
CodeWarrior Development Studio for
StarCore 3900FP DSP Architectures

Assembler Reference Manual

Document Number: CWSCASMREF
Rev. 10.9.0, 06/2015

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Introduction

1.1 Assembler... 11

1.2 Software Development Flow.. 11

Chapter 2
StarCore Assembler

2.1 Starting the Assembler..13

2.2 Command-Line Options..14

2.2.1 Using an Environment Variable...18

2.2.2 Reading Input from an Argument File...19

2.2.3 Generating an Object File.. 20

2.2.4 Adding Debug Information..20

2.2.5 Redirecting the Source Listing...21

2.2.6 Controlling Assembler Messages...21

2.2.7 Searching Additional Directories...22

2.2.8 Defining Substitution Strings...22

2.2.9 Using OPT Options on the Command Line... 23

2.2.10 Counting the core stalls..23

2.2.11 Specifying a Target Architecture... 24

2.2.12 Specifying Endian Mode..24

2.2.13 Checking Programming Rules... 25

2.2.13.1 Code Examples.. 26

2.2.13.2 Data Analysis Terms..28

2.2.13.3 Data Analysis Limitations..28

2.2.13.4 Initialization File.. 29

2.3 Assembler Processing... 30

2.4 Source Statements...31

2.4.1 Label Field... 32

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 3

Section number Title Page

2.4.2 Operation Field.. 32

2.4.3 Operand Field...33

2.4.4 Comment Field...33

2.4.5 Variable Length Execution Sets...33

2.4.6 Symbol Names... 34

2.4.7 Symbol Labels..35

2.4.8 Strings.. 35

2.5 Source Listing... 36

2.5.1 Source Listing Example... 37

Chapter 3
Expressions

3.1 Absolute and Relative Expressions...39

3.2 Expression Memory Space Attributes.. 40

3.3 Internal Expression Representation.. 41

3.4 Constants...41

3.4.1 Numeric Constants...41

3.4.2 String Constants... 41

3.5 Operators...42

3.6 Operator Precedence... 44

3.7 Functions...45

3.7.1 ABS Absolute Value..47

3.7.2 ACS Arc Cosine...47

3.7.3 ARG Macro Argument...48

3.7.4 ASN Arc Sine...48

3.7.5 AT2 Arc Tangent... 49

3.7.6 ATN Arc Tangent.. 49

3.7.7 BIGENDIAN Endian Mode Check..49

3.7.8 CCC Cumulative Cycle Count...50

3.7.9 CEL Ceiling... 50

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

4 Freescale Semiconductor, Inc.

Section number Title Page

3.7.10 CHK Instruction/Data Checksum.. 51

3.7.11 CNT Macro Argument Count.. 51

3.7.12 COH Hyperbolic Cosine.. 52

3.7.13 COS Cosine..52

3.7.14 CTR Location Counter Number...53

3.7.15 CVF Convert Integer to Floating Point..53

3.7.16 CVI Convert Floating Point to Integer...54

3.7.17 CVS Convert Memory Space...54

3.7.18 DEF Defined Symbol...55

3.7.19 EXP Expression Check.. 55

3.7.20 FLD Shift and Mask...56

3.7.21 FLR Floor...56

3.7.22 FRC Convert Floating Point to Fractional... 57

3.7.23 INT Integer Check... 57

3.7.24 L10 Log Base 10.. 58

3.7.25 LCV Location Counter Value.. 58

3.7.26 LEN String Length...59

3.7.27 LFR Convert Floating Point to Long Fractional..59

3.7.28 LNG Concatenate to Double Word..60

3.7.29 LOG Natural Logarithm...60

3.7.30 LST LIST Directive Flag Value...61

3.7.31 LUN Convert Long Fractional to Floating Point... 61

3.7.32 MAC Macro Definition..61

3.7.33 MAX Maximum Value.. 62

3.7.34 MIN Minimum Value.. 62

3.7.35 MSP Memory Space.. 63

3.7.36 MXP Macro Expansion..63

3.7.37 POS Position of Substring..63

3.7.38 POW Raise to a Power...64

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 5

Section number Title Page

3.7.39 REL Relative Mode... 65

3.7.40 RND Random Value.. 65

3.7.41 RVB Reverse Bits in Field...65

3.7.42 SCP Compare Strings...66

3.7.43 SGN Return Sign... 66

3.7.44 SIN Sine... 66

3.7.45 SNH Hyperbolic Sine...67

3.7.46 SQT Square Root... 67

3.7.47 TAN Tangent... 68

3.7.48 TNH Hyperbolic Tangent.. 68

3.7.49 UNF Convert Fractional to Floating Point...69

3.7.50 XPN Exponential Function.. 69

Chapter 4
Software Project Management

4.1 Sections...71

4.1.1 Section Names..72

4.1.2 Nested and Fragmented Sections... 73

4.1.3 Sections and Symbols.. 73

4.1.4 Macros and DEFINE Symbols within Sections...74

4.2 Sections and Relocation..74

4.3 Address Assignment... 75

4.4 Overlays.. 75

4.4.1 Overlay Manager..77

4.4.2 Overlay Example..78

4.5 Multi-Programmer Environment Example... 81

4.5.1 Method 1: Absolute Mode... 82

4.5.2 Method 2: Relative Mode.. 83

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

6 Freescale Semiconductor, Inc.

Section number Title Page

Chapter 5
Assembler Directives

5.1 Significant Characters...85

5.2 Directive List.. 86

5.3 Descriptions.. 88

5.3.1 ; Start Comment... 89

5.3.2 ;; Start Unreported Comment...89

5.3.3 \ Continue Line...90

5.3.4 \ Concatenate Macro Argument... 90

5.3.5 ? Substitute Macro Value...91

5.3.6 % Substitute Macro Hex Value..92

5.3.7 ^ Override Macro Local Label... 93

5.3.8 " Delimit Macro String...93

5.3.9 " Expand DEFINE Quoted String.. 94

5.3.10 @ Start Function.. 95

5.3.11 * Substitute Location Counter..95

5.3.12 ++ Concatenate Strings.. 95

5.3.13 [] Delimit Substring.. 95

5.3.14 [] Group Instructions...96

5.3.15 < Force Short Addressing.. 96

5.3.16 > Force Long Addressing...97

5.3.17 # Use Immediate Addressing... 98

5.3.18 #< Force Immediate Short Addressing.. 98

5.3.19 #> Force Immediate Long Addressing...99

5.3.20 ALIGN Align Location Counter.. 99

5.3.21 BADDR Set Buffer Address.. 100

5.3.22 BSB Allocate Bit-Reverse Buffer.. 101

5.3.23 BSC Allocate Constant Storage Block...102

5.3.24 BUFFER Start Buffer...102

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 7

Section number Title Page

5.3.25 COMMENT Start Comment Lines.. 104

5.3.26 DC Define Constant... 104

5.3.27 DCB Define Constant Byte..105

5.3.28 DCL Define Constant Long... 106

5.3.29 DCLL Define Constant Long Long... 107

5.3.30 DEFINE Define Substitution String.. 108

5.3.31 DS Define Storage... 109

5.3.32 DSR Define Reverse-Carry Storage.. 109

5.3.33 DUP Duplicate Source Lines... 110

5.3.34 DUPA Duplicate Sequence with Arguments... 111

5.3.35 DUPC Duplicate Sequence with Characters..112

5.3.36 DUPF Duplicate Sequence in Loop... 113

5.3.37 ELSE Start Alternative Conditional Assembly..114

5.3.38 END End of Source Program...115

5.3.39 ENDBUF End Buffer...116

5.3.40 ENDIF End Conditional Assembly..116

5.3.41 ENDM End Macro Definition..117

5.3.42 ENDSEC End Section..117

5.3.43 EQU Equate Symbol to Value... 118

5.3.44 EXITM Exit Macro..118

5.3.45 FAIL Issue Programmer Error Message.. 119

5.3.46 FALIGN Align with Fetch-Set.. 120

5.3.47 GLOBAL Declare Global Section Symbol..121

5.3.48 GSET Set Global Symbol to Value..121

5.3.49 HIMEM Set High Memory Bounds...122

5.3.50 IF Start Conditional Assembly...123

5.3.51 INCLUDE Include Secondary File.. 124

5.3.52 LIST List Assembly... 125

5.3.53 LOMEM Set Low Memory Bounds.. 125

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

8 Freescale Semiconductor, Inc.

Section number Title Page

5.3.54 MACLIB Specify Macro Library.. 126

5.3.55 MACRO Define Macro..127

5.3.56 MSG Issue Programmer Message..128

5.3.57 MULTIDEF Allow Multiple Definitions...129

5.3.58 NOLIST Stop Assembly Listing..129

5.3.59 NOTE Include Note... 130

5.3.60 OPT Set Assembler Options.. 130

5.3.61 ORG Initialize Memory Space and Location Counters... 136

5.3.62 PAGE Advance Page or Size Page.. 137

5.3.63 PMACRO Purge Macro Definition..138

5.3.64 PRCTL Send Control String to Printer.. 139

5.3.65 SECFLAGS Set ELF Section Flags...140

5.3.66 SECTION Start Section.. 141

5.3.67 SECTYPE Set ELF Section Type..143

5.3.68 SET Set Symbol to Value.. 144

5.3.69 SIZE Set Symbol Size..145

5.3.70 STITLE Initialize Program Subtitle...146

5.3.71 TITLE Initialize Program Title.. 146

5.3.72 TYPE Set Symbol Type...147

5.3.73 UNDEF Undefine DEFINE Symbol..148

5.3.74 WARN Issue Programmer Warning.. 149

5.4 Pragmas...149

5.4.1 SECTYPE.. 150

5.4.2 STACK_EFFECT.. 150

Chapter 6
Macros and Conditional Assembly

6.1 Defining Macro...153

6.1.1 Calling a Macro..154

6.1.2 Macro Expansions..155

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 9

Section number Title Page

6.1.3 Macro Libraries..156

6.1.4 Dummy Argument Operators...156

6.1.5 Macro Directives..156

6.2 Conditional Assembly...157

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

10 Freescale Semiconductor, Inc.

Chapter 1
Introduction

The StarCore assembly language tools consist of an assembler, a linker, an archiver, and
several utilities. This manual explains the assembly language tools for the StarCore DSP
cores.

In this chapter:

• Assembler
• Software Development Flow

1.1 Assembler

The StarCore Assembler converts handwritten or compiler-generated StarCore assembly
code into ELF object files.

The assembler provides:

• Expression evaluation involving numeric constants, string constants, operators, and
built-in functions

• Modular programming involving sections
• Macros that allow variable arguments
• Conditional assembly
• Debug information of code written in assemble language
• Assembly code source files

Chapters 2 through 6 provide a complete explanation of the assembler.

1.2 Software Development Flow

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 11

This topic describes software development flow for StarCore Assembler.

The following diagram illustrates the software development flow, showing the inputs and
outputs of each stage.

Figure 1-1. StarCore Development Tools

The StarCore assembler architecture is compiler-friendly, so you can combine it with a
compiler that generates exceptionally compact code. In this manner, you can write
applications in C, yet achieve code density and high performance comparable to that of
hand-coded assembly programs.

Compiler options let you specify appropriate settings, development tools, processing
stages, and processing options. Then, when you submit C source files to the compiler, its
shell automatically advances the source files through compilation, assembly, and linking,
to produce an executable program.

You submit hand-coded assembly language files to the assembler, which transforms the
assembly code into ELF object code. The assembler then submits this object code and
any object modules to the linker, which combines them into a single, executable program.

You may load this executable program into the simulator for execution and evaluation.

Software Development Flow

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

12 Freescale Semiconductor, Inc.

Chapter 2
StarCore Assembler

This section describes StarCore assembler and its features.

The StarCore Assembler translates hand-written or compiler-generated StarCore
assembly language programs into machine language. This assembler uses executable and
linking format (ELF) for object files.

The assembler supports these features:

• Expression evaluation using numeric constants, string constants, operators, and built-
in functions

• Modular programming using sections
• Macros that allow variable arguments
• Conditional assembly
• Debug information of code written in assemble language
• Assembly code source files

In this chapter:

• Starting the Assembler
• Command-Line Options
• Assembler Processing
• Source Statements
• Source Listing

2.1 Starting the Assembler

This topic describes how to start the assembler in command-line mode.

Use this command to start the assembler:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 13

 scasm [option ...] file

where:

option

One or more of the optionsTable 2-1 table lists.

file

The assembly source file.

If a file's name does not include an extension, the assembler tries to open the file without
an extension. If that is not successful, the assembler appends .asm to the name, and again
tries to open the file.

NOTE
The assembler does not generate an object file unless the
command includes the -b option.

This example command starts the assembler, assembles source file corr.asm, outputs a
source listing to the standard output, and generates relocatable object file corr.eln. Except
for the -b option, this command tells the assembler to use all default settings.

 scasm -b corr.asm

2.2 Command-Line Options

This topic lists and describes the command-line options for StarCore assembler.

The table below summarizes assembler options; later sections of this chapter explain
these option in more detail. Note that:

• Assembler options are not case sensitive.
• Certain options may appear more than once on the command line, as their

descriptions explain.
• Options with one argument must have space in between otherwise no space is

required with options that may or may not have arguments, or have variable number
of arguments. Following are few of the examples:

• -archsc3900fp (or -archsc3850) is wrong, the correct syntax is -arch sc3900fp
• -u a3 is wrong, the correct syntax is -ua3
• -b u0 is wrong, the correct syntax is -bu0

Command-Line Options

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

14 Freescale Semiconductor, Inc.

NOTE
All options in the below table and OPT Set Assembler
Options are valid with the -Xasm pass through option of
the scc command line.

Table 2-1. StarCore Assembler
Options

Option Description See Section

-a Specifies absolute mode
instead of the default
relative mode. With the
-b option, generates an
executable object file.

Generating an Object
File

-arch <arch> Specifies the assembly
architecture for the file.
The arch parameter
values include:
sc3900fp, b4460, and
b4860 This option is
synonymous with the
command sc3900fp|
b4460|b4860.

Specifying a Target
Architecture

-b[objfile] Generates an object file,
assigning the specified
name.

Generating an Object
File

-c Specifies compiler
generated code, making
-ocs and -q the default
options.

• Turns on
restriction
checking that
disables
programming rule
A3.

• Order matters for
-c, -s, and -u
options:
assembler
processes them
from left to right.

• Suppresses asm
banner

• Debug-information
is not generated
by the asm
(accepted by
compiler)

-dsymbolstring Defines substitution
strings to be used on all
source lines; equivalent
to the DEFINE directive.

Defining Substitution
Strings

Table continues on the next page...

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 15

Table 2-1. StarCore Assembler Options
(continued)

Option Description See Section

-ea errfile Appends the standard
error output stream to
the specified file.

Controlling Assembler
Messages

-ew errfile Writes the standard
error output stream to
the specified file,
overwriting any previous
contents. A space is
mandatory before the
file name.

Controlling Assembler
Messages

-fargfile Reads options and file
names from the
specified file, appending
them to the command
line.

-g Adds debug information
to the object file; valid
only with the -b option.

Adding Debug
Information

-ipathname Adds the specified
directory to the standard
search paths; repeatable
multiple times. The
assembler searches
directories in their
command-line order.

Searching Additional
Directories

-l[lstfile] Generates the listing file
to the specified file.

Redirecting the Source
Listing

-mdirectory Specifies the directory
that contains macro
definitions; repeatable
multiple times. The
assembler searches
directories in their
command-line order.
Equivalent to the
MACLIB directive.

Searching Additional
Directories

-oopt[,opt...] Designates assembler
options; commas without
spaces must separate
multiple options, as in
example -ofa,svo.
Equivalent to the OPT
directive; valid
arguments are any OPT-
directive options, which
OPT Set Assembler
Options explains.

Using OPT Options on
the Command Line

-q Specifies to suppress
the assembler banner.

Controlling Assembler
Messages

Table continues on the next page...

Command-Line Options

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

16 Freescale Semiconductor, Inc.

Table 2-1. StarCore Assembler Options
(continued)

Option Description See Section

-s{all | none|
strict|id[,id...]}

Enables checks of
programming rules
(formerly called
restriction checking).
Commas without spaces
must separate multiple
arguments.

• -snone
suppresses
implicit checking
(equivalent to -
uall).

• -sall turns on all
restriction
checking.

• -sstrict turns on
restriction
checking that
could generate
error messages
(but not warnings).

• Order matters for -
s, -c, and -u
options:
assembler
processes them
from left to right.

Checking Programming
Rules

-u{all|none|
id[,id...]}

Inhibits restriction
checking for the
specified restrictions, as
in -ua1,a2 or -uall.

• -uall is
equivalent to -
snone.

• -unone is
equivalent to -
sall.

• Order matters for
-u, -c, and -s
options:
assembler
processes them
from left to right.

-version Displays assembler
banner, then exits.

-W=[no]<keyword> Enables/disables
warnings or remarks:

• -W=falign -
displays FALIGN
remarks
(equivalent to -
ofa)

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 17

Table 2-1. StarCore Assembler
Options

Option Description See Section

• -W=remarks -
displays remarks
(equivalent to -
or)

• -W=warnings -
displays warnings
(equivalent to -
ow)

• -W=nofalign -
disables FALIGN
remarks display
(equivalent to -
onofa)

• -W=noremarks -
disables remarks
display (equivalent
to -onor)

• -W=nowarnings
- disables
warnings display
(equivalent to -
onow)

2.2.1 Using an Environment Variable

If you use command-line options regularly, you may assign them to the environment
variable DSPASMOPT. Before processing any options, the assembler adds this variable's
text to the existing command line.

To define DSPASMOPT:

1. In the below table find the command line and environment file appropriate for your
operating system. (The environment file is in the directory that $SC100_HOME defines.)

2. Enter the command line in the environment file.
a. Any option of Table 2-1 table is a valid option parameter value.
b. Separate multiple option values with spaces.
c. Start each option value with a hyphen.

Command-Line Options

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

18 Freescale Semiconductor, Inc.

3. When you are done, re-execute the environment file.
Table 2-2. DSPASMOPT Command

Lines

Operating System Command Line Environment File

UNIX: Bourne shell (sh, ksh,
bash)

DSPASMOPT="-
option ..."export
DSPASMOPT

env.sh

UNIX: C shell (csh, tcsh) setenv DSPASMOPT "-
option ..."

env.csh

Windows set DSPASMOPT=-
option ...

env.bat

For example, if the DSPASMOPT definition in the env.sh file is:

DSPASMOPT="-b -l"
export DSPASMOPT

Then each time you invoke the assembler, it adds the -b and -l options to the command
line. The command scasm corr.asm becomes scasm -l -b corr.asm.

2.2.2 Reading Input from an Argument File

The -fargfile option instructs the assembler to read command-line input from the
specified argument file. This option is a method for passing command-line input from
such an argument file to the assembler.

The argfile parameter value can include an optional pathname. You may repeat this
option multiple times.

For example, this command invokes the assembler, telling it to read arguments from the
file asmopts:

 scasm -fasmopts -q filter.asm

An argument file is a text file containing a list of options, arguments, file names - even
the -f option itself. Within the argument file, a space, blank, tab, or newline character
must separate each file or option. Use semicolons to include comments.

Argument-file contents can be as simple as this example:

 -b -l
 -sa1,gg4

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 19

2.2.3 Generating an Object File

The assembler generates a relocatable object file only if the command line includes the -b
option. If the command line includes both the -a and -b options, the assembler instead
generates an executable object file.

-a

With the -b option, generates an executable object file.

-b[file]

Generates an object file, assigning the specified name; the file name may include an
optional pathname. Using a hyphen in place of a file name sends the object file to the
standard output.

This option overwrites any file that has the same name. If this option does not include a
file name, the assembler uses the next option in the command line as the file name.

This example assembles files main.asm and fft.asm into the executable object file
filter.eld:

 scasm -a -bfilter.eld main.asm fft.asm

2.2.4 Adding Debug Information

To add debug information to the object file, use the -g option:

-g

Adds these debugging sections to the object
file: .debug_abbrev, .debug_aranges, .debug_info, .debug_macinfo, .debug_loc, and .debug_line.
Produces debug information for all global symbols, including EQUs. Wherever necessary
for debugging, inserts local symbols (named F_MemAllocArea_[section_name]_[pc]).

This option is valid only with the -b option.

Accordingly, for an assembly file from the compiler, your command line should include
the -c option, to suppress assembly source-level debug information. But for a manually
written assembly file, your command line should not include the -c option.

Command-Line Options

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

20 Freescale Semiconductor, Inc.

If the assembly file includes an overlay or union section, the assembler appends that
section's name to the names of debug sections. For consistent debug information,
modules that contain debug information and an overlay/union section must not include
other text sections.

2.2.5 Redirecting the Source Listing

Per the default setting, the assembler sends a source listing to the standard output. To
save the source listing to a file, use the -l option.

-l[file]

Redirects the source listing to the specified file; the file name may include an optional
pathname.

This option overwrites any file that has the same name. The parameter specifying the file
name is optional. If this option does not include a name, the assembler uses the name of
the first source file in the command line, with extension .lst.

This first example assembles files filter.asm and gaus.asm into the single, relocatable
object file filter.eln, then redirects the source listing to file filter.lst:

 scasm -b -lfilter.lst filter.asm gaus.asm

The second example inhibits the source listing, by specifying IL (inhibit listing) as an
argument for the -o option. (Another way to inhibit the source listing is specifying IL as
an argument to the OPT directive in the assembly source file.)

 scasm -b -oil filter.asm gaus.asm

2.2.6 Controlling Assembler Messages

To redirect the standard error output stream to a file, and to control the level of messages
the assembler displays, use the -ea, -ew, or -q options.

-ea file

Appends the standard error output stream (stderr) to the specified file. A space is required
between -ea and the file name.

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 21

-ew file

Writes the standard error output stream (stderr) to the specified file, overwriting the file if
it already exists. A space is required between -ew and the file name.

-q

Specifies to suppress the assembler banner.

This example:

• Assembles the files filter.asm and gaus.asm into the relocatable object file filter.eln,
• Redirects the standard error output stream to the file errors, and
• Redirects the source listing to the file filter.lst.

 scasm -b -ew errors -lfilter.lst filter.asm gaus.asm

2.2.7 Searching Additional Directories

To add directories to the assembler's standard search paths, use the -i or -m options.

-ipathname

Adds the specified directory to the search path for INCLUDE files.

-mpathname

Adds the specified directory to the search path for macro definitions. This option is
equivalent to the MACLIB directive.

You may repeat either of these directives multiple times. The assembler searches
directories in their command-line order.

These examples add directory sctools/fftlib to the search path. (The first example is for a
UNIX environment, the second for a Windows environment).

 scasm -m/sctools/fftlib trans.asm

 scasm -ic:\sctools\fftlib filter.asm

2.2.8 Defining Substitution Strings

Command-Line Options

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

22 Freescale Semiconductor, Inc.

To define substitution strings, use the -d option:

-d symbol string

Directs the assembler to replace every occurrence of symbol in the source file with the
specified string. A space must precede the string. If the string contains spaces, single or
double quotes must enclose the string.

You can repeat the -d symbol string sequence multiple times.

This example substitutes the string 1 for all occurrences of BIG_ENDIAN in the source file
vit.asm.

 scasm -b -dB_END '1' -obe vit.asm

Another way to define substitution strings is using the DEFINE directive in the source
file.

2.2.9 Using OPT Options on the Command Line

To use any OPT-directive options on the command line, use the -o option.

-o opt[,opt...]

Directs the assembler to use the specified OPT-directive options. Commas without spaces
must separate multiple options.

This example tells the assembler to include the MD and MEX options - that is, to include
macro definitions and macro expansions in the source listing:

 scasm -b -l -omd,mex corr.asm

2.2.10 Counting the core stalls

To instruct the assembler to output information regarding the core stalls, use the -ostalls
option.

For example:

scasm -arch b4860 -l -ostalls input.asm

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 23

2.2.11 Specifying a Target Architecture

The valid arguments are:

• sc3900fp
• b4460
• b4860

The following table list the special symbols the assembler automatically defines for an
ELF object file. These symbols relate to the architecture that command line specifies.

Table 2-3. Assembler Symbols

Architecture Defines

SC3900FP/B4460/B4860 _SC3900_, __SC3900__

This first example uses the -c command-line option to invoke the assembler for the
SC3900FP DSP core:

 scasm -b -l -dMY_DEF '1' main.asm

This second example uses the OPT directive to specify the core architecture:

 opt cex,mex
 page 132,42,0,0,0
 LAB1 macro args
 ...

2.2.12 Specifying Endian Mode

To specify the endian mode, use the be arguments for the -o command-line option or the
OPT directive:

be

Specifies big-endian object files: the most significant byte occupies the lower word
address.

This first example uses the -o command-line option to specify big-endian mode:

Command-Line Options

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

24 Freescale Semiconductor, Inc.

 scasm -b -l -obe vit.asm

This second example uses the OPT directive, placed at the beginning of the source file, to
specify big-endian mode:

 opt be
 page 132,42,0,0,0
 LAB1 macro args
 ...

NOTE
For SC3900FP cores, the big-endian mode is enabled by
default. Trying to specify the little-endian mode [the -ole
command] generates error messages.

2.2.13 Checking Programming Rules

The reference manual for each core explains the rules for grouping and sequencing
instructions in a variable length execution set (VLES). The assembler enforces static
programming rules, marking violations at assembly time. Assembly does not take place if
such errors exist. To keep the object file even if there is such an error, use the OPT svo (-
osvo) option.

Rule identifiers begin actual error messages. For example, the identifier A.1 corresponds
to Rule A.1 of the SC3900FP Core Reference Manual.

NOTE
The assembler's default setting for rule checking is ON, except
for specific restriction checking. (This is equivalent to the -s
strict option.)

Use these -s option patterns to control rule checking:

-s id[,id...]

Enables checking for violations of specified rules; id values are rule identifiers, without
periods or other characters. Commas without spaces must separate multiple id arguments.
Neither the -s option nor the id arguments are case sensitive.

-sall

Enables checking for all static rules.

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 25

-snone

Disables checking for all static rules.

-sstrict

Enables checking for static rules that could generate error messages; does not enable
checking for static rules that could generate warnings.

This first example enables checking for all rules, in source file myprog.asm:

 scasm
 -b -sall myprog.asm

This second example specifies checking for violations of the A.1, A.2, and G.G.1 rules,
in source file myprog.asm:

 scasm -b -sa1,a2,gg1 myprog.asm

NOTE
The system checks programming rules for sequential code; it
does not check rules across changes of flow. For example, the
assembler issues an error message for these code lines, which
violate restriction T1:

cmp.eq.x #0,d0,p0:p1

if.p0 move.l r0,d1

But the assembler does not issue that error message in response
to the same violation if the code includes a change of flow, as
in:

[
 cmp.eq.x #0,d0,p0:p1
 if.p1 bra label1
]
label1:
 if.p1 ld.l (r0),d0

2.2.13.1 Code Examples

The below listing shows C code appropriate for -O0 compilation.

Listing 2-1. C Example for -O0 Compilation

volatile extern int bcr;

Command-Line Options

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

26 Freescale Semiconductor, Inc.

volatile extern int psdmr;

void initialize()

{

 bcr = 0x10000000; /*EBM = 0*/

 psdmr = 0x90000000; /*EAMUX = 1*/

}

void main()

{

 initialize(); /*SIU13 violation*/

}

The following listing shows C code appropriate for -O3 compilation.

Listing 2-2. C Example for -O3 Compilation

#define BR0 0x100
#define MAR 0x20

.c file:

void initialize
{

 int *br;

 br = (int *)BR0;

 *br = 0x280000; /*PS,DECC != 0*/

}

void initialize_read_from_UPM(int addr)

{

 int *mar;

 mar = (int *)MAR;

 *mar = addr;

}

void main()

{

 initialize_UPM();

 initialize_read_from_UPM(4); /*ADDRESS = 4*/ /*SIU 8 violation*/

}

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 27

The following listing shows the assembly code.

Listing 2-3. Assembly Language Code

 tfra.l #$6260,r0 ;si2cmr
 move.l #$1900,d0 ;rfsd = tfsd = 0, ce = fe = 1, dsc = 1

 st.l d0,(r0) ;CPM36 violation

2.2.13.2 Data Analysis Terms

These terms apply to the assembler's data analyzer:

• Calling convention - convention the restriction checker uses for external calls. This
convention specifies the registers and memory addresses that the called routine
affects.

• Call tree - list of calling routines and called routines, from a source file, depicted in
tree form.

• Constant propagation - algorithm that propagates constant resources over a control-
flow graph.

• Control-flow graph (CFG) - rooted, directed graph that provides information about
the flow of a routine.

2.2.13.3 Data Analysis Limitations

Keep in mind these limitations for -k restriction checking:

• The stack content is not available to the checker, nor can the checker know the initial
values of the (O)SP registers.

• The checker treats PUSHN and POPN instructions the same way it treats regular
PUSH/POP instructions.

• The checker always operates as if the processor is in the normal processing state: SP
is NSP and OSP is ESP.

• Two code sections in the same asm file prevents restriction checking. (The assembler
starts both such sections at p:$0, letting the linker choose the real addresses. This
means that at least two instructions start at p:$0.)

• Peripherals must have the same endianness as the assembled file.
• The checker cannot distinguish a call to address p:$0 from a call to an external

routine

Command-Line Options

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

28 Freescale Semiconductor, Inc.

2.2.13.4 Initialization File

The restriction checker relies on the initialization file for address definitions, label values,
and calling conventions. You also can use this file to specify the addresses of such special
registers as Brx and ORx (for memory controllers).

To include comments in the initialization file, write # as the first character of each
comment line.

These directives may appear in the initialization file:

.address register_name mem_address

Assigns the specified hexadecimal address to the specified register; the register must be a
memory mapped register. Neither argument is case sensitive. The mem_address value has
the format p:xxxxxxxx.

Example: .address Br0 p:ff801801

.call-conv call_conv_id

[deleted]=[list_of_deleted_regs_and_mem_addresses]

Defines a calling convention. The call_conv_id name may be any ASCII string, except that
the restriction checker ignores duplicate names.

The list in brackets consists of registers and hexadecimal memory intervals, separated by
commas. Register names must have r.reg_ prefixes, such as r:reg_r0 or r:reg_n3. Memory
intervals must follow the format p:100-300. To specify a single address, follow the format
p:200 or p:200-200.

Example:

 .call_conv 1
 deleted=[r:reg_d0,r:reg_sp,p:ffff]
 deleted=[r:reg_r1,r:reg_r2]

.funcName=call_conv_id

Specifies the calling convention for a function.

Example: .func_fibonacci=1

If the restriction checker finds a call to an external routine, the checker searches the
initialization file's list of function calling conventions:

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 29

• If the list includes the function name, the checker applies the specified calling
convention.

• If the list does not include the function name, the checker uses the default
convention: the called function changes all the core registers without affecting
memory addresses.

As the constant propagation algorithm needs an existing CFG, indirect change-of-flow
instructions should have extra target specifications. The compiler may provide this
information. But manually assembled files should pass this information to the checker in
the form of a comment. This comment should be either on the line of the COF instruction
or the last line of the packet that contains the COF instruction.

In this sample code, such a comment includes the symbols 11 and 12, the possible targets
of the jump instruction:

 [
 move.l #4660,d0
 jsr r0
] ;Lint_info: targets: l1 l2

.never_return_symbols list_of_symbols

Tells assembler to not return to the current function, if a conditional or unconditional
jump instruction hits any external symbol of the input list. Pertains to such instructions as
bra, break, cont, contd, and jmp. (You can use this directive to make sure that the current
basic block will not have any successors.)

Example: .never_return_symbols _abort,___QCtxtRestore

.value label value

Assigns the specified hexadecimal value to the label; the label may be a symbol known
during the linking stage. The label is case sensitive.

Example: .value StArT ffff

2.3 Assembler Processing

This topic describes assembler processing for StarCore devices.

The StarCore assembler passes through code three times, performing these operations:

1. First Pass:

Assembler Processing

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

30 Freescale Semiconductor, Inc.

• Gathers instruction sequence and ordering information.
• As appropriate, rearranges instructions, generates error messages and warnings.

2. Second Pass:
• Reads source program.
• Builds symbol and macro tables.

3. Third Pass:
• Referring to the Pass 2 tables, generates the object file.
• Produces the source listing.

The assembler processes each source statement completely before reading the next
statement. As it reads each line, the assembler applies all translations that DEFINE
directives specify. Then the assembler examines the label, operation code, and operand
fields. The assembler scans the macro definition table for matches with the operation
code. If there is no match, the assembler scans the operation code and directive tables for
matches with known opcode.

In case of an error, the assembler displays the appropriate error message, then the line
that contains the error. The assembler displays all error messages, even if it does not
generate a source listing. At the end of the source listing, the assembler prints error,
warning, and remark totals. When the assembler returns control to the host operating
system, it returns the number of errors as an exit status.

2.4 Source Statements

This topic describes the basic source statements for StarCore assembler.

Assembly language programs consist of two types of source statements:

• Assembly language instructions and a comment field
• An assembler directive and a comment field.

The StarCore assembly language supports conditional assembly. It also supports macros
that replace a single program statement with the statements of the macro definition.

The following figure shows the four fields of the simplest source statement: label,
operation, operand, and comment. Later sections of this chapter explain each field.

Figure 2-1. Basic Source Statement

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 31

Spaces or tabs must separate fields. The label, operation, and operand fields must not
include spaces, except for spaces in quoted strings.

Only the first three fields are significant for the assembler; it ignores the comment field.
The assembler treats anything beginning in column 1 as a label.

To extend a source statement to multiple lines, end all but the last line with the
continuation character (\). Exception: An instruction group can span multiple lines
without continuation characters, provided that brackets ([]) enclose the group.

Assembler mnemonics and directives are not case sensitive. But case does matter for
labels, symbols, directive arguments, and literal strings.

If the source file contains horizontal tab characters (ASCII $09), the assembler moves
them to the next fixed tab stop. The default stops are at eight-character intervals: columns
1, 9, 17, and so forth, but you can use the TAB directive to change the stops.

2.4.1 Label Field

Labels begin in column 1 of a source statement. If a line's first character is a space or tab,
it probably means that the label field is empty. Label rules are:

• Label names must follow the same conventions as symbol names.
• A label whose first character is an underscore (_) is a global label.
• A label whose first character is a percent sign (%) is a local label.
• To indent a label, end it with a colon (:). Only space or tab characters may precede

such an indented label.
• A label may occur only once in the label field of an individual source file, unless it is

a local label or is used with the SET directive. If any non-local label occurs more
than once in a label field, the assembler flags all references but the first as errors.

• A line may consist of only a label. Such a line assigns the value of the location
counter to the label. Except for some directives, the assembler assigns a label the
location-counter value for the first word of the instruction or data being assembled.

2.4.2 Operation Field

The operation field follows the label field; at least one space or tab must precede the
operation field. Operation-field entries may be:

• Opcodes - Mnemonics that correspond directly to DSP machine instructions.

Source Statements

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

32 Freescale Semiconductor, Inc.

• Directives - Special assembler operation codes that control the assembly process.
• Macro calls - Invocations or macros, already defined.

The assembler first searches for operation codes in an internal macro definition table. If it
does not find a match, it searches the table of machine operation codes and assembler
directives. If neither of the tables holds the specified operation code, the assembler
generates an error message.

To change this sequence, you can use the MACLIB directive. This means that macro
names can replace standard machine operation codes and assembler directives, although
the assembler issues warnings about such replacements.

2.4.3 Operand Field

The effect of the operand field depends on the contents of the operation field. Any
operand-field value must follow the operation field; at least one space or tab must
precede the operand value. Operand values may include symbols, expressions, or a
combination of both; commas without spaces must separate multiple symbols or
expressions.

As well as an operand value, the operand field includes the addressing mode for the
instruction. For addressing mode definitions, see the core reference manual for your
processor.

2.4.4 Comment Field

The assembler ignores comments, but you should include them in your source files for
internal documentation. A comment field consists of a semicolon (;), followed by any
characters that are not part of a literal string.

If a comment starts in the first column of the source file, the assembler aligns it with the
label field. Otherwise, the assembler aligns comments the comment field. To prevent
comments' reproduction in the source listing (or to prevent them being saved in macro
definitions), start the comments with two successive semicolons (;;).

2.4.5 Variable Length Execution Sets

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 33

The StarCore architecture supports variable length execution sets (VLESes): grouping
multiple instructions for parallel execution. For VLES grouping and sequencing rules, see
the core reference manual for your processor.

The assembler interprets each line containing instructions as a VLES. Tabs or spaces
must separate instructions, as this example shows:

 ld.f (r2)+,d0 ld.f (r3)+,d8 subc.wo.leg.x d0,d0,d5 ;VLES, 3
 instructions

To have a VLES span several lines, use bracket delimiters ([]), as this example shows:

 [
 mac.leg.x d0.h,d1.h,d2 ; multiply operands
 add.x d0,d1,d3 ; add operands
 ld.f (r0)+,d0 ; load operands
 ld.w (r1)+,d1
]

NOTE
Lines of this example include only two instructions and one
comment. This practice improves readability; but it is not
required.

You should separate DALU and AGU instructions in a VLES:
start with DALU instructions and end with AGU instructions.

2.4.6 Symbol Names

Follow these conventions for symbol names:

• Names consist of one or more characters.
• Names cannot begin with number characters 0-9. Otherwise, names can be any

combination of alphanumeric characters (A-Z, a-z, 0-9) and the underscore character
(_).

• Names and other identifiers containing a period (.) are reserved for the system.
• Names are case sensitive, but you can use the -oIC option to override the distinction

between upper-case and lower-case letters.
• Names, regardless of case, must not duplicate the names of StarCore core registers,

instructions, or pseudo-instructions. The assembler reserves these names.

This table shows examples of symbol names:

Source Statements

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

34 Freescale Semiconductor, Inc.

Type Example

Valid names loop_1; ENTRY; _alpha_BRAVO_charlie

Invalid names 1st_loop; loop&go; $value

Reserved names dcl; nop; r0; section ; loopstart2

2.4.7 Symbol Labels

You may use symbols as labels. To make a label local, start it with the percent character
(%C). This limits the label's scope to the area between any two non-local labels. The only
source statements that can refer to or define such a local label are the statements between
the source lines that contain the non-local labels. A local label is useful as the terminating
address of a DO loop, or any such location that must have a unique label, but is not
significant for documenting the source file.

In a macro, however, the scope of local labels is the entire macro expansion, without
regard to non-local labels. Accordingly, all local labels within a macro must be unique.
You can use such local labels freely within a macro definition, without regard to the
number of macro expansions.

The assembler treats non-local labels within a macro expansion as normal labels. This
means that such labels cannot occur more than once, unless you use them with the SET
directive.

2.4.8 Strings

Literal ASCII strings can be operands for some assembler directives; they also have
limited use in expressions. Such a string is one or more ASCII characters enclosed by
single quotes ('). To specify an apostrophe within a literal string, use two consecutive
apostrophe characters.

The alternate string delimiter is the double quote (") character. If you use double quotes
to enclose a string, the assembler expands any DEFINE directive symbols contained in
the string.

NOTE
Be careful about using the double-quote character inside
macros, where this character is a dummy argument string

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 35

operator. You can use the macro concatenation operator to
escape a double-quoted string.

The concatenation operator (++) tells the assembler to consider two strings to be one. For
example, the strings 'ABC'++'DEF' and 'ABCDEF' are identical to the assembler.

Use brackets ([]) to have the assembler extract a substring. For example, if the assembler
encounters the expression ['abcdefg',1,3], it uses the string value 'bcd'. Substrings are
valid wherever strings are, and you can nest substrings.

The assembler includes functions for determining the length of a string, and the position
of one string within another.

2.5 Source Listing

This topic describes the source listing for StarCore assembler.

The source listing consists of the original source statements, formatted for easier reading,
as well as other information the assembler generates. Most listing lines correspond
directly to a source statement. Listing lines that do not correspond directly to source
statements are page headings, error messages, expansions of macro calls, or expansions
of directives such as DC.

According to its default setting, the assembler sends the source listing to the standard
output. Options are:

• Sending the source listing to a printer, file, null device, or other such arbitrary
destination. For this option, use the I/O redirection facilities of the host operating
system.

• Sending the source listing to an argument file of the -l command-line option. If the -l
option lacks an argument file, the assembler creates a source listing. To name this
listing, the assembler adds the .lst extension to the name of the first source file in the
command line.

• Inhibiting the source listing, by using the IL (inhibit listing) option.

Note that the -b and -l command-line options allow a hyphen as an argument: this directs
the corresponding output to the standard output stream. But unpredictable results may
occur if your settings send both the object file and the source listing to the same output
stream.

The assembler always sends error messages to the standard output, regardless of option
settings.

Source Listing

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

36 Freescale Semiconductor, Inc.

2.5.1 Source Listing Example

The following figure shows an example of the source listing. Text immediately after the
figure explains areas of interest:

Figure 2-2. Assembler Source Listing

Areas of interest are:

• Banner - The first line of each page. The banner consists of the assembler and
version number, the date and time of assembly, the source file name, and the listing
page number.

• Titles - Line 2 displays the title and line 3 displays the subtitle, provided that you
have defined these titles. (Use the TITLE and STITLE directives.) If you have not
defined titles, these lines are blank.

• Line number - The first field of source listing lines shows the line number.
• Indicator - The second field of source listing lines is the macro definition/expansion

column. Possible values are:

Chapter 2 StarCore Assembler

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 37

Indicator Meaning

m Macro definition in progress. (The assembler does
not assemble these lines, but retains them for macro
expansion.)

+ Macro expansion in progress.

d Data expansion occurring. (The -oCEX option
requested this expansion.)

i Line skipped due to an IF-THEN-ELSE directive
sequence.

• Address - The third field of source listing lines contains the memory space value.
• Location Counter - The fourth field of source listing lines contains the location

counter value.
• Statement - Fields 5 and beyond of source listing lines contain the source statement.

This statement contains one or more instructions, depending on usage of instruction
groups.

• Error Message - The listing shows an error message above the line that contains the
error. The message consists of the source file name, the source line number, the
severity level (remark, warning, error, or fatal), and the message text. The message
may also include information about incorrect symbols or fields.

• Message Counts - The listing ends with counts of the assembler errors and warnings.

Source Listing

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

38 Freescale Semiconductor, Inc.

Chapter 3
Expressions

This section lists and describes the expressions their attributes, constants, operators and
functions for StarCore assembler.

An expression represents a value that can be an operand of an assembler instruction or
directive. Expressions consist of symbols, constants, operators, and parentheses.
Expressions may contain:

• User-defined labels, with their integer or floating-point values
• Integers
• Floating-point numbers
• ASCII literal strings

In general, you may not use space or tab characters between the terms and operators of
assembler expressions. Otherwise, expressions follow the rules of algebra and boolean
arithmetic.

In this chapter:

• Absolute and Relative Expressions
• Expression Memory Space Attributes
• Internal Expression Representation
• Constants
• Operators
• Operator Precedence
• Functions

3.1 Absolute and Relative Expressions

This topic describes the absolute and relative expressions for StarCore assembler.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 39

If the assembler operates in relative mode, all address expressions must follow these
definitions:

• Absolute expression - An expression that consists only of absolute terms, or is the
result of two relative terms with opposing signs.

• Relative expression - An expression that consists of a relative term by itself or a
relative term in combination with absolute terms.

Only these types of expressions retain meaningful values after program relocation. For
example, if your program pairs relative terms with opposing signs, the result is the
difference between the two relative terms - an absolute value. But if code adds together
two positive relative terms, the result is unpredictable - it depends on the terms' computed
values at relocation time.

3.2 Expression Memory Space Attributes

As the assembler evaluates an expression, it uses the associated integer or floating-point
value in place of each expression symbol.

Each symbol also includes a memory space attribute: P (program) or N (none).

The result of an expression always has an associated memory space attribute:

• Label, constant, and floating-point expressions associated with the SET directive
always have the memory space attribute N.

• The unary logical negate operator, relational operators, logical operators, and some
functions return values that have the memory space attribute N.

• The result of an expression that has only one operand (and possibly the unary negate
or unary minus operator) always has the memory attribute of that operand.

• The results of expressions involving operands with different memory space attributes
have the memory space attribute P.

The assembler treats the memory space attribute as a type, as high-level languages use
type for variables. Symbols that have the memory space attribute P should be addresses,
so their maximum values should not exceed the maximum address value of the DSP
inclusive. Only symbols that have the memory space attribute N can have values greater
than the target processor's maximum address.

The memory space is implicitly P if you use an address as the operand of a LOOP,
branch, or jump-type instruction.

Immediate addressing expressions can have any memory space attribute.

Expression Memory Space Attributes

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

40 Freescale Semiconductor, Inc.

3.3 Internal Expression Representation

The assembler's internal representation of expression values depends on the target-
processor word size.

The assembler supports word and double-word integer formats. Although the actual
storage size of an expression value depends on the result's magnitude, the assembler can
represent signed integers as long as 64 bits.

Internal floating-point representation depends almost entirely on the host environment,
but the assembler's usual storage format for floating-point values is double precision.
This format consists of 64 bits: 53 bits for the mantissa, 11 bits for the exponent, and an
implied binary point.

3.4 Constants
Constants represent data values that do not vary during program execution.

3.4.1 Numeric Constants

The following table explains the possible numeric constants.

Table 3-1. Numeric Constants

Type Description Examples

Binary Percent sign (%) followed by string of
binary digits (0,1)

%11010

Hexadecimal Dollar sign ($) or 0x, followed by string of
hexadecimal digits (0-9, A-F, a-f)

$12FF0x12FF$12ff0x12ff

Decimal integer String of decimal digits (0-9). Optional
grave accent (`) can start the string.

12345

Decimal floating point String of decimal digits that includes a
decimal point or the letter E. The digits
after the letter E are the exponent.

6E10.62.7e2

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 41

3.4.2 String Constants

The assembler converts expression string constants to right-aligned, concatenated
sequences of ASCII bytes. Null strings have the value 0.

Examples are:

 'ABCD' ($41424344)

 '''79' ($00273739)

 'A' ($00000041)

 '' ($00000000) ¨ null string

 'abcdef' ($61626364)

 'abc'++'de' ($61626364)

The size limit for string expressions is the long-word size of the target processor. If a
string exceeds this number of characters, the assembler truncates the value and prints a
warning. This restriction also applies to string constants that involve the string
concatenation operator, except for the DC and DCB directives.

3.5 Operators

Most assembler operators pertain to both floating-point and integer values.

The assembler follows these rules:

• If both operands are integers, the result is an integer value.
• If both operands are floating point values, the result is a floating-point value.
• If one operand is a floating-point value and the other operand is an integer value, the

assembler converts the integer to a floating-point value, then applies the operator.
The result is a floating-point value.

Operators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

42 Freescale Semiconductor, Inc.

The table given below explains assembler operators, noting those restricted to integer
operands. The main use of the relational and logical operands is with the IF conditional-
assembly directive, although you can use these operands in any expression.

Table 3-2. Assembler Operators

Type Operator Description

Unary + Plus - Returns the positive value of its
operand.

- Minus - Returns the negative value of its
operand.

~ One's Complement - Returns the one's
complement of its integer operand;
cannot be used with floating-point
operands.

! Logical Negate - Returns an integer 1 if
the value of its operand is 0; otherwise
returns a 0. The result's memory space
attribute is N Example: If symbol BUF
has the value 0, !BUF has the value 1. If
BUF has the value 1000, !BUF has the
value 0.

Arithmetic + Addition - Yields the sum of its
operands.

- Subtraction - Yields the difference
between its operands.

* Multiplication - Yields the product of its
operands.

/ Division - Yields the quotient: the first
operand divided by the second. For
integer operands, the result is a
truncated integer.

% Mod - Yields the remainder of the first
operand divided by the second. (If both
operands are floating-point values and
the divisor is 0.0, the result is the
dividend.)

Shift << Shift Left - For integer operands only.
Shifts and zero fills the left operand to
the left; the right operand specifies the
number of bits to shift.

>> Shift Right - For integer operands only.
Shifts the left operand to the right; the
right operand specifies the number of
bits to shift. Extends the sign bit.

Relational < Less Than - Returns integer 1 if the
expression is true, integer 0 if the
expression is false. The result's memory
space attribute is N. Example: If D = 3
and E = 5, D < E = 1.

Table continues on the next page...

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 43

Table 3-2. Assembler Operators (continued)

Type Operator Description

> Greater Than - Returns integer 1 if the
expression is true, integer 0 if the
expression is false. The result's memory
space attribute is N. Example: If D = 3
and E = 5, D > E = 0.

<= Less Than or Equal - Returns integer 1 if
the expression is true, integer 0 if the
expression is false. The result's memory
space attribute is N.

>= Greater Than or Equal - Returns integer
1 if the expression is true, integer 0 if the
expression is false. The result's memory
space attribute is N.

== Equal - Returns integer 1 if the
expression is true, integer 0 if the
expression is false. The result's memory
space attribute is N.

!= Not Equal - Returns integer 1 if the
expression is false, integer 0 if the
expression is true. The result's memory
space attribute is N.

Bitwise & AND - For integers only. Yields the
bitwise AND function of its operands.

| OR - For integers only. Yields the bitwise
OR function of its operands.

^ Exclusive OR - For integers only. Yields
the bitwise exclusive OR function of its
operands.

Logical && Logical AND - Returns integer 1 if both
operands are nonzero; otherwise returns
integer 0.

|| Logical OR - Returns integer 1 if either
operand is nonzero; otherwise returns
integer 0.

3.6 Operator Precedence

The assembler evaluates expressions from left to right.

Below listed are the rules of operator precedence the assembler follows:

1. Parenthetical expression (innermost first)
2. Unary plus, unary minus, one's complement, logical negation
3. Multiplication, division, mod

Operator Precedence

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

44 Freescale Semiconductor, Inc.

4. Addition, subtraction
5. Shift
6. Relational operators: less, less or equal, greater, greater or equal
7. Relational operators: equal, not equal
8. Bitwise AND, OR, exclusive OR
9. Logical AND, OR

Valid operands include numeric constants, literal ASCII strings, and symbols.

You cannot apply the one's complement, shift, or bitwise operators to floating-point
operands. That is, if an expression evaluation results in a floating-point value on either
side of any such operator, the assembler generates an error message.

3.7 Functions

The assembler's built-in functions support data conversion, string comparison, and
transcendental math computations.

You may use functions as terms in any arbitrary expression; functions may have no
arguments, one argument, or multiple arguments. These rules apply:

• Open and close parentheses must always follow functions.
• Arguments that are expressions must be absolute expressions, except where noted.
• Arguments must not contain external references.
• There must not be intervening spaces between the function name and the open

parenthesis, or between comma-separated arguments.

The table given below lists the assembler functions of each type:

Table 3-3. Assembler Function List

Type Function

Mathematical ABS - Absolute value

ACS - Arc cosine

ASN - Arc sine

AT2 - Arc tangent

ATN - Arc tangent

CEL - Ceiling

COH - Hyperbolic cosine

COS - Cosine

FLR - Floor

L10 - Log base 10

Table continues on the next page...

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 45

Table 3-3. Assembler Function List (continued)

Type Function

LOG - Natural logarithm

MAX - Maximum value

MIN - Minimum value

POW - Raise to power

RND - Random value

SGN - Return sign

SIN - Sine

SNH - Hyperbolic sine

SQT - Square root

TAN - Tangent

TNH - Hyperbolic tangent

XPN - Exponential function

Conversion CVF - Convert Integer to floating point

CVI - Convert floating point to integer

CVS - Convert Memory space

FLD - Shift and mask

FRC - Convert floating point to fractional

LFR - Convert floating point to long fractional

LNG - Concatenate to double word

LUN - Convert long fractional to floating point

RVB - Reverse bits in field

UNF - Convert fractional to floating point

String LEN - String length

POS - Position of substring

SCP - Compare strings

Macro ARG - Macro argument

CNT - Macro argument count

MAC - Macro definition

MXP - Macro expansion

Assembler Mode BIGENDIAN - Endian mode check

CCC - Cumulative cycle count

CHK - Instruction/data checksum

CTR - Location counter number

DEF - Defined symbol

EXP - Expression check

INT - Integer check

LCV - Location counter value

LST - LIST directive flag value

MSP - Memory space

Table continues on the next page...

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

46 Freescale Semiconductor, Inc.

Table 3-3. Assembler Function List (continued)

Type Function

REL - Relative mode

Descriptions of the assembler functions complete this chapter. These descriptions are in
alphabetic order, without regard to function types. Although these descriptions show
functions in upper case, the functions are not case sensitive.

3.7.1 ABS Absolute Value

Returns the absolute value of the specified expression, as a floating-point value. The
result's memory space attribute is N.

 @ABS(expr)

Parameter

expr

Any valid expression.

Example:

 MOVE.L #@ABS(VAL),D4 ; Load absolute value

3.7.2 ACS Arc Cosine

Returns the arc cosine of the specified expression, as a floating-point value, in the range
zero to pi. The result's memory space attribute is N.

 @ACS(expr)

Parameter

expr

Any valid expression that evaluates to a value between -1 and 1.

Example:

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 47

ACOS = @ACS(-1.0) ; ACOS = 3.141593

3.7.3 ARG Macro Argument

Returns integer 1 if the specified macro argument is present; otherwise returns 0. The
result's memory space attribute is N.

 @ARG(symbol | expr)

Parameters

symbol

Any valid symbol that refers to a dummy argument name; must be in quotes.

expr

Any valid expression that refers to the argument's ordinal position in the macro dummy
argument list.

Remarks

If you use this function when no macro expansion is active, the assembler issues a
warning.

Example:

 IF @ARG(TWIDDLE) ; Is twiddle factor provided?

3.7.4 ASN Arc Sine

Returns the arc sine of the specified expression, as a floating-point value, in the range -
pi/2 to pi/2. The result's memory space attribute is N.

 @ASN(expr)

Parameter

expr

Any valid expression that evaluates to a value between -1 and 1.

Example:

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

48 Freescale Semiconductor, Inc.

 ARCSINE SET @ASN(-1.0) ; ARCSINE = -1.570796

3.7.5 AT2 Arc Tangent

Returns the arc tangent of the quotient of two expressions (expr1/expr2), as a floating-
point value, in the range -pi to pi. A comma must separate the expr1 and expr2 expressions.
The result's memory space attribute is N.

 @AT2(expr1,expr2)

Parameters

expr1, expr2

Any valid expressions.

Example:

 ATAN EQU @AT2(-1.0,1.0 ; ATAN = -0.7853982

3.7.6 ATN Arc Tangent

Returns the arc tangent of the specified expression, as a floating-point value, in the range
-pi/2 to pi/2. The result's memory space attribute is N.

 @ATN(expr)

Parameter

expr

Any valid expression.

Example:

 MOVE.L #@ATN(1.0),D0
 ; Load arc tangent

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 49

3.7.7 BIGENDIAN Endian Mode Check

Returns an integer 1, as big-endian mode is always enabled for SC3900FP.

 @BIGENDIAN()

Example:

 IF @BIGENDIAN()
 DCB "BIG-ENDIAN"
ELSE
 DCB "LITTLE-ENDIAN"
ENDIF

NOTE
Another way to check for big-endian compiling of an asm file is
to use @DEF:

IF @DEF(`__BIG_ENDIAN__')
 DCB 1
ELSE
 DCB 0
ENDIF

3.7.8 CCC Cumulative Cycle Count

Returns the cumulative cycle count as an integer; useful with the CC, NOCC, and
CONTC assembler options. The result's memory space attribute is N.

@CCC()

Example:

IF @CCC() > 200 ; Check if cycle count > 200

3.7.9 CEL Ceiling

Returns the ceiling of the specified expression: a floating-point value that represents the
smallest integer greater than or equal to the expression. The result's memory space
attribute is N.

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

50 Freescale Semiconductor, Inc.

 @CEL(expr)

Parameter

expr

Any valid expression.

Example:

CEIL SET @CEL(-1.05) ; CEIL = -1.0

3.7.10 CHK Instruction/Data Checksum

Returns the current instruction/data checksum value as an integer. The result's memory
space attribute is N.

@CHK()

Remarks

Useful in conjunction with the CK, NOCK, and CONTCK assembler options . Note that
using directives other than SET to assign the checksum value could lead to phasing
errors, due to different generated instruction values between passes.

Example:

CHKSUM SET @CHK() ; Reserve checksum value

3.7.11 CNT Macro Argument Count

Returns the count of the current macro expansion arguments as an integer. If you use this
function when no macro expansion is active, the assembler issues a warning. The result's
memory space attribute is N.

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 51

@CNT()

Example:

 ARGCNT SET @CNT() ; Reserve arg count

3.7.12 COH Hyperbolic Cosine

Returns the hyperbolic cosine of the specified expression, as a floating-point value. The
result's memory space attribute is N.

@COH(expr)

Parameter

expr

Any valid expression.

Example:

HYCOS EQU @COH(VAL) ; Compute hyperbolic cosine

3.7.13 COS Cosine

Returns the cosine of the specified expression, as a floating-point value. The result's
memory space attribute is N.

@COS(expr)

Parameter

expr

Any valid expression.

Example:

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

52 Freescale Semiconductor, Inc.

DC -@COS(@CVF(COUNT)*FREQ) ; Compute cosine value

3.7.14 CTR Location Counter Number

Returns the counter number of the specified location counter. The returned counter
number is an integer value with memory space attribute N.

@CTR(L|R)

Parameters

L

Specifier for the load location counter.

R

Specifier for the runtime location counter.

Example:

CNUM = @CTR(R) ; Runtime counter number

3.7.15 CVF Convert Integer to Floating Point

Converts the value of the specified expression to a floating-point value. The result's
memory space attribute is N.

@CVF(expr)

Parameter

expr

Any valid integer expression.

Example:

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 53

FLOAT SET @CVF(5) ; FLOAT = 5.0

3.7.16 CVI Convert Floating Point to Integer

Converts the value of the specified expression to an integer value. The result's memory
space attribute is N. (Such conversions can be inexact, possibly truncating floating-point
values.)

@CVI(expr)

Parameter

expr

Any valid floating-point expression.

Example:

INT SET @CVI(-1.05) ; INT = -1

3.7.17 CVS Convert Memory Space

Assigns the specified memory space attribute to the specified expression, returning the
same expression.

@CVS(P | N,expr)

Parameters

P

Specifier for memory space attribute P.

N

Specifier for memory space attribute N.

expr

Any valid relative or absolute expression.

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

54 Freescale Semiconductor, Inc.

Example:

LOADDR EQU @CVS(P,TARGET) ; Set LOADDR to P:TARGET

3.7.18 DEF Defined Symbol

Returns an integer 1 if the specified symbol is defined; otherwise returns a 0. The result's
memory space attribute is N.

 @DEF(symbol)

Parameter

symbol

Any label not associated with a MACRO or SECTION directive. Quotes tell the
assembler to look for a DEFINE symbol; if symbol is not in quotes, the assembler looks
for an ordinary label.

Example:

 IF @DEF(ANGLE) ; Assemble if ANGLE is defined

3.7.19 EXP Expression Check

Returns an integer 1 if evaluating the specified expression would result in errors;
otherwise returns 0. The result's memory space attribute is N. The assembler does not
issue an error message if the expression contains an error; the assembler does not test for
warnings.

 @EXP(expr)

Parameter

expr

Any valid relative or absolute expression.

Example:

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 55

 IF !@EXP(@FRC(VAL)) ; Skip on error

3.7.20 FLD Shift and Mask

Shifts and masks the value expression into the base expression for width bits, beginning
at the start bit. If you omit the start-bit value, the assembler uses zero (the least significant
bit). Returns the shifted and masked value, with memory space attribute N.

 @FLD(base,value,width[,start])

Parameters

base

Original positive-integer expression; may not exceed the target word size.

value

Positive-integer expression shifted and masked into base; may not exceed the target word
size.

width

Number of bits to shift; a positive-integer expression that may not exceed the target word
size.

start

Optional: Starting bit for the operation; a positive-integer expression that may not exceed
the target word size. .

Example:

 SWITCH EQU @FLD(TOG,1,1,7) ; Turn eighth bit on

3.7.21 FLR Floor

Returns the floor of the specified expression: a floating-point value that represents the
largest integer less than or equal to the expression. The result's memory space attribute is
N.

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

56 Freescale Semiconductor, Inc.

 @FLR(expr)

Parameter

expr

Any valid expression.

Example:

 FLOOR SET @FLR(2.5) ; FLOOR = 2.0

3.7.22 FRC Convert Floating Point to Fractional

Scales and convergent rounds a floating-point expression, returning its fractional
representation as an integer. The result's memory space attribute is N.

 @FRC(expr)

Parameter

expr

Any valid floating-point expression.

Example:

 FRAC EQU @FRC(FLT)+1 ; Compute saturation

3.7.23 INT Integer Check

Returns an integer 1 if the specified expression evaluates to an integer; otherwise returns
a 0. The result's memory space attribute is N.

 @INT(expr)

Parameter

expr

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 57

Any valid relative or absolute expression.

Example:

 IF @INT(TERM) ; Insure integer value

3.7.24 L10 Log Base 10

Returns the base 10 logarithm of the specified expression, as a floating-point value. The
result's memory space attribute is N.

 @L10(expr)

Parameter

expr

A numerical expression greater than zero.

Example:

 LOG EQU @L10(100.0) ; LOG = 2

3.7.25 LCV Location Counter Value

Returns the memory space attribute and value of the specified location counter. The
optional second argument indicates the Low, High, or numbered counter; a comma must
separate the two arguments. If you omit the second argument, the assembler uses the
default counter (counter 0).

 @LCV({L | R}[,{L | H | expr}])

Parameters

L

If the first argument, specifier for the load location counter.

If the optional second argument, specifier for the low counter.

R

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

58 Freescale Semiconductor, Inc.

Specifier for the runtime location counter.

H

Specifier for the high counter.

expr

Specifier for a numbered counter; must evaluate to an integer value.

Remarks

This function does not work correctly if you use it to specify the runtime counter value of
a relocatable overlay. This is because the resulting value is an overlay expression, and
you may not use overlay expressions to set the runtime counter for a subsequent overlay.

Example:

ADDR = @LCV(R) ; Save runtime address

3.7.26 LEN String Length

Returns the length of the specified string, as an integer. The result's memory space
attribute is N.

 @LEN(string)

Parameter

string

Any valid string.

Example:

 SLEN SET @LEN('string') ; SLEN = 6

3.7.27 LFR Convert Floating Point to Long Fractional

Scales and convergent rounds a floating-point expression, returning its fractional
representation as a long integer. The result's memory space attribute is N.

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 59

 @LFR(expr)

Parameter

expr

Any valid, floating-point expression.

Example:

 LFRAC EQU @LFR(LFLT) ; Store binary form

3.7.28 LNG Concatenate to Double Word

Concatenates single words into a double word: expr1 becomes the high word, expr2
becomes the low word. The result's memory space attribute is N.

 @LNG(expr1,expr2)

Parameters

expr1, expr2

Any valid, single-word expressions.

Example:

 LWORD DC @LNG(HI,LO) ; Build long word

3.7.29 LOG Natural Logarithm

Returns the natural logarithm of the specified expression, as a floating-point value. The
result's memory space attribute is N.

 @LOG(expr)

Parameter

expr

Any valid expression greater than zero.

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

60 Freescale Semiconductor, Inc.

Example:

 LOG EQU @LOG(100.0) ; LOG = 4.605170

3.7.30 LST LIST Directive Flag Value

Returns the value of the LIST directive flag as an integer, with memory space attribute N.
(Each time the assembler encounters the LIST directive in source code, it increments the
flag; each time it encounters the NOLIST directive, it decrements the flag.)

 @LST()

Example:

 DUP @CVI(@ABS(@LST())) ; List unconditionally

3.7.31 LUN Convert Long Fractional to Floating Point

Converts a double-word long fractional to a floating-point value. The result's memory
space attribute is N.

 @LUN(expr)

Parameter

expr

A binary fraction expression.

Example:

 DBLFRC EQU @LUN($3FE0000000000000) ; DBLFRC = 0.5

3.7.32 MAC Macro Definition

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 61

Returns integer 1 if the specified symbol is defined as a macro name; otherwise returns 0.
The result's memory space attribute is N.

 @MAC(symbol)

Parameter

symbol

Any valid symbol.

Example:

IF @MAC(DOMUL) ; Expand macro

3.7.33 MAX Maximum Value

Determines which input expression has the greatest value, then returns that expression as
a floating-point value. The result's memory space attribute is N.

 @MAX(expr1[,...,exprN])

Parameters

expr1 ... exprN

Any valid expressions.

Example:

 MAX DC @MAX(1.0,5.5,-3.25); MAX = 5.5

3.7.34 MIN Minimum Value

Determines which input expression has the least value, then returns that expression as a
floating-point value. The result's memory space attribute is N.

 @MIN(expr1[,...,exprN])

Parameters

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

62 Freescale Semiconductor, Inc.

expr1 ... exprN

Any valid expressions.

Example:

 _MIN DC @MIN(1.0,5.5,-3.25)
 ; MIN = -3.25

3.7.35 MSP Memory Space

Returns the memory space attribute of the specified expression, as integer value 0 (for N)
or 4 (for P).

 @MSP(expr)

Parameter

expr

Any valid relative or absolute expression.

Example:

MEM SET @MSP(ORIGIN) ; Save memory space

3.7.36 MXP Macro Expansion

Returns an integer 1 if the assembler is expanding a macro; otherwise returns a 0. The
result's memory space attribute is N.

 @MXP()

Example:

 IF @MXP() ; Macro expansion active?

3.7.37 POS Position of Substring

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 63

Returns the position of substring str2 in source string str1 as an integer. Begins search at
position start. If you omit the start value, the search begins at the beginning of str1. The
result's memory space attribute is N.

 @POS(str1,str2[,start])

Parameters

str1

Source string.

str2

Substring; must not exceed the length of str1.

start

A positive integer expression that does not exceed the length of str1.

Example:

 ID EQU @POS('Star*Core 140','Core') ; ID = 5

3.7.38 POW Raise to a Power

Returns the first expression, raised to the power of the second expression, as a floating-
point value. A comma must separate the two expressions. The result's memory space
attribute is N.

 @POW(expr1,expr2)

Parameters

expr1

The expression whose value is to be raised.

expr2

The power-value expression.

Example:

 BUF EQU @CVI(@POW(2.0,3.0)) ; BUF = 8

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

64 Freescale Semiconductor, Inc.

3.7.39 REL Relative Mode

Returns an integer 1 if the assembler is operating in relative mode; otherwise returns a 0.
The result's memory space attribute is N.

 @REL()

Example:

 IF @REL() ; Check if in relative mode

3.7.40 RND Random Value

Returns a random value in the range 0.0 to 1.0. The result's memory space attribute is N.

 @RND()

Example:

 SEED DC @RND() ; Save initial seed value

3.7.41 RVB Reverse Bits in Field

Reverses bits of the first expression, in the field the second expression delimits. Omitting
the second expression makes the bit-reverse field the target word size.

 @RVB(expr1[,expr2])

Parameters

expr1, expr2

Single-word, integer expressions.

Example:

 REV EQU @RVB(VAL) ; Reverse all bits in value

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 65

3.7.42 SCP Compare Strings

Returns an integer 1 if the specified strings are the same; otherwise returns 0. A comma
must separate the two strings. The result's memory space attribute is N.

 @SCP(str1,str2)

Parameters

str1, str2

String expressions.

Example:

 IF @SCP(STR,'MAIN') ; Check if STR equals MAIN

3.7.43 SGN Return Sign

Returns the sign of the specified expression as an integer: -1 (negative), 0 (zero), or 1
(positive). The result's memory space attribute is N.

 @SGN(expr)

Parameter

expr

Any valid relative or absolute expression.

Example:

 IF @SGN(INPUT) ; Check if sign is positive

3.7.44 SIN Sine

Returns the sine of the specified expression, as a floating-point value. The result's
memory space attribute is N.

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

66 Freescale Semiconductor, Inc.

 @SIN(expr)

Parameter

expr

Any valid expression.

Example:

DC @SIN(@CVF(COUNT)*FREQ) ; Compute sine value

3.7.45 SNH Hyperbolic Sine

Returns the hyperbolic sine of the specified expression, as a floating-point value. The
result's memory space attribute is N.

 @SNH(expr)

Parameter

expr

Any valid expression.

Example:

HSINE EQU @SNH(VAL) ; Hyperbolic sine

3.7.46 SQT Square Root

Returns the square root of the specified expression, as a floating-point value. The result's
memory space attribute is N.

 @SQT(expr)

Parameter

expr

Any valid positive expression.

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 67

Example:

 SQRT EQU @SQT(3.5) ; SQRT = 1.870829

3.7.47 TAN Tangent

Returns the tangent of the specified expression, as a floating-point value. The result's
memory space attribute is N.

 @TAN(expr)

Parameter

expr

Any valid expression.

Example:

 MOVE.L #@TAN(1.0),D1
 ; Load tangent

3.7.48 TNH Hyperbolic Tangent

Returns the hyperbolic tangent of the specified expression, as a floating-point value. The
result's memory space attribute is N.

 @TNH(expr)

Parameter

expr

Any valid expression.

Example:

 HTAN = @TNH(VAL) ; Hyperbolic tangent

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

68 Freescale Semiconductor, Inc.

3.7.49 UNF Convert Fractional to Floating Point

Converts a fractional to a floating-point value. The result's memory space attribute is N.

 @UNF(expr)

Parameter

expr

A binary fraction expression.

Example:

 FRC EQU @UNF($400000) ; FRC = 0.5

3.7.50 XPN Exponential Function

Returns the exponential function (base e raised to the power of the specified expression),
as a floating-point value. The result's memory space attribute is N.

 @XPN(expr)

Parameter

expr

Any valid expression.

Example:

 EXP EQU @XPN(1.0) ; EXP = 2.718282

Chapter 3 Expressions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 69

Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

70 Freescale Semiconductor, Inc.

Chapter 4
Software Project Management

Complex software projects often consist smaller program units.

A team of programmers may write these subprograms in parallel, or they may reuse
subprograms of a previous development effort.

This chapter explains the assembler directives that help manage complex software
projects.

In this chapter:

• Sections
• Sections and Relocation
• Address Assignment
• Overlays
• Multi-Programmer Environment Example

4.1 Sections

The SECTION and ENDSEC directives encapsulate program units.

This defines relocatable blocks of code and data, postponing concerns about memory
placement until after the assembly process.

A SECTION directive defines the start of a section, giving it the name that section_name
specifies. The ENDSEC directive specifies the end of the section. The format is:

 SECTION section_name [GLOBAL |STATIC|LOCAL] [core_id`]
 .
 .
 source statements
 .
 .
 ENDSEC

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 71

NOTE
Except for debug sections, text sections have the default
alignment of 2.

4.1.1 Section Names

Although you may give almost any name to a section, the assembler recognizes the
names of conventional ELF sections - .text, .data, .rodata, and .bss. The below table lists
the default types and flags for these section names. The assembler treats sections with
other names as code (.text) sections, setting types and flags accordingly. If such a section
is not a code section, you must use the SECTYPE and SECFLAGS directives to override
the default settings.

NOTE
Multiple sections can have the same name, provided that they
also have the same type. Otherwise, the assembler issues an
error message.

Table 4-1. Conventional ELF Sections

Section Contents Type Attributes

.bss Uninitialized data NOBITS ALLOC, Write

.data Initialized data PROGBITS ALLOC, WRITE

.mw_info Assembler-generated
contents that the linker
consumes during dead data
stripping

SHT_MW_INFO
(SHT_LOPROC+3)

no sh_flags(0)

.note User comments, as ABI 2.0
defines.

SHT_NOTE(7) no sh_flags(0)

.rodata Read-only, initialized data PROGBITS ALLOC

.text Program code PROGBITS ALLOC, EXECINSTR

The table given below lists the reserved names for specialized ELF sections; you should
not use any of these names.

Table 4-2. Reserved Section Names

.debug_abbrev .debug_pubname .rel_line

.debug_aranges .default .rel.line.debug_info

.debug_info .line .shstrtab

.debug_line .mw_info .strtab

.debug_loc .note .symtab

.debug_macro .rel.debug_loc

Sections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

72 Freescale Semiconductor, Inc.

4.1.2 Nested and Fragmented Sections

You can nest sections to any level. When the assembler encounters a nested section, it
stacks the current section and uses the new (child) section. When the assembler reaches
the ENDSEC directive of the nested section, the assembler restores and resumes using the
parent section. The ENDSEC directive always pertains to the most recent SECTION
directive.You also can split sections into separate parts by using the same section name
with multiple SECTION and ENDSEC directive pairs. Reusing a section name lets you
arrange source statements arbitrarily, for example, grouping all statements that reserve P
space storage locations.

4.1.3 Sections and Symbols

The default arrangement is that symbols defined within a section are local symbols. Any
reference to a local symbol can be satisfied in the file in which it is defined.

Defining symbols outside a section makes them global. Such symbols can satisfy an
outstanding current-file reference at assembly time, or an outstanding reference in any
file at link time. Code inside or outside any section may reference global symbols freely,
as long as the global symbol does not conflict with another symbol of the same name.

To declare a section's local symbols global:

• Use the GLOBAL directive for an individual symbol.
• Use the GLOBAL qualifier of the SECTION directive for all symbols in a section.

In the listing given below SYM1 and SYM2 are global symbols, initially defined outside any
section. But section EXAMPLE defines SYM1 locally, with a different value:

• This interior redefinition means that the first MOVE instruction moves the value 3 to
R0.

• SYM2 remains a global symbol, so the second MOVE instruction moves the value 2 to R1.
• The final MOVE instruction is outside any section, so it uses the global SYM1 definition,

moving the value 1 to R2.

Listing 4-1. Sections and Data Hiding

SYM1 EQU 1
SYM2 EQU 2

Chapter 4 Software Project Management

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 73

 SECTION EXAMPLE

SYM1 EQU 3

 TFRA.L #SYM1,R0

 TFRA.L #SYM2,R1

 ENDSEC

 TFRA.L #SYM1,R2 MOVE #SYM1,R2

4.1.4 Macros and DEFINE Symbols within Sections

Macros and DEFINE directive symbols you define within a section are local. Global
access never is possible for such macros and symbols.

To make macros or DEFINE symbols accessible globally, you must define them outside
any section.

4.2 Sections and Relocation

Sections are the basic groups for relocating code and data blocks.

With respect to relocation, code or data inside a section is an indivisible block, bound to a
memory space. Within this memory space; such a code or data block is independently
relocatable.

The assembler allocates a set of P-memory-space location counters for each section the
source code defines. The assembler uses these counters to maintain data and instruction
offsets from the beginning of the section. At link time, the linker can relocate sections to
absolute addresses, load them in a particular order, or link them contiguously, as the
programer specifies. If sections are split into parts or dispersed among files, the linker can
recombine them logically, permitting relocation as a unit for each section.

Sections may be relocatable or absolute. If the assembler runs in absolute mode
(command line -a option), all sections are absolute. If the assembler runs in relative mode
(the default), all sections are relocatable initially.

To make a section or a part of a section absolute, use an ORG directive that specifies an
absolute runtime address. If the assembler encounters such an ORG directive, it switches
to absolute mode, generating absolute addresses. The assembler continues generating
absolute code until it encounters an ENDSEC directive.

Sections and Relocation

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

74 Freescale Semiconductor, Inc.

4.3 Address Assignment

This topic describes the address assignment supported by StarCore Assembler.

The StarCore assembler supports either:

• Assigning absolute addresses at assembly time
• Generating relocatable program addresses to be resolved during linking

The assembler allows two sets of program counters: load counters and runtime counters.
This distinction lets the assembler support overlays - runtime code/data transfers from
one address to another. For example, you might load code and data at addresses A and B,
but overlays could copy them to addresses F and N for execution.

Use the ORG directive to specify absolute address assignment. This directive also can
specify the location counter (H, L, default, or a section's numbered counter), and assign
initial values.

NOTE
Counters 0, 1, and 2 correspond to the default, L, and H
counters. Apart from this, there is no inherent relationship
among numbered counters.

Location counter names default, L, and H are symbolic - the
assembler does not verify that an H-counter value is greater
than an L-counter value.

Counters are useful for providing mnemonic links among individual memory blocks. You
can use separate counters for blocks in one section that get mapped to separate physical
memories.

4.4 Overlays

When you use the SECTION directive, you define a regular section; you may use the
SECFLAGS or SECTYPE directives to modify the section.

To define an overlay section, use the OVERLAY operand of the SECTYPE directive.
Use the SECTYPE UNION directive to define a data overlay, as this example shows:

Chapter 4 Software Project Management

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 75

 section .ovl_star local section.ovl_pure_data
 secflags nowrite,alloc,execinstr secflags alloc
 sectype overlay sectype union

Each overlay section has two starting addresses:

• Load address - address where the linker links the section.
• Run address - address where the section begins during execution of its code.

All symbol references symbols in an overlay section refer to the run address. To refer to a
global symbol's load address, prefix the name with LoadAddr_, as shown in the below
listing. (You cannot make local symbols refer to load addresses.)

Listing 4-2. Referencing a Global Symbol's Load Address

 section .text local
 global _main

_main:

 push.l r0

 tfra.l #LoadAddr__star,r0

 jsr __overlay_manager

 . . .

 pop.l r0

 jsr _star

 rts

 section .ovl_text local

 secflags alloc,execinstr,nowrite

 sectype overlay

 global _star

 _star:

 . . .

 rts

An overlay manager must copy an overlay section from its load address to its run address.
In the above listing, the code calls the overlay manager to load the overlay
section .ovl_text to its run address. The overlay manager must know the overlay section's
load address, which is unique (many overlays could run at the same address). After the
overlay manager finishes, it is safe to call code in the overlay section.

You must provide a symbol at the start of each overlay section; the assembler does not
create these symbols automatically.

Overlays

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

76 Freescale Semiconductor, Inc.

4.4.1 Overlay Manager

The listing provided below shows a basic C implementation of an overlay manager:

Listing 4-3. Basic Overlay Manager

#include <stdlib.h>
#include <stdio.h>

#include <string.h>

struct ovltab

 {

 void *ovl_run;

 void *ovl_load;

 unsigned long int ovl_size;

 unsigned long int ovl_checksum;

 unsigned long int ovl_flags;

 unsigned long int ovl_other;

 unsigned short int ovl_parent;

 unsigned short int ovl_sibling;

 unsigned short int ovl_child;

 }

extern struct ovltab _overlay_table[];

extern unsigned long int _overlay_count;

void *

_overlay_manager(void *load_addr)

 {

 unsigned long int i;

 for(i=0;i<_overlay_count; ++i){

 if(_overlay_table[i].ovl_load == load_addr){

 return memcpy(_overlay_table[i].ovl_run,

 _overlay_table[i].ovl_load,

 _overlay_table[i].ovl_size);

 }

 }

 return NULL;

Chapter 4 Software Project Management

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 77

}

4.4.2 Overlay Example

The below listing shows a sample assembly source file, ovl.asm, that defines overlay
sections ovl_star1 and ovl_comet1. To assemble this file, use the command:

 scasm -l -b ovl.asm

Listing 4-4. ovl.asm Assembly Source File

; main calling star1 and comet1
 section .text local

 global _main

_main:

 push.l r0

 tfra.l #LoadAddr__star1,r0

 jsr __overlay_manager

 pop.l r0

 jsr _star1

 push.l r0

 tfra.l #LoadAddr__comet1,r0

 jsr __overlay_manager

 pop.l r0

 jsr _comet1

 rts

 endsec

 section .ovl_star1 local

 secflags alloc,execinsr,nowrite

 sectype overlay

 global _star1

_star1:

 subc.wo.x d0,d0,d1

 addc.wo.x #5,d1,d1

 rts

 endsec

Overlays

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

78 Freescale Semiconductor, Inc.

 section .ovl_comet1 local

 secflags alloc,execinsr,nowrite

 sectype overlay

 global _comet1

_comet1:

 subc.wo.x d0,d0,d2

 addc.wo.x #5,d2,d2

 rts

 endsec

The following command links the resulting object file, using the linker command file
shown in the listing below.

 sc3000-ld -arch b4860 -Map test.map -c test.l3k test.eln

NOTE
For MMU specific architecture, b4860 target architecture must
be used.

Listing 4-5. ovl.cmd Linker Command File

;***
;*

;* This memory control file defines the memory layout used with

;* the sc3900fp simulator. This file assumes small memory model

;* (i.e all globals and static data fit in lower 64k)

;*

;* 0 - 0x1ff Interrupt vectors and handlers

;* DataStart - DataStart+DataSize-1 Global and static data

;* CodeStart - StackStart-1 Application code

;* StackStart - TopOfStack stack/heap

;* ROMStart - TopOfMemory ROM

;*

;***

;

; Define configuration specific values

;

.provide _DataStart, 0x0200 ; Start of global and static data

.provide _DataSize, 0x10000

Chapter 4 Software Project Management

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 79

.provide _CodeStart, 0x100000 ; Sets the code start address

.provide _StackStart,0x200000 ; Sets the stack start address

 ; The stack grows upwards.

.provide _TopOfStack, 0x2fff00 ; The highest address to be used

 ; by the C/C++ run-time.

 ; By default, this serves as the

 ; heap start address.

 ; The heap grows downwards.

.provide _ROMStart, 0x300000 ; Sets the ROM start address

.provide _TopOfMemory, 0x3fffff ; The highest address in memory

.provide _SR_Setting, 0xe4000c ; Value to set the SR after
reset:

 ; exception mode

 ; interrupt level 7

 ; saturation on

 ; rounding mode: nearest even

.memory 0, _TopOfMemory, "rwx" ; Start execution at interrupt

 ; vector first entry (RESET).

.reserve _DataStart+_DataSize-2, _DataStart+_DataSize-1

 ; Reserve the top of the data
area

 ; to generate a linker error if

 ; data size does not fit 64k.

.reserve _StackStart, _TopOfStack ; Reserve for stack and heap
space

.entry 0 ; IntVec

.org 0

.overlay ".overlay1", "rwx", ".ovl_star1", ".ovl_star2", ".ovl_star3"

.overlay ".overlay2", "rwx", ".ovl_comet1", ".ovl_comet2"

.segment .intvec, ".intvec"

.org _DataStart

.segment .data,".data",".ramsp_0",".default",".bss"

.segment .ovltab, ".ovltab"

.org _CodeStart

.segment .text, ".text"

.segment .ovlstar, ".ovl_star*"

Overlays

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

80 Freescale Semiconductor, Inc.

.segment .ovlcomet, ".ovl_comet*"

.segment .overlay1, ".overlay1"

.segment .overlay2, ".overlay2"

.org _ROMStart

.segment .rotable, ".init_table"

.segment .roinit,

 ".rom_init"

4.5 Multi-Programmer Environment Example

Developers often split multi-programmer projects into tasks that represent functional
units.

For example, suppose that a project has three task divisions: i/o, filter, and main. An
individual programmer writes each task as a separate section:

• The I/O task yields file io.asm as listed below:

Listing 4-6. io.asm Source File

 section i_o
 secflags alloc,write,noexecinstr

 global I_PORT

I_PORT

 .

 .

 source statements

 .

 .

 endsec

• The filter task yields file filter.asm as listed below:

Listing 4-7. filter.asm Source File

 section filter
 secflags alloc,write,noexecinstr

 .

 .

 source statements

 .

Chapter 4 Software Project Management

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 81

 .

 endsec

• The main task yields file main.asm as listed below:

Listing 4-8. main.asm Source File

 section main
 secflags alloc,write,noexecinstr

 global ENTRY

ENTRY

 .

 .

 source statements

 .

 .

 endsec

The next two subsections explain the methods for combining these three source files:

• Invoking a final assembly step to assign absolute addresses
• Assembling the modules separately, then linking.

4.5.1 Method 1: Absolute Mode

To assemble all project source code and assign absolute addresses, create a project file,
project.asm, that combines the three assembly source files. The listing below shows this
file.

Listing 4-9. project.asm File

org PL:$1000 ; initialize entry point for program
counter
include 'main.asm'

include 'io.asm'

include 'filter.asm'

end entry

To assemble file project.asm in absolute mode, and generate executable object file
project.eld, use this command:

 scasm -a -bproject.eld project.asm

Multi-Programmer Environment Example

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

82 Freescale Semiconductor, Inc.

Upon reaching the end of file main.asm, the assembler returns to the next sequential
statement in file project.asm. This statement directs the assembler to start taking input
from file io.asm. The ORG statement in the project.asm file tells the assembler to set
current memory space to P (program), and to initialize the L (low) location counter to
$1000. This specifies assembly of the io.asm statements at the next available Low
Program memory space.

Assembly of file filter.asm happens in a similar manner. The last line of file project.asm
tells the assembler that it is the last logical source statement. The last line also tells the
assembler that the starting address for the object module is label ENTRY. (In actual code,
the ENTRY label must be declared global in section main.)

4.5.2 Method 2: Relative Mode

Use the assembler default mode to assemble each source file separately. Use these
commands:

 scasm -bmain.eln main.asm

 scasm -bio.eln io.asm

 scasm -bfilter.eln filter.asm

In response, the assembler generates relocatable object files main.eln, io.eln, and
filter.eln. The assembler establishes a separate set of location counters for each input-file
section. This means that all memory spaces for each section begin at relative address
zero.

Use this command to invoke the linker:

 sc3000-ld -M -c link.cmd -o project.eld main.eln io.eln filter.eln

In response, the linker combines the relocatable object files, reading each section's
address and the program entry point from linker command file link.cmd. The linker
processes the three .eln files in their command-line order, outputting executable file
project.eld.

Chapter 4 Software Project Management

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 83

Multi-Programmer Environment Example

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

84 Freescale Semiconductor, Inc.

Chapter 5
Assembler Directives

This chapter explains the special characters significant to the assembler, as well as the
directives that control assembler behavior.

In response to these directives, the assembler carries out certain actions during assembly.
But it is not appropriate for the assembler to translate every directive into machine
language.

NOTE
In addition to assembler directives, there are two assembler
pragmas. Text at the very end of this chapter explains these
directives.

In this chapter:

• Significant Characters
• Directive List
• Descriptions
• Pragmas

5.1 Significant Characters

Several one- and two-character sequences have significance for the assembler, their
meanings sometimes depending on context.

The below table identifies these characters briefly; full explanations appear at the start of
this chapter's reference items.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 85

(Chapter 3 explains special characters for expression evaluation.)

Table 5-1. Assembler Significant Characters

Character Description

; Comment delimiter

;; Unreported comment delimiter

\ Line continuation character; macro dummy argument
concatenation operator

? Macro value substitution operator

% Macro hexadecimal value substitution operator

^ Macro local label override operator

" Macro string delimiter; quoted string DEFINE expansion
character

@ Function delimiter

* Location counter substitution

++ String concatenation operator

[] Substring delimiters; instruction grouping operators

< Short addressing mode force operator

> Long addressing mode force operator

Immediate addressing mode operator

#< Immediate short addressing mode force operator

#> Immediate long addressing mode force operator

$ Hexadecimal constants indicator

` String constants delimiter

5.2 Directive List

This topic lists and describes the assembler directives.

The table below briefly identifies the assembler directives of each type:

• Assembly control
• Symbol definition
• Data definition/storage allocation

Directive List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

86 Freescale Semiconductor, Inc.

• Listing control and options
• Macros and conditional assembly

Table 5-2. Assembler Directive
Summary

Type Directive Description

Assembly Control COMMENT Start comment lines

DEFINE Define substitution string

END End of source program

FAIL Programmer-generated error
message

HIMEM Set high memory bounds

INCLUDE Include secondary file

LOMEM Set low memory bounds

MSG Programmer-generated
message

ORG Initialize memory space and
location counters

SUPPRESS_ERRATUM Suppresses errata information

UNDEF Undefine the DEFINE symbol

WARN Programmer-generated warning

Symbol Definition ENDSEC End section

EQU Equate symbol to a value

GLOBAL Global section symbol
declaration

GSET Set global symbol to a value

MULTIDEF Allow multiple definitions

SECFLAGS Set ELF section flags

SECTION Start section

SECTYPE Set ELF section type

SET Set symbol to a value

SIZE Set size of symbol in the ELF
symbol table

TYPE Set symbol type in the ELF
symbol table

Data Definition and Storage
Allocation

ALIGN Align location counter

BADDR Set buffer address

BSB Block storage bit-reverse

BSC Block storage of constant

BUFFER Start buffer

DC Define constant

DCB Define constant byte

DCL Define constant long

DCW Define constant word

Table continues on the next page...

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 87

Table 5-2. Assembler Directive Summary
(continued)

Type Directive Description

DS Define storage

DSR Define reverse carry storage

ENDBUF End buffer

FALIGN Fetch-set alignment

Listing Control and Options LIST List the assembly

NOLIST Stop assembly listing

NOTE Include note

OPT Set assembler options

PAGE Top of page/size page

PRCTL Send control string to printer

STITLE Initialize program subtitle

TITLE Initialize program title

Macros and Conditional
Assembly

DUP Duplicate sequence of source
lines

DUPA Duplicate sequence with
arguments

DUPC Duplicate sequence with
characters

DUPF Duplicate sequence in loop

ENDIF End of conditional assembly

ENDM End of macro definition

EXITM Exit macro

IF Conditional assembly directive

MACLIB Macro library

MACRO Macro definition

PMARCRO Purge macro definition

5.3 Descriptions

This subsection consists of special-character and directive descriptions, including usage
guidelines and examples.

• Descriptions of special characters follow the order specified in Table 5-1 table. (The
$ and `, hexadecimal and string delimiter characters, however, are so simple that they
do not require such descriptions.

• Descriptions of directives are in alphabetic order, without regard the type categories
of Table 5-2.

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

88 Freescale Semiconductor, Inc.

NOTE
This chapter shows directives in upper-case letters, but the
assembler recognizes either case for directives.

NOTE
You may not use a label on the same line as a directive,
unless the prototype includes a label parameter.

5.3.1 ; Start Comment

Starts a comment: any number of characters not part of a literal string.

Remarks

For a comment in a source-statement line, shift the ; character right, so that the comment
lines up with comments of other lines. For a comment that takes up an entire line, put
the ; character at the first space of the line.

Use comments to document your source program: although the assembler reproduces
comments in the source listing, comments are not significant to the assembler. Macro
definitions preserve comments, but you can use the NOCM option to turn off this
arrangement.

Example

 ; This comment begins in column 1 of the source file

 LOOP JSR COMPUTE ; This is a trailing comment
 ; a source-file tab precedes
 ; these two comments

5.3.2 ;; Start Unreported Comment

Starts an unreported comment: any comment that the assembler does not reproduce in the
source listing, nor save in macro definitions.

Remarks

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 89

Unreported comments follow the same position rules as normal comments; you can use
them to document your source program. However, such comments never appear in the
assembler source listing, nor does the assembler save them in macro definitions.

Example

 ;; These lines will not be reproduced
 ;; in the source listing

5.3.3 \ Continue Line

Continues a source statement to the next line.

Remarks

If the assembler encounters a backslash (\) as the last character of a source line, it
concatenates the line to the next line, processing the result as if it were a statement on one
line.

(Alternate role: In a macro definition, this character concatenates a dummy argument
with adjacent characters.)

Example

The \ character makes one comment span three lines:

 ; This comment \
 extends over \
 three lines.

5.3.4 \ Concatenate Macro Argument

In a macro definition, concatenates a dummy argument with adjacent characters.

Remarks

There must not be any spaces with the \ character, which can precede or follow the
adjoining characters. To position an argument between two characters, use the \ character
before and after the argument name.

(Alternate role: If the last character of a source line, continues the statement to the next
line.)

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

90 Freescale Semiconductor, Inc.

Example

The backslash (\) in the macro definition tells the macro processor to concatenate the
dummy-argument substitution characters with the character R:

 SWAP_REG MACRO REG1,REG2 ; Swap REG1,REG2 (D4 is temp)
 MOVE.L R\REG1,D4
 MOVE.L R\REG2,D\REG1
 MOVE.L D4,D\REG2
 ENDM

The macro call SWAP_REG 0,1 results in this expansion:

 MOVE.L R0,D4
 MOVE.L R1,D0
 MOVE.L D4,D1

5.3.5 ? Substitute Macro Value

In macro definitions, converts a symbol to the ASCII string that represents the symbol's
decimal value. There must not be any spaces between the ? character and the symbol; the
value of symbol must be an integer. You may use the ? character with the backslash (\)
concatenation operator.

Example

Consider this macro definition:

 SWAP_SYM MACRO REG1,REG2 ; Swap REG1,REG2 (D4 is temp)
 MOVE.L R\?REG1,D4
 MOVE.L R\?REG2,D\?REG1
 MOVE.L D4,R\?REG2
 ENDM

Then suppose these SET statements and this macro call:

 AREG SET 0
 BREG SET 1
 SWAP_SYM AREG,BREG

The macro processor would:

• Substitute the characters AREG for each occurrence of REG1, and BREG for each
occurrence of REG2, as if producing this intermediate macro expansion:

 MOVE.L R\?REG1,D4
 MOVE.L R\?REG2,D\?REG1
 MOVE.L D4,R\?REG2

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 91

• Replace ?AREG with the character 0, and ?BREG with the character 1, as if producing this
second intermediate expansion:

 MOVE.L R\0,D4
 MOVE.L R\1,D\0
 MOVE.L D4,R\1

• Apply the concatenation operator (\), producing the expansion that appears in the
source listing:

 MOVE.L R0,D4
 MOVE.L R1,D0
 MOVE.L D4,R1

5.3.6 % Substitute Macro Hex Value

In macro definitions, converts a symbol to the ASCII string that represents the symbol's
hexadecimal value.

Remarks

There must not be any spaces between the % character and the symbol; the value of symbol
must be an integer. You may use the % character with the backslash (\) concatenation
operator.

The % character also can indicate a binary constant. If you need a binary constant inside
a macro, enclose the constant in parentheses. Alternatively, follow the percent sign with a
backslash (\) to escape the constant.

Example

This macro definition generates a label - the label prefix argument concatenated to a
hexadecimal argument:

 GEN_LAB MACRO LAB,VAL,STMT
 LAB\%VAL STMT
 ENDM

Suppose this SET statement and this macro call:

 NUM SET 10
 GEN_LAB HEX,NUM,'NOP'

The macro processor would:

• Substitute the characters HEX for LAB.
• Replace %VAL with the character A (the hexadecimal equivalent of decimal 10).

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

92 Freescale Semiconductor, Inc.

• Apply the concatenation operator (\).
• Substitute the string 'NOP' for the STMT argument, producing this expansion:

 HEXA NOP

5.3.7 ^ Override Macro Local Label

If a unary expression operator in a macro expansion, specifies normal-scope (not macro-
scope) evaluation for local labels in its associated term.

Remarks

If the circumflex (^) character precedes an expression term, the assembler does not search
the macro local label list for any %labels in the expression term. This operator has no
effect on normal labels; it has no effect at all outside a macro expansion.

The circumflex operator lets you pass local labels as macro arguments, for use as
referents in the macro. Note that the circumflex also is the binary exclusive OR operator.

Example

Consider this macro definition:

 LOAD MACRO ADDR
 MOVE P:^ADDR,R0
 ENDM

And this macro call:

 %LOCAL
 LOAD %LOCAL

The override operator tells the assembler to recognize the %LOCAL symbol outside the
macro expansion, and to use that value in the MOVE instruction. If the override operator
were not present, the assembler would issue an error message that %LOCAL was not
defined in the macro.

5.3.8 " Delimit Macro String

In a macro definition, tells the macro processor to use a single quote ('). This transforms
any enclosed dummy arguments into literal strings.

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 93

(Alternate role: In a DEFINE-directive character sequence, specifies expansion within the
string.)

Example

For this macro definition:

 CSTR MACRO STRING
 DC "STRING"
 ENDM

And this macro call:

 CSTR ABCD

The macro expansion would be:

 DC 'ABCD'

5.3.9 " Expand DEFINE Quoted String

In a DEFINE-directive character sequence, specifies expansion within the string.
(Otherwise, delimits a string, just as single quotes.)

(Alternate role: In a macro definition, tells the macro processor to use a single quote.)

Example

For this macro definition:

 DEFINE LONG 'short'
 STR_MAC MACRO STRING
 MSG 'This is a LONG STRING'
 MSG "This is a LONG STRING"
 ENDM

and this macro call:

 STR_MAC sentence

the macro expansion would be:

 MSG 'This is a LONG STRING'
 MSG 'This is a short sentence'

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

94 Freescale Semiconductor, Inc.

5.3.10 @ Start Function

Mandatory start symbol for all assembler built-in functions.

Example

 SVAL EQU @SQT(FVAL) ; Obtain square root

5.3.11 * Substitute Location Counter

If an operand in an expression, represents the current integer value of the location
counter.

Example

 ORG P:$100
 PBASE EQU *+$20 ; PBASE = $120

5.3.12 ++ Concatenate Strings

Concatenates any two strings. Single or double quotes must enclose the strings; there
must not be intervening spaces.

Example

 'ABC'++'DEF' = 'ABCDEF'

5.3.13 [] Delimit Substring

Delimit a substring operation. (Alternate role: Group instructions.)

 [string,offset,length]

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 95

Parameters

string

Source string: any valid string combination, including another substring.

offset

Substring starting position within the source string, beginning at 0; may not exceed the
length of the source string.

length

Length of the substring; may not exceed the length of the source string.

Example

 DEFINE ID ['abcdefg',1,3] ;ID = 'bcd'

5.3.14 [] Group Instructions

Group instructions. The opening bracket cannot appear in the label field. If the first
instruction is on the same line, a space must separate the bracket and the instruction.
(Alternate role: Delimit substrings.)

 [
 instruction ...
]

Example

 [
 Mac.X D0.H,D1.H,D2 ; Remark1
 MAC.x D3.H,D4.H,D5
 ADD.x D0,D1,D3 ;Remark2

 ; remrk cont
 ld.w (R1)+,D1
]

5.3.15 < Force Short Addressing

Forces the assembler to use short absolute addressing, overriding default long addressing.

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

96 Freescale Semiconductor, Inc.

Remarks

Many DSP instructions permit a short form of addressing. If the assembler knows the
absolute address during pass one, the assembler uses the shortest addressing mode
consistent with the instruction format.

But if an address is a forward or external reference, the assembler cannot know the
absolute address during pass one. Accordingly, the assembler uses the long form of
addressing; this makes the instruction two words. To override this default arrangement,
start the absolute address with the < character.

Example

In this sample code:

 DATAST EQU $23
 tfra.l #DATAST,r28

The DATAST symbol is a forward reference; the assembler uses long absolute addressing:
two words. To force short absolute addressing, insert the < character:

 DATAST EQU $23
 tfra.l #DATAST,r28

5.3.16 > Force Long Addressing

Forces the assembler to use long absolute addressing.

Remarks

Many DSP instructions permit a long form of addressing. But if the assembler knows the
absolute address during pass one, the assembler uses the shortest addressing mode
consistent with the instruction format. To override this behavior, forcing long absolute
addressing, start the absolute address with the > character.

Example

In this sample code:

 DATAST EQU P:$23
 MOVE.B D0,P:DATAST

The DATAST symbol is not a forward reference; the assembler uses short absolute
addressing. To force long absolute addressing, insert the > character:

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 97

 DATAST EQU P:$23
 MOVE.B D0,P:>DATAST

5.3.17 # Use Immediate Addressing

Tells the assembler to use immediate addressing mode.

Example

 CNST EQU $5
 MOVE.L #CNST,D0

5.3.18 #< Force Immediate Short Addressing

Forces the assembler to use immediate short addressing, overriding default immediate
long addressing.

Remarks

Many DSP instructions permit a short immediate form of addressing. If the assembler
knows the immediate data during pass one, the assembler uses the shortest addressing
mode consistent with the instruction format.

But if the immediate data is a forward or external reference, the assembler cannot know
the immediate data during pass one. Accordingly, the assembler uses the long form of
immediate addressing; this makes the instruction two words. To override this default
behavior, start the immediate data symbol with the #< characters.

Example

For this sample code:

 MOVE.B #CNST,D0
 CNST EQU $5

The assembler does not know the CNST symbol during pass one; the assembler uses
immediate long addressing: two words. To force immediate short addressing, insert the
#< characters:

 MOVE.B #<CNST,D0
 CNST EQU $5

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

98 Freescale Semiconductor, Inc.

5.3.19 #> Force Immediate Long Addressing

Forces the assembler to use immediate long addressing.

Remarks

Many DSP instructions permit a long immediate form of addressing. But if the assembler
knows the immediate data during pass one, the assembler uses the shortest addressing
mode consistent with the instruction format. To override this behavior, forcing immediate
long addressing, start the immediate data symbol with the #> characters.

Example

For this code:

 CNST EQU $5
 MOVE.B #CNST,D0

The DATAST symbol is not a forward reference; the assembler uses short absolute
addressing. To force long absolute addressing, insert the > character:

The assembler knows the CNST symbol during pass one; the assembler uses immediate
short addressing. To force immediate long addressing, insert the #> characters:

 CNST EQU $5
 MOVE.B #>CNST,D0

5.3.20 ALIGN Align Location Counter

Advances the location counter, aligning it on the specified address boundary. If the
location counter already is aligned on this boundary, this directive has no effect.

 ALIGN boundary

Parameter

boundary

Address boundary specifier; must be a power of two.

Example

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 99

 ALIGN 4 ; Align location counter to
 ; next long word boundary

5.3.21 BADDR Set Buffer Address

Sets the location counter to the address of a reverse-carry buffer. Does not initialize the
block of memory intended for the buffer.

 BADDR R,length

Parameters

R

Specifier for the reverse carry buffer type.

length

Buffer length, in bytes: an expression that evaluates to an absolute integer greater than
zero. Must not contain any forward references; should be a power of two.

Remarks

If the location counter value is not zero, this directive advances the location counter to a
base address that is a multiple of 2k, where:

 2k Š length

There must be sufficient remaining memory to establish a valid base address, or the
assembler issues an error message. Unlike other buffer allocation directives, the BADDR
directive does not advance the location counter; the location counter continues to point to
the buffer base address.

You may not use a label with this directive. The assembler issues a warning if the length
value is not a power of two.

Related Directives

BSB, BUFFER, DSR

Example

 ORG P:$100
 BADDR R,24 ; Reverse buffer 24

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

100 Freescale Semiconductor, Inc.

5.3.22 BSB Allocate Bit-Reverse Buffer

Allocates and initializes a block of bytes for a reverse-carry buffer.

 [label] BSB length[,value]

Parameters

label

Optional label that receives the value of the location counter, once the assembler
establishes a valid base address.

R

Specifier for the reverse carry buffer type.

length

Block length, in bytes: an expression that evaluates to an absolute integer greater than
zero. Must not contain any forward references; should be a power of two. Can have any
memory space attribute.

value

Optional value expression for the initial value of each array byte. Can have any memory
space attribute. Omitting this value tells the assembler to use the value zero.

Remarks

If the location counter is not zero, this directive advances the location counter to a base
address that is a multiple of 2k, where:

 2k Š length

The listing shows only one byte of object code, regardless of how large the length
expression is. However, the location counter advances by the number of bytes generated.

The assembler issues a warning if the length expression is not a power of two.

Related Directives

BADDR, BSC, DC

Example

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 101

 BUFFER BSB BUFSIZ ; Initialize buffer to zeros

5.3.23 BSC Allocate Constant Storage Block

Allocates and initializes a block of bytes.

 [label] BSC length[,value]

Parameters

label

Optional label that receives the value of the location counter at the start of directive
processing.

length

Block length, in bytes: an expression that evaluates to an absolute integer greater than
zero. Must not contain any forward references. Can have any memory space attribute.

value

Optional value expression for the initial value of each block byte, in the range
-128..+255. Can have any memory space attribute. Omitting this value tells the assembler
to use the value zero.

Remarks

The listing shows only one byte of object code, regardless of how large the length
expression is. However, the location counter advances by the number of bytes generated.

Related Directives

BADDR, BSB, DC

Example

 UNUSED BSC $2FFF-@LCV(R),$FFFFFFFF ; Fill unused EPROM

5.3.24 BUFFER Start Buffer

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

102 Freescale Semiconductor, Inc.

Indicates the beginning address of a reverse-carry buffer; does not initialize .

 BUFFER R,length

Parameters

R

Specifier for the reverse carry buffer type.

length

Buffer length, in bytes: an expression that evaluates to an absolute integer greater than
zero. Must not contain any forward references; should be a power of two.

Remarks

In response to this directive, the assembler allocates data for the buffer until it encounters
an ENDBUF directive. If allocated data does not fill the buffer, unfilled locations remain
uninitialized; if allocated data exceeds the specified buffer size, the assembler issues an
error message.

Instructions and most data definition directives may appear between the BUFFER and
ENDBUF directive pair. But you must not nest BUFFER directives. The directives that
may not appear between BUFFER and ENDBUF are:

• MODE
• ORG
• SECTION
• Other buffer allocation directives

The BUFFER directive sets the location counter to the address of a buffer of the given
type. If the location counter is not zero, this directive advances the location counter to a
base address that is a multiple of 2k, where:

 2k Š length

There must be sufficient remaining memory to establish a valid base address, or the
assembler issues an error message. Unlike other buffer allocation directives, the BUFFER
directive does not advance the location counter; the location counter continues to point to
the buffer base address.

You may not use a label with this directive. The assembler issues a warning if the length
value is not a power of two.

Related Directives

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 103

BADDR, BSB, DSR, ENDBUF

Example

 ORG P:$100
 BUFFER R,28 ; Reverse buffer 28
 R_BUF DC 0.5,0.5,0.5,0.5
 DS 20 ; Remainder uninitialized
 ENDBUF

5.3.25 COMMENT Start Comment Lines

Defines one or more lines as comments.

 COMMENT delimiter
 .
 .
 delimiter

Parameter

delimiter

Any non-space character.

Remarks

The two delimiter characters define comment text. The line that contains the second
delimiter character is the last line of the comment. Comment text can include any
printable characters; the assembler does reproduce this text in the source listing.

You may not use a label with this directive.

Examples

 COMMENT + This is a one-line comment +
 COMMENT * This is a multiple-line
 comment. Any number of lines
 can be placed between the two delimiters.
 *

5.3.26 DC Define Constant

Allocates and initializes two bytes of memory for each argument.

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

104 Freescale Semiconductor, Inc.

 [label]DC arg[,arg,...]

Parameters

label

Optional label that receives the value of the location counter at the start of directive
processing.

arg

An integer constant, fractional constant, symbol, or expression. Commas without spaces
must separate multiple arg values.

Remarks

The assembler stores multiple arguments in successive address locations. If this directive
has multiple arguments, one or more can be null (two adjacent commas): this fills the
corresponding address location with zeros.

If you use the DC directive in L memory, the assembler evaluates and stores arguments
as long word quantities. Otherwise, the assembler issues an error message if the evaluated
argument value is too large for a single DSP word.

The assembler stores integer arguments as integers; it converts floating-point arguments
to binary values. String storage is:

• Single-character strings: a word whose lower seven bits represent the ASCII
character value. For example, the assembler stores the string 'R' as $000052.

• Multiple-character strings: words that are concatenated sequences of ASCII values. If
the number of string characters is not an even multiple of the number of bytes per
DSP word, the last word's remaining characters are left aligned, and zeros fill the rest
of the word. For example, the assembler stores the string `ABCD' as two words,
$414243 and $410000.

• Exception: The NOPS option tells the assembler to store each character of a string as
it would store a single-character string. It would store the string `ABCD' as $000041,
$000042, $000043, and $000044.

Related Directives

DCB, DCL

 TABLE DC 1426,253,$2662,'ABCD'
 CHARS DC 'A','B','C','D'

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 105

5.3.27 DCB Define Constant Byte

Allocates and initializes a byte of memory for each argument.

 [label] DCB arg[,arg,...]

Parameters

label

Optional label that receives the value of the location counter at the start of directive
processing.

arg

A byte integer constant, string constant, symbol, or byte expression. Integer constants
must be byte values, in the range 0 - 255. Commas without spaces must separate multiple
arg values.

Remarks

The assembler stores multiple arguments in successive byte locations. If this directive has
multiple arguments, one or more can be null (two adjacent commas): this fills the
corresponding byte location with zeros.

The assembler stores integer arguments as integers; you may not use floating-point
arguments. String storage is:

• Single-character strings: a byte whose lower seven bits represent the ASCII character
value. For example, the assembler stores the string 'R' as $52.

• Multiple-character strings: consecutive bytes, each of which contains an ASCII
value. For example, the assembler stores the arguments `AB',,'CD' as $41, $42, $00,
$43, and $44.

Related Directives

DC, DCL, DCLL

Example

 TABLE DCB 'two',0,'strings',0
 CHARS DCB 'A','B','C','D'

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

106 Freescale Semiconductor, Inc.

5.3.28 DCL Define Constant Long

Allocates and initializes four bytes of memory for each argument.

 [label]DCL arg[,arg,...]

Parameters

label

Optional label that receives the value of the runtime location counter at the start of
directive processing.

arg

An integer constant, fractional constant, symbol, or expression. Commas without spaces
must separate multiple arg values.

Related Directives

DC, DCB

Example

 DCL $12345678 ; only big endian mode in sc3900fp,
 ; $12345678 = $12
 ; $34
 ; $56
 ; $78

5.3.29 DCLL Define Constant Long Long

Allocates and initializes the eight bytes of memory for each argument.

 [label]DCL arg[,arg,...]

Parameters

label

Optional label that receives the value of the runtime location counter at the start of
directive processing.

arg

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 107

An integer constant, fractional constant, symbol, or expression. Commas without spaces
must separate multiple arg values.

Related Directives

DC, DCB, DCL

Example

 DCLL $0123456789ABCDEF

5.3.30 DEFINE Define Substitution String

Defines substitution strings that the assembler uses in all following source lines.

 DEFINE symbol string

Parameters

symbol

Valid global or local symbol that appears in source lines.

string

Replacement string for the symbol.

Remarks

Upon encountering a macro definition, the assembler applies DEFINE-directive
translations. Later, when the assembler expands the macro, it applies the appropriate
DEFINE-directive translations to the expansion.

You may not use a label with this directive.

Related Directives

GSET, SET, UNDEF

Example

 DEFINE ARRAYSIZ '16*SAMPLSIZ'
 SAMPLSIZ EQU 16
 DS ARRAYSIZ ; This line transformed to
 . ; DS 16*SAMPLSIZ
 .

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

108 Freescale Semiconductor, Inc.

5.3.31 DS Define Storage

Reserves a block of bytes in memory, but does not initialize the block.

 [label] DS numbytes

Parameters

label

Optional label that receives the value of the location counter at the start of directive
processing.

numbytes

Number of bytes: an expression that evaluates to an integer greater than zero. This
expression must not contain any forward references. The location counter advances by
this number of bytes.

Related Directive

DSR

Example

 ; If the current loader address is $9e

 align16; Align on next 16-byte boundary
 R_BUF DS 8 ; Reserve 8 bytes for R_BUF
 S_BUF DS 12 ; Reserve 12 bytes for S_BUF

5.3.32 DSR Define Reverse-Carry Storage

Reserves a block of bytes in memory for a reverse-carry buffer, but does not initialize the
block.

 [label] DSR numbytes

Parameters

label

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 109

Optional label that receives the value of the location counter, once the assembler
establishes a valid base address.

numbytes

Number of bytes: an expression that evaluates to an absolute integer greater than zero.
This expression should be a power of two, and must not contain any forward references.

Remarks

This directive advances the location counter from a valid base address:

• If the location-counter value is not zero, the assembler advances the location counter
to a base address that is a multiple of 2,k where 2k Š numbytes. The assembler issues
an error message if there is insufficient memory.

• Then the assembler advances the location counter by the value of numbytes.

The assembler generates a warning if numbytes is not a power of two.

Related Directive

DS

Example

 ORG P:$100 ; Set address to P:$100
 R_BUF DSR 8 ; Reserve 8 bytes for R_BUF

5.3.33 DUP Duplicate Source Lines

Duplicates the following source lines the specified number of times; the ENDM directive
marks the last line to be duplicated.

 [label] DUP times
 .
 .
 ENDM

Parameters

label

Optional label that receives the value of the runtime location counter at the start of
directive processing.

times

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

110 Freescale Semiconductor, Inc.

Number of times to duplicate source lines: an expression that evaluates to an absolute
integer. This expression can have any memory-space attribute, but must not contain any
forward references. If the times value is less than or equal to zero, the assembler output
does not include the sequence of lines.

Remarks

You may nest the DUP directive to any level. If the times value is less than or equal to
zero, the assembler output does not include the sequence of lines.

To immediately halt source-line duplication, for example, upon detection of an error, use
the EXITM directive and conditional-assembly directives.

Related Directives

DUPA, DUPC, DUPF, EXITM, MACRO

Example

If MD and MEX options are enabled, and if input includes these lines:

 COUNT SET 3
 DUP COUNT ; ASR BY COUNT
 ASH.RGT.X #1,D0,D0
 ENDM

The source listing includes the line ASR D0 three times.

5.3.34 DUPA Duplicate Sequence with Arguments

Duplicates the following source statements for each argument, substituting successive arg
values for the dummy argument. The ENDM directive marks the last statement to be
duplicated. To immediately halt source-line duplication, for example, upon detection of
an error, use the EXITM directive and conditional-assembly directives.

 [label] DUPA dummy,arg[,arg,...]
 .
 .
 ENDM

Parameters

label

Optional label that receives the value of the runtime location counter at the start of
directive processing.

dummy

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 111

Valid expression that appears in the source lines.

arg

Argument string. Single quotes must enclose an embedded space or other character
significant to the assembler. If a null string, the assembler removes dummy values as it
repeats the statements. Commas without spaces must separate multiple arg values.

Related Directives

DUP, DUPC, DUPF, ENDM, EXITM, MACRO

Example

If MD and MEX options are enabled, and if input includes these lines:

 DUPA VALUE,12,32,34
 DC VALUE
 ENDM

The source listing shows successive lines:

 DC 12
 DC 32
 DC 34

5.3.35 DUPC Duplicate Sequence with Characters

Duplicates the following source statements for each character of the string argument,
substituting successive string characters for the dummy argument. The ENDM directive
marks the last statement to be duplicated. To immediately halt source-line duplication, for
example, upon detection of an error, use the EXITM directive and conditional-assembly
directives.

 [label] DUPC dummy,string
 .
 .
 ENDM

Parameters

label

Optional label that receives the value of the runtime location counter at the start of
directive processing.

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

112 Freescale Semiconductor, Inc.

dummy

Valid expression that appears in the source lines.

String

Valid string expression.Argument string. Single quotes must enclose an embedded space
or other character significant to the assembler. If a null string, the assembler skips the
block of statements.

Related Directives

DUP, DUPA, DUPF, ENDM, EXITM, MACRO

Example

If MD and MEX options are enabled, and if input includes these lines:

 DUPC VALUE,'123'
 DC VALUE
 ENDM

The source listing shows successive lines:

 DC 1
 DC 2
 DC 3

5.3.36 DUPF Duplicate Sequence in Loop

Duplicates the following source statements; the values of start, end, and increment
arguments determine the number of duplications. The ENDM directive marks the last
statement to be duplicated. To immediately halt source-line duplication, for example,
upon detection of an error, use the EXITM directive and conditional-assembly directives.

 [label] DUPF dummy[,start],end[,increment]
 .
 .
 ENDM

Parameters

label

Optional label that receives the value of the runtime location counter at the start of
directive processing.

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 113

dummy

A parameter that holds the loop index value; may appear in instruction statements.

start

Optional starting value for the loop index; defaults to 1.

end

Ending value for the loop index.

increment

Optional increment value for the loop index; defaults to 1.

Related Directives

DUP, DUPA, DUPC, ENDM, EXITM, MACRO

Example

If MD and MEX options are enabled, and if input includes these lines:

 DUPF NUM,0,7
 ST.L D0,(R\NUM)
 ENDM

The source listing includes eight copies of the line MOVE.B #0,R\NUM.

5.3.37 ELSE Start Alternative Conditional Assembly

Delimits alternative conditional assembly: ends or begins source lines to be assembled,
according to the value of the assembly condition.

 ELSE

Remarks

An optional directive valid only with a pair of IF and ENDIF directives:

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

114 Freescale Semiconductor, Inc.

• If the IF directive's condition value is TRUE (non-zero), the assembler assembles
source lines between the IF and ELSE directives, ignores lines between the ELSE
and ENDIF directives.

• If the IF directive's condition value is FALSE (zero), the assembler ignores source
lines between the IF and ELSE directives, assembles lines between the ELSE and
ENDIF directives.

You can nest conditional directives to any level. The ELSE directive, like the ENDIF
directive, always pairs with the closest previous IF directive. You may not use a label
with this directive.

Related Directives

ENDIF, IF

Example

If FLOW_1 was defined and the assembler encounters this code:

 IF @DEF('FLOW_1')

 LD.W (r0)-,d2 ; Start traceback from
 ELSE ; state zero.
 LD.W (r0),d1
 ENDIF

The assembler ignores the line LD.W (r0),d1 and assembles the line LD.W (r0)-,d2.

5.3.38 END End of Source Program

Marks that the logical end of the source program; the assembler ignores any statements
following this directive.

 END [startaddr]

Parameter

startaddr

Optional starting execution address of the program. Only valid for absolute mode; must
have memory-space attribute P (program) or N (none).

Remarks

You cannot use this directive in a macro expansion. You may not use a label with this
directive.

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 115

Example

 END BEGIN ; BEGIN is the starting execution

 address

5.3.39 ENDBUF End Buffer

Marks the end of a buffer block.

 ENDBUF

Remarks

When the assembler encounters this directive, the location counter points just beyond the
end of the buffer. You may not use a label with this directive.

Related Directive

BUFFER

Example

 ORG P:$100
 BUFFER R,64 ; Uninitialized reverse-carry buffer
 ENDBUF

5.3.40 ENDIF End Conditional Assembly

Ends conditional assembly that the preceding IF directive began.

 ENDIF

Remarks

The directive pair IF and ENDIF delimit source lines for conditional assembly. You can
nest conditional assembly directives to any level. The ENDIF directive, like the optional
ELSE directive, always pairs with the closest previous IF directive.

You may not use a label with this directive.

Related Directives

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

116 Freescale Semiconductor, Inc.

ELSE, IF

Example

 IF @REL()
 SAVEPCSET * ; Save current program counter
 ENDIF

5.3.41 ENDM End Macro Definition

Ends a macro definition or marks the end of duplicated lines: terminates assembly actions
of the MACRO, DUP, DUPA, DUPC, or DUPF directives. You may not use a label with
this directive.

 ENDM

Related Directives

DUP, DUPA, DUPC, DUPF, MACRO

Example

 SWAP_SYM MACRO REG1,REG2 ; Swap REG1,REG2 (D4 is temp)
 MOVE.L R\?REG1,D4
 MOVE.L R\?REG2,D\?REG1
 MOVE.L D4,R\?REG2
 ENDM

5.3.42 ENDSEC End Section

Marks the end of a section; the previous SECTION directive began the section. You may
not use a label with this directive.

 ENDSEC

Related Directive

SECTION

Example

 SECTION .data
 VALUES BSC $100 ; Initialize to zero
 ENDSEC

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 117

5.3.43 EQU Equate Symbol to Value

Assigns an expression value to a label symbol.

 label EQU [L:|N:|P:]expression

Parameters

label

Label that receives the expression value.

L:|N:|P:

Optional specifier that forces the memory-space attribute; valid only if the expression
memory-space attribute is N (none).

expression

Any absolute or relative expression; must not include any forward references.

Remarks

Many directives assign the program-counter value to a label; this directive gives an
expression value to the specified label. You cannot redefine this label anywhere in the
program or section.

The optional forcing memory space parameter lets you assign an attribute to a constants-
only expression that refers to a fixed address in a memory space. However, if the
expression attribute is L or P and you specify an attribute that does not match, the
assembler issues an error message.

Examples

This first example assigns the value $4000, and memory-space attribute P, to the symbol
A_D_PORT:

 A_D_PORT EQU P:$4000

This second example gives symbol COMPUTE the value and memory-space attribute of the
expression @LCV(L):

 COMPUTE EQU @LCV(L)

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

118 Freescale Semiconductor, Inc.

5.3.44 EXITM Exit Macro

Immediately terminates a macro expansion or a sequence of duplicated lines.

 EXITM

Remarks

Use this directive with conditional-assembly directives to terminate macro expansion (or
duplicated lines) upon detection of an error condition. You may not use a label with this
directive.

Related Directives

DUP, DUPA, DUPC, DUPF, MACRO

Example

 CALC MACRO XVAL,YVAL
 IF XVAL<0
 FAIL 'Macro parameter value out of range'
 EXITM ; Exit macro
 ENDIF
 .
 .
 .
 ENDM

5.3.45 FAIL Issue Programmer Error Message

Issues the specified error messages and increments the total error count.

 FAIL {str | exp}[,{str | exp},...]

Parameters

str

Any valid string appropriate as part of an error message. Commas without spaces must
separate multiple str values.

exp

Any expression appropriate as part of an error message. Commas without spaces must
separate multiple exp values.

Remarks

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 119

Use this directive with conditional assembly directives for exceptional condition
checking. The assembly proceeds normally after the assembler displays the error
message.

You may not use a label with this directive.

Related Directives

MSG, WARN

Example

 FAIL 'Parameter out of range'

5.3.46 FALIGN Align with Fetch-Set

Aligns the address of a hardware loop's first instruction, or the address of a jump-
instruction target, with the fetch set. The fetch set boundary is 32 bytes for the SC3900FP
core.

 FALIGN

Remarks

You may apply the FALIGN directive on a per-loop basis. The assembler performs
alignment if the size of the execution set overlaps the fetch set boundary. If the execution
set starts at a nonaligned address, but fits into the current fetch set, the assembler does not
perform alignment.

The assembler implements alignment by padding:

• If you optimize the function for speed (OPT_SPEED - the default), the assembler
inserts the appropriate number of NOPs inside packets, before the loop that contains
the FALIGN directive.

• If you optimize the function for size (OPT_SIZE), the assembler inserts the
appropriate number of NOPs as a standalone packet.

Any time the assembler inserts NOPS, it issues a remark. (The -ofa and -onofa command-
line options enable/disable display of these remarks.)

For the SC3900FP core, the FALIGN directive forces its entire section to a 32-byte
alignment. The system preserves these alignments at link time, even if the section starting
location has moved.

Related Directive

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

120 Freescale Semiconductor, Inc.

OPT (LPA option)

Example

 ORG P:$100
 DOEN.3 #5
 NOP
 NOP
 NOP
 LOOPSTART3
 FALIGN

 compute_alpha
 ...
 LOOPEND3

5.3.47 GLOBAL Declare Global Section Symbol

Makes specified local section symbols global. (The default arrangements for such
symbols is that they are local.) You may not use a label with this directive.

 GLOBAL symbol[,symbol,...]

Parameter

symbol

Any symbol defined within the section, that is, between the SECTION and ENDSEC
directives. Commas without spaces must separate multiple symbol values.

Related Directive

SECTION

Example

 SECTION IO
 GLOBAL LOOPA ; LOOPA now globally accessible
 . ; by other files
 .
 .
 ENDSEC

5.3.48 GSET Set Global Symbol to Value

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 121

Assigns the specified value to the specified global symbol.

 label GSET value
 GSET label value

Parameters

label

A global symbol.

value

An absolute expression. Must not contain any forward references.

Remarks

If you use this directive to define a label, another GSET or SET directive elsewhere in the
program can redefine the label. Use this directive to reset a global SET symbol within a
section, where the SET symbol otherwise would be local.

Related Directives

DEFINE, EQU, SET

Example

 COUNT GSET 0 ; Initialize count

5.3.49 HIMEM Set High Memory Bounds

Establishes an absolute high memory bound for code and data generation. This directive
is valid only for absolute mode; you may not use a label with this directive.

 HIMEM P:expr[,...]

Parameters

P:

P memory specifier.

expr

An absolute integer value within the processor address range.

Related Directive

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

122 Freescale Semiconductor, Inc.

LOMEM

Example

 HIMEM P:$7FFF ; Set P run high mem limit

 to $7fff

5.3.50 IF Start Conditional Assembly

Starts conditional assembly of source lines: the assembler assembles the following lines if
the condition value is true (non-zero). The ENDIF directive indicates the last source line
to be assembled conditionally.

 IF condition
 .
 .
 [ELSE]
 .
 .
 ENDIF

Parameter

condition

An absolute-integer expression. A non-zero value means that the condition is true; a zero
value means that the condition is false. Must not contain any forward references.

Remarks

The directive pair IF and ENDIF delimit source lines for conditional assembly. You can
nest conditional assembly directives to any level. The ENDIF directive, like the optional
ELSE directive, always pairs with the closest previous IF directive.

The assembler follows these rules:

• condition = TRUE (non-zero), no ELSE directive - assembles lines between IF and
ENDIF.

• condition = FALSE (zero), no ELSE directive - ignores lines between IF and ENDIF.
• condition = TRUE (non-zero), ELSE directive present - assembles lines between IF

and ELSE, ignores lines between ELSE and ENDIF.
• condition = FALSE (zero), ELSE directive preset - ignores lines between IF and

ELSE, assembles lines between ELSE and ENDIF.

You may not use a label with this directive.

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 123

Related Directives

ELSE, ENDIF

Example

If FLOW_1 was defined and the assembler encounters this code:

 IF @DEF('FLOW_1')

 LD.W (r0)-,d2 ; Start traceback from
 ELSE ; state zero.
 LD.W (r0),d1
 ENDIF

The assembler ignores the line LD.W (r0),d1 and assembles the line LD.W (r0)-,d2.

5.3.51 INCLUDE Include Secondary File

Tells the assembler to read source statements from the secondary file that the string
argument identifies.

 INCLUDE {'file' | <file>}

Parameters

'file' or <file>

A file name compatible with the operating system; may include a pathname. The default
extension is .asm.

Remarks

The assembler's search path depends on the file name syntax. For the 'file' syntax, the
assembler first searches in the current file (or in the specified directory, if the file value
includes a pathname). If it does not fine the file, it next searches in all directories that the
-i command-line option specifies.

For the <file> syntax, the assembler ignores the current (or specified) directory, searching
only in the directories that the -i command-line option specifies.

You may not use a label with this directive.

Related Directive

MACLIB

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

124 Freescale Semiconductor, Inc.

Example

 INCLUDE 'headers/io.asm' ; Include file io.asm,
 ; in directory headers.

 INCLUDE <data> ; Include file data.asm,
 ; but do not search in the
 ; current directory

5.3.52 LIST List Assembly

Prints the source listing: all lines that follow the LIST directive.

 LIST

Remarks

The printed source listing begins with the line after the LIST directive.

A special list counter, initialized to 1, affects list printing: as long as the counter value
remains above zero, the assembler prints the source listing in response to any LIST
directive. Each LIST directive increments the list counter, but each NOLIST directive
decrements the counter. If the counter value drops to zero or below, the assembler does
not print a listing in response to the LIST directive.

If the command line includes the -oIL option, the assembler ignores the LIST directive,
regardless of the counter value.

You may not use a label with this directive.

Related Directives

NOLIST, OPT

Example

 IF LISTON
 LIST ; Turn the listing back on
 ENDIF

5.3.53 LOMEM Set Low Memory Bounds

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 125

Establishes an absolute low memory bound for code and data generation. This directive is
valid only for absolute mode; you may not use a label with this directive.

 LOMEM P:expr[,...]

Parameters

P:

P memory specifier.

expr

An absolute integer value within the processor address range.

Related Directive

HIMEM

Example

 HIMEM P:$100 ; Set P run low mem limit to $100

5.3.54 MACLIB Specify Macro Library

Specifies a directory that contains macro definitions.

 MACLIB pathname

Parameter

pathname

Pathname of a macro-definition directory.

Remarks

Each macro definition must be in a separate file; the file must have the same name as the
macro, with extension .asm. So file blockmv.asm would contain the definition of macro
blockmv.

Upon encountering a directive that is not in the directive or mnemonic tables, the
assembler searches the directory that pathname specifies. If it finds a matching file, the
assembler saves the current source line, then opens the file for input as an INCLUDE file.
When the assembler reaches the end of the file, it restores the source line and resumes
processing.

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

126 Freescale Semiconductor, Inc.

If the processed file does not include a macro definition of the unknown directive, the
assembler issues an error message upon restoring and processing the source line.
However, the processed file is not limited to macro definitions; it can include any valid
source code statements.

If multiple MACLIB directives specify several directories, the assembler searches the
directories in their order in the MACLIB directives.

You may not use a label with this directive.

Related Directive

INCLUDE

Example

 MACLIB 'macros/mymacs/'

5.3.55 MACRO Define Macro

Defines a new macro.

 label MACRO [dumarg[,dumarg,...]]
 .
 .
 source statements
 .
 .
 ENDM

Parameters

label

Name for the new macro; should not duplicate any existing assembler directives or
mnemonics.

dumarg

Symbolic name to be replaced by an argument value when a statement calls the macro.
Must follow the rules for symbol names; may not begin with the % character. Commas
without spaces must separate multiple dumarg values.

Remarks

Each macro definition consists of three parts:

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 127

• Header - the name and dummy arguments. This is the MACRO directive, with its
label and dumarg values. (The assembler issues a warning if the label value duplicates
an assembler directive or mnemonic.)

• Body - the sequence of standard source statements.
• Terminator - the ENDM directive.

If you nest macro definitions, the assembler does not define the nested macro until it
expands the primary macro.

Related Directives

DUP, DUPA, DUPC, DUPF, ENDM

Example

 SWAP_SYM MACRO REG1,REG2 ; Swap REG1,REG2 (D4 is
 temp)
 MOVE.L R\?REG1,D4
 MOVE.L R\?REG2,D\?REG1
 MOVE.L D4,R\?REG2
 ENDM

5.3.56 MSG Issue Programmer Message

Outputs a message without incrementing the error or warning counts.

 MSG {str | exp}[,{str | exp},...]

Parameters

str

Any valid string appropriate as part of a message. Commas without spaces must separate
multiple str values.

exp

Any expression appropriate as part of a message. Commas without spaces must separate
multiple exp values.

Remarks

Use this directive with conditional assembly directives to convey information. The
assembly proceeds normally after the assembler displays the message.

You may not use a label with this directive.

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

128 Freescale Semiconductor, Inc.

Related Directives

FAIL, WARN

Example

 MSG 'Generating sine tables'

5.3.57 MULTIDEF Allow Multiple Definitions

Allows multiple definitions for specified symbols.

 MULTIDEF symbol[, symbol,...]

Parameter

symbol

A symbol name. Commas without spaces must separate multiple symbol values.

Remarks

Binds local symbols, so that they behave like global symbols. Any time the assembler
combines two such bound symbols into an .eld file, it uses the first definition.

Example

 MULTIDEF AxisX, AxisY, AxisZ

5.3.58 NOLIST Stop Assembly Listing

Stops printing of the assembly listing.

 NOLIST

Remarks

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 129

A special list counter, initialized to 1, affects list printing: as long as the counter value
remains above zero, the assembler prints the source listing in response to any LIST
directive. Each LIST directive increments the list counter, but each NOLIST directive
decrements the counter. If the counter value drops to zero or below, the assembler does
not print a listing in response to the LIST directive.

You may not use a label with this directive.

Related Directives

LIST, OPT

Example

 IF LISTOFF
 NOLIST ; Turn the listing off
 ENDIF

5.3.59 NOTE Include Note

Tells the assembler to include the specified note in the .note section of the listing file.

 NOTE"<comment>"

Parameter

<comment>

User-specified note or comment.

Example

 NOTE"This is a note"

5.3.60 OPT Set Assembler Options

Specifies options that control formats, reporting, and other aspects of assembler
operation.

 OPT option[,option...] [; comment]

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

130 Freescale Semiconductor, Inc.

Parameters

option

Any assembler control option: valid either with the OPT directive or with the -o
command line option. The table given below lists these options.

comment

Optional comment string.

Remarks

Commas without spaces must separate multiple options. You may not use a label with
this directive.

The same options can be arguments for this directive or for the -o command line option:
OPT MU in a source line has the same effect as -oMU in the command line.

The below table lists available options, by type. The table shows the options in capital
letters, but the options are not case sensitive. Many options have logical opposites that
begin with NO; table explanations include these opposites.

NOTE
All options available in the below table (and of Table 2-1 table)
are valid with the -Xasm passthrough option of the scc command
line.

Table 5-3. OPT Options

Option Control Action

Listing Format Control

FC Folds trailing comments under the source line, aligning them
with the opcode field; aligns lines that start with the ;
character with the label field. Opposite option: NOFC, which is
the default, as well as the reset setting at the end of pass one.

FF Uses form feeds for page ejects in the source listing.Opposite
option: NOFF, which is the default, as well as the reset setting
at the end of pass one.

FM Formats messages: aligns text, breaks at word
boundaries.Opposite option: NOFM, which is the default, as
well as the reset setting at end of pass one.

NOFC Does not fold trailing comments under the source line. Default
setting, as well as the reset setting after pass one.Opposite
option: FC.

NOFF Uses multiple line feeds for page ejects. Default setting, as
well as the reset setting at the end of pass one.Opposite
option: FF.

NOFM Does not format messages. Default setting, as well as the
reset setting after pass one.Opposite option: FM.

Table continues on the next page...

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 131

Table 5-3. OPT Options (continued)

Option Control Action

NOPP Does not pretty print; preserves source-line formatting, but
expands tabs to spaces and concatenates continuation
lines.Opposite option: PP, which is the default setting, as well
as the reset setting after pass one.

NORC Does not use relative spacing. Default setting, as well as the
reset setting after pass one.Opposite option: RC.

PP Pretty prints: aligns values in consistent columns, without
regard to source-file formatting. Default setting, as well as the
reset setting at end of pass one.Opposite option: NOPP.

RC Uses relative comment spacing: lets comment starting column
float, according to presence/absence of other field
values.Opposite option: NORC, which is the default, as well
as the reset setting at end of pass one.

Output file format

REL Specifies a .rel relocation type.

RELA Specifies a .rela relocation type.

ELF Specifies an ELF binary output file.

Reporting

CEX Prints DC expansions.Opposite option: NOCEX, which is the
default, as well as the reset setting at end of pass one.

CL Prints conditional assembly directives. Default setting, as well
as the reset setting at end of pass one.Opposite option:
NOCL.

DXL Expands DEFINE directive strings in the source listing.
Default setting, as well as the reset setting at end of pass
one.Opposite option: NODXL.

HDR Generates listing header along with titles and subtitles.
Default setting, as well as the reset setting at end of pass
one. Opposite option: NOHDR.

IL Inhibits (blocks) a source listing.

MC Prints macro calls. Default setting, as well as the reset setting
at end of pass one.Opposite option: NOMC option: Does not
print macro calls.

MD Prints macro definitions. Default setting, as well as the reset
setting at end of pass one.Opposite option: NOMD.

MEX Prints macro expansions.Opposite option: NOMEX, which is
the default setting, as well as the reset setting at end of pass
one.

MU Includes a memory utilization report in the source listing. This
option must appear before any code or data generation.

NL Prints nesting levels in listing: conditional assembly and
section nesting.Opposite option: NONL, which is the default
setting, as well as the reset setting at end of pass one.

NOCEX Does not print DC expansions. Default setting, as well as the
reset setting at end of pass one.Opposite option: CEX.

Table continues on the next page...

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

132 Freescale Semiconductor, Inc.

Table 5-3. OPT Options (continued)

Option Control Action

NOCL Does not print conditional assembly directives.Opposite
option: CL, which is the default, as well as the reset setting at
end of pass one.

NODXL Does not expand DEFINE directive strings.Opposite option:
DXL, which is the default, as well as the reset setting at end
of pass one.

NOHDR Does not generate listing header; turns off titles and
subtitles.Opposite option: HDR, which is the default, as well
as the reset setting at end of pass one.

NOMC Does not print macro calls.Opposite option: MC, which is the
default, as well as the reset setting at end of pass one.

NOMD Does not print macro definitions.Opposite option: MD, which
is the default, as well as the reset setting at end of pass one.

NOMEX Does not print macro expansions. Default setting, as well as
the reset setting at end of pass one.Opposite option: MEX.

NONL Does not print nesting levels. Default setting, as well as the
reset setting at end of pass one.Opposite option: NL.

NOU Does not print unassembled, conditional-assembly lines.
Default setting, as well as the reset setting at end of pass
one.Opposite option: U.

WEX Counts warnings as error messages. Warnings block creation
of an object file, unless -osvo is in the command line.

U Prints unassembled lines of conditional-assembly
code.Opposite option: NOU, which is the default, as well as
the reset setting at end of pass one.

Message Control

AE Checks address expressions: validates arithmetic operations.
Default setting, as well as the reset setting at end of pass
one.Opposite option: NOAE.

FA Enables display of FALIGN-directive remarks.Opposite
option: NOFA, which is the default.

MSW Issues a memory space warning if incompatibilities exist.
Default setting, as well as the reset setting at end of pass
one.Opposite option: NOMSW.

NOAE Does not check address expressions.Opposite option: AE,
which is the default, as well as the reset setting at end of pass
one.

NOFA Disables display of FALIGN-directive remarks. Default
setting.Opposite option: FA.

NOMSW Suppresses memory space incompatibility warnings.Opposite
option: MSW, which is the default, as well as the reset setting
at end of pass one.

NOR Disables remarks display. (Disabling warnings display also
blocks display of remarks.)Opposite option: R, which is the
default.

NOSTALLS Specifies no generation of SC3000 stall information. Default
setting; not valid for other architectures.Opposite option:
STALLS.

Table continues on the next page...

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 133

Table 5-3. OPT Options (continued)

Option Control Action

NOUR Does not warn about unresolved references.Oppsite option:
UR (which is valid only in relocatable mode).

NOW Does not print warnings.Opposite option: W, which is the
default, as well as the reset setting at end of pass one.

R Enables remarks display. Default setting.Opposite option:
NOR.

STALLS Specifies generation of SC3000 stall information in listing
files; not valid for other architectures.NOTE: Stall information
appears as warnings, so you must enable warnings display to
see this information.Opposite option: NOSTALLS, which is
the default.

UR Warns about each unresolved reference at assembly time;
valid only in relocatable mode.Opposite option: NOUR.

W Prints all warnings. Default setting, as well as the reset setting
at end of pass one.Opposite option: NOW.

Symbol

DEX Expands DEFINE symbols in quoted strings. (To expand
individual symbols, use double-quoted strings.)

SO Writes symbol information to the object file.

Assembler Operation

BE Generates output for a big-endian target. (The default setting
is little-endian.)

CC Enables cycle counts, clears the total cycle count. The output
listing shows cycle counts for each instruction, as if there
were a full instruction fetch pipeline and no wait
states.Opposite option: NOCC, which is the default, as well as
the reset setting at end of pass one.

CK Enables checksumming for instructions and data values;
clears cumulative checksum.Opposite option: NOCK, which is
the default, as well as the reset setting at end of pass one.

CM Preserves comment lines of macro definitions; does not
preserve comment lines that begin with ;; characters.Opposite
option: NOCM.

CONTCK Re-enables checksumming for instructions and data values;
does not clear cumulative checksum.

DLD Does not restrict DO-loop directives; suppresses error
messages regarding directives in DO loops that do not make
sense.Opposite option: NODLD, which is the default, as well
as the reset setting at end of pass one.

INTR Checks interrupt locations; lets the assembler screen interrupt
vector locations of memory for inappropriate DSP instructions.
Default setting, as well as the reset setting for absolute
mode.Opposite option: NOINTR, which is the reset setting for
relative mode.

LDB Enables source listing debug: using the source listing instead
of the assembly language file as the debug source file. Valid
only if the command line includes the -l option.

Table continues on the next page...

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

134 Freescale Semiconductor, Inc.

Table 5-3. OPT Options (continued)

Option Control Action

LPA Enables hardware loop alignment for subsequent loops of the
file; aligns loop addresses on a fetch set boundary, preventing
additional pipeline stall cycles. The assembler implements
this alignment automatically by padding execution sets with
NOPs. However, this padding does not take place in
hardware loops that do not use LOOPSTART
notation.Opposite option: NOLPA, which is the default.

MB Specifies the big memory model: move instruction addresses
use the {a32} format instead of the default {a16} format.

NOAEC Does not allow C escape characters. Default setting.

NOCC Disables cycle counts, does not clear the total cycle count.
Default setting, as well as the reset setting at end of pass
one.Opposite option: CC.

NOCK Disables checksumming. Default setting, as well as the reset
setting at end of pass one.Opposite option: CK.

NOCM Does not preserve comment lines of macro
definitions.Opposite option: CM.

NODLD Restricts DO-loop directives. Default setting, as well as the
reset setting at end of pass one.Opposite option: DLD.

NOINTR Does not check interrupt locations. Reset setting for relative
mode.Opposite option: INTR.

NOLPA Disables hardware loop alignment. Default setting.Opposite
option: LPA.

NOOVLDBG For files containing an overlay section, renames debug
sections .debug_info<overlay_scn>. (In this format,
multiple overlay sections in the same module corrupt the
debug information.)Opposite option: OVLDBG, which is the
default.

NOPS Does not pack strings; stores one string byte per
word.Opposite option: PS.

OVLDBG Tells assembler to generate overlay-section debug
information using local addresses instead of run addresses.
This mode permits debugging of modules that contain
multiple overlay sections. Default setting.Opposite option:
NOOVLDBG.

PS Packs strings for the DC directive; packs individual string
bytes into consecutive target words.Opposite option: NOPS.

RSG Specifies operations of both RSG_CHK and RSG_NOP
options.

RSG_CHK Specifies that:
• DECEQA accepts SP as an operand,
• EXTRACT does not check the 40-bit limit,
• CMPEQA, CMPHIA, INCA, and DECA accept the same

register twice as an operand.

SVO Preserves object file if errors: overrides default setting to
delete object files in case of errors. Must appear before any
code or data generation.

RSG_NOP Specifies:

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 135

Table 5-3. OPT Options

Option Control Action

• Combining all NOPs into one NOP, in the VLES prefix,
• For FALIGN, introducing a separate VLES instead of

combining NOPs in previous packets.

Example

 OPT CEX,MEX ; Enable DC and macro expansions
 OPT CRE,MU ; Print cross reference, memory utilization

5.3.61 ORG Initialize Memory Space and Location Counters

Sets absolute addresses; sets the memory space; and specifies and initializes the location
counter.

 ORG P[{lc|(ce)}]:[initval]

Parameters

P

P memory specifier.

lc

Location counter specifier: L (counter 1) or H (counter 2). Omitting both values specifies
the default counter (counter 0) .

Counters are useful for providing mnemonic links among individual memory blocks.

(ce)

The counter number: a non-negative absolute integer expression. Must be in parentheses,
must not exceed 65535.

initval

Optional initial value for the location counter. If you omit this value, the assembler uses
the last value of the counter.

Remarks

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

136 Freescale Semiconductor, Inc.

Counters provide mnemonic links among individual memory blocks. The H, L, and
default counter names are symbolic; the assembler does not verify that the H-counter
value is greater than the L-counter value.

You may not use a label with this directive.

Examples

This first example:

 ORG P:$1000

Sets the memory space to P, selects the P-space default counter, and initializes that
counter to $1000.

This second example:

 ORG PH:

Sets the memory space to P and selects the P-space H location counter (counter 2). This
example does not initialize the counter, so the assembler uses the last H-counter value.

5.3.62 PAGE Advance Page or Size Page

Without argument values, advances the source listing to the top of the next page. With
argument values, sets the size and margins of source-listing pages.

 PAGE [pagewidth[,pagelength,blanktop,blankbtm,blankleft]]

Parameters

pagewidth

Number of columns per line: 1 through 255. The default is 80.

pagelength

Number of lines per page: 10 through 255. The default is 66. The special value 0 turns off
all headers, titles, subtitles, and page breaks.

blanktop

Number of blank lines at the top of the page. The minimum (and default) value is 0. The
value must maintain the relationship: blanktop+blankbtm £ pagelength-10.

blankbtm

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 137

Number of blank lines at the bottom of the page. The minimum (and default) value is 0.
The value must maintain the relationship: blanktop+blankbtm £ pagelength-10.

blankleft

Number of blank columns at the left of the page; must be less than the pagewidth value.
The minimum (and default) value is 0.

Remarks

If this directive has no arguments, the assembler does not print the directive in the source
listing. If this directive does have argument values, the assembler includes the directive in
the source listing.

Arguments may be any non-negative absolute integer expressions; commas without
spaces must separate multiple argument values. Two adjacent commas tell the assembler
to use the default value (or the last set value).

You may not use a label with this directive.

Examples

This first example:

 PAGE 132,,2,4

Sets the page width to 132 columns, page length to 66 lines (the default), top margin to 2
lines, and bottom margin to 4 lines. This example specifies 0 blank columns (the default)
at the left side of the page.

This second example given below merely advances the listing to the top of the next page:

 PAGE

5.3.63 PMACRO Purge Macro Definition

Purges the specified macro definitions from the macro table, reclaiming space from the
table. You may not use a label with this directive.

 PMACRO symbol[,symbol,...]

Parameter

symbol

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

138 Freescale Semiconductor, Inc.

A macro name. Commas without spaces must separate multiple symbol values.

Related Directive

MACRO

Example

 PMACRO MAC1,MAC2

5.3.64 PRCTL Send Control String to Printer

Concatenates its arguments and sends them to the source listing, provided that the
command line included the -l option.

 PRCTL {exp | string},...

Parameters

exp

A byte expression that encodes non-printing control characters, such as ESC.

string

Any valid assembler control string.

Remarks

You may use this directive anywhere in the source file; the assembler outputs the control
string at the corresponding place in the source listing. If a PRCTL directive is the first
line of the first input file, the assembler outputs the control string before outputting page
headings or titles.

If a PRCTL directive is the last line of the last input file, the assembler makes sure that
all error summaries, symbol tables, and cross-references have been printed before it prints
the control string. In this manner, you can use a PRCTL directive to restore the previous
printer mode once printing is done.

If the command line did not include the -l option, the assembler ignores this directive.
The assembler does not print this directive unless there is an error.

The assembler does not allow a label with this directive.

Example

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 139

 PRCTL $1B,'E' ; Reset HP LaserJet printer

5.3.65 SECFLAGS Set ELF Section Flags

Sets flag bits for the current section.

 SECFLAGS flag[,flag...]

Parameter

flag

Any of these attribute values:

write - section contains writable data when loaded

alloc - section occupies memory space when loaded

execinstr - section contains executable instructions

nowrite - section contains non-writable data when loaded

noalloc - section does not occupy memory space when loaded

noexecinstr - section does not contain executable instructions

Remarks

Commas without spaces must separate multiple flag arguments.

Conventional sections (.text, .data, .rodata, or .bss) have specific type and flag values. A
section with any other name is a code section; its default type and flag values are those of
a .text section. But you can use the SECFLAGS and SECTYPE directives to redefine the
default values.

You may not use a label with this directive.

Related Directives

SECTYPE, SECTION

Example

The SECTION directive begins a data section that has a non-standard name. Accordingly,
the assembler gives this section the default flag values of a .text section: nowrite, alloc,
execinstr. The SECFLAGS directive makes the flag values appropriate for a data section.

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

140 Freescale Semiconductor, Inc.

 SECTION .data_input2
 SECFLAGS write,alloc,noexecinstr
 ...
 ENDSEC

5.3.66 SECTION Start Section

Starts a section: a block of relocatable code or data.

SECTION symbol [GLOBAL] [core_id]
.
.
section source statements
.
.
ENDSEC

Parameters

symbol

Name for the section. Standard names are .text, .data, .rodata, and .bss. Other names
automatically invoke .text type and attribute values; other names must not duplicate a
reserved name.

GLOBAL

Optional qualifier that makes all symbols defined within the section global. Without this
parameter, all symbols defined within the section are local.

core_id

Optional 8102 DSP core loading destination for the section. Does not pertain to other
processors.

Remarks

Code or data inside a section is independently relocatable within the memory space to
which it is bound.

You can nest sections to any level. When the assembler encounters a nested section, it
stacks the parent section and uses the nested section. Upon encountering the nested
section's ENDSEC directive, the assembler restores and uses the parent section. (The
ENDSEC directive always pairs with the closest previous SECTION directive.)

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 141

You can split a section into separate parts, by using the same name for multiple
SECTION and ENDSEC pairs. This lets you arrange program source statements
arbitrarily. For example, you can group all statements that reserve P space storage
locations.

The assembler allocates a P-memory-space location counter for every section you define
in source code. This counter maintains data and instruction offsets from the beginning of
the section. At link time, according to your specifications, the linker relocates sections to
an absolute address, loads sections in a particular order, or linked sections contiguously.
The linker logically recombines split sections, making it possible to relocate each section
as a unit.

You may give a section any name, except for the reserved names appearing in the below
table.

Table 5-4. Reserved Section Names

.debug_abbrev .debug_pubname .rel.line

.debug_aranges .default .rel.line.debug_info

.debug_info .line .shstrtab

.debug_line .mw_info .strtab

.debug_loc .note .symtab

.debug_macro .rel.debug_loc

The table below explains the standard sections.

Table 5-5. Conventional ELF Sections

Section Contents Type Attributes

.bss Unititialized data NOBITS ALLOC, WRITE

.data Initialized data PROGBITS ALLOC, WRITE

.mw_info Assembler-generated
contents that the linker
consumes during dead data
stripping

SHT_MW_INFO
(SHT_LOPROC+3)

no sh_flags(0)

.note User comments, as ABI 2.0
defines.

SHT_NOTE(7) no sh_flags(0)

.rodata Read-only initialized data PROGBITS ALLOC

.text Program code PROGBITS ALLOC, EXECINSTR

If you do not use a standard name, the assembler assigns the .text type and attributes. To
change these values, use the SECTYPE or SECFLAGS directives.

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

142 Freescale Semiconductor, Inc.

Symbols defined outside any section are global: they can satisfy an outstanding reference
in the current file at assembly time, or in any file at link time. You may reference global
symbols freely from inside or outside any section, as long as the global symbol name is
unique.

Symbols defined within a section are local: they can satisfy an outstanding reference only
within that section. But you can change this default arrangement:

• The GLOBAL qualifier of the SECTION directive makes all symbols defined in that
section global symbols.

• The GLOBAL directive makes specified symbols global.

For the 8102 DSP, the linker can generate four linked core files, one for each processor,
one of which contains the L2 memory. You must specify the core file into which the
system will load the section. One way is to include a core_id specifier in the SECTION
directive. The other method is to use the linker command file.

You man not use a label with this directive.

Related Directives

GLOBAL, ORG

Example

This directive starts a new section, TABLES:

SECTION TABLES GLOBAL

As the section has a non-standard name, its type and attributes are those of a .text section.
The GLOBAL specifier means that all symbol definitions in the section define global
symbols.

5.3.67 SECTYPE Set ELF Section Type

Defines the section type.

 SECTYPE {progbits | nobits | overlay}

Parameters

progbits

Specifier for a section that has program contents, including code and data.

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 143

nobits

Specifier for a section that has no contents and does not occupy file space. (The
assembler discards anything in nobits sections.)

overlay

Specifier for an overlay section.

Remarks

Standard sections .text, .data, .rodata, and .bss have default type and flag values; a
section that has any other name receives the .text default values. Use this directive to
change the default type value.

You may not use a label with this directive.

Related Directives

SECFLAGS, SECTION

Example

The SECTION directive starts new section .data_output. The non-standard name means
that the section receives .text default type and attributes: PROGBITS, ALLOC, and
EXECINSTR. The SECFLAGS directive changes the attributes; the SECTYPE directive
changes the type to NOBITS.

 SECTION .data_output
 SECFLAGS write,alloc,noexecinstr
 SECTYPE nobits
 ...
 ENDSEC

5.3.68 SET Set Symbol to Value

Assigns the specified value to the specified symbol.

 label SET value
 SET label value

Parameters

label

A symbol.

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

144 Freescale Semiconductor, Inc.

value

An absolute expression. Must not contain any forward references.

Remarks

If you use this directive to define a label, another SET directive elsewhere in the program
can redefine the label. Use this directive to establish temporary or reusable counters
within a macro.

Related Directives

DEFINE, EQU, GSET

Example

 COUNT SET 0 ; Initialize count

5.3.69 SIZE Set Symbol Size

Sets the size of the specified symbol to the value of the expression parameter. May be
anywhere in the source file, unless the symbol is a function name. If you define an
INITIALIZER or VARIABLE symbol, the SIZE directive should appear after the symbol
definition.

 SIZE symbol,expression[,alignment]

Parameters

symbol

Any valid symbol. If a function name, the function definition must precede the SIZE
directive.

expression

Any valid expression.

alignment

Optional alignment value for the symbol in the .mw_info section. (The linker uses this
section's information for dead stripping.) This value must not be greater than the
alignment of the symbol definition. This value must conform to the alignment of the
symbol address.

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 145

Related Directive

TYPE

Example

 _main:
 .
 .
 RTS
 SIZE _main,(*-_main)

5.3.70 STITLE Initialize Program Subtitle

Makes the specified string a subtitle of the program.

 STITLE [string]

Parameter

string

Optional string value.

Remarks

The default program subtitle at the top of source-listing pages is blank. This directive
specifies the subtitle for subsequent pages of the source listing. A subsequent STITLE
directive changes the subtitle again. An STITLE directive without any string argument
makes the subtitle blank.

The source listing does not include this directive.

You may not use a label with this directive.

Related Directive

TITLE

Example

 STITLE 'COLLECT SAMPLES'

5.3.71 TITLE Initialize Program Title

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

146 Freescale Semiconductor, Inc.

Makes the specified string the title of the program.

 TITLE [string]

Parameter

string

Optional string value.

Remarks

The default program title at the top of source-listing pages is blank. This directive
specifies the title for subsequent pages of the source listing. A subsequent TITLE
directive changes the title again. A TITLE directive without any string argument makes
the title blank.

The source listing does not include this directive.

You may not use a label with this directive.

Related Directive

STITLE

Example

 TITLE 'FIR FILTER'

5.3.72 TYPE Set Symbol Type

Sets the type for the specified symbol.

 Label TYPE typeid

Parameters

Label

Any label symbol of the program

typeid

Any of these values:

FILE - for the file name of the compilation unit.

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 147

FUNC - for a symbol associated with a function or other executable code.

INITIALIZER - for a symbol associated with an initializer.

OBJECT - for a symbol is associated with a variable, array, structure, or other such object.

VARIABLE - for a symbol associated with a variable.

Remarks

The assembler stores INITIALIZER- and VARIABLE- type information in the .mw_info
section. The linker uses this information for data dead stripping. The linker stripping
support document gives additional information about these initializers and variables.

Related Directive

SIZE

Example

 Afunc TYPE FUNC ; Symbol Afunc is type STT_FUNC

5.3.73 UNDEF Undefine DEFINE Symbol

Cancels the substitution string for the specified DEFINE symbol.

 UNDEF symbol

Parameter

symbol

Any symbol that a previous DEFINE directive specified.

Remarks

A previous DEFINE directive specified a substitution string for the symbol. This
directive releases that substitution string; symbol no longer represents a valid DEFINE
substitution.

You may not use a label with this directive.

Related Directive

DEFINE

Example

Descriptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

148 Freescale Semiconductor, Inc.

 UNDEF DEBUG ; Undefine the debug substitution string

5.3.74 WARN Issue Programmer Warning

Outputs a warning, incrementing the warning count.

 WARN {str | exp}[,{str | exp},...]

Parameters

str

Any valid string appropriate as part of a warning. Commas without spaces must separate
multiple str values.

exp

Any expression appropriate as part of a warning. Commas without spaces must separate
multiple exp values.

Remarks

Use this directive with conditional assembly directives for exceptional condition
checking. The assembly proceeds normally after the assembler displays the warning.

You may not use a label with this directive.

Related Directives

FAIL, MSG

Example

 WARN 'Parameter value too large'

5.4 Pragmas

There are two assembler pragmas, that are explained in this topic.

To use a pragma, follow this usage pattern:

 PRAGMA <pragma_name> <parameters_list>

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 149

5.4.1 SECTYPE

Directs all tools in the compilation chain to consider all sections containing this pragma
as siblings of .init_table sections.

 PRAGMA sectype init_table

Parameter

init_table

Section type specifier.

Example

SECTION my_sec
PRAGMA sectype init_table
...
ENDSEC

5.4.2 STACK_EFFECT

Tells the assembler to propagate the specified function's stack effect to the linker.

 PRAGMA stack_effect <symbol_name>,<size>

Parameters

symbol_name

Name of the function for which the assembler propagates stack-effect information.

size

Expression that represents the stack effect.

Remarks

For compiler-generated code, the compiler computes the stack effect. But you must
specify the stack effect of assembler functions. When you provide this information to the
linker, the linker can output the maximum stack effect of the function, in the mapfile.

Example

Pragmas

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

150 Freescale Semiconductor, Inc.

smth EQU 32 SECTION my_sec GLOBAL my_func my_func TYPE func PRAGMA
stack_effect my_func,#smth move.l #smth,r3 adda r3,sp F_my_func_end EN DS EC

Chapter 5 Assembler Directives

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 151

Pragmas

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

152 Freescale Semiconductor, Inc.

Chapter 6
Macros and Conditional Assembly

Macros streamline repeated patterns of code or groups of instructions. If you define such
a pattern as a macro, you can call the macro at appropriate program locations instead of
repeating the pattern.

For some patterns, variable values change for each pattern repetition. Other patterns
involve conditional assembly. Macros accommodate either case: they let you designate
selected statement fields as variable. You can call such a macro as many times as
necessary, substituting different parameters for the variable fields.

In this chapter:

• Defining Macro
• Conditional Assembly

6.1 Defining Macro

Before you can use a macro, you must define it, either in the source file or in a macro
library.

The below figure depicts a macro definition, which consists of these parts:

• Header - the MACRO directive, which assigns the name and defines dummy
arguments.

• Body - the code and instructions the assembler uses for each macro call.
• Terminator - the ENDM directive.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 153

Figure 6-1. Macro Definition

The header, or MACRO directive, includes these parameters:

label

Name for the new macro. If this name duplicates any existing assembler directives or
mnemonic opcodes, the assembler substitutes the macro for the directive or mnemonic
opcode and issues a warning. This replacement does not happen if the label value
duplicates a library macro name.

dumarg

Optional symbolic name to be replaced by an argument value when a statement calls the
macro. Each dumarg value must follow the rules for global symbol names, and must not
begin with the % character. Commas without spaces must separate multiple dumarg values.

comment

An optional comment.

Note that a macro definition can call other macros. Such other macros are nested. The
definition of a nested macro must precede its appearance in a source-statement operation
field. The assembler does not process calls or definitions of nested macros until it
expands the parent macro.

6.1.1 Calling a Macro

Use a macro call to invoke a macro. In response, the assembler produces in-line code
from the macro's statements, then inserts that code in the normal flow of the program. For
every macro call, execution of the generated source statements takes place with execution
of the rest of the program.

A macro call is a source statement that has this format:

 [label] macro [arg[,arg...]] [; comment]

Defining Macro

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

154 Freescale Semiconductor, Inc.

where:

label

An optional label that corresponds to the location-counter value at the start of the macro
expansion.

macro

The name of the macro; must be in the operation field.

arg

An optional, substitutable argument. Commas without spaces must separate multiple
arguments.

comment

An optional comment.

These rules apply to macro arguments:

• Arguments must correspond one-to-one with the dummy arguments of the macro
definition. If the call does not have the same number of arguments as the definition,
the assembler issues a warning.

• Arguments can be quoted strings, although the assembler does not require single
quotes around macro argument strings. However, single quotes must surround any
embedded comma or space in an argument string.

• To declare a null argument for a macro call enter two commas without any
intervening spaces; declare a null string for the argument; or terminate the argument
list with a comma, omitting the rest of the argument list.

• The assembler does not substitute any characters in generated statements that
reference a null argument.

6.1.2 Macro Expansions

The assembler generates source statements in response to a macro call. These source
statements are a macro expansion. Macro expansions may contain substitutable
arguments, and their types are relatively unrestricted. They can include any processor
instruction, almost any assembler directive, or any previously-defined macro. Macro-
expansion source statements must conform to the same conditions and restrictions that
apply to statements that a programmer writes.

Chapter 6 Macros and Conditional Assembly

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 155

6.1.3 Macro Libraries

Macro libraries are directories of macro definitions. Each definition must be in a separate
file, each file has the macro's name with the extension .asm. For example, blockmv.asm is
the file that contains the definition of macro blockmv.

The MACLIB directive specifies a macro library directory. Upon encountering an
unknown directive, the assembler first searches for the definition in the directive and
mnemonic tables. If source code includes a MACLIB directive, the assembler also
searches the specified directory. If the assembler finds the .asm definition file in the
directory, it saves the current source line and the opens the file for input as an INCLUDE
file. At the end of the file, the assembler restores the source line and resumes processing.

If the processed file does not include a macro definition of the unknown directive, the
assembler issues an error message upon restoring and processing the source line.
However, the processed file is not limited to macro definitions: it can include any valid
source code statements. If multiple MACLIB directives specify several directories, the
assembler searches the directories in their order in the MACLIB directives.

6.1.4 Dummy Argument Operators

The below table lists the text operators that permit argument text substitution during
macro expansions. You can use these operators in macro definitions to concatenate text,
convert numbers, and handle strings.

Table 6-1. Macro Dummy Argument Operators

Operator Action

\ Concatenates a macro dummy argument with adjacent
alphanumeric characters.

? For the sequence ?symbol, substitutes a character string
that represents the symbol decimal value.

% Converts the sequence %symbol to a character string that
represents the symbol hexadecimal value.

" Lets you use macro arguments as literal strings.

^ Evaluates local labels at normal, not macro, scope.

Defining Macro

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

156 Freescale Semiconductor, Inc.

6.1.5 Macro Directives

Directives DUP, DUPA, DUPC, and DUPF duplicate subsequent source lines. Each
directive is a special macro that simultaneously defines and calls an unnamed macro.
Source statements you define with any of these directives must follow the same rules as
macro definitions. For the DUPA, DUPC, and DUPF directives, such source statements
can include macro dummy operator characters.

6.2 Conditional Assembly

Through conditional assembly a comprehensive source program can cover many
conditions.

For macros, arguments specify assembly conditions. For the DEFINE, SET, and EQU
directives, symbol definitions specify assembly conditions. Built-in assembler functions
can test many conditions of the assembly environment.

You also can use conditional directives within a macro definition to make sure argument
values are in appropriate ranges at expansion time. In this way, your macros can be self-
checking and can generate error messages to any appropriate level of detail.

Use the directive pair IF and ENDIF, with the optional ELSE directive, to delimit a
section of program for conditional assembly. Use the following format:

 IF condition
 .
 source statements
 .
 [ELSE]
 .

 source statements
 .
 ENDIF

The assembler follows these rules for conditional assembly:

• If condition = TRUE (non-zero) and there is no ELSE directive, it assembles lines
between the IF and ENDIF directives.

• If condition = FALSE (zero) and there is no ELSE directive, it ignores lines between
the IF and ENDIF directives.

Chapter 6 Macros and Conditional Assembly

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

Freescale Semiconductor, Inc. 157

• If condition = TRUE (non-zero) and there is an ELSE directive, it assembles lines
between the IF and ELSE directives and ignores lines between the ELSE and ENDIF
directives.

• If condition = FALSE (zero) and there is an ELSE directive, it ignores lines between
the IF and ELSE directives and assembles lines between the ELSE and ENDIF
directives.

Conditional Assembly

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual,
Rev. 10.9.0, 06/2015

158 Freescale Semiconductor, Inc.

Index

;; Start Unreported Comment 89
; Start Comment 89
? Substitute Macro Value 91
^ Override Macro Local Label 93
" Delimit Macro String 93
" Expand DEFINE Quoted String 94
[] Delimit Substring 95
[] Group Instructions 96
@ Start Function 95
* Substitute Location Counter 95
\ Concatenate Macro Argument 90
\ Continue Line 90
#< Force Immediate Short Addressing 98
#> Force Immediate Long Addressing 99
Use Immediate Addressing 98
% Substitute Macro Hex Value 92
++ Concatenate Strings 95
< Force Short Addressing 96
> Force Long Addressing 97

A

ABS Absolute Value 47
Absolute and Relative Expressions 39
ACS Arc Cosine 47
Adding Debug Information 20
Address Assignment 75
ALIGN Align Location Counter 99
ARG Macro Argument 48
ASN Arc Sine 48
Assembler 11
Assembler Directives 85
Assembler Processing 30
AT2 Arc Tangent 49
ATN Arc Tangent 49

B

BADDR Set Buffer Address 100
BIGENDIAN Endian Mode Check 50
BSB Allocate Bit-Reverse Buffer 101
BSC Allocate Constant Storage Block 102
BUFFER Start Buffer 102

C

Calling a Macro 154
CCC Cumulative Cycle Count 50
CEL Ceiling 50
Checking Programming Rules 25
CHK Instruction/Data Checksum 51
CNT Macro Argument Count 51

Code Examples 26
COH Hyperbolic Cosine 52
Command-Line Options 14
Comment Field 33
COMMENT Start Comment Lines 104
Conditional Assembly 157
Constants
Controlling Assembler Messages 21
COS Cosine 52
Counting the core stalls 23
CTR Location Counter Number 53
CVF Convert Integer to Floating Point 53
CVI Convert Floating Point to Integer 54
CVS Convert Memory Space 54

D

Data Analysis Limitations 28
Data Analysis Terms 28
DCB Define Constant Byte 106
DC Define Constant 104
DCL Define Constant Long 107
DCLL Define Constant Long Long 107
DEF Defined Symbol 55
DEFINE Define Substitution String 108
Defining a Macro 153
Defining Substitution Strings 22
Descriptions 88
Directive List 86
DS Define Storage 109
DSR Define Reverse-Carry Storage 109
Dummy Argument Operators 156
DUPA Duplicate Sequence with Arguments 111
DUPC Duplicate Sequence with Characters 112
DUP Duplicate Source Lines 110
DUPF Duplicate Sequence in Loop 113

E

ELSE Start Alternative Conditional Assembly 114
ENDBUF End Buffer 116
END End of Source Program 115
ENDIF End Conditional Assembly 116
ENDM End Macro Definition 117
ENDSEC End Section 117
EQU Equate Symbol to Value 118
EXITM Exit Macro 119
EXP Expression Check 55
Expression Memory Space Attributes 40
Expressions 39

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual

Freescale Semiconductor, Inc. 159

F

FAIL Issue Programmer Error Message 119
FALIGN Align with Fetch-Set 120
FLD Shift and Mask 56
FLR Floor 56
FRC Convert Floating Point to Fractional 57
Functions 45

G

Generating an Object File 20
GLOBAL Declare Global Section Symbol 121
GSET Set Global Symbol to Value 121

H

HIMEM Set High Memory Bounds 122

I

IF Start Conditional Assembly 123
INCLUDE Include Secondary File 124
Initialization File 29
Internal Expression Representation 41
INT Integer Check 57
Introduction 11

L

L10 Log Base 10 58
Label Field 32
LCV Location Counter Value 58
LEN String Length 59
LFR Convert Floating Point to Long Fractional 59
LIST List Assembly 125
LNG Concatenate to Double Word 60
LOG Natural Logarithm 60
LOMEM Set Low Memory Bounds 125
LST LIST Directive Flag Value 61
LUN Convert Long Fractional to Floating Point 61

M

MACLIB Specify Macro Library 126
MAC Macro Definition 61
MACRO Define Macro 127
Macro Directives 157
Macro Expansions 155
Macro Libraries 156
Macros and Conditional Assembly 153
Macros and DEFINE Symbols within Sections 74
MAX Maximum Value 62
Method 1: Absolute Mode 82
Method 2: Relative Mode 83
MIN Minimum Value 62

MSG Issue Programmer Message 128
MSP Memory Space 63
MULTIDEF Allow Multiple Definitions 129
Multi-Programmer Environment Example 81
MXP Macro Expansion 63

N

Nested and Fragmented Sections 73
NOLIST Stop Assembly Listing 129
NOTE Include Note 130
Numeric Constants 41

O

Operand Field 33
Operation Field 32
Operator Precedence 44
Operators 42
OPT Set Assembler Options 130
ORG Initialize Memory Space and Location
Counters 136
Overlay Example 78
Overlay Manager 77
Overlays 75

P

PAGE Advance Page or Size Page 137
PMACRO Purge Macro Definition 138
POS Position of Substring 63
POW Raise to a Power 64
Pragmas 149
PRCTL Send Control String to Printer 139

R

Reading Input from an Argument File 19
Redirecting the Source Listing 21
REL Relative Mode 65
RND Random Value 65
RVB Reverse Bits in Field 65

S

SCP Compare Strings 66
Searching Additional Directories 22
SECFLAGS Set ELF Section Flags 140
Section Names 72
Sections 71
Sections and Relocation 74
Sections and Symbols 73
SECTION Start Section 141
SECTYPE 150
SECTYPE Set ELF Section Type 143
SET Set Symbol to Value 144

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual

160 Freescale Semiconductor, Inc.

SGN Return Sign 66
Significant Characters 85
SIN Sine 66
SIZE Set Symbol Size 145
SNH Hyperbolic Sine 67
Software Development Flow 11
Software Project Management 71
Source Listing 36
Source Listing Example 37
Source Statements 31
Specifying a Target Architecture 24
Specifying Endian Mode 24
SQT Square Root 67
STACK_EFFECT 150
StarCore Assembler 13
Starting the Assembler 13
STITLE Initialize Program Subtitle 146
String Constants 42
Strings 35
Symbol Labels 35
Symbol Names 34

T

TAN Tangent 68
TITLE Initialize Program Title 146
TNH Hyperbolic Tangent 68
TYPE Set Symbol Type 147

U

UNDEF Undefine DEFINE Symbol 148
UNF Convert Fractional to Floating Point 69
Using an Environment Variable 18
Using OPT Options on the Command Line 23

V

Variable Length Execution Sets 33

W

WARN Issue Programmer Warning 149

X

XPN Exponential Function 69

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual

Freescale Semiconductor, Inc. 161

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Assembler Reference Manual

162 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, QorIQ, StarCore are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
QorIQ Qonverge is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective
owners. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2009–2015 Freescale Semiconductor, Inc.

Document Number CWSCASMREF
Revision 10.9.0, 06/2015

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	Assembler
	Software Development Flow

	Chapter 2: StarCore Assembler
	Starting the Assembler
	Command-Line Options
	Using an Environment Variable
	Reading Input from an Argument File
	Generating an Object File
	Adding Debug Information
	Redirecting the Source Listing
	Controlling Assembler Messages
	Searching Additional Directories
	Defining Substitution Strings
	Using OPT Options on the Command Line
	Counting the core stalls
	Specifying a Target Architecture
	Specifying Endian Mode
	Checking Programming Rules
	Code Examples
	Data Analysis Terms
	Data Analysis Limitations
	Initialization File

	Assembler Processing
	Source Statements
	Label Field
	Operation Field
	Operand Field
	Comment Field
	Variable Length Execution Sets
	Symbol Names
	Symbol Labels
	Strings

	Source Listing
	Source Listing Example

	Chapter 3: Expressions
	Absolute and Relative Expressions
	Expression Memory Space Attributes
	Internal Expression Representation
	Constants
	Numeric Constants
	String Constants

	Operators
	Operator Precedence
	Functions
	ABS Absolute Value
	ACS Arc Cosine
	ARG Macro Argument
	ASN Arc Sine
	AT2 Arc Tangent
	ATN Arc Tangent
	BIGENDIAN Endian Mode Check
	CCC Cumulative Cycle Count
	CEL Ceiling
	CHK Instruction/Data Checksum
	CNT Macro Argument Count
	COH Hyperbolic Cosine
	COS Cosine
	CTR Location Counter Number
	CVF Convert Integer to Floating Point
	CVI Convert Floating Point to Integer
	CVS Convert Memory Space
	DEF Defined Symbol
	EXP Expression Check
	FLD Shift and Mask
	FLR Floor
	FRC Convert Floating Point to Fractional
	INT Integer Check
	L10 Log Base 10
	LCV Location Counter Value
	LEN String Length
	LFR Convert Floating Point to Long Fractional
	LNG Concatenate to Double Word
	LOG Natural Logarithm
	LST LIST Directive Flag Value
	LUN Convert Long Fractional to Floating Point
	MAC Macro Definition
	MAX Maximum Value
	MIN Minimum Value
	MSP Memory Space
	MXP Macro Expansion
	POS Position of Substring
	POW Raise to a Power
	REL Relative Mode
	RND Random Value
	RVB Reverse Bits in Field
	SCP Compare Strings
	SGN Return Sign
	SIN Sine
	SNH Hyperbolic Sine
	SQT Square Root
	TAN Tangent
	TNH Hyperbolic Tangent
	UNF Convert Fractional to Floating Point
	XPN Exponential Function

	Chapter 4: Software Project Management
	Sections
	Section Names
	Nested and Fragmented Sections
	Sections and Symbols
	Macros and DEFINE Symbols within Sections

	Sections and Relocation
	Address Assignment
	Overlays
	Overlay Manager
	Overlay Example

	Multi-Programmer Environment Example
	Method 1: Absolute Mode
	Method 2: Relative Mode

	Chapter 5: Assembler Directives
	Significant Characters
	Directive List
	Descriptions
	; Start Comment
	;; Start Unreported Comment
	\ Continue Line
	\ Concatenate Macro Argument
	? Substitute Macro Value
	% Substitute Macro Hex Value
	^ Override Macro Local Label
	" Delimit Macro String
	" Expand DEFINE Quoted String
	@ Start Function
	* Substitute Location Counter
	++ Concatenate Strings
	[] Delimit Substring
	[] Group Instructions
	< Force Short Addressing
	> Force Long Addressing
	# Use Immediate Addressing
	#< Force Immediate Short Addressing
	#> Force Immediate Long Addressing
	ALIGN Align Location Counter
	BADDR Set Buffer Address
	BSB Allocate Bit-Reverse Buffer
	BSC Allocate Constant Storage Block
	BUFFER Start Buffer
	COMMENT Start Comment Lines
	DC Define Constant
	DCB Define Constant Byte
	DCL Define Constant Long
	DCLL Define Constant Long Long
	DEFINE Define Substitution String
	DS Define Storage
	DSR Define Reverse-Carry Storage
	DUP Duplicate Source Lines
	DUPA Duplicate Sequence with Arguments
	DUPC Duplicate Sequence with Characters
	DUPF Duplicate Sequence in Loop
	ELSE Start Alternative Conditional Assembly
	END End of Source Program
	ENDBUF End Buffer
	ENDIF End Conditional Assembly
	ENDM End Macro Definition
	ENDSEC End Section
	EQU Equate Symbol to Value
	EXITM Exit Macro
	FAIL Issue Programmer Error Message
	FALIGN Align with Fetch-Set
	GLOBAL Declare Global Section Symbol
	GSET Set Global Symbol to Value
	HIMEM Set High Memory Bounds
	IF Start Conditional Assembly
	INCLUDE Include Secondary File
	LIST List Assembly
	LOMEM Set Low Memory Bounds
	MACLIB Specify Macro Library
	MACRO Define Macro
	MSG Issue Programmer Message
	MULTIDEF Allow Multiple Definitions
	NOLIST Stop Assembly Listing
	NOTE Include Note
	OPT Set Assembler Options
	ORG Initialize Memory Space and Location Counters
	PAGE Advance Page or Size Page
	PMACRO Purge Macro Definition
	PRCTL Send Control String to Printer
	SECFLAGS Set ELF Section Flags
	SECTION Start Section
	SECTYPE Set ELF Section Type
	SET Set Symbol to Value
	SIZE Set Symbol Size
	STITLE Initialize Program Subtitle
	TITLE Initialize Program Title
	TYPE Set Symbol Type
	UNDEF Undefine DEFINE Symbol
	WARN Issue Programmer Warning

	Pragmas
	SECTYPE
	STACK_EFFECT

	Chapter 6: Macros and Conditional Assembly
	Defining Macro
	Calling a Macro
	Macro Expansions
	Macro Libraries
	Dummy Argument Operators
	Macro Directives

	Conditional Assembly

	Index

