jobs in
this job ring. An error will occur if 1 is written to the MSB of the HALT field before the HALT field indicates
that SEC has flushed all jobs from this job ring.

If SecMon indicates a FAIL MODE and the FAIL MODE bit is not set in the Job Ring Configuration
register, a job ring halt will be initiated and the HALT status will return 01. When the halt process is
complete, the HALT status will be 10. The HALT status cannot be cleared until SecMon transitions out of
FAIL MODE. If the FAIL MODE bit is set in the Job Ring Configuration register, the job ring is not halted
in FAIL MODE.

1

JRE

Job Ring Error. A Job Ring error occurred. The error code is indicated in the ERR_TYPE field in this
register. Write a 1 to this bit to clear the error indication.

0

JRI

Job Ring Interrupt. SEC has asserted the interrupt request signal for this job ring. Write a 1 to this bit to
clear the interrupt request.

13.136 Job Ring Configuration Register for Job Ring a, most-
significant half (JRCFGR_JR0_MS - JRCFGR_JR3_M
S)

Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_MS - JRCFGR_JR3_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

950 NXP Semiconductors

13.136.1 Offset

For a = 0 to 3:

Register Offset Description

JRCFGR_JRa_MS 1_0050h + (a × 1_0000h) (used by JR a)

13.136.2 Function

Software uses the Job Ring Configuration Register to configure the interrupt handling,
error handling, and data endianness specific to a job ring. Because there are 4 job rings,
there are 4 copies of this register. Since there are more than 32 bits in the JRCFG
Register, it is accessed as two 32-bit words.

Note that many of the bits of this register are used to configure how data is rearranged
when it is read from or written to memory. This is intended primarily to facilitate data
handling in SoCs in which different processors use different data endianness. Because
data may have to be rearranged differently depending upon the type of data, this register
provides separate configuration bits for "control data" and for "message data". These are
defined as shown below:

Table 13-2. Control Data vs. Message Data

Control Data Message Data

Control data read by SEC DMA:

• Descriptors or other data loaded into the Descriptor
Buffer

• Job ring input ring entries
• Address pointers
• Scatter/Gather Tables
• Data loaded into the Class 1 or Class 2 Key Size

registers
• Data loaded into the Class 1 or Class 2 Data Size

registers
• Data loaded into the Class 1 or Class 2 ICV Size

registers
• Data loaded into the DECO ICID register
• Data loaded into the CHA Control register
• Data loaded into the DECO Control register
• Data loaded into the IRQ Control register
• Data loaded into the DECO Protocol Override register
• Data loaded into the Clear Written register
• Data loaded into the Math registers
• Data loaded into the AAD Size register
• Data loaded into the Class 1 IV Size register
• Data loaded into the Alternate Data Size Class 1

register

Message data read by SEC DMA:

• Data read into the Input Data FIFO
• Data loaded into the Output Data FIFO
• Data loaded into the Class 1 or Class 2 Context

registers
• Data loaded into the Class 1 or Class 2 Key registers
• Data loaded into the Input or Output Data FIFO Nibble

Shift registers
• Data put into the Auxiliary Data FIFO

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 951

Table 13-2. Control Data vs. Message Data (continued)

Control Data Message Data

• Data loaded into the PKHA Size registers
• Data loaded into the iNformation FIFO (NFIFO)

Control data written by SEC DMA:

• Descriptors or other data stored from the Descriptor
Buffer

• Job ring output ring entries
• Address pointers
• Scatter/Gather Tables
• Data stored from the Class 1 or Class 2 Mode registers
• Data stored from the DECO Job Queue Control register
• Data stored from the Class 1 or Class 2 Key Size

registers
• Data stored from the DECO Descriptor Address

Register
• Data stored from the Class 1 or Class 2 Data Size

registers
• Data stored from the DECO Status register
• Data stored from the Class 1 or Class 2 ICV Size

registers
• Data stored from the CHA Control register
• Data stored from the IRQ Control register
• Data stored from the Clear Written register
• Data stored from the Math registers
• Data stored from the CCB Status register
• Data stored from the AAD Size register
• Data stored from the Class 1 IV Size register
• Data stored from the PKHA Size registers

Message data written by SEC DMA:

• Data output via the Output Data FIFO
• Data stored from the Class 1 or Class 2 Context

registers

13.136.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

JD
I

S

IN
C

L_
S

E
Q

_O
U

T

F
A

IL
_M

O
D

E

R
es

er
ve

d

D
W

S
O

P
E

O D
M

B
S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

C
D

W
S

O

C
W

S
O

C
H

W
S

O

C
B

S
O

M
D

W
S

O

M
W

S
O

M
H

W
S

O

M
B

S
O

C
D

W
S

I

C
W

S
I

C
H

W
S

I

C
B

S
I

M
D

W
S

I

M
W

S
I

M
H

W
S

I

M
B

S
I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_MS - JRCFGR_JR3_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

952 NXP Semiconductors

13.136.4 Fields

Field Function

31

JDIS

Job Descriptor ICID Select. Determines whether the SEQ ICID or the Non-SEQ ICID is asserted when
reading the Job Descriptors addressed by the pointers stored in the job ring's input ring. The JDIS bit is
also used to select the ICID when updating the same Job Descriptors with a STORE of type 41h. The
JDIS bit does not apply to any Job Descriptors loaded during the operation of another Job Descriptor
(e.g. loaded with a non-local JUMP command).

0b - Non-SEQ ICID
1b - SEQ ICID

30

INCL_SEQ_OU
T

Include Sequence Out Length. If this bit is set to 1, entries in the job ring's output ring will include a 32-bit
word indicating the number of bytes written out via SEQ STORE and SEQ FIFO STORE commands in
this job. If this bit is set to 0, the SEQ OUT Length is omitted from the entries. The setting of this bit can
be changed only during ring configuration, when no jobs are running in SEC, else an error will be flagged.

29

FAIL_MODE

Fail mode control. If this bit is set to 1 and SecMon indicates a FAIL MODE, the job ring will assert its
interrupt and set the ENTER_FAIL bit in the Job Ring Interrupt Status register. The job ring will not halt,
but will continue to process any available jobs. DECO will return these jobs will a FAIL MODE error. If
SecMon transitions out of FAIL MODE, the job ring will assert its interrupt and set the EXIT_FAIL bit in
the Job Ring Interrupt Status register.

If this bit is set to 0 and SecMon indicates a FAIL MODE, the job ring will set the ENTER_FAIL bit in the
Job Ring Interrupt Status register. The job ring will halt until SecMon transitions out of FAIL MODE. When
the job ring has halted, it will assert its interrupt. If SecMon transitions out of FAIL MODE, the job ring will
set the EXIT_FAIL bit in the Job Ring Interrupt Status register.

28-19

—

Reserved. Must be 0.

18

DWSO

Double Word Swap Override. Setting DWSO=1 complements the swap control determined by
MCFGR[DWT] and JRCFGR_JR[PEO]

17

PEO

Platform Endian Override - The bit is XORed with the PLEND bit in the CaCSTA Register and the other
"swap" bits in the Job Ring Configuration Register to determine the AXI Master's view of memory
endianness when executing Job Descriptors from this job ring. Note that the swap bits can be used in
combination to achieve multiple swaps simultaneously.

16

DMBS

Descriptor Message Data Byte Swap (this applies only to internal message data transfers to/from DECO
Descriptor Buffers). An example is shown below:

Data as it is read from the source 0123456789abcdefh

Data as it is written to the destination when DBMS = 0 0123456789abcdefh

Data as it is written to the destination when DBMS = 1 23016745ab89efcdh

15

CDWSO

To assist with mixed Endianness platforms, this bit configures a doubleword swap of control data written
by SEC DMA. An example is shown below:

Data as interpreted within SEC first word: 0001020304050607h

second word: 08090a0b0c0d0e0fh

Data as written to memory when PEO XOR
PLEND XOR CDWSO = 0

000102030405060708090a0b0c0d0e0fh

Data as written to memory when PEO XOR
PLEND XOR CDWSO = 1

08090a0b0c0d0e0f0001020304050607h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 953

Field Function

14

CWSO

To assist with mixed Endianness platforms, this bit configures a fullword swap of control data written by
SEC DMA. An example is shown below:

Data as interpreted within SEC 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CWSO =
0

0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CWSO =
1

89abcdef01234567h

13

CHWSO

To assist with mixed Endianness platforms, this bit configures a halfword swap of control data written by
SEC DMA. An example is shown below:

Data as interpreted within SEC 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CHWSO =
0

0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CHWSO =
1

45670123cdef89abh

12

CBSO

To assist with mixed Endianness platforms, this bit configures a byte swap of control data written by SEC
DMA. An example is shown below:

Data as interpreted within SEC 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CBSO = 0 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR CBSO = 1 23016745ab89efcdh

11

MDWSO

To assist with mixed Endianness platforms, this bit configures a doubleword swap of message data
written by SEC DMA. An example is shown below:

Data as interpreted within SEC first word: 0001020304050607h

second word: 08090a0b0c0d0e0fh

Data as written to memory when PEO XOR
PLEND XOR MDWSO = 0

000102030405060708090a0b0c0d0e0fh

Data as written to memory when PEO XOR
PLEND XOR MDWSO = 1

08090a0b0c0d0e0f0001020304050607h

10

MWSO

To assist with mixed Endianness platforms, this bit configures a fullword swap of message data written by
SEC DMA. An example is shown below:

Data as interpreted within SEC 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MWSO =
0

0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MWSO =
1

89abcdef01234567h

Table continues on the next page...

Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_MS - JRCFGR_JR3_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

954 NXP Semiconductors

Field Function

9

MHWSO

To assist with mixed Endianness platforms, this bit configures a halfword swap of message data written
by SEC DMA. An example is shown below:

Data as interpreted within SEC 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MHWSO
= 0

0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MHWSO
= 1

45670123cdef89abh

8

MBSO

To assist with mixed Endianness platforms, this bit configures a byte swap of message data written by
SEC DMA. An example is shown below:

Data as interpreted within SEC 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MBSO = 0 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MBSO = 1 23016745ab89efcdh

7

CDWSI

To assist with mixed Endianness platforms, this bit configures a doubleword swap of control data read by
SEC DMA. An example is shown below:

Data as stored in memory 000102030405060708090a0b0c0d0e0fh

Data as interpreted by SEC when PEO XOR
PLEND XOR CDWSI = 0

first word: 0001020304050607h

second word: 08090a0b0c0d0e0fh

Data as interpreted by SEC when PEO XOR
PLEND XOR CDWSI = 1

first word: 08090a0b0c0d0e0fh

second word: 0001020304050607h

6

CWSI

To assist with mixed Endianness platforms, this bit configures a fullword swap of control data read by
SEC DMA. An example is shown below:

Data as stored in memory 0123456789abcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR CWSI =
0

0123456789abcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR CWSI =
1

89abcdef01234567h

5

CHWSI

To assist with mixed Endianness platforms, this bit configures a halfword swap of control data read by
SEC DMA. An example is shown below:

Data as stored in memory 0123456789abcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR CHWSI =
0

0123456789abcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR CHWSI =
1

45670123cdef89abh

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 955

Field Function

4

CBSI

To assist with mixed Endianness platforms, this bit configures a byte swap of control data read by SEC
DMA. An example is shown below:

Data as stored in memory 0123456789abcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR CBSI = 0 0123456789abcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR CBSI = 1 23016745ab89efcdh

3

MDWSI

To assist with mixed Endianness platforms, this bit configures a doubleword swap of message data read
by SEC DMA. An example is shown below:

Data as stored in memory 000102030405060708090a0b0c0d0e0fh

Data as interpreted by SEC when PEO XOR
PLEND XOR MDWSI = 0

first word:

0001020304050607h

second word:

08090a0b0c0d0e0fh

Data as interpreted by SEC when PEO XOR
PLEND XOR MDWSI = 1

first word: 08090a0b0c0d0e0fh

second word: 0001020304050607h

2

MWSI

To assist with mixed Endianness platforms, this bit configures a fullword swap of message data read by
SEC DMA. An example is shown below:

Data as interpreted within SEC 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MWSI = 0 0123456789abcdefh

Data as written to memory when PEO XOR PLEND XOR MWSI = 1 89abcdef01234567h

1

MHWSI

To assist with mixed Endianness platforms, this bit configures a halfword swap of message data read by
SEC DMA. An example is shown below:

Data as stored in memory 0123456789abcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR MHWSI
= 0

0123456789abcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR MHWSI
= 1

45670123cdef89abh

0

MBSI

To assist with mixed Endianness platforms, this bit configures a byte swap of message data read by SEC
DMA. An example is shown below:

Data as stored in memory 0123456789abcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR MBSI = 0 01234567ababcdefh

Data as interpreted by SEC when PEO XOR PLEND XOR MBSI = 1 23016745ab89efcdh

Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_MS - JRCFGR_JR3_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

956 NXP Semiconductors

13.137 Job Ring Configuration Register for Job Ring a, least-
significant half (JRCFGR_JR0_LS - JRCFGR_JR3_LS)

13.137.1 Offset

For a = 0 to 3:

Register Offset Description

JRCFGR_JRa_LS 1_0054h + (a × 1_0000h) (used by JR a)

13.137.2 Function

See description of JRCFGR_JR_MS

13.137.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ICTT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

IC
D

C
T

R
es

er
ve

d

IC
E

N

IM
S

K
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.137.4 Fields

Field Function

31-16

ICTT

Interrupt Coalescing Timer Threshold. While interrupt coalescing is enabled (ICEN=1), this value
determines the maximum amount of time after processing a Descriptor before raising an interrupt. If
Descriptors have been processed but the Descriptor count threshold has not been met, an interrupt is
raised when the interrupt coalescing timer expires. The interrupt coalescing timer is stopped when the
Output Ring Slots Full Register is 0. The timer is reset and stopped once an interrupt has been asserted

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 957

Field Function

or whenever the Output Ring Jobs Removed Register is written by software. Counting resumes from zero
after a reset if the counter is still enabled. The timer begins counting once the next Descriptor is moved to
the output ring. Note that it is possible for one or more Descriptors to be moved to the output ring after
software has read the Output Ring Slots Full Register and before software has written the Output Ring
Jobs Removed Register. This would cause the timer to be reset to 0, but still counting. In this situation an
interrupt would be raised when the timer expires at the full threshold value (unless the interrupt was
raised earlier due to the Descriptor Count Threshold). The threshold value is represented in units equal to
64 SEC interface clocks. Valid values for this field are from 1 to 65535. A value of 0 results in behavior
identical to that when interrupt coalescing is disabled.

15-8

ICDCT

Interrupt Coalescing Descriptor Count Threshold. While interrupt coalescing is enabled (ICEN=1), this
value determines how many Descriptors are completed before raising an interrupt. Valid values for this
field are from 0 to 255. Note that a value of 1 functionally defeats the advantages of interrupt coalescing
since the threshold value is reached each time that a Job Descriptor is completed. A value of 0 is treated
in the same manner as a value of 1. The value of ICDCT is ignored if ICEN=0.

7-2

—

Reserved

1

ICEN

Interrupt Coalescing Enable.

0b - Interrupt coalescing is disabled. If the IMSK bit is cleared, an interrupt is asserted whenever a
job is written to the output ring. ICDCT is ignored. Note that if software removes one or more jobs
and clears the interrupt but the output rings slots full is still greater than 0 (ORSF > 0), then the
interrupt will clear but reassert on the next clock cycle.
1b - Interrupt coalescing is enabled. If the IMSK bit is cleared, an interrupt is asserted whenever the
threshold number of frames is reached (ICDCT) or when the threshold timer expires (ICTT). Note
that if software removes one or more jobs and clears the interrupt but the interrupt coalescing
threshold is still met (ORSF >= ICDCT), then the interrupt will clear but reassert on the next clock
cycle.

0

IMSK

Interrupt Mask. Mask the interrupt that is associated with the particular processor.

0b - Interrupt enabled.
1b - Interrupt masked.

13.138 Input Ring Read Index Register for Job Ring a (IRRIR_
JR0 - IRRIR_JR3)

13.138.1 Offset

For a = 0 to 3:

Register Offset Description

IRRIR_JRa 1_005Ch + (a × 1_0000h) (used by JR a)

Input Ring Read Index Register for Job Ring a (IRRIR_JR0 - IRRIR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

958 NXP Semiconductors

13.138.2 Function

The Input Ring Read Index Register points to the head of the queue within the Input
Ring. At this address there will be a pointer to the next Job Descriptor that SEC will fetch
from this job ring. After SEC reads a Job Descriptor from the job ring SEC increments
this register based on the Pointer Size bit of the Master Configuration Register described
in Section Master Configuration Register (MCFGR). If PS=0 (pointers are 32 bits), the
increment is 4. If PS=1 (pointers are 40 bits), the increment is 8. The index will be added
to the Input Ring Base Address to get the physical address. Because there are 4 job rings,
there are 4 copies of this register. More information on job management can be found in
Job Ring interface.

The job ring must be started in order to write the IRRIR register. This register is read-
only when virtualization is disabled. When the job ring is allocated to TrustZone
SecureWorld, IRRIR may only be written with a transaction with ns=0. See Section Job
Ring Registers.

13.138.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IRRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.138.4 Fields

Field Function

31-13

—

Reserved

12-0

IRRI

Input Ring Read Index.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 959

13.139 Output Ring Write Index Register for Job Ring a
(ORWIR_JR0 - ORWIR_JR3)

13.139.1 Offset

For a = 0 to 3:

Register Offset Description

ORWIR_JRa 1_0064h + (a × 1_0000h) (used by JR a)

13.139.2 Function

The Output Ring Write Index Register points to the tail of the queue within the output
ring. Because there are 4 Job Rings, there are 4 copies of this register. The Output Ring
Write Index Register is added to the Output Ring Base Address Register to get the
physical address. At this address SEC writes a pointer to the last Descriptor that SEC has
processed. At the next entry in the ring SEC writes the completion status of that
Descriptor. Every time that a Descriptor has been processed SEC increments the value in
the Output Ring Write Index Register by the size of the pointer, 1 plus the size of the 4-
byte completion status word plus an additional 4 bytes if the INCL_SEQ_OUT bit in the
JRCRGR is 1. So if INCL_SEQ_OUT=0 the increment will be 8 (if PS=0, i.e. 32-bit
addresses) or 12 (if PS=1. i.e. 40-bit addresses). If INCL_SEQ_OUT=1, the increment
will be 12 (if PS=0, i.e. 32-bit addresses) or 16 (if PS=1, i.e. 40-bit addresses). For a
discussion of address pointers see Address pointers.

The job ring must be started in order to write the ORWIR register. This register is read-
only when virtualization is disabled. When the job ring is allocated to TrustZone
SecureWorld, ORWIR may only be written with a transaction with ns=0. See Section Job
Ring Registers.

More information on job management can be found in Job Ring interface.

1. The size of the pointer is defined by the Pointer Size bit of the Master Configuration Register described in Section Master
Configuration Register (MCFGR).

Output Ring Write Index Register for Job Ring a (ORWIR_JR0 - ORWIR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

960 NXP Semiconductors

13.139.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

O
R

W
I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.139.4 Fields

Field Function

31-14

—

Reserved

13-0

ORWI

Output Ring Write Index. The pointer to the next entry in the output ring.

13.140 Job Ring Command Register for Job Ring a (JRCR_
JR0 - JRCR_JR3)

13.140.1 Offset

For a = 0 to 3:

Register Offset Description

JRCR_JRa 1_006Ch + (a × 1_0000h) (used by JR a)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 961

13.140.2 Function

Software can use this register to issue a park, flush or reset command to a job ring. A
flush command is issued by writing a 1 to JRCR[RESET] when JRCR[RESET]=0. A
flush is defined as stalling any jobs currently in the input ring and terminating (with an
error code) any jobs currently in progress in the holding tanks or DECOs. The terminated
jobs will be written to the output ring with a status indicating that they were terminated
by a flush request. Note that these flushed jobs will count towards the Interrupt
Coalescing Descriptor Count. If there is not sufficient space in the output ring for all the
flushed jobs, job ring flushing will be paused until software has made enough space in the
Output Ring. After a flush completes, the halt can be cleared and job processing will
resume, or a reset can be requested.

A park command will stall any jobs in the job ring that have not yet been fetched, but will
allow all the jobs in progress to complete normally. A park command may be issued only
if virtualization is enabled. If virtualization is disabled, any writes to the PARK bit are
ignored.

During the time between the write to PARK and all of the in-progress jobs completing,
the HALT field in the Job Ring Interrupt Status register will return 01b indicating that the
job ring was asked to stop processing jobs. When all jobs are complete and the job ring
has halted, the Job Ring Interrupt Status register will indicate this by setting the HALT
field to 10b. Once the job ring indicates that it has halted, it is safe to read the values of
the job ring registers to save the job ring state. The following register values should be
saved:

• JRCFGR_JR -Job Ring Configuration Register for the job ring
• IRBAR_JR - Input Ring Base Address Register for the job ring
• IRSR_JR - Input Ring Size Register for the job ring
• ORBAR_JR - Output Ring Base Address Register for the job ring
• ORSR_JR - Output Ring Size Register for the job ring
• IRSAR_JR - Input Ring Slots Available Register for the job ring
• ORSFR_JR - Output Ring Slots Full Register for the job ring
• IRRIR_JR - Input Ring Read Index Register for the job ring
• ORWIR_JR - Output Ring Write Index Register for the job ring

Once the state is saved, the job ring may be reassigned. To reassign the job ring, the
registers that were saved should be rewritten with new values. When reprogramming,
note that IRS must be written before IRSA or IRRI, and ORS must be written before
ORSF or ORWI. IRSA should be written last because this is the register that indicates to
the job ring that it has jobs to process. Failure to write the registers in the correct order
may result in one of the following errors: IRSA>IRS, IRRI>IRS, ORSF>ORS, or
ORWI>ORS. Once the job ring is reprogrammed, park status can be released so that the

Job Ring Command Register for Job Ring a (JRCR_JR0 - JRCR_JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

962 NXP Semiconductors

job ring can start running again. To do this, write a "1" to the MSB of the HALT field in
the job ring Interrupt Status register. Note that if software tries to release parking status
before the Job Ring has halted, a fatal error will occur (type 00111). This is the same
error type as releasing the job ring from reset status before the ring has halted.

A reset command is issued by writing a 1 to JRCR[RESET] when JRCR[RESET]=1. A
reset command will clear all registers in the job ring except the following:

• Input Ring Base Address
• Input Ring Size
• Output Ring Base Address
• Output Ring Size
• Job Ring Configuration.

A reset can be initiated only after a flush has been requested and completed as indicated
by the HALT field in the Job Ring Interrupt Status Register. After a reset, job processing
will resume when the Input Ring Jobs Added Register is written to indicate that new jobs
are available. If both PARK and RESET are written to 1, the PARK is ignored and the
job ring is reset.

Because there are 4 job rings, there are 4 copies of this register.

13.140.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

W

P
A

R
K

R
E

S
E

T

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.140.4 Fields

Field Function

31-2 Reserved. Always 0.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 963

Field Function

—

1

PARK

Park - When PARK is 0, software writes a 1 to PARK to request that the job ring be "parked", i.e.
quiesced. All jobs currently "in flight" (in holding tanks, DECOs or waiting for status results to be written
out) are completed, but no new jobs are fetched from the input ring. When the job ring has completed
parking, the HALT field in the Job Ring Interrupt Status register will change from 01b to 10b.

0

RESET

Reset - When RESET is 0, software writes a 1 to RESET to request a flush of the Job Ring. If software
wants to initiate a reset of the job ring, software writes a 1 to the RESET bit after a flush (when RESET is
already 1). The reset will clear the RESET bit and other registers in the job ring. If no reset is required,
software writes a 1 to the MSB of the HALT field in the Job Ring Interrupt Status Register to cause the job
ring to resume processing jobs. An error will occur if 1 is written to the MSB of the HALT field before the
HALT field indicates that the SEC has flushed all jobs from this job ring.

13.141 Job Ring a Address-Array Valid Register (JR0AAV -
JR3AAV)

13.141.1 Offset

For a = 0 to 3:

Register Offset Description

JRaAAV 1_0704h + (a × 1_0000h) Used with Job Ring a

13.141.2 Function

The Job Ring Address-Array Valid register indicates stored in the Job Ring Address-
Array Address Registers. The register is intended to be used when debugging descriptor
execution via a Job Ring. The Debug Control Register can be used to stop SEC
processing before reading the job ring debug registers so that a consistent set of values
can be read.

Job Ring a Address-Array Valid Register (JR0AAV - JR3AAV)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

964 NXP Semiconductors

13.141.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BC
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

V7 V6 V5 V4 V3 V2 V1 V0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.141.4 Fields

Field Function

31

BC

Been Changed. The BC bit is used to verify that consistent data has been read from the Address Array
Registers. BC is set to 0 when JR0AAA0 is read, and BC is then set to 1 if the content of any of the
JRAAAx registers or the JRaAAVS register changes (due to new addresses being loaded into AA or
existing addresses being sent to a holding tank) before the JRaAAVS is read. So if BC is 1 after this
sequence of register reads, some of the data that was read may be inconsistent with other data that was
read. In this case the address Array registers should be read again.

30-8

—

Reserved

7

V7

Valid 7. When V7=1, Job Ring Address-Array Address Register 7 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank. Note that this version of SEC implements four
Job Ring Address-Array Registers.

6

V6

Valid 6. When V6=1, Job Ring Address-Array Address Register 6 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank. Note that this version of SEC implements four
Job Ring Address-Array Registers.

5

V5

Valid 5. When V5=1, Job Ring Address-Array Address Register 5 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank. Note that this version of SEC implements four
Job Ring Address-Array Registers.

4

V4

Valid 4. When V4=1, Job Ring Address-Array Address Register 4 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank. Note that this version of SEC implements four
Job Ring Address-Array Registers.

3

V3

Valid 3. When V3=1, Job Ring Address-Array Address Register 3 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank. Note that this version of SEC implements four
Job Ring Address-Array Registers.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 965

Field Function

2

V2

Valid 2. When V2=1, Job Ring Address-Array Address Register 2 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank. Note that this version of SEC implements four
Job Ring Address-Array Registers.

1

V1

Valid 1. When V1=1, Job Ring Address-Array Address Register 1 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank. Note that this version of SEC implements four
Job Ring Address-Array Registers.

0

V0

Valid 0. When V0=1, Job Ring Address-Array Address Register 0 contains a valid Job Descriptor address
read from one of the Job Ring input rings. The valid bit is set when a Job Descriptor is read, and is
cleared when the Job Descriptor is sent to a Holding Tank. Note that this version of SEC implements four
Job Ring Address-Array Registers.

13.142 Job Ring a Address-Array Address b Register (JR0A
AA0 - JR3AAA7)

13.142.1 Offset

For a = 0 to 3; b = 0 to 7:

Register Offset Description

JRaAAAb 1_0800h + (a × 1_0000h) + (b × 8h) Used with Job Ring a. For the order that the two 32-
bit halves of this register appear in memory, see the
DWT bit description in Master Configuration Register
(MCFGR).

13.142.2 Function

The JRAAA registers are intended to be used when debugging descriptor execution via a
job ring. The Debug Control Register can be used to stop SEC processing before reading
the job ring debug registers so that a consistent set of values can be read. As discussed in
Job scheduling, the job Queue Controller buffers up to four Job Descriptors from one job
ring before servicing the next Job Ring in round-robin fashion. For performance reasons
SEC reads multiple input ring entries whenever possible, so SEC may read up to four job
descriptor addresses in a single bus burst. These registers store the job descriptor
addresses after the job queue controller fetches the descriptor address from the input ring
and before assigning the descriptor to a Holding Tank.

Job Ring a Address-Array Address b Register (JR0AAA0 - JR3AAA7)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

966 NXP Semiconductors

13.142.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R JD_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.142.4 Fields

Field Function

63-40

—

Reserved.

39-0

JD_ADDR

Job Descriptor Address.

13.143 Recoverable Error Indication Record 0 for Job Ring a
(REIR0JR0 - REIR0JR3)

13.143.1 Offset

For a = 0 to 3:

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 967

Register Offset Description

REIR0JRa 1_0E00h + (a × 1_0000h) (used by JR a)

13.143.2 Function

If a recoverable error occurs related to execution of a job from a job ring, error
information will be captured in the JR's REIR registers. Data for a second recoverable
error related to jobs from JR will not be captured until the REIR0JR is written. If another
bus error from JR occurs before then, the double error status bit (MISS) in REIR0JR will
be set. When REIR0JR is written, all of JR's REIRJR registers are cleared and error
capture is re-enabled.

13.143.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

M
IS

S

R
es

er
ve

d

T
Y

P
E

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.143.4 Fields

Field Function

31

MISS

If MISS=1, a second recoverable error associated with JR occurred before REIR0JR was written
following a previous JR recoverable error.

30-26

—

Reserved

25-24

TYPE

This field indicates the type of the recoverable error.

If TYPE = 0 : reserved

If TYPE = 1 : memory access error

If TYPE = 2 : reserved

Table continues on the next page...

Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0 - REIR0JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

968 NXP Semiconductors

Field Function

If TYPE = 3 : reserved

23-0

—

Reserved

13.144 Recoverable Error Indication Record 2 for Job Ring a
(REIR2JR0 - REIR2JR3)

13.144.1 Offset

For a = 0 to 3:

Register Offset Description

REIR2JRa 1_0E08h + (a × 1_0000h) Used by JRa. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

13.144.2 Function

See the description for Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0
- REIR0JR3).

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 969

13.144.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.144.4 Fields

Field Function

63-0

ADDR

Address associated with the recoverable JR error.

13.145 Recoverable Error Indication Record 4 for Job Ring a
(REIR4JR0 - REIR4JR3)

13.145.1 Offset

For a = 0 to 3:

Recoverable Error Indication Record 4 for Job Ring a (REIR4JR0 - REIR4JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

970 NXP Semiconductors

Register Offset Description

REIR4JRa 1_0E10h + (a × 1_0000h) (used by JR a)

13.145.2 Function

See the description for Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0
- REIR0JR3).

13.145.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R MIX ERR
Reserved

RWB AXPROT AXCACHE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.145.4 Fields

Field Function

31-30

MIX

This field holds the memory interface index associated with the recoverable error.

29-28

ERR

This field holds the AXI error response associated with the recoverable error.

27-24

—

Reserved

23

RWB

This field specifies whether the memory access was a read or write.

22-20

AXPROT

This field holds the AXI protection transaction attribute used for the memory access.

19-16

AXCACHE

This field holds the AXI cache control transaction attribute used for the memory access.

15-12 Reserved

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 971

Field Function

—

11-0

ICID

This field holds the ICID associated with the recoverable error.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.146 Recoverable Error Indication Record 5 for Job Ring a
(REIR5JR0 - REIR5JR3)

13.146.1 Offset

For a = 0 to 3:

Register Offset Description

REIR5JRa 1_0E14h + (a × 1_0000h) (used by JR a)

13.146.2 Function

See the description for Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0
- REIR0JR3).

13.146.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

S
A

F
E

R
es

er
ve

d

B
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Recoverable Error Indication Record 5 for Job Ring a (REIR5JR0 - REIR5JR3)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

972 NXP Semiconductors

13.146.4 Fields

Field Function

31-25

—

Reserved

24

SAFE

For errors of REIR0JR[TYPE] = 00b SAFE indicates whether the AXI transaction associated with the
recoverable error was a "safe" transaction.

23-20

—

Reserved

19-16

BID

This field holds the block identifier (see Table 13-1) of the source of the AXI transaction associated with
the recoverable error.

15-0

—

Reserved

13.147 RTIC Status Register (RSTA)

13.147.1 Offset

Register Offset

RSTA 6_0004h

13.147.2 Function

This section describes the registers of the Run Time Integrity Checker (RTIC). A
functional description of the RTIC can be found in Run-time integrity checker (RTIC).
Note the use of the RTIC is optional, to support platform assurance.

The Run Time Integrity Checking Status Register is a read-only register that gives
software information about the internal states of RTIC. Reading the RTIC Status Register
will clear all errors and the RTIC interrupt. Due to timing issues, instead of polling this
register software should read the RTIC Status Register after an RTIC done interrupt.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 973

13.147.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

CS
Reserved

RTD HOD ABH WE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

AE MIS HE SV HD BSY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.147.4 Fields

Field Function

31-27

—

Reserved

26-25

CS

RTIC Current State. Indicates the current state of the RTIC controller.

00b - Idle State
01b - Single Hash State
10b - Run-time State
11b - Error State

24-20

—

Reserved

19

RTD

Run Time Blocks Disabled. When RTIC is in Run Time mode, a 1 in the RTD field indicates that all the
Memory Blocks are Disabled for Run Time Operation.

18

HOD

Hash Once Blocks Disabled. All the Memory Blocks are Disabled for Hash Once Operation. This bit is set
when RTIC is either in an Idle State or Hash Once State and none of the Memory Blocks have been
enabled for Hash Once Operation.

17

ABH

All Blocks Hashed. This is a bit that is used for debugging. This bit toggles during run-time mode every
time RTIC completes hashing A-D memory blocks and starts over at the beginning again.

16

WE

RTIC Watchdog Error. RTIC Watchdog timer has tripped during run-time hashing. This indicates that all
enabled memory segments did not finish a round of hashing prior to the RTIC watchdog timer completing.

0b - No RTIC Watchdog timer error has occurred.
1b - RTIC Watchdog timer has expired prior to completing a round of hashing.

15-12

—

Reserved

11-8

AE

Address Error. Indicates an illegal address was read from a peripheral memory block. This is caused by
an invalid start address in the Address 1/2 fields or a value in the Length 1/2 fields that caused the RTIC
to read outside a peripheral memory's valid address space. If an address error occurs, the illegal address
will be captured in the SEC Fault Address Register (Section Fault Address Register (FAR)).

Table continues on the next page...

RTIC Status Register (RSTA)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

974 NXP Semiconductors

Field Function

Each bit in the field represents the status of an individual memory block. The following bit positions in the
field indicates which memory block has the error:

xxx1 - Memory Block A Address Error

xx1x - Memory Block B Address Error

x1xx - Memory Block C Address Error

1xxx - Memory Block D Address Error

The settings for each bit are as follows:

0000b - All reads by RTIC were valid.
0001b - An illegal address was accessed by the RTIC

7-4

MIS

Memory Integrity Status. Indicates memory block(s) with error. Each bit in the field represents the status
of an individual memory block. The following bit positions in the field indicates which memory block has
the error:

xxx1 - Memory Block A Hash Error

xx1x - Memory Block B Hash Error

x1xx - Memory Block C Hash Error

1xxx - Memory Block D Hash Error

The settings for each bit are as follows:

0000b - Memory Block X is valid or state unknown
0001b - Memory Block X has been corrupted

3

HE

Hashing Error. Indicates that a unlocked memory block has been corrupted during run time or that an
address error has occurred. The unlocked memory block(s) in error are indicated in the MIS field. If a
memory addressing error occurred, the memory block(s) in error are indicated in the AE field. The
security violation signal will be asserted. RTIC will generate a done interrupt and disable checking the
memory block that caused the failure.

Unlocked memory blocks can be determined by reading the RTIC Control Register (see Section RTIC
Control Register (RCTL)).

0b - Memory block contents authenticated.
1b - Memory block hash doesn't match reference value.

2

SV

Security Violation. Indicates that a locked RTIC memory block has been corrupted during run-time, an
address error has occurred, or an RTIC Watchdog timeout has occurred. The memory block(s) in error
are indicated in the MIS field. If a memory addressing error occurred, the memory block(s) in error are
indicated in the AE field. If an RTIC Watchdog timeout error occurred then the WE bit will be set. A
security violation can only be cleared by a hardware reset.

Locked memory blocks can be determined by reading the RTIC Control Register (see Section RTIC
Control Register (RCTL)).

0b - Memory block contents authenticated.
1b - Memory block hash doesn't match reference value.

1

HD

Hash Once Operation Completed (Hash Done). processor may read hash values. If an error occurs
during hashing or no memory blocks are enabled for one-time hash, this bit will not be set even if the
RTIC hardware interrupts are asserted. This bit is cleared by setting the CINT bit in the RTIC Command
Register (see Section RTIC Command Register (RCMD)) or when the RTIC enters the run-time checking
state.

0b - Boot authentication disabled
1b - Authenticate code/generate reference hash value. This bit cannot be modified during run-time
checking mode.

0 RTIC Idle/Busy Status. When busy, the RTIC cannot be written to.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 975

Field Function

BSY 0b - RTIC Idle.
1b - RTIC Busy.

13.148 RTIC Command Register (RCMD)

13.148.1 Offset

Register Offset

RCMD 6_000Ch

13.148.2 Function

The Run Time Integrity Checking Command Register is used to issue commands to the
RTIC. This register is used to instruct the RTIC to perform different functions. This
register is only writeable when RTIC is in an idle state.

13.148.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
T

D

W

R
T

C

H
O

C
IN

T

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RTIC Command Register (RCMD)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

976 NXP Semiconductors

13.148.4 Fields

Field Function

31-4

—

Reserved

3

RTD

Run Time Disable. Does not allow RTIC to be put into Run-Time mode. This bit will have higher priority in
the case where both Run Time Check and Run Time Disable are set on the same write. Run Time
Disable is ignored if RTIC is already in the Run Time Mode.

0b - Allow Run Time Mode
1b - Prevent Run Time Mode

2

RTC

Run time check. Starts run-time integrity checking for any blocks having the corresponding RTME bit =1
(see RTIC Status Register (RSTA)). Some of the RTIC registers become read-only. This bit is self-
clearing and always returns a logic-0 when read. Setting this bit will clear the ipi_done_int hardware
interrupt as well as the HASH DONE bit in the RTIC Status Register. Note that it is possible to set both
the HO bit and the RTC bit to 1 simultaneously. In this case the hash-once operations will complete on all
blocks whose HOME bit =1, and then the done interrupt will be asserted for one clock cycle but
immediately cleared as RTIC enters Run-Time Check mode.

If no memory blocks are enabled, setting the RUN TIME CHK bit will cause the RTIC to enter an idle
state while waiting for a memory segment to be enabled. Some registers will be read only. No data is
hashed and no interrupts or errors will be generated.

0b - Run-time checking disabled
1b - Verify run-time memory blocks continually

1

HO

Hash once. Starts one-time hash/boot code authentication for any blocks having the corresponding
HOME bit =1 (see RTIC Status Register (RSTA)). The resulting hash value is stored in the Hash Register
File. This bit is self-clearing and always returns a logic-0 when read. If no memory blocks are enabled, a
done interrupt will be immediately generated. Note that it is possible to set both the HO bit and the RTC
bit to 1 simultaneously. In this case the hash-once operations will complete on all blocks whose HOME bit
=1, and then the done interrupt will be asserted for one clock cycle but immediately cleared as RTIC
enters Run-Time Check mode.

0b - Boot authentication disabled
1b - Authenticate code/generate reference hash value. This bit cannot be modified during run-time
checking mode.

0

CINT

Clear Interrupt. Clears RTIC hardware interrupt signal. This bit is self-clearing and always returns a logic
0 when read.

0b - Do not clear interrupt
1b - Clear interrupt. This bit cannot be modified during run-time checking mode

13.149 RTIC Control Register (RCTL)

13.149.1 Offset

Register Offset

RCTL 6_0014h

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 977

13.149.2 Function

The RTIC is configured by writing to the Run Time Integrity Checking Control Register.
No bits in this register are writable unless RTIC is idle or, if RTIC is in Run-Time Mode,
unless the control bits for the memory block are disabled and unlocked.

13.149.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

D
S

V

R
es

er
ve

d

D
E

C
O

S
E

L R
es

er
ve

d

R
ID

L
E R

A
LG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTMU RTME HOME RREQS IE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.149.4 Fields

Field Function

31

DSV

DECOSEL Valid. If DSV=1, the DECOSEL field indicates the number of the DECO in which RTIC
descriptors are to be run. This is intended for use during debugging. If DSV=0, the DECOSEL field is
ignored and RTIC descriptors are run in any available DECO.

30-26

—

Reserved

25-24

DECOSEL

DECO Select. If DSV=1, DECOSEL indicates the number of the DECO in which RTIC descriptors are to
be run. This is intended for use during debugging. If DSV=0, the DECOSEL field is ignored and RTIC
descriptors are run in any available DECO.

DECO Select is interpreted as shown below. Note that the use of any value other than those listed will
generate an error.

00b - run RTIC descriptors in DECO 0
01b - run RTIC descriptors in DECO 1
10b - run RTIC descriptors in DECO 2

23-21

—

Reserved

Table continues on the next page...

RTIC Control Register (RCTL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

978 NXP Semiconductors

Field Function

20

RIDLE

RTIC setting for the IPG_IDLE signal. If RIDLE=1, the signal ipg_idle will be negated if RTIC is in Run-
Time Mode and one or more Memory Blocks are enabled for Run-Time Mode (i.e. one or more of the
RTME bits is 1). If RIDLE=0 and SEC is otherwise idle, the signal ipg_idle will still occasionally negate
while RTIC is actually hashing a chunk of memory.

19-16

RALG

RTIC Algorithm Select. Selects which algorithms should be used per Memory Block. All of these bits are
writable when RTIC is idle. When RTIC is in Run-Time Mode, only those bits corresponding to unlocked
memory blocks are writable. (see RTMU field description)

xxx0b - SHA-256 selected for Memory Block A xxx1b - SHA-512 selected for Memory Block A

xx0xb - SHA-256 selected for Memory Block B xx1xb - SHA-512 selected for Memory Block B

x0xxb - SHA-256 selected for Memory Block C x1xxb - SHA-512 selected for Memory Block C

0xxxb - SHA-256 selected for Memory Block D 1xxxb - SHA-512 selected for Memory Block D

15-12

RTMU

Run Time Memory Unlock. Unlocks memory block(s) for run-time hashing. If a memory block is unlocked
it can be enabled and disabled at any time even if RTIC Run-Time Mode has started. These bits are not
writable once RTIC Run-Time Mode has started. These bits are intended to allow some of the RTIC
memory blocks to be used during RTIC Run-Time Mode by trusted software to verify the integrity of
dynamically loaded software. The remaining (locked) memory blocks would be used to verify the integrity
of the operating system and the trusted software itself.

xxx1b - Unlock Memory Block A

xx1xb - Unlock Memory Block B

x1xxb - Unlock Memory Block C

1xxxb - Unlock Memory Block D

11-8

RTME

Run Time Memory Enable. Enables memory block(s) for run-time hashing. All of these bits are writable
when RTIC is idle. When RTIC is in Run-Time Mode, only those bits corresponding to unlocked memory
blocks are writable. (see RTMU field description)

xxx1 - Enable Memory Block A

xx1x - Enable Memory Block B

x1xx - Enable Memory Block C

1xxx - Enable Memory Block D

7-4

HOME

Hash Once Memory Enable. Enables memory block(s) for one-time hashing. All of these bits are writable
when RTIC is idle. When RTIC is in Run-Time Mode, only those bits corresponding to unlocked memory
blocks are writable. (see RTMU field description)

xxx1 - Enable Memory Block A

xx1x - Enable Memory Block B

x1xx - Enable Memory Block C

1xxx - Enable Memory Block D

3-1

RREQS

RTIC Request Size. These bits are used during run-time mode to specify how many blocks of data are
hashed every time the throttle counter expires. A block size is determined by the Algorithm that is
selected.

Block Size:

SHA-256 = 64 bytes

SHA-512 = 128 bytes

Values:

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 979

Field Function

000b - 1 Block
001b - 1 Block
010b - 2 Blocks
011b - 3 Blocks
100b - 4 Blocks
101b - 5 Blocks
110b - 6 Blocks
111b - 7 Blocks

0

IE

Interrupt Enable. Enables the RTIC interrupt. This bit is writable only while RTIC is in an idle state.
Hardware interrupts are disabled by default after reset.

0b - Interrupts disabled
1b - Interrupts enabled

13.150 RTIC Throttle Register (RTHR)

13.150.1 Offset

Register Offset

RTHR 6_001Ch

13.150.2 Function

The Run Time Integrity Checking Throttle Register can be set to specify how many clock
cycles to wait between RTIC hashing operations when RTIC is in run-time mode. The
register becomes read-only when RTIC is in run-time mode.

RTIC Throttle Register (RTHR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

980 NXP Semiconductors

13.150.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RTHR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTHR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.150.4 Fields

Field Function

31-0

RTHR

Run Time Mode DMA Throttle. Programmable Timer that can be set to specify how many cycles of the
system clock to wait between RTIC hashing operations during run time mode. At boot time, this register
would generally be set to a value that will allow all four memory blocks to be hashed in a reasonable time
without high bus utilization.

13.151 RTIC Watchdog Timer (RWDOG)

13.151.1 Offset

Register Offset Description

RWDOG 6_0028h When the endianness is in the default configuration,
this address is for the most-significant 32 bits; the
least-significant 32 bits can be accessed at this
address +4h.

13.151.2 Function

The RTIC Watchdog Register holds the starting value for the RTIC Watchdog Timer,
which is used during Run Time Mode to prevent a denial of service attack on RTIC.
When RTIC is in Run Time Mode, the RTIC Watchdog Timer begins counting down

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 981

when run time hashing starts on the first memory block and it resets to the starting value
when the last memory block has been hashed. If the RTIC Watchdog Timer times out
prior to the last memory block's completion then an RTIC Watchdog error will be
generated. Note that the RTIC Watchdog Register is not writable after RTIC enters Run
Time Mode, so prior to placing RTIC into Run Time Mode software must write a large
enough value into the register to prevent the RTIC Watchdog Timer from expiring under
normal conditions. Upon entering low-power mode the RTIC Watchdog Timer will stop
counting until low-power mode is exited. Upon exiting low-power mode, the RTIC
Watchdog Timer will resume from where it left off.

13.151.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
RWDOG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RWDOG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RWDOG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.151.4 Fields

Field Function

63-48

—

Reserved

47-0

RWDOG

Run Time Watchdog Time-Out value. This holds the starting value of the RTIC Run Time Watchdog
Timer.

RTIC Watchdog Timer (RWDOG)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

982 NXP Semiconductors

13.152 RTIC Endian Register (REND)

13.152.1 Offset

Register Offset

REND 6_0034h

13.152.2 Function

The RTIC Endian Register is used to allow for data ordering corrections when data is not
retrieved from external memory in the proper order. These data ordering corrections are
most likely to be needed on a mixed endian platform. The bit assignments of this register
appear in the figure below and the description and settings for the register are given in the
following table.

13.152.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved RDWS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RWS RHWS RBS REPO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.152.4 Fields

Field Function

31-20

—

Reserved

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 983

Field Function

19-16

RDWS

RTIC Double Word Swap. This allows for a software controllable double word swap in the DMA to assist
with mixed Endianess platforms. This may be necessary if data coming into RTIC is double-word
swapped when a 128 bit bus is used.

The memory blocks are configured as follows:

1xxxb - Double Word Swap Memory Block D
x1xxb - Double Word Swap Memory Block C
xx1xb - Double Word Swap Memory Block B
xxx1b - Double Word Swap Memory Block A

15-12

RWS

RTIC Word Swap. This allows for a software controllable word swap in the DMA to assist with mixed
Endianess platforms. This may be necessary if data coming into RTIC is word swapped when a 64 bit or
128 bit bus is used.

The memory blocks are configured as follows:

1xxxb - Word Swap Memory Block D
x1xxb - Word Swap Memory Block C
xx1xb - Word Swap Memory Block B
xxx1b - Word Swap Memory Block A

11-8

RHWS

RTIC Half-Word Swap. This allows for a software controllable half-word swap in the DMA to assist with
mixed Endianess platforms. This may be necessary if message data is not swapped properly when
accessing memories. The word 01234567h placed in memory will become 45670123h when written into
the hashing engine.

The memory blocks are configured as follows:

1xxxb - Half-Word Swap Memory Block D
x1xxb - Half-Word Swap Memory Block C
xx1xb - Half-Word Swap Memory Block B
xxx1b - Half-Word Swap Memory Block A

7-4

RBS

RTIC Byte Swap. This allows for a software controllable byte swap to assist with mixed Endianess
platforms. This byte swap works in conjunction with the platform endian configuration indicated by the
PLEND bit in the SEC Status Register. The word 01234567h placed in memory becomes 67452301h
when written into the hashing engine.

The memory blocks are configured as follows:

Byte Swap
Bit

PLEND WORD

0 0 67452301h

1 0 01234567h

0 1 01234567h

1 1 67452301h

1xxxb - Byte Swap Memory Block D
x1xxb - Byte Swap Memory Block C
xx1xb - Byte Swap Memory Block B
xxx1b - Byte Swap Memory Block A

3-0

REPO

RTIC Endian Platform Override. This allows for the current platform endian configuration bit (PLEND bit in
the SEC Status Register) to be overridden by bits in the REPO field. PLEND is either Big Endian =1 or
Little Endian =0. Setting a REPO bit to 1 will cause the data read from the corresponding memory block
to be interpreted as Big Endian if PLEND specifies Little Endian, or Little Endian if PLEND specifies Big
Endian.

The memory blocks are configured as follows:

RTIC Endian Register (REND)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

984 NXP Semiconductors

Field Function

1xxxb - Byte Swap Memory Block D
x1xxb - Byte Swap Memory Block C
xx1xb - Byte Swap Memory Block B
xxx1b - Byte Swap Memory Block A

13.153 RTIC Memory Block a Address b Register (RMAA0 -
RMDA1)

13.153.1 Offset

For a = A to D (0 to 3); b = 0 to 1:

Register Offset Description

RMaAb 6_0100h + (a × 20h) + (b × 10h) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

13.153.2 Function

For an explanation of the RTIC Memory Block registers, see RTIC Memory Block
Address/Length Registers

The RTIC Memory Block a Address b Register (RMaAb) specifies the starting address of
segment b (b = 0 or 1) of Memory Block a (a = A,B,C,D). The length of data referred to
by this pointer (see Address pointers.) is found in the RTIC Memory Block a Length b
Register (RMaLb). The RTIC Memory Block Address registers and the RTIC Memory
Block Length registers are writeable when RTIC is in an IDLE state, or during Run-Time
mode if both the RTMU bit is set and the RTME bit is cleared (see Section RTIC Control
Register (RCTL)) for the corresponding memory block.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 985

13.153.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved MEMBLKADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MEMBLKADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MEMBLKADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.153.4 Fields

Field Function

63-40

—

Reserved.

39-0

MEMBLKADDR

Memory Block Address. The MEMBLKADDR field of RMaAb holds the starting address of segment b
(b=0,1) of RTIC Memory Block a (a=A,B,C,D).

13.154 RTIC Memory Block a Length b Register (RMAL0 -
RMDL1)

13.154.1 Offset

For a = A to D (0 to 3); b = 0 to 1:

RTIC Memory Block a Length b Register (RMAL0 - RMDL1)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

986 NXP Semiconductors

Register Offset

RMaLb 6_010Ch + (a × 20h) + (b × 10h)

13.154.2 Function

For an explanation of the RTIC Memory Block registers, see RTIC Memory Block
Address/Length Registers

The RTIC Memory Block a Length b Register (RMaLb) specifies the number of bytes to
hash in segment b (b = 0 or 1) of Memory Block a (a = A,B,C,D). The starting address of
segment b of RTIC Memory Block a is specified in the RTIC Memory Block a Address b
Register (RMaAb). The RTIC Memory Block Address registers and the RTIC Memory
Block Length registers are writeable when RTIC is in an IDLE state, or during Run-Time
mode if both the RTMU bit is set and the RTME bit is cleared (see Section RTIC Control
Register (RCTL)) for the corresponding memory block.

Note that programming a memory segment (A, B, C, D) to have a zero length (length_1
and length_2) will cause RTIC to generate a bad descriptor.

In RTIC versions RMJV= 0 and RMNV <=1 this can be detected by means of a
watchdog timer. In hash-once operation this will be detected only if the DECO watchdog
timer is enabled. This will cause the descriptor that is programmed by RTIC to be
detected by the watchdog and flagged as an Address Error in the status register. In run-
time operation the bad descriptor will be flagged by either the RTIC watchdog timer or
the DECO watchdog timer. If the RTIC watchdog timer detects this condition then it will
be flagged as an RTIC Watchdog Error. If instead the DECO watchdog catches it, then it
will be flagged as an Address Error.

In later versions of RTIC bad RTIC descriptors will be flagged immediately as Address
Errors.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 987

13.154.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MEMBLKLEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MEMBLKLEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.154.4 Fields

Field Function

31-0

MEMBLKLEN

Memory Block Lengths. The MEMBLKLEN field of RMaLb holds the length, in bytes, of segment b
(b=0,1) of RTIC Memory Block a (a=A,B,C,D).

13.155 RTIC Memory Block a c Endian Hash Result Word d
(RAMDB_0 - RDMDL_31)

13.155.1 Offset

Register Offset Description

RAMDB_0 6_0200h RTIC Mem Block A Hash Result Big Endian Format
Word 0

RAMDB_1 6_0204h RTIC Mem Block A Hash Result Big Endian Format
Word 1

RAMDB_2 6_0208h RTIC Mem Block A Hash Result Big Endian Format
Word 2

RAMDB_3 6_020Ch RTIC Mem Block A Hash Result Big Endian Format
Word 3

RAMDB_4 6_0210h RTIC Mem Block A Hash Result Big Endian Format
Word 4

RAMDB_5 6_0214h RTIC Mem Block A Hash Result Big Endian Format
Word 5

Table continues on the next page...

RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

988 NXP Semiconductors

Register Offset Description

RAMDB_6 6_0218h RTIC Mem Block A Hash Result Big Endian Format
Word 6

RAMDB_7 6_021Ch RTIC Mem Block A Hash Result Big Endian Format
Word 7

RAMDB_8 6_0220h RTIC Mem Block A Hash Result Big Endian Format
Word 8

RAMDB_9 6_0224h RTIC Mem Block A Hash Result Big Endian Format
Word 9

RAMDB_10 6_0228h RTIC Mem Block A Hash Result Big Endian Format
Word 10

RAMDB_11 6_022Ch RTIC Mem Block A Hash Result Big Endian Format
Word 11

RAMDB_12 6_0230h RTIC Mem Block A Hash Result Big Endian Format
Word 12

RAMDB_13 6_0234h RTIC Mem Block A Hash Result Big Endian Format
Word 13

RAMDB_14 6_0238h RTIC Mem Block A Hash Result Big Endian Format
Word 14

RAMDB_15 6_023Ch RTIC Mem Block A Hash Result Big Endian Format
Word 15

RAMDB_16 6_0240h RTIC Mem Block A Hash Result Big Endian Format
Word 16

RAMDB_17 6_0244h RTIC Mem Block A Hash Result Big Endian Format
Word 17

RAMDB_18 6_0248h RTIC Mem Block A Hash Result Big Endian Format
Word 18

RAMDB_19 6_024Ch RTIC Mem Block A Hash Result Big Endian Format
Word 19

RAMDB_20 6_0250h RTIC Mem Block A Hash Result Big Endian Format
Word 20

RAMDB_21 6_0254h RTIC Mem Block A Hash Result Big Endian Format
Word 21

RAMDB_22 6_0258h RTIC Mem Block A Hash Result Big Endian Format
Word 22

RAMDB_23 6_025Ch RTIC Mem Block A Hash Result Big Endian Format
Word 23

RAMDB_24 6_0260h RTIC Mem Block A Hash Result Big Endian Format
Word 24

RAMDB_25 6_0264h RTIC Mem Block A Hash Result Big Endian Format
Word 25

RAMDB_26 6_0268h RTIC Mem Block A Hash Result Big Endian Format
Word 26

RAMDB_27 6_026Ch RTIC Mem Block A Hash Result Big Endian Format
Word 27

RAMDB_28 6_0270h RTIC Mem Block A Hash Result Big Endian Format
Word 28

RAMDB_29 6_0274h RTIC Mem Block A Hash Result Big Endian Format
Word 29

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 989

Register Offset Description

RAMDB_30 6_0278h RTIC Mem Block A Hash Result Big Endian Format
Word 30

RAMDB_31 6_027Ch RTIC Mem Block A Hash Result Big Endian Format
Word 31

RAMDL_0 6_0280h RTIC Mem Block A Hash Result Little Endian Format
Word 0

RAMDL_1 6_0284h RTIC Mem Block A Hash Result Little Endian Format
Word 1

RAMDL_2 6_0288h RTIC Mem Block A Hash Result Little Endian Format
Word 2

RAMDL_3 6_028Ch RTIC Mem Block A Hash Result Little Endian Format
Word 3

RAMDL_4 6_0290h RTIC Mem Block A Hash Result Little Endian Format
Word 4

RAMDL_5 6_0294h RTIC Mem Block A Hash Result Little Endian Format
Word 5

RAMDL_6 6_0298h RTIC Mem Block A Hash Result Little Endian Format
Word 6

RAMDL_7 6_029Ch RTIC Mem Block A Hash Result Little Endian Format
Word 7

RAMDL_8 6_02A0h RTIC Mem Block A Hash Result Little Endian Format
Word 8

RAMDL_9 6_02A4h RTIC Mem Block A Hash Result Little Endian Format
Word 9

RAMDL_10 6_02A8h RTIC Mem Block A Hash Result Little Endian Format
Word 10

RAMDL_11 6_02ACh RTIC Mem Block A Hash Result Little Endian Format
Word 11

RAMDL_12 6_02B0h RTIC Mem Block A Hash Result Little Endian Format
Word 12

RAMDL_13 6_02B4h RTIC Mem Block A Hash Result Little Endian Format
Word 13

RAMDL_14 6_02B8h RTIC Mem Block A Hash Result Little Endian Format
Word 14

RAMDL_15 6_02BCh RTIC Mem Block A Hash Result Little Endian Format
Word 15

RAMDL_16 6_02C0h RTIC Mem Block A Hash Result Little Endian Format
Word 16

RAMDL_17 6_02C4h RTIC Mem Block A Hash Result Little Endian Format
Word 17

RAMDL_18 6_02C8h RTIC Mem Block A Hash Result Little Endian Format
Word 18

RAMDL_19 6_02CCh RTIC Mem Block A Hash Result Little Endian Format
Word 19

RAMDL_20 6_02D0h RTIC Mem Block A Hash Result Little Endian Format
Word 20

RAMDL_21 6_02D4h RTIC Mem Block A Hash Result Little Endian Format
Word 21

Table continues on the next page...

RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

990 NXP Semiconductors

Register Offset Description

RAMDL_22 6_02D8h RTIC Mem Block A Hash Result Little Endian Format
Word 22

RAMDL_23 6_02DCh RTIC Mem Block A Hash Result Little Endian Format
Word 23

RAMDL_24 6_02E0h RTIC Mem Block A Hash Result Little Endian Format
Word 24

RAMDL_25 6_02E4h RTIC Mem Block A Hash Result Little Endian Format
Word 25

RAMDL_26 6_02E8h RTIC Mem Block A Hash Result Little Endian Format
Word 26

RAMDL_27 6_02ECh RTIC Mem Block A Hash Result Little Endian Format
Word 27

RAMDL_28 6_02F0h RTIC Mem Block A Hash Result Little Endian Format
Word 28

RAMDL_29 6_02F4h RTIC Mem Block A Hash Result Little Endian Format
Word 29

RAMDL_30 6_02F8h RTIC Mem Block A Hash Result Little Endian Format
Word 30

RAMDL_31 6_02FCh RTIC Mem Block A Hash Result Little Endian Format
Word 31

RBMDB_0 6_0300h RTIC Mem Block B Hash Result Big Endian Format
Word 0

RBMDB_1 6_0304h RTIC Mem Block B Hash Result Big Endian Format
Word 1

RBMDB_2 6_0308h RTIC Mem Block B Hash Result Big Endian Format
Word 2

RBMDB_3 6_030Ch RTIC Mem Block B Hash Result Big Endian Format
Word 3

RBMDB_4 6_0310h RTIC Mem Block B Hash Result Big Endian Format
Word 4

RBMDB_5 6_0314h RTIC Mem Block B Hash Result Big Endian Format
Word 5

RBMDB_6 6_0318h RTIC Mem Block B Hash Result Big Endian Format
Word 6

RBMDB_7 6_031Ch RTIC Mem Block B Hash Result Big Endian Format
Word 7

RBMDB_8 6_0320h RTIC Mem Block B Hash Result Big Endian Format
Word 8

RBMDB_9 6_0324h RTIC Mem Block B Hash Result Big Endian Format
Word 9

RBMDB_10 6_0328h RTIC Mem Block B Hash Result Big Endian Format
Word 10

RBMDB_11 6_032Ch RTIC Mem Block B Hash Result Big Endian Format
Word 11

RBMDB_12 6_0330h RTIC Mem Block B Hash Result Big Endian Format
Word 12

RBMDB_13 6_0334h RTIC Mem Block B Hash Result Big Endian Format
Word 13

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 991

Register Offset Description

RBMDB_14 6_0338h RTIC Mem Block B Hash Result Big Endian Format
Word 14

RBMDB_15 6_033Ch RTIC Mem Block B Hash Result Big Endian Format
Word 15

RBMDB_16 6_0340h RTIC Mem Block B Hash Result Big Endian Format
Word 16

RBMDB_17 6_0344h RTIC Mem Block B Hash Result Big Endian Format
Word 17

RBMDB_18 6_0348h RTIC Mem Block B Hash Result Big Endian Format
Word 18

RBMDB_19 6_034Ch RTIC Mem Block B Hash Result Big Endian Format
Word 19

RBMDB_20 6_0350h RTIC Mem Block B Hash Result Big Endian Format
Word 20

RBMDB_21 6_0354h RTIC Mem Block B Hash Result Big Endian Format
Word 21

RBMDB_22 6_0358h RTIC Mem Block B Hash Result Big Endian Format
Word 22

RBMDB_23 6_035Ch RTIC Mem Block B Hash Result Big Endian Format
Word 23

RBMDB_24 6_0360h RTIC Mem Block B Hash Result Big Endian Format
Word 24

RBMDB_25 6_0364h RTIC Mem Block B Hash Result Big Endian Format
Word 25

RBMDB_26 6_0368h RTIC Mem Block B Hash Result Big Endian Format
Word 26

RBMDB_27 6_036Ch RTIC Mem Block B Hash Result Big Endian Format
Word 27

RBMDB_28 6_0370h RTIC Mem Block B Hash Result Big Endian Format
Word 28

RBMDB_29 6_0374h RTIC Mem Block B Hash Result Big Endian Format
Word 29

RBMDB_30 6_0378h RTIC Mem Block B Hash Result Big Endian Format
Word 30

RBMDB_31 6_037Ch RTIC Mem Block B Hash Result Big Endian Format
Word 31

RBMDL_0 6_0380h RTIC Mem Block B Hash Result Little Endian Format
Word 0

RBMDL_1 6_0384h RTIC Mem Block B Hash Result Little Endian Format
Word 1

RBMDL_2 6_0388h RTIC Mem Block B Hash Result Little Endian Format
Word 2

RBMDL_3 6_038Ch RTIC Mem Block B Hash Result Little Endian Format
Word 3

RBMDL_4 6_0390h RTIC Mem Block B Hash Result Little Endian Format
Word 4

RBMDL_5 6_0394h RTIC Mem Block B Hash Result Little Endian Format
Word 5

Table continues on the next page...

RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

992 NXP Semiconductors

Register Offset Description

RBMDL_6 6_0398h RTIC Mem Block B Hash Result Little Endian Format
Word 6

RBMDL_7 6_039Ch RTIC Mem Block B Hash Result Little Endian Format
Word 7

RBMDL_8 6_03A0h RTIC Mem Block B Hash Result Little Endian Format
Word 8

RBMDL_9 6_03A4h RTIC Mem Block B Hash Result Little Endian Format
Word 9

RBMDL_10 6_03A8h RTIC Mem Block B Hash Result Little Endian Format
Word 10

RBMDL_11 6_03ACh RTIC Mem Block B Hash Result Little Endian Format
Word 11

RBMDL_12 6_03B0h RTIC Mem Block B Hash Result Little Endian Format
Word 12

RBMDL_13 6_03B4h RTIC Mem Block B Hash Result Little Endian Format
Word 13

RBMDL_14 6_03B8h RTIC Mem Block B Hash Result Little Endian Format
Word 14

RBMDL_15 6_03BCh RTIC Mem Block B Hash Result Little Endian Format
Word 15

RBMDL_16 6_03C0h RTIC Mem Block B Hash Result Little Endian Format
Word 16

RBMDL_17 6_03C4h RTIC Mem Block B Hash Result Little Endian Format
Word 17

RBMDL_18 6_03C8h RTIC Mem Block B Hash Result Little Endian Format
Word 18

RBMDL_19 6_03CCh RTIC Mem Block B Hash Result Little Endian Format
Word 19

RBMDL_20 6_03D0h RTIC Mem Block B Hash Result Little Endian Format
Word 20

RBMDL_21 6_03D4h RTIC Mem Block B Hash Result Little Endian Format
Word 21

RBMDL_22 6_03D8h RTIC Mem Block B Hash Result Little Endian Format
Word 22

RBMDL_23 6_03DCh RTIC Mem Block B Hash Result Little Endian Format
Word 23

RBMDL_24 6_03E0h RTIC Mem Block B Hash Result Little Endian Format
Word 24

RBMDL_25 6_03E4h RTIC Mem Block B Hash Result Little Endian Format
Word 25

RBMDL_26 6_03E8h RTIC Mem Block B Hash Result Little Endian Format
Word 26

RBMDL_27 6_03ECh RTIC Mem Block B Hash Result Little Endian Format
Word 27

RBMDL_28 6_03F0h RTIC Mem Block B Hash Result Little Endian Format
Word 28

RBMDL_29 6_03F4h RTIC Mem Block B Hash Result Little Endian Format
Word 29

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 993

Register Offset Description

RBMDL_30 6_03F8h RTIC Mem Block B Hash Result Little Endian Format
Word 30

RBMDL_31 6_03FCh RTIC Mem Block B Hash Result Little Endian Format
Word 31

RCMDB_0 6_0400h RTIC Mem Block C Hash Result Big Endian Format
Word 0

RCMDB_1 6_0404h RTIC Mem Block C Hash Result Big Endian Format
Word 1

RCMDB_2 6_0408h RTIC Mem Block C Hash Result Big Endian Format
Word 2

RCMDB_3 6_040Ch RTIC Mem Block C Hash Result Big Endian Format
Word 3

RCMDB_4 6_0410h RTIC Mem Block C Hash Result Big Endian Format
Word 4

RCMDB_5 6_0414h RTIC Mem Block C Hash Result Big Endian Format
Word 5

RCMDB_6 6_0418h RTIC Mem Block C Hash Result Big Endian Format
Word 6

RCMDB_7 6_041Ch RTIC Mem Block C Hash Result Big Endian Format
Word 7

RCMDB_8 6_0420h RTIC Mem Block C Hash Result Big Endian Format
Word 8

RCMDB_9 6_0424h RTIC Mem Block C Hash Result Big Endian Format
Word 9

RCMDB_10 6_0428h RTIC Mem Block C Hash Result Big Endian Format
Word 10

RCMDB_11 6_042Ch RTIC Mem Block C Hash Result Big Endian Format
Word 11

RCMDB_12 6_0430h RTIC Mem Block C Hash Result Big Endian Format
Word 12

RCMDB_13 6_0434h RTIC Mem Block C Hash Result Big Endian Format
Word 13

RCMDB_14 6_0438h RTIC Mem Block C Hash Result Big Endian Format
Word 14

RCMDB_15 6_043Ch RTIC Mem Block C Hash Result Big Endian Format
Word 15

RCMDB_16 6_0440h RTIC Mem Block C Hash Result Big Endian Format
Word 16

RCMDB_17 6_0444h RTIC Mem Block C Hash Result Big Endian Format
Word 17

RCMDB_18 6_0448h RTIC Mem Block C Hash Result Big Endian Format
Word 18

RCMDB_19 6_044Ch RTIC Mem Block C Hash Result Big Endian Format
Word 19

RCMDB_20 6_0450h RTIC Mem Block C Hash Result Big Endian Format
Word 20

RCMDB_21 6_0454h RTIC Mem Block C Hash Result Big Endian Format
Word 21

Table continues on the next page...

RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

994 NXP Semiconductors

Register Offset Description

RCMDB_22 6_0458h RTIC Mem Block C Hash Result Big Endian Format
Word 22

RCMDB_23 6_045Ch RTIC Mem Block C Hash Result Big Endian Format
Word 23

RCMDB_24 6_0460h RTIC Mem Block C Hash Result Big Endian Format
Word 24

RCMDB_25 6_0464h RTIC Mem Block C Hash Result Big Endian Format
Word 25

RCMDB_26 6_0468h RTIC Mem Block C Hash Result Big Endian Format
Word 26

RCMDB_27 6_046Ch RTIC Mem Block C Hash Result Big Endian Format
Word 27

RCMDB_28 6_0470h RTIC Mem Block C Hash Result Big Endian Format
Word 28

RCMDB_29 6_0474h RTIC Mem Block C Hash Result Big Endian Format
Word 29

RCMDB_30 6_0478h RTIC Mem Block C Hash Result Big Endian Format
Word 30

RCMDB_31 6_047Ch RTIC Mem Block C Hash Result Big Endian Format
Word 31

RCMDL_0 6_0480h RTIC Mem Block C Hash Result Little Endian
Format Word 0

RCMDL_1 6_0484h RTIC Mem Block C Hash Result Little Endian
Format Word 1

RCMDL_2 6_0488h RTIC Mem Block C Hash Result Little Endian
Format Word 2

RCMDL_3 6_048Ch RTIC Mem Block C Hash Result Little Endian
Format Word 3

RCMDL_4 6_0490h RTIC Mem Block C Hash Result Little Endian
Format Word 4

RCMDL_5 6_0494h RTIC Mem Block C Hash Result Little Endian
Format Word 5

RCMDL_6 6_0498h RTIC Mem Block C Hash Result Little Endian
Format Word 6

RCMDL_7 6_049Ch RTIC Mem Block C Hash Result Little Endian
Format Word 7

RCMDL_8 6_04A0h RTIC Mem Block C Hash Result Little Endian
Format Word 8

RCMDL_9 6_04A4h RTIC Mem Block C Hash Result Little Endian
Format Word 9

RCMDL_10 6_04A8h RTIC Mem Block C Hash Result Little Endian
Format Word 10

RCMDL_11 6_04ACh RTIC Mem Block C Hash Result Little Endian
Format Word 11

RCMDL_12 6_04B0h RTIC Mem Block C Hash Result Little Endian
Format Word 12

RCMDL_13 6_04B4h RTIC Mem Block C Hash Result Little Endian
Format Word 13

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 995

Register Offset Description

RCMDL_14 6_04B8h RTIC Mem Block C Hash Result Little Endian
Format Word 14

RCMDL_15 6_04BCh RTIC Mem Block C Hash Result Little Endian
Format Word 15

RCMDL_16 6_04C0h RTIC Mem Block C Hash Result Little Endian
Format Word 16

RCMDL_17 6_04C4h RTIC Mem Block C Hash Result Little Endian
Format Word 17

RCMDL_18 6_04C8h RTIC Mem Block C Hash Result Little Endian
Format Word 18

RCMDL_19 6_04CCh RTIC Mem Block C Hash Result Little Endian
Format Word 19

RCMDL_20 6_04D0h RTIC Mem Block C Hash Result Little Endian
Format Word 20

RCMDL_21 6_04D4h RTIC Mem Block C Hash Result Little Endian
Format Word 21

RCMDL_22 6_04D8h RTIC Mem Block C Hash Result Little Endian
Format Word 22

RCMDL_23 6_04DCh RTIC Mem Block C Hash Result Little Endian
Format Word 23

RCMDL_24 6_04E0h RTIC Mem Block C Hash Result Little Endian
Format Word 24

RCMDL_25 6_04E4h RTIC Mem Block C Hash Result Little Endian
Format Word 25

RCMDL_26 6_04E8h RTIC Mem Block C Hash Result Little Endian
Format Word 26

RCMDL_27 6_04ECh RTIC Mem Block C Hash Result Little Endian
Format Word 27

RCMDL_28 6_04F0h RTIC Mem Block C Hash Result Little Endian
Format Word 28

RCMDL_29 6_04F4h RTIC Mem Block C Hash Result Little Endian
Format Word 29

RCMDL_30 6_04F8h RTIC Mem Block C Hash Result Little Endian
Format Word 30

RCMDL_31 6_04FCh RTIC Mem Block C Hash Result Little Endian
Format Word 31

RDMDB_0 6_0500h RTIC Mem Block D Hash Result Big Endian Format
Word 0

RDMDB_1 6_0504h RTIC Mem Block D Hash Result Big Endian Format
Word 1

RDMDB_2 6_0508h RTIC Mem Block D Hash Result Big Endian Format
Word 2

RDMDB_3 6_050Ch RTIC Mem Block D Hash Result Big Endian Format
Word 3

RDMDB_4 6_0510h RTIC Mem Block D Hash Result Big Endian Format
Word 4

RDMDB_5 6_0514h RTIC Mem Block D Hash Result Big Endian Format
Word 5

Table continues on the next page...

RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

996 NXP Semiconductors

Register Offset Description

RDMDB_6 6_0518h RTIC Mem Block D Hash Result Big Endian Format
Word 6

RDMDB_7 6_051Ch RTIC Mem Block D Hash Result Big Endian Format
Word 7

RDMDB_8 6_0520h RTIC Mem Block D Hash Result Big Endian Format
Word 8

RDMDB_9 6_0524h RTIC Mem Block D Hash Result Big Endian Format
Word 9

RDMDB_10 6_0528h RTIC Mem Block D Hash Result Big Endian Format
Word 10

RDMDB_11 6_052Ch RTIC Mem Block D Hash Result Big Endian Format
Word 11

RDMDB_12 6_0530h RTIC Mem Block D Hash Result Big Endian Format
Word 12

RDMDB_13 6_0534h RTIC Mem Block D Hash Result Big Endian Format
Word 13

RDMDB_14 6_0538h RTIC Mem Block D Hash Result Big Endian Format
Word 14

RDMDB_15 6_053Ch RTIC Mem Block D Hash Result Big Endian Format
Word 15

RDMDB_16 6_0540h RTIC Mem Block D Hash Result Big Endian Format
Word 16

RDMDB_17 6_0544h RTIC Mem Block D Hash Result Big Endian Format
Word 17

RDMDB_18 6_0548h RTIC Mem Block D Hash Result Big Endian Format
Word 18

RDMDB_19 6_054Ch RTIC Mem Block D Hash Result Big Endian Format
Word 19

RDMDB_20 6_0550h RTIC Mem Block D Hash Result Big Endian Format
Word 20

RDMDB_21 6_0554h RTIC Mem Block D Hash Result Big Endian Format
Word 21

RDMDB_22 6_0558h RTIC Mem Block D Hash Result Big Endian Format
Word 22

RDMDB_23 6_055Ch RTIC Mem Block D Hash Result Big Endian Format
Word 23

RDMDB_24 6_0560h RTIC Mem Block D Hash Result Big Endian Format
Word 24

RDMDB_25 6_0564h RTIC Mem Block D Hash Result Big Endian Format
Word 25

RDMDB_26 6_0568h RTIC Mem Block D Hash Result Big Endian Format
Word 26

RDMDB_27 6_056Ch RTIC Mem Block D Hash Result Big Endian Format
Word 27

RDMDB_28 6_0570h RTIC Mem Block D Hash Result Big Endian Format
Word 28

RDMDB_29 6_0574h RTIC Mem Block D Hash Result Big Endian Format
Word 29

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 997

Register Offset Description

RDMDB_30 6_0578h RTIC Mem Block D Hash Result Big Endian Format
Word 30

RDMDB_31 6_057Ch RTIC Mem Block D Hash Result Big Endian Format
Word 31

RDMDL_0 6_0580h RTIC Mem Block D Hash Result Little Endian
Format Word 0

RDMDL_1 6_0584h RTIC Mem Block D Hash Result Little Endian
Format Word 1

RDMDL_2 6_0588h RTIC Mem Block D Hash Result Little Endian
Format Word 2

RDMDL_3 6_058Ch RTIC Mem Block D Hash Result Little Endian
Format Word 3

RDMDL_4 6_0590h RTIC Mem Block D Hash Result Little Endian
Format Word 4

RDMDL_5 6_0594h RTIC Mem Block D Hash Result Little Endian
Format Word 5

RDMDL_6 6_0598h RTIC Mem Block D Hash Result Little Endian
Format Word 6

RDMDL_7 6_059Ch RTIC Mem Block D Hash Result Little Endian
Format Word 7

RDMDL_8 6_05A0h RTIC Mem Block D Hash Result Little Endian
Format Word 8

RDMDL_9 6_05A4h RTIC Mem Block D Hash Result Little Endian
Format Word 9

RDMDL_10 6_05A8h RTIC Mem Block D Hash Result Little Endian
Format Word 10

RDMDL_11 6_05ACh RTIC Mem Block D Hash Result Little Endian
Format Word 11

RDMDL_12 6_05B0h RTIC Mem Block D Hash Result Little Endian
Format Word 12

RDMDL_13 6_05B4h RTIC Mem Block D Hash Result Little Endian
Format Word 13

RDMDL_14 6_05B8h RTIC Mem Block D Hash Result Little Endian
Format Word 14

RDMDL_15 6_05BCh RTIC Mem Block D Hash Result Little Endian
Format Word 15

RDMDL_16 6_05C0h RTIC Mem Block D Hash Result Little Endian
Format Word 16

RDMDL_17 6_05C4h RTIC Mem Block D Hash Result Little Endian
Format Word 17

RDMDL_18 6_05C8h RTIC Mem Block D Hash Result Little Endian
Format Word 18

RDMDL_19 6_05CCh RTIC Mem Block D Hash Result Little Endian
Format Word 19

RDMDL_20 6_05D0h RTIC Mem Block D Hash Result Little Endian
Format Word 20

RDMDL_21 6_05D4h RTIC Mem Block D Hash Result Little Endian
Format Word 21

Table continues on the next page...

RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

998 NXP Semiconductors

Register Offset Description

RDMDL_22 6_05D8h RTIC Mem Block D Hash Result Little Endian
Format Word 22

RDMDL_23 6_05DCh RTIC Mem Block D Hash Result Little Endian
Format Word 23

RDMDL_24 6_05E0h RTIC Mem Block D Hash Result Little Endian
Format Word 24

RDMDL_25 6_05E4h RTIC Mem Block D Hash Result Little Endian
Format Word 25

RDMDL_26 6_05E8h RTIC Mem Block D Hash Result Little Endian
Format Word 26

RDMDL_27 6_05ECh RTIC Mem Block D Hash Result Little Endian
Format Word 27

RDMDL_28 6_05F0h RTIC Mem Block D Hash Result Little Endian
Format Word 28

RDMDL_29 6_05F4h RTIC Mem Block D Hash Result Little Endian
Format Word 29

RDMDL_30 6_05F8h RTIC Mem Block D Hash Result Little Endian
Format Word 30

RDMDL_31 6_05FCh RTIC Mem Block D Hash Result Little Endian
Format Word 31

13.155.2 Function

The results of the RTIC hashing operations are stored in the RTIC Hash Result Registers
(256 bits for SHA-256, 512 bits for SHA-512). The hash result for Memory Block a (a=
A,B,C,D) is accessed in contiguous word addresses beginning at the base address of
RTIC Hash Result Register a. For each Memory Block, there are 2 addresses associated
with RTIC Hash Result Register a. Reading successive words starting at the RaMDB
address will return successive words, in big endian format, of the hash result for Memory
Block a. Reading successive words starting at the RaMDL address will return successive
words, in little endian format, of the hash result for Memory Block a.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 999

13.155.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RTIC_Hash_Result

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTIC_Hash_Result

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.155.4 Fields

Field Function

31-0

RTIC_Hash_Re
sult

RTIC_Hash_Result

13.156 Recoverable Error Indication Record 0 for RTIC (REIR
0RTIC)

13.156.1 Offset

Register Offset

REIR0RTIC 6_0E00h

13.156.2 Function

If a recoverable error occurs related to execution of a job from RTIC, error information
will be captured in RTIC's REIR registers. Data for a second recoverable error related to
jobs from RTIC will not be captured until the REIR0RTIC is written. If another bus error

Recoverable Error Indication Record 0 for RTIC (REIR0RTIC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1000 NXP Semiconductors

from RTIC occurs before then, the double error status bit (MISS) in REIR0RTIC will be
set. When REIR0RTIC is written, all of RTIC's REIRRTIC registers are cleared and error
capture is re-enabled.

13.156.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

M
IS

S

R
es

er
ve

d

T
Y

P
E

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.156.4 Fields

Field Function

31

MISS

If MISS=1, a second recoverable error associated with RTIC occurred before REIR0RTIC was written
following a previous RTIC recoverable error.

30-26

—

Reserved

25-24

TYPE

This field indicates the type of the recoverable error.

If TYPE = 00b : reserved

If TYPE = 01b : memory access error

If TYPE = 10b : reserved

If TYPE = 11b : reserved

23-0

—

Reserved

13.157 Recoverable Error Indication Record 2 for RTIC (REIR
2RTIC)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1001

13.157.1 Offset

Register Offset Description

REIR2RTIC 6_0E08h For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

13.157.2 Function

See the description for Recoverable Error Indication Record 0 for RTIC (REIR0RTIC).

13.157.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.157.4 Fields

Field Function

63-0 This register holds the address associated with the recoverable error.

Recoverable Error Indication Record 2 for RTIC (REIR2RTIC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1002 NXP Semiconductors

Field Function

ADDR

13.158 Recoverable Error Indication Record 4 for RTIC (REIR
4RTIC)

13.158.1 Offset

Register Offset

REIR4RTIC 6_0E10h

13.158.2 Function

See the description for Recoverable Error Indication Record 0 for RTIC (REIR0RTIC).

13.158.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R MIX ERR
Reserved

RWB AXPROT AXCACHE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.158.4 Fields

Field Function

31-30

MIX

This field holds the memory interface index associated with the recoverable error.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1003

Field Function

29-28

ERR

This field holds the AXI error response associated with the recoverable error.

27-24

—

Reserved

23

RWB

This field specifies whether the memory access was a read or write.

22-20

AXPROT

This field holds the AXI protection transaction attribute used for the memory access.

19-16

AXCACHE

This field holds the AXI cache control transaction attribute used for the memory access.

15-12

—

Reserved

11-0

ICID

This field holds the ICID associated with the recoverable error.

13.159 Recoverable Error Indication Record 5 for RTIC (REIR
5RTIC)

13.159.1 Offset

Register Offset

REIR5RTIC 6_0E14h

13.159.2 Function

See the description for Recoverable Error Indication Record 0 for RTIC (REIR0RTIC).

Recoverable Error Indication Record 5 for RTIC (REIR5RTIC)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1004 NXP Semiconductors

13.159.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

S
A

F
E

R
es

er
ve

d

B
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.159.4 Fields

Field Function

31-25

—

Reserved

24

SAFE

SAFE indicates whether the AXI transaction associated with the recoverable error was a "safe"
transaction.

23-20

—

Reserved

19-16

BID

This field holds the block identifier (see Table 13-1) of the source of the AXI transaction associated with
the recoverable error.

15-0

—

Reserved

13.160 Queue Interface Control Register, most-significant
(QICTL_MS)

13.160.1 Offset

Register Offset

QICTL_MS 7_0000h

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1005

13.160.2 Function

Queue Interface operation is controlled with the Queue Interface Control Register. The
fields of the Queue Interface Control Register are accessed from the IP bus as two 32-bit
words.

13.160.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

D
W

S
O

P
E

O D
M

B
S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

C
D

W
S

O

C
W

S
O

C
H

W
S

O

C
B

S
O

M
D

W
S

O

M
W

S
O

M
H

W
S

O

M
B

S
O

C
D

W
S

I

C
W

S
I

C
H

W
S

I

C
B

S
I

M
D

W
S

I

M
W

S
I

M
H

W
S

I

M
B

S
I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.160.4 Fields

Field Function

31-19

—

Reserved

18

DWSO

Double Word Swap Override. Setting DWSO=1 complements the swap control determined by
MCFGR[DWT] and QICTL_MS[PEO].

17

PEO

Platform Endianness Override. Setting PEO=1 complements the default platform endianness, which is
indicated by the PLEND bit in the SEC Status Register (see Section SEC Status Register (SSTA)).
(Complements the value of the default platform endianness for SEC.)

16

DMBS

Descriptor Message Data Byte Swap (this applies only to internal message data transfers to/from DECO
Descriptor Buffers.

15

CDWSO

Control data doubleword swap on output. Control data are PreHeaders and Compound Frame Scatter/
Gather Tables read via the DMA. Swaps doublewords within 128-bit wide data bus during a DMA write to
help with endianness conversion issues. The word 0102030405060708090a0b0c0d0e0fh placed in
memory will yield the following result when written into an internal cryptographic engine:

Table continues on the next page...

Queue Interface Control Register, most-significant (QICTL_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1006 NXP Semiconductors

Field Function

CDWSO Data Result

0 0102030405060708090a0b0c0d0e0fh

1 08090a0b0c0d0e0f01020304050607h

14

CWSO

Control data word swap on output. Control data are PreHeaders and Compound Frame Scatter/Gather
Tables read via the DMA. Swaps words within 64-bit or 128-bit wide data bus during a DMA write to help
with endianness conversion issues. The word 0123456789abcdefh placed in memory will yield the
following result when written into an internal cryptographic engine:

CWSO Data Result

0 0123456789abcdefh

1 89abcdef01234567h

13

CHWSO

Control data halfword swap on output. Control data are PreHeaders and Compound Frame Scatter/
Gather Tables read via the DMA. Swaps halfwords within words during a DMA write to help with
endianness conversion issues. The word 01234567h placed in memory will yield the following result
when written into an internal cryptographic engine.

CHWSO Data Result

0 01234567h

1 45670123h

12

CBSO

Control data byte swap on output. Control data are PreHeaders and Compound Frame Scatter/Gather
Tables read via the DMA. Swaps bytes within words during a DMA write to help with endianness
conversion issues. The word 01234567h placed in memory will give the following result when written into
an internal cryptographic engine:

CBSO Data Result

0 01234567h

1 67452301h

11

MDWSO

Message Double Word Swap For Output Data. Allows for software-controllable double word swapping to
assist with mixed Endianness platforms. This should be set if the hardware configuration requires double
word swapping to get correct output for a 64-bit interface. The data is only corrected during a DMA write.
The word 0102030405060708090a0b0c0d0e0fh placed in memory will yield the following result when
written into an internal cryptographic engine.

CDWSI Data Result

0 0102030405060708090a0b0c0d0e0fh

1 08090a0b0c0d0e0f01020304050607h

10

MWSO

Message Word Swap for Output Data. Allows for software-controllable word swapping to assist with
mixed Endianness platforms. This should be set if the hardware configuration requires word swapping to
get correct output for a 64-bit interface. The data is only corrected during a DMA write. The following word
0123456789abcdefh will be written to external memory as follows.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1007

Field Function

MWSO Data Result

0 0123456789abcdefh

1 89abcdef01234567h

9

MHWSO

Message Half Word Swap for Output Data. Allows for software-controllable half-word swapping to assist
with mixed Endianness platforms. This should be set if the hardware configuration is little endian and the
output data needs to be written as big endian data into a 16-bit external memory. The data is only
corrected during a DMA write. The following word 01234567h will be written to external memory as
follows.

MHWSO Data Result

0 01234567h

1 45670123h

8

MBSO

Message Byte Swap for Output Data. Allows for a software-controllable byte swapping to assist with
mixed Endianness platforms. This should be set if the hardware configuration is little endian and the
output data needs to be written as big endian data. The data is only corrected during a DMA write. The
word 01234567h placed in memory will give the following result when written into an internal
cryptographic engine:

MBSO Data Result

0 01234567h

1 67452301h

7

CDWSI

Control data doubleword swap on input. Control data are PreHeaders and Compound Frame Scatter/
Gather Tables read via the DMA. Swaps doublewords within 128-bit wide data bus during a DMA read to
help with endianness conversion issues. The word 0102030405060708090a0b0c0d0e0fh placed in
memory will yield the following result when written into an internal cryptographic engine.

CDWSI Data Result

0 0102030405060708090a0b0c0d0e0fh

1 08090a0b0c0d0e0f01020304050607h

6

CWSI

Control data word swap on input. Control data are PreHeaders and Compound Frame Scatter/Gather
Tables read via the DMA. Swaps words within 64-bit or 128-bit wide data bus during a DMA read to help
with endianness conversion issues. The word 0123456789abcdefh placed in memory will yield the
following result when written into an internal cryptographic engine.

CWSI Data Result

0 0123456789abcdefh

1 89abcdef01234567h

Table continues on the next page...

Queue Interface Control Register, most-significant (QICTL_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1008 NXP Semiconductors

Field Function

5

CHWSI

Control data halfword swap on input. Control data are PreHeaders and Compound Frame Scatter/Gather
Tables read via the DMA. Swaps halfwords within words during a DMA read to help with endianness
conversion issues. The word 01234567h placed in memory will yield the following result when written into
an internal cryptographic engine.

CHWSI Data Result

0 01234567h

1 45670123h

4

CBSI

Control data byte swap on input. Control data are PreHeaders and Compound Frame Scatter/Gather
Tables read via the DMA. Swaps bytes within words during a DMA read to help with endianness
conversion issues. The word 01234567h placed in memory will give the following result when written into
an internal cryptographic engine:

CBSI Data Result

0 01234567h

1 67452301h

3

MDWSI

Allows for a software-controllable message data double word swap to assist with mixed Endianness
platforms. The data is only corrected during a DMA read. The word
0102030405060708090a0b0c0d0e0fh placed in memory will yield the following result when written into
an internal cryptographic engine.

CDWSI Data Result

0 0102030405060708090a0b0c0d0e0fh

1 08090a0b0c0d0e0f01020304050607h

2

MWSI

Allows for a software-controllable message data word swap to assist with mixed Endianness platforms.
The data is only corrected during a DMA read. This may be necessary if message data does not arrive
properly when using a 64-bit interface. The word 0123456789abcdefh placed in memory will yield the
following result when written into an internal cryptographic engine.

MWSI Data Result

0 0123456789abcdefh

1 89abcdef01234567h

1

MHWSI

Allows for a software-controllable message data half-word swap to assist with mixed Endianness
platforms. The data is only corrected during a DMA read. This may be necessary if message data is not
swapped properly when accessing 16 bit memories. The word 01234567h placed in memory will yield the
following result when written into an internal cryptographic engine.

MHWSI Data Result

0 01234567h

1 45670123h

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1009

Field Function

0

MBSI

Allows for a software-controllable message data byte swap to assist with mixed Endianness platforms.
This byte swap will work in conjunction with the platform endianness (see PEO field definition above).
The data is corrected only during a DMA read. A 0h value for the platform endianness will cause a byte
swap. The word 01234567h placed in memory will give the following result when written into an internal
cryptographic engine:

Platform Endianness

(PLEND XOR PEO)

0 1

Mess Byte
Swap (MBSI)

0 01234567h 67452301h

1 67452301h 01234567h

13.161 Queue Interface Control Register, least-significant
(QICTL_LS)

13.161.1 Offset

Register Offset

QICTL_LS 7_0004h

13.161.2 Function

Queue Interface operation is controlled with the Queue Interface Control Register. The
fields of the Queue Interface Control Register are accessed from the IP bus as two 32-bit
words.

Queue Interface Control Register, least-significant (QICTL_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1010 NXP Semiconductors

13.161.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

C
R

O
V

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

S
O

E S
T

O
P

D
Q

E
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.161.4 Fields

Field Function

31-17

—

Reserved

16

CROV

Critical Resource Override. If set, critical resource workload is not considered when selecting the next job
for transfer to the job queue controller for job scheduling. If clear, critical workload may affect job
selection priority as follows. If the Preheader associated with a job specifies a critical resource ID and all
instances of that resource are in use by jobs already transferred to the job queue controller, the job is
assigned the lowest selection priority.

15-3

—

Reserved

2

SOE

Stop on error. If set, a QI-detected error will cause QI to stop frame dequeue and enqueue operations
and transfer of jobs to the job queue controller. See the Queue Interface Status Register (see Section
Queue Interface Status Register (QISTA)) for a description of the errors. If the REI registers are
programmed to halt SEC after a recoverable error and that recoverable error occurs, this will cause the
DEBUGCTL[STOP] bit to assert. SEC will acknowledge that the stop is complete by setting the
DEBUGCTL[STOP_ACK] bit. The DEBUGCTL[STOP] bit must be cleared in order to restart SEC.

1

STOP

Stop. Write 1 to STOP to direct QI to gracefully stop all operations. Once stopped, the STOPD in the QI
Status Register will be 1. To reset the QI, write 1 to STOP (again) and 0 to DQEN. (DQEN may already
be 0.) QI will assert a signal that causes SEC to terminate processing of all QI jobs with a DECO DNR
error status. No new dequeue commands will be issued since DQEN is 0. The STOPD bit will be cleared
while the QI jobs are flushed. After all QI jobs have been flushed (enqueued to QMan), QI will reset itself,
restoring all registers to their default/reset state, including resetting the STOP bit to 0.

0

DQEN

Dequeue enable. If set, the Queue Interface will dequeue frames, if available, from the Queue Manager.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1011

13.162 Queue Interface Status Register (QISTA)

13.162.1 Offset

Register Offset

QISTA 7_000Ch

13.162.2 Function

Software can determine the current status of the Queue Interface by reading the Queue
Interface Status Register. Note that the error bits are "sticky", and will reflect all errors
that have occurred since the error bits were cleared. The status for a particular error is
cleared by writing a 1 to the appropriate error status bit. If an error occurs on the same
clock cycle that the corresponding bit was cleared, the error bit will be left set so that the
error is not missed.

13.162.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

S
T

O
P

D

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

T
B

T
S

E
R

R T
B

P
D

E
R

R O
F

T
LE

R
R C
F

W
R

E
R

R B
T

S
E

R
R B
P

D
E

R
R O
F

W
R

E
R

R C
F

R
D

E
R

R P
H

R
D

E
R

R

W

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Queue Interface Status Register (QISTA)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1012 NXP Semiconductors

13.162.4 Fields

Field Function

31

STOPD

Stopped. Frame dequeue and enqueue operations and transfer of jobs to the Job Queue Controller has
stopped. This condition will occur after the QICTL Register STP bit is set or after an error bit is set with
the QICTL Register SOE bit set. There may be a delay of several cycles from the time the stopping event
occurs until STOPD is asserted, while Queue Interface state machine finishes current operations. This bit
is read-only.

30-9

—

Reserved

8

TBTSERR

Table buffer too small error. The buffer allocated for a Compound Frame or Output Frame Scatter/Gather
Table is too small to hold the required number of entries.

7

TBPDERR

Table buffer pool depletion error. The buffer pool specified by the TBPID field of the Preheader is
depleted.

6

OFTLERR

Output Frame too large error. Number of bits required to represent Output Frame length exceeds size of
length field in Frame Descriptor. Length field size is different for short and long frame formats. This bit is
cleared by writing a "1" to this bit position.

5

CFWRERR

Compound Frame write error. Error reported by the DMA while writing the Output Frame entry in the
Compound Frame Scatter/Gather Table. This bit is cleared by writing a "1" to this bit position.

4

BTSERR

Buffer too small error. The buffer allocated for an Output Frame Scatter/Gather Table is too small to hold
the required number of entries or the buffer offset specified by the PreHeader is greater than or equal to
the buffer size. This bit is cleared by writing a "1" to this bit position.

3

BPDERR

Buffer pool depletion error. The number of buffers required for an Output Frame could not be acquired
because the buffer pool specified in the PreHeader is depleted. This bit is cleared by writing a "1" to this
bit position.

2

OFWRERR

Output Frame write error. Error reported by the DMA while writing the Output Frame Scatter/Gather
Table. This bit is cleared by writing a "1" to this bit position.

1

CFRDERR

Compound Frame read error. Error reported by the DMA during Compound Frame Scatter/Gather Table
read or format of Compound Frame Scatter/Gather Table invalid (F-bit set in first table entry or not set in
second table entry). This bit is cleared by writing a "1" to this bit position. If this error occurs, SEC will not
attempt to update the Output Frame entry of the Compound Frame Scatter/Gather Table when the frame
is enqueued. If the reported error was due to a DMA error, a write would likely result in another DMA
error.

0

PHRDERR

PreHeader read error. An error was reported by the DMA during a PreHeader read. This bit is cleared by
writing a "1" to this bit position.

13.163 Queue Interface Dequeue Configuration Register,
most-significant half (QIDQC_MS)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1013

13.163.1 Offset

Register Offset

QIDQC_MS 7_0010h

13.163.2 Function

Queue Interface dequeue command parameters are specified with this register. The fields
of the Queue Interface Dequeue Configuration Register are accessed as two 32-bit
registers.

13.163.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved SPFCNT Reserved

W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BCNT

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13.163.4 Fields

Field Function

31-27

—

Reserved.

26-24

SPFCNT

Subportal frame count threshold. Each dequeue command issued to the Queue Manager specifies a
subportal ID. Queue Interface uses multiple subportals to get frames from different Frame Queues and it
will only issue a dequeue command for a subportal if the number of frames being processed for that
subportal is less than this frame count threshold. Setting this field to 0 will stop dequeue commands since
the number of frames being processed is never less than 0.

23-16

—

Reserved.

Table continues on the next page...

Queue Interface Dequeue Configuration Register, most-significant half (QIDQC_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1014 NXP Semiconductors

Field Function

15-0

BCNT

Dequeue command byte count. This is the command byte count value used in dequeue commands to the
Queue Manager. The default value of all 1's indicates that the byte count limit is not used. Smaller byte
counts can be programmed to limit the number of large frames that are dequeued when the FCNT value
is 1. Queue Manager will always dequeue at least one frame (unless there are no frames available). If the
amount of data in the first frame is less than the requested byte count, and more frames are available,
Queue Manager will provide a second frame in the dequeue response. If the amount of data in the first
two frames is less than the requested byte count, and more frames are available, Queue Manager will
provide a third frame in the dequeue response.

13.164 Queue Interface Dequeue Configuration Register,
least-significant half (QIDQC_LS)

13.164.1 Offset

Register Offset

QIDQC_LS 7_0014h

13.164.2 Function

Queue Interface dequeue command parameters are specified with this register. The fields
of the Queue Interface Dequeue Configuration Register are accessed as two 32-bit
registers.

13.164.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

S
R

C

R
es

er
ve

d

F
C

N
T

V
E

R
BW

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1015

13.164.4 Fields

Field Function

31-8

SRC

Dequeue command source. This is the command source value used in dequeue commands to the Queue
Manager. For normal operation, only the default value should be programmed. Other values are allowed
for test and debug.

7-5

—

Reserved

4

FCNT

Dequeue command frame count. This is the frame count value used in dequeue commands to the Queue
Manager.

See the Multi-core Datapath Acceleration Architecture Infrastructure Usage document for more detail on
Frame Descriptions.

0b - Dequeue one Frame Description
1b - Dequeue up to three Frame Descriptions. (QMan may supply less than three based on
availability and FQ configuration)

3-0

VERB

Dequeue command verb. This is the command verb value used in dequeue commands to the Queue
Manager. The default value indicates that the Queue Manager should perform a scheduled dequeue from
the channel dedicated to SEC with priority precedence. For normal operation, only the default value
should be programmed. Other values are allowed for test and debug. Note that unscheduled dequeues
are not supported.

13.165 Queue Interface Enqueue Configuration Register,
most-significant half (QIEQC_MS)

13.165.1 Offset

Register Offset

QIEQC_MS 7_0018h

13.165.2 Function

Queue Interface enqueue command parameters are specified with this register. The fields
of the Queue Interface Enqueue Configuration Register are accessed as two 32-bit
registers.

Queue Interface Enqueue Configuration Register, most-significant half (QIEQC_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1016 NXP Semiconductors

13.165.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved FC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

13.165.4 Fields

Field Function

31-2

—

Reserved

1-0

FC

Enqueue command frame color. This is the command frame color value used in Enqueue Commands to
the Queue Manager. See the Queue Manager for more detail.

13.166 Queue Interface Enqueue Configuration Register,
least-significant half (QIEQC_LS)

13.166.1 Offset

Register Offset

QIEQC_LS 7_001Ch

13.166.2 Function

Queue Interface enqueue command parameters are specified with this register. The fields
of the Queue Interface Enqueue Configuration Register are accessed as two 32-bit
registers.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1017

13.166.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TAG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TAG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.166.4 Fields

Field Function

31-0

TAG

Enqueue command tag. This is the command tag value used in enqueue commands to the Queue
Manager. See the Queue Manager for more detail.

13.167 Queue Interface ICID Configuration Register, most-
significant half (QIIC_MS)

13.167.1 Offset

Register Offset

QIIC_MS 7_0020h

13.167.2 Function

The Queue Interface ICID Configuration Register specifies base and mask values used to
derive SEQ and Non-SEQ ICID values for each job processed through the Queue
Manager Interface. The SEQ ICID is asserted by SEC during DMA transactions
associated with sequence command execution. The Non-SEQ ICID is used for DMA

Queue Interface ICID Configuration Register, most-significant half (QIIC_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1018 NXP Semiconductors

transactions associated with non-sequence command execution. These two ICID values
for each job are used by both the Queue Manager Interface and DECO. The fields of the
Queue Interface ICID Configuration Register are accessed as two 32-bit registers.

13.167.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved QNSIOM

W

Reset 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.167.4 Fields

Field Function

31-26

—

Reserved

25-16

QNSIOM

QI Non-SEQ ICID Mask When computing the Non-SEQ ICID for Jobs received via the Queue Manager
Interface, this mask is ANDed with the ICID from the dequeued frame description for the job before being
added to the QI Non-SEQ ICID Base.

Non-SEQ ICID = (ICID & QNSIOM) + QNSICIDB

The calculation of the Non-SEQ ICID may be overridden by a special code in the STATUS/CMD field of
the dequeued Frame Descriptor. See Frame descriptors for more details.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

15-0

—

Reserved

13.168 Queue Interface ICID Configuration Register, least-
significant half (QIIC_LS)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1019

13.168.1 Offset

Register Offset

QIIC_LS 7_0024h

13.168.2 Function

The Queue Interface ICID Configuration Register specifies base and mask values used to
derive SEQ and Non-SEQ ICID values for each job processed through the Queue
Manager Interface. The SEQ ICID is asserted by SEC during DMA transactions
associated with sequence command execution. The Non-SEQ ICID is used for DMA
transactions associated with non-sequence command execution. These two ICID values
for each job are used by both the Queue Manager Interface and DECO. The fields of the
Queue Interface ICID Configuration Register are accessed as two 32-bit registers.

13.168.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved QNSICIDB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved QSICIDB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.168.4 Fields

Field Function

31-28

—

Reserved

27-16

QNSICIDB

QI Non-SEQ ICID Base. When computing the Non-SEQ ICID, the QNSIOM mask is ANDed with the ICID
from the dequeued frame description for the job before being added to the QI Non-SEQ ICID Base. The
Non-SEQ ICID is output by the DMA for transactions associated with execution of a command that is not
a SEQ command (e.g. KEY, LOAD, STORE....).

Table continues on the next page...

Queue Interface ICID Configuration Register, least-significant half (QIIC_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1020 NXP Semiconductors

Field Function

The calculation of the Non-SEQ ICID may be overridden by a special code in the STATUS/CMD field of
the dequeued Frame Descriptor. See Frame descriptors for more details.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

15-12

—

Reserved

11-0

QSICIDB

QI SEQ ICID Base. When computing the SEQ ICID, this Base is added to the ICID from the dequeued
frame description for the job. The SEQ ICID is output by the DMA for transactions associated with
execution of a SEQ command (e.g. SEQ KEY, SEQ LOAD, SEQ STORE....).

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.169 Queue Interface Descriptor Word 0 Register (QIDE
SC0)

13.169.1 Offset

Register Offset

QIDESC0 7_0100h

13.169.2 Function

Several internal registers are accessible for debug purposes. The contents of these
registers change as jobs move through the SEC, so access to that data may only be useful
if operations are hung or stalled.

13.169.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R DESCWD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DESCWD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1021

13.169.4 Fields

Field Function

31-0

DESCWD

Descriptor Word. This register contains the first word of the Job Descriptor, a Header Command, for the
job awaiting transfer to the job queue controller. The contents of this register will be zero when no job
transfer is pending. The length of the descriptor can be determined from a field in the Header command.

13.170 Queue Interface Descriptor Word a Registers (QIDE
SC1 - QIDESC12)

13.170.1 Offset

For a = 1 to 12:

Register Offset Description

QIDESCa 7_0100h + (a × 4h) QI Descriptor Word a

13.170.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R DESCWD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DESCWD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Queue Interface Descriptor Word a Registers (QIDESC1 - QIDESC12)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1022 NXP Semiconductors

13.170.3 Fields

Field Function

31-0

DESCWD

Descriptor Word. These registers contain words of the Job Descriptor for the job awaiting transfer to the
job queue controller. The contents of this register will be zero when no job transfer is pending.

13.171 Queue Interface Compound Frame Scatter/Gather
Table Registers (QICFOFH_MS - QICFIFL_LS)

13.171.1 Offset

Register Offset Description

QICFOFH_MS 7_0210h Output Frame High_MS

QICFOFH_LS 7_0214h Output Frame High_LS

QICFOFL_MS 7_0218h Output Frame Low_MS

QICFOFL_LS 7_021Ch Output Frame Low_LS

QICFIFH_MS 7_0220h Input Frame High_MS

QICFIFH_LS 7_0224h Input Frame High_LS

QICFIFL_MS 7_0228h Input Frame Low_MS

QICFIFL_LS 7_022Ch Input Frame Low_LS

13.171.2 Function

QICFOFH_MS QI Compound Frame Output Frame High

QICFOFL_MS QI Compound Frame Output Frame Low

QICFIFH_MS QI Compound Frame Input Frame High

QICFIFL_MS QI Compound Frame Input Frame Low

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1023

13.171.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CFSGT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CFSGT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.171.4 Fields

Field Function

31-0

CFSGT

Compound Frame Scatter/Gather Table. These registers contain the compound frame scatter/gather
table most recently read from memory.

13.172 Queue Interface Job ID Valid Register (QIJIDVALID)

13.172.1 Offset

Register Offset

QIJIDVALID 7_0300h

13.172.2 Function

Information and status for each job handled by the Queue Interface is accessible through
the Queue Interface Job Registers while job processing is in progress. Each 64-bit register
is accessed as two 32-bit words. After determining that a specific Job ID is in use (by
reading QIJIDVALID), data for the job assigned that Job ID can be accessed by
programming the QI Job Select Register (QIJOBSELECT) with the Job ID. As long as
the Job ID remains valid, information and status for the corresponding job can be read

Queue Interface Job ID Valid Register (QIJIDVALID)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1024 NXP Semiconductors

from QIJIDRDY, QIJIDXFRD, QIJIDEXEC, QIJIDDONE, QISPFC, QISPDQRD,
QIJOBSELECT, QIJOBSTAT, QIJOBSDAL, QIJOBFOQID, QIJOBERR,
QIJOBTEOL, QIJOBFD, QIJOBOFD, and QIJOBIFD. (These registers replace the 152
Queue Interface Registers that were used to retrieve status for up to 15 active QI jobs in
previous versions of the SEC.)

Data for each active job handled by the Queue Interface is stored in a "Job Buffer". A Job
ID from 1 through JOBIDMAX is associated with each Job Buffer. JOBIDMAX is the
number of jobs that can be managed by the Queue Interface at one time. Its value can be
found by reading the JOBIDMAX field of the QI Job Select Register. Some job data need
to be stored by the Queue Interface only until the job has been transferred to the Job
Queue Controller. For that data there are a number of Job Buffer Extensions (or Job
Extensions). The number of Job Extensions is smaller than the number of Job Buffers and
can be determined by reading the JBXIDMAX field of the QI Job Select Register. The ID
of the Job Extension assigned to a job can be determined by writing the Job ID of the job
to the JOBID field and 0 to the JBXID field of the QI Job Select Register, then reading
the JBXID field.

Access to the Job Registers requires:

(1) valid value in Job Buffer Index field of Job Select Register

(2) valid value or 0 in Job Buffer Extension Index field of Job Select Register and

(3) job buffer selected by Job Buffer Index must be in use

If the job selected by the Job Buffer Index has been transferred to the Job Queue
Controller, the Job Buffer Extension data is no longer available. In that case, those fields
of the registers will read as 0. In addition, when accessing registers that contain a mix of
job buffer and job buffer extension data, the extension data will be 0 if the job has been
transferred to the JQ. (After job transfer, the Job Buffer Extension is released for use with
another job.)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1025

13.172.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

JI
D

xx

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.172.4 Fields

Field Function

63-32

—

Reserved

31-16

—

Reserved

15-1

JIDxx

Job ID xx Valid. Job ID xx and the associated job buffer are currently in use.

000000000000000b - Job ID xx is not currently in use.
000000000000001b - Job ID xx is currently in use.

0

—

Reserved

Queue Interface Job ID Job Ready Register (QIJIDRDY)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1026 NXP Semiconductors

13.173 Queue Interface Job ID Job Ready Register (QIJI
DRDY)

13.173.1 Offset

Register Offset

QIJIDRDY 7_0308h

13.173.2 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

JI
D

xx

R
es

er
ve

d
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.173.3 Fields

Field Function

63-32

—

Reserved

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1027

Field Function

31-16

—

Reserved

15-1

JIDxx

Job ID xx Ready. The job with Job ID xx is ready for processing or ready for enqueue. This bit is first set
when the job is ready for transfer to the job queue controller for the start of processing. It is cleared when
processing is done. The bit is set again when post-processing is done and the job is ready for enqueue. It
remains set until the job is enqueued.

000000000000000b - The job with Job ID xx is not yet ready for enqueue or transfer.
000000000000001b - The job with Job ID xx is ready for enqueue or transfer.

0

—

Reserved

13.174 Recoverable Error Indication Record 0 for the Queue
Interface (REIR0QI)

13.174.1 Offset

Register Offset

REIR0QI 7_0700h

13.174.2 Function

One type of recoverable error is defined for QI: system bus access (memory read/write)
errors. If a recoverable error occurs related to execution of a job from QI, error
information will be captured in the QI's REIR registers. Data for a second QI recoverable
error will not be captured unless REIR0QI was written (with any value) prior to the
occurrence of that error. If another recoverable error occurs before that write, the missed
error status bit (MISS) in REIR0QI will be set. When REIR0QI is written, all of QI's
REIRQI registers are cleared and error capture is re-enabled.

Recoverable Error Indication Record 0 for the Queue Interface (REIR0QI)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1028 NXP Semiconductors

13.174.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

M
IS

S

R
es

er
ve

d

T
Y

P
E

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.174.4 Fields

Field Function

31

MISS

If MISS=1, a second QI recoverable error occurred before REIR0QI was written to re-enable error data
capture.

30-26

—

Reserved

25-24

TYPE

This field indicates the type of the recoverable error.

If TYPE = 1 : memory access error

All other values reserved.

23-0

—

Reserved

13.175 Recoverable Error Indication Record 1 for the Queue
Interface (REIR1QI)

13.175.1 Offset

Register Offset

REIR1QI 7_0704h

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1029

13.175.2 Function

This register is used to report information related to isolation errors (REIR0QI.TYPE =
2). REIR1QI will return all zeros for memory access errors (TYPE = 1). See the
description for Recoverable Error Indication Record 0 for the Queue Interface (REIR
0QI).

13.175.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BDI
Reserved

NONSEQ_ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.175.4 Fields

Field Function

31-16

—

Reserved

15

BDI

For TYPE 2 and 3 errors this field holds the BDI associated with the recoverable error. For TYPE 1 errors
this field will return 0.

14-12

—

Reserved

11-0

NONSEQ_ICID

For TYPE 2 and 3 errors this field holds the Non-Sequence_ICID associated with the recoverable error.
For TYPE 1 errors this field will return 00h.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

Recoverable Error Indication Record 2 for the Queue Interface (REIR2QI)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1030 NXP Semiconductors

13.176 Recoverable Error Indication Record 2 for the Queue
Interface (REIR2QI)

13.176.1 Offset

Register Offset

REIR2QI 7_0708h

13.176.2 Function

See the description for Recoverable Error Indication Record 0 for the Queue Interface
(REIR0QI).

13.176.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1031

13.176.4 Fields

Field Function

63-0

ADDR

REIR2QI holds the address associated with the recoverable QI error. Note that this register may be
double-word swapped. See MCFGR[DWT] (Master Configuration Register (MCFGR)).

13.177 Recoverable Error Indication Record 4 for the Queue
Interface (REIR4QI)

13.177.1 Offset

Register Offset

REIR4QI 7_0710h

13.177.2 Function

See the description for Recoverable Error Indication Record 0 for the Queue Interface
(REIR0QI).

13.177.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R MIX ERR
Reserved

RWB AXPROT AXCACHE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

ICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Recoverable Error Indication Record 4 for the Queue Interface (REIR4QI)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1032 NXP Semiconductors

13.177.4 Fields

Field Function

31-30

MIX

This field holds the memory interface index associated with the recoverable error.

29-28

ERR

This field holds the AXI error response associated with the recoverable error.

27-24

—

Reserved

23

RWB

This field specifies whether the memory access was a read or write.

22-20

AXPROT

This field holds the AXI protection transaction attribute used for the memory access.

19-16

AXCACHE

This field holds the AXI cache control transaction attribute used for the memory access.

15-12

—

Reserved

11-0

ICID

For Type 1 errors this field holds the ICID transaction attribute associated with the recoverable error.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.178 Recoverable Error Indication Record 5 for the Queue
Interface (REIR5QI)

13.178.1 Offset

Register Offset

REIR5QI 7_0714h

13.178.2 Function

See the description for Recoverable Error Indication Record 0 for the Queue Interface
(REIR0QI).

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1033

13.178.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

S
A

F
E

R
es

er
ve

d

B
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.178.4 Fields

Field Function

31-25

—

Reserved

24

SAFE

SAFE indicates whether the AXI transaction associated with the recoverable error was a safe transaction
(either read-safe or write-safe).

23-20

—

Reserved

19-16

BID

BID holds the block identifier (see Table 13-1) of the source of the AXI transaction associated with the
recoverable error.

15-0

—

Reserved

13.179 CCB a Class 1 Mode Register Format for RNG4 (C0C1
MR_RNG - C2C1MR_RNG)

13.179.1 Offset

For a = 0 to 2:

CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG - C2C1MR_RNG)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1034 NXP Semiconductors

Register Offset Description

CaC1MR_RNG 8_0004h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.179.2 Function

The Class 1 Mode Register is used to tell the Class 1 CHAs which operation is being
requested. There is one copy of this register per DECO/CCB. The interpretation of this
register will be unique for each CHA. The Class 1 Mode Register has several
independent definitions, one for Public Key algorithms (see Section CCB a Class 1 Mode
Register Format for Public Key Algorithms (C0C1MR_PK - C2C1MR_PK)), one for
RNG (see Section CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG -
C2C1MR_RNG)), and one for all others (see this section). The Class 1 Mode Register is
automatically written by the OPERATION Command. Using a descriptor, the only way
to write to the Class 1 Mode Register is via the OPERATION Command. This register is
automatically cleared when a key is to be encrypted or decrypted using the KEY or FIFO
STORE Commands. This register is also automatically cleared when the signature over a
Trusted Descriptor is checked or a Trusted Descriptor is re-signed.

When the Class 1 Mode register is used to control the RNG, the following format is used.

13.179.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ALG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

C
2K S K A
I

P S O
B

P

N
Z

B

R
es

er
ve

d

S H A S P R T
S

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1035

13.179.4 Fields

Field Function

31-24

—

Reserved. Must be 0.

23-16

ALG

Algorithm. This field specifies which algorithm is being selected.

01010000b - RNG

15-14

—

Reserved. Must be 0.

13

C2K

Class 2 Key. This bit is ignored for all algorithms other than AES.

0b - AES will use the Class 1 Key for CCM and GCM modes.
1b - AES will use the Class 2 Key for CCM and GCM modes. Setting this bit =1 will result in a mode
error for other AES modes.

12

SK

Secure Key. For RNG OPERATION commands this bit of the AAI field is interpreted as the Secure Key
field. If SK=1 and AS=00 (Generate), the RNG will generate data to be loaded into the JDKEK, TDKEK
and TDSK. If a second Generate command is issued with SK=1, a Secure Key error will result. If SK=0
and AS=00 (Generate), the RNG will generate data to be stored as directed by the FIFO STORE
command. The SK field is ignored if AS!=00.

11

AI

Additional Input Included. For RNG OPERATION commands this bit of the AAI field is interpreted as the
Additional Input Included field. If AS=00 (Generate) and AI=1, the256 bits of additional data supplied via
the Class 1 Context Register will be used as additional entropy during random number generation. If
AS=10 (Reseed) and AI=1, the additional data supplied via the Class 1 Context register will be used as
additional entropy input during the reseeding operation. The AI field is ignored if AS=01 (Instantiate) or
AS=11 (Uninstantiate).

10

PS

Personalization String Included. For RNG OPERATION commands this bit of the AAI field is interpreted
as the Personalization String Included field. If AS=01 (Instantiate) and PS=1, a personalization string of
256 bits supplied via the Class 1 Context register is used as additional “entropy” input during instantiation.
Note that the personalization string does not need to be random. A device-unique value can be used to
further guarantee that no two RNGs are ever instantiated with the same seed value. (Note that the
entropy generated by the TRNG already ensures this with high probability.) The PS field is ignored if
AS≠01.

9

OBP

Odd Byte Parity. For RNG Operation commands this bit of the AAI field is interpreted as the Odd Byte
Parity field. If AS=00 (Generate) and OBP=1, every byte of data generated during random number
generation will have odd parity. That is, the 128 possible bytes values that have odd parity will be
generated at random. If AS=00 (Generate) and OBP=0 and NZB=0, all 256 possible byte values will be
generated at random. The OBP field is ignored if AS≠00.

8

NZB

NonZero bytes. For RNG OPERATION commands this bit of the AAI field is interpreted as the NonZero
Bytes field. If AS=00 (Generate) and NZB=1, no byte of data generated during random number
generation will be 00h, but (if OBP=0) the remaining 255 values will be generated at random. Note that
setting NZB=1 has no effect if OBP=1, since zero bytes are already excluded when odd byte parity is
selected. If AS=00 (Generate) and OBP=0 and NZB=0, all 256 possible byte values will be generated at
random. The NZB field is ignored if AS≠00.

7-6

—

Reserved. For RNG commands these bits of the AAI field are reserved.

5-4

SH

State Handle. For RNG OPERATION commands these bits of the AAI field are interpreted as the State
Handle field. The command is issued to the State Handle selected via this field. An error will be
generated if the selected state handle is not implemented.

00b - State Handle 0
01b - State Handle 1

Table continues on the next page...

CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG - C2C1MR_RNG)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1036 NXP Semiconductors

Field Function

10b - Reserved
11b - Reserved

3-2

AS

Algorithm State. For RNG OPERATION commands these bits select RNG commands as shown below:

AS Value State Handle is already
instantiated

State Handle is NOT already
instantiated

00 Generate Generate random data per the mode
in which the state handle was
instantiated.

Error

01 Instantiate Error Instantiate the state handle in either
test mode or non-deterministic mode
as specified by TST, and either to
support prediction resistance or not
to support prediction resistance as
specified by PR.

10 Reseed Reseed the state handle. Error

11 Uninstantiate Uninstantiate the state handle. Error

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in Test mode
but a Generate operation requests non-deterministic data from State Handle 0. This permits
deterministic testing of the built-in protocols prior to setting the RNGSH0 bit in the Security
Configuration Register. Setting RNGSH0 would normally be performed during the boot process after
testing is complete.

1

PR

Prediction Resistance. For RNG OPERATION commands this bit is interpreted as:

AS Value PR = 0 PR = 1

00 Generate Do NOT reseed prior to generating
new random data

If the state handle was instantiated to
support prediction resistance, reseed
prior to generating new random data.
If the state handle was NOT
instantiated to support prediction
resistance, generate an error.

01 Instantiate Instantiate the state handle to NOT
support prediction resistance

Instantiate the state handle to
support prediction resistance

10 Reseed Reseed the state handle. PR bit is
ignored.

Reseed the state handle. PR bit is
ignored.

11 Uninstantiate Uninstantiate the state handle. PR bit
is ignored.

Uninstantiate the state handle. PR bit
is ignored.

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in Test mode
but a Generate operation requests non-deterministic data from State Handle 0. This permits
deterministic testing of the built-in protocols prior to setting the RNGSH0 bit in the Security
Configuration Register. Setting RNGSH0 would normally be performed during the boot process after
testing is complete.

0

TST

Test Mode Request. For RNG OPERATION commands this bit is interpreted as:

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1037

Field Function

AS Value TST = 0 TST = 1

00 Generate If the selected state handle is in non-
deterministic mode, generate new
random data.

If the selected state handle is in
deterministic mode, generate a Test
error.-1

If the selected state handle is in
deterministic mode, generate new
random data.

If the selected state handle is in non-
deterministic mode, generate a Test
error..

01 Instantiate Instantiate the state handle in normal
(non-deterministic) mode.

Instantiate the state handle in test
(deterministic) mode.

10 Reseed If the selected state handle is in non-
deterministic mode, reseed the state
handle.

If the selected state handle is in
deterministic mode, generate a Test
error.

If the selected state handle is in non-
deterministic mode, reseed the state
handle.

If the selected state handle is in
deterministic mode, generate a Test
error.

11 Uninstantiate Uninstantiate the state handle. TST
bit is ignored.

Uninstantiate the state handle. TST
bit is ignored.

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in Test mode
but a Generate operation requests non-deterministic data from State Handle 0. This permits
deterministic testing of the built-in protocols prior to setting the RNGSH0 bit in the Security
Configuration Register. Setting RNGSH0 would normally be performed during the boot process after
testing is complete.

1. There is one exception to this rule. A Test Error will not be generated if State Handle 0 is in Test mode but a Generate
operation requests non-deterministic data from State Handle 0. This permits deterministic testing of the built-in protocols
prior to setting the RNGSH0 bit in the Security Configuration Register. Setting RNGSH0 would normally be performed
during the boot process after testing is complete.

13.180 CCB a Class 1 Mode Register Format for Public Key
Algorithms (C0C1MR_PK - C2C1MR_PK)

13.180.1 Offset

For a = 0 to 2:

Register Offset Description

CaC1MR_PK 8_0004h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

CCB a Class 1 Mode Register Format for Public Key Algorithms (C0C1MR_PK - C2C1MR_PK)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1038 NXP Semiconductors

13.180.2 Function

The Class 1 Mode Register is used to tell the Class 1 CHAs which operation is being
requested. There is one copy of this register per DECO/CCB. The interpretation of this
register will be unique for each CHA. The Class 1 Mode Register has several
independent definitions, one for Public Key algorithms (see Section CCB a Class 1 Mode
Register Format for Public Key Algorithms (C0C1MR_PK - C2C1MR_PK)), one for
RNG (see Section CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG -
C2C1MR_RNG)), and one for all others (see this section). The Class 1 Mode Register is
automatically written by the OPERATION Command. Using a descriptor, the only way
to write to the Class 1 Mode Register is via the OPERATION Command. This register is
automatically cleared when a key is to be encrypted or decrypted using the KEY or FIFO
STORE Commands. This register is also automatically cleared when the signature over a
Trusted Descriptor is checked or a Trusted Descriptor is re-signed.

The following figure shows the Class 1 Mode Register format that is used with public
key algorithms, which are algorithms that use PKHA. The Class 1 Mode register is
automatically cleared following a PKHA Command. The bit assignments for the
PKHA_MODE field shown in CCB a Class 1 Mode Register Format for Public Key
Algorithms (C0C1MR_PK - C2C1MR_PK) will be different depending on which of the
three types of PKHA functions is being called. The three function types are: 1) Clear
Memory, 2) Modular Arithmetic, and 3) Copy Memory. Detailed descriptions of their
mode formats can be found in Table PKHA OPERATION: clear memory function, Table
PKHA OPERATION: Arithmetic Functions and Table PKHA OPERATION: copy
memory functions.

13.180.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved PKHA_MODE_MS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKHA_MODE_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1039

13.180.4 Fields

Field Function

31-20

—

Reserved

19-16

PKHA_MODE_
MS

PKHA_MODE most-significant 4 bits. The format of the PKHA_MODE field differs depending on which of
the three types of PKHA functions is being executed. The three function types are: 1) Clear Memory, 2)
Modular Arithmetic, and 3) Copy Memory. Detailed descriptions of their mode formats can be found in
Table PKHA OPERATION: clear memory function, Table PKHA OPERATION: Arithmetic Functions and
Table PKHA OPERATION: copy memory functions.

15-12

—

Reserved

11-0

PKHA_MODE_L
S

PKHA_MODE least significant 12 bits. The format of the PKHA_MODE field differs depending on which
of the three types of PKHA functions is being executed. The three function types are: 1) Clear Memory, 2)
Modular Arithmetic, and 3) Copy Memory. Detailed descriptions of their mode formats can be found in
Table PKHA OPERATION: clear memory function, Table PKHA OPERATION: Arithmetic Functions and
Table PKHA OPERATION: copy memory functions.

13.181 CCB a Class 1 Mode Register Format for Non-Public
Key Algorithms (C0C1MR_NPK - C2C1MR_NPK)

13.181.1 Offset

For a = 0 to 2:

Register Offset Description

CaC1MR_NPK 8_0004h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.181.2 Function

The Class 1 Mode Register is used to tell the Class 1 CHAs which operation is being
requested. There is one copy of this register per DECO/CCB. The interpretation of this
register will be unique for each CHA. The Class 1 Mode Register has several
independent definitions, one for Public Key algorithms (see Section CCB a Class 1 Mode
Register Format for Public Key Algorithms (C0C1MR_PK - C2C1MR_PK)), one for
RNG (see Section CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG -
C2C1MR_RNG)), and one for all others (see this section). The Class 1 Mode Register is

CCB a Class 1 Mode Register Format for Non-Public Key Algorithms (C0C1MR_NPK - C2C1MR_NPK)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1040 NXP Semiconductors

automatically written by the OPERATION Command. Using a descriptor, the only way
to write to the Class 1 Mode Register is via the OPERATION Command. This register is
automatically cleared when a key is to be encrypted or decrypted using the KEY or FIFO
STORE Commands. This register is also automatically cleared when the signature over a
Trusted Descriptor is checked or a Trusted Descriptor is re-signed.

This section defines the format of the Class 1 Mode Register when used with non-public-
key algorithms. The Non-Public-Key algorithms are those that do not use the PKHA.

Some examples of how to build the Class 1 Mode Register for non-Public Key
algorithms:

Table 13-3. Class 1 Mode Register examples for non-Public Key algorithms

Crypto service
performed

ALG
Mnemonic

AAI
Mnemonic

AS
Mnemonic

ICV Encrypt/

Decrypt/

Protect/

Authenticat
e

ALGORITHM
OPERATION
Command

32-bit Value
Loaded into

C1 Mode Reg

AES GCM AES GCM Init / Finalize yes Decrypt 8201090Eh 0001090Eh

AES Counter with
mod=2128

AES CTR

Modulus 2128

-- no Encrypt 82010001h 00010001h

Kasumi f9 Kasumi f9 Init / Finalize yes Authenticate 8207020Eh 0007020Eh

Triple DES OFB mode
with key parity

DES OFB -- no Decrypt 82021400h 00021400h

13.181.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ALG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

C
2K A
A

I

A S

IC
V

_T
E

S
T

E
N

C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1041

13.181.4 Fields

Field Function

31-24

—

Reserved. Must be 0.

23-16

ALG

Algorithm. This field specifies which algorithm is being selected.

00010000b - AES
00100000b - DES
00100001b - 3DES
01010000b - RNG
01100000b - SNOW f8
01110000b - Kasumi Encryption
10110000b - ZUC Encryption

15-14

—

Reserved. Must be 0.

13

C2K

Class 2 Key. This bit is ignored for all algorithms other than AES.

0b - AES will use the Class 1 Key for CCM and GCM modes.
1b - AES will use the Class 2 Key for CCM and GCM modes. Setting this bit =1 will result in a mode
error for other AES modes.

12-4

AAI

Additional Algorithm information. This field contains additional mode information that is associated with
the algorithm that is being executed. See also the section describing the appropriate CHA. For RNG
OPERATION commands the AAI field is interpreted as shown in CCB a Class 1 Mode Register Format
for RNG4 (C0C1MR_RNG - C2C1MR_RNG).

NOTE: Some algorithms do not require additional algorithm information and in those cases this field
should be all 0s.

AAI Interpretation for AES Modes

[For AES the MSB of AAI is the DK (Decrypt Key) bit.]

Code1 Interpretation Code1 Interpretation

00h CTR (mod 2128) 80h CCM2

10h CBC 90h GCM2

20h ECB A0h CBC_XCBC_MAC

30h CFB B0h CTR_XCBC_MAC

40h OFB C0h CBC_CMAC

50h XTS D0h CTR_CMAC_LTE

60h CMAC E0h CTR_CMAC

70h XCBC-MAC

Setting the DK bit (i.e. ORing 100h with any AES code above) causes Key Register to be loaded with
the AES Decrypt key, rather than the AES Encrypt key. See the discussion in Differences between the

AES encrypt and decrypt keys

1. The codes are mutually exclusive (i.e. they cannot be ORed with each other).

Table continues on the next page...

CCB a Class 1 Mode Register Format for Non-Public Key Algorithms (C0C1MR_NPK - C2C1MR_NPK)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1042 NXP Semiconductors

Field Function

2. If C2K= 0, CCM and GCM use the key in the Class 1 Key Register. If C2K = 1, CCM and GCM use the
key in the Class 2 Key Register.

Table 13-4. AAI Interpretation for Kasumi

Code1 Interpretation Code1 Interpretation

10h GSM 20h EDGE

C08 f8 C8h f9

1. The codes are mutually exclusive (i.e. they cannot be ORed with each other).

Table 13-5. AAI Interpretation for ZUC

Code1 Interpretation For Authentication mode,see
CCB a Class 2 Mode Register

(C0C2MR - C2C2MR)

C0h encryption mode

1. The codes are mutually exclusive (i.e. they cannot be ORed with each other).

Additional Algorithm information. This field contains additional mode information that is associated with
the algorithm that is being executed. See also the section describing the appropriate CHA.

NOTE: Some algorithms do not require additional algorithm information and in those cases this field
should be all 0s.

NOTE: For RNG OPERATION commands the AAI field is interpreted as shown in the SK, AI, PS, OBP,
NZ and SH fields shown in CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG -
C2C1MR_RNG).

Table 13-6. AAI Interpretation for DES

Code1 Interpretation Code1 Interpretation

10h CBC 30h CFB

20h ECB 40h OFB

80h ORed with any DES code above: Check odd parity

1. The codes are mutually exclusive (i.e. they cannot be ORed with each other).

Table 13-7. AAI Interpretation for RNG

Code1 Interpretation

00h Random Numbers

10h Random Numbers with No Zero Bytes

20h Random Numbers with odd byte parity

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1043

Field Function

Table 13-8. AAI Interpretation for SNOW 3G

Code1 Interpretation For f9 mode, see CCB a Class 2
Mode Register (C0C2MR - C2C2

MR)

C0h f8

1. The codes are mutually exclusive (i.e. they cannot be ORed with each other).

3-2

AS

Algorithm State. This field defines the state of the algorithm that is being executed. This may not be used
by every algorithm. For RNG commands, see CCB a Class 1 Mode Register Format for RNG4 (C0C1
MR_RNG - C2C1MR_RNG).

00b - Update
01b - Initialize
10b - Finalize
11b - Initialize/Finalize

1

ICV_TEST

ICV Checking / Test AES fault detection.

(This is the definition of this bit for CHAs other than RNG. For the definition of this bit in RNG commands,
see CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG - C2C1MR_RNG))

For algorithms other than AES ECB mode: ICV Checking

This bit selects whether the current algorithm should compare the known ICV versus the calculated ICV.
This bit will be ignored by algorithms that do not support ICV checking.

0 - Don't compare

1 - Compare

For AES ECB mode: Test AES fault detection

In AES ECB mode, this bit activates fault detection testing by injecting bit level errors into AES core logic
as defined in the first 128 bits of the context.

0 - Don't inject bit errors

1 - Inject bit errors

0

ENC

Encrypt/Decrypt.

(This is the definition of this bit for CHAs other than RNG.. For the definition of this bit in RNG commands,
see CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG - C2C1MR_RNG).)

This bit selects encryption or decryption. This bit is ignored by all algorithms that do not have distinct
encryption and decryption modes. However, for performance counting to be done correctly, this bit must
be set appropriately even if the CHA or Algorithm does not use it to select cryptographic modes.

0b - Decrypt.
1b - Encrypt.

13.182 CCB a Class 1 Key Size Register (C0C1KSR - C2C1
KSR)

CCB a Class 1 Key Size Register (C0C1KSR - C2C1KSR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1044 NXP Semiconductors

13.182.1 Offset

For a = 0 to 2:

Register Offset Description

CaC1KSR 8_000Ch + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.182.2 Function

The Class 1 Key Size Register is used to tell the Class 1 CHA the size of the key that was
loaded into the Class 1 Key Register. The Class 1 Key Size Register must be written after
the key is written into the Class 1 Key Register. Writing to the Class 1 Key Size Register
will prevent the user from modifying the Class 1 Key Register. The Class 1 Key Size
Register is automatically written by the KEY Command except in the following cases.
When the PKHA E-RAM is loaded the PKHA E Size Register is automatically loaded
with the correct size, rather than loading the Class 1 Key Size Register.

13.182.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved C1KS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.182.4 Fields

Field Function

31-7

—

Reserved

6-0 Class 1 Key Size. This is the size of a Class 1 Key measured in bytes

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1045

Field Function

C1KS Although the Class 1 Key Register holds only 32 bytes, it is possible to load a key as large as 9688 bytes.
The first 32 bytes will be loaded into the Class 1 Key Register and the remaining bytes will be loaded into
the Class 1 Context Register. The key bytes loaded into the Context Register will be treated as an
"Extended Key Register" (i.e. as part of the Key Register) during cryptographic operations and when
storing and loading Black Keys.

13.183 CCB a Class 1 Data Size Register (C0C1DSR - C2C1
DSR)

13.183.1 Offset

For a = 0 to 2:

Register Offset Description

CaC1DSR 8_0010h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.183.2 Function

The Class 1 Data Size Register is used to tell the Class 1 CHA the amount of data that
will be loaded into the Input Data FIFO. For bit-oriented operations, the value in the
NUMBITS field is appended to the C1CY and C1DS fields to form a data size that is
measured in bits. Note that writing to the C1DS field in this register causes the written
value to be added to the previous value in that field. That is, if the C1DS field currently
has the value 14, writing 2 to the least-significant half of the Class 1 Data Size register
(i.e. the C1DS field) will result in a value of 16 in the C1DS field. Although there is a
C1CY field to hold the carry from this addition, care must be taken to avoid overflowing
the 33-bit value held in the concatenation of the C1CY and C1DS fields. Any such
overflow will be lost. Note that some CHAs decrement this register, so reading the
register may return a value less than sum of the values that were written into it. FIFO
LOAD commands can automatically load this register when automatic iNformation FIFO
entries are enabled. This register is cleared whenever a key is decrypted or encrypted.
Since the Class 1 Data Size Registers hold more than 32 bits, they are accessed from the
IP bus as two 32-bit registers.

CCB a Class 1 Data Size Register (C0C1DSR - C2C1DSR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1046 NXP Semiconductors

13.183.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R NUMBITS
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R

R
es

er
ve

d

C
1C

Y

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C1DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C1DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.183.4 Fields

Field Function

63-61

NUMBITS

Class 1 Data Size Number of bits. For bit-oriented operations, this value is appended to the C1CY and
C1DS fields to form a data size that is measured in bits. That is, the number of bits of data is given by the
value (C1CY || C1DS || NUMBITS). Note that if NUMBITS is nonzero, C1DS +1 bytes will be written to
the Input Data FIFO, but only NUMBITS bits of the last byte will be consumed by the bit-oriented
operation. Note that the NUMBITS field is not additive, so any write to the field will overwrite the previous
value.

60-33

—

Reserved

32

C1CY

Class 1 Data Size Carry. Although this field is not writable, it will be set if a write to C1DS causes a carry
out of the msb of C1DS.

31-0

C1DS

Class 1 Data Size. This is the number of whole bytes of data that will be consumed by the Class 1 CHA.
Note that one additional byte will be written into the Input Data FIFO if the NUMBITS field is nonzero.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1047

13.184 CCB a Class 1 ICV Size Register (C0C1ICVSR - C2C1
ICVSR)

13.184.1 Offset

For a = 0 to 2:

Register Offset Description

CaC1ICVSR 8_001Ch + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.184.2 Function

The Class 1 ICV Size Register indicates how much of the last block of ICV is valid when
performing AES integrity check modes (e.g. AES-CMAC, AES-XCBC-MAC, AES-
GCM). Like the Class 1 Data Size register, the Class 1 ICV Size register is additive. That
is, any value written to the C1ICVS field will be added to the previous value in the field.
This register must be written prior to the corresponding word of data being consumed by
AES. In practical terms, this means the register must be written either prior to the
corresponding data being written to the Input Data FIFO or prior to the iNformation FIFO
entry for this data. FIFO LOAD commands can automatically load it when ICV is loaded.

13.184.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved C1ICVS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CCB a Class 1 ICV Size Register (C0C1ICVSR - C2C1ICVSR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1048 NXP Semiconductors

13.184.4 Fields

Field Function

31-5

—

Reserved

4-0

C1ICVS

Class 1 ICV Size, in Bytes.

13.185 CCB a CHA Control Register (C0CCTRL - C2CCTRL)

13.185.1 Offset

For a = 0 to 2:

Register Offset Description

CaCCTRL 8_0034h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.185.2 Function

The CHA Control Register is used to send control signals to the CHAs. This register is
automatically written between Descriptors. Within a Descriptor, use the LOAD
Command to reset blocks or unload memories.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1049

13.185.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

W U
B

U
A

U
N

U
B

3

U
B

2

U
B

1

U
B

0

U
A

3

U
A

2

U
A

1

U
A

0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

W

A
E

S
_C

2

Z
U

C
A

Z
U

C
E

S
N

F
9 R

N
G

C
R

C

M
D

P
K

S
N

F
8 K

A
S

D
E

S A
E

S A
LL

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.185.4 Fields

Field Function

31-30

—

Reserved. To preserve software compatibility with other versions of SEC, 0 should be written to all
reserved bits.

29

—

Reserved. To preserve software compatibility with other versions of SEC, 0 should be written to all
reserved bits.

28

—

Reserved. To preserve software compatibility with other versions of SEC, 0 should be written to all
reserved bits.

27

UB

Unload the PKHA B Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B
memory into the Output Data FIFO.

26

UA

Unload the PKHA A Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A
memory into the Output Data FIFO.

25

—

Reserved. To preserve software compatibility with other versions of SEC, 0 should be written to all
reserved bits.

24

UN

Unload the PKHA N Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the N
memory into the Output Data FIFO.

23

UB3

Unload the PKHA B3 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B3
memory into the Output Data FIFO.

22

UB2

Unload the PKHA B2 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B2
memory into the Output Data FIFO.

21

UB1

Unload the PKHA B1 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B1
memory into the Output Data FIFO.

Table continues on the next page...

CCB a CHA Control Register (C0CCTRL - C2CCTRL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1050 NXP Semiconductors

Field Function

20

UB0

Unload the PKHA B0 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the B0
memory into the Output Data FIFO.

19

UA3

Unload the PKHA A3 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A3
memory into the Output Data FIFO.

18

UA2

Unload the PKHA A2 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A2
memory into the Output Data FIFO.

17

UA1

Unload the PKHA A1 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A1
memory into the Output Data FIFO.

16

UA0

Unload the PKHA A0 Memory. Writing a 1 to this bit causes the PKHA to unload the contents of the A0
memory into the Output Data FIFO.

15

—

Reserved. To preserve software compatibility with other versions of SEC, 0 should be written to all
reserved bits.

14

—

Reserved. To preserve software compatibility with other versions of SEC, 0 should be written to all
reserved bits.

13

AES_C2

Reset AES Class 2 CHA. Writing a 1 to this bit resets the AES Authentication (Class 2) accelerator.

0b - Do Not Reset
1b - Reset AES Authentication accelerator

12

ZUCA

Reset ZUCA. Writing a 1 to this bit resets the ZUC Authentication accelerator.

0b - Do Not Reset
1b - Reset ZUC Authentication accelerator

11

ZUCE

Reset ZUCE. Writing a 1 to this bit resets the ZUC Encryption accelerator.

0b - Do Not Reset
1b - Reset ZUC Encryption accelerator

10

SNF9

Reset SNOW f9. Writing a 1 to this bit resets the SNOW f9 Accelerator.

0b - Do Not Reset
1b - Reset SNOW f9 Accelerator

9

RNG

Reset Random Number Generator. Writing a 1 to this bit resets the Random Number Generator.

0b - Do Not Reset
1b - Reset Random Number Generator Block.

8

CRC

Reset CRCA. Writing a 1 to this bit resets the CRC Accelerator.

0b - Do Not Reset
1b - Reset CRC Accelerator

7

MD

Reset MDHA. Writing a 1 to this bit resets the Message Digest Hardware Accelerator.

0b - Do Not Reset
1b - Reset Message Digest Hardware Accelerator

6

PK

Reset PKHA. Writing a 1 to this bit resets the Public Key Hardware Accelerator.

0b - Do Not Reset
1b - Reset Public Key Hardware Accelerator

5

SNF8

Reset SNOW f8. Writing a 1 to this bit resets the SNOW f8 Hardware Accelerator.

0b - Do Not Reset
1b - Reset SNOW f8 Accelerator

4 Reset KFHA. Writing a 1 to this bit resets the Kasumi f8/f9 Hardware Accelerator.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1051

Field Function

KAS 0b - Do Not Reset
1b - Reset Kasumi f8/f9 Accelerator

3

—

Reserved. To preserve software compatibility with other versions of SEC, 0 should be written to all
reserved bits.

2

DES

Reset DESA. Writing a 1 to this bit resets the DES Accelerator.

0b - Do Not Reset
1b - Reset DES Accelerator

1

AES

Reset AESA. Writing a 1 to this bit resets the AES Accelerator.

0b - Do Not Reset
1b - Reset AES Accelerator

0

ALL

Reset All Internal CHAs. Writing to this bit resets all CHAs in use by this CCB.

0b - Do Not Reset
1b - Reset all CHAs in use by this CCB.

13.186 CCB a Interrupt Control Register (C0ICTL - C2ICTL)

13.186.1 Offset

For a = 0 to 2:

Register Offset Description

CaICTL 8_003Ch + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.186.2 Function

The IRQ Control Register shows the status of all CCB "done" interrupts and "error"
interrupts and provides controls for clearing these interrupts.

CCB a Interrupt Control Register (C0ICTL - C2ICTL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1052 NXP Semiconductors

13.186.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

Z
A

E
I

Z
E

E
I S

9E
I R

N
E

I C
E

I M
E

I

P
E

I S
8E

I K
E

I

R
es

er
ve

d

D
E

I A
E

I

R
es

er
ve

d

W

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

Z
A

D
I

Z
E

D
I

S
9D

I

R
N

D
I

C
D

I

M
D

I

P
D

I

S
8D

I

K
D

I

R
es

er
ve

d

D
D

I

A
D

I

R
es

er
ve

d

W

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

W
1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.186.4 Fields

Field Function

31-29

—

Reserved. To preserve software compatibility with other versions of SEC, 0 should be written to all
reserved bits (shaded or marked “RSV”)

28

ZAEI

ZUCA error Interrupt asserted.

Value Read Write

0 No Error Write No change

1 ZUCA Error Interrupt asserted Clear the ZUCA Error Interrupt

27

ZEEI

ZUCE error Interrupt asserted.

Value Read Write

0 No Error Write No change

1 ZUCE Error Interrupt asserted Clear the ZUCE Error Interrupt

26

S9EI

SNOW-f9 error Interrupt asserted.

Value Read Write

0 No Error Write No change

1 SNOW-f9 Error Interrupt asserted Clear the SNOW-f9 Error Interrupt

25 RNG error Interrupt asserted.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1053

Field Function

RNEI Value Read Write

0 No Error Write No change

1 RNG Error Interrupt asserted Clear the RNG Error Interrupt

24

CEI

CRCA error Interrupt asserted.

Value Read Write

0 No Error Write No change

1 CRC Error Interrupt asserted Clear the CRC Error Interrupt

23

MEI

MDHA (hashing) error Interrupt asserted.

Value Read Write

0 No Error Write No change

1 MDHA Error Interrupt asserted Clear the MDHA Error Interrupt

22

PEI

Public Key error Interrupt asserted.

Value Read Write

0 No Error Write No change

1 PKHA Error Interrupt asserted Clear the PKHA Error Interrupt

21

S8EI

SNOW-f8 error asserted.

Value Read Write

0 No Error Write No change

1 SNOW-f8 Error Interrupt asserted Clear the SNOW-f8 Error Interrupt

20

KEI

KFHA (Kasumi) error Interrupt asserted.

Value Read Write

0 No Error Write No change

1 KFHA Error Interrupt asserted Clear the KFHA Error Interrupt

19

—

Reserved

18

DEI

DESA error Interrupt asserted.

Value Read Write

0 No Error Write No change

Table continues on the next page...

CCB a Interrupt Control Register (C0ICTL - C2ICTL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1054 NXP Semiconductors

Field Function

Value Read Write

1 DESA Error Interrupt asserted Clear the DESA Error Interrupt

17

AEI

AESA error Interrupt asserted.

Value Read Write

0 No Error Write No change

1 AESA Error Interrupt asserted Clear the AESA Error Interrupt

16-13

—

Reserved

12

ZADI

ZUCA Done interrupt.

Value Read Write

0 No Error No change

1 ZUCA Done Interrupt asserted Clear the ZUCA Done Interrupt

11

ZEDI

ZUCE Done interrupt.

Value Read Write

0 No Error No change

1 ZUCE Error Interrupt asserted Clear the ZUCE Done Interrupt

10

S9DI

SNOW-f9 done interrupt.

Value Read Write

0 No Done Interrupt No change

1 SNOW-f9 Done Interrupt asserted Clear the SNOW-f9 Done Interrupt

9

RNDI

RNG done interrupt.

Value Read Write

0 No Done Interrupt No change

1 RNG Done Interrupt asserted Clear the RNG Done Interrupt

8

CDI

CRCA done interrupt.

Value Read Write

0 No Done Interrupt No change

1 CRCA Done Interrupt asserted Clear the CRCA Done Interrupt

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1055

Field Function

7

MDI

MDHA (hashing) done interrupt.

Value Read Write

0 No Done Interrupt No change

1 MDHA Done Interrupt asserted Clear the MDHA Done Interrupt

6

PDI

PKHA (Public Key) done interrupt.

Value Read Write

0 No Done Interrupt No change

1 PKHA Done Interrupt asserted Clear the PKHA Done Interrupt

5

S8DI

SNOW-f8 done interrupt.

Value Read Write

0 No Done Interrupt No change

1 SNOW-f8 Done Interrupt asserted Clear the SNOW-f8 Done Interrupt

Read: 0 No Done Interrupt Write: 0 No change

1 SNOW-f8 Done Interrupt asserted 1 Clear the SNOW-f8 Done Interrupt

4

KDI

KFHA (Kasumi) done interrupt.

Value Read Write

0 No Done Interrupt No change

1 KFHA Done Interrupt asserted Clear the KFHA Done Interrupt

3

—

Reserved

2

DDI

DESA done interrupt.

Value Read Write

0 No Done Interrupt No change

1 DESA Done Interrupt asserted Clear the DESA Done Interrupt

1

ADI

AESA done interrupt.

Value Read Write

0 No Done Interrupt No change

1 AESA Done Interrupt asserted Clear the AESA Done Interrupt

0 Reserved

CCB a Interrupt Control Register (C0ICTL - C2ICTL)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1056 NXP Semiconductors

Field Function

—

13.187 CCB a Clear Written Register (C0CWR - C2CWR)

13.187.1 Offset

For a = 0 to 2:

Register Offset Description

CaCWR 8_0044h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.187.2 Function

The Clear Written Register is used to clear many of the internal registers. This register is
automatically written, if necessary, by DECO between Shared Descriptors. All fields of
this register are self-clearing.

13.187.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

W C
IF

C
O

F

C
1R

S
T

C
2R

S
T

C
1D

C
2D

C
D

S

C
2K

C
2C

C
2D

S

C
2M

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

W

C
P

K
E

C
P

K
N

C
P

K
B

C
P

K
A

C
1K

C
1C

C
1I

C
V

C
1D

S

C
1M

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1057

13.187.4 Fields

Field Function

31

CIF

Clear Input FIFO (and NFIFO). Writing a 1 to this bit causes the Input Data FIFO and iNformation FIFO to
be cleared.

30

COF

Clear Output FIFO. Writing a 1 to this bit causes the Output FIFO to be cleared.

29

C1RST

Reset Class 1 CHA. Writing a 1 to this bit causes a reset to any Class 1 CHA that is currently selected by
this DECO.

28

C2RST

Reset Class 2 CHA. Writing a 1 to this bit causes a reset to any Class 2 CHA that is currently selected by
this DECO.

27

C1D

Clear Class 1 Done Interrupt. Writing a 1 to this bit clears the Class 1 done interrupt.

26

C2D

Clear Class 2 Done Interrupt. Writing a 1 to this bit clears the Class 2 done interrupt.

25

CDS

Clear Descriptor Sharing signal. Writing a 1 to this bit clears the shared_descriptor signal in DECO. This
signal tells DECO, and the protocols, whether this descriptor was shared from a previous run. If CDS is
set via LOAD IMM to the Clear Written register the fact that this descriptor was shared will be forgotten
and the descriptor will behave thereafter as if it was not shared. This is important in protocols where the
protocol expects a "decrypt" key but an "encrypt" key is provided. This may occur when using RJD to re-
key a flow. Note that writing 1 to this bit when the DECO/CCB is under direct software control will not
clear sharing, but that is unimportant because sharing is not possible when the DECO is under direct
software control.

24-23

—

Reserved

22

C2K

Clear the Class 2 Key Register. Writing a one to this bit causes the Class 2 Key and Key Size Registers
to be cleared.

21

C2C

Clear the Class 2 Context Register. Writing a one to this bit causes the Class 2 Context Register to be
cleared.

20-19

—

Reserved

18

C2DS

Clear the Class 2 Data Size Registers. Writing a one to this bit causes the Class 2 Data Size and ICV
Size Registers to be cleared.

17

—

Reserved

16

C2M

Clear the Class 2 Mode Register. Writing a one to this bit causes the Class 2 Mode Register to be
cleared.

15

CPKE

Clear the PKHA E Size Register. Writing a one to this bit causes the PKHA E Size Register to be cleared.

14

CPKN

Clear the PKHA N Size Register. Writing a one to this bit causes the PKHA N Size Register to be cleared.

13 Clear the PKHA B Size Register. Writing a one to this bit causes the PKHA B Size Register to be cleared.

Table continues on the next page...

CCB a Clear Written Register (C0CWR - C2CWR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1058 NXP Semiconductors

Field Function

CPKB

12

CPKA

Clear the PKHA A Size Register. Writing a one to this bit causes the PKHA A Size Register to be cleared.

11-7

—

Reserved

6

C1K

Clear the Class 1 Key Register. Writing a one to this bit causes the Class 1 Key and Key Size Registers
to be cleared.

5

C1C

Clear the Class 1 Context Register. Writing a one to this bit causes the Class 1 Context Register to be
cleared.

4

—

Reserved

3

C1ICV

Clear the Class 1 ICV Size Register. Writing a one to this bit causes the Class 1 ICV Size Register to be
cleared.

2

C1DS

Clear the Class 1 Data Size Register. Writing a one to this bit causes the Class 1 Data Size Register to
be cleared. This clears AAD Size as well.

1

—

Reserved

0

C1M

Clear the Class 1 Mode Register. Writing a one to this bit causes the Class 1 Mode Register to be
cleared.

13.188 CCB a Status and Error Register, most-significant half
(C0CSTA_MS - C2CSTA_MS)

13.188.1 Offset

For a = 0 to 2:

Register Offset Description

CaCSTA_MS 8_0048h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.188.2 Function

The CCB Status and Error Register shows the status of the CCB and its internal registers.
The fields of the CaCSTA are accessed as two 32-bit words.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1059

13.188.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CL2
Reserved

ERRID2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CL1
Reserved

ERRID1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.188.4 Fields

Field Function

31-28

CL2

Class 2 Algorithms. The Class 2 Algorithms bits indicate which algorithm is asserting an error.

Others reserved.

0100b - MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 and SHA-512/224, SHA-512/256
1001b - CRC
1010b - SNOW f9
1100b - ZUC Authentication

27-20

—

Reserved

19-16

ERRID2

Error ID 2. These bits indicate the type of error that was found while processing the Descriptor. The
Algorithm that is associated with the error can be found in the CL2 field

Others Reserved

0001b - Mode Error
0010b - Data Size Error
0011b - Key Size Error
0110b - Data Arrived out of Sequence Error
1010b - ICV Check Failed
1011b - Internal Hardware Failure
1110b - Invalid CHA combination was selected.
1111b - Invalid CHA Selected

15-12

CL1

Class 1 algorithms. The Class 1 algorithms field indicates which algorithm is asserting an error.

Others reserved

0001b - AES
0010b - DES
0101b - RNG
0110b - SNOW
0111b - Kasumi
1000b - Public Key
1011b - ZUC Encryption

Table continues on the next page...

CCB a Status and Error Register, most-significant half (C0CSTA_MS - C2CSTA_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1060 NXP Semiconductors

Field Function

11-4

—

Reserved

3-0

ERRID1

Error ID 1. These bits indicate the type of error that was found while processing the Descriptor. The
Algorithm that is associated with the error can be found in the CL1 field.

Others reserved.

0001b - Mode Error
0010b - Data Size Error, including PKHA N Memory Size Error
0011b - Key Size Error, including PKHA E Memory Size Error
0100b - PKHA A Memory Size Error
0101b - PKHA B Memory Size Error
0110b - Data Arrived out of Sequence Error
0111b - PKHA Divide by Zero Error
1000b - PKHA Modulus Even Error
1001b - DES Key Parity Error
1010b - ICV Check Failed
1011b - Internal Hardware Failure
1100b - CCM AAD Size Error (either 1. AAD flag in B0 =1 and no AAD type provided, 2. AAD flag
in B0 = 0 and AAD provided, or 3. AAD flag in B0 =1 and not enough AAD provided - expecting
more based on AAD size.)
1101b - Class 1 CHA is not reset
1110b - Invalid CHA combination was selected.
1111b - Invalid CHA Selected

13.189 CCB a Status and Error Register, least-significant half
(C0CSTA_LS - C2CSTA_LS)

13.189.1 Offset

For a = 0 to 2:

Register Offset Description

CaCSTA_LS 8_004Ch + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.189.2 Function

The CCB Status and Error Register shows the status of the CCB and its internal registers.
The fields of the CaCSTA are accessed as two 32-bit words.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1061

13.189.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

R
es

er
ve

d

P
IZ

G
C

D

P
R

M

R
es

er
ve

d

S
E

I P
E

I

R
es

er
ve

d

S
D

I P
D

I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

Z
A

B

Z
E

B S
9

B R
N

B

C
B

M
B

P B S
8

B K
B

R
es

er
ve

d

D
B

A
B

R
es

er
ve

d

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.189.4 Fields

Field Function

31

—

Reserved

30

PIZ

Public Key Operation is Zero. For Finite Field operations the result of a Public Key operation is zero. For
ECC operations, the result is Point at infinity.

29

GCD

GCD is One. The greatest common divisor of two numbers is one (that is, the two numbers are relatively
prime).

28

PRM

Public Key is Prime. The given number is probably prime (that is, it passes the Miller-Rabin primality test).

27-22

—

Reserved

21

SEI

Class 2 Error Interrupt. The Class 2 Error Interrupt has been asserted.

0b - No Error.
1b - Error Interrupt.

20

PEI

Class 1 Error Interrupt. The Class 1 Error Interrupt has been asserted.

0b - Not Error.
1b - Error Interrupt.

19-18

—

Reserved

17

SDI

Class 2 Done Interrupt. The Class 2 Done Interrupt has been asserted.

0b - Not Done.
1b - Done Interrupt.

16 Class 1 Done Interrupt. The Class 1 Done Interrupt has been asserted.

Table continues on the next page...

CCB a Status and Error Register, least-significant half (C0CSTA_LS - C2CSTA_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1062 NXP Semiconductors

Field Function

PDI 0b - Not Done.
1b - Done Interrupt.

15-13

—

Reserved

12

ZAB

ZUCA Block Busy. This bit indicates that the ZUCA is busy. The CHA can either be busy processing data
or resetting.

0b - ZUCA idle
1b - ZUCA busy.

11

ZEB

ZUCE Block Busy. This bit indicates that the ZUCE is busy. The CHA can either be busy processing data
or resetting.

0b - ZUCE idle
1b - ZUCE busy.

10

S9B

SNOW f9 Busy. This bit indicates that the SNOW f9 Accelerator is busy. The CHA can either be busy
processing data or resetting.

0b - SNOW f9 Idle
1b - SNOW f9 Busy.

9

RNB

RNG Block Busy. This bit indicates that the RNG block is busy. The CHA can either be busy processing
data or resetting.

0b - RNG Idle
1b - RNG Busy.

8

CB

CRC Block Busy. This bit indicates that the CRCA is busy. The CHA can either be busy processing data
or resetting.

0b - CRCA Idle
1b - CRCA Busy

7

MB

MDHA Busy. This bit indicates that the MDHA is busy. The CHA can either be busy processing data or
resetting.

0b - MDHA Idle
1b - MDHA Busy

6

PB

PKHA Busy. This bit indicates that the Public Key Hardware Accelerator is busy. The CHA can either be
busy processing data or resetting.

0b - PKHA Idle
1b - PKHA Busy.

5

S8B

SNOW f8. This bit indicates that the SNOW f8 Accelerator is busy. The CHA can either be busy
processing data or resetting.

0b - SNOW f8 Idle
1b - SNOW f8 Busy.

4

KB

KFHA Busy. This bit indicates that the Kasumi f8/f9 Hardware Accelerator is busy. The CHA can either be
busy processing data or resetting.

0b - KFHA Idle
1b - KFHA Busy

3

—

Reserved

2

DB

DESA Busy. This bit indicates that the DES Accelerator is busy. The CHA can either be busy processing
data or resetting.

0b - DESA Idle
1b - DESA Busy.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1063

Field Function

1

AB

AESA Busy. This bit indicates that the AES Accelerator is busy. The CHA can either be busy processing
data or resetting.

0b - AESA Idle
1b - AESA Busy.

0

—

Reserved

13.190 CCB a AAD Size Register (C0AADSZR - C2AADSZR)

13.190.1 Offset

For a = 0 to 2:

Register Offset Description

CaAADSZR 8_005Ch + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.190.2 Function

The AAD Size Register is used by AESA to determine how much of the last block of
AAD is valid. Like the Class 1 Data Size Register, writing to this register causes the
written value to be added to the previous value in the register. The register is
automatically written by FIFO LOAD commands.

13.190.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved AASZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CCB a AAD Size Register (C0AADSZR - C2AADSZR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1064 NXP Semiconductors

13.190.4 Fields

Field Function

31-4

—

Reserved

3-0

AASZ

AAD size in Bytes, mod 16.

13.191 Class 1 IV Size Register (C0C1IVSZR - C2C1IVSZR)

13.191.1 Offset

For a = 0 to 2:

Register Offset Description

CaC1IVSZR 8_0064h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.191.2 Function

The Class 1 IV Size Register tells the AES module how much of the last block of IV is
valid. Like the Class 1 Data Size Register, writing to this register causes the written value
to be added to the previous value in the register. The register is automatically written by
FIFO LOAD commands.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1065

13.191.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved IVSZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.191.4 Fields

Field Function

31-4

—

Reserved

3-0

IVSZ

IV size in bytes, mod 16.

13.192 PKHA A Size Register (C0PKASZR - C2PKASZR)

13.192.1 Offset

For a = 0 to 2:

Register Offset Description

CaPKASZR 8_0084h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

PKHA A Size Register (C0PKASZR - C2PKASZR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1066 NXP Semiconductors

13.192.2 Function

The PKHA A Size Register is used to indicate the size of the data that will be loaded into
or unloaded from the PKHA A Memory. The PKHA A Size Register must be written
before the data is written into or read from the PKHA A Memory. This will reserve the
PKHA for the current job. The PKHA A Size Register can be automatically written by
the MOVE, FIFO LOAD and FIFO STORE commands.

13.192.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKASZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.192.4 Fields

Field Function

31-10

—

Reserved

9-0

PKASZ

PKHA A Memory key size in bytes.

13.193 PKHA B Size Register (C0PKBSZR - C2PKBSZR)

13.193.1 Offset

For a = 0 to 2:

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1067

Register Offset Description

CaPKBSZR 8_008Ch + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.193.2 Function

The PKHA B Size Register is used to indicate the size of the data that will be loaded into
or unloaded from the PKHA B Memory. The PKHA B Size Register must be written
before the data is written into or read from the PKHA B Memory. This will reserve the
PKHA for the current job. The PKHA B Size Register can be automatically written by
the FIFO LOAD and FIFO STORE commands.

13.193.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKBSZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.193.4 Fields

Field Function

31-10

—

Reserved

9-0

PKBSZ

PKHA B Memory key size in bytes.

13.194 PKHA N Size Register (C0PKNSZR - C2PKNSZR)

PKHA N Size Register (C0PKNSZR - C2PKNSZR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1068 NXP Semiconductors

13.194.1 Offset

For a = 0 to 2:

Register Offset Description

CaPKNSZR 8_0094h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.194.2 Function

The PKHA N Size Register is used to indicate the size of the data that will be loaded into
or unloaded from the PKHA N Memory. The PKHA N Size Register must be written
before the data is written into or read from the PKHA N Memory. This will reserve the
PKHA for the current job. The PKHA N Size Register can be automatically written by
the FIFO LOAD and FIFO STORE commands.

13.194.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKNSZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.194.4 Fields

Field Function

31-10

—

Reserved

9-0

PKNSZ

PKHA N Memory key size in bytes.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1069

13.195 PKHA E Size Register (C0PKESZR - C2PKESZR)

13.195.1 Offset

For a = 0 to 2:

Register Offset Description

CaPKESZR 8_009Ch + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.195.2 Function

The PKHA E Size Register is used to indicate the size of the data that will be loaded into
or unloaded from the PKHA E Memory. The PKHA E Size Register must be written
before the data is written into or read from the PKHA E Memory. This will reserve the
PKHA for the current job. The PKHA E Size Register is automatically written by the
KEY Command.

13.195.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved PKESZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.195.4 Fields

Field Function

31-10 Reserved

Table continues on the next page...

PKHA E Size Register (C0PKESZR - C2PKESZR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1070 NXP Semiconductors

Field Function

—

9-0

PKESZ

PKHA E Memory key size in bytes.

13.196 CCB a Class 1 Context Register Word b (C0C1CTXR0
- C2C1CTXR15)

13.196.1 Offset

For a = 0 to 2; b = 0 to 15:

Register Offset Description

CaC1CTXRb 8_0100h + (a × 1_0000h) + (b × 4h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.196.2 Function

The Class 1 Context Register holds the context for the Class 1 CHAs. This register is 512
bits in length. Individual byte writes are supported when this register is accessed via
descriptor commands, but via the IP bus the Class 1 Context Register is accessible only
as full-word reads or writes to sixteen 32-bit registers. The MSB is located at offset
0100h with respect to the register page. This register is cleared automatically when a
Black Key is being encrypted or decrypted using AES-CCM.

Note that part of the Class 1 Context Register is also used as an "Extended Key Register"
when a key larger than 32 bytes is loaded into the Class 1 Key Register. As many 8-byte
chunks of the Class 1 Context Register as required are allocated to the Extended Key
Register, beginning with the most-significant byte of the register. The Extended Key
Register bytes cannot be overwritten and will return 0 when read. The remaining bytes
are still available for context data. Note that clearing the Class 1 Context Register will
also clear the Extended Key Register.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1071

Note that some commands must block until a previous load to the Class 1 Context
Register has completed. Loading the Class 1 Context Register, whether via the KEY
Command, LOAD Command or MOVE Command or as a consequence of its usage as
the Extended Key Register, sets an internal blocking flag until the Class 1 Context
Register load has completed.

The bit assignments of this register are dependent on the algorithm, and in some cases the
mode of that algorithm. See the appropriate section for the Context Register format used
for that algorithm:

• AES ECB: Section AES ECB mode use of the Context Register
• AES CBC, OFB and CFB128: Section AES CBC, OFB, and CFB128 modes use of

the Context Register
• AES CTR: Section AES CTR mode use of the Context Register
• AES XTS: Section AES XTS mode use of the Context Register
• AES XCBC-MAC, CMAC: Section AES XCBC-MAC and CMAC Modes use of the

Context Register
• AES CCM: Section AES CCM mode use of the Context Register
• AES GCM: Section AES GCM mode use of the Mode Register
• AES Optimization modes: AES optimization modes use of the Context Register
• DES: Section DESA Context Register
• Kasumi f8/f9: Section KFHA use of the Context Register
• Random Numbers: Section RNG use of the Context Register
• SNOW 3G f8: Section SNOW 3G f8 use of the Context Register
• SNOW 3G f9: Section SNOW 3G f9 use of the Context Register
• Triple DES: Section DESA Context Register
• ZUC Authentication: Section ZUCA use of the Context Register
• ZUC Encryption: Section ZUCE use of the Context Register

13.196.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C1CTX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C1CTX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CCB a Class 1 Context Register Word b (C0C1CTXR0 - C2C1CTXR15)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1072 NXP Semiconductors

13.196.4 Fields

Field Function

31-0

C1CTX

Class 1 Context.

13.197 CCB a Class 1 Key Registers Word b (C0C1KR0 -
C2C1KR7)

13.197.1 Offset

For a = 0 to 2; b = 0 to 7:

Register Offset Description

CaC1KRb 8_0200h + (a × 1_0000h) + (b × 4h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.197.2 Function

The Class 1 Key Register normally holds the left-aligned key for the Class 1 CHAs. The
MSB is in offset 200h. The Class 1 Key Register is 256 bits in length. Individual byte
writes are supported when this register is accessed via descriptor commands, but via the
IP bus the Class 1 Key Register is accessible only as full-word reads or writes to eight
32-bit registers. Although the Class 1 Key Register is only 32 bytes long, via the KEY
command it is possible to load a key larger than 32 bytes. In this case part of the Class 1
Context Register is used as an "Extended Key Register". The first 32 bytes are loaded
into the Class 1 Key Register, then, starting with the most-significant end, as many 8-byte
chunks of the Class 1 Context Register as required are allocated to the Extended Key
Register and are used to hold the remaining key bytes. The Extended Key Register bytes
cannot be overwritten and will return 0 when read. The remaining bytes are still available
for context data. Clearing the Class 1 Key Register will also clear the Extended Key
Register bytes in the Class 1 Context Register. The other bytes in the Class 1 Context
Register will not be cleared. Note that clearing the Class 1 Context Register will not clear
the Extended Key Register bytes.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1073

The Class 1 Key Register can be written via a MOVE Command, a MATH Command, a
LOAD Command or a KEY Command. Before the value in the Class 1 Key Register can
be used in a cryptographic operation, the size of the key must be written into the Class 1
Key Size Register. Once the Class 1 Key Size Register has been written, the Class 1 Key
Register cannot be written again until the Class 1 Key Size Register has been cleared.
Writing the Class 1 Key Register via a KEY Command automatically writes the Class 1
Key Size Register, but if the Class 1 Key Register is written using a MOVE, MATH or
LOAD Command the Class 1 Key Size Register must be written via a separate command
after the Class 1 Key Register has been written. But until the Class 1 Key Size Register
has been written the Class 1 Key Register remains writable via STORE/SEQ STORE,
MATH or MOVE commands and readable via LOAD/SEQ LOAD, MATH or MOVE
commands. If the Class 1 Key Size Register and the Class 1 Key Register have been
cleared via the Clear Written Register, the Class 1 Key Register becomes writable and
readable again. This allows the Class 1 Key Register to be used for temporary storage if it
is not currently needed to hold a cryptographic key. Even when the Class 1 Key Register
holds a key (i.e. the Class 1 Key Size Register has been written) it may still be possible to
store the key in memory in encrypted form. The FIFO STORE Command can be used to
store an encrypted copy of this key (i.e. a Black Key), unless storing the key has been
prohibited via the NWB bit in the KEY Command. The encrypted key can later be loaded
into the Class 1 Key Register via the KEY Command by setting the ENC bit to indicate
that this is a Black (i.e. encrypted) Key. The Black Key will automatically be decrypted
before it is loaded into the Class 1 Key Register. A Black Key can be loaded as long as
the Key Encryption Key (KEK) has not been changed (as a consequence of a security
violation or a POR). Note that the Class 1 Key register is cleared when any key
(including Class 2 Keys) is encrypted or decrypted, so if a Black Key is to be loaded into
or stored from the Class 2 Key Register, that must be done prior to loading a key into the
Class 1 Key Register. Similarly, if a key is to be stored from the Class 1 Key Register as
a Black Key and also used in a cryptographic operation, the cryptographic operation
should be performed first, or the key will have to be loaded a second time.

13.197.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C1KEY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C1KEY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CCB a Class 1 Key Registers Word b (C0C1KR0 - C2C1KR7)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1074 NXP Semiconductors

13.197.4 Fields

Field Function

31-0

C1KEY

Class 1 Key.

13.198 CCB a Class 2 Mode Register (C0C2MR - C2C2MR)

13.198.1 Offset

For a = 0 to 2:

Register Offset Description

CaC2MR 8_0404h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.198.2 Function

The Class 2 Mode Register is used to tell the Class 2 CHA which operation is being
requested. The interpretation of this register is unique for each CHA. The Class 2 Mode
Register is automatically written by the OPERATION Command. This register is
automatically cleared when the signature over a Trusted Descriptor is checked or a
Trusted Descriptor is re-signed.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1075

13.198.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved ALG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved AAI AS ICV AP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.198.4 Fields

Field Function

31-24

—

Reserved. Must be 0.

23-16

ALG

Algorithm. This field specifies which algorithm has been requested for an OPERATION command.

00010000b - AES, when used as a Class 2 CHA
01000000b - MD5
01000001b - SHA-1
01000010b - SHA-224
01000011b - SHA-256
01000100b - SHA-384
01000101b - SHA-512
01000110b - SHA-512/224
01000111b - SHA-512/256
10010000b - CRC
10100000b - SNOW 3G f9
11000000b - ZUC Authentication

15-13

—

Reserved. Must be 0.

12-4

AAI

Additional Algorithm information. This field contains additional mode information that is associated with
the algorithm that is being executed. A detailed list of additional modes can be found below.

Value Description Valid with ALG

001h IEEE 802 CRC

002h IETF 3385 CRC

004h CUST_POLY CRC

010h DIS CRC

020h DOS CRC

040h DOC CRC

Table continues on the next page...

CCB a Class 2 Mode Register (C0C2MR - C2C2MR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1076 NXP Semiconductors

Field Function

Value Description Valid with ALG

001h HMAC MD5, SHA-*

002h SMAC MD5, SHA-1

004h IPAD OPAD Generation MD5, SHA-*

0C8h f9 SNOW 3G

0C8h Authentication ZUC

060h CMAC AES

070h XCBC-MAC AES

Others Reserved

3-2

AS

Algorithm State. This field defines the state of the algorithm that is being executed. Not every algorithm
uses this field. Check the individual algorithm sections to see if this field is used.

00b - Update.
01b - Initialize.
10b - Finalize.
11b - Initialize/Finalize.

1

ICV

ICV Checking. This bit selects whether the current algorithm should compare the known ICV versus the
calculated ICV. This bit will be ignored by algorithms that do not support ICV checking.

0

AP

Authenticate / Protect.

0b - Authenticate
1b - Protect.

13.199 CCB a Class 2 Key Size Register (C0C2KSR - C2C2
KSR)

13.199.1 Offset

For a = 0 to 2:

Register Offset Description

CaC2KSR 8_040Ch + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1077

13.199.2 Function

The Class 2 Key Size Register is used to tell the Class 2 CHA the size of the key that was
loaded into the Class 2 Key Register. The Class 2 Key Size Register must be written after
the key is written into the Class 2 Key Register. Writing to the Class 2 Key Size Register
will prevent the user from modifying the Class 2 Key Register. The Class 2 Key Size
Register is automatically written by the Key Command. This register is cleared when
Trusted Descriptors are checked or re-signed.

13.199.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved C2KS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.199.4 Fields

Field Function

31-8

—

Reserved

7-0

C2KS

Class 2 key size in bytes.

13.200 CCB a Class 2 Data Size Register (C0C2DSR - C2C2
DSR)

13.200.1 Offset

For a = 0 to 2:

CCB a Class 2 Data Size Register (C0C2DSR - C2C2DSR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1078 NXP Semiconductors

Register Offset Description

CaC2DSR 8_0410h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.200.2 Function

The Class 2 Data Size Register is used to tell the Class 2 CHA the amount of data that
will be loaded into the Input Data FIFO. For bit-oriented operations, the value in the
NUMBITS field is appended to the C2CY and C2DS fields to form a data size that is
measured in bits. Note that writing to the C2DS field in this register causes the written
value to be added to the previous value in that field. That is, if the C2DS field currently
has the value 14, writing 2 to the least-significant half of the Class 2 Data Size register
(i.e. the C2DS field) will result in a value of 16 in the C2DS field. Although there is a
C2CY field to hold the carry from this addition, care must be taken to avoid overflowing
the 33-bit value held in the concatenation of the C2CY and C2DS fields. Any such
overflow will be lost. Note that some CHAs decrement this register, so reading the
register may return a value less than sum of the values that were written into it. FIFO
LOAD commands can automatically load this register when automatic iNformation FIFO
entries are enabled. This register is reset when checking the signature over, or re-signing,
Trusted Descriptors. Since the Class 2 Data Size Register holds more than 32 bits, it is
accessed from the IP bus as two 32-bit registers.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1079

13.200.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R NUMBITS
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R

R
es

er
ve

d

C
2C

Y

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C2DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C2DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.200.4 Fields

Field Function

63-61

NUMBITS

Class 2 Data Size Number of bits. For bit-oriented operations, this value is appended to the C2CY and
C2DS fields to form a data size that is measured in bits. That is, the number of bits of data is given by the
value (C2CY || C2DS || NUMBITS). Note that if NUMBITS is nonzero, C2DS +1 bytes will be written to
the Input Data FIFO, but only NUMBITS bits of the last byte will be consumed by the bit-oriented
operation. Note that the NUMBITS field is not additive, so any write to the field will overwrite the previous
value.

60-33

—

Reserved

32

C2CY

Class 2 Data Size Carry. Although this field is not writable, it will be set if a write to C2DS causes a carry
out of the msb of C2DS.

31-0

C2DS

Class 2 Data Size in Bytes. This is the number of whole bytes of data that will be consumed by the Class
2 CHA. Note that one additional byte will be written into the Input Data FIFO if the NUMBITS field is
nonzero.

CCB a Class 2 ICV Size Register (C0C2ICVSZR - C2C2ICVSZR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1080 NXP Semiconductors

13.201 CCB a Class 2 ICV Size Register (C0C2ICVSZR - C2C2
ICVSZR)

13.201.1 Offset

For a = 0 to 2:

Register Offset Description

CaC2ICVSZR 8_041Ch + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.201.2 Function

The Class 2 ICV Size Register indicates how much of the last block of ICV is valid when
performing MDHA integrity check operations (e.g. SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, SHA-512/256 and MD5). For AES Class 2
operations the Class 2 ICV Size Register indicates the size of the ICV. Writing to this
register causes the written value to be added to the previous value in the register. This
register is automatically written by FIFO LOAD commands. This register is cleared when
checking the signature over, or re-signing, Trusted Descriptors.

13.201.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ICVSZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1081

13.201.4 Fields

Field Function

31-4

—

Reserved

3-0

ICVSZ

Class 2 ICV size (mod 8) in bytes. For MDHA, writing 0 to this field will be interpreted as an ICV size of 8
bytes. For AESA, writing 0, 1, 2 or 3 to this field will be interpreted as an ICV size of 16 bytes.

13.202 CCB a Class 2 Context Register Word b (C0C2CTXR0
- C2C2CTXR17)

13.202.1 Offset

For a = 0 to 2; b = 0 to 17:

Register Offset Description

CaC2CTXRb 8_0500h + (a × 1_0000h) + (b × 4h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.202.2 Function

The Class 2 Context Register holds the context for the Class 2 CHAs. This register is 576
bits in length. Individual byte writes are supported when this register is accessed via
descriptor commands, but via the IP bus the Class 2 Context Register is accessible only
as full-word reads or writes to eighteen 32-bit registers. The MSB is located at offset
500h with respect to the register page. This register is cleared when checking the
signature over, or re-signing, Trusted Descriptors.

The bit assignments for this register are dependent on the algorithm. See the appropriate
section for the Context Register format used by that algorithm.

• CRC: Section CRCA Context Register
• Kasumi f9: The Kasumi f9 authentication algorithm is implemented in the same

CHA as the Kasumi f8 encryption algorithm. This is considered a Class 1 CHA. See
Section KFHA use of the Context Register

• MD5: Section MDHA use of the Context Register

CCB a Class 2 Context Register Word b (C0C2CTXR0 - C2C2CTXR17)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1082 NXP Semiconductors

• SHA-*: Section MDHA use of the Context Register
• SNOW 3G f9: Section SNOW 3G f9 use of the Context Register
• ZUC Authentication: Section ZUCA use of the Context Register

13.202.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C2CTXR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C2CTXR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.202.4 Fields

Field Function

31-0

C2CTXR

Class 2 Context.

13.203 CCB a Class 2 Key Register Word b (C0C2KEYR0 -
C2C2KEYR31)

13.203.1 Offset

For a = 0 to 2; b = 0 to 31:

Register Offset Description

CaC2KEYRb 8_0600h + (a × 1_0000h) + (b × 4h) Accessible only when RQDa and DENa are asserted
in DECORR.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1083

13.203.2 Function

The Class 2 Key Register holds the key for the Class 2 CHAs. For non-split keys, the key
is left-aligned in the C2KEYR. Split keys are the IPAD and OPAD for certain MDHA
operations. Note that the size of a split key is the sum of the sizes of the IPAD and the
OPAD. The IPAD is left-aligned within the C2KEYR, and the OPAD is left-aligned
starting at the mid-point of the C2KEYR. This register is 1024 bits in length. Individual
byte writes are supported when this register is accessed via descriptor commands, but via
the IP bus the Class 2 Key Register is accessible only as full-word reads or writes to
thirty-two 32-bit registers. The MSB is located at offset 600h with respect to the start of
the register page. This register is automatically written by KEY commands. The
recommended practice is to write the Class 2 Key Register prior to writing any of the
other Class 2 registers. This register is cleared when checking the signature over, or re-
signing, Trusted Descriptors.

13.203.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
C2KEY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
C2KEY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.203.4 Fields

Field Function

31-0

C2KEY

Class 2 Key.

13.204 CCB a FIFO Status (C0FIFOSTA - C2FIFOSTA)

CCB a FIFO Status (C0FIFOSTA - C2FIFOSTA)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1084 NXP Semiconductors

13.204.1 Offset

For a = 0 to 2:

Register Offset Description

CaFIFOSTA 8_07C0h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.204.2 Function

The CCB FIFO Status Register is used during debug to facilitate reading the CCB FIFOs.
Software must keep track of the data written to the Input Data FIFO (CCB a Input Data
FIFO (C0IFIFO - C2IFIFO)), but the data within the Output Data FIFO (CCB a Output
Data FIFO (C0OFIFO - C2OFIFO)) can be read out. Both the Class 1 Alignment Block
and the Class 2 Alignment Block (see Alignment blocks) draw data from the Input Data
FIFO, and both the DMA and the DECO Alignment Block draw data from the Output
Data FIFO. Reading the CaFIFOSTA register returns the current heads of the Alignment
Block and DMA queues within these two FIFOs. Note that the values in this register will
change as descriptors are executed, so the register should be read when the DECO is not
actively executing a descriptor.

13.204.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R C1IQHEAD C2IQHEAD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DMAOQHEAD DECOOQHEAD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1085

13.204.4 Fields

Field Function

31-24

C1IQHEAD

This is the current head of the Class 1 Alignment Block queue located within the Input Data FIFO. The
value in this field points to the next data that will be pulled from the Input Data FIFO by the Class 1
Alignment Block.

23-16

C2IQHEAD

This is the current head of the Class 2 Alignment Block queue located within the Input Data FIFO. The
value in this field points to the next data that will be pulled from the Input Data FIFO by the Class 2
Alignment Block.

15-8

DMAOQHEAD

This is the current head of the DMA queue located within the Output Data FIFO. The value in this field
points to the next data that will be pulled from the Output Data FIFO by the DMA controller.

7-0

DECOOQHEAD

This is the current head of the DECO Alignment Block queue located within the Output Data FIFO. The
value in this field points to the next data that will be pulled from the Output Data FIFO by the DECO
Alignment Block. This is used during "out snooping" operations, i.e. when data is passed first through a
Class 1 CHA and the results pushed into the OFIFO, and from there the results are sent through a Class
2 CHA.

13.205 CCB a iNformation FIFO When STYPE Is Not 10 (C0NF
IFO - C2NFIFO)

13.205.1 Offset

For a = 0 to 2:

Register Offset Description

CaNFIFO 8_07D0h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.205.2 Function

The iNformation FIFO (Input Information FIFO) is used to control the movement of data
from any of four sources to any of the three alignment blocks (see Alignment blocks).
The four sources are the Input Data FIFO, the Output Data FIFO, the CCB Padding
Block and the Auxiliary Data FIFO. Note that the only way to get data out of any of these
sources other than via the Output Data FIFO is to use an iNformation FIFO entry.

CCB a iNformation FIFO When STYPE Is Not 10 (C0NFIFO - C2NFIFO)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1086 NXP Semiconductors

The depth of the iNformation FIFO is four entries. During normal operation, SEC will
not cause the iNformation FIFO to overflow. Care must be taken to avoid overflowing
the iNformation FIFO when writing to it directly as this can cause SEC to hang. This
register can be automatically written by the FIFO LOAD and MOVE commands. (If data
is written to the Input Data FIFO with the LOAD Command, or some other way that does
not automatically generate an info FIFO entry, the user is responsible for writing to the
iNformation FIFO. See LOAD Command destination codes 78h and 7Ah in LOAD
commands.)

A single address is used to write to the iNformation FIFO for any particular DECO. The
format of non-padding iNformation FIFO entries (STYPE ≠ 10) is shown below. The
format of padding iNformation FIFO entries (STYPE = 10) is shown in CCB a
iNformation FIFO When STYPE Is 10 (C0NFIFO_2 - C2NFIFO_2).

13.205.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W DEST LC2 LC1 FC2 FC1 STYPE DTYPE BND PTYPE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

W O
C

A
S

T

D
L

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.205.4 Fields

Field Function

31-30

DEST

Destination. This specifies if the current entry defines data for the Class 1 CHA and/or Class 2 CHA. It
can also be used to remove data from the FIFOs that are not needed.

00b - DECO Alignment Block. If DTYPE is Eh, data sent to the DECO Alignment Block is dropped.
This is used to skip over input data. An error is generated if a DTYPE other than Eh (drop) or Fh
(message) is used with the DECO Alignment Block destination.
01b - Class 1.
10b - Class 2.
11b - Both Class 1 and Class 2.

29

LC2

Last Class 2. This bit should be set when the data defined in the current iNformation FIFO entry is the last
data going to the CHA or the last data prior to receiving ICV data going to the Class 2 CHA, as well as
following the ICV data. When LC2 =1 the alignment block will be emptied as well.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1087

Field Function

28

LC1

Last Class 1.This bit should be set when the data defined in the current iNformation FIFO entry is the last
data for the Class 1 CHA. When LC1 =1 a flush will be done and the alignment block will be emptied as
well.

27

FC2

Flush Class 2. Same as LC2 except that data size ready for Class 2 is not asserted.

This bit can be set only via a LOAD Command and is only to be used when a MOVE from the Class 2
Alignment Block is to be done and the MOVE Command was executed when automatic information FIFO
entries were disabled. In such cases, setting the LC2 bit could result in unpredictable behavior and the
FC2 bit should be used.

26

FC1

Flush Class 1. Flush the remainder of the data out of the Class 1 alignment block.

25-24

STYPE

Source Type. This field defines the source of the data for the Alignment Block(s). (This is the register
format description when STYPE ≠ 10. The register uses a different format when STYPE = 10. See CCB a
iNformation FIFO When STYPE Is 10 (C0NFIFO_2 - C2NFIFO_2).) For STYPE ≠ 10, there are two
interpretations of the STYPE field, depending on the setting of the AST bit:

AST=0 AST=1

STYPE = 00 : Input Data FIFO STYPE = 00 : Auxiliary Data FIFO -1

STYPE = 01 : Output Data FIFO

STYPE = 10 : Padding Block. The register format is different for this STYPE. See CCB a iNformation
FIFO When STYPE Is 10 (C0NFIFO_2 - C2NFIFO_2).

STYPE = 11 : Out snooping -1 STYPE = 11 : Outsnooping from Auxiliary Data
FIFO -1

1. The Auxiliary Data FIFO can be used to supply auxiliary data to the Alignment Blocks, should this be
required for particular algorithms or protocols. Data is written into the Auxiliary Data FIFO using either
a LOAD IMM command with DST=78h or a MOVE command with DST=Fh. Note that the entry to
consume the data from the Auxiliary Data FIFO should be created in the NFIFO prior to executing a
LOAD IMM or a MOVE (with WC=1) that writes to the Auxiliary Data FIFO, else DECO may hang.

2. When Out snooping is selected, the Class 1 Alignment Block receives data from the Input Data FIFO
and the Class 2 Alignment Block receives data from the Output Data FIFO.

3. This case is similar to the case of STYPE=11 and AST=0. The difference is that the Class 1 CHA gets
its data from the Auxiliary Data FIFO instead of from the Input Data FIFO. The Class 2 Alignment
Block still receives its data from the output FIFO.

23-20

DTYPE

Data Type. This field defines the type of data that is going through the Input Data FIFO. This is used by
the CHA to determine what type of processing needs to be done on the data. As shown below, the
DTYPE is interpreted differently depending on the CHA that is consuming the data.

DTYPE Data type for PKHA Data type for other CHAs

0h PKHA A0 Reserved

1h PKHA A1 AAD (AESA AES GCM)

2h PKHA A2 IV for (AESA AES GCM)

3h PKHA A3 SAD (AESA)

4h PKHA B0 Reserved

5h PKHA B1 Reserved

6h PKHA B2 Reserved

7h PKHA B3 Reserved

8h PKHA N Reserved

Table continues on the next page...

CCB a iNformation FIFO When STYPE Is Not 10 (C0NFIFO - C2NFIFO)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1088 NXP Semiconductors

Field Function

9h PKHA E Reserved

Ah Reserved ICV

Ch PKHA A Reserved

Dh PKHA B Reserved

Eh Reserved DECO Ignore (i.e. Skip)

Fh Reserved Message Data

Other values are reserved.

1. The Auxiliary Data FIFO can be used to supply auxiliary data to the Alignment Blocks, should this be
required for particular algorithms or protocols. Data is written into the Auxiliary Data FIFO using either
a LOAD IMM command with DST=78h or a MOVE command with DST=Fh. Note that the entry to
consume the data from the Auxiliary Data FIFO should be created in the NFIFO prior to executing a
LOAD IMM or a MOVE (with WC=1) that writes to the Auxiliary Data FIFO, else DECO may hang.

2. When Out snooping is selected, the Class 1 Alignment Block receives data from the Input Data FIFO
and the Class 2 Alignment Block receives data from the Output Data FIFO.

3. This case is similar to the case of STYPE=11 and AST=0. The difference is that the Class 1 CHA gets
its data from the Auxiliary Data FIFO instead of from the Input Data FIFO. The Class 2 Alignment
Block still receives its data from the output FIFO.

19

BND

Boundary padding. Boundary padding is selected if this bit is set. The boundary is always 16 bytes when
STYPE ≠ 10 (Padding Block).

18-16

PTYPE

Pad Type. This field is ignored if STYPE ≠ 10 (Padding Block).

000b - All Zero.
001b - Random with nonzero bytes.
010b - Incremented (Starting with 01h).
011b - Random.
100b - All Zero with last byte containing the number of 0 bytes.
101b - Random with nonzero bytes with last byte 0.
110b - N bytes of padding all containing the number N -1.
111b - Random with nonzero bytes with last byte N.

15

OC

OFIFO Continuation - This bit causes the final word to not be popped from the Output Data FIFO.

14

AST

Additional Source Types. This bit selects between two meanings of the STYPE field. See the description
of the STYPE field.

13-12

—

Reserved

11-0

DL

Data Length. The number of bytes that will be passed to a CHA. A maximum of 12 bits is supported. This
means for larger chunks of data multiple entries in the iNformation FIFO will be required.

1. The Auxiliary Data FIFO can be used to supply auxiliary data to the Alignment Blocks, should this be required for particular
algorithms or protocols. Data is written into the Auxiliary Data FIFO using either a LOAD IMM command with DST=78h or
a MOVE command with DST=Fh. Note that the entry to consume the data from the Auxiliary Data FIFO should be created
in the NFIFO prior to executing a LOAD IMM or a MOVE (with WC=1) that writes to the Auxiliary Data FIFO, else DECO
may hang.

2. When Out snooping is selected, the Class 1 Alignment Block receives data from the Input Data FIFO and the Class 2
Alignment Block receives data from the Output Data FIFO.

3. This case is similar to the case of STYPE=11 and AST=0. The difference is that the Class 1 CHA gets its data from the
Auxiliary Data FIFO instead of from the Input Data FIFO. The Class 2 Alignment Block still receives its data from the output
FIFO.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1089

13.206 CCB a iNformation FIFO When STYPE Is 10 (C0NF
IFO_2 - C2NFIFO_2)

13.206.1 Offset

For a = 0 to 2:

Register Offset Description

CaNFIFO_2 8_07D0h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.206.2 Function

The format of padding iNformation FIFO entries (STYPE = 10) is shown below. The
format of non-padding iNformation FIFO entries (STYPE <> 10) is shown in CCB a
iNformation FIFO When STYPE Is Not 10 (C0NFIFO - C2NFIFO).

13.206.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W DEST LC2 LC1 FC2 FC1 STYPE DTYPE BND PTYPE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved Reserved

W PR BM PS PL

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.206.4 Fields

Field Function

31-30

DEST

Destination. This specifies if the current entry defines data for the Class 1 CHA and/or Class 2 CHA. It
can also be used to remove data from the FIFOs that are not needed.

Table continues on the next page...

CCB a iNformation FIFO When STYPE Is 10 (C0NFIFO_2 - C2NFIFO_2)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1090 NXP Semiconductors

Field Function

00b - DECO Alignment Block. If DTYPE is Eh, data sent to the DECO Alignment Block is dropped.
This is used to skip over input data. An error is generated if a DTYPE other than Eh (drop) or Fh
(message) is used with the DECO Alignment Block destination.
01b - Class 1.
10b - Class 2.
11b - Both Class 1 and Class 2.

29

LC2

Last Class 2. This bit should be set when the data defined in the current iNformation FIFO entry is the last
data going to the CHA or the last data prior to receiving ICV data going to the Class 2 CHA, as well as
following the ICV data. When LC2 =1 the alignment block will be emptied as well.

28

LC1

Last Class 1. This bit should be set when the data defined in the current iNformation FIFO entry is the last
data for the Class 1 CHA. When LC1 =1 a flush will be done and the alignment block will be emptied as
well.

27

FC2

Flush Class 2. Same as LC2 except that data size ready for Class 2 is not asserted.

This bit can only be set via a LOAD Command and is only to be used when a MOVE from the Class 2
Alignment Block is to be done and the MOVE Command was executed when automatic information FIFO
entries were disabled. In such cases, setting the LC2 bit could result in unpredictable behavior and the
FC2 bit should be used.

26

FC1

Flush Class 1. Flush the remainder of the data out of the Class 1 alignment block.

25-24

STYPE

Source Type. This field defines the source of the data for the Alignment Block(s). This is the register
format description when STYPE = 10 (Padding Block). For STYPE ≠ 10, see CCB a iNformation FIFO
When STYPE Is Not 10 (C0NFIFO - C2NFIFO).

* When Out snooping is selected, the Class 1 Alignment Block receives data from the Input Data FIFO
and the Class 2 Alignment Block receives data from the Output Data FIFO.

** The Auxiliary Data FIFO can be used to supply auxiliary data to the Alignment Blocks, should this be
required for particular algorithms or protocols. Data is written into the Auxiliary Data FIFO using either a
LOAD IMM command with DST=78h or a MOVE command with DST=Fh. Note that the entry to consume
the data from the Auxiliary Data FIFO must be created in the NFIFO prior to executing a LOAD IMM or a
MOVE (with WC=1) that writes to the Auxiliary Data FIFO, else DECO will hang.

23-20

DTYPE

Data Type. This field defines the type of data that is going through the Input Data FIFO. This is used by
the CHA to determine what type of processing needs to be done on the data. As shown below, the
DTYPE is interpreted differently depending on the CHA that is consuming the data.

DTYPE Data type for
PKHA

Data type for other CHAs

0h PKHA A0 Reserved

1h PKHA A1 AAD (AESA AES GCM)

2h PKHA A2 IV for (AESA AES GCM)

3h PKHA A3 SAD (AESA)

4h PKHA B0 Reserved

5h PKHA B1 Reserved

6h PKHA B2 Reserved

7h PKHA B3 Reserved

8h PKHA N Reserved

9h PKHA E Reserved

Ah Reserved ICV

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1091

Field Function

Ch PKHA A Reserved

Dh PKHA B Reserved

Eh Reserved DECO Ignore (i.e. Skip)

Fh Reserved Message Data

Other values are reserved.

19

BND

Boundary padding. Boundary padding is selected if this bit is set. The boundary is always 16 bytes when
STYPE ≠ Padding Block.

18-16

PTYPE

Pad Type. This field defines the type of padding that should be performed when the STYPE = Padding
Block. This field is ignored if BND = 0 or STYPE ≠ Padding Block.

000b - All Zero.
001b - Random with nonzero bytes.
010b - Incremented (Starting with 01h).
011b - Random.
100b - All Zero with last byte containing the number of 0 bytes.
101b - Random with nonzero bytes with last byte 0.
110b - N bytes of padding all containing the number N -1.
111b - Random with nonzero bytes with last byte N.

15

PR

Prediction Resistance - If PTYPE specifies random data, setting PR=1 causes the RNG to supply random
data with prediction resistance (i.e. reseeds the PRNG from the TRNG).

14-12

—

Reserved. Must be 0.

11

BM

Boundary Minus 1. When this bit is set with boundary padding, then boundary padding to a 4, 8 or 16-
byte boundary minus 1 byte will be executed. For example, if a 16-byte boundary is selected with BM=1,
padding will be done such that only 15 of the 16 bytes are used, leaving the 16th byte available for the
user to fill.

10

PS

Pad Snoop. When this bit is set then the Class 2 CHA will snoop the padding data from the Output Data
FIFO rather than getting it from the padding block. When snooping, the Class 1 Alignment Block receives
data from the Input FIFO and the Class 2 Alignment Block receives data from the Output Data FIFO.

9-7

—

Reserved. Must be 0.

6-0

PL

Pad Length. The number of bytes needed to pad the current data. If boundary padding is selected then
this should be set to 4, 8 or 16 bytes. PL includes the length byte or zero byte for all zero last N, random
last N and random last 0 padding types.

13.207 CCB a Input Data FIFO (C0IFIFO - C2IFIFO)

13.207.1 Offset

For a = 0 to 2:

CCB a Input Data FIFO (C0IFIFO - C2IFIFO)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1092 NXP Semiconductors

Register Offset Description

CaIFIFO 8_07E0h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.207.2 Function

There is one copy of this FIFO per DECO. Data to be processed by the various CHAs is
first pushed into the Input Data FIFO for the appropriate DECO. Note that although the
Input Data FIFO is 64-bits wide, a single 32-bit wide location is used to write data to the
IFIFO. All data written to this location via the IP bus should be in big endian format.
Like the other DECO/CCB registers, the Input Data FIFO supports byte enables, allowing
one to four bytes to be written to the IFIFO from the IP bus, or one to eight bytes via a
descriptor. Although data is normally pushed in multiples of 8 bits, there is a special
mechanism that allows a 4-bit value to be pushed into the Input Data FIFO (see “Input
Data FIFO Nibble Shift Register”, value 76h, in LOAD commands). The IFIFO is sixteen
entries deep, and each entry is eight bytes. During normal operation SEC will never
overflow the Input Data FIFO. Care must be used to not overflow the Input Data FIFO
when writing to it directly as results will be unpredictable. FIFO LOAD, FIFO STORE,
LOAD, KEY, and MOVE commands can all automatically write to this register.

13.207.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W IFIFO

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W IFIFO

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.207.4 Fields

Field Function

31-0

IFIFO

Input Data FIFO.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1093

13.208 CCB a Output Data FIFO (C0OFIFO - C2OFIFO)

13.208.1 Offset

For a = 0 to 2:

Register Offset Description

CaOFIFO 8_07F0h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.208.2 Function

There is one copy of this FIFO per DECO. Data that is output from the various CHAs is
pushed into the Output Data FIFO for the appropriate DECO. The OFIFO is sixteen
entries deep, and each entry is eight bytes. During normal operation, SEC will never
overflow the Output Data FIFO. KEY, MOVE, MATH, and FIFO STORE commands
will all read from the Output Data FIFO. Normally data is pushed in multiples of 8 bits,
but there is a special mechanism that allows a 4-bit value to be pushed into the Output
Data FIFO (see Output Data FIFO Nibble Shift Register, value 77h, in LOAD
commands).

There are several commands that can result in data being pushed into the Output Data
FIFO:

• The OPERATION Command can cause a Class 1 CHA to put data into the Output
Data FIFO.

• The KEY Command uses the Output Data FIFO when it decrypts keys. Since the
Output Data FIFO must be empty and all transactions must have completed before
the KEY Command will start, there will be no collision between a CHA push and an
ODFNSR push to the Output Data FIFO.

• The (SEQ) FIFO STORE Command, when encrypting keys, also pushes data into the
Output Data FIFO.

• A LOAD IMMEDIATE can push data directly into the Output Data FIFO. DECO
will automatically stall a LOAD IMMEDIATE if necessary to prevent a collision
with a push from the ODFNSR.

CCB a Output Data FIFO (C0OFIFO - C2OFIFO)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1094 NXP Semiconductors

• A LOAD IMMEDIATE to the CHA Control Register can be used to "unload" or
various PKHA registers into the Output Data FIFO.

• The (SEQ) FIFO STORE Command, when generating random data, also pushes data
into the Output Data FIFO.

Automatic DECO stalling is accomplished as follows. Once the ODFNSR is written, the
stalls described above will continue until the ODFNSR is cleared. That means that the
Class 1 CHA has to assert its done signal and the ODFNSR has to have pushed its final
value into the Output Data FIFO. WARNING: If the DECO is stalling while waiting for
the ODFNSR to empty, and there is no already executed command (such as a FIFO
STORE or MOVE) that will drain the Output Data FIFO sufficiently to allow the
ODFNSR to empty, the DECO will hang.

Internally the Output Data FIFO is 64-bits wide, but since the IP bus is 32-bits wide, the
Output Data FIFO is read via the IP bus using 32-bit word reads. The most-significant
half of the 64-bit word is read from address BASE+x7F0, and the least significant half is
read from address BASE+x7F4. All data read from the OFIFO is big endian.

13.208.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R OFIFO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R OFIFO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R OFIFO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OFIFO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1095

13.208.4 Fields

Field Function

63-0

OFIFO

Output FIFO

13.209 DECOa Job Queue Control Register, most-significant
half (D0JQCR_MS - D2JQCR_MS)

13.209.1 Offset

For a = 0 to 2:

Register Offset Description

DaJQCR_MS 8_0800h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.209.2 Function

This register tells the Descriptor Controller about the current Descriptor. There is one
copy of this register per DECO. During normal operation, this register is written by the
job queue controller. When a DECO is under the direct control of software (see Register-
based service interface), this register can be read or written from the IP Register bus.
Writing to the most-significant half of this register causes the Descriptor Controller to
start processing. Note that at least the first burst of the Descriptor (including the Job
Descriptor Header and the JOB HEADER extension word, if any) must be written to the
Descriptor buffer before the Job Queue Control Register is written.

DECOa Job Queue Control Register, most-significant half (D0JQCR_MS - D2JQCR_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1096 NXP Semiconductors

13.209.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

S
T

E
P S

IN
G W

H
L

F
O

U
R

IL E

S
H

R
_F

R
O

M

R
es

er
ve

d

D
W

S

R
es

er
ve

d

S
O

BW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
M

T
D

JD
I

S

R
es

er
ve

d

S
R

C

R
es

er
ve

d

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.209.4 Fields

Field Function

31

STEP

Step. When in Single Step Mode, DECO should execute the next command in the descriptor. Note that
protocols are a single step. Only used by the processor that has control of DECO.

30

SING

Single Step Mode. This tells DECO to execute this descriptor, including jumps to non-local destinations,
in single step mode. Only used by the processor that has control of DECO.

29

WHL

Whole Descriptor. This bit indicates that the whole Descriptor was given to DECO by the job queue
controller. This bit is set for certain Job Descriptors that are internally generated by SEC.

28

FOUR

Four Words. job queue controller is passing at least 4 words of the Descriptor to DECO.

27

ILE

Immediate Little Endian. This bit controls the byte-swapping of Immediate data embedded within
descriptors.

0b - No byte-swapping is performed for data transferred to or from the Descriptor Buffer.
1b - Byte-swapping is performed when data is transferred between the Descriptor Buffer and any of
the following byte-stream sources and destinations: Input Data FIFO, Output Data FIFO, and Class
1 Context, Class 2 Context, Class1 Key and Class 2 Key registers.

26-24

SHR_FROM

Share From. This is the DECO block from which this DECO block will get the Shared Descriptor. This
field is only used if the job queue controller wants this DECO to use a Shared Descriptor that is already in
a DECO. This field is ignored when running descriptors via the IP bus (i.e. under the direct control of
software).

23-20

—

Reserved

19

DWS

Double word swap. Causes/allows dword swapping of addresses, and MOVE and MATH immediate
values.

18-17 Reserved

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1097

Field Function

—

16

SOB

Shared Descriptor or input frame burst. If set, the whole shared descriptor and/or first bursts of QI input
frame data were passed to DECO with the Job Descriptor. When descriptors are executed under direct
software control, this bit simply indicates that the Shared Descriptor has been loaded.

15

AMTD

Allow Make Trusted Descriptor. This field is read-only. If this bit is a 1, then a Job Descriptor with the
MTD (Make Trusted Descriptor) bit set is allowed to execute. The bit will be 1 only if the Job Descriptor
was run from a job ring with the AMTD bit set to 1 in the job ring’s JRaICID Register.

14

JDIS

Job Descriptor ICID Select. Determines whether the SEQ ICID or the Non-SEQ ICID is asserted when
reading the Job Descriptor from memory.

0b - Non-SEQ ICID
1b - SEQ ICID

13-11

—

Reserved

10-8

SRC

Job Source. Source of the job. Determines which set of DMA configuration attributes (e.g.
JRCFGR_JRa_MS) and endian configuration bits) the DMA should use for bus transactions. It is illegal
for the SRC field to have a value other than that of a job ring when running descriptors via the IP bus (i.e.
under the direct control of software).

000b - Job Ring 0
001b - Job Ring 1
010b - Job Ring 2
011b - Job Ring 3
100b - RTIC
101b - Queue Manager Interface
110b - Reserved
111b - Reserved

7-4

—

Reserved

3-0

ID

Job ID. Unique tag given to each job by its source. Used to tell the source that the job has completed.

13.210 DECOa Job Queue Control Register, least-significant
half (D0JQCR_LS - D2JQCR_LS)

13.210.1 Offset

For a = 0 to 2:

Register Offset Description

DaJQCR_LS 8_0804h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

DECOa Job Queue Control Register, least-significant half (D0JQCR_LS - D2JQCR_LS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1098 NXP Semiconductors

13.210.2 Function

This register tells the Descriptor Controller about the current Descriptor. There is one
copy of this register per DECO. During normal operation, this register is written by the
job queue controller. When a DECO is under the direct control of software (see Register-
based service interface), this register can be read or written from the IP Register bus.
Writing to the most-significant half of this register causes the Descriptor Controller to
start processing. Note that at least the first burst of the Descriptor (including the Job
Descriptor Header and the JOB HEADER extension word, if any) must be written to the
Descriptor buffer before the Job Queue Control Register is written.

13.210.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.210.4 Fields

Field Function

31-0

CMD

Command. In single-step mode, reading CMD returns the first word of the command that this DECO will
execute next. This value is also readable via the STORE Command, but the value read is unpredictable.

13.211 DECOa Descriptor Address Register (D0DAR - D2DA
R)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1099

13.211.1 Offset

For a = 0 to 2:

Register Offset Description

DaDAR 8_0808h + (a × 1_0000h) For the order that the two 32-bit halves of this
register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R). Accessible only when RQDa and DENa are
asserted in DECORR.

13.211.2 Function

This DECO register holds the address of the currently executing Job Descriptor. When
using DECO in single-step mode (see Register-based service interface), this register must
be written prior to the Job Queue Control Register.

13.211.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

DPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R DPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DECOa Descriptor Address Register (D0DAR - D2DAR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1100 NXP Semiconductors

13.211.4 Fields

Field Function

63-40

—

Reserved

39-0

DPTR

Descriptor Pointer. Memory address of the Descriptor. Needed for write-back purposes.

13.212 DECOa Operation Status Register, most-significant
half (D0OPSTA_MS - D2OPSTA_MS)

13.212.1 Offset

For a = 0 to 2:

Register Offset Description

DaOPSTA_MS 8_0810h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.212.2 Function

The DECO Operation Status Register is used to show DECO status following descriptor
processing. This includes error conditions (if any), index of the next command within the
descriptor, and condition flags set by Public Key and Math Operations. Since the register
is greater than 32 bits, the OPSTA register is accessed from the IP bus as two 32-bit
registers.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1101

13.212.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R STATUS_TYPE NLJ
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

R
es

er
ve

d

C
O

M
M

A
N

D
_I

N
D

E
X

S
T

A
T

U
S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.212.4 Fields

Field Function

31-28

STATUS_TYPE

Status Type. The type of status that is being reported for the just-completed command, defined as
follows:

0000b - no error
0001b - DMA error
0010b - CCB error
0011b - Jump Halt User Status
0100b - DECO error
0101b - Reserved
0110b - Reserved
0111b - Jump Halt Condition Code

27

NLJ

Non-Local Jump. A jump was non-local. This includes non-local JUMP Commands and SEQ IN PTR RJD
jumps and SEQ IN PTR INL jumps.

26-15

—

Reserved. Always 0.

14-8

COMMAND_IN
DEX

Command index: A pointer to a 32-bit word within the descriptor. If single stepping, this is the index of the
next command to be executed. If not single stepping, this is the index of the command that is now
executing. In the case of an error that is not a command problem, it is approximately the index of the
command where the error occurred. If the error was due to a command problem, it is the index of the
current command. A command problem is an error that is detectable by DECO as it executes the
command (e.g. an illegal command type). Something that isn't a command problem is an error that
occurs after the command has completed executing (e.g. illegal CHA modes, DMA errors, ICV check
failures).

Table continues on the next page...

DECOa Operation Status Register, most-significant half (D0OPSTA_MS - D2OPSTA_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1102 NXP Semiconductors

Field Function

7-0

STATUS

If ERRTYP indicates no error, this field contains PKHA/Math Status, as defined below. If there was an
error, this field contains Error Status, defined as in the Job Ring Output Status Register DESC ERROR
field (Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 - JRSTAR_JR3)).

7

PIZ

Public Key Operation is Zero. For Finite Field operations the result of a Public Key
operation is zero. For ECC operations, the result is Point at infinity.

6

GCD

GCD is One. The greatest common divisor of two numbers (i.e., the two numbers
are relatively prime)

5

PRM

Public Key is Prime. The given number is probably prime (i.e., it passes the Miller-
Rabin primality test)

4 Reserved

3

MN

Math N. The result is negative. Can only be set by add and subtract functions, 0
otherwise

2

MZ

Math Z. The result of a math operation is zero.

1

MC

Math C. The math operation resulted in a carry or borrow.

0

MNV

Math NV. Used for signed compares. This is a combination of the sign and overflow
bits (i.e., Math N XOR Math C)

13.213 DECOa Operation Status Register, least-significant
half (D0OPSTA_LS - D2OPSTA_LS)

13.213.1 Offset

For a = 0 to 2:

Register Offset Description

DaOPSTA_LS 8_0814h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1103

13.213.2 Function

The DECO Operation Status Register is used to show DECO status following descriptor
processing. This includes error conditions (if any), index of the next command within the
descriptor, and condition flags set by Public Key and Math Operations. Since the register
is greater than 32 bits, the OPSTA register is accessed from the IP bus as two 32-bit
registers.

13.213.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

OUT_CT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OUT_CT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.213.4 Fields

Field Function

31-29

—

Reserved

28-0

OUT_CT

Output Count. Number of bytes written to sequential out pointer.

13.214 DECOa Checksum Register (D0CKSUMR - D2CK
SUMR)

13.214.1 Offset

For a = 0 to 2:

DECOa Checksum Register (D0CKSUMR - D2CKSUMR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1104 NXP Semiconductors

Register Offset Description

DaCKSUMR 8_0818h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.214.2 Function

Checksum. This register shows the checksum value computed by DECO. This value is
intended to assist in implementing the IPSEC protocol.

13.214.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CKSUM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.214.4 Fields

Field Function

31-16

—

Reserved

15-0

CKSUM

Checksum. All byte data written to the output frame via SEQ STORE or SEQ FIFO STORE is included in
the checksum, with the following exceptions. If a type 31h SEQ FIFO STORE is executed, the previous
checksum value (if any) due to non-type 31h SEQ FIFO STORE commands is discarded and the running
checksum starts with the fresh type 31h or type 3Eh data. With one exception as noted below, all byte
data stored with SEQ STORE or SEQ FIFO STORE 3Eh (meta data) is included in the running checksum
until a SEQ FIFO STORE is executed that is not type 31h or 3Eh. After that no additional data is included
in the checksum until another type 31h SEQ FIFO STORE is executed. At that point the running
checksum is not cleared, and the running checksum includes all subsequent byte data written via a type
31h or type 3Eh SEQ FIFO STORE command. Commands that store the CKSUM register are an
exception to the general rules above. When the CKSUM register is stored via a STORE or SEQ STORE
command, the register value will not be included in the running checksum. If DECO was computing a
checksum of type 31h or type 3Eh data when the CKSUM register was stored, following the store of the
CKSUM register no further data will be included in the running checksum until another SEQ FIFO STORE
of type 0x31 is executed. But if at the time that the CKSUM register was stored DECO was computing a
checksum of data other than type 31h or type 3Eh data, all byte data stored via SEQ STOREs and SEQ

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1105

Field Function

FIFO STOREs will be included in the running checksum until a type 0x31 SEQ FIFO STORE is executed,
at which point the running checksum will be cleared and a checksum of type 31h or type 3Eh data will
begin.

13.215 DECOa SDID / Trusted ICID Status Register (D0SD
IDSR - D2SDIDSR)

13.215.1 Offset

For a = 0 to 2:

Register Offset Description

DaSDIDSR 8_0820h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.215.2 Function

This register shows the ICIDs available to the DECO for processing the current
Descriptor. A descriptor can select among the available ICIDs via a LOAD IMM to the
DECO Control Register. (see Value 06h in LOAD commands) This register is written by
the job queue controller.

13.215.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R TZ
Reserved

SDID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved DTICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DECOa SDID / Trusted ICID Status Register (D0SDIDSR - D2SDIDSR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1106 NXP Semiconductors

13.215.4 Fields

Field Function

31

TZ

TrustZone. This is the TrustZone value (where SecureWorld = 1) used by the DECO when processing the
current Descriptor.

30-28

—

Reserved

27-16

SDID

Security Domain Identifier. This is the SDID value used by the DECO when processing the current
Descriptor.

15-12

—

Reserved

11-0

DTICID

DECO Trusted ICID. Any type of descriptor can write to this field, but only Trusted Descriptors can
choose to assert this ICID value during DMA transactions. Although this field can be read and written via
the IP bus interface, this is of no consequence since Trusted Descriptors cannot be executed via the IP
bus interface.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.216 DECOa ICID Status Register (D0ISR - D2ISR)

13.216.1 Offset

For a = 0 to 2:

Register Offset Description

DaISR 8_0820h + (a × 1_0000h) Accessible only when RQDa and DENa are asserted
in DECORR.

13.216.2 Function

This register shows the ICIDs available to the DECO for processing the current
Descriptor. A descriptor can select among the available ICIDs via a LOAD IMM to the
DECO Control Register. (see Value 06h in LOAD commands). This register is written by
the job queue controller.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1107

13.216.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

DNSICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

DSICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.216.4 Fields

Field Function

31-28

—

Reserved

27-16

DNSICID

DECO Non-SEQ ICID. This is the ICID that will be asserted during a DMA transaction that is related to
descriptor operations other than Input or Output SEQ sequences. This field can be read but cannot be
written via the IP bus interface.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

15-12

—

Reserved

11-0

DSICID

DECO SEQ ICID. This is the ICID that will be asserted during a DMA transaction that is related to an
Input or Output SEQ sequence. This field can be read but cannot be written via the IP bus interface.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.217 DECOa Math Register b_MS (D0MTH0_MS - D2MTH7_
MS)

13.217.1 Offset

For a = 0 to 2; b = 0 to 7:

Register Offset

DaMTHb_MS 8_0840h + (a × 1_0000h) + (b × 8h)

DECOa Math Register b_MS (D0MTH0_MS - D2MTH7_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1108 NXP Semiconductors

13.217.2 Function

The Math Registers are used by the DECO to perform Math operations that were
requested via the MATH Command. The Math Registers consist of 8 64-bit registers per
DECO. Data is moved into these registers via LOAD, MATH and MOVE commands.

13.217.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MATH_MS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MATH_MS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.217.4 Fields

Field Function

31-0

MATH_MS

MATH register, most-significant 32 bits.

13.218 DECOa Math Register b_LS (D0MTH0_LS - D2MTH7_L
S)

13.218.1 Offset

For a = 0 to 2; b = 0 to 7:

Register Offset

DaMTHb_LS 8_0844h + (a × 1_0000h) + (b × 8h)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1109

13.218.2 Function

The Math Registers are used by the DECO to perform Math operations that were
requested via the MATH Command. The Math Registers consist of 8 64-bit registers per
DECO. Data is moved into these registers via LOAD, MATH and MOVE commands.

13.218.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MATH_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MATH_LS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.218.4 Fields

Field Function

31-0

MATH_LS

MATH register, least-significant 32 bits.

13.219 DECOa Gather Table Register b Word 0 (D0GTR0_0 -
D2GTR3_0)

13.219.1 Offset

For a = 0 to 2; b = 0 to 3:

Register Offset

DaGTRb_0 8_0880h + (a × 1_0000h) + (b × 10h)

DECOa Gather Table Register b Word 0 (D0GTR0_0 - D2GTR3_0)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1110 NXP Semiconductors

13.219.2 Function

The Gather Table Registers and Scatter Table Registers hold the current Gather Table
and Scatter Table entries that are being used by the DECO. (See Scatter/gather tables
(SGTs).) SEC will fetch a burst's worth of entries at a time, so these entries are held in
four Gather Table registers and four Scatter Table registers per DECO. A burst is 32 or
64 bytes, as indicated by the BURST field in the Master Configuration Register. Each
register is 128 bits in length, so the data in each register is accessible over the 32-bit
register bus as four 32-bit words.

13.219.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.219.4 Fields

Field Function

31-8

—

Reserved.

7-0

ADDRESS_POI
NTER

most-significant bits of memory address pointed to by table entry

This field holds the most-significant 8 bits of the memory address to which this table entry points. This will
either be a memory buffer (if E=0) or a Scatter/Gather Table entry (if E=1).

13.220 DECOa Gather Table Register b Word 1 (D0GTR0_1 -
D2GTR3_1)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1111

13.220.1 Offset

For a = 0 to 2; b = 0 to 3:

Register Offset

DaGTRb_1 8_0884h + (a × 1_0000h) + (b × 10h)

13.220.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.220.3 Fields

Field Function

31-0

ADDRESS_POI
NTER

This field holds the least-significant 32 bits of the memory address to which this table entry points. This
will either be a memory buffer (if E=0) or a Scatter/Gather Table entry (if E=1).

13.221 DECOa Gather Table Register b Word 2 (D0GTR0_2 -
D2GTR3_2)

13.221.1 Offset

For a = 0 to 2; b = 0 to 3:

DECOa Gather Table Register b Word 2 (D0GTR0_2 - D2GTR3_2)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1112 NXP Semiconductors

Register Offset

DaGTRb_2 8_0888h + (a × 1_0000h) + (b × 10h)

13.221.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
E F Length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.221.3 Fields

Field Function

31

E

Extension bit. If set to a 1, then Address Pointer refers to a Scatter/Gather Table entry instead of a
memory buffer. It is an error to set the E bit if the SGT entry is unused (i.e. Length, BPID and Address
Pointer all 0s).

30

F

Final Bit. If set, this is the last entry of this Scatter/Gather Table.

29-0

Length

This field specifies how many bytes of data (for Gather Tables) or available space (for Scatter Tables) are
located at the address pointed to by the Address Pointer.

13.222 DECOa Gather Table Register b Word 3 (D0GTR0_3 -
D2GTR3_3)

13.222.1 Offset

For a = 0 to 2; b = 0 to 3:

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1113

Register Offset

DaGTRb_3 8_088Ch + (a × 1_0000h) + (b × 10h)

13.222.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved BPID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved Offset

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.222.3 Fields

Field Function

31-24

—

Reserved

23-16

BPID

Buffer Pool ID. Indicates Buffer Pool owning the buffer referred to by the Address Pointer.

15-13

—

Reserved

12-0

Offset

Offset (measured in bytes) into memory where significant data is to be found. The use of an offset
permits reuse of a memory buffer without recalculating the address.

13.223 DECOa Scatter Table Register b Word 0 (D0STR0_0 -
D2STR3_0)

13.223.1 Offset

For a = 0 to 2; b = 0 to 3:

DECOa Scatter Table Register b Word 0 (D0STR0_0 - D2STR3_0)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1114 NXP Semiconductors

Register Offset

DaSTRb_0 8_0900h + (a × 1_0000h) + (b × 10h)

13.223.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.223.3 Fields

Field Function

31-8

—

Reserved.

7-0

ADDRESS_POI
NTER

most-significant bits of memory address pointed to by table entry

This field holds the most-significant 8 bits of the memory address to which this table entry points. This will
either be a memory buffer (if E=0) or a Scatter/Gather Table entry (if E=1).

13.224 DECOa Scatter Table Register b Word 1 (D0STR0_1 -
D2STR3_1)

13.224.1 Offset

For a = 0 to 2; b = 0 to 3:

Register Offset

DaSTRb_1 8_0904h + (a × 1_0000h) + (b × 10h)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1115

13.224.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDRESS_POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.224.3 Fields

Field Function

31-0

ADDRESS_POI
NTER

This field holds the least-significant 32 bits of the memory address to which this table entry points. This
will either be a memory buffer (if E=0) or a Scatter/Gather Table entry (if E=1).

13.225 DECOa Scatter Table Register b Word 2 (D0STR0_2 -
D2STR3_2)

13.225.1 Offset

For a = 0 to 2; b = 0 to 3:

Register Offset

DaSTRb_2 8_0908h + (a × 1_0000h) + (b × 10h)

DECOa Scatter Table Register b Word 2 (D0STR0_2 - D2STR3_2)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1116 NXP Semiconductors

13.225.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
E F Length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.225.3 Fields

Field Function

31

E

Extension bit. If set to a 1, then Address Pointer refers to a Scatter/Gather Table entry instead of a
memory buffer. It is an error to set the E bit if the SGT entry is unused (i.e. Length, BPID and Address
Pointer all 0s).

30

F

Final Bit. If set, this is the last entry of this Scatter/Gather Table.

29-0

Length

This field specifies how many bytes of data (for Gather Tables) or available space (for Scatter Tables) are
located at the address pointed to by the Address Pointer.

13.226 DECOa Scatter Table Register b Word 3 (D0STR0_3 -
D2STR3_3)

13.226.1 Offset

For a = 0 to 2; b = 0 to 3:

Register Offset

DaSTRb_3 8_090Ch + (a × 1_0000h) + (b × 10h)

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1117

13.226.2 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved BPID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved Offset

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.226.3 Fields

Field Function

31-24

—

Reserved

23-16

BPID

Buffer Pool ID. Indicates Buffer Pool owning the buffer referred to by the Address Pointer.

15-13

—

Reserved

12-0

Offset

Offset (measured in bytes) into memory where significant data is to be found. The use of an offset
permits reuse of a memory buffer without recalculating the address.

13.227 DECOa Descriptor Buffer Word b (D0DESB0 - D2DE
SB63)

13.227.1 Offset

For a = 0 to 2; b = 0 to 63:

Register Offset

DaDESBb 8_0A00h + (a × 1_0000h) + (b × 4h)

DECOa Descriptor Buffer Word b (D0DESB0 - D2DESB63)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1118 NXP Semiconductors

13.227.2 Function

The Descriptor Buffer is used by the DECO to buffer a Descriptor that has been fetched
from memory. The Descriptor Buffer consists of 64 32-bit registers in consecutive
addresses, beginning at the addresses shown above. For performance reasons, DECO
doesn't execute the commands directly from the Descriptor Buffer. Instead, DECO
executes commands from a four-word pipeline. Since commands vary in length from one
to four words, up to three words in addition to the current command may also be resident
in the pipeline. (They won't be executed if the job terminates or the pipeline is flushed as
described below.) As a result, operations that modify the Descriptor Buffer may not have
an immediate effect on the next few commands that execute. To avoid anomalous
behavior when overwriting the portion of the Descriptor Buffer containing the start of the
currently executing command or the following two or three words, any commands in the
pipeline that the programmer intends to execute should be completely contained within
the pipeline.

There are several ways to flush the pipeline to ensure that recently loaded commands are
executed rather than the pipeline-resident commands:

• Execute a JUMP command with a negative offset
• Use the JOB HEADER or SHARED HEADER commands to do an absolute jump.
• JUMP forward more than 3 words.

Note that the Descriptor Buffer is cleared between unrelated descriptors; that is, if two
successive descriptors to execute in the same DECO do not share the same shared
descriptor.

13.227.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Descriptor_Buffer

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Descriptor_Buffer

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1119

13.227.4 Fields

Field Function

31-0

Descriptor_Buffe
r

Descriptor_Buffer

13.228 DECOa Debug Job (D0DJR - D2DJR)

13.228.1 Offset

For a = 0 to 2:

Register Offset Description

DaDJR 8_0E00h + (a × 1_0000h) For DECOa.

13.228.2 Function

The DECOa Debug Job, DECOa Debug DECO, DECOa Debug Job Pointer, DECOa
Debug ICID, and DECOa Debug Shared Pointer registers are intended to assist in
debugging when a DECO appears to be hung. Although the registers can be read by
software at any time, software is likely to obtain inconsistent data if these registers are
read while DECO continues to execute new descriptors because the registers may be
updated before the software has finished reading all the registers. Another mechanism is
available for debugging a descriptor once a suspect descriptor has been identified (see
Register-based service interface). Note that the DECOa Debug Job has the same format
as the most-significant half of the DECO Job Queue Control Register. Note that this
register is read-only.

DECOa Debug Job (D0DJR - D2DJR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1120 NXP Semiconductors

13.228.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

S
T

E
P S

IN
G W

H
L

F
O

U
R

IL E

S
H

R
_F

R
O

M

R
es

er
ve

d

D
W

S

R
es

er
ve

d

G
S

D

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

A
M

T
D

JD
I

S

R
es

er
ve

d

S
R

C

R
es

er
ve

d

ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.228.4 Fields

Field Function

31

STEP

Step. When in Single Step Mode, DECO should execute the next command in the descriptor. Note that
protocols are a single step. Only used by the processor that has control of DECO.

30

SING

Single Step Mode. This tells DECO to execute this descriptor, including jumps to non-local destinations,
in single step mode. Only used by the processor that has control of DECO.

29

WHL

Whole Descriptor. This bit indicates that the whole Descriptor was given to DECO by the job queue
controller (or by the processor that has control of DECO). This bit is set for certain Job Descriptors that
are internally generated by SEC.

28

FOUR

Four Words. The job queue controller (or the processor that has control of DECO) has passed at least 4
words of the Descriptor to DECO.

27

ILE

Immediate Little Endian. This bit controls the byte-swapping of Immediate data embedded within
descriptors.

0b - No byte-swapping is performed for data transferred to or from the Descriptor Buffer.
1b - Byte-swapping is performed when data is transferred between the Descriptor Buffer and any of
the following byte-stream sources and destinations: Input Data FIFO, Output Data FIFO, and Class
1 Context, Class 2 Context, Class1 Key and Class 2 Key registers.

26-24

SHR_FROM

Share From. This is the DECO block from which this DECO block will get the Shared Descriptor. This
field is only used if the job queue controller wants this DECO to use a Shared Descriptor that is already in
a DECO. This field is ignored when running descriptors via the IP bus (i.e. under the direct control of
software).

23-20

—

Reserved

19

DWS

Double Word Swap. Double word swapping was set.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1121

Field Function

18-17

—

Reserved

16

GSD

Got Shared Descriptor. A Shared Descriptor was already available in a DECO so the DECO didn't need
to fetch the Shared Descriptor from memory.

15

AMTD

Allow Make Trusted Descriptor. If this bit is a 1, then a Job Descriptor whose HEADER command has
TDES=11b (candidate trusted descriptor) is allowed to execute. The AMTD bit will be 1 only if the Job
Descriptor was run from a job ring with the AMTD bit set to 1 in the job ring’s JRaICID Register.

14

JDIS

Job Descriptor ICID Select. Determines whether the SEQ ICID or the Non-SEQ ICID is asserted when
reading the Job Descriptor from memory.

0b - Non-SEQ ICID
1b - SEQ ICID

13-11

—

Reserved

10-8

SRC

Job Source. Source of the job. Determines which set of DMA configuration attributes (e.g.
JRCFGR_JRa_MS) and endian configuration bits) the DMA should use for bus transactions. When
running descriptors via the IP bus (i.e. under the direct control of software), the job queue controller
automatically sets this field to indicate a job ring source.

000b - Job Ring 0
001b - Job Ring 1
010b - Job Ring 2
011b - Job Ring 3
100b - RTIC
101b - Queue Manager Interface
110b - Reserved
111b - Reserved

7-4

—

Reserved

3-0

ID

Job ID. Unique tag given to each job by its source (see SRC field). Used to tell the source that the job has
completed.

13.229 DECOa Debug DECO (D0DDR - D2DDR)

13.229.1 Offset

For a = 0 to 2:

Register Offset Description

DaDDR 8_0E04h + (a × 1_0000h) For DECOa.

DECOa Debug DECO (D0DDR - D2DDR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1122 NXP Semiconductors

13.229.2 Function

The DECOa Debug Job, DECOa Debug DECO, DECOa Debug Job Pointer, DECOa
Debug ICID, and DECOa Debug Shared Pointer registers are intended to assist in
debugging when a DECO appears to be hung. Although the registers can be read by
software at any time, software is likely to obtain inconsistent data if these registers are
read while DECO continues to execute new descriptors because the registers may be
updated before the software has finished reading all the registers. Another mechanism is
available for debugging a descriptor once a suspect descriptor has been identified (see
Register-based service interface). Note that this register is read-only.

13.229.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

V
A

LI
D

S D

T
R

C
T

S
E

Q
LS

E
L N
S

E
Q

LS
E

L

D
E

C
O

_S
T

A
T

E

P
D

B
_W

B
_S

T

P
D

B
_S

T
A

LL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

P
T

C
L_

R
U

N

N
L

J

C
M

D
_I

N
D

E
X

C
M

D
_S

T
A

G
E

C
S

A

N
C

B
W

B

B
R

B C
T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.229.4 Fields

Field Function

31

VALID

Valid. If VALID=1, there is currently a job descriptor running in this DECO. The descriptor has been
loaded and has started executing and is still executing.

30

SD

Shared Descriptor. The job descriptor that is running in this DECO has received a shared descriptor from
another job descriptor. That is, some other job descriptor used this shared descriptor (in the same DECO
or a different DECO), and this job descriptor is using the shared descriptor without having to load it from
memory. In the case of SERIAL or WAIT sharing, then the keys were shared as well. If the SC bit was on,
then the context was also shared.

Table continues on the next page...

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1123

Field Function

29-28

TRCT

DMA Transaction Count. This indicates how many outstanding external DMA transactions are pending.
This is the total of reads and writes. DECO is limited to, at most, two such transactions.

27-26

SEQLSEL

SEQ ICID Select. This indicates which type of ICID is being used for SEQ commands:

01b - SEQ ICID
10b - Non-SEQ ICID
11b - Trusted ICID

25-24

NSEQLSEL

Non-SEQ ICID Select. This indicates which type of ICID is being used for Non-SEQ commands:

01b - SEQ ICID
10b - Non-SEQ ICID
11b - Trusted ICID

23-20

DECO_STATE

DECO State. The current state of DECO's main state machine.

19-18

PDB_WB_ST

PDB Writeback State. Lower two bits of the state machine that tracks the state of PDB writebacks.

17-16

PDB_STALL

PDB Stall State. The state of the machine that tracks the stalling of PDB writebacks. Used in conjunction
with PDB_WB_ST. Used only if there is more than one DECO.

15

PTCL_RUN

Protocol running. PTCL_RUN=1 indicates that a protocol is running in this DECO.

14

NLJ

Took Non-local JUMP. If NLJ=1 the original job descriptor running in this DECO has caused another job
descriptor to be executed. This is true for JUMP NON-LOCAL, SEQ IN PTR INLINE, and SEQ IN PTR
RJD.

13-8

CMD_INDEX

Command Index. If this DECO is currently executing a command, CMD_INDEX points to that command
within the descriptor buffer.

7-5

CMD_STAGE

Command Stage. Each command executes in a number of steps, or stages. There are 8 possible stages.
CMD_STAGE indicates which stage DECO has reached in the process of executing a command.

4

CSA

Command Stage Aux. A refinement of the CMD_STAGE stages. Some stages may be split into two
substages, and CSA will indicate which of those two substages DECO has reached.

3

NC

No Command. This DECO is not currently executing a command. This can be because the descriptor
isn't executing or DECO is doing a JUMP of some sort.

2

BWB

Burster Write Busy. The WRITE machine in the Burster is busy. This means that the WRITE machine is
scheduling DMA transactions or is waiting for the opportunity to do so. It remains busy until all the
transactions required for a request have been scheduled. STORE, SEQ STORE, FIFO STORE, and SEQ
FIFO STORE commands use the WRITE machine. The WRITE machine is also used to update the
Shared Descriptor HEADER when propagating DNR and by the Trusted State Machine to store a
computed signature.

1

BRB

Burster Read Busy. The READ machine in the Burster is busy. This means that the READ machine is
scheduling DMA transactions or is waiting for the opportunity to do so. It remains busy until all the
transactions required for a request have been scheduled. LOAD, SEQ LOAD, FIFO LOAD, SEQ FIFO
LOAD, and the KEY command all use the READ machine. The read to satisfy RIF in the Shared
Descriptor HEADER also uses the READ machine. The SEQ FIFO STORE command can also use the
READ machine when handling meta data. Jumping non-locally via any method will also use the READ
machine. Commands that reference Scatter/Gather Tables will also cause the READ machine to be used
to read the entries in the tables.

0

CT

Checking Trusted. This DECO is currently generating the signature of a Trusted Descriptor. This may be
to sign, re-sign, or check the signature.

DECOa Debug DECO (D0DDR - D2DDR)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1124 NXP Semiconductors

13.230 DECOa Debug Job Pointer (D0DJP - D2DJP)

13.230.1 Offset

For a = 0 to 2:

Register Offset Description

DaDJP 8_0E08h + (a × 1_0000h) For DECOa. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

13.230.2 Function

The DECOa Debug Job, DECOa Debug DECO, DECOa Debug Job Pointer, DECOa
Debug ICID, and DECOa Debug Shared Pointer registers are intended to assist in
debugging when a DECO appears to be hung. Although the registers can be read by
software at any time, software is likely to obtain inconsistent data if these registers are
read while DECO continues to execute new descriptors because the registers may be
updated before the software has finished reading all the registers. Another mechanism is
available for debugging a descriptor once a suspect descriptor has been identified (see
Register-based service interface). Note that this register is read-only.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1125

13.230.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

JDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R JDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R JDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.230.4 Fields

Field Function

63-40

—

Reserved

39-0

JDPTR

Job Descriptor Pointer.

13.231 DECOa Debug Shared Pointer (D0SDP - D2SDP)

13.231.1 Offset

For a = 0 to 2:

DECOa Debug Shared Pointer (D0SDP - D2SDP)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1126 NXP Semiconductors

Register Offset Description

DaSDP 8_0E10h + (a × 1_0000h) For DECOa. For the order that the two 32-bit halves
of this register appear in memory, see the DWT bit
description in Master Configuration Register (MCFG
R).

13.231.2 Function

The DECOa Debug Job, DECOa Debug DECO, DECOa Debug Job Pointer, DECOa
Debug ICID, and DECOa Debug Shared Pointer registers are intended to assist in
debugging when a DECO appears to be hung. Although the registers can be read by
software at any time, software is likely to obtain inconsistent data if these registers are
read while DECO continues to execute new descriptors because the registers may be
updated before the software has finished reading all the registers. Another mechanism is
available for debugging a descriptor once a suspect descriptor has been identified (see
Register-based service interface). Note that this register is read-only.

13.231.3 Diagram

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R
Reserved

SDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R SDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SDPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1127

13.231.4 Fields

Field Function

63-40

—

Reserved

39-0

SDPTR

Shared Descriptor Pointer.

13.232 DECOa Debug_ICID, most-significant half (D0DIR_MS
- D2DIR_MS)

13.232.1 Offset

For a = 0 to 2:

Register Offset Description

DaDIR_MS 8_0E18h + (a × 1_0000h) For DECOa.

13.232.2 Function

The DECOa Debug Job, DECOa Debug_DBG, DECOa Debug Job Pointer, DECOa
Debug ICID, and DECOa Debug Shared Pointer registers are intended to assist in
debugging when a DECO appears to be hung. This register is read-only. Although the
registers can be read by software at any time, software is likely to obtain inconsistent data
if these registers are read while DECO continues to execute new descriptors because the
registers may be updated before the software has finished reading all the registers.
Another mechanism is available for debugging a descriptor once a suspect descriptor has
been identified (see Register-based service interface).

DECOa Debug_ICID, most-significant half (D0DIR_MS - D2DIR_MS)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1128 NXP Semiconductors

13.232.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Reserved

NON_SEQICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

SEQICID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.232.4 Fields

Field Function

31-28

—

Reserved

27-16

NON_SEQICID

DECO Non-SEQ ICID. This is the ICID value that is asserted during a DMA transaction that is related to
normal descriptor operations other than Input or Output SEQ sequences.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

15-12

—

Reserved.

11-0

SEQICID

DECO SEQ ICID. This is the ICID value that will be asserted during a DMA transaction that is related to a
normal descriptor Input or Output SEQ sequence.

Note, in this SoC the valid range of this field is limited to the least signficant 8 bits.

13.233 Sequence Output Length Register (SOL0 - SOL2)

13.233.1 Offset

For a = 0 to 2:

Register Offset Description

SOLa 8_0E20h + (a × 1_0000h) For DECOa. Accessible only when RQDa and DENa
are asserted in DECORR.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1129

13.233.2 Function

The Sequence Out Length Register is used to specify the amount of data for an Output
Sequence (i.e., a series of SEQ STORE or SEQ FIFO STORE commands within a single
descriptor). See SEQ vs non-SEQ commands for a discussion of sequences. See Using
sequences for fixed and variable length data for a discussion of the use of the SOL
register in Output Sequences. The SEQ OUT PTR command can be used to load the SOL
register. The SOL Register can be read or written via the MATH Command (see SRC0
and DEST fields in MATH and MATHI Commands). When the DECO is under direct
control of software (see Register-based service interface) this register is accessible at the
addresses shown above.

13.233.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.233.4 Fields

Field Function

31-0

SOL

Output Sequence Length. This value is used in output data sequences.

SOL can also be used as a general purpose math register.

13.234 Variable Sequence Output Length Register (VSOL0 -
VSOL2)

Variable Sequence Output Length Register (VSOL0 - VSOL2)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1130 NXP Semiconductors

13.234.1 Offset

For a = 0 to 2:

Register Offset Description

VSOLa 8_0E24h + (a × 1_0000h) For DECOa. Accessible only when RQDa and DENa
are asserted in DECORR.

13.234.2 Function

The Variable Sequence Out Length Register is used to specify a variable amount of data
for an Output Sequence (i.e., a series of SEQ STORE or SEQ FIFO STORE commands
within a single descriptor). See SEQ vs non-SEQ commands for a discussion of
sequences. See Using sequences for fixed and variable length data for a discussion of the
use of the VSOL register in Output Sequences. The VSOL Register can be read or written
via the MATH Command (see SRC0, SRC1 and DEST fields in MATH and MATHI
Commands). When the DECO is under direct control of software (see Register-based
service interface this register is accessible at the addresses shown above.Note that VSOL
is actually a 64-bit register when accessed via a descriptor, but the 32 most-significant
bits are accessible from the IP bus as the UVSOL register, located at offset E34h.

13.234.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
VSOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
VSOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1131

13.234.4 Fields

Field Function

31-0

VSOL

This value is used in variable-length output data sequences. VSOL/UVSOL can also be used as a
general purpose math register. See UVSOL register.

13.235 Sequence Input Length Register (SIL0 - SIL2)

13.235.1 Offset

For a = 0 to 2:

Register Offset Description

SILa 8_0E28h + (a × 1_0000h) For DECOa. Accessible only when RQDa and DENa
are asserted in DECORR.

13.235.2 Function

The Sequence In Length Register is used to specify the amount of data for an Input
Sequence (i.e., a series of SEQ LOAD or SEQ FIFO LOAD commands within a single
descriptor). See Section SEQ vs non-SEQ commands for a discussion of sequences. See
Using sequences for fixed and variable length data for a discussion of the use of the SIL
register in Input Sequences. The SIL Register can be read or written via the MATH
Command (see SRC0 and DEST fields in MATH and MATHI Commands). When the
DECO is under direct control of software (see Register-based service interface this
register is accessible at the addresses shown above. This register can also be loaded by
the SEQ IN PTR command.

Sequence Input Length Register (SIL0 - SIL2)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1132 NXP Semiconductors

13.235.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.235.4 Fields

Field Function

31-0

SIL

This value is used in input data sequences. SIL can also be used as a general purpose math register.

13.236 Variable Sequence Input Length Register (VSIL0 -
VSIL2)

13.236.1 Offset

For a = 0 to 2:

Register Offset Description

VSILa 8_0E2Ch + (a × 1_0000h) For DECOa. Accessible only when RQDa and DENa
are asserted in DECORR.

13.236.2 Function

The Variable Sequence In Length Register is used to specify a variable amount of data
for an Input Sequence (i.e., a series of SEQ LOAD or SEQ FIFO LOAD commands
within a single descriptor). See Section SEQ vs non-SEQ commands for a discussion of

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1133

sequences. See Using sequences for fixed and variable length data for a discussion of the
use of the VSIL register in Input Sequences. This register is also loaded when RIF is
executed for a Shared Descriptor. The VSIL Register can be read or written via the
MATH Command (see SRC0, SRC1, and DEST fields in MATH and MATHI
Commands). When the DECO is under direct control of software (see Register-based
service interface) this register is accessible at the addresses shown above. Note that VSIL
is actually a 64-bit register when accessed via a descriptor, but the 32 most-significant
bits are accessible from the IP bus as the UVSIL register, located at offset E38h.

13.236.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
VSIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
VSIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.236.4 Fields

Field Function

31-0

VSIL

This value is used in variable-length input data sequences. VSIL/UVSIL can also be used as a general
purpose math register. See UVSIL register.

13.237 Protocol Override Register (D0POVRD - D2POVRD)

13.237.1 Offset

For a = 0 to 2:

Protocol Override Register (D0POVRD - D2POVRD)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1134 NXP Semiconductors

Register Offset Description

DaPOVRD 8_0E30h + (a × 1_0000h) For DECOa. Accessible only when RQDa and DENa
are asserted in DECORR.

13.237.2 Function

The DECO Protocol Override Register is used to override the PDB options for certain
built-in network protocols. can be read or written via the MATH Command (see SRC0,
SRC1 and DST fields in MATH and MATHI Commands) and it can be written via a
LOAD IMMEDIATE command (see DST value 07h, Class=11 in LOAD commands).
Note that DPOVRD can also be used as a general purpose math register. The format of
the register is specific to the protocol (see table below). When the DECO is under direct
control of software (see Register-based service interface) this register is accessible at the
addresses shown above.

Table 13-9. DECO Protocol Override Register - Formats for Various Networking Protocols

Protocol Format Diagram

IPsec ESP Encapsulation See Overriding ESP Transport (and legacy Tunnel) PDB content with the
DECO Protocol Override Register

IPsec ESP Decapsulation See Overriding ESP Transport (and legacy Tunnel) PDB content with the
DECO Protocol Override Register

SSL 3.0 / TLS 1.0 Encapsulation See Overriding the PDB for SSL, TLS, and DTLS Encapsulation

TLS 1.1 / 1.2 Encapsulation See Overriding the PDB for SSL, TLS, and DTLS Encapsulation

DTLS Encapsulation See Overriding the PDB for SSL, TLS, and DTLS Encapsulation

13.237.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DPOVRD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DPOVRD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1135

13.237.4 Fields

Field Function

31-0

DPOVRD

This register can be written to override various PDB settings. The format used for the DPOVRD register
depends on the particular protocol operation that is executed. Table 13-9 contains links to the different
format diagrams.

13.238 Variable Sequence Output Length Register; Upper 32
bits (UVSOL0 - UVSOL2)

13.238.1 Offset

For a = 0 to 2:

Register Offset Description

UVSOLa 8_0E34h + (a × 1_0000h) For DECOa. Accessible only when RQDa and DENa
are asserted in DECORR.

13.238.2 Function

VSOL is actually a 64-bit register when accessed via a descriptor, but when accessed via
the IP bus the least-significant 32 bits are accessed as the VSOL register, located at offset
E24h, and the most-significant 32 bits are accessible as the UVSOL register, located at
offset E34h.

13.238.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
UVSOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
UVSOL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Variable Sequence Output Length Register; Upper 32 bits (UVSOL0 - UVSOL2)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1136 NXP Semiconductors

13.238.4 Fields

Field Function

31-0

UVSOL

This value is used in variable-length output data sequences. VSOL/UVSOL can also be used as a
general purpose math register. See VSOL register. In some older versions of SEC the UVSOL register
did not exist, i.e. the VSOL register was only 32 bits. In those older versions when VSOL was the
destination of a right-shift MATH command the source was first truncated to 32 bits and then 0 bits were
shifted in from the left. For backward compatibility, that will continue to be the case for Math lengths of 1,
2 or 4 bytes. But when the Math length is 8 bytes, all 64 bits of the source will be copied into UVOL/VSOL
and then 0 bits will be shifted in from the left.

13.239 Variable Sequence Input Length Register; Upper 32
bits (UVSIL0 - UVSIL2)

13.239.1 Offset

For a = 0 to 2:

Register Offset Description

UVSILa 8_0E38h + (a × 1_0000h) For DECOa. Accessible only when RQDa and DENa
are asserted in DECORR.

13.239.2 Function

VSIL is actually a 64-bit register when accessed via a descriptor, but when accessed via
the IP bus the least-significant 32 bits are accessed as the VSIL register, located at offset
E2Ch, and the most-significant 32 bits are accessible as the UVSIL register, located at
offset E38h.

Chapter 13 SEC register descriptions

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1137

13.239.3 Diagram

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
UVSIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
UVSIL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13.239.4 Fields

Field Function

31-0

UVSIL

This value is used in variable-length input data sequences. VSIL/UVSIL can also be used as a general
purpose math register. See VSIL register. In some older versions of SEC the UVSIL register did not exist,
i.e. the VSIL register was only 32 bits. In those older versions when VSIL was the destination of a right-
shift MATH command the source was first truncated to 32 bits and then 0 bits were shifted in from the left.
For backward compatibility, that will continue to be the case for Math lengths of 1, 2 or 4 bytes. But when
the Math length is 8 bytes, all 64 bits of the source will be copied into UVIL/VSIL and then 0 bits will be
shifted in from the left.

Variable Sequence Input Length Register; Upper 32 bits (UVSIL0 - UVSIL2)

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1138 NXP Semiconductors

Appendix A
Revision History
Because this is the initial publication of the document, there are no changes.

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1139

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1140 NXP Semiconductors

Appendix B
Acronyms and abbreviations

Table B-1. Acronyms and abbreviated terms

Term Meaning

AAD Additional Authenticated Data

AES Advanced Encryption Standard - 128-bit block encryption algorithm, using a 128, 192 or 256-bit key.

AXI AMBA Advanced eXtensible Interface (AXI) Protocol Specification. Defined by ARM Ltd.

BMan Buffer Manager

A companion block to SEC that manages the buffers that supply data and receive results through SEC's
Queue Manager Interface

CBC Cipher Block Chaining

An encryption mode of operation. This is one of the official modes of operation specified for DES and AES.

CCB Cryptographic Control Block

A logic module within SEC

CCM Counter with CBC-MAC Mode

An authenticated encryption mode of operation. (Also known as CBC-MAC for CTR mode.)

CFB Cipher FeedBack

An encryption mode of operation. This is one of the official modes of operation specified for DES and AES.

CHA Cryptographic Hardware Accelerator

One of the hardware accelerators used in SEC

CRJD Control Replacement Job Descriptor

CSP Critical Security Parameter

Security related information (such as secret and private cryptographic keys or authentication data such as
passwords and PINs) whose disclosure or modification can compromise the security of a cryptographic
module. (See FIPS140-2)

CTR Counter mode

An encryption mode of operation used with AES

DECO Descriptor Controller

A logic module within SEC

DEK Data Encryption Key.

DES Data Encryption Standard

64-bit block encryption algorithm, using a 64-bit key.

3DES Triple DES

64-bit block encryption algorithm, using a 128 or 196-bit key.

Table continues on the next page...

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1141

Table B-1. Acronyms and abbreviated terms (continued)

Term Meaning

DPAA Datapath Acceleration Architecture, version 1

DRBG Deterministic Random Bit Generator

A deterministic algorithm that generates a sequence of numbers whose values are statistically random.
Sometimes called "PRNG" (pseudorandom number generator).

ECB Electronic Code Book

An encryption mode of operation. This is one of the official modes of operation specified for DES and AES.

FQ Frame Queue

HAB High Assurance Boot software

HMAC A hashing mode of operation used to implement a Message Authentication Code

ICID Isolation Context Identifier

IPAD Inner padding defined for HMAC

ICV Integrity Check Value

A checksum or message digest that allows detection of errors or changes in data.

IJD Inline Job Descriptor

IV Initialization Vector

A value used to initialize some encryption modes of operation

JD Job Descriptor

JDKEK Job Descriptor Key Encryption Key

JQC Job Queue Controller

The hardware that schedules jobs received from the Job Rings, Queue Manager Interface and RTIC

JR Job Ring

LIODN Logical Input Output Device Number

MD5 A message digest algorithm returning a 128-bit hash value

MDHA Message Digest Hardware Accelerator (hashing accelerator block)

NS Non-secure indication

NS = 0 is secure. This signal is generated by the TrustZone feature implemented in some ARM processors.
The Central Security Unit (CSU) generates this signal for other bus masters.

NVTK Non-volatile Test Key

OFB Output FeedBack

An encryption mode of operation. This is one of the official modes of operation specified for DES and AES.

OPAD Outer padding defined for HMAC

OTPMK One-time-programmable Master Key

PKHA Public Key Hardware Accelerator (ECC, RSA, DH, DSA)

POR Power On Reset.

PRNG Pseudo Random Number Generator

A deterministic algorithm that generates a sequence of numbers whose values are statistically random.
See DRBG.

PSP Public Security Parameter

Security-related public information whose modification can compromise the security of a cryptographic
module.

Table continues on the next page...

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1142 NXP Semiconductors

Table B-1. Acronyms and abbreviated terms (continued)

Term Meaning

QMan Queue Manager

A companion block to SEC that organizes data streams into queues of PDUs that are processed through
SEC's Queue Manager Interface

QI Queue (Manager) Interface

A logic block within SEC that interacts with the BMan and QMan blocks external to SEC

RNG Random Number Generator

A hardware module within SEC that generates random numbers based on the interaction of two free
running ring oscillators and uses these random numbers to seed a DRBG.

RJD Replacement Job Descriptor

RTIC Run-Time Integrity Checker

A logic block within SEC that generates a tamper alarm if the integrity of selected memory areas have been
compromised

SD Shared Descriptors

SEC Security Engine (Also known as Cryptographic Acceleration and Assurance Module)

SecMon Security Monitor

A companion block to SEC that detects security violations and maintains security state.

SHA-1 A message digest algorithm defined in FIPS 180-2 returning a 160-bit hash value.

SHA-224 A message digest algorithm defined in FIPS 180-2 returning a 224-bit hash value.

SHA-256 A message digest algorithm defined in FIPS 180-2 returning a 256-bit hash value.

SHA-384 A message digest algorithm defined in FIPS 180-2 returning a 384-bit hash value.

SHA-512 A message digest algorithm defined in FIPS 180-2 returning a 512-bit hash value.

SSP Sensitive Security Parameter

Data whose integrity must be protected

SWRST Software Reset

Register resets caused by writing 1 to the SWRST field in the MCFGR register.

TD Trusted Descriptor

TDSK Trusted Descriptor Signing Key

TDKEK Trusted Descriptor Key Encryption Key

TRK Trusted Root Key

ZMK Zeroizable Master Key

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1143

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1144 NXP Semiconductors

Appendix C
Glossary

Table C-1. Glossary of terms

Term Description

Alleged RC4 A stream cipher that is compatible with RC4.

Black blob A blob whose input data when exporting and whose output when importing was assumed to be a black
key. When exporting a black blob, the input data is first decrypted using the JDKEK (if the BLOB
Command was in a job descriptor) or TDKEK (if the BLOB command was in a trusted descriptor)
before being encrypted with the blob key. When importing a Black Blob, the data blob is first decrypted
with the Blob Key before being encrypted using the JDKEK (if the BLOB Command was in a job
descriptor) or TDKEK (if the BLOB Command was in a trusted descriptor). (See Red Blob.)

Black key A key that has been encrypted using either the JDKEK or the TDKEK. (See Red Key.)

Blob As used in this Block Guide the term 'blob' refers to a cryptographically protected data object
consisting of a Blob Key encrypted with a Blob Key Encryption Key, a Data Blob encrypted with a Blob
Key, and the MAC Tag resulting from the AES-CCM encryption of the Data Blob.

Blob key The 256-bit random number used for AES-CCM encryption of the data portion of a blob.

Blob key encryption
key

The Blob Key Encryption Key (BKEK) is a 256-bit key used when encrypting cryptographic Blobs
exported from memory. It is intended for use in protecting the confidentiality and integrity of this data.
The BKEK is derived from the Master Key or Non-volatile Test Key, a constant embedded in the SEC
Descriptor that initiated the Blob operation, the Security mode and the Blob type. (See Master Key.)

Critical security
parameter

A critical security parameter (CSP) is security-related information (e.g., secret and private
cryptographic keys, and authentication data such as passwords and PINs) whose disclosure or
modification can compromise the security of a cryptographic module. [from FIPS PUB 140-3 (DRAFT)]

Data encryption key A data encryption key is a key that can be referenced in a descriptor as a cryptographic key and that is
not one of other keys defined in this glossary. Some examples are: a symmetric key used for
encryption or decryption of session data, a private key used for signing data, a public key used for
verifying a signature, a private or public key used in a key establishment operation, an HMAC key.

Decrypt key A decrypt key is used for decrypting data to yield plaintext (unencrypted data). Some cryptographic
algorithms (e.g. AES) successively modify the cryptographic key during the steps of the cryptographic
operation; therefore the decrypt form of the key is different from the encrypt form of the key.

Descriptor A descriptor is a sequence of commands that causes SEC to perform cryptographic functions. There
are three types of descriptors: job descriptors, shared descriptors, and trusted descriptors. Shared
descriptors and trusted descriptors are actually special forms of job descriptors. Note that this usage of
the term 'descriptor' is not related to the term 'frame descriptor'.

Fail mode SEC clears its CSP registers (e.g. key registers) upon entrance to Fail Mode. SEC enters Fail Mode
when the SecMon's security state machine enters its Fail State. This could be due to the detection of
tampering, scan or JTAG testing or due to the failure of a security module.

Frame descriptor SEC inputs and outputs data over its Queue Interface in data structures called 'frame descriptors'.
Note that the term 'frame descriptor' is not related to the terms 'job descriptor', 'trusted descriptor', or
'shared descriptor'.

Table continues on the next page...

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1145

Table C-1. Glossary of terms (continued)

Term Description

Hash A hash is the message digest resulting from a hashing operation, such as SHA-1, SHA-256 or MD5. A
cryptographic hashing operation is a collision-resistant one-way function that yields a fixed-length bit
string from a variable length input. A function is collision-resistant if it is difficult to find two input strings
that yield the same Message Digest. A function is one-way if it is computationally infeasible to
calculate the input, given only the Message Digest.

Job descriptor The term 'job descriptor' means a descriptor that is not a shared descriptor or a trusted descriptor.
Unlike a shared descriptor, a job descriptor can reference another descriptor, and unlike a trusted
descriptor, a job descriptor is not signed.

Job descriptor key
encryption key

The Job Descriptor Key Encryption Key (JDKEK) is a 256-bit key used to protect the confidentiality of
Data Encryption Keys (DEK) referenced by job descriptors. A new JDKEK value is generated by the
SEC's RNG at each POR, and is used throughout the current power-on cycle to encrypt or decrypt
DEKs "on-the-fly" during job descriptor processing. (See Trusted Descriptor Key Encryption Key.

Key encryption key A Key Encryption Key (KEK) is a cryptographic key used to encrypt other cryptographic keys. SEC
supports various KEKs that are used in different circumstances. (See JDKEK, TDKEK)

Link table A link table is also referred to by the term "Scatter/Gather Table".

Master key The master key is a 256-bit secret value that SEC receives from the SecMon. (See Non-volatile Test
Key, OTP Master Key, Zeroizable Master Key, and Blob Key Encryption Key.)

Message digest A message digest (also called a hash) is a fixed-size string that is the result of computing a
cryptographic one-way function of some input data.

Non-volatile test key The Non-volatile Test Key (NVTK) is a 256-bit key hardwired into SEC. When SEC is in the Non-
Secure Mode SEC will use the NVTK to derive Blob key encryption keys, rather than using the secret
Master Key. The NVTK value is public knowledge, and is the same in every SOC. It is used for known-
answer tests when testing the SEC cryptographic hardware.

Non-secure mode SEC's Non-secure Mode is intended to allow SEC to be tested without compromising the security of
sensitive data. In this mode a known version of the BKEK (based on the Non-volatile Test Key) is used
for exporting and importing Blobs. Therefore any Blobs exported while in Secure Mode or Trusted
Mode cannot be successfully imported while in Non-secure Mode.

OTP master key The OTP Master Key (OTPMK) is a 256-bit secret value stored in one-time-programmable storage on
the SOC. The value is generally written to the one-time-programmable storage while the SOC is in the
factory. The OTPMK bits are protected with a lock that, when set, prevents modifying the value. In
some configurations SecMon will use the OTPMK to derive the value of the master key that the
SecMon supplies over a private bus to SEC. Its value cannot otherwise be read, sensed or scanned.

Processor A processor is a bus master capable of executing software.

Public security
parameter

A public security parameter (PSP) is security-related public information whose modification can
compromise the security of a cryptographic module. [from FIPS PUB 140-3 (DRAFT)] The Trusted
Root Key is a PSP.

Read safe A read-safe transaction reads a full aligned burst of data, even if not all of the data is needed.

Red blob A blob whose data input when exporting is assumed to be not encrypted, and whose data output when
importing is not encrypted. (See Black Blob)

Red key A key that is not encrypted. (See Black Key)

Replay Replay is a type of security attack in which old data is presented by a hacker as if it were new data.
For instance, a hacker could replace a new Blob that shows that a software license has expired with
an old Blob that indicates that the license is still valid. The term "replay" is sometimes also used to
refer to a denial of service attack based upon flooding the system with the same message over and
over. If this message is encrypted or cryptographically authenticated, then the attacker may not be
able to generate new messages and instead would "replay" a legitimate message that the attacker had
snooped from the network.

Secure mode Secure Mode is the normal operating mode of SEC. The Security State Machine within the SecMon
determines when SEC is operating in Secure Mode.

Table continues on the next page...

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1146 NXP Semiconductors

Table C-1. Glossary of terms (continued)

Term Description

Security monitor Security Monitor (SecMon) is a companion logic block to SEC. It implements a security alarm and
maintains a security state machine.

Sensitive data Sensitive data is data that should be protected against unauthorized disclosure.

Sensitive security
parameter

The term 'sensitive security parameters' (SSP) encompasses critical security parameters and public
security parameters. [from FIPS PUB 140-3 (DRAFT)]

SEQ Sequence. For most memory referencing descriptor commands SEC implements an auto-incrementing
addressing mode using sequence input address and sequence output address registers. This is
intended to faciliate the processing of cryptographic networking protocols.

Shared descriptor A shared descriptor is a special type of job descriptor that can be executed only when it is referenced
by another descriptor. Shared descriptors are intended to contain data, such as keys and sequence
numbers, that are shared by two or more other descriptors.

Trusted descriptor A trusted descriptor is a special type of job descriptor that has some additional access privileges and
some additional security protections. Trusted descriptors are protected from modification by means of
a signature over the descriptor. SEC verifies the signature before executing the trusted descriptor, and
aborts execution if the signature is incorrect. (See Trusted Descriptor Signing Key)

Trusted descriptor
signing key

The Trusted Descriptor Signing Key (TDSK) is a 256-bit key used in HMAC-SHA-256 to sign and
verify the signature over trusted descriptors. A new TDSK value is generated by the SEC RNG at each
POR, and is used throughout the current power-on cycle. SEC will allow TDSK to be used to sign a
new trusted descriptor only if the descriptor is submitted via a Job Ring that has AMTD set in its
JRaICID register. Otherwise, SEC will use TDSK only to verify the signature over a trusted descriptor,
or to update the signature on an existing trusted descriptor that has modified itself during its execution.

Trusted descriptor
key encryption key

The Trusted Descriptor Key Encryption Key (TDKEK) is a 256-bit key that can be used to protect the
confidentiality of Data Encryption Keys (DEKs) referenced by trusted descriptors. A new TDKEK value
is generated by the SEC's RNG at each POR, and is used throughout the current power-on cycle to
encrypt or decrypt DEKs "on-the-fly" during trusted descriptor processing. (See Job Descriptor Key
Encryption Key)

Trusted mode Trusted Mode is a special operating mode of SEC. The Security State Machine within the SecMon
determines when SEC is operating in Trusted Mode. This mode is implemented so that trusted boot-
time software, or a hypervisor or TrustZone Secure World software can store data in and retrieve data
from Trusted Mode Blobs that are not accessible to software running while SEC is in Secure Mode or
Non-Secure Mode.

Trusted root key The Trusted Root Key is a public signature key used by HAB to verify the signature over the
Command Sequence File. The key could be RSA (probably 2048 bits) or ECC-DSA (probably 511
bits). The integrity and authenticity of this key is protected by placing a SHA-256 hash of this key in
fuses on the SOC. The fuses are located in a bank with a lock fuse that, when set, prevents any
changes to the hash value.

Word A word of memory or a one-word register contains 32 bits.

Write safe A write-safe transaction writes 0s to addresses past the targeted locations up to the next 8, 16, 32 or
64-byte address boundary, depending upon the offset within the cacheline.

Zeroizable master
key

The Zeroizable Master Key (ZMK) is a 256-bit key stored in a register in the low-power domain of
SecMon. In some configurations and security states SecMon will use the ZMK to derive the value of
the Master Key that SecMon supplies over the snvs_master_key signal to SEC. Its value cannot
otherwise be read or scanned. The value can be generated by the SEC RNG, and can be loaded
automatically by hardware. The value can be zeroized when a tamper event is detected. (See Master
Key.)

Zeroize A set of data storage locations is zeroized by overwriting the storage locations with a value (not
necessarily 0) that is independent of the previous content of the storage locations.

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

NXP Semiconductors 1147

QorIQ LS1046A Security (SEC) Reference Manual, Rev. 0, 05/2017

1148 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo, and Layerscape are
trademarks of NXP B.V. All other product or service names are the property of
their respective owners. ARM, AMBA, ARM Powered, Cortex, and TrustZone
are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. ARM7 is a trademark of ARM Limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks
of Oracle and/or its affiliates.

© 2017 NXP B.V.

Document Number LS1046ASECRM
Revision 0, 05/2017

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Chapter 1: Overview of SEC (security engine) functionality
	Chapter 2: Feature summary
	Chapter 3: SEC implementation
	SEC submodules
	Cryptographic engines implemented in SEC

	Chapter 4: SEC modes of operation
	Security Monitor (SecMon) security states
	The effect of security state on volatile keys
	The effect of security state on non-volatile keys

	Keys available in different security modes
	Keys available in trusted mode
	Keys available in secure mode
	Keys available in non-secure mode
	Keys available in fail mode

	Chapter 5: SEC hardware functional description
	System Bus Interfaces
	AXI master (DMA) interface
	DMA read-safe transactions
	DMA interface write-safe transactions
	DMA write-efficient transactions
	DMA bursts that may read past the end of data structures

	Register interface (IP bus)

	SEC service interface concepts
	SEC descriptors
	Job termination status/error codes
	Frames and flows
	Frame descriptors and frames
	Frame descriptor flow and flow context
	Buffer allocation, release, and reuse
	User data access control and isolation

	Service interfaces
	Job Ring interface
	Configuring and managing the input/output rings, overview
	Managing the input rings
	Managing the output rings
	Controlling access to job rings
	Order of job completion
	Initializing job rings
	Job Ring Registers
	Asserting job ring interrupts

	Queue Manager Interface (QI)
	Requesting and receiving frame descriptors from QMan
	Building job descriptors for QI jobs
	Controlling QI access to frame queues and data
	Tracking the completion order of QI jobs
	Initializing the Queue Manager Interface
	Done/error notification for QI jobs

	Register-based service interface

	Job scheduling
	Job scheduling - default algorithm
	Job scheduling - DECO-specific jobs

	Job execution hardware
	Descriptor controller (DECO) and cryptographic control block (CCB)
	Alignment blocks

	Cryptographic hardware accelerators (CHAs) (overview)

	Chapter 6: Frame queues, frame descriptors, and buffers
	Frame queues
	Dequeue response
	Context_A field (preheader)

	Frame descriptors
	Processing simple frame jobs
	Processing compound frame jobs
	Frame descriptor error handling
	Job descriptor construction from frame descriptor

	Chapter 7: Descriptors and descriptor commands
	Job descriptors
	Trusted descriptors
	Shared descriptors
	Executing shared descriptors in proper order
	Specifying different types of shared descriptor sharing
	Error sharing

	Changing shared descriptors

	Using in-line descriptors
	Using replacement job descriptors
	Scatter/gather tables (SGTs)
	Using descriptor commands
	Command execution order
	Executing commands when SHR = 0
	Executing commands when SHR = 1
	Executing commands when REO = 0
	Executing commands when REO = 1
	Executing additional HEADER commands
	Jumping to another job descriptor

	Command properties
	Blocking commands
	Load/store checkpoint
	Done checkpoint

	Command types
	SEQ vs non-SEQ commands
	Creating a sequence
	Using sequences for fixed and variable length data
	Transferring meta data
	Rewinding a sequence

	Information FIFO entries
	Output FIFO Operation
	Output Checksum logic
	Cryptographic class
	Address pointers

	HEADER command
	KEY commands
	LOAD commands
	FIFO LOAD command
	Bit length data
	FIFO LOAD input data type

	ECPARAM command
	STORE command
	FIFO STORE command
	MOVE, MOVEB, MOVEDW, and MOVE_LEN commands
	ALGORITHM OPERATION command
	PROTOCOL OPERATION commands
	PKHA OPERATION command
	PKHA OPERATION: clear memory function
	PKHA OPERATION: Arithmetic Functions
	PKHA OPERATION: copy memory functions
	PKHA OPERATION: Elliptic Curve Functions

	SIGNATURE command
	JUMP (HALT) command
	Jump type
	Local conditional jump
	Local conditional increment/decrement jump
	Non-local conditional jump
	Conditional halt
	Conditional halt with user-specified status
	Conditional subroutine call
	Conditional subroutine return

	Test type
	JSL and TEST CONDITION fields
	JUMP command format

	MATH and MATHI Commands
	SEQ IN PTR command
	SEQ OUT PTR command

	Chapter 8: Public Key Cryptography Operations
	Conformance considerations
	Discrete-log key-pair generation
	Inputs to the discrete-log key-pair generation function
	Assumptions of the discrete-log key-pair generation function
	Outputs from the discrete-log key-pair generation function
	Operation of the discrete-log key-pair generation function
	Notes associated with the discrete-log key-pair generation function

	Using the Diffie_Hellman function
	Diffie_Hellman requirements
	Inputs to the Diffie-Hellman function
	Assumptions of the Diffie-Hellman function
	Outputs from the Diffie-Hellman function
	Operation of the Diffie-Hellman function
	Notes associated with the Diffie-Hellman function

	Generating DSA and ECDSA signatures
	Inputs to the DSA and ECDSA signature generation function
	Assumptions of the DSA and ECDSA signature generation function
	Outputs from the DSA and ECDSA signature generation function
	Operation of the DSA and ECDSA signature generation function
	Notes associated with the DSA and ECDSA Signature Generation function

	Verifying DSA and ECDSA signatures
	Inputs to the DSA and ECDSA signature verification function
	Assumptions of the DSA and ECDSA signature verification function
	Outputs from the DSA and ECDSA signature verification function
	Operation of the DSA and ECDSA signature verification function
	Notes associated with the DSA and ECDSA Signature Verification function

	RSA Finalize Key Generation (RFKG)
	Implementation of the RSA encrypt operation
	Implementation of the RSA decrypt operation

	Chapter 9: Protocol acceleration
	IPsec ESP encapsulation and decapsulation overview
	IPsec ESP encapsulation and decapsulation mode support
	IPsec ESP error codes
	Programming for IPsec
	PDB format for IPsec ESP Transport (and Legacy Tunnel) encapsulation
	Common PDB format descriptions for IPsec ESP Transport (and Legacy Tunnel) decapsulation
	Overriding ESP Transport (and legacy Tunnel) PDB content with the DECO Protocol Override Register
	PDB format for IPsec ESP Tunnel encapsulation
	Common PDB format descriptions for IPsec ESP Tunnel decapsulation
	Overriding ESP Tunnel PDB content with the DECO Protocol Override Register
	IPsec ESP encapsulation CBC-specific PDB segment format descriptions
	IPsec ESP encapsulation AES-CTR-specific PDB segment format descriptions
	IPsec ESP encapsulation AES-CCM-specific PDB segment format descriptions
	IPsec ESP encapsulation AES-GCM-specific PDB segment format descriptions
	IPsec ESP decapsulation CBC-specific PDB segment format descriptions
	IPsec ESP decapsulation AES-CTR-specific PDB segment format descriptions
	IPsec ESP decapsulation AES-CCM-specific PDB segment format descriptions
	IPsec ESP decapsulation AES-GCM-specific PDB segment format descriptions

	IPsec ESP Transport (and Legacy Tunnel) encapsulation overview
	Encapsulating the IP header in tunnel mode
	Encapsulating the IP header in transport mode
	Process for IPsec ESP Transport (and Legacy Tunnel) encapsulation

	IPsec ESP Cryptographic Encapsulation
	Process for IPsec encapsulation when using AES-CBC or DES-CBC
	Process for IPsec encapsulation when using AES-CTR
	Process for IPsec encapsulation when using AES-CCM
	Process for IPsec encapsulation when using AES-GCM

	IPsec ESP Transport (and Legacy Tunnel) decapsulation procedure overview
	IPsec ESP Transport Mode outer IP header decapsulation procedure
	IPsec ESP Transport (and Legacy Tunnel) outer IP header decapsulation procedure (tunnel mode)

	IPsec ESP Cryptographic Decapsulation
	IPsec decapsulation procedure when using AES-CBC or DES-CBC
	Process for IPsec decapsulation when using AES-CTR
	Process for IPsec decapsulation when using AES-CCM
	Process for IPsec decapsulation when using AES-GCM
	Use of SPI and the sequence number in decapsulation
	Optional use of ESN in ESP decapsulation
	Anti-replay checking in IPsec ESP decapsulation
	When anti-replay checking is enabled
	When anti-replay checking is disabled

	ICV checking during IPsec ESP decapsulation

	IPsec ESP Tunnel encapsulation overview
	Handling the Outer IP Header during ESP Tunnel encapsulation
	Outer IP Header handling with UDP-encapsulated-ESP
	ESP Tunnel Outer IP Header manipulation
	ESP Tunnel handling of Next Header

	IPsec ESP tunnel decapsulation overview
	Input material preceding the outer IP header
	Handling the Outer IP Header during ESP Tunnel decapsulation
	Manipulation of the Inner IP Header during ESP Tunnel decapsulation
	Decapsulation Output Frame Length

	SSL/TLS/DTLS record encapsulation and decapsulation overview
	Programming and processing details common to all versions of SSL, TLS, and DTLS
	PDB use and format for SSL, TLS, and DTLS encapsulation and decapsulation
	PDB for SSL, TLS, and DTLS when a Block Cipher is used
	PDB for SSL, TLS, and DTLS when AES-Counter mode is used
	PDB for TLS and DTLS when AES-GCM is used
	PDB for TLS and DTLS when AES-CCM is used
	Programming the Options byte with the PDB for SSL, TLS and DTLS

	Overriding the PDB for SSL, TLS, and DTLS Encapsulation
	Computing the pre-encrypted record length during decapsulation
	SSL, TLS, DTLS Decapsulation Output frame options
	SSL / TLS / DTLS error codes

	Process for SSL 3.0 and TLS 1.0 record encapsulation
	Differences between SSL 3.0 and TLS 1.0 (record encapsulation)
	Processing SSL 3.0 and TLS 1.0 record encapsulation with block ciphers

	Process for SSL 3.0 and TLS 1.0 record decapsulation
	SSL 3.0 and TLS 1.0 Record Decapsulation for block ciphers
	Differences between SSL 3.0 and TLS 1.0 (record decapsulation)

	Process for TLS 1.1 and TLS 1.2 record encapsulation
	Differences between TLS 1.0, TLS 1.1, and TLS 1.2 Record Encapsulation
	Support for IV generation in TLS 1.1 and TLS 1.2 record encapsulation
	Processing TLS 1.1 and TLS 1.2 record encapsulation with block ciphers (AES or DES)
	Processing TLS 1.1 and TLS 1.2 record encapsulation with stream ciphers
	Processing TLS 1.1 and TLS 1.2 record encapsulation with AEAD ciphers

	Process for TLS 1.1 and TLS 1.2 record decapsulation
	Decapsulation of TLS 1.1 and TLS 1.2 records when a stream cipher is used
	Decapsulation of TLS 1.1 and TLS 1.2 records when a block cipher is used
	Decapsulation of TLS 1.2 records when an AEAD is used

	Process for DTLS record encapsulation
	Differences between DTLS and TLS
	Process of DTLS Record Encapsulation when using a Block Cipher
	Process of DTLS Record Encapsulation when using a Stream Cipher
	DTLS 1.2 Record Encapsulation when using an AEAD Cipher

	Process for DTLS record decapsulation
	Differences between DTLS and TLS
	Process of DTLS Record Decapsulation when using a Block Cipher
	Process of DTLS Record Decapsulation when using a Stream Cipher
	DTLS 1.2 Record Decapsulation when using an AEAD Cipher

	SRTP packet encapsulation and decapsulation
	Building the initial counter value (Counter IV)
	Building the AEAD Nonce
	Constructing the AESA context from the SRTP AEAD Nonce for AES-CCM mode
	SRTP encapsulation
	Process for SRTP encapsulation
	Handling the optional MKI
	SRTP encapsulation PDB format descriptions
	SRTP encapsulation error conditions

	SRTP decapsulation overview
	Process for SRTP decapsulation
	SRTP decapsulation PDB format descriptions
	SRTP decapsulation error conditions

	IEEE 802.1AE MACsec encapsulation and decapsulation overview
	Process for 802.1AE MACsec encapsulation
	Using the frame check sequence (FCS)
	Additional notes for GMAC support

	MACsec encapsulation PDB format descriptions
	Process for 802.1AE MACSec decapsulation
	Automatically switching between two keys
	Additional notes for GMAC support (decapsulation)

	MACsec decapsulation PDB format descriptions

	IEEE 802.11-2012 WPA2 MPDU encapsulation and decapsulation
	Processing Common to WPA2 Encapsulation and Decapsulation
	Constructing the AAD for WPA2 encapsulation and decapsulation
	Constructing the CCMP Nonce for WPA2 encapsulation and decapsulation
	Constructing the AESA context for WPA2 CCMP encapsulation and decapsulation

	Process for WPA2 encapsulation
	Constructing the CCMP header for WPA2 encapsulation
	WPA2 Payload Encapsulation
	Computing the FCS for WPA2 encapsulation
	WPA2 encapsulation PDB format descriptions
	WPA2 encapsulation error conditions

	Process for WPA2 decapsulation
	WPA2 Decapsulation Anti-replay checking
	Using automatic key-switching
	WPA2 decapsulation PDB format descriptions
	WPA2 decapsulation error conditions

	IEEE 802.16 WiMAX encapsulation and decapsulation overview
	Process for IEEE 802.16 WiMAX encapsulation
	IEEE 802.16 WiMAX encapsulation PDB format descriptions
	WiMax encapsulation error conditions
	Procedure for IEEE 802.16 WiMAX decapsulation
	Transforming the GMH (WiMAX decapsulation)
	Automatic key switching (WiMAX decapsulation)

	IEEE 802.16 WiMAX decapsulation PDB format descriptions
	WiMAX decapsulation error conditions

	Anti-Replay built-in checking
	Process for 3G double-CRC encapsulation and decapsulation
	3G double-CRC encapsulation process
	Calculating the 7-bit CRC of the PDU header for encapsulation
	Calculating the 11-bit CRC of the PDU header for encapsulation
	Calculating the 16-bit payload CRC for encapsulation

	3G double-CRC encapsulation PDB format descriptions
	3G double-CRC decapsulation process
	Calculating the 7-bit CRC of the PDU header for decapsulation
	Calculating the 11-bit CRC of the PDU header for decapsulation
	Calculating the 16-bit payload CRC for decapsulation

	3G double-CRC decapsulation PDB format descriptions

	3G RLC PDU Encapsulation and Decapsulation overview
	3G RLC PDU encapsulation overview
	Process for 3G RLC PDU encapsulation
	3G RLC PDU encapsulation PDB format descriptions
	3G RLC PDU decapsulation overview
	Process for 3G RLC PDU decapsulation
	3G RLC PDU decapsulation PDB format descriptions
	Overriding the PDB for 3G RLC PDU encapsulation and decapsulation

	LTE PDCP PDU encapsulation and decapsulation overview
	LTE PDCP PDU IV generation
	LTE PDCP PDU encapsulation process for confidentiality only
	LTE PDCP PDU encapsulation for confidentiality and integrity
	LTE PDCP PDU decapsulation process for confidentiality only
	LTE PDCP PDU decapsulation for confidentiality and integrity
	LTE PDCP shared descriptor PDB format descriptions
	Overriding the PDB for LTE PDCP encapsulation and decapsulation

	Chapter 10: Key agreement functions
	IKEv2 PRF overview
	Using IKE PRF to generate SKEYSEED
	Using IKE PRF+ to generate keying material for the IKEv2 SA
	Using IKE PRF+ to generate Child SA key material
	Restrictions on programming control blocks
	IKE PRF PDB format descriptions
	Implementation details for IKE PRF function
	Implementation Details for IKE PRF+ function

	SSL/TLS/DTLS pseudo-random functions (PRF)
	SSL 3.0 PRF overview
	SSL 3.0 PRF definitions

	Process for SSL 3.0 PRF
	SSL 3.0 PRF PDB format descriptions
	TLS 1.0/TLS 1.1/DTLS PRF overview
	TLS PRF RFC definitions

	Process for TLS 1.0, TLS 1.1, DTLS PRF
	How TLS uses PRF material
	Concatenating input material into one input string (TLS 1.0/1.1/DTLS)

	TLS 1.0, TLS 1.1, DTLS PRF PDB format descriptions
	TLS 1.2 PRF overview
	Process for TLS 1.2 PRF
	Concantenating input material into one input string (TLS 1.2)
	How TLS uses PRF material (TLS 1.2)

	TLS 1.2 PRF PDB format descriptions

	Implementation of the derived key protocol
	Using DKP with HMAC keys
	Implementation of the Blob Protocol

	Chapter 11: Cryptographic hardware accelerators (CHAs)
	Public-key hardware accelerator (PKHA) functionality
	Modular math
	About Montgomery values
	Non-modular Math
	Elliptic-Curve Math
	Point math over a prime field (Fp)
	Point math over a binary field (F2m)
	About Jacobian projective coordinates
	About the Point at Infinity

	PKHA Mode Register
	PKHA functions
	Clear Memory (CLEAR_MEMORY) function
	Integer Modular Addition (MOD_ADD) function
	Integer Modular Subtraction (MOD_SUB_1) function
	Integer Modular Subtraction (MOD_SUB_2) function
	Integer Modular Multiplication (MOD_MUL)
	Integer Modular Multiplication with Montgomery Inputs (MOD_MUL_IM)
	Integer Modular Multiplication with Montgomery Inputs and Outputs (MOD_MUL_IM_OM) Function
	Integer Modular Exponentiation (MOD_EXP and MOD_EXP_TEQ)
	Integer Modular Exponentiation, Montgomery Input (MOD_EXP_IM and MOD_EXP_IM_TEQ) Function
	Integer Simultaneous Modular Exponentiation (MOD_SML_EXP)
	Integer Modular Square (MOD_SQR and MOD_SQR_TEQ)
	Integer Modular Square, Montgomery inputs (MOD_SQR_IM and MOD_SQR_IM_TEQ)
	Integer Modular Square, Montgomery inputs and outputs (MOD_SQR_IM_OM and MOD_SQR_IM_OM_TEQ)
	Integer Modular Cube (MOD_CUBE and MOD_CUBE_TEQ)
	Integer Modular Cube, Montgomery input (MOD_CUBE_IM and MOD_CUBE_IM_TEQ)
	Integer Modular Cube, Montgomery input and output (MOD_CUBE_IM_OM and MOD_CUBE_IM_OM_TEQ)
	Integer Modular Square Root (MOD_SQRT)
	Integer Modulo Reduction (MOD_AMODN)
	Integer Modular Inversion (MOD_INV)
	Integer Montgomery Factor Computation (MOD_R2)
	Integer Greatest Common Divisor (MOD_GCD)
	Miller_Rabin Primality Test (PRIME_TEST)
	Binary Polynomial (F2m) Addition (F2M_ADD) function
	Binary Polynomial (F2m) Modular Multiplication (F2M_MUL)
	Binary Polynomial (F2m) Modular Multiplication with Montgomery Inputs (F2M_MUL_IM) Function
	Binary Polynomial (F2m) Modular Multiplication with Montgomery Inputs and Outputs (F2M_MUL_IM_OM) Function
	Binary Polynomial (F2m) Modular Exponentiation (F2M_EXP and F2M_EXP_TEQ)
	Binary Polynomial (F2m) Simultaneous Modular Exponentiation (F2M_SML_EXP)
	Binary Polynomial (F2m) Modular Square (F2M_SQR and F2M_SQR_TEQ)
	Binary Polynomial (F2m) Modular Square, Montgomery Input (F2M_SQR_IM and F2M_SQR_IM_TEQ)
	Binary Polynomial (F2m) Modular Square, Montgomery Input and Output (F2M_SQR_IM_OM and F2M_SQR_IM_OM_TEQ)
	Binary Polynomial (F2m) Modular Cube (F2M_CUBE and F2M_CUBE_TEQ)
	Binary Polynomial (F2m) Modular Cube, Montgomery Input (F2M_CUBE_IM and F2M_CUBE_IM_TEQ)
	Binary Polynomial (F2m) Modular Cube, Montgomery Input and Output (F2M_CUBE_IM_OM and F2M_CUBE_IM_OM_TEQ)
	Binary Polynomial (F2m) Modulo Reduction (F2M_AMODN)
	Binary Polynomial (F2m) Modular Inversion (F2M_INV)
	Binary Polynomial (F2m) R2 Mod N (F2M_R2) Function
	Binary Polynomial (F2m) Greatest Common Divisor (F2M_GCD) Function
	ECC Fp Point Add, Affine Coordinates (ECC_MOD_ADD) Function
	ECC Fp Point Add, Affine Coordinates, R2 Mod N Input (ECC_MOD_ADD_R2) Function
	ECC Fp Point Double, Affine Coordinates (ECC_MOD_DBL) Function
	ECC Fp Point Multiply, Affine Coordinates (ECC_MOD_MUL and ECC_MOD_MUL_TEQ) Function
	ECC Fp Point Multiply, R2 Mod N Input, Affine Coordinates (ECC_MOD_MUL_R2 and ECC_MOD_MUL_R2_TEQ) Function
	ECC Fp Check Point (ECC_MOD_CHECK_POINT) Function
	ECC Fp Check Point, R2 Mod N Input, Affine Coordinates (ECC_MOD_CHECK_POINT_R2) Function
	ECC F2m Point Add, Affine Coordinates (ECC_F2M_ADD) Function
	ECC F2m Point Add, Affine Coordinates, R2 Mod N Input (ECC_F2M_ADD_R2) Function
	ECC F2m Point Double - Affine Coordinates (ECC_F2M_DBL) Function
	ECC F2m Point Multiply, Affine Coordinates (ECC_F2M_MUL and ECC_F2M_MUL_TEQ) Function
	ECC F2m Point Multiply, R2 Mod N Input, Affine Coordinates (ECC_F2M_MUL_R2 and ECC_F2M_MUL_R2_TEQ) Function
	ECC F2m Check Point (ECC_F2M_CHECK_POINT) Function
	ECC F2m Check Point, R2 (ECC_F2M_CHECK_POINT_R2) Function
	ECM Modular Multiplication (ECM_MOD_MUL and ECM_MOD_MUL_TEQ) Function
	ECM Fp Point Multiply, R2 Mod N Input, Affine Coordinates (ECM_MOD_MUL_R2 and ECM_MOD_MUL_R2_TEQ) Function
	ECT Modular Multiplication (ECT_MOD_MUL and ECT_MOD_MUL_TEQ) Function
	ECT Fp Point Multiply, R2 Mod N Input, Affine Coordinates (ECT_MOD_MUL_R2 and ECT_MOD_MUL_R2_TEQ) Function
	ECT Fp Point Add, Affine Coordinates (ECT_MOD_ADD) Function
	ECT Fp Point Add, Affine Coordinates, R2 Mod N Input (ECT_MOD_ADD_R2) Function
	ECT Fp Check Point (ECT_MOD_CHECK_POINT) Function
	ECT Fp Check Point, R2 (ECT_MOD_CHECK_POINT_R2) Function
	Copy memory, N-Size and Source-Size (COPY_NSZ and COPY_SSZ)
	Right Shift A (R_SHIFT) function
	Compare A B (COMPARE) function
	Evaluate A (EVALUATE) function

	Special values for common ECC domains

	Kasumi f8 and f9 hardware accelerator(KFHA) functionality
	KFHA use of the Mode Register
	KFHA use of the Context Register
	KFHA use of the Key Register
	KFHA use of the Data Size Register
	KFHA error conditions

	Data encryption standard accelerator (DES) functionality
	DESA use of the Mode Register
	DESA use of the Key Register
	DESA use of the Key Size Register
	DESA use of the Data Size Register
	DESA Context Register
	Save and store operations in DESA context data

	Cyclic-redundancy check accelerator (CRCA) functionality
	CRCA modes of operation
	CRCA use of the Mode Register
	CRCA Key Register
	CRCA Key Size Register
	CRCA Data Size Register
	CRCA Context Register
	Save and restore operations in CRCA context data

	Random-number generator (RNG) functionality
	RNG features summary
	RNG functional description
	RNG state handles
	RNG NIST certification

	RNG operations
	RNG use of the Key Registers
	RNG use of the Context Register
	RNG use of the Data Size Register

	SNOW 3G f8 accelerator functionality
	Differences between SNOW 3G f8 and SNOW 3G f9
	SNOW 3G f8 use of the Mode Register
	SNOW 3G f8 use of the Context Register
	SNOW 3G f8 use of the Data Size Register
	SNOW 3G f8 use of the Key Register
	SNOW 3G f8 use of the Key Size Register

	SNOW 3G f9 accelerator functionality
	SNOW 3G f9 use of the Mode Register
	SNOW 3G f9 use of the Context Register
	SNOW 3G f9 use of the Data Size Register
	SNOW 3G f9 use of the Key Register
	SNOW 3G f9 use of the Key Size Register
	SNOW 3G f9 use of ICV check

	Message digest hardware accelerator (MDHA) functionality
	MDHA use of the Mode Register
	MDHA use of the Key Register
	Using the MDHA Key Register with normal keys
	Using the MDHA Key Register with IPAD/OPAD "split keys"
	Definition and function of IPAD/OPAD split keys
	Process flow of using the Key Register with split keys
	Using padding with the split key type to align with storage
	Length of a split key
	Loading/storing a split key with a key command
	Loading/storing a split key with a FIFO STORE command
	Sizes of split keys
	Constructing an HMAC-SHA-1 split key in memory

	MDHA use of the Key Size Register

	MDHA use of the Data Size Register
	MDHA use of the Context Register
	Save and restore operations in MDHA context data

	AES accelerator (AESA) functionality
	Differences between the AES encrypt and decrypt keys
	AESA as both Class 1 and Class 2 CHA
	AESA modes of operation
	AESA use of registers
	AESA use of the parity bit
	AES ECB mode
	AES ECB mode use of the Mode Register
	AES ECB mode use of the Context Register
	AES ECB Mode use of the Data Size Register
	AES ECB Mode use of the Key Register
	AES ECB Mode use of the Key Size Register

	AES CBC, OFB, CFB128 modes
	AES CBC, OFB, and CFB128 modes use of the Mode Register
	AES CBC, OFB, and CFB128 modes use of the Context Register
	AES CBC, OFB, and CFB128 modes use of the Data Size Register
	AES CBC, OFB, and CFB128 modes use of the Key Register
	AES CBC, OFB, and CFB128 modes use of the Key Size Register

	AES CTR mode
	AES CTR mode use of the Mode Register
	AES CTR mode use of the Context Register
	AES CTR mode use of the Data Size Register
	AES CTR mode use of the Key Register
	AES CTR mode use of the Key Size Register

	AES XTS mode
	AES XTS mode use of the Mode Register
	AES XTS mode use of the Context Register
	AES XTS mode use of the Data Size Register
	AES XTS mode use of the Key Register
	AES XTS mode use of the Key Size Register

	AES XCBC-MAC and CMAC modes
	AES XCBC-MAC and CMAC modes use of the Mode Register
	AES XCBC-MAC and CMAC Modes use of the Context Register
	AES XCBC-MAC and CMAC modes use of the Class 1 ICV Size Register
	AES XCBC-MAC and CMAC modes use of the Data Size Register
	AES XCBC-MAC and CMAC modes use of the Key Register
	AES XCBC-MAC and CMAC modes use of the Key Size Register
	ICV checking in AES XCBC-MAC and CMAC modes

	AESA CCM mode
	Generation encryption
	Decryption verification
	AES CCM mode use of the Mode Register
	AES CCM mode use of the Context Register
	AES CCM mode use of the Data Size Register
	AES CCM mode use of the Key Register
	AES CCM mode use of the Key Size Register
	AES CCM mode use of the ICV check

	AES GCM mode
	GMAC
	GCM data types
	IV processing
	GCM initialization
	AES GCM mode use of the Mode Register
	AES GCM mode use of the Context Register
	AES GCM Mode use of the Data Size Register
	AES GCM mode use of the Class 1 IV Size Register
	AES GCM mode use of the AAD Size Register
	AES GCM mode use of the Class 1 ICV Size Register
	AES GCM mode use of the Key Register
	AES GCM mode use of the Key Size Register
	AES GCM mode use of the ICV check

	AESA optimization modes
	CTR-XCBC and CTR-CMAC modes data format
	CTR-XCBC and CTR-CMAC modes message format
	CTR-CMAC-LTE for LTE PDCP control-plane processing
	Authentication-only data
	AES optimization modes use of the Mode Register
	AES optimization modes use of the Context Register
	AES optimization modes use of the Data Size Register
	AES optimization modes use of the AAD Size Register
	AES optimization modes use of the Class 1 ICV Size Register
	AES optimization modes use of the Class 1 Key Register
	AES optimization modes use of the Class 2 Key Register
	AES optimization modes use of the Class 1 Key Size Register
	AES optimization modes use of the Class 2 Key Size Register
	AES optimization modes use of the ICV check
	AES optimization modes error conditions

	ZUC encryption accelerator (ZUCE) functionality
	Differences between ZUCE and ZUCA
	ZUCE use of the Mode Register
	ZUCE use of the Context Register
	ZUCE use of the Data Size Register
	ZUCE use of the Key Register
	ZUCE use of the Key Size Register

	ZUC authentication accelerator (ZUCA) functionality
	ZUCA use of the Mode Register
	ZUCA use of the Context Register
	ZUCA use of the Data Size Register
	ZUCA use of the Key Register
	ZUCA use of the Key Size Register
	ZUCA use of ICV checking

	Chapter 12: Trust Architecture modules
	Run-time integrity checker (RTIC)
	RTIC modes of operation
	RTIC initialization and operation
	RTIC use of the Throttle Register
	RTIC use of command, configuration, and status registers
	Initializing RTIC
	RTIC Memory Block Address/Length Registers

	SEC virtualization and security domain identifiers (SDIDs)
	Virtualization
	Security domain identifiers (SDIDs)
	TrustZone SecureWorld

	Special-purpose cryptographic keys
	Initializing and clearing black and trusted descriptor keys
	Black keys and JDKEK/TDKEK
	Trusted descriptors and TDSK
	Master key and blobs

	Black keys
	Black key encapsulation schemes
	Differences between black and red keys
	Loading red keys
	Loading black keys
	Avoiding errors when loading red and black keys
	Encapsulating and decapsulating black keys
	Types of black keys and their use
	Types of blobs for key storage

	Trusted descriptors
	Why trusted descriptors are needed
	Trusted-descriptor key types and uses
	Trusted descriptors encrypting/decrypting black keys
	Trusted-descriptor blob types and uses
	Configuring the system to create trusted descriptors properly
	Creating trusted descriptors
	Trusted descriptors and descriptor-header bits
	Trusted-descriptor execution considerations

	Blobs
	Blob protocol
	Why blobs are needed
	Blob conformance considerations
	Encapsulating and decapsulating blobs
	Blob types
	Blob types differentiated by format
	Blob types differentiated by content
	Red blobs (for general data)
	Black blobs (for cryptographic keys)
	Enforcing blob content type

	Blob types differentiated by security state

	Blob encapsulation
	Blob decapsulation

	Critical security parameters
	Manufacturing-protection chip-authentication process
	Providing data to the manufacturing-protection authentication process
	Providing data to the MPPrivK-generation function
	Providing data to the MPPubK-generation function
	Providing data to the MPSign function
	Role of the ROM-resident secure boot firmware

	MPPrivK-generation function
	Differences between the MPPrivK-generation function and the DL KEY PAIR GEN function
	MPPrivK-generation function parameters and operation
	Protocol data block (PDB) for the MPPrivK-generation function

	MPPubK-generation function
	Differences between the MPPubK-generation function and the DL KEY PAIR GEN function
	MPPubK-generation function parameters and operation
	Protocol data block (PDB) for the MPPubK-generation function
	Running the MPPubK generation function at the OEM's facility

	MPSign function
	MPSign function parameters and operation
	Protocol data block (PDB) MPSign function

	Chapter 13: SEC register descriptions
	SEC Memory map
	Master Configuration Register (MCFGR)
	Security Configuration Register (SCFGR)
	Job Ring a ICID Register - most significant half (JR0ICID_MS - JR3ICID_MS)
	Job Ring a ICID Register - least significant half (JR0ICID_LS - JR3ICID_LS)
	Queue Manager Interface SDID Register (QISDID)
	Debug Control Register (DEBUGCTL)
	Job Ring Start Register (JRSTARTR)
	RTIC ICID Register for Block a - most significant half (RTICAICID_MS - RTICDICID_MS)
	RTIC ICID Register for Block a - least significant half (RTICAICID_LS - RTICDICID_LS)
	DECO Request Source Register (DECORSR)
	DECO Request Register (DECORR)
	DECOa ICID Register - most significant half (DECO0ICID_MS - DECO2ICID_MS)
	DECOa ICID Register - least significant half (DECO0ICID_LS - DECO2ICID_LS)
	DECO Availability Register (DAR)
	DECO Reset Register (DRR)
	DMA Control Register (DMAC - DMA_CTRL)
	Peak Bandwidth Smoothing Limit Register (PBSL)
	DMA0_AIDL_MAP_MS (DMA0_AIDL_MAP_MS)
	DMA0_AIDL_MAP_LS (DMA0_AIDL_MAP_LS)
	DMA0_AIDM_MAP_MS (DMA0_AIDM_MAP_MS)
	DMA0_AIDM_MAP_LS (DMA0_AIDM_MAP_LS)
	DMA0 AXI ID Enable Register (DMA0_AID_ENB)
	DMA0 AXI Read Timing Check Register (DMA0_ARD_TC)
	DMA0 Read Timing Check Latency Register (DMA0_ARD_LAT)
	DMA0 AXI Write Timing Check Register (DMA0_AWR_TC)
	DMA0 Write Timing Check Latency Register (DMA0_AWR_LAT)
	Manufacturing Protection Private Key Register (MPPKR0 - MPPKR63)
	Manufacturing Protection Message Register (MPMR0 - MPMR31)
	Manufacturing Protection Test Register (MPTESTR0 - MPTESTR31)
	Job Descriptor Key Encryption Key Register (JDKEKR0 - JDKEKR7)
	Trusted Descriptor Key Encryption Key Register (TDKEKR0 - TDKEKR7)
	Trusted Descriptor Signing Key Register (TDSKR0 - TDSKR7)
	Secure Key Nonce Register (SKNR)
	DMA Status Register (DMA_STA)
	DMA_X_AID_7_4_MAP (DMA_X_AID_7_4_MAP)
	DMA_X_AID_3_0_MAP (DMA_X_AID_3_0_MAP)
	DMA_X_AID_15_12_MAP (DMA_X_AID_15_12_MAP)
	DMA_X_AID_11_8_MAP (DMA_X_AID_11_8_MAP)
	DMA_X AXI ID Map Enable Register (DMA_X_AID_15_0_EN)
	DMA_X AXI Read Timing Check Control Register (DMA_X_ARTC_CTL)
	DMA_X AXI Read Timing Check Late Count Register (DMA_X_ARTC_LC)
	DMA_X AXI Read Timing Check Sample Count Register (DMA_X_ARTC_SC)
	DMA_X Read Timing Check Latency Register (DMA_X_ARTC_LAT)
	DMA_X AXI Write Timing Check Control Register (DMA_X_AWTC_CTL)
	DMA_X AXI Write Timing Check Late Count Register (DMA_X_AWTC_LC)
	DMA_X AXI Write Timing Check Sample Count Register (DMA_X_AWTC_SC)
	DMA_X Write Timing Check Latency Register (DMA_X_AWTC_LAT)
	RNG TRNG Miscellaneous Control Register (RTMCTL)
	RNG TRNG Statistical Check Miscellaneous Register (RTSCMISC)
	RNG TRNG Poker Range Register (RTPKRRNG)
	RNG TRNG Poker Square Calculation Result Register (RTPKRSQ)
	RNG TRNG Poker Maximum Limit Register (RTPKRMAX)
	RNG TRNG Seed Control Register (RTSDCTL)
	RNG TRNG Total Samples Register (RTTOTSAM)
	RNG TRNG Sparse Bit Limit Register (RTSBLIM)
	RNG TRNG Frequency Count Minimum Limit Register (RTFRQMIN)
	RNG TRNG Frequency Count Register (RTFRQCNT)
	RNG TRNG Frequency Count Maximum Limit Register (RTFRQMAX)
	RNG TRNG Statistical Check Monobit Count Register (RTSCMC)
	RNG TRNG Statistical Check Monobit Limit Register (RTSCML)
	RNG TRNG Statistical Check Run Length 1 Count Register (RTSCR1C)
	RNG TRNG Statistical Check Run Length 1 Limit Register (RTSCR1L)
	RNG TRNG Statistical Check Run Length 2 Count Register (RTSCR2C)
	RNG TRNG Statistical Check Run Length 2 Limit Register (RTSCR2L)
	RNG TRNG Statistical Check Run Length 3 Limit Register (RTSCR3L)
	RNG TRNG Statistical Check Run Length 3 Count Register (RTSCR3C)
	RNG TRNG Statistical Check Run Length 4 Limit Register (RTSCR4L)
	RNG TRNG Statistical Check Run Length 4 Count Register (RTSCR4C)
	RNG TRNG Statistical Check Run Length 5 Count Register (RTSCR5C)
	RNG TRNG Statistical Check Run Length 5 Limit Register (RTSCR5L)
	RNG TRNG Statistical Check Run Length 6+ Limit Register (RTSCR6PL)
	RNG TRNG Statistical Check Run Length 6+ Count Register (RTSCR6PC)
	RNG TRNG Status Register (RTSTATUS)
	RNG TRNG Entropy Read Register (RTENT0 - RTENT15)
	RNG TRNG Statistical Check Poker Count 1 and 0 Register (RTPKRCNT10)
	RNG TRNG Statistical Check Poker Count 3 and 2 Register (RTPKRCNT32)
	RNG TRNG Statistical Check Poker Count 5 and 4 Register (RTPKRCNT54)
	RNG TRNG Statistical Check Poker Count 7 and 6 Register (RTPKRCNT76)
	RNG TRNG Statistical Check Poker Count 9 and 8 Register (RTPKRCNT98)
	RNG TRNG Statistical Check Poker Count B and A Register (RTPKRCNTBA)
	RNG TRNG Statistical Check Poker Count D and C Register (RTPKRCNTDC)
	RNG TRNG Statistical Check Poker Count F and E Register (RTPKRCNTFE)
	RNG DRNG Status Register (RDSTA)
	RNG DRNG State Handle 0 Reseed Interval Register (RDINT0)
	RNG DRNG State Handle 1 Reseed Interval Register (RDINT1)
	RNG DRNG Hash Control Register (RDHCNTL)
	RNG DRNG Hash Digest Register (RDHDIG)
	RNG DRNG Hash Buffer Register (RDHBUF)
	Recoverable Error Indication Status (REIS)
	Recoverable Error Indication Halt (REIH)
	SEC Version ID Register, most-significant half (SECVID_MS)
	SEC Version ID Register, least-significant half (SECVID_LS)
	Holding Tank 0 Job Descriptor Address (HT0_JD_ADDR)
	Holding Tank 0 Shared Descriptor Address (HT0_SD_ADDR)
	Holding Tank 0 Job Queue Control, most-significant half (HT0_JQ_CTRL_MS)
	Holding Tank 0 Job Queue Control, least-significant half (HT0_JQ_CTRL_LS)
	Holding Tank Status (HT0_STATUS)
	Job Queue Debug Select Register (JQ_DEBUG_SEL)
	Job Ring Job IDs in Use Register, least-significant half (JRJIDU_LS)
	Job Ring Job-Done Job ID FIFO BC (JRJDJIFBC)
	Job Ring Job-Done Job ID FIFO (JRJDJIF)
	Job Ring Job-Done Source 1 (JRJDS1)
	Job Ring Job-Done Descriptor Address 0 Register (JRJDDA)
	Performance Counter, Number of Requests Dequeued (PC_REQ_DEQ)
	Performance Counter, Number of Outbound Encrypt Requests (PC_OB_ENC_REQ)
	Performance Counter, Number of Inbound Decrypt Requests (PC_IB_DEC_REQ)
	Performance Counter, Number of Outbound Bytes Encrypted (PC_OB_ENCRYPT)
	Performance Counter, Number of Outbound Bytes Protected (PC_OB_PROTECT)
	Performance Counter, Number of Inbound Bytes Decrypted (PC_IB_DECRYPT)
	Performance Counter, Number of Inbound Bytes Validated. (PC_IB_VALIDATED)
	CHA Revision Number Register, most-significant half (CRNR_MS)
	CHA Revision Number Register, least-significant half (CRNR_LS)
	Compile Time Parameters Register, most-significant half (CTPR_MS)
	Compile Time Parameters Register, least-significant half (CTPR_LS)
	Fault Address Register (FAR)
	Fault Address ICID Register (FAICID)
	Fault Address Detail Register (FADR)
	SEC Status Register (SSTA)
	RTIC Version ID Register (RVID)
	CHA Cluster Block Version ID Register (CCBVID)
	CHA Version ID Register, most-significant half (CHAVID_MS)
	CHA Version ID Register, least-significant half (CHAVID_LS)
	CHA Number Register, most-significant half (CHANUM_MS)
	CHA Number Register, least-significant half (CHANUM_LS)
	Input Ring Base Address Register for Job Ring a (IRBAR_JR0 - IRBAR_JR3)
	Input Ring Size Register for Job Ring a (IRSR_JR0 - IRSR_JR3)
	Input Ring Slots Available Register for Job Ring a (IRSAR_JR0 - IRSAR_JR3)
	Input Ring Jobs Added Register for Job Ringa (IRJAR_JR0 - IRJAR_JR3)
	Output Ring Base Address Register for Job Ring a (ORBAR_JR0 - ORBAR_JR3)
	Output Ring Size Register for Job Ring a (ORSR_JR0 - ORSR_JR3)
	Output Ring Jobs Removed Register for Job Ring a (ORJRR_JR0 - ORJRR_JR3)
	Output Ring Slots Full Register for Job Ring a (ORSFR_JR0 - ORSFR_JR3)
	Job Ring Output Status Register for Job Ring a (JRSTAR_JR0 - JRSTAR_JR3)
	Job Ring Interrupt Status Register for Job Ring a (JRINTR_JR0 - JRINTR_JR3)
	Job Ring Configuration Register for Job Ring a, most-significant half (JRCFGR_JR0_MS - JRCFGR_JR3_MS)
	Job Ring Configuration Register for Job Ring a, least-significant half (JRCFGR_JR0_LS - JRCFGR_JR3_LS)
	Input Ring Read Index Register for Job Ring a (IRRIR_JR0 - IRRIR_JR3)
	Output Ring Write Index Register for Job Ring a (ORWIR_JR0 - ORWIR_JR3)
	Job Ring Command Register for Job Ring a (JRCR_JR0 - JRCR_JR3)
	Job Ring a Address-Array Valid Register (JR0AAV - JR3AAV)
	Job Ring a Address-Array Address b Register (JR0AAA0 - JR3AAA7)
	Recoverable Error Indication Record 0 for Job Ring a (REIR0JR0 - REIR0JR3)
	Recoverable Error Indication Record 2 for Job Ring a (REIR2JR0 - REIR2JR3)
	Recoverable Error Indication Record 4 for Job Ring a (REIR4JR0 - REIR4JR3)
	Recoverable Error Indication Record 5 for Job Ring a (REIR5JR0 - REIR5JR3)
	RTIC Status Register (RSTA)
	RTIC Command Register (RCMD)
	RTIC Control Register (RCTL)
	RTIC Throttle Register (RTHR)
	RTIC Watchdog Timer (RWDOG)
	RTIC Endian Register (REND)
	RTIC Memory Block a Address b Register (RMAA0 - RMDA1)
	RTIC Memory Block a Length b Register (RMAL0 - RMDL1)
	RTIC Memory Block a c Endian Hash Result Word d (RAMDB_0 - RDMDL_31)
	Recoverable Error Indication Record 0 for RTIC (REIR0RTIC)
	Recoverable Error Indication Record 2 for RTIC (REIR2RTIC)
	Recoverable Error Indication Record 4 for RTIC (REIR4RTIC)
	Recoverable Error Indication Record 5 for RTIC (REIR5RTIC)
	Queue Interface Control Register, most-significant (QICTL_MS)
	Queue Interface Control Register, least-significant (QICTL_LS)
	Queue Interface Status Register (QISTA)
	Queue Interface Dequeue Configuration Register, most-significant half (QIDQC_MS)
	Queue Interface Dequeue Configuration Register, least-significant half (QIDQC_LS)
	Queue Interface Enqueue Configuration Register, most-significant half (QIEQC_MS)
	Queue Interface Enqueue Configuration Register, least-significant half (QIEQC_LS)
	Queue Interface ICID Configuration Register, most-significant half (QIIC_MS)
	Queue Interface ICID Configuration Register, least-significant half (QIIC_LS)
	Queue Interface Descriptor Word 0 Register (QIDESC0)
	Queue Interface Descriptor Word a Registers (QIDESC1 - QIDESC12)
	Queue Interface Compound Frame Scatter/Gather Table Registers (QICFOFH_MS - QICFIFL_LS)
	Queue Interface Job ID Valid Register (QIJIDVALID)
	Queue Interface Job ID Job Ready Register (QIJIDRDY)
	Recoverable Error Indication Record 0 for the Queue Interface (REIR0QI)
	Recoverable Error Indication Record 1 for the Queue Interface (REIR1QI)
	Recoverable Error Indication Record 2 for the Queue Interface (REIR2QI)
	Recoverable Error Indication Record 4 for the Queue Interface (REIR4QI)
	Recoverable Error Indication Record 5 for the Queue Interface (REIR5QI)
	CCB a Class 1 Mode Register Format for RNG4 (C0C1MR_RNG - C2C1MR_RNG)
	CCB a Class 1 Mode Register Format for Public Key Algorithms (C0C1MR_PK - C2C1MR_PK)
	CCB a Class 1 Mode Register Format for Non-Public Key Algorithms (C0C1MR_NPK - C2C1MR_NPK)
	CCB a Class 1 Key Size Register (C0C1KSR - C2C1KSR)
	CCB a Class 1 Data Size Register (C0C1DSR - C2C1DSR)
	CCB a Class 1 ICV Size Register (C0C1ICVSR - C2C1ICVSR)
	CCB a CHA Control Register (C0CCTRL - C2CCTRL)
	CCB a Interrupt Control Register (C0ICTL - C2ICTL)
	CCB a Clear Written Register (C0CWR - C2CWR)
	CCB a Status and Error Register, most-significant half (C0CSTA_MS - C2CSTA_MS)
	CCB a Status and Error Register, least-significant half (C0CSTA_LS - C2CSTA_LS)
	CCB a AAD Size Register (C0AADSZR - C2AADSZR)
	Class 1 IV Size Register (C0C1IVSZR - C2C1IVSZR)
	PKHA A Size Register (C0PKASZR - C2PKASZR)
	PKHA B Size Register (C0PKBSZR - C2PKBSZR)
	PKHA N Size Register (C0PKNSZR - C2PKNSZR)
	PKHA E Size Register (C0PKESZR - C2PKESZR)
	CCB a Class 1 Context Register Word b (C0C1CTXR0 - C2C1CTXR15)
	CCB a Class 1 Key Registers Word b (C0C1KR0 - C2C1KR7)
	CCB a Class 2 Mode Register (C0C2MR - C2C2MR)
	CCB a Class 2 Key Size Register (C0C2KSR - C2C2KSR)
	CCB a Class 2 Data Size Register (C0C2DSR - C2C2DSR)
	CCB a Class 2 ICV Size Register (C0C2ICVSZR - C2C2ICVSZR)
	CCB a Class 2 Context Register Word b (C0C2CTXR0 - C2C2CTXR17)
	CCB a Class 2 Key Register Word b (C0C2KEYR0 - C2C2KEYR31)
	CCB a FIFO Status (C0FIFOSTA - C2FIFOSTA)
	CCB a iNformation FIFO When STYPE Is Not 10 (C0NFIFO - C2NFIFO)
	CCB a iNformation FIFO When STYPE Is 10 (C0NFIFO_2 - C2NFIFO_2)
	CCB a Input Data FIFO (C0IFIFO - C2IFIFO)
	CCB a Output Data FIFO (C0OFIFO - C2OFIFO)
	DECOa Job Queue Control Register, most-significant half (D0JQCR_MS - D2JQCR_MS)
	DECOa Job Queue Control Register, least-significant half (D0JQCR_LS - D2JQCR_LS)
	DECOa Descriptor Address Register (D0DAR - D2DAR)
	DECOa Operation Status Register, most-significant half (D0OPSTA_MS - D2OPSTA_MS)
	DECOa Operation Status Register, least-significant half (D0OPSTA_LS - D2OPSTA_LS)
	DECOa Checksum Register (D0CKSUMR - D2CKSUMR)
	DECOa SDID / Trusted ICID Status Register (D0SDIDSR - D2SDIDSR)
	DECOa ICID Status Register (D0ISR - D2ISR)
	DECOa Math Register b_MS (D0MTH0_MS - D2MTH7_MS)
	DECOa Math Register b_LS (D0MTH0_LS - D2MTH7_LS)
	DECOa Gather Table Register b Word 0 (D0GTR0_0 - D2GTR3_0)
	DECOa Gather Table Register b Word 1 (D0GTR0_1 - D2GTR3_1)
	DECOa Gather Table Register b Word 2 (D0GTR0_2 - D2GTR3_2)
	DECOa Gather Table Register b Word 3 (D0GTR0_3 - D2GTR3_3)
	DECOa Scatter Table Register b Word 0 (D0STR0_0 - D2STR3_0)
	DECOa Scatter Table Register b Word 1 (D0STR0_1 - D2STR3_1)
	DECOa Scatter Table Register b Word 2 (D0STR0_2 - D2STR3_2)
	DECOa Scatter Table Register b Word 3 (D0STR0_3 - D2STR3_3)
	DECOa Descriptor Buffer Word b (D0DESB0 - D2DESB63)
	DECOa Debug Job (D0DJR - D2DJR)
	DECOa Debug DECO (D0DDR - D2DDR)
	DECOa Debug Job Pointer (D0DJP - D2DJP)
	DECOa Debug Shared Pointer (D0SDP - D2SDP)
	DECOa Debug_ICID, most-significant half (D0DIR_MS - D2DIR_MS)
	Sequence Output Length Register (SOL0 - SOL2)
	Variable Sequence Output Length Register (VSOL0 - VSOL2)
	Sequence Input Length Register (SIL0 - SIL2)
	Variable Sequence Input Length Register (VSIL0 - VSIL2)
	Protocol Override Register (D0POVRD - D2POVRD)
	Variable Sequence Output Length Register; Upper 32 bits (UVSOL0 - UVSOL2)
	Variable Sequence Input Length Register; Upper 32 bits (UVSIL0 - UVSIL2)

	Appendix A: Revision History
	Appendix B: Acronyms and abbreviations
	Appendix C: Glossary

