
Document Number: 924-76402
Rev. 2009.12

 i.MX23 EVK Windows Embedded CE 6.0

Reference Manual

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor -iii

Contents

About This Book

Audience . xi
Suggested Reading . xi
Conventions . xi
Definitions, Acronyms, and Abbreviations . xi

Chapter 1
Introduction

1.1 Getting Started . 1-1
1.2 Windows Embedded CE 6.0 Architecture . 1-1

Chapter 2
Audio Driver

2.1 Audio Driver Summary . 2-1
2.2 Supported Functionality . 2-2
2.3 Hardware Operation . 2-2
2.3.1 Audio Hardware Design . 2-2
2.3.2 Audio Playback. 2-2
2.3.3 Audio Recording. 2-3
2.3.4 Required SoC Peripherals . 2-3
2.3.5 Conflicts with SoC Peripherals. 2-3
2.3.6 Conflicts with Board Peripherals . 2-3
2.3.7 Known Issues . 2-3
2.4 Software Operation . 2-4
2.4.1 Audio Playback. 2-4
2.4.2 Audio Recording. 2-4
2.4.3 Audio Driver Compile-Time Configuration Options . 2-4
2.4.4 DMA Support . 2-5
2.4.5 Power Management . 2-6
2.4.6 Audio Driver Registry Settings. 2-7
2.5 Unit Test . 2-8
2.5.1 Unit Test Hardware. 2-8
2.5.2 Unit Test Software . 2-8
2.5.3 Building the Audio Driver CETK Tests . 2-9
2.5.4 Running the Audio Driver CETK Tests . 2-9
2.6 System Level Audio Driver Tests. 2-9

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

-iv Freescale Semiconductor

2.6.1 Checking for a Boot-Time Musical Tune . 2-9
2.6.2 Confirming Touchpanel Taps and Keypad Key Presses . 2-9
2.6.3 Playing Back Sample Audio and Video Files Using the Media Player 2-9
2.6.4 Using the SDK Sample Audio Applications for Testing . 2-10
2.7 Audio Driver API Reference . 2-10
2.8 Audio Driver Troubleshooting Guide. 2-10
2.8.1 Checking Build-Time Configuration Options . 2-10
2.8.2 Media Player Application Not Found. 2-10
2.8.3 Media Player Fails to Load and Play an Audio File . 2-10

Chapter 3
Backlight Driver

3.1 Backlight Driver Summary. 3-1
3.2 Supported Functionality . 3-1
3.3 Hardware Operation . 3-1
3.3.1 i.MX233-EVK Hardware Operation. 3-2
3.4 Software Operation . 3-2
3.4.1 Backlight Driver Registry Settings . 3-2
3.4.2 Power Management . 3-2
3.5 Unit Test . 3-3
3.5.1 Unit Test Hardware. 3-3
3.5.2 Unit Test Software . 3-3
3.5.3 Running the Backlight Application Test . 3-4
3.6 Backlight API Reference . 3-4

Chapter 4
Battery Driver

4.1 Battery Driver Summary. 4-1
4.2 Supported Functionality . 4-1
4.3 Hardware Operation . 4-2
4.3.1 Conflicts with Other SoC Peripherals. 4-2
4.4 Software Operation . 4-2
4.4.1 Battery Driver Registry Settings. 4-2
4.4.2 Power Management . 4-2
4.5 Unit Test . 4-2
4.5.1 Unit Test Hardware. 4-3
4.6 Battery API Reference . 4-3

Chapter 5
Boot from Secure Digital/MultiMedia Card (SD/MMC)

5.1 Boot from SD/MMC Summary . 5-1
5.2 Supported Functionality . 5-1
5.3 Hardware Operation . 5-2

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor -v

5.3.1 Conflicts with Other Peripherals and Catalog Items . 5-2
5.4 Software Operation . 5-2
5.5 Card Flashing Tool . 5-2
5.5.1 Write Image (EBOOT) to SD Card . 5-2
5.5.2 System Boot . 5-2

Chapter 6
Chip Support Package Driver Development Kit (CSPDDK)

6.1 CSPDDK Driver Summary. 6-1
6.2 Supported Functionality . 6-1
6.3 Hardware Operation . 6-2
6.3.1 Conflicts with Other Peripherals and Catalog Items . 6-2
6.4 Software Operation . 6-2
6.4.1 Communicating with the CSPDDK . 6-2
6.4.2 Compile-Time Configuration Options . 6-2
6.4.3 Registry Settings . 6-2
6.4.4 Power Management . 6-3
6.5 Unit Test . 6-3
6.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference . 6-3
6.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference. 6-6
6.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference . 6-8
6.5.4 CSPDDK DLL DMA (DDK_DMA) Reference. 6-10
6.5.5 CSPDDK POWER (DDK_POWER) Reference . 6-15

Chapter 7
Configurable Serial Peripheral Interface (CSPI) Driver

7.1 CSPI Driver Summary . 7-1
7.2 Supported Functionality . 7-1
7.2.1 Conflicts with Other Peripherals and Catalog Items . 7-1
7.2.2 Conflicts with EVK Peripherals . 7-2
7.3 Software Operation . 7-2
7.3.1 Registry Settings . 7-2
7.3.2 Communicating with the CSPI . 7-2
7.3.3 Creating a Handle to the CSPI . 7-2
7.3.4 Data Transfer Operations . 7-3
7.3.5 Closing the Handle to the CSPI . 7-4
7.3.6 Power Management . 7-4
7.4 Unit Test . 7-5
7.4.1 Building the Unit Tests . 7-5
7.5 CSPI Driver API Reference . 7-5
7.5.1 CSPI Driver IOCTLs . 7-6
7.5.2 CSPI Driver SDK Wrapper. 7-6
7.5.3 CSPI Driver Structures . 7-7

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

-vi Freescale Semiconductor

Chapter 8
Display Driver for LCDIF and PXP

8.1 Display Driver Summary . 8-1
8.2 Supported Functionality . 8-1
8.3 Hardware Operation . 8-2
8.3.1 Conflicts with Other Peripherals and Catalog Items . 8-2
8.4 Software Operation . 8-2
8.4.1 Software Driver Components . 8-3
8.4.2 Communicating with the Display . 8-4
8.4.3 Configuring the Display . 8-5
8.4.4 Power Management . 8-5
8.5 Unit Test . 8-6
8.5.1 Unit Test Hardware. 8-6
8.5.2 Unit Test Software . 8-6
8.5.3 Building the Unit Tests . 8-7
8.5.4 Running the Unit Tests . 8-8
8.6 Display Driver API Reference . 8-8

Chapter 9
Dynamic Voltage and Frequency Control (DVFC) Driver

9.1 DVFC Driver Summary . 9-1
9.2 Supported Functionality . 9-1
9.2.1 i.MX233 Supported Functionality . 9-2
9.3 Hardware Operation . 9-2
9.3.1 Conflicts with Other Peripherals and Catalog Items . 9-2
9.3.2 i.MX233 EVK Configuration . 9-2
9.4 Software Operation . 9-2
9.4.1 i.MX233 Registry Settings . 9-2
9.4.2 Loading and Initialization. 9-2
9.4.3 Operation . 9-2
9.4.4 DDK Interface. 9-3
9.4.5 Power Management . 9-3
9.5 Unit Test . 9-4
9.5.1 i.MX233 Unit Testing. 9-4

Chapter 10
Keypad Driver

10.1 Keypad Driver Summary . 10-1
10.2 Supported Functionality . 10-1
10.3 Hardware Operation . 10-1
10.3.1 Conflicts with Other Peripherals and Catalog Items . 10-1
10.3.2 Keypad . 10-2
10.4 Software Operation . 10-2

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor -vii

10.4.1 Keypad Scan Codes and Virtual Keys . 10-2
10.4.2 Power Management . 10-3
10.4.3 Keypad Registry Settings . 10-3
10.5 Unit Test . 10-4
10.5.1 Unit Test Hardware. 10-4
10.5.2 Unit Test Software . 10-4
10.5.3 Building the Unit Tests . 10-4
10.5.4 Running the Unit Tests . 10-4

Chapter 11
Inter-Integrated Circuit (I2C) Driver

11.1 I2C Driver Summary. 11-1
11.2 Supported Functionality . 11-1
11.3 Hardware Operation . 11-1
11.3.1 Conflicts with Other Peripherals and Catalog Items . 11-2
11.4 Software Operation . 11-2
11.4.1 Registry Settings . 11-2
11.4.2 Communicating with the I2C . 11-2
11.4.3 Creating a Handle . 11-3
11.4.4 Configuring the I2C . 11-3
11.4.5 Data Transfer Operations . 11-4
11.4.6 Closing the Handle . 11-5
11.5 Unit Test . 11-5
11.5.1 Unit Test Hardware. 11-5
11.5.2 Unit Test Software . 11-6
11.5.3 Building the Unit Tests . 11-6
11.5.4 Running the Unit Tests . 11-6
11.6 Hardware Limitations . 11-6
11.7 I2C Driver API Reference. 11-6
11.7.1 I2C Driver IOCTLS . 11-7
11.7.2 I2C Driver SDK Encapsulation. 11-9
11.7.3 I2C Driver Structures . 11-12

Chapter 12
Low-Resolution Analog-Digital Converter (LRADC) Driver

12.1 LRADC Driver Summary. 12-1
12.2 Supported Functionality . 12-1
12.3 Hardware Operation . 12-2
12.3.1 Conflicts with Other Peripherals and Catalog Items . 12-2
12.4 Software Operation . 12-2
12.4.1 ADC Registry Settings . 12-2
12.4.2 Interfacing with the LRADC Driver . 12-2
12.5 Power Management . 12-2
12.5.1 LDC_PowerUp . 12-3

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

-viii Freescale Semiconductor

12.5.2 LDC_PowerDown . 12-3
12.5.3 IOCTL_POWER_CAPABILITES . 12-3
12.5.4 IOCTL_POWER_SET . 12-3
12.5.5 IOCTL_POWER_GET. 12-3
12.6 Unit Test . 12-3
12.7 LRADC SDK API Reference . 12-3
12.7.1 LRADC SDK Functions . 12-3

Chapter 13
NAND Flash Driver

13.1 Flash Driver Summary . 13-1
13.2 Supported Functionality . 13-2
13.3 Hardware Operation . 13-2
13.3.1 Conflicts with Other Peripherals and Catalog Items . 13-2
13.4 Software Operation . 13-2
13.4.1 MDD and PDD Layer Overview . 13-2
13.4.2 Data Structures . 13-4
13.4.3 Adding New Flash Configurations . 13-6
13.4.4 Registry Settings . 13-7
13.4.5 DMA Support . 13-7
13.4.6 Power Management . 13-7
13.5 Unit Test . 13-7
13.5.1 CETK Testing . 13-7
13.5.2 System Testing . 13-8

Chapter 14
NAND Redundant Boot

14.1 NAND Redundant Boot Summary . 14-1
14.2 Supported Functionality . 14-1
14.3 Hardware Operation . 14-2
14.3.1 Conflicts with Other Peripherals and Catalog Items . 14-2
14.4 Software Operation . 14-2
14.5 Unit Test . 14-4
14.5.1 Testing Update Functionality . 14-4
14.5.2 Testing Restore Functionality . 14-4

Chapter 15
Serial Driver

15.1 Serial Driver Summary . 15-1
15.2 Supported Functionality . 15-1
15.3 Hardware Operation . 15-2
15.3.1 Conflicts with Other Peripherals and Catalog Items . 15-2
15.3.2 Known Issues . 15-2

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor -ix

15.4 Software Operation . 15-2
15.4.1 Registry Settings . 15-2
15.4.2 Power Management . 15-3
15.5 Unit Test . 15-3
15.5.1 Unit Test Hardware. 15-3
15.5.2 Unit Test Software . 15-3
15.5.3 Building the Unit Tests . 15-3
15.5.4 Running the Unit Tests . 15-4
15.6 Serial Driver API Reference . 15-4
15.6.1 Serial PDD Functions . 15-5
15.6.2 Serial Driver Structures . 15-6

Chapter 16
Secure Digital Host Controller (SDHC) Driver

16.1 SDHC Driver Summary . 16-1
16.2 Supported Functionality . 16-1
16.3 Hardware Operation . 16-2
16.3.1 Conflicts with Other Peripherals and Catalog Options. 16-2
16.4 Software Operation . 16-2
16.4.1 Required Catalog Items . 16-2
16.4.2 SDHC Registry Settings . 16-3
16.4.3 DMA Support . 16-3
16.4.4 Power Management . 16-3
16.5 Unit Test . 16-3
16.5.1 Unit Test Hardware. 16-4
16.5.2 Unit Test Software . 16-4
16.5.3 Building the Unit Tests . 16-4
16.5.4 Running the Unit Tests . 16-4
16.5.5 System Testing . 16-6
16.6 Secure Digital Card Driver API Reference. 16-6

Chapter 17
Touch Panel Driver

17.1 Touch Panel Driver Summary . 17-1
17.2 Supported Functionality . 17-1
17.3 Hardware Operations . 17-1
17.4 Software Operations . 17-2
17.4.1 Touch Driver Registry Settings . 17-2
17.5 Unit Tests . 17-3
17.5.1 Unit Test Hardware. 17-3
17.5.2 Unit Test Software . 17-3
17.5.3 Running the Touch Panel Tests . 17-4
17.6 Touch Panel API Reference . 17-4

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

-x Freescale Semiconductor

Chapter 18
Universal Serial Bus (USB) On The Go (OTG) Driver

18.1 USB OTG Driver Summary . 18-1
18.1.1 Peripheral Driver Summary . 18-1
18.1.2 Host Driver Summary. 18-2
18.1.3 OTG (Pin-Detection) Driver Summary . 18-3
18.2 Supported Functionality . 18-3
18.3 Hardware Operation . 18-4
18.3.1 Conflicts with Other Peripherals and Catalog Items . 18-4
18.4 Software Operation . 18-4
18.4.1 USB OTG Host Controller Driver . 18-4
18.4.2 USB Peripheral Driver . 18-12
18.4.3 USB OTG Driver (Pin-Detection Driver). 18-16
18.4.4 USB OTG Catalog Settings . 18-18
18.4.5 USB OTG Registry Settings . 18-18
18.4.6 Power Management . 18-20
18.4.7 Peripheral Class Drivers . 18-23
18.4.8 Host Class Drivers . 18-26
18.5 Known Issues . 18-28
18.5.1 Host Support for Low Speed Peripherals . 18-28
18.5.2 Host VBUS Power Supply . 18-28
18.6 Basic Elements for Driver Development . 18-28
18.6.1 BSP Environment Variables . 18-28
18.6.2 Dependencies of Drivers. 18-29
18.7 Application Tools for USB . 18-29
18.7.1 Application for USB Peripheral Class Driver Switch . 18-29
18.7.2 Application for Multispec PHDC Demo . 18-30

Chapter 19
USB Boot and KITL

19.1 USB Boot and KITL Summary . 19-1
19.2 Supported Functionality . 19-1
19.3 Hardware Operation . 19-1
19.3.1 Conflicts with Other Peripherals and Catalog Items . 19-2
19.4 Software Operation . 19-2
19.4.1 Software Architecture . 19-2
19.4.2 Source Code Layout . 19-3
19.4.3 Power Management . 19-3
19.4.4 Registry Settings . 19-3
19.4.5 DMA Support . 19-3
19.5 Unit Test . 19-3
19.5.1 Building the USB Boot and KITL . 19-4

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor xi

About This Book
This reference manual describes the requirements, implementation details, and testing for each module in-
cluded in the Freescale software development kit (SDK) for Microsoft® Windows® CE 6.0.

Audience
This document is intended for device driver developers, application developers, and software test engi-
neers who are planning to use the product. This document is also intended for people who want to know
more about Freescale’s software development kit (SDK) for Microsoft Windows CE 6.0.

Suggested Reading
The Freescale manuals can be found at the Freescale Semiconductor, Inc. World Wide Web site listed on
the front cover of this document. These manuals can be downloaded directly from the Web site, or printed
versions can be ordered. The Microsoft Platform Builder Help may be viewed from within the Platform
Builder application.

• i.MX233 Applications Processor IC Reference Manual

• i.MX233 Release Notes for Windows Embedded CE 6.0

• i.MX233 User’s Guide for Windows Embedded CE 6.0

• Microsoft Platform Builder for Windows Embedded CE 6.0 Help

Conventions
This document uses the following notational conventions:

• Courier indicates directory or file names and code examples.

• Bold indicates the menu options or buttons the user can select. Cascaded menu options are
delimited with the > symbol.

• Italic indicates a reference to another document.

Definitions, Acronyms, and Abbreviations
The following list defines the abbreviations used in this document.

API application programming interface

BSP board support package

CSP chip support package

CSPI configurable serial peripheral interface

D3DM Direct 3D Mobile

DHCP dynamic host configuration protocol

DPTC dynamic power and temperature control

DVFC dynamic voltage and frequency control

DVFS dynamic voltage and frequency scaling

EBOOT Ethernet bootloader

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

xii Freescale Semiconductor

EVB platform evaluation board

FAL flash abstraction layer

FIR fast infrared

FMD flash media driver

GDI graphics display interface

GPT general purpose timer

I2C inter-integrated circuit

IDE integrated development environment

IST interrupt service thread

IPU image processing unit

KITL kernel independent transport layer

LVDS low-voltage differential signaling

MAC media access control

MMC multimedia cards

OAL OEM adaptation layer

OEM original equipment manufacturer

OS operating system

OTG on-the-go

PMIC power management IC

PQOAL production quality OEM adaptation layer

PWM pulse-width modulator

SD secure digital cards

SDC synchronous display controller

SDHC secure digital host controller

SDIO secure digital I/O and combo cards

SDRAM synchronous dynamic random access memory

SDK software development kit

SIM subscriber identification module

SOC system on a chip

UART universal asynchronous receiver transmitter

USB universal serial bus

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 1-1

Chapter 1
Introduction
This Freescale board support package (BSP) is based on the Microsoft Windows® Embedded CE 6.0
operating system. This BSP supports the following Freescale platform(s):

• i.MX233-EVK Development System

This kit supports the Microsoft Windows Embedded CE 6.0 operating system, and requires the use of the
Microsoft Platform Builder, which is an integrated development environment (IDE) for building
customized embedded OS designs. To view feature information, see the BSP Release Notes.

NOTE
Use this guide in conjunction with the Microsoft Windows Platform Builder
Help (or the identical Platform Builder User Guide).

• To view the Platform Builder Help, click Help from the Platform
Builder application.

• To view the online Windows Embedded CE 6.0 documentation, visit:
http://msdn2.microsoft.com/en-us/library/bb159115.aspx

1.1 Getting Started
For instructions on installing this software release, building, downloading and running the OS image on
the hardware board, see the appropriate User’s Guide.

1.2 Windows Embedded CE 6.0 Architecture
The Windows Embedded CE 6.0 architecture is a variation of the Windows OS for minimalistic computers
and embedded systems. The architecture of the operating system and sub-systems (for example, power
management or DirectDraw) are described in several locations in the Help. Begin at the following location
in Help topic:

Welcome to Windows Embedded CE 6.0 > Windows Embedded CE Architecture

http://msdn2.microsoft.com/en-us/library/bb159115.aspx

Introduction

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

1-2 Freescale Semiconductor

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 2-1

Chapter 2
Audio Driver
The audio driver module provides audio playback and recording functions. For information about
accessing an application with the audio driver using the methods and functions associated with the
WaveOut or WaveIn functionality, see the Platform Builder Help at the following location:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Application
Development

2.1 Audio Driver Summary
Table 2-1 provides the source code location, library dependencies, and other BSP information.

NOTE
The selection and use of the Windows Media Player and the various
software codecs is beyond the scope of the audio driver and is not discussed
in this document. For information about these items, see the Platform
Builder Help at the following location: Windows Embedded CE Features
> Audio

Table 2-1. Audio Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\WAVEDEV2

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\WAVEDEV2

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\WAVEDEV2

Driver DLL wavedev2_mx233.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX233 EVK:ARMV4I > Device Drivers > Audio > Audio driver

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables BSP_NOAUDIO=

Audio Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-2 Freescale Semiconductor

2.2 Supported Functionality
The audio driver enables the system to provide the following software and hardware support:

1. Conforms to the audio driver architecture as defined for Windows Embedded CE 6.0 and all related
operating systems

2. Double-buffered DMA operations to transfer audio data between memory and the hardware FIFO

3. Two power management modes: full on and full off

4. Full duplex playback and record

5. Minimizes power consumption at all times by using clock gating and by disabling all audio-related
hardware components that are not actively being used

6. 8–96 KHz for both recording and playback

7. Mono and stereo 16-bit sample

2.3 Hardware Operation
This section describes about the audio hardware operation.

2.3.1 Audio Hardware Design

This section describes the connection between the SoC audio peripherals and the external audio codec, the
access interface of audio codec, and the audio input or output device connections.

2.3.1.1 i.MX233 Audio Hardware Design

The i.MX233 includes the AUDIOOUT/DAC and AUDIOIN/ADC modules on chip. PCM audio samples
are transferred from a buffer in memory to the AUDIOOUT FIFO, and output to the analog DAC. The
analog audio destination can be stereo headphone amplifier or speaker amplifier on board. The i.MX233
also features an audio record path that consists of a sigma-delta analog-to-digital converter (ADC),
followed by the AUDIOIN digital multi-stage FIR filter. The ADC oversamples the input from the
microphone or line-in on board.

2.3.2 Audio Playback

By default, the following hardware configuration options are enabled for the playback operation (based on
the default audio driver configuration):

• The audio driver is configured to use AUDIOOUT/DAC module and a sample rate at 44.1 KHz.

• The APBX DMA channel is setup to support data between application memory buffers and the
AUDIOOUT FIFO.

• The DAC is enabled to begin the transmission of audio data stream.

• An interrupt is generated when a DMA buffer is empty and this interrupt is handled by the audio
driver. The audio driver refills the DMA buffer and returns it to the DMA controller for processing.

• Due to the double-buffering scheme, the DMA controller simply uses the other DMA buffer to
continue refilling the AUDIOOUT FIFO while the previous DMA buffer is being refilled.

Audio Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 2-3

2.3.3 Audio Recording

The following hardware configuration steps are performed just prior to each recording operation (based
upon the default audio driver configuration):

• The audio driver is configured to use AUDIOIN/ADC module for recording path.

• The APBX DMA channel is setup to support data between application memory buffers and the
AUDIOIN FIFO.

• The ADC is enabled to begin the receiver of audio data stream.

• An interrupt is generated when a DMA buffer is full and this interrupt is handled by the audio
driver. The audio driver copies the data from the full input DMA buffer into application-supplied
buffers and returns the empty DMA buffer to the DMA controller for processing.

• Due to the double-buffering scheme, the DMA controller simply uses the other DMA buffer to
continue receiving data from the AUDIOIN FIFO while the previous DMA buffer is being copied.

2.3.4 Required SoC Peripherals

Table 2-2 shows the SoC hardware components required by the audio driver.

2.3.5 Conflicts with SoC Peripherals

No conflicts.

2.3.6 Conflicts with Board Peripherals

The following section explains about the conflicts of the audio driver with board peripherals:

2.3.6.1 i.MX233 Peripherals Conflicts

No conflicts.

2.3.7 Known Issues

The following section explains about the known issues in the audio driver:

2.3.7.1 i.MX233 Known Issues

If coexistence of stereo audio driver and S/PDIF driver occurs, the default audio device might be S/PDIF.
The default audio device may be chosen by AudioRouting application.

Table 2-2. Required SoC Peripherals

Component Use

AUDIOOUT/DAC Playback

AUDIOIN/ADC Record

APBX DMAr Manages the DMA channels that are used for playback and recording

Audio Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-4 Freescale Semiconductor

2.4 Software Operation
The audio driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help at the following location:

Developing a Device Driver > Windows CE Drivers > Audio Drivers > Audio Driver Development
Concepts

2.4.1 Audio Playback

The software operation of the audio driver for playback is similar to the hardware configuration. Once the
hardware components are configured, the audio driver only handles the output DMA buffer empty
interrupts. This is done by the interrupt handler, which refills each of the output DMA buffers with new
audio data that has been supplied by the application, and then returns the DMA buffer to the DMA
controller.

2.4.2 Audio Recording

The operation of the audio driver for recording is similar to the hardware configuration. Once the hardware
components are configured, then the audio driver handles the input DMA buffer full interrupts. This is
done by the interrupt handler, which copies the contents of each input DMA buffer to an
application-supplied buffer, and then returns the empty DMA buffer to the DMA controller. If the
application-supplied buffer does not have enough space for all of the new data, discard any extra data. The
application is signaled using a callback function when the application-supplied buffer is full.

2.4.3 Audio Driver Compile-Time Configuration Options

The audio driver can be configured for a wide variety of operating modes depending on the hardware and
software requirements.

NOTE
Do not change the audio driver configuration settings without a detailed
understanding of the platform hardware configuration and operating
characteristics. Selecting invalid or incorrect configuration settings may
result in the audio driver not loading or operating properly. Conversely, the
audio driver performance and resource usage may be fine-tune by adjusting
these configuration settings. For further information about the configuration
options, see the corresponding source files.

Audio Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 2-5

2.4.3.1 i.MX233 Audio Driver Configuration Options

Table 2-3 gives the compile-time configuration options of the i.MX233 stereo audio driver.

2.4.4 DMA Support

The audio driver uses the DMA controller to transfer digital audio data between the audio application and
the audio FIFOs. This minimizes the processing required by the ARM core and can also reduce the power
consumption during audio playback and recording operations. This section describes the audio driver
DMA implementation issues and trade-offs, and the available compile-time DMA-related configuration
options.

To use DMA transfers, the following items must be properly allocated, managed, and deallocated by the
device driver:

• The DMA data buffers where the application data is kept

• The DMA buffer descriptors, which are used by the DMA hardware to manage the state of each
DMA buffer

The DMA data buffers can be allocated from either the internal memory (which is provided by on-chip
internal RAM) or external memory (which is provided by off-chip external DRAM).

Table 2-3. i.MX233 Audio Driver Configuration Options (oemsettings.h)

Configuration Setting
Name

Description

INCHANNELS Defines the number of input/recording channels that are available. Can be set to either 1 or 2.
Default is 2.

OUTCHANNELS Defines the number of output/playback channels that are available. Can be set to either 1 or 2.
Default is 2.

BITSPERSAMPLE The number of data bits per audio sample. This must match with the HWSAMPLE typedef and
the AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

HWSAMPLE A typedef that defines the size of each audio data word. This must match the
BITSPERSAMPLE and AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

USE_MIX_SATURATE Enable a check in the software mixer code to guard against saturation. Default is 1.

AUDIO_SAMPLE_MAX and
AUDIO_SAMPLE_MIN

The valid range of each audio data word. Values that are outside of this range is clipped to the
max/min value by the saturation protection code if USE_MIX_SATURATE is set to 1. Default is
32767 and -32768.

ENABLE_MIDI If set to 1, MIDI code is included in the driver (~4 Kbytes).

USE_OS_MIXER If set to 1, the driver does not do any internal mixing and relies on the OS mixer.

Audio Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-6 Freescale Semiconductor

Table 2-4 describes the issues and considerations for the type of memory to use for the DMA data buffers.

Table 2-5 describes how to configure the build so that the audio driver allocates its DMA data buffers from
either the internal or external memory. The DMA buffer descriptors can also be allocated either from
internal or external memory.

2.4.4.1 i.MX233 Audio DMA Buffer Use

The i.MX233 audio driver supports both playback and recording. Both playback function and recording
function allocate DMA buffer from external memory.

2.4.5 Power Management

The primary method for limiting power consumption in the audio driver is to gate off all clocks to the SSI
when those clocks are not needed, and to turn off all audio hardware components at the end of each audio
stream. This is accomplished through the DDKClockSetGatingMode function call and the various PMIC
audio APIs. In the BSP, the audio module can be disabled, and its clocks are turned off whenever there are
no active audio I/O operations. The clock gating and the disabling of related audio hardware components
is handled automatically within the audio module and requires no additional configuration or code
changes.

The audio driver operates correctly when resuming after the power down mode.

Table 2-4. DMA Memory Allocation Issues and Considerations

Memory
Region Memory Usage Issues and Considerations

Internal • Allows the external memory to be placed in a low power mode while the DMA data buffers are being
processed to reduce system power consumption (as long as nothing else on the system requires access to
external memory)

 • Less power is required to access the internal RAM
 • The total size of the internal memory region is limited
 • The limited amount of internal memory may have to be shared by multiple device drivers
 • The entire internal memory region must be manually managed with predefined addressed ranges being

reserved for each specific use

External • The total size of the external memory is typically much greater than the size of the internal memory. This
provides much greater flexibility in selecting the size of the DMA data buffers.

 • There is typically no need to worry about the possible impact and memory requirements of any other device
driver.

 • Memory allocation is handled using the standard Windows Embedded CE 6.0 system calls
 • The external memory cannot be placed into a low power mode while the DMA is active

Table 2-5. Configuration Options for Internal or External Memory DMA Data Buffer Allocation

Memory
Region Required Configuration Options

Internal Set the BSP_AUDIO_DMA_BUF_ADDR macro in bsp_cfg.h to an address within the internal memory region.
Set BSP_AUDIO_DMA_BUF_SIZE to the total size (in bytes) for all DMA data buffers that is allocated.

External Make sure that the BSP_AUDIO_DMA_BUF_ADDR macro is commented out in bsp_cfg.h

Audio Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 2-7

2.4.5.1 PowerUp

This function resumes an audio I/O operation that was previously terminated by calling the PowerDown()
API. It begins by restoring power and re-enabling all of the required audio hardware components. Then
this function restarts the audio DMA transfers to complete the powerup process for the audio driver.

This function is intended to be called only by the Power Manager and must not block or depend on any
hardware interrupts. Therefore, all required timed delays must be handled by using a polling loop instead
of any of the normal wait for an event to be signalled functions. This functionality is currently handled
by IOCTL_POWER_SET and the function is just a stub.

2.4.5.2 PowerDown

This function suspends all currently active audio I/O operations just before the entire system enters the low
power state. This function is intended to be called only by the Power Manager and must not block or
depend on any hardware interrupts. So, first thing this function must do is to signal all of the possible wait
events that the normal audio driver thread may currently be waiting on. If this function does not signal all
waiting events, the PowerDown thread may be blocked waiting for a critical section that is currently being
held by the normal audio driver thread. This deadlocks the entire system and prevent it from properly
entering the low power state.

When all waiting events are signalled, the normal audio thread is guaranteed (because of priority
inversion) to run to the point where it releases the required critical section and allows the PowerDown
thread to proceed without the possibility of deadlocking.

When the normal audio thread is not executing inside any critical section, the PowerDown thread can
safely proceed to disable all active audio DMA operations and to power down the associated audio
hardware components. Once this is done, the audio driver remains in a low power state until the PowerUp
function is called by the Power Manager. This functionality is currently handled by IOCTL_POWER_SET
and the function is just a stub.

2.4.5.3 IOCTL_POWER_SET

This Power Manager IOCTL is implemented for the audio driver. All system suspend and resume
functions are handled by the IOCTL, which manages the PowerDown and PowerUp functionality. For all
platforms, the following registry entry must be defined:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]

"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

This registry entry is required for proper power management functionality.

2.4.6 Audio Driver Registry Settings

At least one registry key must be properly defined so that the Device Manager loads the audio driver when
the system is booted. Additional registry keys may also be defined and changed at runtime, to configure
the operation of the audio driver.

Audio Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-8 Freescale Semiconductor

2.4.6.1 i.MX233 Audio Driver Registry Settings

The following registry keys are required for the Device Manager to properly load the i.MX233 audio
device driver during the device normal boot process. These registry settings should not be modified. If the
settings are missing or incorrectly defined, then the audio driver may not be loaded and all audio functions
are disabled.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]
 "Prefix"="WAV"
 "Dll"="wavedev2_mx233.dll"
 "Index"=dword:2
 "Order"=dword:4
 "Priority256"=dword:95
 "IClass"=multi_sz:"{A32942B7-920C-486b-B0E6-92A702A99B35}",
 "{37168569-61C4-45fd-BD54-9442C7DBA46F}"
; Override wave API load order to follow audio driver
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\WAPIMAN]
 "Order"=dword:5
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\WAPIMAN_ACM]
 "Order"=dword:5

2.5 Unit Test
The audio driver is tested using the Waveform Audio Driver Test suite included with the Windows
Embedded CE 6.0 Test Kit (CETK). The test suite includes automated and interactive tests used to test
playback and recording functions.

2.5.1 Unit Test Hardware

Table 2-6 identifies the hardware needed to run the unit tests.

2.5.2 Unit Test Software

Table 2-7 lists the software required to run the unit tests.

Table 2-6. Hardware Requirements

Requirement Description

Stereo headphones or
earphones

This is required to confirm that audio playback is working. The headphones or earphones
should have a 3.5 mm jack

Mono microphone —

Table 2-7. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

wavetest.dll Test.dll file

Audio Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 2-9

2.5.3 Building the Audio Driver CETK Tests

The audio driver tests come pre-built as part of the CETK. No steps are required to build these tests. The
wavetest.dll file is included with the CETK files in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

2.5.4 Running the Audio Driver CETK Tests

The command line for running the audio driver test is:
tux –o –d wavetest

Alternatively, use the CETK interface in the Platform Builder. If the full-duplex operation is not supported,
the command line is:
tux -o -d wavetest -c “-e”

For detailed information about the audio driver tests, see the Platform Builder Help at the following
location:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Audio Tests >
Waveform Audio Driver Test

2.6 System Level Audio Driver Tests
In addition to running the audio driver tests in the CETK, various system-level tests that involve the use
of the audio driver can be performed. The following sections describe how to test the audio driver without
using the CETK.

2.6.1 Checking for a Boot-Time Musical Tune

The normal Windows Embedded CE 6.0 boot procedure includes playing a short musical tune just before
displaying the touch panel calibration screen. At this point, the audio driver should already have
successfully loaded and the tune should be heard if a headset is attached to the stereo output jack.

2.6.2 Confirming Touchpanel Taps and Keypad Key Presses

The normal Windows Embedded CE 6.0 system configuration includes the ability to playback a short
tapping sound when the stylus makes contact with the touchpanel. These taps should be heard when a
headset is attached to the stereo output jack. A click should also be heard when a key on the keypad is
pressed.

2.6.3 Playing Back Sample Audio and Video Files Using the Media Player

The Microsoft-supplied Media Player application can be used to load and play a variety of audio and video
media files in a number of different formats. The only requirement is to include the software codecs in the
OS image that may be needed to decode the media file. The Media Player includes controls for pausing,
resuming, and stopping playback, and advancing playback to a specific point. Volume and muting controls
are also provided.

Audio Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-10 Freescale Semiconductor

2.6.4 Using the SDK Sample Audio Applications for Testing

The Windows Embedded CE 6.0 SDK that is included as part of the Platform Builder includes two
audio-related sample applications. The wavrec sample application can be used to test the audio recording
function while the wavplay sample application provides a command line-based method of playing back
various media files. For additional information about these sample applications, see the Platform Builder
Help at the following location:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Samples

2.7 Audio Driver API Reference
For detailed reference information for the audio driver, see the Platform Builder Help at the following
location:

Developing a Device Driver > Windows Embedded CE Drivers > Audio Drivers > Audio Driver
Reference > Waveform Audio Driver Reference

2.8 Audio Driver Troubleshooting Guide
This section describes the techniques to identify and fix the most common problems involving the audio
driver.

2.8.1 Checking Build-Time Configuration Options

Compile-time or link-time errors are probably occur due to incorrect or invalid configuration settings
defined in hwctxt.h or hwctxt.cpp. See Section 2.4.3.1, “i.MX233 Audio Driver Configuration Options,”
for information about the device driver build configuration options. Follow the build procedure
documented in the Release Notes to compile and link the audio driver. Confirm that the required Platform
Builder catalog items are included in the OS design. See Table 2-1 for a list of the required and
recommended audio driver-related catalog items.

2.8.2 Media Player Application Not Found

Make sure that the Media Player catalog item is included in the OS design. The Media Player application
is not included in the final system image if the catalog item is not selected. For more information on this
topic, see the Platform Builder Help at the following location:

Windows Embedded CE Features > Applications and Services > Windows Media Player for
Windows Embedded CE

2.8.3 Media Player Fails to Load and Play an Audio File

This problem is typically caused by failing to include the appropriate software codec that is required to
handle the audio file format. See the list of recommended audio driver catalog items in Table 2-1 and make
sure that support for the desired audio file format is included.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 3-1

Chapter 3
Backlight Driver
The backlight driver uses the hardware provided by the display module on the device, to control the
backlight on the Liquid Crystal Display (LCD) panel. The backlight driver interfaces with the Windows
CE Power Manager to provide timed control over the display backlight. A timeout interval controls the
length of time that the backlight stays on. The backlight driver is power-manageable, and it meets the
requirements of a power-manageable device by implementing the required power management I/O
Controls (IOCTLs). The backlight driver uses its own defined timer to set the backlight power states.

3.1 Backlight Driver Summary
Table 3-1 provides a summary of source code location, library dependencies and other BSP information.

3.2 Supported Functionality
The backlight driver enables the 3-Stack System to provide the following support:

1. Conforms to the Device Manager streams interface

2. Supports 0–10 level adjustment

3. Supports power management mode: full on or full off

3.3 Hardware Operation
This section explains about the hardware operation

Table 3-1. Backlight Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\BACKLIGHT

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BACKLIKGHT

Driver DLL backlight.dll

SDK Library N\A

Catalog Item Third Party > BSP > Freescale i.MX233 EVK: ARMV4I > Device Drivers > Backlight

SYSGEN Dependency SYSGEN_BATTERY=1

BSP Environment Variables BSP_BACKLIGHT=1

Backlight Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

3-2 Freescale Semiconductor

3.3.1 i.MX233-EVK Hardware Operation

The hardware consists of a PWM implemented by channel 2 of PWM controller.This PWM is dedicated
to drive the backlight of LCD.It can be configured by adjusting the duty cycle in channel 2 of PWM
controller.

3.4 Software Operation
The backlight driver is a stream interface driver and is accessed through the file system APIs. To use the
backlight driver, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation.

The control of the backlight operation requires a call to the DeviceIoControl function. The following are
the possible choices available for the user:

• IOCTL_POWER_CAPABILITIES, register and inform the Power Manager of capabilities

• IOCTL_POWER_QUERY, where the new power state is returned

• IOCTL_POWER_SET, interface to the hardware that controls the backlight through the PDD layer

• IOCTL_POWER_GET, where the current power state is returned

3.4.1 Backlight Driver Registry Settings

This section explains about the backlight driver registry settings.

3.4.1.1 i.MX233-EVK Backlight Driver Registry Setting

The following registry keys are required to properly load backlight driver:
 [HKEY_CURRENT_USER\ControlPanel\Backlight]
 "BattBacklightLevel"=dword:7F ; Backlight level settings. 0xFF = Full On
 "ACBacklightLevel"=dword:7F ; Backlight level settings. 0xFF = Full On
 "BatteryTimeout"=dword:1E ; 30 seconds
 "ACTimeout"=dword:78 ; 2 minutes
 "UseExt"=dword:1 ; Enable timeout when on external power
 "UseBattery"=dword:1 ; Enable timeout when on battery
 "AdvancedCPL"="AdvBacklight" ; Enable Advanced Backlight control panel dialog

3.4.2 Power Management

The backlight driver consumes power primarily through the operation of the LCD panel backlight. To
facilitate the management of this module, the backlight driver implements the IOCTL code
IOCTL_POWER_SET.

3.4.2.1 PowerUp

This function is not implemented for the backlight driver.

Backlight Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 3-3

3.4.2.2 PowerDown

This function is not implemented for the backlight driver.

3.4.2.3 IOCTL_POWER_SET

The backlight driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Turn
On) and D4 (Set intensity to 0) power states. These states are handled in the following manner:

• D0—Backlight is enabled for LCD panel and the intensity can be adjusted through the PDD layer

• D4—Backlight intensity is set to 0 which is the lowest level of backlight

3.5 Unit Test
The backlight driver is tested by the application test. The following section explains about the hardware
and software requirements for unit tests.

3.5.1 Unit Test Hardware

This section explains about the hardware required to run the backlight application test.

3.5.1.1 i.MX233-EVK Unit Test Hardware

Table 3-2 lists the required hardware to run the backlight application test.

3.5.2 Unit Test Software

Table 3-3 lists the required software to run the backlight application test.

Table 3-2. Hardware Requirements

Requirement Description

SAMSUNG LMS430HF02 WQVGA Panel Display panel required for display of graphics data

Table 3-3. Software Requirements

Requirement Description

backlight.dll The backlight driver to implement the backlight functions

Advbacklight.dll The file implements adding an Advanced button to the Backlight Control Panel application

Backlight Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

3-4 Freescale Semiconductor

3.5.3 Running the Backlight Application Test

Table 3-4 lists the backlight application test.

3.6 Backlight API Reference
The API for the backlight driver conforms to the stream interface and exposes the standard functions. For
more information, see Platform Builder Help at the following location:

Developing a Device Driver > Windows CE Embedded Drivers > Streams Interface Drivers

Table 3-4. Backlight Application Test

Test Case Entry Criteria/Procedure/Expected Result

Backlight Level Entry Criteria: N/A

Procedure:

1. Go to Setting > Control Panel
2. Double click on the Display icon, then click on the Backlight tab
3. Click on the Advanced… button
4. Modify the backlight level setting for both battery and external power
5. Observe that the backlight level behaves according to the new setting

Expected Result: N/A

Backlight Timeout Entry Criteria: N/A

Procedure:

1. Go to Setting > Control Panel
2. Double click on the Display icon, then click on the Backlight tab
3. Modify the backlight timeout setting for both battery and external power, and then click on OK

button to apply the changes
4. Observe the time it takes for the backlight to go out, make sure it correspond with the new

settings entered in step 3

Expected Result: N/A

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 4-1

Chapter 4
Battery Driver
The battery driver module provides information about the battery level to the OS, and decides whether to
execute the charging or discharging operation. It will also report battery capability and power supply state
to OS periodically by measuring the battery voltage. When charging, current-limit and voltage-limit is
maintained to protect the charger and battery.

4.1 Battery Driver Summary
Table 4-1 provides a summary of source code location, library dependencies and other BSP information.

4.2 Supported Functionality
The battery driver enables the system to provide the following support:

1. Conforms to the battery driver interface

2. Supports two power management modes, full on and full off

3. Detects power source changes and reports current power source

4. Supports charging of Lion battery

5. Auto stop charging if the die temperature is too high

Table 4-1. Battery Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BATTDRVR

Import Library N/A

Driver DLL battery.dll

Catalog Item Third Party > BSP > Freescale i.MX233 EVK:ARMV4I > Device Drivers >Battery

SYSGEN Dependency SYSGEN_BATTERY

BSP Environment Variables BSP_NOBATTERY=
BSP_BATTERY=1(Only for Real Battery)

Battery Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

4-2 Freescale Semiconductor

4.3 Hardware Operation
The battery driver is implemented with the power module of i.MX233. The power module contains
on-chip analog to control charging function (including voltage monitor and current limiter). The LRADC
channel 7 is used to get the level of voltage in the battery. This level is then used in determining the
capacity level of the battery.

4.3.1 Conflicts with Other SoC Peripherals

No conflicts.

4.4 Software Operation
After initialization, the BatteryPDDGetStatus() function is called periodically to get the status of the
battery. This function fills the structure SYSTEM_POWER_STATUS_EX2 and returns it to the system.
The Power Properties window is updated based on the values in this structure.

4.4.1 Battery Driver Registry Settings
The following registry keys are required to properly load battery driver:

; These registry entries load the battery driver. The IClass value must match
; the BATTERY_DRIVER_CLASS definition in battery.h -- this is how the system
; knows which device is the battery driver. Note that we are using
; DEVFLAGS_NAKEDENTRIES with this driver. This tells the device manager
; to instantiate the device with the prefix named in the registry but to look
; for DLL entry points without the prefix. For example, it will look for Init
; instead of BAT_Init. This allows the prefix to be changed in the registry (if
; desired) without editing the driver code.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Battery]
 "Prefix"="BAT"
 "Dll"="battdrvr.dll"
 "Flags"=dword:8 ; DEVFLAGS_NAKEDENTRIES
 "Order"=dword:3
 "MaxBatteryVoltage"=dword:1068 ; 4200mV
 "BatteryVoltageHighLevel"=dword:E74 ; 3700mV
 "BatteryVoltageLowLevel"=dword:C80 ; 3200mV
 "PollInterval"=dword:1F4; battery polling interval, in milliseonds(0.5 seconds)
 "IClass"="{DD176277-CD34-4980-91EE-67DBEF3D8913}"

[HKEY_LOCAL_MACHINE\System\Events]
 "SYSTEM/BatteryAPIsReady"="Battery Interface APIs"

4.4.2 Power Management

There is no additional power management implementation for battery driver.

4.5 Unit Test
The battery driver can be tested, by switching on the system and watching the power properties window.
When charging, the charge capacity of the battery can be seen increasing until it is charged to 100%.

Battery Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 4-3

NOTE
It is not allowed to plug in or remove out the battery after boot up device.

4.5.1 Unit Test Hardware

The i.MX233-EVK board is required. For real battery mode, switch S12 to the right side and connect a
real lion battery to J13 or J21; For fake battery mode, switch S12 to the left side.

4.6 Battery API Reference
The API for the battery driver conforms to the stream interface and exposes the standard functions. For
more information, see Platform Builder Help at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Battery Drivers

Battery Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

4-4 Freescale Semiconductor

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 5-1

Chapter 5
Boot from Secure Digital/MultiMedia Card (SD/MMC)
Booting support from SD/MMC includes the following components:

• Boot Image

• Storage for OS binary image (NK)

Boot Image is stored in the SD/MMC card using a special tool, and NK is stored in the FAT partition. The
user can select to boot the system from the SD/MMC card, after the booting procedure.

5.1 Boot from SD/MMC Summary
Table 5-1 provides a summary of source code location, library dependencies and other BSP information.

5.2 Supported Functionality
The Boot support from SD/MMC includes:

1. Supports boot from low or high capacity SD/MMC card

2. Supports storing OS images to SD/MMC flash

3. Supports loading OS image from SD/MMC flash to RAM

4. Supports file system on bootable SD/MMC card

Table 5-1. Boot from SD/MMC Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX233-EVK

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\BOOTLOADER
..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\BOOT\FMD\SDMMC

Driver DLL N/A

SDK Library N/A

Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) N/A

Boot from Secure Digital/MultiMedia Card (SD/MMC)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

5-2 Freescale Semiconductor

5.3 Hardware Operation
This section explains about the hardware operation of the controller linked with SD/MMC.

5.3.1 Conflicts with Other Peripherals and Catalog Items

On the i.MX233-EVK platform, SSP1 controller is shared between SD/MMC and Ethernet, since both SD
and MMC cannot operate at the same time. If the system is booted from SD/MMC card, before using
Ethernet download and/or KITL, the card must be removed from the slot in order for Ethernet to function
properly. Or, USB-RNDIS can be used for download and KITL to avoid plug or unplug of card.

5.4 Software Operation
On startup while booting from SD/MMC, the Boot ROM is responsible for initializing and bringing the
SD/MMC memory to a proper working state. The Boot ROM executes the boot image and boot up the
EBOOT, and then passes control to bootloader which in turn brings up the OS.

In the EBOOT, users can select the booting mode to SDMMC Storage. Then the EBOOT will read the
NK from the FAT partition of the SD/MMC card, and boot up the system.

5.5 Card Flashing Tool
Flashing tool cfimager.exe is used to write the boot image to the SD/MMC. The tool is located in the
directory <%_WINCEROOT%>\SUPPORT\TOOLS\COMMON\CFIMAGER. Users can follow the instructions in the
readme.txt file in that folder to write the boot image and boot up the system.

5.5.1 Write Image (EBOOT) to SD Card

Plug SD into Card Reader on PC, and run the following command. The *.sb files to flash are copied to
<%_WINCEROOT%>\SUPPORT\TOOLS\iMX233-EVK\SDIMAGE. The user can add that path before the filename.

cfimager -f eboot.sb -d <card reader drive, no colon>

After successful operation, users can copy nk.bin from release directory to <card reader drive>:\.

If users want to boot OS image (NK) without the bootloader (EBOOT), change the command to

cfimager -f nk.sb -d <card reader drive, no colon>

5.5.2 System Boot

Plug the flashed card into the board, ensure boot switch is set to the defined value and that the appropriate
fuses are blown, then power on the board.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-1

Chapter 6
Chip Support Package Driver Development Kit (CSPDDK)
The Chip Support Package Driver Development Kit (CSPDDK) provides an interface to access peripheral
features and SOC configuration shared by the system. The CSPDDK executes as a device driver DLL and
exports functions for the following SCC components:

• CLOCK

• GPIO

• IOMUX

• DMA(APBH DMA and APBX DMA)

• POWER

6.1 CSPDDK Driver Summary
Table 6-1 provides a summary of source code location, library dependencies and other BSP information.

6.2 Supported Functionality
The CSPDDK meets the following requirements:

1. Supports an interface that allows synchronized inter-process access to the following set of shared
SoC resources:

— IOMUX (DDK_IOMUX)

— GPIO (DDK_GPIO)

— DMA (DDK_APBHDMA and DDK_APBXDMA)

Table 6-1. CSPDDK Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPDDK

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CSPDDK

Driver DLL cspddk.dll

SDK Library N/A

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOCSPDDK=

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-2 Freescale Semiconductor

— CLK (DDK_CLK)

— POWER(DDK_POWER)

2. Exposes exported functions that can be invoked without incurring a system call (for example, not
a stream driver)

6.3 Hardware Operation
See the hardware specification document for detailed operation and programming information.

6.3.1 Conflicts with Other Peripherals and Catalog Items

This section explains about the CSPDDK conflicts with other peripherals and catalog items.

6.3.1.1 Conflicts with SoC Peripherals

The following section explains about the CSPDDK conflicts with SoC peripherals.

6.3.1.1.1 iMX233 Peripheral Conflicts

See the i.MX233 hardware specification document for possible conflicts.

6.3.1.2 Conflicts with Hardware Peripherals

No conflicts.

6.4 Software Operation
This section explains about the CSPDDK software operation.

6.4.1 Communicating with the CSPDDK

Similar to the CEDDK DLL, the CSPDDK DLL does not require any special initialization. All of the
initialization required by the CSPDDK is performed when the DLL is loaded into the respective process
space. Drivers that want to utilize the CSPDDK simply need to link to the CSPDDK export library and
invoke the exported functions.

6.4.2 Compile-Time Configuration Options

No options.

6.4.3 Registry Settings

There are no registry settings that need to be modified to use the CSPDDK driver. Since most drivers need
to use CSPDDK functionality, the CSPDDK should be one of the first DLLs loaded by Device Manager.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-3

6.4.4 Power Management

The CSPDDK exposes interfaces that allow drivers to self-manage power consumption by controlling
clocking and pin configuration. The CSPDDK executes as a shared DLL and does not implement the
Power Manager driver IOCTLs or the PowerUp or PowerDown stream interface. However, the CSPDDK
functions are invoked by other drivers during power state transits.

6.5 Unit Test
Due to the heavy use of the CSPDDK routines by other drivers on the system, currently there is no
additional test case.

6.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference

The DDK_CLK interface allows device drivers to configure and query system clock settings.

6.5.1.1 DDK_CLK Enumerations

Table 6-2 lists all the programming elements in the DDK_CLK enumerations.

6.5.1.2 DDK_CLK Functions

The following are the functions that are used to set DDK_CLK.

6.5.1.2.1 DDKClockSetGatingMode

This function sets the clock gating mode of the peripheral.

BOOL DDKClockSetGatingMode(
DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE mode)

Parameters

index [in] Index for referencing the peripheral clock gating control bits

mode [in] Requested clock gating mode for the peripheral

Return Values Returns TRUE if successful, otherwise returns FALSE

Table 6-2. DDK_CLK Enumerations

Programming Element Description

DDK_CLOCK_SIGNAL Clock signal name for querying/setting clock configuration

DDK_CLOCK_GATE_INDEX Index for referencing the corresponding clock gating control bits within the CCM

DDK_CLOCK_GATE_MODE Clock gating modes supported by CCM clock gating registers

DDK_CLOCK_BAUD_SOURCE Input source for baud clock generation

DDK_DVFC_SETPOINT Frequency/voltage setpoints supported by the DVFC driver

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-4 Freescale Semiconductor

6.5.1.2.2 DDKClockGetGatingMode

This function retrieves the clock gating mode of the peripheral.

BOOL DDKClockGetGatingMode(
DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE *pMode)

Parameters

index [in] Index for referencing the peripheral clock gating control bits

pMode [out] Current clock gating mode for the peripheral

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.3 DDKClockGetFreq

This function retrieves the clock frequency in Hz for the specified clock signal.

BOOL DDKClockGetFreq(
DDK_CLOCK_SIGNAL sig,
UINT32 *freq)

Parameters

sig [in] Clock signal

freq [out] Current frequency in Hz

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.4 DDKClockSetFreq

This function sets the clock frequency in Hz for the specified clock signal.

BOOL DDKClockSetFreq(
DDK_CLOCK_SIGNAL sig,
UINT32 freq)

Parameters

sig [in] Clock signal.

freq [in] Requested frequency in Hz.

Return Values Returns TRUE if successful, otherwise returns FALSE.

6.5.1.2.5 DDKClockConfigBaud

This function configures the input source clock and dividers for the specified CCM peripheral baud clock
output.

BOOL DDKClockConfigBaud(
DDK_CLOCK_SIGNAL sig,
DDK_CLOCK_BAUD_SOURCE src,
UINT32 preDiv,

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-5

UINT32 postDiv)

Parameters

sig [in] Clock signal to configure

src [in] Selects the input clock source

preDiv [in] Specifies the value programmed into the baud clock predivider

postDiv [in] Specifies the value programmed into the baud clock postdivider

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.6 DDKClockSetpointRequest

This function requests the DVFC driver to transition to a setpoint that meets or exceeds the voltage and
clocking requirements of the setpoint being requested. This function optionally blocks until the setpoint
request has been granted.

BOOL DDKClockSetpointRequest(
DDK_DVFC_SETPOINT setpoint,
BOOL bBlock)

Parameters

setpoint [in] Specifies the setpoint to be requested

bBlock [in] Set TRUE to block until the setpoint has been granted; set FALSE to return
immediately after the request has been submitted

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.7 DDKClockSetpointRelease

This function releases a setpoint previously requested using DDKClockSetpointRequest.

BOOL DDKClockSetpointRelease(
DDK_DVFC_SETPOINT setpoint)

Parameters

setpoint [in] Specifies the setpoint to be released

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.8 DDKClockGetSharedConfig

This function obtains a reference to the global shared clock configuration data structure. This is intended
to be used by the DVFC driver.

PDDK_CLK_CONFIG DDKClockGetSharedConfig(VOID)

Parameters None

Return Values Returns a pointer to the clock configuration data structure.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-6 Freescale Semiconductor

6.5.1.2.9 DDKClockLock

This function requests a lock of the global shared clock configuration data structure.

VOID DDKClockLock(VOID)

Parameters None

Return Values None

6.5.1.2.10 DDKClockUnLock

This function releases a lock of the global shared clock configuration data structure.

VOID DDKClockUnLock(VOID)

Parameters None

Return Values None

6.5.1.3 DDK_CLK Examples

The following are the example code for the DDK_CLK.

Example 6-1 shows the sample code for CSPDDK clock gating.

Example 6-1. CSPDDK Clock Gating

#include “csp.h” // Includes CSPDDK definitions

// Enable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_ENABLED_ALL);

// Disable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_DISABLED);

Example 6-2 shows the sample code for CSPDDK clock rate query.

Example 6-2. CSPDDK Clock Rate Query

#include “csp.h” // Includes CSPDDK definitions

UINT32 freq;

// Query the current bus clock
DDKClockGetFreq(DDK_CLOCK_SIGNAL_AHB, &freq);

6.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference

The DDK_GPIO interface allows device drivers to utilize the GPIO ports. Each GPIO port has a single
interrupt request line that is shared for all port pins. In addition, configuration, status, and data registers
are shared. The DDK_GPIO provides safe access to the shared GPIO resources.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-7

6.5.2.1 DDK_GPIO Enumerations

Table 6-3 lists all the programming elements in the DDK_GPIO enumerations.

6.5.2.2 DDK_GPIO Functions

The following section explains about the DDK_GPIO functions.

6.5.2.2.1 DDKGpioConfig

This function configures the gpio_pin as input/output, sets the drive strength, voltage, and as interrupt
selection (if applicable).

BOOL DDKGpioConfig(DDK_IOMUX_PIN gpio_pin,
 DDK_GPIO_CFG gpio_cfg,
 DDK_IOMUX_PAD_DRIVE drive,
 DDK_IOMUX_PAD_VOLTAGE voltage,
 BOOL bPull_Enable)

Parameters

gpio_pin [in] functional pin name

gpio_cfg [in] structure to configure the pin as input/output, interrupt selection.

drive [in] set the gpio_pin drivestrength.

voltage [in] set the gpio_pin voltage.

bPull_Enable [in] enable/disable the pullup for the gpio_pin.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.2 DDKGpioEnableDataPin

This function sets the value in the register bit to drive on the gpio_pin.

BOOL DDKGpioEnableDataPin(DDK_IOMUX_PIN pin,UINT32 data)

Parameters

pin [in] functional pin name

data [in] data to be written to the pin.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.3 DDKGpioWriteDataPin

This function sets the value in the register bit to drive on the gpio_pin.

Table 6-3. DDK_GPIO Enumerations

Programming Element Description

DDK_GPIO_BANK Specifies the GPIO module instance

DDK_GPIO_CFG Specifies the configuration of the GPIO pins

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-8 Freescale Semiconductor

BOOL DDKGpioWriteDataPin(DDK_IOMUX_PIN pin,UINT32 data)

Parameters

pin [in] functional pin name

data [in] data to be written to the pin.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.4 DDKGpioReadDataPin

This function reads the GPIO port data from the specified pin.

BOOL DDKGpioReadDataPin(DDK_IOMUX_PIN pin, UINT32 *pData)

Parameters

pin [in] GPIO pin [0-31].

pData [out] points to buffer for data read. Data will be shifted to LSB.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.5 DDKGpioReadIntr

This function reads register for the interrupt status.

BOOL DDKGpioReadIntr(DDK_IOMUX_PIN pin, UINT32 *pData)

Parameters

pin [in] functional pin name

pData [out] pointer to the data read.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference

The DDK_IOMUX interface allows device drivers to configure signal multiplexing and pad configuration.
This control resides inside the IOMUX registers and is shared for the entire system. The DDK_IOMUX
support allows drivers to dynamically update and query their signal multiplexing and pad configuration.

6.5.3.1 DDK_IOMUX Enumerations

Table 6-4 lists all the programming elements in the DDK_IOMUX enumerations.

Table 6-4. DDK_IOMUX Enumerations

Programming Element Description

DDK_IOMUX_PIN Specifies the functional pin name used to configure the IOMUX.

DDK_IOMUX_PIN_MUXMODE Specifies the mux mode for a signal

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-9

6.5.3.2 DDK_IOMUX Functions

This sections explains about the DDK_IOMUX functions.

6.5.3.2.1 DDKIomuxSetPinMux

This function sets the IOMUX mux for the specified IOMUX pin.

BOOL DDKIomuxSetPinMux(DDK_IOMUX_PIN pin, DDK_IOMUX_PIN_MUXMODE muxmode)

Parameters

pin [in] functional pin name used to configure IOMUX HW_PINCTRL_MUXSEL

muxmode [in] MUX_MODE configuration.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.3.2.2 DDKIomuxGetPinMux

This function gets the IOMUX mux configuration for the specified IOMUX pin.

BOOL DDKIomuxGetPinMux(DDK_IOMUX_PIN pin, DDK_IOMUX_PIN_MUXMODE *pMuxmode)

Parameters

pin [in] functional pin name used to select the IOMUX output or input path that will
be returned.

pMuxmode [out] MUX_MODE configuration.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.3.2.3 DDKIomuxSetPadConfig

This function sets the IOMUX pad configuration for the specified IOMUX pad.

BOOL DDKIomuxSetPadConfig(DDK_IOMUX_PIN pin,
 DDK_IOMUX_PAD_DRIVE drive,
 DDK_IOMUX_PAD_PULL pull,
 DDK_IOMUX_PAD_VOLTAGE voltage)

Parameters

pad [in] functional pad name used to select the pad that will be configured.

DDK_IOMUX_PAD_DRIVE Specifies the drive strength for a pad; if no DRIVE bit for a PAD, the
DDK_IOMUX_PAD_DRIVE_NULL should be set.

DDK_IOMUX_PAD_PULL Specifies the pull-up/pull-down/keeper configuration for a pad

DDK_IOMUX_PAD_VOLTAGE Specifies the driver voltage for a pad, either 1.8 V or 3.3 V

Table 6-4. DDK_IOMUX Enumerations (continued)

Programming Element Description

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-10 Freescale Semiconductor

drive [in] drive strength configuration.

pull [in] pull-up, pull-down, or keeper configuration.

voltage [in] drive voltage configuration

Return Values Returns TRUE if successful, otherwise returns FALSE.

6.5.3.2.4 DDKIomuxEnablePullup

This function enables the IOMUX pad configuration for the specified IOMUX pad.

BOOL DDKIomuxEnablePullup(DDK_IOMUX_PIN pin, BOOL bEnable)

Parameters

pin [in] functional pin name used to select the IOMUX output or input path that will
be returned.

bEnable [in] enable or disable pullup

Return Values Returns TRUE if successful, otherwise returns FALSE.

6.5.3.2.5 DDKIomuxGetPadConfig

This function gets the IOMUX pad configuration for the specified IOMUX pad.

BOOL DDKIomuxGetPadConfig(DDK_IOMUX_PIN pin,
 DDK_IOMUX_PAD_DRIVE *pDrive,
 DDK_IOMUX_PAD_PULL *pPull,
 DDK_IOMUX_PAD_VOLTAGE *pVoltage)

Parameters

pin [in] functional pin name used to select the IOMUX output or input path that will
be returned

pDrive [out] drive strength configuration

pPull [out] pull-up, pull-down, or keeper configuration

pVoltage [out] drive voltage configuration

Return Values Returns TRUE if successful, otherwise returns FALSE.

6.5.4 CSPDDK DLL DMA (DDK_DMA) Reference

The DDK_DMA interface allows device drivers to allocate, configure, and control shared DMA resources.

6.5.4.1 DDK_DMA Functions

This section explains about the DDK_DMA functions.

6.5.4.1.1 DDKApbhStartDma

This function loads the NEXTCOMMAND address and increments the semaphore to start the DMA
operation for first command.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-11

BOOL DDKApbhStartDma(UINT8 Channel,PVOID memAddrPA, UINT8 semaphore)

Parameters

Channel [in] channel number

memAddrPA [in] pointer of memory’s physical address

semaphore [in] DMA semaphore

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.2 DDKApbhStopDma

This function stops the DMA channel.

BOOL DDKApbhStopDma(UINT8 Channel)

Parameters

Channel [in] channel number

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.3 DDKApbhDmaInitChan

This function initializes the requested DMA channel.

BOOL DDKApbhDmaInitChan(UINT8 Channel,BOOL bEnableIrq)

Parameters

Channel [in] channel number

bEnableIrq [in] enable or disable the irq

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.4 DDKApbhDmaChanCLKGATE

This function clears the interrupt for respective channel.

BOOL DDKApbhDmaChanCLKGATE(UINT8 Channel,BOOL bClockGate)

Parameters

Channel [in] channel number

bClockGate [in] gate or un-gate the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.5 DDKApbhDmaClearCommandCmpltIrq

This function clears the interrupt for respective channel.

BOOL DDKApbhDmaClearCommandCmpltIrq(UINT8 Channel)

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-12 Freescale Semiconductor

Parameters

Channel [in] channel number

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.6 DDKApbhDmaEnableCommandCmpltIrq

This function enables the interrupt for respective channel.

BOOL DDKApbhDmaEnableCommandCmpltIrq(UINT8 Channel,BOOL bEnable)

Parameters

Channel [in] channel number

bEnableIrq [in] enable or disable the interrupt for respective channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.7 DDKApbhDmaResetChan

This function resets the AHB to APBH bridge channel based on the argument channel.

BOOL DDKApbhDmaResetChan(UINT8 Channel,BOOL bReset)

Parameters

Channel [in] channel number

bReset [in] reset or un-reset the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.8 DDKApbhDmaFreezeChan

This function freezes the AHB to APBH bridge channel based on the argument channel.

BOOL DDKApbhDmaFreezeChan(UINT8 Channel,BOOL bFreeze)

Parameters

Channel [in] channel number

bFreeze [in] freeze or un-freeze the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.9 DDKApbhDmaGetPhore

This function gets the phore of respective channel.

UINT32 DDKApbhDmaGetPhore(UINT32 Channel)

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-13

Parameters

Channel [in] channel number

Return Values Returns the virtual channel index if successful, otherwise returns NULL.

6.5.4.1.10 DDKApbxStartDma

This function loads the NEXTCOMMAND address and increments the semaphore to start the DMA
operation for first command.

BOOL DDKApbxStartDma(UINT8 Channel,PVOID memAddrPA, UINT8 semaphore)

Parameters

Channel [in] channel number

memAddrPA [in] pointer of memory’s physical address

semaphore [in] DMA semaphore

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.11 DDKApbxGetNextCMDAR

This function gets the NEXTCOMMAND address.

UINT32 DDKApbxGetNextCMDAR(UINT8 Channel)

Parameters

Channel [in] channel number

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.12 DDKApbxStopDma

This function stops the DMA channel.

BOOL DDKApbxStopDma(UINT8 Channel)

Parameters

Channel [in] channel number

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.13 DDKApbxDmaInitChan

This function initializes the requested DMA channel.

BOOL DDKApbxDmaInitChan(UINT8 Channel,BOOL bEnableIrq)

Parameters

Channel [in] channel number

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-14 Freescale Semiconductor

bEnableIrq [in] enable/disable the irq

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.14 DDKApbxDmaGetActiveIrq

This function gets the active irq status of DMA channel.

BOOL DDKApbxDmaGetActiveIrq(UINT8 Channel)

Parameters

Channel [in] channel number

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.15 DDKApbxDmaClearCommandCmpltIrq

This function clears the interrupt for respective channel.

BOOL DDKApbxDmaClearCommandCmpltIrq(UINT8 Channel)

Parameters

Channel [in] channel number

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.16 DDKApbxDmaClearErrorIrq

This function clears the error interrupt for respective channel.

BOOL DDKApbxDmaClearErrorIrq(UINT8 Channel)

Parameters

Channel [in] channel number

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.17 DDKApbxDmaEnableCommandCmpltIrq

This function enables the interrupt for respective channel.

BOOL DDKApbxDmaEnableCommandCmpltIrq(UINT8 Channel,BOOL bEnable)

Parameters

Channel [in] channel number

bEnableIrq [in] enable/disable the interrupt for respective channel

Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-15

6.5.4.1.18 DDKApbxDmaEnableErrorIrq

This function enables the interrupt for respective channel.

BOOL DDKApbxDmaEnableErrorIrq(UINT8 Channel,BOOL bEnable)

Parameters

Channel [in] channel number

bEnableIrq [in] enable or disable the interrupt for respective channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.19 DDKApbxDmaResetChan

This function resets the AHB to APBX bridge channel based on the argument channel.

BOOL DDKApbxDmaResetChan(UINT8 Channel,BOOL bReset)

Parameters

Channel [in] channel number

bReset [in] reset or un-reset the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.20 DDKApbxDmaFreezeChan

This function freezes the AHB to APBX bridge channel based on the argument channel.

BOOL DDKApbxDmaFreezeChan(UINT8 Channel,BOOL bFreeze)

Parameters

Channel [in] channel number

bFreeze [in] freeze or un-freeze the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.5 CSPDDK POWER (DDK_POWER) Reference

The DDK_POWER interface allows device drivers to configure and control DC-DC converter, linear reg-
ulators, PSWITCH pin functions, battery monitor and charger, and silicon speed sensor.

6.5.5.1 DDK_POWER Functions

The following are the functions of DDK_POWER.

6.5.5.1.1 DDKPowerInit

This function initializes the power functionality for the supporting modules.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-16 Freescale Semiconductor

BOOL DDKPowerInit(POWER_INITVALUES* pInitValues)

Parameters

pInitValues [in] pointer to the structure POWER_INITVALUES

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.5.1.2 DDKPowerEnableDcdc

This function enables ENABLE_DCDC.

VOID DDKPowerEnableDcdc(BOOL bEnable)

Parameters

bEnable [in] TRUE for enable, FALSE for disable

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.5.1.3 DDKPowerExecuteBatteryTo5VoltsHandoff

This function hands off power source from battery to 5Volts supply.

VOID DDKPowerExecuteBatteryTo5VoltsHandoff(VOID)

Parameters None

Return Values None

6.5.5.1.4 DDKPowerExecute5VoltsToBatteryHandoff

This function hands off power source from 5Volts supply to battery.

void DDKPowerExecute5VoltsToBatteryHandoff(void)

Parameters None

Return Values None

6.5.5.1.5 DDKPowerEnable5VoltsToBatteryHandoff

This function enables the handoff from 5Volts supply to battery.

VOID DDKPowerEnable5VoltsToBatteryHandoff(VOID)

Parameters None

Return Values None

6.5.5.1.6 DDKPowerEnableBatteryTo5VoltsHandoff

This function enables the handoff from battery to 5Volts.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-17

void DDKPowerEnableBatteryTo5VoltsHandoff(void)

Parameters None

Return Values None

6.5.5.1.7 DDKPowerGet5vPresentFlag

This function checks if the 5V supply is present.

BOOL DDKPowerGet5vPresentFlag(VOID)

Parameters None

Return Values If the 5V supply is present returns TRUE, otherwise returns FALSE

6.5.5.1.8 DDKPowerInitPowerSupplies

This function initializes the power supplies.

UINT32 DDKPowerInitPowerSupplies(VOID)

Parameters None

Return Values Returns 0 if successful otherwise returns error value.

6.5.5.1.9 DDKPowerGetDirectBoot

This function checks if direct boot.

BOOL DDKPowerGetDirectBoot(void)

Parameters None

Return Values If the direct boot returns TRUE, otherwise returns FALSE

6.5.5.1.10 DDKPowerInitBatteryMonitor

This function initializes the battery monitor for battery module.

UINT32 DDKPowerInitBatteryMonitor(LRADC_DELAYTRIGGER eTrigger, UINT32 SamplingInterval)

Parameters

eTrigger [in] Specifies the Lradc trigger used

SamplingInterval [in] Specifies the sampling interval for the Battery value to be sampled

Return Values Returns 0 if successful else returns error values

6.5.5.1.11 DDKPowerGetBatteryMode

This function returns the current Battery Mode.

POWER_BATTERYMODE DDKPowerGetBatteryMode(VOID)

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-18 Freescale Semiconductor

Parameters None

Return Values Returns the battery mode.

6.5.5.1.12 DDKPowerSetCharger

This function is used to set the charger.

VOID DDKPowerSetCharger(DWORD current)

Parameters

current [in] The current value of charger

Return Values None

6.5.5.1.13 DDKPowerStopCharger

This function is used to stop the charger.

VOID DDKPowerStopCharger()

Parameters None

Return Values None

6.5.5.1.14 DDKPowerGetBatteryVoltage

This function returns the current Battery voltage.

UINT16 DDKPowerGetBatteryVoltage(VOID)

Parameters None

Return Values Returns the battery voltage

6.5.5.1.15 DDKPowerGetBatteryChargingStatus

This function returns the Battery charging status.

BOOL DDKPowerGetBatteryChargingStatus(VOID)

Parameters None

Return Values Returns battery charging status

6.5.5.1.16 DDKPowerClear5VIrq

This function is used to clear the 5V irq

VOID DDKPowerClear5VIrq()

Parameters None

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-19

Return Values None

6.5.5.1.17 DDKPowerGetLimit

This function is used to get the limit status.

BOOL DDKPowerGetLimit()

Parameters None

Return Values If the power limit returns TRUE, otherwise returns FALSE

6.5.5.1.18 DDKPowerGetUSBPhy

This function is used to get the USB PHY information.

BOOL DDKPowerGetUSBPhy()

Parameters None

Return Values If the USB PHY is plug in returns TRUE, otherwise returns FALSE

6.5.5.1.19 DDKPowerSetVdddValue

This function sets Vddd value.

void DDKPowerSetVdddValue(UINT16 u16Vddd_mV)

Parameters

u16Vddd_mV [in] Convert voltage value (mv) to register setting

Return Values None

6.5.5.1.20 DDKPowerGetVdddValue

This function gets Vddd value.

UINT32 DDKPowerGetVdddValue(VOID)

Parameters None

Return Values Returns Vddd current voltage value

6.5.5.1.21 DDKDumpPowerRegisters

This function dumps the power registers used for debugging.

VOID DDKDumpPowerRegisters(VOID)

Parameters None

Return Values None

Chip Support Package Driver Development Kit (CSPDDK)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-20 Freescale Semiconductor

6.5.5.1.22 DDKPowerSetLimit

This function is used to set the limit information.

VOID DDKPowerSetLimit(void)

Parameters None

Return Values None

6.5.5.1.23 DDKPowerGetPSwitchIrq

This function is used to get the PSwitch irq.

BOOL DDKPowerGetPSwitchIrq()

Parameters None

Return Values If the PSwitch irq in returns TRUE, otherwise returns FALSE

6.5.5.1.24 DDKPowerClearPSwitchIrq

This function is used to clear the PSwitch irq.

VOID DDKPowerClearPSwitchIrq()

Parameters None

Return Values None

6.5.5.1.25 DDKPowerGetPSwitchStatus

This function is used to get the PSwitch status.

DWORD DDKPowerGetPSwitchStatus()

Parameters None

Return Values Returns the PSwitch status

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7-1

Chapter 7
Configurable Serial Peripheral Interface (CSPI) Driver
The CSPI module provides master functionality of a standard CSPI bus.

7.1 CSPI Driver Summary
Table 7-1 provides a summary of source code location, library dependencies and other BSP information.

7.2 Supported Functionality
The CSPI driver supports the following features:

1. Supports the CSPI master mode of operation

2. Supports CSPI configurable bus feature

3. Supports configurable access method of polling method

4. Supports stream interface

5. Supports two power management modes: full on and full off

7.2.1 Conflicts with Other Peripherals and Catalog Items

This section explains about the conflicts that the CSPI driver have with other peripherals and catalog items.

Table 7-1. CSPI Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPI

Platform Driver Path ..\PLATFORM\<Target Platform>\DRIVERS\CSPI

Import Library cspisdk.lib

Driver DLL cspi.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > CSPI Bus 1

SYSGEN Dependency N/A

BSP Environment Variables BSP_SSP1_CSPI = 1

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

7-2 Freescale Semiconductor

7.2.1.1 Conflicts with SoC Peripherals

On i.MX233-EVK platform, SSP module is shared by CSPI driver and SD/MMC driver, so these two
drives can not be enabled at the same time.

7.2.2 Conflicts with EVK Peripherals

No conflicts.

7.3 Software Operation
This section explains about the software operation for the CSPI module.

7.3.1 Registry Settings

The following registry keys are required to properly load the CSPI module.
;; CSPI Bus Driver
;;
IF BSP_SSP1_CSPI
IF BSP_NOSSP1_SDHC
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CSPI1]
 "Prefix"="SPI"
 "Dll"="cspi.dll"
 "Index"=dword:1
ENDIF ;BSP_NOSSP1_SDHC
ENDIF ;BSP_SSP1_CSPI

7.3.2 Communicating with the CSPI

The CSPI is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the CSPI, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. If preferred, the DeviceIoControl function calls can be replaced with macros that hide
the DeviceIoControl call details. The following are the basic steps:

7.3.3 Creating a Handle to the CSPI

Call the CreateFile function to open a connection to the CSPI device. A CSPI port must be specified in
this call. The format is SPIX:, with X being the number indicating the CSPI port. This number should not
exceed the number of CSPI instances on the platform. If an CSPI port does not exist, CreateFile returns
ERROR_FILE_NOT_FOUND.

To open a handle to the CSPI:

1. Insert a colon after the CSPI port for the first parameter, lpFileName

For example, specify SPI1: as the CSPI port

2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple
handles to an CSPI port are supported by the driver.

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7-3

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.

4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

Example 7-1 is a sample code to open a CSPI port.

Example 7-1. Code to open CSPT port

 // Open the serial port.
 hSPI = CreateFile (L”SPI1:”, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

7.3.4 Data Transfer Operations

The CSPI driver provides one command, SPIExchange, that facilitates performing both reads and writes
through the CSPI bus. The basic unit of data transfer in the CSPI driver is the CSPI_XCH_PKT, which
contains a buffer for reading and writing data, and a CSPI_BUSCONFIG datum that specifies the desired
bus configuration and XCH method which is used during the SPI transmission. The following steps
explain the process of performing write and read operations through the CSPI bus.

Before these actions can be taken, a handle to the CSPI port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the CSPI port handle, appropriate IOCTL
code, and other input and output parameters are required.

To perform an CSPI transfer:

1. Create a CSPI_XCH_PKT object and initialize the fields of the packet as follows:

a) Initialize a CSPI_BUSCONFIG datum to specify the bus parameters as SSPCTRL0, SSPCMD,
SSPARG, BITCOUNT, bREAD, and specify the method parameters for use/not use DMA,
use/not use POLLING, send/not send command.

b) Set the pBuf field to the user buffer which sends and receives data.

c) Set the xchCnt field, for the 1-8 bit XCH, the xchCnt = bytes, for the 9-16 bit XCH, the xchCnt
= words, for the 17-32 bit XCH, the xchCnt = dwords.

2. Set the hDevice parameter to the previously acquired CSPI port handle.

3. Set the dwIoControlCode to the SPI_IOCTL_EXCHANGE IOCTL code.

4. Set the lpInBuffer to point to the CSPI_XCH_PKT object created in step 1. Set nInBufferSize to the
size of that packet object.

5. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

Example 7-2 demonstrates how to perform a XCH transfer.

Example 7-2. Code for XCH transfer

CSPI_BUSCONFIG_T buscnfg =
{

0x9000004, //configuration for SSP control register 0

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

7-4 Freescale Semiconductor

 0, //command 0
 0, //command 1
 FALSE, //no DMA
 TRUE, //polling mode
 32, //32 bits data
 FALSE, //write data
 0, //no command will be sent
};

DWORD Data[11];

CSPI_XCH_PKT_T xchPkt =
{
 &buscnfg,

Data,
 1, // XCH to target SPI device 1 times
 NULL,
 0
};

// Transfer data via CSPI
DeviceIoControl(hCSPI, // file handle to the driver

 CSPI_IOCTL_EXCHANGE, // I/O control code
 (PBYTE) &xchPkt, // in buffer
 sizeof(xchPkt), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // number of bytes returned
 NULL); // ignored (=NULL)

As a substitute for the DeviceIoControl call above, a SDK wrap function may be used to simplify the code.
The following is the sample code:

CSPIExchange(hCSPI, &xchPkt);

7.3.5 Closing the Handle to the CSPI

Call the CloseHandle function to close a handle to the CSPI after an application finishes using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the CSPI port.

7.3.6 Power Management

The primary method for limiting power consumption in the CSPI module is to gate off the input clock to
the module when the input CSPI clock is not needed. This is accomplished through the
DDKClockSetGatingMode function call. In all of the BSP use cases, the CSPI controller acts as a master
device. As a result, the CSPI clock can be turned off, whenever the module is not processing CSPI packets.

As described in the Data Transfer Operations section, the CSPI driver turns on the CSPI clocks and
enables the CSPI module before processing an CSPI XCH, and then disables and turns off clocks to the
CSPI module after the XCH has been done. This limits the time during which the CSPI module is
consuming power to the time during which the CSPI is actively performing data transfers.

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7-5

7.3.6.1 PowerUp

This function is not implemented for the CSPI driver. Power to the CSPI module is managed as CSPI
transfer operations are processed. There are no additional power management steps needed for the CSPI.

7.3.6.2 PowerDown

This function is not implemented for the CSPI driver.

7.3.6.3 IOCTL_POWER_SET

This function is implemented for the CSPI driver. When D4 power mode is set, the driver switches its
operating mode to polling mode that does not produce interrupt events to BSP system. When leaving the
D4 power mode, the driver recovers its origin operating mode.

7.4 Unit Test
The CSPI driver does not use the CETK for unit testing, but uses the test program described in the
following section for unit tests.

7.4.1 Building the Unit Tests

To build the CSPI tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.

A DOS prompt is displayed.

2. Change to the SPI Test directory: \WINCE600\SUPPORT\TEST\SPITEST

3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the EXE to the flat release directory.

4. Input build -c to build SPI test.

After the build completes, the SPIAPP.EXE file is located in the $(_FLATRELEASEDIR) directory.

To run the application within VS2005 use the following steps:

1. Go to the Target menu option and select the Run Programs menu option. This gives a list of
applications that can be run on the OS.

2. Select SPIAPP.EXE from this list.

3. Click on Run to run this application.

7.5 CSPI Driver API Reference
This section explains about the CSPI driver API reference.

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

7-6 Freescale Semiconductor

7.5.1 CSPI Driver IOCTLs

This section consists of descriptions for the CSPI I/O control codes (IOCTLs). These IOCTLs are used in
calls to DeviceIoControl to issue commands to the CSPI device. Only relevant parameters for the IOCTL
have a description provided.

7.5.1.1 CSPI_IOCTL_EXCHANGE

This DeviceIoControl request performs the transfer of data to a target device. An CSPI_XCH_PKT object
is required, which contains CSPI bus configuration parameters and data buffers. All of the required
information should be stored in the CSPI_XCH_PKT passed in the lpInBuffer field.

Parameters

lpInBuffer Pointer to an CSPI_XCH_PKT structure containing a pointer to bus configuration
parameters and data buffers

nInBufferSize Size in bytes of the CSPI_XCH_PKT

7.5.2 CSPI Driver SDK Wrapper

This section explains about the CSPI driver SDK wrapper.

7.5.2.1 CSPIOpenHandle

This function retrieves the CSPI device handle.
HANDLE CSPIOpenHandle(

LPCWSTR lpDevName
);

Parameters

lpDevName The CSPI device name for retrieving handle from CreateFile()

Return Values Returns Handle for CSPI driver; returns INVALID_HANDLE_VALUE if failure

7.5.2.2 CSPICloseHandle

This function closes a handle of the CSPI stream driver.
BOOL CSPICloseHandle(

HANDLE hDev
);

Parameters

hDev The CSPI device handle retrieved from CreateFile()

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

7.5.2.3 CSPIExchange

This function performs XCH operations.
BOOL CSPITransfer(

HANDLE hDev,
PCSPI_XCH_PKT_T pCspiXchPkt

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7-7

);

Parameters

hDev The CSPI device handle retrieved from CreateFile()

pCspiXchPkt [in] Pointer to XCH packet with bus configuration parameters

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

7.5.3 CSPI Driver Structures

This section explains about the CSPI driver structures.

7.5.3.1 CSPI_BUSCONFIG_T

This structure contains the bus configuration information needed during CSPI performs XCH.
// CSPI bus configuration
typedef struct
{

SSP_CTRL0 SspCtrl0;
 SSP_CMD0 SspCmd;
 SSP_CMD1 SspArg;
 BOOL usedma;
 BOOL usepolling;
 UINT8 bitcount;
 BOOL bRead;
 BOOL bCmd;
} CSPI_BUSCONFIG_T, *PCSPI_BUSCONFIG_T;

Table 7-2 shows the CSPI_BUSCONFIG_T structure members.

7.5.3.2 CSPI_XCH_PKT_T

This structure contains an XCH buffer parameters to be used in data exchange to CSPI device.
// CSPI exchange packet

Table 7-2. CSPI_BUSCONFIG_T Structure Members

Member Description

SspCtrl0 Configuration for SSP control register 0

SspCmd Command 0 for SSP

SspArg Command 1for SSP

usedma If TRUE, uses DMA mode, not support DMA now

usepolling If TRUE, uses polling mode, only support polling mode now

bitcount Define bits used in a single XCH, range 1-32.

bRead If TRUE, read data from CSPI

bCmd If TRUE, send command 0 and command 1 to CSPI controller

usedma If TRUE, uses DMA mode

usepolling If TRUE, uses polling mode

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

7-8 Freescale Semiconductor

typedef struct
{
 PCSPI_BUSCONFIG_T pBusCnfg;
 LPVOID pBuf;
 UINT32 xchCnt;
 LPWSTR xchEvent;
 UINT32 xchEventLength;
} CSPI_XCH_PKT_T, *PCSPI_XCH_PKT_T;

Table 7-3 shows the CSPI_XCH_PKT_T structure members.

Table 7-3. CSPI_XCH_PKT_T Structure Members

Member Description

pBusCnfg A pointer to CSPI bus configuration object

pBuf A pointer to data buffer

xchCnt Amount of XCH operation to SPI device

xchEvent Asynchronous access using the internal exchange queue

xchEventLength Event name length including tailing Zero

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 8-1

Chapter 8
Display Driver for LCDIF and PXP
The Windows Embedded CE 6.0 BSP display driver is based on the Microsoft DirectDraw Graphics
Primitive Engine (DDGPE) classes, and supports the Microsoft DirectDraw interface. This driver
combines the functionality of a standard LCD display with DirectDraw support. The display driver
interfaces with the LCD Interface (LCDIF) and Pixel Pipeline (PXP).

The display driver supports the following display type:

• SAMSUNG LMS430HF02 WQVGA Panel

8.1 Display Driver Summary
Table 8-1 identifies the source code location, library dependencies and other BSP information for the
display driver.

8.2 Supported Functionality
The display driver enables the 3-Stack board to provide the following software and hardware support:

1. RGB565 user interface

2. DirectDraw Hardware Abstraction Layer (DDHAL)

3. One overlay surface

Table 8-1. Display Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path N/A

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SoC>\LCDIF
..\PLATFORM\COMMON\SRC\SOC\<Target SoC>\PXP

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\DISPLAY

Driver DLL ddi_stmp37xx_chilin.dll

Import Library ddgpe.lib, gpe.lib

Catalog Items Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > Display
> SAMSUNG LMS430HF02(WQVGA)

SYSGEN Dependency SYSGEN_DDRAW=1

BSP Environment Variables BSP_NODISPLAY=

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-2 Freescale Semiconductor

4. Video overlays containing image data in any of the following FOURCC pixel formats: RGB565,
YV12

5. Hardware-accelerated color space conversion in video overlays

6. Hardware-accelerated image resizing in video overlays

7. Overlay surface color key feature

8. Alpha blending with an overlay surface

9. Two power management modes: full on and full off (resume and suspend)

10. Screen rotation

11. Cropping of an overlay surface

12. Supports SAMSUNG LMS430HF02 WQVGA Panel

NOTE
The following limitations apply to the display driver overlay support.

13. RGB image resize is not supported

14. Cropping is not supported while performing alpha blending operation

15. The width and height of the overlay surface must conform to an 8-pixel alignment restriction

16. The minimum width (or height if screen is rotated) of an overlay surface is 8 pixels

17. The minimum height (or width if screen is rotated) of an overlay surface is 8 pixels

18. When using the cropping feature, the x and y coordinate position must conform to 8-pixel
alignment restriction

8.3 Hardware Operation
For operation and programming information, see the chapter on the Pixel Pipeline and LCD Interface in
the Reference Manual.

8.3.1 Conflicts with Other Peripherals and Catalog Items

No conflicts.

8.4 Software Operation
This section explains about the software operation of the display driver.

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 8-3

8.4.1 Software Driver Components

Figure 8-1 shows the block diagram explaining the relationship between the software components in the
display driver architecture.

Figure 8-1. Software Driver Components Block Diagram

A list of the main elements of the display driver architecture is as follows:

• Display Driver—The high level DDGPE-based display driver. Contains implementations for
DirectDraw APIs.

• LCD Interface—Set of functions provide access to LCDIF module for display control setting.

• Pixel Pipeline Driver—A stream interface driver that performs the following processing tasks:
color space conversion, resizing, rotation, and combining.

8.4.1.1 Display Driver

The display driver is the top level interface between the display driver and the Windows CE OS or a calling
application. This top level software component is composed of the Stmp37xxDDGPE class, which is derived
from the public DDGPE class and inherits the underlying GPE driver functionality. Graphics Device
Interface (GDI) and DirectDraw APIs are implemented at this level.

8.4.1.2 LCD Interface

The LCDIF software component consists of a collection of functions that provide access to the LCDIF
module registers. These functions are called from the display driver to implement the display control. The
major tasks that this component performs include the following:

• Setting bus master and DMA operation modes for LCD.

• Configuring LCD data bus depending on the packet size.

• Programming timing and parameters to support a wide variety of displays.

8.4.1.3 Pixel Pipeline

The PXP driver provides a general resource that is capable of performing a set of processing tasks on a
surface:

• Resizing

• Combining of video and graphics data

W i n C E O S S o f t w a r e L a y e r

D i s p la y D r i v e r (D D G P E c la s s)

L C D I n t e r f a c e P ix e l P i p e li n e

d d i_ s t m p 3 7 x x _ c h i lin .d ll

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-4 Freescale Semiconductor

• Rotation

• Vertical and horizontal flipping

• Color Space Conversion (CSC)

• Cropping

The PXP driver is the primary means for performing resizing, rotation, CSC, cropping and combining on
an overlay surface.

8.4.2 Communicating with the Display

Communication with the display driver is accomplished through Microsoft-defined APIs. A framework
for accessing the display driver is provided through the Graphics Device Interface (GDI) and DirectDraw.

8.4.2.1 Using the GDI

The GDI provides basic controls for the display of text and graphics. For more information, see the Help
in the following location:

Windows Embedded CE Features > Shell, GWES and User Interface > Graphics, Windowing and
Events (GWES) > GWES Application Development > Graphics Device Interface (GDI)

8.4.2.2 Using DirectDraw

The DirectDraw API provides support for hardware-accelerated 2-D graphics, offering fast access to
display hardware while retaining compatibility with the GDI. For information about the DirectDraw API,
see the DirectDraw Help or the MSDN documentation library in the following location:

Windows Embedded CE Features > Graphics > DirectDraw

The following DirectDraw features are supported in the display driver by the PXP hardware:

• Page flipping with one backbuffer.

• Overlay surfaces using RGB or YV12 pixel format.

• Overlaying using a color key for the overlay surface for RGB colors.

• Stretching of overlay surfaces.

The PXP hardware module is used within the display driver to accelerate the following operations:

• Color space conversion of YUV overlay data to RGB. This conversion may be required in order to
combine the overlay data with RGB graphics plane data before being displayed.

• Resizing of the overlay surface.

• Rotation of the overlay surface (used when the screen orientation is rotated).

8.4.2.3 Using Display Driver Escape Codes

In some cases, applications might need to communicate directly with a display driver. To make this
possible, an escape code mechanism is provided as a part of the display driver.

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 8-5

For a detailed description of standard display driver escape codes, see the CE Help in the following
location:

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Driver
Development Concepts > Display Driver Escape Codes

8.4.3 Configuring the Display

The display configuration is based on the GUID registry key, which is described in Section 8.4.3.2,
“Display Registry Settings.” The GUID registry key indicates the display panel that is being used. The
only one supported display panel is the SAMSUNG LMS430HF02 WQVGA Panel.

8.4.3.1 Rotation Support

The DirectDraw display driver supports screen rotation.

NOTE
Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw, a DirectDraw display driver with rotation support may yield
more failures in the GDI or DIRECTDRAW CETK test suite. It is
recommended to run these CETK tests under 0 rotation degree. See the
Windows CE Help, stating that GDI screen rotation cannot be used with
DirectDraw.

8.4.3.2 Display Registry Settings

A set of registry keys is included in the OS image, depending on the display panel catalog item included
in the OS design.

8.4.3.2.1 i.MX233 Registry Settings

If the SAMSUNG LMS430HF02 WQVGA panel is selected, the following registry keys are included:
[HKEY_LOCAL_MACHINE\System\GDI\Drivers]
"GUID"="{1ED47D96-6842-4c20-8705-BF05AD0DFC33}"

8.4.4 Power Management

The display driver implements the power management I/O Control (IOCTL) codes, such as
IOCTL_POWER_CAPABILITIES, IOCTL_POWER_QUERY, IOCTL_POWER_GET and
IOCTL_POWER_SET.

8.4.4.1 PowerUp

This function is implemented in the PXP driver. It enables clock gating with the PXP module and resets
the PXP module to its default state. If an PXP operation is previously terminated by calling the
PowerDown() API, the PowerUp() function will restore the PXP module registers and restart the PXP
operation.

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-6 Freescale Semiconductor

8.4.4.2 PowerDown

This function is implemented in the PXP driver. If the PowerDown() function is called while PXP
operations are going on, it will store current PXP module registers setting temporarily. Then it disables
clock gating with the PXP module and holds the PXP module in its reset (lower power) state.

8.4.4.3 IOCTL_POWER_SET

The display driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Full On)
and D4 (Off) power states. These states are handled in the following manner:

• D0—The LCDIF module is enabled. The display panel is enabled. Clock gating is enabled for
clocks to the LCDIF.

• D4—The LCDIF module is disabled. The display panel is disabled. Clock gating is disabled for
clocks to the LCDIF.

8.5 Unit Test
The display driver is subject to two test suites provided with the Windows CE Test Kit (CETK): the GDI
Test and the DirectDraw Test. Additionally, the video playback is verified using the Windows Media
Player application.

The GDI Test is designed to test a graphics device interface. This test verifies that basic shapes, including
rectangles, triangles, circles, and ellipses, are drawn correctly. The test also examines the color palette of
the display, verifies that the display is correctly divided into multiple regions, and tests whether a device
context can be properly created, stored, retrieved, and destroyed.

The DirectDraw Test analyzes basic DirectDraw functionality including block image transfers (blits),
scaling, color keying, color filling, flipping, and overlaying.

Windows Media Player may be used to play back WMV video files and visually verify correct operation
of video overlays, accelerated color space conversion, and accelerated image resizing.

8.5.1 Unit Test Hardware

The SAMSUNG LMS430HF02 WQVGA panel is needed to run the GDI and DirectDraw tests. The panel
displays the graphics data.

8.5.2 Unit Test Software

This section explains about the software required for different tests.

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 8-7

8.5.2.1 GDI Tests

Table 8-2 lists the software required to run the GDI tests.

8.5.2.2 DirectDraw Tests

Table 8-3 lists the software required to run the DirectDraw tests.

8.5.2.3 Windows Media Player Tests

Table 8-4 lists the software required to perform WMV playback with Windows Media Player.

8.5.3 Building the Unit Tests

The GDI and DirectDraw tests come pre-built as part of the CETK. Ensure that the latest CETK suite is
installed. No steps are required to build these tests. For information about the tests, see the Help at the
following location:

Windows Embedded CE Test Kit > Running the CETK

Table 8-2. GDI Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

Gdiapi.dll Main test.dll file

Ddi_test.dll Graphics Primitive Engine (GPE)–based display driver that the GDI API uses to verify the success
of each test case. If Ddi_test.dll is unavailable, run the test with manual verification

Table 8-3. DirectDraw Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

DDrawTK.dll Test.dll file

Table 8-4. Windows Media Player Software Requirements

Requirement Description

Ceplayer.exe Windows Media Player sample application

*.wmv sample video files Sample windows media files

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-8 Freescale Semiconductor

For Windows Media Player testing, there are no build steps required. The Windows Media Player catalog
item must be added to the OS image to ensure that ceplayer.exe is included in the image. Additionally,
sample WMV files must be included in the image to demonstrate playback.

8.5.4 Running the Unit Tests

This section explains how to run different types of tests.

8.5.4.1 Running the GDI Tests

The command for running the GDI tests is:
tux –o –d gdiapi.dll -c “/NoResize”

For information about the GDI tests and command line options, see the Platform Builder Help topic:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Display Tests >
Graphics Device Interface Test

8.5.4.2 Running the DirectDraw Tests

The command for running the DirectDraw tests is:
tux –o –d ddrawtk

NOTE
The display driver fails the following DirectDraw CETK test cases: 1240,
1340. The failure occurs because the hardware can not support RGB image
resize, and the failing tests perform RGB pixel format overlay surfaces
resize that violate this restriction.

8.5.4.3 Running the Windows Media Player tests

The command for starting playback of a WMV test video clip in Windows Media Player is:
ceplayer [wmv test file]

For example, ceplayer motocross_208x160_30fps.wmv

If audio support is not included in the current BSP, the message Audio hardware is missing or disabled
appears when the WMV file is being loaded. Click OK to continue to WMV playback.

To confirm the correct operation of this test, observe the application and verify whether the video clip have
a clear image, normal coloring, and correct image sizing.

8.6 Display Driver API Reference
For information about the display driver APIs, see CE Help. No additional custom API information is
required for the features currently supported in the display driver.

For reference information on basic display driver functions, methods, and structures, see the CE Help at
the following location:

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 8-9

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Driver
Reference

For reference information on DirectDraw functions, callbacks, and structures, see the CE Help at the
following location:

Windows Embedded CE Features > Graphics > DirectDraw

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-10 Freescale Semiconductor

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 9-1

Chapter 9
Dynamic Voltage and Frequency Control (DVFC) Driver
The BSP includes the DVFC driver that provides combined support for DVFS (Dynamic Voltage
Frequency Scaling). The DVFC driver plays an important role in the reduction of active power
consumption by dynamically adjusting the voltage and frequency settings of the system. The DVFC driver
responds to DVFC hardware logic or load tracking software that is monitoring CPU loading and
process/temperature performance of the silicon.

9.1 DVFC Driver Summary
Table 9-1 provides a summary of source code location, library dependencies, and other BSP information.

9.2 Supported Functionality
The DVFC driver enables the hardware platform to provide the following software and hardware support:

1. Executes as a device driver and provides synchronized support of the DVFS power management
feature

2. Exposes stream interface for initialization and power management

3. Supports D0 and D4 driver power states and support control of frequency or voltage setpoint based
on Power Manager device power states

4. Supports peripheral setpoint requests initiated by CSPDDK clock management code

Table 9-1. DVFC Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2_

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\DVFC

SOC Specific Path

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC

Driver DLL dvfc.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > DVFC
driver support using the MC13892

SYSGEN Dependency N/A

BSP Environment Variables BSP_DVFC = 1

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

9-2 Freescale Semiconductor

9.2.1 i.MX233 Supported Functionality
1. Supports DVFS for CPU and AHB

2. Supports reactive CPU load tracking to control setpoint based on system performance
requirements. Current release uses software load tracking algorithm

3. Provides voltage control using PMU

9.3 Hardware Operation
This section describes about the DVFC hardware operation.

9.3.1 Conflicts with Other Peripherals and Catalog Items

No conflicts.

9.3.2 i.MX233 EVK Configuration

The DVFC driver is dependent DDK Power interface for dynamic voltage control through PMU.

9.4 Software Operation
This section describes about the registry settings.

9.4.1 i.MX233 Registry Settings

The following registry keys are required to properly load the i.MX233 DVFC module.
;---
; DVFC Driver
;
IF BSP_DVFC
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DVFC]
 "Prefix" = "DVF"
 "Index" = dword:1
 "Dll"="dvfc.dll"
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE
ENDIF ;BSP_DVFC

9.4.2 Loading and Initialization

The DVFC driver is automatically loaded to kernel space by the Device Manager as a stream driver. As
part of the loading procedure of stream drivers, the device manager invokes the corresponding stream
initialization function exported by the DVFC driver. The initialization sequence includes a call to
platform-specific code (BSPDvfcInit) to allow the OEM to configure and tune the DVFC driver operation.

9.4.3 Operation

The DVFC driver is the central point in the BSP for controlling voltage and frequency scaling. The DVFC
communicates with the PMIC and CCM to coordinate the DVFS. The DVFC driver responds to setpoint

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 9-3

requests from DDK_CLK (by driver calling DDKClockSetGatingMode) and Power Manager (by
IOCTL_POWER_SET). A shared global data structure (DDK_CLK_CONFIG) is used to keep track of
reference counts for each setpoint. The DVFC relies on synchronization with the DDK_CLK component
to determine when it is safe to transition to a new setpoint. DVFC integration with the Power Manager
allows drivers and applications direct control of the setpoint by using the SetDevicePower API.

9.4.3.1 i.MX233 Voltage or Frequency Setpoints

The i.MX233 DVFC driver supports mutually exclusive voltage and frequency setpoints for the CPU
power domains. Table 9-2 provides the voltage/frequency characteristics for these setpoints.

The setpoint attributes are controlled by the definitions in the platform-specific DVFS header file (found
in \PLATFORM\<Target Platform>\SRC\INC\dvfs.h). The DVFC driver uses these definitions to populate a
global setpoint array (g_SetPointConfig) that is referenced during setpoint transitions.The EMI clock
frequency is fixed to 96MHz, not changed with the setpoint change.

9.4.3.2 i.MX233 Setpoint Mapping

The DVFC driver advertises support for IOCTL_POWER requests from Power Manager. A
IOCTL_POWER_SET request is mapped to a setpoint by the DVFC driver. This mapping allows
applications to use the Power Manager APIs to request changes in the DVFC setpoint. The mapping of
device power states (D0-D4) to DVFC setpoints is located in DvfcMapDevPwrStateToSetpoint (found
in \PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC\dvfc.c). To change the setpoint mapping for a
specific device power state (D0-D4), modify the code in DvfcMapDevPwrStateToSetpoint.

9.4.4 DDK Interface

The DVFC driver allows other drivers or applications to control some aspects of the DVFS operation. Due
to the tight coupling with the system clock configuration, this interface is exposed within CSPDDK
clocking support. See the CSPDDK documentation for the following functions:

• DDKClockSetpointRequest, Section 6.5.1.2.6, “DDKClockSetpointRequest.”

• DDKClockSetpointRelease, Section 6.5.1.2.7, “DDKClockSetpointRelease.”

9.4.5 Power Management

The DVFC is an integral part of the power management supported by the BSP. However, since the DVFC
runs as a driver on the system, it also supports the Power Manager device driver interface. This allows the
DVFC driver to be notified of when the system is suspending or resuming and configure the processor
performance accordingly.

Table 9-2. i.MX233 DVFC Setpoints

Setpoint Name CPU/AHB Frequency [MHz] VDDD Voltage

DDK_DVFC_SETPOINT_HIGH 454.74/151.58 1.55 V

DDK_DVFC_SETPOINT_MEDIUM 266.82/130.91 1.275 V

DDK_DVFC_SETPOINT_LOW 160/80 1.275 V

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

9-4 Freescale Semiconductor

9.4.5.1 PowerUp

This stream interface function is not implemented for the DVFC driver.

9.4.5.2 PowerDown

This stream interface function is not implemented for the DVFC driver.

9.4.5.3 IOCTL_POWER_CAPABILITIES

The DVFC driver advertises that D0–D4 device power states are supported.

9.4.5.4 IOCTL_POWER_SET

The DVFC driver supports requests to enter D0–D4 device power state.

9.4.5.5 IOCTL_POWER_GET

The DVFC driver reports the current device power state (D0, D1, D2 or D4).

9.5 Unit Test
This section explains about the unit testing.

9.5.1 i.MX233 Unit Testing

A stress test application for the DVFC driver is provided for unit testing. This stress test uses the Power
Manager interface (SetDevicePower) to randomly request setpoints for the CPU and peripheral DVFS
domains. Follow these steps to run this unit test.

1. Open <Target Platform>-Mobility workspace and add the DVFC driver catalog item. Build OS
image.

NOTE
Note that modifications to the default workspace may cause additional
drivers to be included and may prevent the system from transitioning
through all possible DVFS setpoints.

2. Build DVFC stress test located in \SUPPORT\TEST\APP\PWRMGMT. The resulting application
pwrmgmt.exe is generated in the flat release directory.

3. Boot the OS image and launch application code such as media player that can perform continuous
playback. WMA audio playback is a good use case since audio playback can be performed across
all supported setpoints.

4. Launch the stress test application. From the CE shell, the stress test can be launched with the
following command line:

s \release\pwrmgmt.exe

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 9-5

Board modifications are required to observe voltage setpoints and are not covered in this document. Debug
messages to indicate setpoint transitions can be enabled using the DVFC_VERBOSE macro found in
\PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC\dvfc.c

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

9-6 Freescale Semiconductor

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 10-1

Chapter 10
Keypad Driver
The keypad driver converts input from the sensor into keyboard events that the driver enters into the
Graphics, Windowing, and Events Subsystem (GWES).

10.1 Keypad Driver Summary
Table 10-1 provides a summary of source code location, library dependencies and other BSP information.

10.2 Supported Functionality
The Keypad driver enables the hardware platform to provide the following software and hardware support:

1. Conforms to the Microsoft Layout Manager Interface

2. Two power management modes, full on and full off

10.3 Hardware Operation
See the chapter on the Low-Resolution ADC (LRADC) in the hardware specification document for
detailed operation and programming information.

10.3.1 Conflicts with Other Peripherals and Catalog Items

No conflicts.

Table 10-1. Keypad Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\KEYBD

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\KEYPAD

Driver DLL keypad.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX233 EVK: ARMV4I > Device Drivers > KEYPAD>
KEYPAD

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOKEYPAD=

Keypad Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

10-2 Freescale Semiconductor

10.3.2 Keypad

The keypad driver interfaces with the Windows CE Keyboard Driver Architecture to provide key input
support.

10.3.2.1 i.MX233 EVK Keypad Mapping

The 8-key keypad is located on the personality board and the mapping is shown in Table 10-2.

10.4 Software Operation
The i.MX233 Keypad driver does not follows the Microsoft-recommended architecture for keyboard
drivers. Use a standard stream driver for keypad scan.

10.4.1 Keypad Scan Codes and Virtual Keys

Each key on the keypad has a unique scan code, which is added to a buffer whenever that key is pressed
or released. These scan codes, which are hardware specific, are converted to intermediate PS/2 keyboard
scan code values and then converted into virtual keys, which are hardware independent numbers that
identify the key. If a key is pressed from the keyboard, the generated scan code is directly converted into
virtual keys.

10.4.1.1 i.MX233 EVK Scan Code Mapping

Table 10-3 shows the scan code mapping.

Table 10-2. 8-key Keypad Mapping

LABEL Key

KEY1 ESC

RIGHT RIGHT

KEY2 WIN

LEFT LEFT

UP UP

DOWN DWON

KEY3 MENU

SELECT ENTER

Table 10-3. I.MX233 EVK Scan Code Mapping Table

Key Keypad Voltage Virtual Key

KEY1 0x0 VK_ESCAPE

RIGHT 0x156 VK_RIGHT

Keypad Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 10-3

10.4.2 Power Management

The following are the power management functions used by the keypad driver.

10.4.2.1 BSPKppPowerOn

This function is used to power up the keypad. This function configures the necessary settings in the
registers to bring up the keypad.

10.4.2.2 BSPKppPowerOff

This function powers down the keypad.

10.4.2.3 IOCTL_POWER_CAPABILITIES

This function is not implemented for the keypad driver.

10.4.2.4 IOCTL_POWER_SET

This function is not implemented for the keypad driver.

10.4.2.5 IOCTL_POWER_GET

This function is not implemented for the keypad driver.

10.4.3 Keypad Registry Settings

The following registry keys are required to properly load the keypad device layout and input language.
IF BSP_KEYPAD
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\KEYPADS]
 "Prefix"="KPD"
 "Dll"="keypad.dll"
 "Index"=dword:1
 "Order"=dword:6

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\KeyPadS]
 "RepeatLantency"=dword:3e8

KEY2 0x2AA VK_RWIN

LEFT 0x3F4 VK_LEFT

UP 0x6B0 VK_UP

DOWN 0x960 VK_DOWN

KEY3 0x80C VK_MENU

SELECT 0xC00 VK_ENTER

Table 10-3. I.MX233 EVK Scan Code Mapping Table (continued)

Key Keypad Voltage Virtual Key

Keypad Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

10-4 Freescale Semiconductor

 "RepeatRate"=dword:a
 "ScanPeriod"=dword:14
 "Debounce"=dword:2
 "ValidKeys"=dword:b
 "LRADC_KeyPAD"=dword:0
 "LRADC_Reference"=dword:6
 "LRADC_SCHEDULER"=dword:0
 "Hysteresis"=dword:80
 "ReleaseVolatge"=dword:00000e4a

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\KeyPadS\Key2]
 "KeyName"="HotKey0"
 "AppName"="explorer.exe"
 "Parameter"=""
 "Voltage"=dword:00000550
 "Flag"=dword:00000001
 "VirtualKey"=dword:0000ffff

ENDIF ; BSP_KEYPAD

10.5 Unit Test
As keypad has only 8 keys, it’s not a full-key keypad, it can’t pass the Keyboard Test included in the
Windows CE Test Kit (CETK). A specific manual test to verify the 8-key functionality is described in
following sections.

10.5.1 Unit Test Hardware
• i.MX233 EVK board

10.5.2 Unit Test Software

The manual keypad test requires Microsoft WordPad which can be built into the image.

10.5.3 Building the Unit Tests

No additional steps are required to build the keypad tests.

10.5.4 Running the Unit Tests

The procedure of keyboard tests is as follows:

1. Input Enter to run the Internet Explorer application

2. Input Menu

3. Input Up Down Left and Right

4. Input Windows Key

5. Open the help document by click the question mark on Internet Explorer application

6. Input the ESC to quit from help document

7. Input Return to quit the Explorer application

Keypad Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 10-5

NOTE
Prior this test, make sure the WordPad items is included in the project
(SYSGEN_PWORD).

Keypad Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

10-6 Freescale Semiconductor

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-1

Chapter 11
Inter-Integrated Circuit (I2C) Driver
The Inter-Integrated Circuit (I2C) module provides the functionality of a standard I2C master. The I2C
module is designed to be compatible with the standard Phillips I2C bus protocol.

11.1 I2C Driver Summary
Table 11-1 provides a summary of source code location, library dependencies and other BSP information.

11.2 Supported Functionality
The I2C driver supports the following features:

1. I2C communication protocol

2. I2C master mode of operation

3. Stream interface

11.3 Hardware Operation
The i.MX233 I2C block has its own dedicated DMA channel in the APBX controller. DMA is used
exclusively to transfer data to and from the bus as PIO mode is not fully supported in hardware.

Table 11-1. I2C Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\iMX233_FSL_V2\I2C

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\I2C

Platform Driver Path ..\PLATFORM\Target Platform>\SRC\DRIVERS\I2C

Import Library N/A

Driver DLL i2csdk.dll i2c.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > I2CBus

SYSGEN Dependency N/A

BSP Environment Variables BSP_I2CBUS=1

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-2 Freescale Semiconductor

11.3.1 Conflicts with Other Peripherals and Catalog Items

The following section explains about the conflicts that the I2C driver have with other peripherals and
catalog items:

11.3.1.1 Conflicts with SoC Peripherals

No conflicts.

11.3.1.2 Conflicts with Board Peripherals

No conflicts.

11.4 Software Operation
Only master mode is implemented in the driver; slave functions are stubbed out. As mentioned above, PIO
mode is not fully supported in hardware so only DMA mode is implemented in the driver. The driver
allocates its own DMA buffers for the data transfer. The calling application is expected to setup the data
buffer with the slave address (7-bit or 10-bit) as part of the data to be sent in the format required by the
slave device.

The I2C APIs should be used to perform any operation on or using the I2C module. Any array of packets
to be transferred to or from the I2C bus finish to completion without preemption by another request to
transfer data.

11.4.1 Registry Settings

This section explains about the registry settings for the I2C driver.

11.4.1.1 i.MX233 Registry Settings

The following is the registry key to load the I2C.
IF BSP_I2CBUS
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:1
 "Order"=dword:3
ENDIF ; BSP_I2CBUS

11.4.2 Communicating with the I2C

The I2C is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the I2C, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. The following are the basic steps. The I2C driver is provided to hide all the IOCTL calls
from the calling application.

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-3

11.4.3 Creating a Handle

Call the CreateFile function to open a connection to the I2C device. An I2C port must be specified in this
call. The port to be opened is I2C1: since there is only 1 instance of the controller on i.MX233. If an I2C
port does not exist, CreateFile returns ERROR_FILE_NOT_FOUND.

To open a handle to the I2C:

1. Insert a colon after the I2C port for the first parameter, lpFileName. For example, specify I2C1:.

2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple
handles to an I2C port are supported by the driver.

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.

4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

Example 11-1shows how to open an I2C port.

Example 11-1. Code to Open I2C Port

 // Open the I2C port.
 hI2C = CreateFile (“I2C1:”, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

Before writing to or reading from an I2C port, configure the port. When an application opens an I2C port,
it uses the default configuration settings, which might not be suitable for the device at the other end of the
connection.

11.4.4 Configuring the I2C

Configuring the I2C port for communications involves two main operations:

• Setting the master mode

• Setting the I2C clock rate

Before these actions can be taken, a handle to the I2C port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the I2C port handle, appropriate IOCTL
code, and other input and output parameters are required. Use the helper APIs to correctly configure the
port.

Example 11-2 shows the code to configure an I2C port:

Example 11-2. Code to Configure I2C Port

HANDLE hI2C = I2COpenHandle(_T("I2C1:"));

if (hI2C == INVALID_HANDLE_VALUE)
{

ERRORMSG(1, (L"Unable to open handle to I2C block\r\n"));

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-4 Freescale Semiconductor

retVal = -1;
goto exit;

}

if (!I2CSetMasterMode(hI2C))
{

ERRORMSG(1, (L"Unable to set master mode\r\n"));
retVal = -1;
goto exit;

}

if (!I2CSetClockRate(hI2C, EEPROM_CLOCK_RATE))
{

ERRORMSG(1, (L"Unable to set clock rate\r\n"));
retVal = -1;
goto exit;

}

11.4.5 Data Transfer Operations

The I2C driver provides one command, transfer, that facilitates performing both reads and writes through
the I2C. The basic unit of data transfer in the I2C driver is the I2C_PACKET, which contains a buffer for
reading or writing data and a flag that specifies whether the desired operation is a read or a write. An array
of these packets makes up an I2C_TRANSFER_BLOCK object, which is needed to perform a Transfer
operation. The steps below detail the process of performing write and read operations through the I2C.

Before these actions can be taken, a handle to the I2C port must already be opened, and it should already
be configured in the correct mode with the correct frequency.

To perform an I2C transfer:

1. Create an array of I2C_PACKET objects and initialize the fields of each packet as follows:

a) Set the byRW field to I2C_RW_WRITE to specify that the I2C operation is a write, or
I2C_RW_READ to specify that the I2C operation is a read.

b) If byRW is set to I2C_RW_WRITE, create a buffer of bytes and fill it with the data to write to
the slave device. Set the pbyBuf field to point to this buffer. If byRW is set to I2C_RW_READ,
create a buffer of bytes to hold the data which is read from the slave device. The data buffer
should include the slave address as required. For reads, an initial write packet with the slave
address may need to be inserted, resulting in more than 1 packet to execute the read operation.

c) Set the wLen field to the size, in bytes, of the read or write buffer. This indicates the number of
bytes to write or read.

d) Set the lpiResult field to point to an integer that holds the return value from the write operation.

2. Call the I2CTransfer SDK API to start the I2C transfer.

3. After calling the I2CTransfer function, check the lpiResult field if the function returned FALSE, to
narrow down the type of error that occurred.

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-5

Example 11-3 demonstrates how to perform a transfer that contains one write of 3 bytes, which consists
of the EEPROM address+direction byte, followed by 2 bytes of internal subaddress of the EEPROM where
subsequent data writes will be stored.

Example 11-3. Code to perform I2C transfer

BYTE pSendBytes[3];
I2C_TRANSFER_BLOCK I2CXferBlock;
I2C_PACKET I2CPacket;
INT iResult;

// addr of EEPROM + high byte + low byte of addr within the memory
pSendBytes[0] = EEPROM_I2C_ADDR | 0;
pSendBytes[1] = EEPROM_SUB_ADDR_HI_BYTE;
pSendBytes[2] = EEPROM_SUB_ADDR_LO_BYTE;

I2CXferBlock.pI2CPackets = I2CPacket;
I2CXferBlock.iNumPackets = 1;

I2CPacket.wLen = 3;
I2CPacket.byRW = I2C_RW_WRITE;
I2CPacket.pbyBuf = pSendBytes;
I2CPacket.lpiResult = &iResult;
if (!I2CTransfer(hI2C,&I2CXferBlock))
 {
 ERRORMSG(1, (_T("Write transfer to EEPROM failed!\r\n")));
 retVal = -1;
 goto exit;
 }

11.4.6 Closing the Handle

Call the CloseHandle function to close the handle to the I2C after the transfer task is complete.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the I2C port.

11.5 Unit Test
The following section explains about the hardware and software requirements for unit tests.

11.5.1 Unit Test Hardware

This section explains about the hardware test.

11.5.1.1 I2C EEPROM Test

24LC512 or 24LC256 EEPROM module which can be read/write by I2C.

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-6 Freescale Semiconductor

11.5.2 Unit Test Software

This section explains about the software test.

11.5.2.1 I2C EEPROM Test

Please read the following file for information on running the EEPROM test:
WINCE600\SUPPORT\APP\EEPROM_24LCxxx_I2C_Test\readme.txt

11.5.3 Building the Unit Tests

The following section explains how to build the unit tests.

11.5.3.1 I2C EEPROM Tests

To build the I2C MCU tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.

A DOS prompt is displayed.

2. Change to the I2C EEPROM tests directory: \WINCE600\SUPPORT\APP\EEPROM_24LCxxx_I2C_Test

3. Input build -c to build the I2C EEPROM test.

After the build completes, the eepromi2c.exe file is located in the $(_FLATRELEASEDIR) directory.

11.5.4 Running the Unit Tests

The following section explains how to run the unit tests.

11.5.4.1 I2C EEPROM Tests

Run the application using the following command line: eepromi2c 256 for 24LC256 or eepromi2c 512 for
the 24LC512 model. If no argument is specified then 24LC256 is assumed.

If the test passes, the message EEPROM Test completed successfully! is displayed on the console.

11.6 Hardware Limitations
The following is the hardware limitations:

PIO mode is not supported by the hardware; DMA mode is always used. Slave mode is not implemented.

11.7 I2C Driver API Reference
This section explains about the reference to I2C driver API.

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-7

11.7.1 I2C Driver IOCTLS

This section contains descriptions of the I2C I/O control codes (IOCTLs). These IOCTLs are used in calls
to DeviceIoControl to issue commands to the I2C device. Only relevant parameters for the IOCTL have
a description provided.

11.7.1.1 I2C_IOCTL_GET_CLOCK_RATE

This DeviceIoControl request retrieves the clock rate

Parameters

lpOutBuffer Pointer to the clock rate.

nOutBufferSize Size in bytes of the clock rate

11.7.1.2 I2C_IOCTL_GET_SELF_ADDR

This DeviceIoControl request retrieves the address of the I2C device. This macro is only meaningful if it
is currently in Slave mode.

Parameters

lpOutBuffer Pointer to the current I2C device address, valid range is [0x00–0x7F]

nOutBufferSize Size in bytes of the I2C device address

11.7.1.3 I2C_IOCTL_IS_MASTER

This DeviceIoControl request determines whether the I2C is currently in Master mode.

Parameters

lpOutBuffer Pointer to a BYTE that contains the return value from the Master mode inquiry:
TRUE if currently in Master mode; FALSE if currently in Slave mode

nOutBufferSize Size in bytes of the return value, should be one byte

11.7.1.4 I2C_IOCTL_IS_SLAVE

This DeviceIoControl request determines whether the I2C is currently in Slave mode.

Parameters

lpOutBuffer Pointer to a BYTE that contains the return value from the Slave mode inquiry:
TRUE if currently in Slave mode; FALSE if currently in Master mode

nOutBufferSize Size in bytes of the return value, should be one byte

11.7.1.5 I2C_IOCTL_RESET

This DeviceIoControl request performs a hardware reset. The I2C driver maintains all of the current
information of the device, including all of the initialized addresses.

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-8 Freescale Semiconductor

11.7.1.6 I2C_IOCTL_SET_CLOCK_RATE

This DeviceIoControl request initializes the I2C device with the given clock rate. Note that only two
frequencies are supported: 100 khz and 400 khz. If a value less than 100 khz is passed in, then the clock
rate is setup for 100 khz, and if a value greater than 100 khz is passed in, then 400 khz is setup.

Parameters

lpInBuffer Pointer to the clock rate.

nInBufferSize Size in bytes of the clock rate

11.7.1.7 I2C_IOCTL_SET_MASTER_MODE

This DeviceIoControl request sets the I2C device to Master mode.

11.7.1.8 I2C_IOCTL_SET_SELF_ADDR

This DeviceIoControl request initializes the I2C device with the given address.

Parameters

lpInBuffer Pointer to the expected I2C device address, valid range is [0x00–0x7F]

nInBufferSize Size in bytes of the I2C device address

Remarks The device expects to respond when any master on the I2C bus wishes to proceed
with any transfer. This IOCTL has no effect if the I2C device is in Master mode.

11.7.1.9 I2C_IOCTL_SET_SLAVE_MODE

This DeviceIoControl request sets the I2C device to Slave mode.

NOTE
IOCTL is stubbed out because slave mode is not supported.

11.7.1.10 I2C_IOCTL_TRANSFER

This DeviceIoControl request performs the transfer (read or write) of one or more packets of data to a
target device. An I2C_TRANSFER_BLOCK object is expected, which contains an array of I2C_PACKET
objects to be executed sequentially. All of the required information should be stored in the
I2C_TRANSFER_BLOCK passed in the lpInBuffer field.

Parameters

lpInBuffer Pointer to an I2C_TRANSFER_BLOCK structure containing a pointer to an array
of I2C_PACKET objects specifying all of the information required to perform the
requested Read and Write operations

nInBufferSize Size in bytes of the I2C_TRANSFER_BLOCK

11.7.1.11 I2C_IOCTL_ENABLE_SLAVE

This DeviceIoControl request starts the I2C device to work in slave mode.

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-9

NOTE
IOCTL is stubbed out because slave mode is not supported.

11.7.1.12 I2C_IOCTL_DISABLE_SLAVE

This DeviceIoControl request stops the I2C device to work in slave mode.

11.7.2 I2C Driver SDK Encapsulation

This section explains about the functions that are involved in I2C driver SDK encapsulation.

11.7.2.1 I2COpenHandle

This function retrieves the I2C device handle.
HANDLE I2COpenHandle(

LPCWSTR lpDevName);

Parameters

lpDevName The I2C device name for retrieving handle from CreateFile()

Return Values Returns the handle for I2C driver, returns INVALID_HANDLE_VALUE if failure

11.7.2.2 I2CCloseHandle

This function closes a handle of the I2C stream driver.
BOOL I2CCloseHandle(

HANDLE hDev);

Parameters

hDev The I2C device handle retrieved from CreateFile()

Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

11.7.2.3 I2CSetSlaveMode

This function sets the I2C device in slave mode. This function is for back compatibility. Use
I2CEnableSlave instead.

BOOL I2CSetSlaveMode(
HANDLE hDev);

Parameters

hDev I2C device handle retrieved from CreateFile()

Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

11.7.2.4 I2CSetMasterMode

This function sets the I2C device in master mode. This function is for back compatibility. The default
setting of driver is master.

BOOL I2CSetMasterMode(
HANDLE hDev);

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-10 Freescale Semiconductor

Parameters

hDev I2C device handle retrieved from CreateFile()

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.5 I2CIsMaster

This function determines whether the I2C is currently in Master mode. This function is for back
compatibility.

BOOL I2CIsMaster(
HANDLE hDev,
PBOOL pbIsMaster);

Parameters

hDev I2C device handle retrieved from CreateFile()

pbIsMaster TRUE if the I2C device is in master mode

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.6 I2CIsSlave

This function determines whether the I2C is currently in Slave mode.
BOOL I2CIsSlave(

HANDLE hDev,
PBOOL pbIsSlave);

Parameters

hDev I2C device handle retrieved from CreateFile()

pbIsSlave TRUE if the I2C device is in Slave mode

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

11.7.2.7 I2CGetClockRate

This function retrieves the clock rate.
BOOL I2CGetClockRate(

HANDLE hDev,
PDWORD pwClkRate);

Parameters

hDev I2C device handle retrieved from CreateFile()

pdwClkRate Pointer of DWORD variable that retrieves clock rate

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.8 I2CSetClockRate

This function initializes the I2C device with the given clock rate.
BOOL I2CSetClockRate(

HANDLE hDev,
DWORD dwClkRate);

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-11

Parameters

hDev I2C device handle retrieved from CreateFile()

dwClkRate Clock rate

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.9 I2CSetSelfAddr

This function initializes the I2C device with the given address. The device is expected to respond when
any master within the I2C bus wish to proceed with any transfer.

BOOL I2CSetSelfAddr(
HANDLE hDev,
BYTE bySelfAddr);

Parameters

hDev I2C device handle retrieved from CreateFile()

bySelfAddr Expected I2C device address. The valid range of address is [0x00–0x7F]

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.10 I2CGetSelfAddr

This function retrieves the address of the I2C device.
BOOL I2CGetSelfAddr(

HANDLE hDev,
PBYTE pbySelfAddr);

Parameters

hDev I2C device handle retrieved from CreateFile()

pbySelfAddr Pointer to BYTE variable that retrieves I2C device address

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.11 I2CTransfer

This function performs one or more I2C read or write operations. pI2CTransferBlock contains a pointer
to the first of an array of I2C packets to be processed by the I2C. All the required information for the I2C
operations should be contained in the array elements of pI2CPackets.

BOOL I2CTransfer(
HANDLE hDev,
PI2C_TRANSFER_BLOCK pI2CTransferBlock);

Parameters

hDev I2C device handle retrieved from CreateFile()

pI2CTransferBlock

pI2CPackets [in] Pointer to an array of packets to be transferred sequentially

iNumPackets [in] Number of packets pointed to by pI2CPackets (the number of packets to be
transferred)

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-12 Freescale Semiconductor

11.7.2.12 I2CReset

This function performs a hardware reset. The I2C driver maintains all the current information of the device,
which includes all the initialized addresses.

BOOL I2CReset(
HANDLE hDev);

Parameters

hDev I2C device handle retrieved from CreateFile()

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.13 I2CEnableSlave

This function enables a I2C slave access from the bus. Note that this function has no effect because slave
mode is not supported.

BOOL I2CEnableSlave(
HANDLE hDev);

Parameters

hDev I2C device handle retrieved from CreateFile()

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.14 I2CDisableSlave

This function disables I2C slave access from the bus. Note that after the I2C slave interface disabled, I2C
slave module can be turned off.

BOOL I2CDisableSlave(
HANDLE hDev);

Parameters

hDev I2C device handle retrieved from CreateFile()

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.3 I2C Driver Structures

This section explains about the I2C driver structures.

11.7.3.1 I2C_PACKET

This structure contains the information needed to write or read data using an I2C port.
typedef struct {

BYTE byRW;
PBYTE pbyBuf;
WORD wLen;
LPINT lpiResult;

} I2C_PACKET, *PI2C_PACKET;

Parameters

byRW Determines whether the packet is a read or a write packet. Set to I2C_RW_READ
for reading and I2C_RW_WRITE for writing.

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-13

pbyBuf Pointer to a buffer of bytes. For a read operation, this is the buffer into which data
is read. For a write operation, this buffer contains the data to write to the target
device.The slave address must be included as part of this buffer at the right
position.

wLen If the operation is a read, wLen specifies the number of bytes to read into pbyBuf.
If the operation is a write, wLen specifies the number of bytes to write from
pbyBuf.

lpiResult Pointer to an int that contains the return code from the transfer operation

11.7.3.2 I2C_TRANSFER_BLOCK

This structure contains an array of packets to be transferred using an I2C port.
typedef struct {

I2C_PACKET *pI2CPackets;
INT32 iNumPackets;

} I2C_TRANSFER_BLOCK, *PI2C_TRANSFER_BLOCK;

Parameters

pI2CPackets Pointer to an array of I2C_PACKET objects

iNumPackets Number of I2C_PACKET objects pointed to by pI2CPackets

Inter-Integrated Circuit (I2C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-14 Freescale Semiconductor

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-1

Chapter 12
Low-Resolution Analog-Digital Converter (LRADC) Driver
The LRADC is a multipurpose module used to measure the voltage applied to the dedicated input pins.
Some of the input pins can be used to interface a resistive touchscreen, while other pins can be used for
general purpose inputs. The LRADC controller is not used directly by the software.

12.1 LRADC Driver Summary
The LRADC driver can be used to measure the voltage of the General Purpose LRADC pins and to
interface with a touchscreen interface, and battery interface. Thus, only one of the driver interfaces is used
by the touchscreen driver. The LRADC driver interacts with the TSC to drive the LRADC.

Table 12-1 provides a summary of source code location, library dependencies and other BSP information.
Table 12-1. LRADC Driver Summary

12.2 Supported Functionality
The LRADC driver enables the i.MX233 EVK System to provide the following software support:

1. Configures the Touchscreen setting

2. Retrieves of the Touchscreen samples

3. Configures the general conversion setting

4. Retrieves the general purpose samples

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path N/A

 SOC Specific Path ..PLATFORM\COMMON\SRC\SOC\<Target SOC>\LRADC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\LRADC

Driver DLL lradc.dll

SDK Library lradcsdk_$(_SOCDIR).lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > LRADC >
LRADC

SYSGEN Dependency N/A

BSP Environment Variables BSP_LRADC=1

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-2 Freescale Semiconductor

12.3 Hardware Operation
See the Low-Resolution ADC and Touch-Screen Interface chapter in i.MX233 Applications Processor
Reference Manual for hardware operation details.

12.3.1 Conflicts with Other Peripherals and Catalog Items

Because the LRADC inputs are not multiplexed with other functions, the LRADC module does not have
conflict with other peripherals.

12.4 Software Operation
The LRADC device driver framework for Windows CE is a stream interface driver. A description of the
stream interface driver may be found in the Windows CE Platform Builder documentation at Developing
a Device Driver > Windows CE Drivers > Stream Interface Drivers. The LRADC stream interface
driver controls the LRADC hardware. The LRADC SDK lib provides APIs for Windows CE drivers and
applications. The need to access the LRADC is to use the LRADC SDK lib.

12.4.1 ADC Registry Settings

The following is the ADC registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\LRADC]
 "Dll" = "lradc.dll"
 "Prefix" = "LDC"
 "Index" = dword:1
 "Order" = dword:2

12.4.2 Interfacing with the LRADC Driver

This section explains how to interface with the LRADC driver.

12.4.2.1 Stream Interface

The LRADC driver is a stream interface driver, and is accessed through the file system APIs.

12.4.2.2 Using the SDK

The LRADC driver includes a wrapper library that simplifies its use. This library is the ADC SDK and is
described in Section 12.7, “LRADC SDK API Reference.”

12.4.2.3 DMA Support

The LRADC driver currently does not support DMA.

12.5 Power Management
This section explains about the power management in the LRADC.

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-3

12.5.1 LDC_PowerUp

This function is not implemented for the LRADC driver.

12.5.2 LDC_PowerDown

This function is not implemented for the LRADC driver.

12.5.3 IOCTL_POWER_CAPABILITES

The power management capabilities are advertised with the power manager through this IOCTL. The
LRADC module supports only two power states: D0 and D4.

12.5.4 IOCTL_POWER_SET

This function is implemented for the LRADC driver. If the clocks are disabled during the suspend (for
example if the touchscreen is not a wake-up source), then the clocks are re-enabled at this time in the D0
state. If the touchscreen is not a wake-up source, then the clocks are disabled at this time in the D4 state.

12.5.5 IOCTL_POWER_GET

This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

12.6 Unit Test
Due to the heavy use of the LRADC routines by other drivers on the system, there are no additional test
cases.

12.7 LRADC SDK API Reference
The following section explains about the LRADC SDK API references:

12.7.1 LRADC SDK Functions

This section explains about the functions that are in LRADC SDK.

12.7.1.1 LRADCOpenHandle

This function creates a handle to the LRADC stream driver.
HANDLE LRADCOpenHandle(

LPCWSTR lpDevName
);

Parameters

LpDevName [in] Name of the device, for example TEXT("LDC1:")

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-4 Freescale Semiconductor

Return Values Handle to LRADC driver which is set in this method

NULL indicates failure

12.7.1.2 LRADCCloseHandle

This function is used to closes a handle to the LRADC stream driver.
void LRADCCloseHandle(

HANDLE hLRADC
);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

Return Values None

12.7.1.3 LRADCConfigureChannel

This function configures a channel with the given settings.
BOOL LRADCConfigureChannel(

HANDLE hLRADC,
LRADC_CHANNEL eChannel,
BOOL bEnableDivideByTwo,
BOOL bEnableAccum,
UINT8 u8NumSamples

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

eChannel [in] Identifier of the channel to configure

bEnableDivideByTwo [in] TRUE to caused the A/D converter to use its analog divide by two circuit

bEnableAccum [in] TRUE to add successive samples to the 18bit accumulator

u8NumSamples [in] Number of samples that must be converted, between 1 and 16

Return Values TRUE on success and FALSE indicates a failure

12.7.1.4 LRADCEnableInterrupt

The function enable the Interrupt of the LRADC Channel.
BOOL LRADCEnableInterrupt(

HANDLE hLRADC,
LRADC_CHANNEL eChannel,
BOOL bValue,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

eChannel [in] Identifier of the channel to configure

bValue [in] TRUE to enable, FALSE to Disable

Return Values TRUE on success and FALSE indicates a failure

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-5

12.7.1.5 LRADCClearInterruptFlag

The function clears the interrupt flag of a specified LRADC channel.
BOOL LRADCEnableInterrupt(

HANDLE hLRADC,
LRADC_CHANNEL eChannel,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

eChannel [in] Identifier of the channel to configure

Return Values TRUE on success and FALSE indicates a failure

12.7.1.6 LRADCSetDelayTrigger

The function sets the ADC conversion sample time of the LRADC Channel.
BOOL LRADCEnableInterrupt(

HANDLE hLRADC,
LRADC_DELAYTRIGGER DelayTrigger,
UINT32 TriggerLradcs,
UINT32 DelayTriggers,
UINT32 LoopCount,
UINT32 DelayCount,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

DelayTrigger [in] Identifier of LRADC delay Triggers

TriggerLradcs [in] The delay controller to trigger the corresponding LRADC channel

DelayTriggers [in] The delay controller to trigger the corresponding delay channel

LoopCount [in] The number of times this delay counter

DelayCount [in] Delaycount of the delay channel

Return Values TRUE on success and FALSE indicates a failure

12.7.1.7 LRADCCLearDelayChannel

The function clears the ADC conversion sample time of the LRADC Channel.
BOOL LRADCCLearDelayChannel(

HANDLE hLRADC,
LRADC_CHANNEL eChannel,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

eChannel [in] Identifier of the channel to clear

Return Values TRUE on success and FALSE indicates a failure

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-6 Freescale Semiconductor

12.7.1.8 LRADCSetDelayTriggerKick

The function set the delay trigger kick of the LRADC Channel.
BOOL LRADCEnableInterrupt(

HANDLE hLRADC,
LRADC_DELAYTRIGGER DelayTrigger,
BOOL bValue,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

DelayTrigger [in] Identifier of LRADC delay Triggers

bValue [in] TRUE to enable, FALSE for Disable

Return Values TRUE on success and FALSE indicates a failure

12.7.1.9 LRADCGetAccumValue

The function gets the conversion value of a specified LRADC channel.
UINT16 LRADCGetAccumValue(

HANDLE hLRADC,
LRADC_CHANNEL Channel,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

eChannel [in] Identifier of the channel to configure

Return Values Accumulator value of the channel

12.7.1.10 LRADCEnableBatteryMeasurement

The function enable the Interrupt of the LRADC Channel.
BOOL LRADCEnableBatteryMeasurement(

HANDLE hLRADC,
LRADC_DELAYTRIGGER eTrigger,
UINT32 TriggerLradcs,
LRADC_BATTERYMODE eBatteryMode,

);

Parameters

hLRADC [in] Handle to configure retrieved from LRADCOpenHandle

eTrigger [in] Identifier of LRADC delay Triggers

riggerLradcs [in] Specifies the sampling interval for the Battery value update

eBatteryMode [in] Specifies the Battery mode setup

Return Values Return 0 If the operation is successful otherwise returns error value failure

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-7

12.7.1.11 LRADCEnableDieMeasurement

The function enables the LRADC channel for die temperature measurement.
BOOL LRADCEnableDieMeasurement(

HANDLE hLRADC,
);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

Return Values Return die temperature.

12.7.1.12 LRADCClearAccum

The function Clears the Accum Value of the specified LRADC channel.
BOOL LRADCEnableInterrupt(

HANDLE hLRADC,
LRADC_CHANNEL Channel,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

eChannel [in] Identifier of the channel to configure

Return Values TRUE on success and FALSE indicates a failure

12.7.1.13 LRADCEnableTouchDetect

The function set or clear the TOUCH_DETECT_ENABLE in HW_LRADC_CTRL0 Register.
BOOL LRADCEnableTouchDetect(

HANDLE hLRADC,
BOOL bValue,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

bValue [in] TRUE for set, FALSE for clear

Return Values TRUE on success and FALSE indicates a failure

12.7.1.14 LRADCGetTouchDetect

The function Read the TOUCH_DETECT_RAW bit of HW_LRADC_STATUS register.
BOOL LRADCGetTouchDetect(

HANDLE hLRADC,
);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

Return Values TRUE on success and FALSE indicates a failure

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-8 Freescale Semiconductor

12.7.1.15 LRADCEnableTouchDetectInterrupt

The function set or clear the TOUCH_DETECT_IRQ_EN in HW_LRADC_CTRL1 Register.
BOOL LRADCEnableTouchDetectInterrupt(

HANDLE hLRADC,
BOOL bValue,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

bValue [in] TRUE to enable, FALSE for Disable

Return Values TRUE on success and FALSE indicates a failure

12.7.1.16 LRADCSetAnalogPowerUp

The function set or clear the ADC analog power up.
BOOL LRADCEnableInterrupt(

HANDLE hLRADC,
BOOL bValue,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

bValue [in] TRUE to enable, FALSE for Clear

Return Values TRUE on success and FALSE indicates a failure

12.7.1.17 LRADCClearTouchDetect

The function clear the touch detect status.
BOOL LRADCClearTouchDetect(

HANDLE hLRADC,
);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

Return Values TRUE on success and FALSE indicates a failure

12.7.1.18 LRADCEnableTouchDetectXDrive

The function enable or disable the X Channels in HW_LRADC_CTRL0 Register.
BOOL LRADCEnableTouchDetectXDrive(

HANDLE hLRADC,
BOOL bValue,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

bValue [in] TRUE to enable, FALSE for Disable

Return Values TRUE on success and FALSE indicates a failure

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-9

12.7.1.19 LRADCEnableTouchDetectYDrive

The function enable or disable the Y Channels in HW_LRADC_CTRL0 Register.
BOOL LRADCEnableTouchDetectYDrive(

HANDLE hLRADC,
BOOL bValue,

);

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

bValue [in] TRUE to enable, FALSE for Disable

Return Values TRUE on success and FALSE indicates a failure

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-10 Freescale Semiconductor

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 13-1

Chapter 13
NAND Flash Driver
The NAND flash driver provides the functionality of NAND storage accessing. The flash driver follows
Windows CE 6.0 R2 flash driver having module device driver (MDD) and platform-dependent driver
(PDD) model.

13.1 Flash Driver Summary
Windows CE provides driver support for flash media devices using MDD or PDD architecture. The MDD
allows NAND flash storage to be exposed as a block driver that is accessed by file system. The PDD wraps
FMD layer (flash driver model before R2) as a stream interface called by MDD. The FMD software layer
ported to the i.MX NAND flash controller is responsible for the actual communication with the
corresponding NAND flash devices.

The flash driver supports both SLC and MLC NAND flash devices. As for page size, 512 byte (small page
size) is not supported.

Table 13-1 provides a summary of source code location, library dependencies and other BSP information.
Table 13-1. Flash Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\NAND

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\MEDIA\NAND

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\NANDFMD
..\PLATFORM\<Target Platform>\SRC\COMMON\NANDFMD

Driver DLL flashpdd_nand.dll

SDK Library N/A

Catalog Item Device Drivers > Storage Devices > MSFlash Drivers > Flash MDD
Third Party > BSP > Freescale i.MX233 EVK: ARMV4I > Storage Drivers > Flash > NAND
Flash

SYSGEN Dependency N/A

BSP Environment Variables BSP_NONAND_FMD=

NAND Flash Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

13-2 Freescale Semiconductor

13.2 Supported Functionality
The flash driver enables the EVK System to provide the following software and hardware support:

1. Supports the Windows CE MDD or PDD interface

2. Supports both MLC and SLC NAND

3. Supports both 2 Kbyte and 4 Kbyte page size NAND

4. Boot time dynamic detection of installed flash module

5. Supports MLC NAND Flash MT29F8G08MAD as default

6. Supports MLC NAND Flash MT29F16G08MAD

7. Supports MLC NAND Flash MT29F32G08QAAWP

8. Supports SLC NAND Flash MT29F16G08DAA

13.3 Hardware Operation
See the chapter on the NAND Flash Controller (GPMI) in the i.MX233 Multimedia Applications Processor
Reference Manual for detailed operation and programming information.

13.3.1 Conflicts with Other Peripherals and Catalog Items

This section explains the conflicts with other peripherals and catalog items.

13.3.1.1 Conflicts with SoC Peripherals

No conflicts.

13.4 Software Operation
The development concepts for flash media drivers are described in the Windows CE 6.0 Help
Documentation in the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Flash Drivers.

The flash driver supported in the i.MX BSP implements the required PDD functions for interfacing to
NAND Flash devices.

13.4.1 MDD and PDD Layer Overview

The Microsoft Windows Embedded CE 6.0 flash driver component contains two components, the MDD
and the PDD.

The flash driver MDD is responsible for actions such as handling wear-leveling, writing sector
transactions, translating logical sectors to physical sectors, and performing compaction. The flash MDD
can operate regardless of the type of flash media, allowing it to support single-level cell (SLC) NAND,
multi-level cell (MLC) NAND, and NOR media. The OS provides the MDD component.

NAND Flash Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 13-3

The flash driver PDD is responsible for interacting with the flash hardware, and contains the basic
functions necessary to access a physical flash. Also, the PDD exposes a stream interface, where the user
can implement the PDD IOCTLs to meet your specific hardware needs. The PDD component is platform
specific, and the Freescale flash driver provides the functionality of the PDD component.

The block diagram shown in Figure 13-1 describes the high level architecture and basic interactions of the
i.MX NAND driver implementation. The i.MX flash driver PDD consists of three major components:

• Common Logical Layer—Contains logical part of the PDD layer, including parameter check,
memory management, boot time dynamic detection of installed flash module, algorithm for using
multiple NAND chips, and so on. This layer is shared by all platforms.

• SOC Operation Layer—Contains pure hardware operations, including sector reading, sector
writing, block erasing, and so on. No additional logic is present in this layer, except some simple
logic for doing hardware operations. This layer is SOC specific.

• BSP Configuration Layer—This component is used to report flash chip properties to common
logical layer. No algorithm and no hardware operations are needed in this layer. Only report the
reality situation of the flash property on board. This layer is board specific.

The i.MX flash driver currently supports a limited number of commercially available flash modules.
However, the i.MX flash driver software architecture supports new flash modules also. The i.MX flash
driver must be modified to support new flash modules, by changing the BSP not to support the current flash
module.

NAND Flash Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

13-4 Freescale Semiconductor

The i.MX flash driver is table driven. That is, by appropriately modifying the data structures, the flash
driver can be reconfigured to support a different flash module. No other source code changes are required.

Figure 13-1. PDD Layer Block Diagram

13.4.2 Data Structures

The flash modules vary between manufacturers, and even between process-technologies or product
revisions by the same manufacturer. Each module is different, and the flash driver must change to support
these new modules. A number of definitions are used to describe flash module characteristics and include
the following:

• Bad block mark

• Block size

• Page size

• Command set

The manufacturer's data sheet describes each of these definitions in detail for a particular flash module.
The manufacturer's data sheet and these definitions are very important to understand when adding a new
flash support to the i.MX flash driver.

common logical layer

soc operation layer

bsp configuration layer

request hardware
operations from soc layer
based on flash properties

get board configuration
from bsp layer

bsp layer reports nand
properties or set auto
detection mode to let logical
layer scan out the flash
type dynamically based on
NandChipInfo array

DISK layer

PDD

MDD

NAND Flash Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 13-5

13.4.2.1 NANDTiming

The following code is the NANDTiming structure:
typedef struct _NANDTiming{

BYTE DataSetup;
BYTE DataHold;
BYTE AddressSetup;
BYTE DataSample;

} NANDTiming, *PNANDTiming;

Table 13-2 lists the members in NANDTiming structure.

13.4.2.2 NandChipInfo

The following code is the NandChipInfo structure:
typedef struct _NandChipInfo{

FlashInfo fi;
BYTE NANDCode[NANDID_LENGTH];
BYTE NumBlockCycles;
BYTE ChipAddrCycleNum;
BYTE DataWidth;
BYTE BBMarkNum;
BYTE BBMarkPage[MAX_MARK_NUM];
BYTE StatusBusyBit;
BYTE StatusErrorBit;
WORD SpareDataLength;
BYTE CmdReadStatus;
BYTE CmdRead1;
BYTE CmdRead2;
BYTE CmdReadId;
BYTE CmdReset;
BYTE CmdWrite1;
BYTE CmdWrite2;
BYTE CmdErase1;
BYTE CmdErase2;
NANDTiming timings;

} NandChipInfo, *PNandChipInfo;

Table 13-2. NANDTiming Structure Members

Member Description

DataSetup Data setup time in microsecond unit.

DataHold Data hold time in microsecond unit.

AddressSetup Address setup time in microsecond unit.

DataSample Data sample time in microsecond unit.

NAND Flash Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

13-6 Freescale Semiconductor

Table 13-3 lists the members in NandChipInfo structure.

13.4.3 Adding New Flash Configurations

The i.MX flash driver is table driven. That is, by appropriately modifying the data structures, the flash
driver can be reconfigured to support a different flash module. No other source code changes are
required.The Freescale flash driver supports boot time dynamic detection of previously verified flash
modules. The flash driver dynamically detects the flash modules listed in Section 13.2, “Supported
Functionality.” At boot time, the flash driver query about the installed flash module, and loads the
appropriate flash module configuration to support the specific flash module.

To add an unsupported flash module to the BSP, the flash driver must be configured to support a new
NAND module. After a new flash definition configuration is added, the flash driver will automatically
recognize the new flash module at boot time.

Table 13-3. NandChipInfo Structure Members

Member Description

fi Flash information structure, see details in MSDN for Windows CE6.

NANDCode The first 4 bytes of NAND flash ID.

NumBlockCycles Number of row address cycles.

ChipAddrCycleNum Number of row and column address cycles.

DataWidth Bit number of NAND flash, it should be 8bits or 16bits.

BBMarkNum Number of pages, defined by manufacturer, that is used to indicate initial bad block during
manufacturing.

BBMarkPage An array that indicates which pages are used to indicate initial bad block during
manufacturing.

StatusBusyBit Bit number in status byte to indicate BUSY or IDLE status of NAND flash status.

StatusErrorBit Bit number in status byte to indicate PASS or FAIL status of NAND flash operation.

SpareDataLength Number of bytes in spare area per page.

CmdReadStatus Command used to read NAND flash status.

CmdRead1 Command used as initial command for reading operation.

CmdRead2 Command used as start command for reading operation.

CmdReadId Command used to read NAND flash ID.

CmdReset Command used to reset NAND flash.

CmdWrite1 Command used as initial command for writing operation.

CmdWrite2 Command used as start command for writing operation.

CmdErase1 Command used as initial command for erasing operation.

CmdErase2 Command used as start command for erasing operation.

 timings Parameters to indication NAND flash timing information.

NAND Flash Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 13-7

To add a new flash module support, a new NandChipInfo data structure member must be added to the
NANDTYPES.h header file. Then the flash driver must be re-compiled and the platform must be rebuilt. The
NANDTYPES.h header file is located in the following directory:
\WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\NAND\INC\NANDTYPES.h

NOTE
The flash driver currently supports 2K+64B page size, 4K+128B page size,
and 4K+218B page size with 8 bit ECC. The table configuration method can
be used to support these common flash memory types.

13.4.4 Registry Settings

The registry keys implemented for the flash driver provide basic support for loading and configuring the
NAND as a file system mount. Many configuration options are available and are discussed in Windows
CE 6.0 Help documentation at the following location:

Windows Embedded CE features > File Systems and Storage Management > Storage Management
> Storage Manager Registry Settings

As default, the NAND disk is automatically formatted and a partition is created, when no NAND partition
is found while booting up. The functionality is implemented by specifying following items:
"AutoPart"=dword:1
"AutoFormat"=dword:1

The two items can be deleted to disable the functionality.

13.4.5 DMA Support

The flash driver supports DMA mode.

13.4.6 Power Management

The flash driver handles power requests in MDD layer by default.

13.5 Unit Test
The flash driver is tested using the Windows CE 6.0 Test Kit and additional system used cases. This section
describes the test scenarios that are used to verify the operation of the flash driver.

13.5.1 CETK Testing

This section about the CETK testing used to verify the operation of the flash driver.

NOTE
Depending on the state of the NAND flash memory, it may be necessary to
format and partition the NAND device using Storage Manager prior to
running the CETK tests that do not reformat the device automatically.

NAND Flash Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

13-8 Freescale Semiconductor

Table 13-4 lists the CEKT tests used for the flash driver.

13.5.2 System Testing

The following system tests verify the operation of the flash driver:

• Use the Start > Settings > Control Panel > Storage Manager to format and create partitions on
the mounted NAND device

• Establish ActiveSync connection over USB and transfer files to or from the NAND storage

• Write media files to NAND storage. Use Windows Media Player to playback media files from
NAND storage

Table 13-4. CEKT Tests

CETK Test Command Line

File System Driver Test tux -o -d fsdtst -c "-p MSFlash -z"

Flash Memory Read/Write and Performance Test tux -o -d flshwear -c"/profile MSFlash /store /flash"

Storage Device Block Diver API Test tux -o -d disktest -c"/profile MSFlash /zorch /part /sectors 256"

Storage Device Block Diver Benchmark Test tux -o -d rw_all -c"/profile MSFlash /zorch /part"

Storage Device Block Diver Read/Write Test tux -o -d rwtest -c"/profile MSFlash /zorch /part"

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 14-1

Chapter 14
NAND Redundant Boot
Redundant boot supported from NAND includes the following components:

• Boot Image checking tool

• Boot Image updating tool

Boot Image checking tool is used for checking boot streams integrity every time when system boots up;
Boot Image updating tool is used for updating image. If the update fails, the checking tool can easily
restore the image when next time boots up. These tools cannot run simultaneously to prevent boot stream
corruption.

14.1 NAND Redundant Boot Summary
Table 14-1 provides a summary of source code location, library dependencies and other BSP information.

14.2 Supported Functionality
The NAND Redundant Boot enables the system to provide the following software and hardware support:

1. Supports updating image from certain location on the device.

2. Supports restoring backup image when the update fails.

3. Supports updating backup image when user confirms the updated image works well.

Table 14-1. NAND Redundant Boot Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX233-EVK

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\COMMON\NANDBOOTBURNER
..\PLATFORM\<Target Platform>\SRC\APP\UpdateSB

Driver DLL N/A

SDK Library N/A

Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) N/A

NAND Redundant Boot

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

14-2 Freescale Semiconductor

14.3 Hardware Operation
This section explains about the hardware operations.

14.3.1 Conflicts with Other Peripherals and Catalog Items

No conflict.

14.4 Software Operation
Figure 14-1shows the Boot Image updating tool.

Figure 14-1. Image Updating Work Flow

Run ImageUpdate.exe

Input the new image(*.sb)
 location and click ‘OK’

Checking tool will alert you to continue
updating if the system is booted from
updated image, or alert you to restore the
old image if system fails to boot from
updated image. User could choose to
continue.

Continue and reboot
Shows ‘update successfully’.

App will create a sign file on device,
System reboots after updating

User confirm to continue?

N

End

Y

NAND Redundant Boot

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 14-3

Figure 14-2 shows the Boot Image checking tool.

Figure 14-2. Image Checking Work Flow

System boots up

Checking tool checks from
 which stream this os boots
up

Alert user to update/restore

which the OS booted.
the other boot stream from

Checking tool reads out two
boot streams.

Are the boot streams
identical?

Y

N

Booted from first stream,
and update sign exists?

Y

clear update sign,
and alert user
‘update successfully’

End

N

user choose Y or N?
N

Y

update/restore the boot
image, then reboot.

NAND Redundant Boot

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

14-4 Freescale Semiconductor

14.5 Unit Test
The following section describes the testing update and restore functionality:

14.5.1 Testing Update Functionality

Use the following steps to test the update functionality:

1. Run ImageUpdate.exe

2. Select the new image(*.sb)

3. Click OK.

4. Image is updated and system reboots after update.

5. Make sure this startup is from new image.

6. A continue update message appears asking the user to confirm the update.

7. Click YES to continue.

8. Image will be updated and system will reboot after this updating.

9. After this startup, a update successfully message appears.

14.5.2 Testing Restore Functionality

Use the following steps to test the restore functionality:

1. Run ImageUpdate.exe

2. Select the new image(*.sb)

3. Click OK.

4. Image is updated and system reboots after update.

5. Make sure this startup is from new image.

6. There will be a message to ask user to continue updating.

7. Click NO.
8. Power off the device, then power on.

9. After this startup, there will be a message to ask user to recover.

10. Click YES to continue.

11. Image is recovered and system reboots.

12. Make sure this startup is from old image.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 15-1

Chapter 15
Serial Driver
The serial driver interfaces the low level serial driver hardware to the Windows CE serial subsystem.

15.1 Serial Driver Summary
The serial port driver is implemented as a stream interface driver and supports all the standard I/O control
codes and entry points. The serial port driver handles all the internal UARTs except UART1 which is used
for debugging. In the BSP implementation, the hardware-specific code that corresponds to the serial port
driver lower layer is implemented as the platform-dependent driver (PDD). This PDD is linked with
Microsoft-provided public serial MDD library (com_mdd2.lib) to form the whole serial port driver.
Table 15-1 provides a summary of source code location, library dependencies and other BSP information.

15.2 Supported Functionality
The serial port driver enables the hardware system to provide the following support:

1. Conforms to RS232 protocol standard

2. Supports RTS/CTS hardware flow control function

3. Supports parity check and optional stop bit

4. Supports power management mode full on/full off

5. Supports baud rate up to 3.25 Mbps

Table 15-1. Serial Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\MX233_FSL_V2\SERIAL

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SERIAL

Driver DLL csp_serial.dll

SDK Library N\A

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > Serial >
UART2

SYSGEN Dependency N/A

BSP Environment Variables BSP_SERIAL_UART2 =1

Serial Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

15-2 Freescale Semiconductor

15.3 Hardware Operation
See the chapter Multimedia Applications Processor Reference Manual for detailed operation and
programming information on UART.

15.3.1 Conflicts with Other Peripherals and Catalog Items

The following section explains serial driver conflicts with other peripherals and catalog items.

15.3.1.1 Conflicts with SoC Peripherals

All the pins of UART can be configured for alternate functionality (GPMI, IR, SSP) using the i.MX233
IOMUX. The configuration is specified by BSP serial driver. Changing this configuration would result in
a conflict and prevent proper operation of the UART.

15.3.1.2 Conflicts with Board Peripherals

No conflicts.

15.3.2 Known Issues

DMA mode is not supported due to the DMA module limitation. DMA engine will fail to flush the last
bytes less than 4 bytes into RX buffer.

15.4 Software Operation
The serial driver follows the Microsoft-recommended architecture for serial drivers. The details of this
architecture and its operation can be found in the Platform Builder Help documentation at the following
location:

Developing a Device Driver > Windows CE Drivers > Serial Drivers > Serial Driver Development
Concepts.

15.4.1 Registry Settings

This section explains about the registry settings used to load the serial driver:

15.4.1.1 i.MX233 Registry Settings

The following registry keys are required to load the serial driver:

IF BSP_SERIAL_UART2

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2]

 "DeviceArrayIndex"=dword:0

 "IoBase"=dword:8006C000

 "IoLen"=dword:D4

 "Prefix"="COM"

 "Dll"="csp_serial.dll"

Serial Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 15-3

 "Index"=dword:2

 "Order"=dword:3

 "useDMA"=dword:0

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2\Unimodem]

 "Tsp"="Unimodem.dll"

 "DeviceType"=dword:0

 "FriendlyName"="i.MX233 COM2 UNIMODEM"

 "DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 00,4B,00,00, 00,00, 08, 00, 00,

00,00,00,00
ENDIF ; BSP_SERIAL_UART2

15.4.2 Power Management

The serial driver supports full on/full off power management mode through PowerUp() and
PowerDown() functions.

15.5 Unit Test
The serial driver is tested using the Serial Port Driver Test and Serial Communications Test included as a
part of the CETK. The Serial Port Test assesses whether the driver supports configurable device
parameters such as baud rate and data bits. The test also assesses additional functionality such as COM
port events, escape functions and time-outs.

15.5.1 Unit Test Hardware
• i.MX233 EVK board

15.5.2 Unit Test Software

Table 15-2 lists the required software to run the unit tests.

15.5.3 Building the Unit Tests

The serial port driver tests come pre-built as part of the CETK. No steps are required to build these tests.
The Pserial.dll file can be found alongside the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i

Table 15-2. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

SerDrvBvt.dll Test.dll file for Serial Port Driver Test

Serial Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

15-4 Freescale Semiconductor

15.5.4 Running the Unit Tests

The Serial Port Driver Test executes the tux –o –d serdrvbvt command line on default execution.

For detailed information on the Serial Port Tests, see

Debugging and Testing > Tools for Debugging and Testing > Windows CE Test Kit > CETK Tests >
Serial Port Driver Test > Serial Port Driver Test Cases in the Platform Builder Help.

The Serial Port Tests are designed to test that the serial port driver works properly and the API behaves
correctly, and it should be pass all the test cases. Table 15-3 describes the Serial Port driver test cases.

15.6 Serial Driver API Reference
The detailed reference information for the serial driver may be found in the Platform Builder Help at the
following location:

Developing a Device Driver > Windows CE Drivers > Serial Port Drivers > Serial Port Driver
Reference

Table 15-3. Serial Port Driver Test Cases

Test
Case Description

1001 Configures the port and writes data to the port at all possible baud rates, data bits, parities, and stop bits. This
test fails if it cannot send data on the port with a particular configuration.

1002 Tests the SetCommEvent and GetCommEvent functions. This test fails if the driver does not properly support
the SetCommEvent or GetCommEvent functions.

1003 Tests the EscapeCommFunction function. This test fails if the driver does not support one of the Microsoft Win32
EscapeCommFunction functions.

1004 Tests the WaitCommEvent function on the EV_TXEMPTY event. The test creates a thread to send data and
waits for the EV_TXEMPTY event to occur when the thread finishes sending data. This test fails if the
WaitCommEvent function behaves improperly or if the EV_TXEMPTY event does not signal appropriately.

1005 Tests the SetCommBreak and ClearCommBreak functions. This test fails if the driver does not properly support
the SetCommBreak or ClearCommBreak functions.

1006 Makes the WaitCommEvent function return a value when the handle for the current COM port is cleared. This
test fails if the WaitCommEvent function behaves improperly.

1007 Makes the WaitCommEvent function return a value when the handle for the current COM port is closed. This test
fails if the WaitCommEvent function behaves improperly.

1008 Tests the SetCommTimeouts function and verifies that the ReadFile function properly times out when no data
is received. This test fails if the COM timeouts do not function correctly.

1009 Verifies that previous Device Control Block (DCB) settings are preserved when the SetCommState function call
fails with DCB settings that are not valid. This test fails if the serial port driver does not keep previous DCB settings
when DCB settings that are not valid are passed to the driver.

Serial Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 15-5

15.6.1 Serial PDD Functions

Table 15-4 shows a mapping of Serial PDD functions to the functions used in the serial driver.

Table 15-4. Serial PDD Functions

PDD Function Pointer Serial Driver Function

HWInit SerSerialInit

HWPostInit SerPostInit

HWDeinit SerDeinit

HWOpen SerOpen

HWClose SerClose

HWGetIntrType SL_GetIntrType

HWRxIntrHandler SL_RxIntrHandler

HWTxIntrHandler SL_TxIntrHandler

HWModemIntrHandler SL_ModemIntrHandler

HWLineIntrHandler SL_LineIntrHandler

HWGetRxBufferSize SL_GetRxBufferSize

HWPowerOff SerPowerOff

HWPowerOn SerPowerOn

HWClearDTR SL_ClearDTR

HWSetDTR SL_SetDTR

HWClearRTS SL_ClearRTS

HWSetRTS SL_SetRTS

HWEnableIR SerEnableIR

HWDisableIR SerDisableIR

HWClearBreak SL_ClearBreak

HWSetBreak SL_SetBreak

HWXmitComChar SL_XmitComChar

HWGetStatus SL_GetStatus

HWReset SL_Reset

HWGetModemStatus SL_GetModemStatus

HWGetCommProperties SerGetCommProperties

HWPurgeComm SL_PurgeComm

HWSetDCB SL_SetDCB

HWSetCommTimeouts SL_SetCommTimeouts

Serial Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

15-6 Freescale Semiconductor

15.6.2 Serial Driver Structures

This section explains about the serial driver structures.

15.6.2.1 UART_INFO

This structure contains information about the UART Module.
typedef struct {
 volatile PCSP_UART_REG pUartReg;
 ULONG sUSR1;
 ULONG sUSR2;
 BOOL bDSR;
 uartType_c UartType;
 ULONG ulDiscard;
 BOOL UseIrDA;
 ULONG HwAddr;
 EVENT_FUNC EventCallback;
 PVOID pMDDContext;
 DCB dcb
 COMMTIMEOUTS CommTimeouts;
 PLOOKUP_TBL pBaudTable;
 ULONG DroppedBytes;
 HANDLE FlushDone;
 BOOL CTSFlowOff;
 BOOL DSRFlowOff;
 BOOL AddTXIntr;
 COMSTAT Status;
 ULONG CommErrors;
 ULONG ModemStatus;
 CRITICAL_SECTION TransmitCritSec;
 CRITICAL_SECTION RegCritSec
 ULONG ChipID;
 } UART_INFO, * PUART_INFO;

Parameters

pUartReg Pointer to UART Hardware registers

sUSR1 This value contains the UART status register

sUSR2 This value contains the UART status register

bDSR This boolean value keeps the DSR state

UartType This value contains the type of UART like DCE or DTE

UlDiscard This is used to discard the echo characters in IrDa Mode

UseIrDA This boolean value determines the driver is in IR mode or not

HwAddr This value contains the hardware address of the UART Module

EventCallback This is a callback to the Model Device Driver

pMDDContext This contains the context of the UART, which is the first parameter to the callback
function

dcb This value contains the copy of Device Control Block

Serial Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 15-7

CommTimeouts This contains the copy of CommTimeouts structure used to get and set the
time-out parameters for a communication device

pBaudTable Pointer to baud rate table

DroppedBytes This value contains the number of bytes dropped

FlushDone Handle to the flush done event

CTSFlowOff This boolean value is used to store the CTS flow control state

DSRFlowOff This boolean value is used to Store the DSR flow control state

AddTXIntr This boolean value is used to fake a Tx interrupt

Status This value contains the comm status

CommErrors This value contains Win32 comm error status

ModemStatus This value shows the Win32 Modem status

TransmitCritSec This value is used as Critical Section for UART registers

RegCritSec This value is used as Critical Section for UART

ChipID This value contains Chip identifier (CHIP_ID_16550 or CHIP_ID_16450)

15.6.2.2 SER_INFO

This is a private structure contains the information about the serial.
typedef struct __SER_INFO {
 UART_INFO uart_info;
 BOOL fIRMode;
 DWORD dwDevIndex;
 DWORD dwIOBase;
 DWORD dwIOLen;
 PCSP_UART_REG pBaseAddress;
 UINT8 cOpenCount;
 COMMPROP CommProp;
 PHWOBJ pHWObj;

BOOL useDMA;
 DDK_DMA_REQ SerialDmaReqTx;
 DDK_DMA_REQ SerialDmaReqRx;
 PHYSICAL_ADDRESS SerialPhysTxDMABufferAddr;
 PHYSICAL_ADDRESS SerialPhysRxDMABufferAddr;
 PBYTE pSerialVirtTxDMABufferAddr;
 PBYTE pSerialVirtRxDMABufferAddr;
 UINT8 SerialDmaChanRx;
 UINT8 SerialDmaChanTx;
 UINT8 currRxDmaBufId;
 UINT8 currTxDmaBufId;
 UINT dmaRxStartIdx;
 UINT availRxByteCount;
 UINT32 awaitingTxDMACompBmp;
 UINT32 dmaTxBufFirstUseBmp;
 UINT16 rxDMABufSize;
 UINT16 txDMABufSize;
} SER_INFO, *PSER_INFO;

Serial Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

15-8 Freescale Semiconductor

Parameters

uart_info This structure contains information about UART

fIRMode This boolean value determines the module is FIR or serial

dwDevIndex This static value contains the device index value which is read from
registry

dwIOBase This static value contains the I/O Base address of UART module which
is read from registry

dwIOLen This static value contains the I/O length of UART Module which is read
from registry

pBaseAddress Pointer to the start address of the UART registers mapped

cOpenCount Contains count of the concurrent open

CommProp Pointer to CommProp structure

pHWObj Pointer to PDDs HWObj structure

useDMA This boolean flag indicates if SDMA is to be used for transfers through
this UART

SerialDmaReqTx SDMA request line for Tx

SerialDmaReqRx SDMA request line for Rx

SerialPhysTxDMABufferAddr Physical address of Tx SDMA address

SerialPhysRxDMABufferAddr Physical address of Rx SDMA address

pSerialVirtTxDMABufferAddr Virtual address of Tx SDMA address

pSerialVirtRxDMABufferAddr Virtual address of Rx SDMA address.

SerialDmaChanRx SDMA virtual channel indices for Rx

SerialDmaChanTx SDMA virtual channel indices for Tx

currRxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in
the Rx SDMA buffer descriptor chains

currTxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in
the Tx SDMA buffer descriptor chains

dmaRxStartIdx Keeps the start index of byte to be delivered to MDD for Read

availRxByteCount This variable keeps the remaining bytes in the Rx SDMA buffer

awaitingTxDMACompBmp Indicates if an SDMA request is in progress on Tx SDMA buffer
descriptor

dmaTxBufFirstUseBmp Indicator for first time use of a Tx SDMA buffer descriptor

rxDMABufSize Receive DMA buffer size

txDMABufSize Transfer DMA buffer size

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-1

Chapter 16
Secure Digital Host Controller (SDHC) Driver
The SDHC module supports MMC, SD cards and Secure Digital I/O. The SDHC driver provides the
interface between the Microsoft SD Bus driver and the SSP hardware.

16.1 SDHC Driver Summary
Table 16-1 provides a summary of source code location, library dependencies and other BSP information.

16.2 Supported Functionality

The SDHC driver enables the EVK System to provide the following software and hardware support:
1. Supports the Synchronous Serial Ports(SSP) Controller

2. Designed and implemented as close as possible to Standard Host Controller Driver in CE 6.0 R2

3. Compliant with the SDBUS2 driver provided in CE 6.0 R2

4. Supports Fast Path

5. Supports DMA mode of data transfers

6. Supports SD, SD High Capacity (up to spec v2.1), MMC (up to spec v4.3), and SDIO cards (up to
spec v2.0). High capacity MMC cards are not supported because SDBUS2 in CE 6.0 R2 does not
support these cards

7. One host supports only one card to be connected to it

Table 16-1. eSDHC Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path N/A

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\SDHC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SDHC

Driver DLL sdhc.dll

SDK Library sdhc_<Target SOC>.lib, sdcardlib.lib, sdhclib.lib, sdbus.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > SD
Controller > SSP1 SDHC

SYSGEN Dependency SYSGEN_SD_MEMORY=1

BSP Environment Variables N/A

Secure Digital Host Controller (SDHC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

16-2 Freescale Semiconductor

8. DLL supports multiple instances of the SSP controller

9. Supports the configuration of the block sizes from 1-4096 bytes in single and multi-block modes

10. Support insertion and removal of card, even when system is suspended; when the system resumes,
the card (if present) is remounted

11. Supports the write protect switch on SD cards

12. Supports MMC cards in 1-bit mode and SD/SDIO cards in 4-bit modes due to limitation in
SDBUS2 in CE 6.0 R2

16.3 Hardware Operation
See the i.MX233 Multimedia Applications Processor Reference Manual for detailed operation and
programming information on SSP.

16.3.1 Conflicts with Other Peripherals and Catalog Options

This section explains SDHC driver conflicts with other peripherals and catalog options.

16.3.1.1 Conflicts with SoC Peripherals

No conflicts.

16.3.1.2 Conflicts with Other EVK Peripherals

On the i.MX233-EVK platform, the SDHC conflicts with Ethernet controller on SSP1 port. If Ethernet
KITL is detected, then SDHC driver does not load. The USB RNDIS KITL can be used instead, so that
KITL and SDHC driver can work simultaneously.

16.4 Software Operation
The SDHC driver follows the Microsoft-recommended architecture (standard host controller driver) for
Secure Digital Host Controller drivers, whenever possible. The details of this architecture and its operation
can be found in the Platform Builder Help under the heading Secure Digital Card Driver Development
Concepts, or in the online documentation at the following URL:
http://msdn2.microsoft.com/en-us/library/aa925967.aspx

16.4.1 Required Catalog Items

The following are the required catalog items:

16.4.1.1 SD and MMC Support

Catalog > Device Drivers > SDIO > SD Memory

Additionally, since eSDHC driver supports high capacity cards, it is necessary to define IMGSDBUS2
variable in the workspace. Both SYSGEN_SD_MEMORY and IMGSDBUS2 are set by default in the BSP
workspace.

http://msdn2.microsoft.com/en-us/library/aa925967.aspx

Secure Digital Host Controller (SDHC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-3

16.4.2 SDHC Registry Settings

This section explains about SDHC registry settings.

16.4.2.1 i.MX233 SDHC Registry Settings

The following registry keys are required to load SDHC driver:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SDHC]

"Order"=dword:19
"Dll"="sdhc.dll"
"Prefix"="SHC"
"Index"=dword:1

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\MMC]
"Name"="MMC Card"
"Folder"="MMCMemory"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\SDMemory]
"Name"="SD Memory Card"
"Folder"="SDMemory"

16.4.3 DMA Support

DMA mode is supported by the SDHC driver. The driver uses the APBH DMA, which has a special SSP1
DMA channel.

16.4.4 Power Management

The SHC_powerUp and SHC_PowerDown APIs are the entry points for suspend/resume functionality.

16.5 Unit Test
The eSDHC driver is tested using the following tests included as part of the Windows CE 6.0 Test Kit
(CETK).

• File System Driver Test

• Storage Device Block Driver Read/Write Test

• Storage Device Block Driver API Test

• Storage Device Block Driver Performance Test

• Partition Driver Test

Secure Digital Host Controller (SDHC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

16-4 Freescale Semiconductor

16.5.1 Unit Test Hardware

Table 16-2 lists the required hardware to run the unit tests.

16.5.2 Unit Test Software

Table 16-3 lists the required software to run the unit tests.

16.5.3 Building the Unit Tests

All the above mentioned tests come pre-built as part of the CETK. No steps are required to build these
tests. These test files can be found alongside the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

16.5.4 Running the Unit Tests

The following are the tests available and the test procedures for each of the tests. For detailed information
on the below tests see the relevant sub sections under CETK Tests in the Platform Builder Help, or view
the online documentation at the following link: http://msdn2.microsoft.com/en-us/library/aa934353.aspx

Table 16-2. Hardware Requirements

Requirement Description

SD Cards SanDisk (128MB, 512MB, Extreme III SDHC 4GB)
ATP (SDHC 4GB)
A-DATA Turbo (SDHC 4GB)
Kingston (MiniSD 512MB, MicroSD 1GB)

MMC Cards PQI (128 Mbytes)
Kingmax (RS-MMC: 512MB, 1GB)
Transcend (MMCPlus: 1 Gbytes, 4 Gbytes)

Table 16-3. Software Requirements

Requirement Description

tux.exe Tux test harness, which is needed for executing the test

kato.dll Kato logging engine, which is required for logging test data

tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

fsdtst.dll File System Driver Test.dll file

rwtest.dll Storage Device Block Driver Read/Write Test.dll file

disktest.dll Storage Device Block Driver API Test.dll file

disktest_perf.dll Storage Device Block Driver Performance Test

msparttest.dll Partition Driver Test.dll file

http://msdn2.microsoft.com/en-us/library/aa934353.aspx

Secure Digital Host Controller (SDHC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-5

16.5.4.1 File System Driver Test

The following command is used to run the tests on an SD card:

tux –o –d fsdtst –c “-p SDMemory –z”

For MMC cards, use the following command:

tux –o –d fsdtst –c “-p MMC –z”

Note that this tests all the cards inserted and requires the cards to be formatted prior to running the test.
For higher capacity cards, the test takes a long time to complete, and hence it is recommended that the
system power management (from control panel) be configured so that the system does not enter suspend
state during test execution.

16.5.4.2 Storage Device Block Driver Read/Write Tests

The following command line is used to run the tests:

tux –o –d rwtest –c “-z”

NOTE
This command tests only one card at a time.

16.5.4.3 Storage Device Block Driver API Tests

The following command line is used to run the tests:

tux –o –d disktest –c “-z”

NOTE
This command tests only one card at a time.

16.5.4.4 Storage Device Block Driver Performance Tests

The following command line is used to run the tests:

tux –o –d disktest_perf –c “-z -disk DSK1:”

NOTE
This command tests only one card at a time.

16.5.4.5 Partition Driver Test

The following command line is used to run the tests:

tux –o –d msparttest –c “-z”

NOTE
The cards should be of size 256 Mbytes and higher. For higher capacity
cards, the test takes long time to complete, and hence it is recommended that
the system power management (from control panel) be configured so that
the system does not enter suspend state during test execution.

Secure Digital Host Controller (SDHC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

16-6 Freescale Semiconductor

16.5.5 System Testing

The following system tests are performed to verify the operation of the SD and MMC memory cards.

• Use the Start > Settings > Control Panel > Storage Manager to format and create partitions on
the mounted memory cards.

• Establish ActiveSync connection over USB and transfer files to/from the memory cards.

• Write media files to memory storage. Use Windows Media Player to playback media files from
memory storage.

16.6 Secure Digital Card Driver API Reference
Detailed reference information for the Secure Digital Card driver may be found in the Platform Builder
Help under the heading Secure Digital Card Driver Reference or in the online documentation at the
following link: http://msdn2.microsoft.com/en-us/library/aa912994.aspx

http://msdn2.microsoft.com/en-us/library/aa912994.aspx
http://msdn2.microsoft.com/en-us/library/aa912994.aspx

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 17-1

Chapter 17
Touch Panel Driver
The touch screen interface provides all the circuitry required for a 4-wire resistive touch screen. The touch
screen X plate is connected to TSX1 and TSX2 and the Y plate is connected to TSY1 and TSY2. A local
supply ADREF serves as reference.

17.1 Touch Panel Driver Summary
Table 17-1 provides a summary of source code location, library dependencies and other BSP information.

17.2 Supported Functionality
The touch panel should conform to the standards as explained in documentation at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Touch Screen Drivers

17.3 Hardware Operations
The hardware consists LRADC and touch screen interface. The touch screen controller configures the
LRADC driver as required to do the measurement of the X and Y values of the touchscreen.

Table 17-1. Touch Panel Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\TOUCH

SOC Specific Path

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\TOUCH

Driver DLL touch.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX233 EVK:ARMV4I > Device Drivers > TOUCH >
Touchscreen

SYSGEN Dependency SYSGEN_TOUCH = 1

BSP Environment Variables BSP_NOTOUCH= BSP_LRADC = 1

Touch Panel Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

17-2 Freescale Semiconductor

17.4 Software Operations
The touch screen driver reads user input from the touch screen hardware and converts the input to touch
events. Then the touch screen events are sent to the Graphics, Windowing, and Events Subsystem
(GWES). The driver also converts un-calibrated coordinates to calibrated coordinates. Calibrated
coordinates compensate for any hardware anomalies, such as skew or nonlinear sequences.

For the touch screen driver to work properly it must submit points when the user finger or stylus is touching
the touch screen. When the user finger or stylus is removed from the screen, the driver must submit at least
one final event indicating that the user finger or stylus tip was removed. The calibrated coordinates must
be reported to the nearest one-quarter of a pixel.

The following steps detail the basic algorithm that are used to sample and calibrate the screen with the
touch screen driver:

1. Call the TouchPanelEnable function to start the screen sampling

2. Call the TouchPanelGetDeviceCaps function to request the number of sampling points

For every calibration point, perform the following steps:

1. Call TouchPanelGetDeviceCaps to get a calibration coordinate, a crosshair appears on the screen,
touching the cross hair starts the calibration

2. Call the TouchPanelReadCalibrationPoint function to get calibration data

3. Call the TouchPanelSetCalibration function to calculate the calibration coefficients

17.4.1 Touch Driver Registry Settings

The following registry keys are required to load the touch driver:
IF BSP_NOTOUCH !
IF BSP_LRADC_TOUCH
[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]
 "DriverName"="touch.dll"
 "MaxCalError"=dword:7
IF BSP_PRECAL
 "CalibrationData"="539,520 280,259 280,778 793,781 794,259"

 ; Welcome.exe: Disable tutorial and calibration pages because we already
 ; have the necessary calibration data.
 ; Touch calibration (0x02), Stylus (0x04), Popup menu (0x08),
 ; Timezone (0x10), Complete (0x20)
[HKEY_LOCAL_MACHINE\Software\Microsoft\Welcome]
 "Disable"=dword:FFFFFFFF
ENDIF ; BSP_PRECAL

; For double-tap default setting
[HKEY_CURRENT_USER\ControlPanel\Pen]
 "DblTapDist"=dword:18
 "DblTapTime"=dword:637

; For launching the TouchPanel calibration application on boot.
[HKEY_LOCAL_MACHINE\init]
"Launch80"="touchc.exe"
"Depend80"=hex:14,00,1e,00 ; Wait for standard initialization

Touch Panel Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 17-3

 ; modules to load first (GWES.dll and
 ; Device.exe).
ENDIF ; BSP_LRADC_TOUCH
ENDIF ; BSP_NOTOUCH !

17.5 Unit Tests
The following section explains about the hardware and software requirements for unit tests.

17.5.1 Unit Test Hardware

Table 17-2 lists the required hardware to run the unit tests.

17.5.2 Unit Test Software

Table 17-3 lists the required software to run the unit tests.
.

NOTE
The touch driver does work after the CETK Touch Panel Test. This is a
known MSFT CETK issue. The MSFT online help notes that “When you
complete the test, the operating system does not regain control of the touch
panel. You must reset the touch panel to restore normal operation.” See the
help topic at the following location: CETK Tests and Test Tools > CETK
Tests > Touch Panel Tests

Cases 8011, 9001–9003 fail. The touch panel shows several lines when a
circle or arc is drawn. This is also a known MSFT CETK issue. All these
points are captured, but are not painted in time.

Case 8011 cannot draw in the right part of screen after a 90° rotation.
ethca.exe works after rotation and the CETK works when the case runs
again.

Table 17-2. Hardware Requirements

Requirement Description

 LCD panel Display panel required for display of graphics data

Table 17-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Ktux.dll Ktux.dll which is required to run in kernel mode

Touchtest.dll The Test.dll File

Touch.dll Touch Panel Driver

Touch Panel Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

17-4 Freescale Semiconductor

17.5.3 Running the Touch Panel Tests

The touch panel test cases can be run by typing:
tux -o -n -d touchtest.dll -x <Test case id>

The test case IDs are described in the documentation at the following location:

Windows Embedded CE Test Kit > CETK Tests and Test Tools >CETK Tests > Touch Panel Tests >
Touch Panel Test

17.6 Touch Panel API Reference
The complete API reference is given in the documentation at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Touch Screen Drivers > Touch
Screen Driver Reference

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-1

Chapter 18
Universal Serial Bus (USB) On The Go (OTG) Driver
A USB OTG driver provides High Speed USB 2.0 host and peripheral support for the USB OTG port of
the i.MX chip. The OTG driver automatically performs either a host or peripheral functionality at any
given time, depending on the type of USB cable plugged in. There are three components to achieve this
functionality: USB host driver, USB peripheral driver and USB OTG driver. The OTG driver maintains a
state machine to decide whether a host driver or peripheral driver to be in charge. The OTG driver is also
called as Pin Detection Driver, since the OTG functionality logic depends on the kind of USB cable
plugged in.

Many class drivers are supported in WinCE. The host driver can be configured to work with mass storage,
HID, printer, and RNDIS peripherals. The peripheral driver can be configured to provide mass storage,
serial, or RNDIS functionality. The peripheral class supports are mutually exclusive, so that only one
configuration can be selected as active configuration. The host functionality support do not have such
limitation, and hence can recognize what kind of peripheral is plugged in and pick the right class driver to
provide functionality.

Besides full OTG functionality, pure host driver and pure client driver options are also provided. These
two options configure our BSP to work in either host-only or peripheral-only mode. In this case, pin
detection driver is not active and no mode change will happen between the host and peripheral.

18.1 USB OTG Driver Summary
This section explains about the USB peripheral driver, host driver and OTG driver.

18.1.1 Peripheral Driver Summary

Table 18-1 lists the attributes of the peripheral driver.

Table 18-1. Peripheral Driver Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

Common SOC COMMON_FSL_V2

CSP Driver Path ..\SOC\<Target SOC>\USBD
..\SOC\<Common Soc>\ms\USBFN

CSP Static Library usb_usbfn_<Target SOC>.lib
usb_usbfn_os_<Target SOC>.lib
usb_ufnmddbase_<Common Soc>.lib

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-2 Freescale Semiconductor

USB peripheral class drivers are required to provide corresponding functionality. These class drivers are
implemented as WinCE public driver. These class drivers (described in Section 18.4.7, “Peripheral Class
Drivers”) can be selected through drag and drop from catalog items.

18.1.2 Host Driver Summary

Table 18-2 lists the attributes of the host driver.

USB host class drivers are required to provide corresponding functionality. As peripheral class drivers, the
host class drivers are also implemented as WinCE public driver. See Section 18.4.8, “Host Class Drivers.”

Platform Driver Path \PLATFORM\<Target Platform>\SRC\DRIVERS\USBD

Import Library NA

Driver DLL usbfn.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices > USB
High Speed OTG Device > High Speed OTG Port Pure Client Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment
Variable

BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1

Table 18-2. Host Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX233-EVK

Target SOC (TGTSOC) MX233_FSL_V2

Common SOC COMMON_FSL_V2

CSP Driver Path ..\SOC\<Common SOC>\ms\USBH\EHCI
..\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>.lib
usbh_ehcdpdd_<Common SOC>.lib
usbh_usb2com_<Common SOC>.lib

Platform Driver Path \PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSOTG

Import Library NA

Driver DLL hcd_hsotg.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB
Devices > USB High Speed OTG Device
To support only host mode, choose .. > High Speed OTG Port Pure Host Function.

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_HOST=1

Table 18-1. Peripheral Driver Summary (continued)

Driver Attribute Definition

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-3

18.1.3 OTG (Pin-Detection) Driver Summary

Table 18-3 lists the attributes of the OTG driver.

18.2 Supported Functionality
The OTG driver provides the following software and hardware support:

1. The High Speed OTG or Host driver supports USB specification 2.0

2. When no cable is connected or a mini-B cable is connected (in either of these cases, the ID pin is
pull up), OTG driver select peripheral driver to be in charge. On attachment of a mini-A cable (in
this case, the ID pin is pull down), OTG driver select the host driver to be in charge.

3. The peripheral driver can support mass storage, RNDIS, serial and basic personal healthcare
classes. Only one class support is active.

4. The host driver can support mass storage, HID and Printer classes.

5. When nothing is attached to the OTG port, the driver configures the USB module to be in low
power state.

6. When the system is suspended with nothing attached to the OTG or Host port, the system does not
create a wake condition upon attachment of the port to a host or attachment of a device with mini-A
plug.

7. When the system is suspended while the OTG or Host port is connected to a host or to a device
with a mini-A plug, the system remains suspended when the OTG port connection is unplugged.

8. When the system resumes after suspend, any attached devices are enumerated and their class
drivers loaded appropriately.

Table 18-3. OTG Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX233-EVK

Target SOC (TGTSOC) MX233_FSL_V2

CSP Driver Path ..\SOC\<Common Soc>\MS\USBOTG\MDD

CSP Static Library usbotgcm_$(_COMMONSOCDIR)_PDK1_7.lib

Platform Driver Path PLATFORM\<Target Platform>\SRC\DRIVERS\USBOTG

Import Library NA

Driver DLL fsl_usbotg.dll

Catalog Item Third Party > BSPs > Freescale <Target Platform>: ARMV4I > Device Drivers > USB
Devices > USB High Speed OTG Device > High Speed OTG Port Full OTG Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1
BSP_USB_HSOTG_HOST=1
BSP_USBOTG=1

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-4 Freescale Semiconductor

18.3 Hardware Operation
An EHCI compliant High-Speed OTG Controller and an USB 2.0 UTMI PHY are integrated on i.MX233
Chip. It provide a full on-chip USB OTG solution.

18.3.1 Conflicts with Other Peripherals and Catalog Items

This section explains USB OTG conflicts with other peripherals and catalog items.

18.3.1.1 Conflicts with SoC Peripherals

No conflicts.

18.3.1.2 Conflicts with Board Peripherals

The MX233 EVK board use pin D10 as both SSP1_DETECT (which is used in SDHC module) and
USB_OTG_ID (which is used in USB OTG module host related functionalities). So Full OTG driver and
pure host driver cannot coexist with SDHC driver. So in our default BSP configuration, full OTG is not
selected. Instead, SDHC and pure Client Driver is selected.

To enable Full OTG functionality. Add bsp_nossp1_sdhc = 1 in Environment Settings. Then select High
Speed OTG port Full OTG function in catalog configuration.

18.4 Software Operation
This section explains about the software operation of the drivers.

18.4.1 USB OTG Host Controller Driver

This driver enables the USB host functionality for the OTG port. It is a part of the standard Windows USB
software architecture.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-5

Figure 18-1 shows the Windows USB driver architecture.

Figure 18-1. Windows USB Driver Architecture

The details about the Windows CE USB driver architecture and usage is found in the following location
under the Platform Builder Help documentation at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers

and

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Controller Driver Development Concepts

When the OTG driver is included, the host driver is activated when an USB Mini-A plug is connected to
the Mini USB OTG socket. When pure host mode is selected, the host driver is always in control with
respect to the relevant USB controller. When an USB peripheral device is connected, the host driver
enumerates it and activates the appropriate class driver.

The BSP supports the following USB class drivers:

• Mass Storage—Card Reader with SD or CF cards, USB HDD drive, thumb drive (disk-on-key).
Some card reader firmware is not supported by the Microsoft standard Mass Storage class driver

• HID—USB Keyboard and mouse

• RNDIS—Network Device Interface communication class

Hubs are also supported to extend the USB topology.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-6 Freescale Semiconductor

For more detailed description on host class driver, see the Section 18.4.8, “Host Class Drivers.”

18.4.1.1 User Interface

As described above, user can access to the USB host driver through class drivers. The details on the host
client drivers is found under the Windows CE 6.0 Platform Builder Help documentation at the following
location:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers.

The new class driver code is to be developed using the documentation. See the host client driver interface
functions (for example, IssueBulkTransfer) as documented in the Help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers > Host Client Driver Reference.

18.4.1.2 Host Controller Configuration

See Section 18.4.4, “USB OTG Catalog Settings,” for information about host controller configuration.

18.4.1.3 Memory Configuration

The USB Host drivers (for all USB host ports) use DMA to perform all USB transfers. The physical
memory for these transfer buffers is allocated as a pool during driver initialization. Unless physical
addresses are specified in API accesses at the class-driver interface, the driver copies data between the user
or class-provided data buffers and the DMA buffer from the driver physical memory pool.

Host driver checks the registry key PhysicalPageSize for memory pool size. If it is not available or the
registry setting is less than 128K, the driver uses the default minimal buffer size, 128K, and apply for the
memory using HalAllocateCommonBuffer.

18.4.1.4 Configured Power

USB host driver monitors the configured power for all devices attached to a USB host. The host driver
verifies that each attached device does not exceed the configured current limit.

This power limit is implemented through the platform-specific function BSPUsbhCheckConfigPower() as
described in Section 18.4.1.8.1, “BSPUsbhCheckConfigPower,” and located in:

\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\Common\hwinit.c

This function is modified corresponding to the platform hardware capabilities. Currently we set the current
limit to 500mA.

18.4.1.5 Registry Settings

See the Section 18.4.5, “USB OTG Registry Settings,” for the information about registry settings.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-7

18.4.1.6 PHY level USB Test

The USB 2.0 specification defines PHY-level test modes for all the USB host ports (see section 7.1.20 for
definitions in USB 2.0 specification). Temporarily this feature will not be enabled in our driver.

18.4.1.7 Unit Test

Different peripherals, such as thumb disk, keyboard and hub, are used to test the host driver functionality.
Manual tests include connecting the peripheral, confirming the connection during plug in, during unplug
and during subsequent plug in of device, data transfer verification (for mass storage peripherals) and other
expected functionality such as keyboard, mouse and so on.

To verify the RNDIS class device, a CEPC containing Netchip 2280 USB function is attached and used to
access a remote file server on the CEPC. To verify the low-level transport for bulk, interrupt and
isochronous transfers, the CETK Host test kit is performed. This requires a CEPC configured with Netchip
2280 USB function and loopback driver.

18.4.1.7.1 USB Host Controller Driver Test

Documentation for the Windows CE 6.0 CETK USB Host tests is found under the Platform Builder
Windows CE product documentation in the following location:

Debugging and Testing > Windows CE Test Kit > CE Test Kit

18.4.1.7.2 Build the Test Image

The following steps are used to build the test image:

1. Checkout the RTM to be tested or install the MSI provided

2. Add the following components from the catalog:

— Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices > USB High Speed
OTG Device > High Speed Port Pure Host Function.

— Core OS > Windows CE devices > Core OS Services > USB HOST Support; and all the
sub-components of this catalog item (Sub-Components like USB Storage Class Driver.)

— Core OS > Windows CE devices > File Systems And Data store > Storage Manager;
(Sub-Components: FAT File System, Partition Driver, Storage Manager control panel applet)

— Device Drivers > USB Function > USB Function Clients > Serial.

18.4.1.7.3 Abstract

This test suite can be used to test USB host controller drivers that provide the same interface as Window
CE USB host controller driver does (for more information, see Section 18.4.1.1, “User Interface”), also it
can be used to verify whether a certain USB host controller (either stand alone card or onboard logic) can
operate with Windows CE.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-8 Freescale Semiconductor

Figure 18-2 shows the test setup and scenario.

Figure 18-2. Test Setup

This test suite acts as a client driver above USB bus driver (usbd.dll). It is loaded when test device is
connected to the host through the USB cable. The test device is a CEPC with a NetChip2280 USB function
controller card in it. After this CEPC is booted up and net2280lpbk.dll is loaded, the CEPC acts as a
generic USB data loopback device. USB test suite (the test client driver on the host side) can then stream
data or issue device requests to or from this data loopback device. This is how the USB host controller and
its corresponding host controller drivers are exercised.

NetChip2280 USB function PCI controller card is a USB2.0 compatible USB function device. It can be
used to test both USB2.0 and USB1.1 host controllers (EHCI, OHCI or UHCI) and corresponding drivers.

Netchip2280 controller has six endpoints besides endpoint 0. The data loopback driver (net2280lpback.dll)
configures these endpoints to be three pairs: one bulk IN or OUT pair, one Interrupt IN or OUT pair, and
one Isochronous IN or OUT pair. The data loopback tests are done by sending data from host side to device
side through OUT pipe, and receive it back through IN pipe, and then verify the data.

Test platform with
USB controller

CEPC with
NetChip2280 USB
function controller

Hardware

Software

OHCI/UHCI/EHCI
Host Controller
Driver

USB Bus Driver
(usbd.dll)

USB Function
Bus Driver
(net2280.dll)

USB Test
Client Driver
(usbtest.dll)

Data loopback
Client Driver
(net2280lpbk.dll)

<Bus Level>

<Client Level>

Host Side Device Side

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-9

18.4.1.7.4 Unit Test Hardware

The following are the unit test hardware requirements:

• Test platform

• Host Controller Card (if not onboard logic)

• CEPC

• Netchip2280 Card

• USB cable

18.4.1.7.5 Unit Test Software

The following are the host side requirements:

• Tux.exe

• Ddlx.dll

• Usbtest.dll

• Tooltalk.dll

• Kato.dll

• USB component (usbd.dll, EHCI, OHCI or UHCI host controller driver(s)) must be included in the
run time image.

The following are the device side requirements:

• Lufldrv.exe

• Net2280lpbk.dll

• NetChip2280 USB function support (net2280.dll) must be included in the CEPC run time image.

18.4.1.7.6 Running the Test

The test procedure is as follows:

1. Download runtime image to CEPC with Netchip2280 card on it

2. After system is boot up, run command s lufldrv, tester should verify that net2280lpbk.dll is loaded

3. Download runtime image to test platform with USB host controller on it

4. After system is boot up, make sure that there is no connection between host side and device through
USB cable. Then launch command s tux –o –d ddlx –c “usbtest” “–xYYYY”, where “YYYY” is the
test case(s) to be run

5. The test indicates that there should be no connection between host and device side. Then after
seven seconds, the test asks to connect two sides with USB cable

6. The test main body starts to run

7. If there are other tests to be run, do not disconnect the USB cable. Type the next test command, and
the tests starts directly. If the USB connection was disconnected before the next test, the test will
ask to make the connection again.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-10 Freescale Semiconductor

18.4.1.7.7 Test Cases

Table 18-4 shows the test cases contain in the test suite.

By default the data loopback device configures the endpoints with some often-used packet sizes that are
DWORD aligned, and neither too big nor too small. By having all tests list above passed under this
configuration is more than sufficient for a BVT-type test pass. However, testers can change the packet sizes
(these values are hard-coded in the source code for net2280lpbk.dll) for each endpoint by themselves and
run these test cases again for more comprehensive testing.

This test suite provides a way to change packet sizes of on NetChip2280 device on the fly. They are:

• Test case 3001: Using some very small packet sizes in NetChip2280 device full speed
configuration

• Test case 3002: Using some very small packet sizes in NetChip2280 device high speed
configuration

• Test case 3003: Using some irregular packet sizes (like non DWORD-aligned size) in
NetChip2280 device full speed configuration

Table 18-4. USB Host Controller Driver Test Cases

Test Case ID Test Description

1001-1315,
1501-1515

Data loopback tests:
Concerning the transfer type, there are five categories:
1) Bulk pipe loopback tests (tests with ID end with 1, like xxx1)
2) Interrupt pipe loopback tests (tests with ID end with 2, xxx2)
3) Isochronous pipe loopback tests (tests with ID end with 3, xxx3)
4) All pipe transfer simultaneously (tests with ID end with 4, xxx4)
5) All three types transfers carry on simultaneously (tests with ID end with 5, xxx5) 1

There are five categories for how data is transferred:
1) Normal loopback tests (tests with ID start with 10, like 10)
2) loopback tests using physical memory (tests with ID start with 11, 11xx)
3) loopback tests using a part of allocated physical memory (tests with ID start with 12, 12xx)
4) Normal short transfer loopback tests (tests with ID start with 13, 13xx)
5) Stress short transfer loopback tests (tests with ID start with 15, 15xx)

Also both synchronous and asynchronous transfer methods are exercised (test cases like xx1x using
asynchronous transfer method, test cases like xx0x using synchronous method

There are a total of 5*5*2 = 50 test cases

1 This category of tests is designed for testing some other USB function devices which have more endpoints than host
controller driver can handle. When using Netchip2280, it should be the same as category 4). Tester can just ignore this
category.

1401-1413 Additional data loopback tests. that mainly focus on testing APIs like GetTransferStatus(), AbortTransfer()
and CloseTransfer()

2001-2013 Test related to Device requests

9001-9004 Special tests that test APIs such as SuspendDevice(), ResumeDevice() and DisableDevice()

9005 Test that stresses EP0 transfer (Vendor Transfer)

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-11

• Test case 3004: Using some irregular packet sizes (like non DWORD-aligned size) in
NetChip2280 device high speed configuration

• Test case 3005 (High Speed only): Using some very large packet sizes (like 2*1024 for
Isochronous endpoints) in NetChip2280 device full speed configuration. Note that in the real
world, Netchip2280 cannot handle transfers using such large packet size because its onboard FIFO
buffer is small.

What testers need to do is to run one of the test case above like running those normal tests, then after 15-20
seconds, automatically unload and load the usbtest.dll again through the Platform Builder. It means the
packets sizes on Netchip2280 side have already been changed. Then those normal tests can be run. Use
test case 3011 (for full speed config) and 3012 (for high speed) to restore the default packet sizes.

Another category test that is important for USB 2.0 host controllers and drivers is called the golden bridge
tests, which means USB 2.0 host controller is connected with a full speed (USB 1.1) device. This is the
only scenario that USB 2.0 host controller performs split transfers.

NetChip2280 can be forced to be a full speed device. In the test setup stage, instead of run s lufldrv to
load loopback driver, run s lufldrv –f. This forces the Netchip2280 to be configured as a full speed
device.

Also testers are encouraged to do some manual tests. Here are some examples:

• Plug in real USB devices, suspend system, and then resume; USB devices should still be there

• Plug in real USB devices, suspend system, unplug it, plug in another device, then resume; system
should enumerate that new device properly

• Run one of the data transfer tests, in the middle of transfer stage, suspend the system (host side),
then resume; tests may fail, but system should not crash

• Run one of the data transfer tests, in the middle of transfer stage, disconnect the USB connection;
tests should fail, but system should not crash

18.4.1.8 Platform-Specific API

This section explains about the platform-specific APIs.

18.4.1.8.1 BSPUsbhCheckConfigPower

This function is used to evaluate whether a device can be supported on the specified USB port.

Parameters

UCHAR bPort [in] Unused. Each USB controller has only one port

DWORD dwCfgPower [in] Power requirement (number of milliamps) requested by the device being
evaluated for attachment support on this port

DWORD dwTotalPower [in] current total power (number of milliamps) used by other previously
attached devices on this port

Return Value Return TRUE if device requesting dwCfgPower can be safely attached
Return FALSE if device can not be attached

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-12 Freescale Semiconductor

18.4.1.8.2 BSPUsbSetWakeUp

This function does what is necessary to enable or disable wakeup on the USB port. This function does not
actually enable wake-up when a device is currently attached to the port.

Parameters

BOOL bEnable [in] TRUE to enable wakeup, FALSE to disable wakeup

18.4.1.8.3 BSPUsbCheckWakeUp

This function evaluates the wake-up condition for the relevant USB port, and clears the condition and
interrupt.

Parameters None

Return Value Return TRUE when a wake-up condition was detected
Return FALSE when no wake-up condition was present

18.4.1.8.4 SetPHYPowerMgmt

This function is called by the USB driver when transitioning to or from the suspended state (for example,
during system suspend). The function does what is necessary to place the transceiver hardware into a
suspended (fSuspend = TRUE) or running (fSuspend = FALSE) state.

The standard implementation for i.MX System uses a ULPI-bus based ISP1504 transceiver for the HS
OTG port, and this function configures the ULPI-bus for sleep state. If platform hardware uses other
transceivers, this function must be modified appropriately.

Parameters

BOOL fSuspend [in] TRUE: system or controller is going to suspend mode. FALSE: resuming

18.4.2 USB Peripheral Driver

This driver enables the USB peripheral functionality for the i.MX device. When this driver is active and
the i.MX System is connected to a USB host system (for example, high speed or full speed port of PC), it
is enumerated according to the current active configuration settings, and the appropriate class driver is
loaded on the PC.

System can be configured as one of the following USB functions by setting the appropriate environment
variable during build (drag or drop from the catalog).

• Serial class - Serial ActiveSync

• Mass storage class - expose local storage (ATA hard disk, RAMDISK or other store) as USB drive

• RNDIS class - Remote Network Driver Interface Specification

• PHD class - basic Personal Healthcare Device Class support

When multiple class supports are selected, only one class will be the active peripheral support. The default
priority is: Serial Class > Mass Storage Class > RNDIS class > PHD class. Besides, we also provide tools
to change current active class, see Section 18.7.1, “Application for USB Peripheral Class Driver Switch.”

For detailed description on peripheral class driver, see the Section 18.4.7, “Peripheral Class Drivers.”

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-13

18.4.2.1 User Interface

The USB client driver provides a standard Windows CE USB driver implementation. For more
information on drivers, see the Help documentation at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Drivers > USB
Function Controller Drivers.

User can access the USB client driver through function drivers such as Mass Storage or RNDIS. For further
details on these USB Function drivers, see the following location in the Windows CE 6.0 Platform Builder
help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Client Drivers.

To get information where new function driver code is to be developed, see the Function controller driver
interface functions (for example, IssueTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Controller Drivers
> USB Function Controller Driver Reference.

18.4.2.2 Client Driver Configuration

See the Section 18.4.4, “USB OTG Catalog Settings” for information about the client driver configuration.

18.4.2.3 Registry Settings

See the 18.4.5, “USB OTG Registry Settings” for information about the registry settings.

18.4.2.4 PHY Test Mode

The USB 2.0 specification defines PHY-level test modes for USB device ports (see the section 7.1.20 for
definitions in USB 2.0 specification). This mechanism allows a host to configure a device into test mode
by commanding the device with a specific SET_FEATURE request. Once test mode is entered, the device
is not able to leave test mode. Do not enable this feature in our BSP now.

18.4.2.5 Unit Test

There is no CETK test case for USB peripheral drivers. The USB Peripheral driver is tested manually for
USB Serial function or USB Mass storage or RNDIS respectively. The test verifies basic USB peripheral
functionality, including attach, detach, and data transfer. Separate images can be built and downloaded for
each of the three peripheral function tests. See the Section 18.4.1.7.2, “Build the Test Image” for building
the image. The peripheral class driver switch tool are also used to do these tests, see the Section 18.7.1,
“Application for USB Peripheral Class Driver Switch.”

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-14 Freescale Semiconductor

18.4.2.5.1 Unit Test Hardware

Table 18-5 lists the required hardware to run the unit tests.

18.4.2.5.2 Unit Test Software

Table 18-6 shows the software requirements for the USB Function controller driver test.

Table 18-5. Hardware Requirements

Requirement Description

Host system a PC with proper driver and software installed

USB cable having Mini or Micro USB OTG plug A
at one end and Mini or Micro USB OTG plug B on
the other side

For connecting between the PC and peripheral

ATA, NAND, Thumb disk, SD Card or MMC card
mounted on CE system

Required as a storage device when the board is
configured as mass storage class

Table 18-6. Software Requirements

Requirement Description

ActiveSync 4.1 and above Host side software that is required to be available for testing the Serial class functionality

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-15

18.4.2.5.3 Running the USB Function Controller Driver Tests

Table 18-7 lists USB Function controller driver tests:

Table 18-7. USB Function Controller Driver Tests

Test Cases Entry Criteria, Procedure and Expected Results

Board configured as
USB Serial class and
connected to a host
system after the board
boots up completely

Entry Criteria:
Make sure there is no cable connected and the board is turned on and wait until the board boots-up
completely
Procedure:
1. Connect the mini or micro USB OTG plug B to the mini or micro USB OTG socket
2. Observe that the ActiveSync on the host side gets connected and is synchronized
3. Copy files from Host system to the Mobile Device. Files are copied
4. Copy files from the Mobile Device to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the i.MX mini USB OTG socket to unload the Serial class
driver
Expected Result:
ActiveSync should get synchronized and copying of files should happen between the Host and the
System

Board configured as
USB Mass storage
client, with DSKx
mounted, and
connected to PC after
the board boots up
completely

Entry Criteria:
Make sure there is no cable connected and the board is turned on and wait until the board boots-up
completely
Procedure:
1. Connect the mini or micro USB OTG plug B to the USB OTG socket
2. Observe that a new disk in My Computer having as Removable Disk appearing in it
3. Copy files from Host system to the new disk drive. Files are copied
4. Copy files from the new disk drive to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the mini USB OTG socket to unload the mass storage class
driver
Expected Result:
Files copied into mass storage client device match those copied out (when compared on Windows XP
PC using file compare utility). Note that files are not visible from within the System until the system has
been reset. The file system should not be used inside the System when it is being accessed through
USB as a mass storage client.

Board configured as
USB RNDIS client and
connected to a host
system after the board
boots up completely.
Browsing the Internet

Entry Criteria:
Make sure there is no cable connected and the board is turned on and wait until the board boots-up
completely. See to it that the NIC’s local area connection is not having any IP address
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that a new Local area connection in the Network and Dial up connections appears on the
Windows XP machine. Bridge the NIC’s local area connection and the RNDIS’s local area connection
3. Configure the bridge by giving IP address, Subnetmask, Default gateway, DNS
4. On the System, a new Local area connection can be found in the Network and dial up connections.
Configure the local area connection by giving IP address, Subnetmask, Default gateway, DNS
5. In the Internet explorer on the System, configure the Lan settings as per the local area settings
Expected Result:
Browsing the Internet should be possible

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-16 Freescale Semiconductor

18.4.2.6 Platform-Specific API

This section explains about the functions that are platform-specific.

18.4.2.6.1 InitializeMux

This function is called to initialize the IOMUX connection within i.MX, from USB controller to the
appropriate device pins for the transceiver. This function is implemented for the Pure Client situation.

Parameters

int Speed [in] Unused

Return Value Return TRUE if device requesting dwCfgPower can be safely attached

18.4.2.6.2 HardwarePullupDP

This function is called by the USB client driver when D+ must be pulled-up, in preparation for connection
to a USB host. The standard code configures for ISP1504 or ISP1301 transceiver. It is possible to modify
this routine to conditionally soft-disable USB connection.

Parameters

CSP_USB_REGS *pRegs [in] pointer to the registers for the USB controller

Return Value Return TRUE if D+ signal was pulled-up

18.4.3 USB OTG Driver (Pin-Detection Driver)

This driver is responsible for detecting the type of USB connector plugged into the USB OTG socket of
the i.MX System. It loads the USB host driver or USB peripheral driver and let it in charge.

18.4.3.1 User Interface

There is no user interface to the transceiver driver. This driver merely manages the USB host or peripheral
drivers, which provide the appropriate programming API.

18.4.3.2 OTG Driver Configuration

See the Section 18.4.4, “USB OTG Catalog Settings” for information on the OTG driver configuration.

18.4.3.3 Registry Settings

See the Section 18.4.5, “USB OTG Registry Settings” for information on the registry settings.

18.4.3.4 Unit Test

There is no CETK test case for USB OTG driver. It is tested using the mini or micro USB OTG plug A
and mini or micro USB OTG plug B. The test is done by manually plugging in different cables to the OTG
socket on the System and verifies if the appropriate driver is activated.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-17

18.4.3.4.1 Unit Test Hardware

Table 18-8 lists the required hardware to run the unit tests.

18.4.3.4.2 Running the OTG Test

Table 18-9 lists OTG tests.

18.4.3.5 Platform-Specific API

NA.

Table 18-8. Hardware Requirements

Requirement Description

 Full OTG configuration selected in BSP Make sure OTG driver is running

PC (with appropriate driver and software installed)
Peripherals such as thumb disk, USB keyboard and hub

To test if control reaches the Host controller driver

mini or micro A to A receptacle cable
mini or micro B to A cable

For connecting system with PC and peripherals. System
acts as peripheral and host accordingly

Table 18-9. OTG Tests

Test Cases Entry Criteria, Procedure and Expected Results

Idle case when no
cable plugged in

Entry Criteria:
Make sure there is no cable connected and the board is turned on, wait until the board boots-up
completely
Procedure:
When the board is powered and completely booted-up, the board should be idle.
Expected Result:
Device boots up and is stable

Switch to peripheral Entry Criteria:
Make sure there is no mini USB OTG plug connected and the board is turned on and wait until the
board boots-up completely
Procedure:
When the board is powered and completely booted-up, connect system to PC with the mini or micro B
to A cable. Verify PC recognizes it correctly.
Expected Result:
PC recognize our board (as peripheral) correctly (Activesync be active, or removable disk be seen, or
network adaptor be recognized).

Switch to host Entry Criteria:
Unplug board from PC (in previous step)
Procedure:
1. Disconnect system with PC and connect a mini or micro A to A receptacle to the OTG socket.
2. Connect the USB peripheral device (such as a thumb disk) to the A receptacle.
3. The peripheral connected gets enumerated and starts functioning. For example, if a USB thumb disk
is connected, a new disk will be accessible on CE system.
Expected Result:
Peripheral should start functioning on CE system

Switch between host
and peripheral

Repeat the last 2 steps
Expected Result:
System always functions OK as both host and peripheral

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-18 Freescale Semiconductor

18.4.4 USB OTG Catalog Settings

The driver is selected into the BSP build by dragging and dropping the appropriate catalog item for USB
HS OTG. There are three catalog items in Freescale i.MX233 EVK: ARMV4I > Device Drivers > USB
Devices > USB High Speed OTG related to USBOTG functionality:

(a) High Speed OTG Port Full OTG Function

(b) High Speed OTG Port Pure Client Function

(c) High Speed OTG Port Pure Host Function

The selection of (a) will implicitly select (b) and (c), without selecting (a), (b) and (c) separately. So there
are three possible configurations available for BSP users:

(1) All 3 catalogs are explicitly or implicitly selected, corresponding to both host and peripheral support
plus OTG pin detection.

(2) Only High Speed OTG Port Pure Client Function is selected, corresponding to peripheral-only
support.

(3) Only High Speed OTG Port Pure Host Function is selected, corresponding to host-only support.

18.4.5 USB OTG Registry Settings

The three possible configurations presented in Section 18.4.4, “USB OTG Catalog Settings,” make three
corresponding registry structure.

18.4.5.1 Registry Structure

• With configuration 1, for full OTG configuration, the generated registry has the following
structure:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbOtg]
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbOtg\USBFN]
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbOtg\Hcd]

• With configuration 2, for full peripheral-only configuration, the generated registry has the
following structure:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UFN]

• With configuration 3, for full host-only configuration, the generated registry has the following
structure:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\HCD_HSOTG]

The contents in BuiltIn\USBOtg\UsbFN are quite similar to those in BuiltIn\UFN and the contents in
BuiltIn\UsbOtg\Hcd are quite similar to those in BuiltIn\HCD_HSOTG. They share most of the settings.
The difference is that:

In configuration 1, only UsbOtg key is located under BuiltIn key, which means the OTG driver will
automatically loaded by the OS. In this case, the OTG driver will decide to load the peripheral driver and
the host driver.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-19

In configuration 2 and 3, UFN or HCD_HSOTG is put directly under BuiltIn key. So the peripheral driver
or host driver will be loaded by the OS automatically.

18.4.5.2 Registry Key Settings

This section explains about the registry key settings.

18.4.5.2.1 OTG Driver Settings

Table 18-10 lists the USB OTG transceiver registry settings.

18.4.5.2.2 Peripheral Driver Settings

Table 18-11 lists the USB OTG client registry settings.

18.4.5.2.3 Host Driver Settings

Table 18-12 lists the default values for the host driver settings.

Table 18-10. USB OTG Transceiver Registry Settings

Value Type Content Description

Dll sz fsl_usbotg.dll Driver dynamic link library

IsrDll sz giisr.dll ISR Chain Handler

DynamicClientLoad dword 3 We set the value to 0x3, indicating both host driver and peripheral
driver will be loaded dynamically by OTG driver

Table 18-11. USB OTG Client Registry Settings

Value Type Content Description

Dll sz usbfn.dll Driver dynamic link library

OTGSupport dword 0 obsolete setting, must be set as 0

Priority256 dword 64 The reference peripheral driver IST priority

OTGGroup sz 1 This unique string (example 00 to 99) is used to combine or correlate instances of the
host, function, and transceiver driver within one USB OTG instance

Table 18-12. hsotg.reg Default Values

Value Type Content Description

Dll sz hcd_hsotg.dll Driver dynamic link library

OTGSupport dword 0 obsolete setting, must be set as 0

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine or correlate
instances of the host, function, and transceiver driver within one USB
OTG instance.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-20 Freescale Semiconductor

18.4.6 Power Management

The USB OTG driver enters the low power mode in the following cases:

• No bus activity for a specified period of time

• System enter suspend state

Similar procedures are taken to let the USB module to enter or exit low power mode in either of the 2 cases.
The following section explains about the description on the general power management procedures.

18.4.6.1 Power Down Procedure

To set the USB module to low power mode, both PHY and controller should be set to low power mode
respectively.

18.4.6.1.1 Set PHY to Low Power Mode

The following function is called to set the PHY to low power mode:
BSPUsbPhyEnterLowPowerMode(pUsbRegs, TRUE)

This function is defined in
..\platform\<Target Platform>\src\drivers\usbcommon\usbutils.c

The following procedure is used for setting the PHY to low power mode.

• enable the wakeup interrupt source which can be activated without USB clock

• close power to all PHY sub module

18.4.6.1.2 Close USB Controller Clock

The following function is called to close the USB controller clock:
BSPUSBClockSwitch(FALSE)

This function is defined in
..\platform\<Target Platform>\src\drivers\usbcommon\usbclock.c

It gate the IC clock to USB Controller module.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword NA This value represents the number of bytes allocated for the physical
memory pool of the OTG host driver, and defaults to 128kB. From this
buffer, 75% are allocated for transfer descriptors and the remaining
buffer is available for allocation to simultaneous transfers. In most cases,
only one transfer is active at any time (for example, in the Mass Storage
Class). A good value is at least 3x as large as the largest data buffer
transferred using IssueTransfer(). Our BSP don’t provide this setting and
the driver will use the default 128kB size

Table 18-12. hsotg.reg Default Values (continued)

Value Type Content Description

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-21

18.4.6.2 Power Up Procedure

The USB module is powered up by reversing the procedures that are used to exit the low power mode.

18.4.6.2.1 Open USB Controller Clock

The following function is called to open the USB controller clock:
BSPUSBClockSwitch(TRUE)

It ungate the IC clock to USB Controller module.

18.4.6.2.2 Put PHY Out of Low Power Mode

The following function is called to retrieve the PHY from low power mode:
BSPUsbPhyEnterLowPowerMode(pUsbRegs, FALSE)

The following procedures are implemented to set the PHY out of low power mode.

• disable the wakeup interrupt source which can be activated without USB clock

• open power to all PHY sub module

18.4.6.3 Processing Methodology

This section explains how to integrate the power down and power up procedure into USB OTG driver.
Since the USB OTG driver include the OTG driver, the host driver and the peripheral driver, the processing
methodology for all the three drivers is discussed in this section.

18.4.6.3.1 Host Driver Methodology

1) Auto low power

The host driver IST wait for USB IRQ for a specified interval of time. The interval is defined as a macro
USB_IDLE_TIMEOUT, which is set to 3000ms in the BSP. If there are no USB IRQ during this period,
there is nothing to be connected, so the driver will follow the procedure as described in Section 18.4.6.1,
“Power Down Procedure,” to set the USB module to low power mode.

When the module is in low power mode, the driver is sensitive to the USB interrupt. Once such an interrupt
is caught, the driver will follow the procedure described in Section 18.4.6.2, “Power Up Procedure,” to set
the USB module out of low power mode and function normally.

The implementation is found in

CHW::UsbInterruptThread, which is located in
SOC\<Common SOC>\ms\USBH\EHCI\chw.cpp

2) Low power mode with system suspend

When the system enters suspend mode, the USB module will enter the low power mode. The power down
procedures as described in Section 18.4.6.1, “Power Down Procedure,” are also implemented in host
driver

CHW::PowerMgmtCallback, which is located in

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-22 Freescale Semiconductor

SOC\<Common SOC>\ms\USBH\EHCI\chw.cpp

This function will be called by OS automatically during system suspend.

When the system exits suspend mode, the USB module also exit the low power mode. The power up
procedures as described in Section 18.4.6.2, “Power Up Procedure,” are also implemented in
CHW::PowerMgmtCallback

This function will be called by OS automatically during system resume.

18.4.6.3.2 Peripheral Driver Methodology

1) Auto low power

The peripheral driver IST wait for USB IRQ for a specified interval of time. The interval is defined as a
macro IDLE_TIMEOUT, which is set to 3000ms in our BSP. If there are no USB IRQ during this period,
there is nothing to be connected, so the driver will follow the procedure as described in Section 18.4.6.1,
“Power Down Procedure,” to set the USB module to low power mode.

When the module is in low power mode, the driver is sensitive to USB interrupt. Once such an interrupt is
caught, the driver will follow the procedure as described in Section 18.4.6.2, “Power Up Procedure,” to
set the USB module out of low power mode and function normally.

The implementation can be found in

InterruptHandle, which is located in
SOC\<Common SOC>\ms\USBD\COMMON\pdd.c

2) Low power mode with system suspend

When the system enters suspend mode, the USB module also enters the low power mode. The power down
procedures as described in Section 18.4.6.1, “Power Down Procedure,” are implemented in peripheral
driver in

UfnPdd_PowerDown

Which is located in
SOC\<Common SOC>\ms\USBD\COMMON\pdd.c

This function will be called by OS automatically during system suspend.

When the system exits suspend mode, the USB module also exit low power mode. The power up
procedures as described in Section 18.4.6.2, “Power Up Procedure,” are implemented in

UfnPdd_PowerUp

Which is also located in
SOC\<Common SOC>\ms\USBD\COMMON\pdd.c

18.4.6.3.3 OTG Driver Methodology

At any time after system is boot up, either host driver or peripheral driver is in charge of the USB module.
When USB module need to enter or exit low power mode, all the tasks are done by the in-charge driver.
So there is no need for OTG Driver to provide redundant processing.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-23

18.4.6.4 USB Wakeup

For some system design, it is preferred for the host driver that after system goes into suspend mode, an
USB action by peripheral (such as plug, unplug and so on.) can wakeup the whole system. It is not
implemented in i.MX233 yet.

18.4.7 Peripheral Class Drivers

The function drivers can be configured using the Windows CE 6.0 Platform Builder catalog, and are
located at:

Device Drivers > USB Function > USB Function Clients

Besides that, basic Personal Health Care Class (PHCC) support is also included in the BSP, the catalog is

Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices > USB
Functional Class Driver > Personal HealthCare Class Support

The default function driver is launched, when the USB device port is attached to a host. This default
function driver is selected by the registry key (the last instance of this value in reginit.ini applies):

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"=- ; erase previous default
[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"="Mass_Storage_Class"

or
 "DefaultClientDriver"="RNDIS"

or
 "DefaultClientDriver"="Serial_Class"

or
 "DefaultClientDriver"="Personal_HealthCare_Class"

18.4.7.1 Mass Storage Function

Table 18-13 lists the mass storage functions.

Table 18-13. Mass Storage Function

Driver Attribute Definition

CSP Driver Path ..\SOC\<Common SOC>\ms\USBFN\CLASS

CSP Static Library NA

Platform Driver Path NA

Import Library USBMSFN_LIB_<Common SOC>.lib
UFNCLIENTLIB.LIB

Driver DLL usbmsfn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Mass Storage

SYSGEN Dependency SYSGEN_USBFN_STORAGE

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-24 Freescale Semiconductor

The Mass Storage function exposes a local data store as a USB peripheral storage device. The device used
can be specified in registry. In platfrom.reg, the following template is provided:

PUBLIC\Common\OAK\Files\common.reg
"DeviceName"=- ;
; "DeviceName"="ATA HARD DISK"
; "DeviceName"="SDMEMORY CARD"
; "DeviceName"="MMC CARD"
; "DeviceName"="USB HARD DISK"
; "DeviceName"="NAND FLASH"

Any item from this list can be specified to act as the mass storage medium. Uncomment the corresponding
line and rebuild the BSP to make that item active.

If none of the items are specified explicitly, a pre-coded priority is used to determine what active drive acts
as a mass storage medium. The priority is described as the following:

ATA HARD DISK > SDMEMORY CARD (MMC CARD) > USB HARD DISK > NAND FLASH

The platform.reg can also over-ride other USBMSFN related default settings. This allows customizing the
following values which must be properly configured for a commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Mass_Storage_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:FFFF
 "Product"="Generic Mass Storage (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

18.4.7.2 Serial Function

The primary use for serial function is ActiveSync. Table 18-14 lists the serial functions.

Table 18-14. Serial Function

Driver Attribute Definition

CSP Driver Path NA

PUBLIC driver path PUBLIC\Common\OAK\Drivers\USBFN\CLASS\SERIAL

CSP Static Library NA

Platform Driver Path NA

Export Library serialusbfn.lib

Import Library com_mdd2.lib
serpddcm.lib
ufnclientlib.lib

Driver DLL SerialUsbFn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Serial Client

SYSGEN Dependency SYSGEN_USBFN_SERIAL

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-25

NOTE
ActiveSync has been tested using the connection to PC with the ActiveSync
version 4.1 or above installed. See www.microsoft.com to download the
latest ActiveSync software for the PC. In some cases, DEBUGCHK may be
triggered during attachment to ActiveSync in DEBUG builds.

When SYSGEN_USBFN_SERIAL is defined, the default registry entry is automatically included from:
PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Serial_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:00ce
 "Product"="Generic Serial (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

18.4.7.3 RNDIS Function

The RNDIS function allows communication over USB to be supplied to ethernet NDIS interface of
protocol stack. Table 18-15 lists the RNDIS functions.

RNDIS function has been tested using the Freescale RNDIS class driver located at:
Support\RNDIS\ce6_rndis.inf
%WINDIR%\System32\drivers\usb8023x.sys

When SYSGEN_USBFN_ETHERNET is defined, the default registry entry is automatically included
from:

PUBLIC\Common\OAK\FILES\common.reg

Table 18-15. RNDIS Function

Driver Attribute Definition

CSP Driver Path NA

CSP Static Library NA

Platform Driver Path NA

PUBLIC Driver Path PUBLIC*\OAK\Drivers\USBFN\Class\RNDIS

Import Library ndis.lib

Driver DLL RNDISFN.DLL

Catalog Item Device Drivers > USB Function > USB Function Clients > RNDIS Client

SYSGEN Dependency SYSGEN_USBFN_ETHERNET

www.microsoft.com

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-26 Freescale Semiconductor

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\RNDIS]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
"idVendor"=dword:045E
"Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
"idProduct"=dword:0301
"Product"="Generic RNDIS (PROTOTYPE--Remember to change idVendor)"
"bcdDevice"=dword:0

18.4.7.4 PHDC Function

PHDC collects the personal health related data such as glucose meters and temperature measurements
from portable devices, and then transmit the data to the center agent, for example, PC or health care center
host. Table 18-16 lists the PHDC functions.

As it is a non Microsoft provided class driver, the PHDC class driver currently support basic reliable
personal health data transfer in the continua alliance framework. An peripheral side API is developed to
transfer the multiple personal health measurement, including weight, glucose, blood pressure and
temperature to a PC installed with proper PHDC host driver and application. For more details, see
Section 18.7.2, “Application for Multispec PHDC Demo.”

18.4.8 Host Class Drivers

All host ports support the same class drivers, and this configuration is common to all host ports. Class
drivers must also be configured for the USB host ports. Class driver configuration is common to all host

Table 18-16. PHDC Function

Driver Attribute Definition

CSP Driver Path ..\SOC\<Common SOC>\UFNCLASS\CLASS\PHDC

PUBLIC driver path NA

CSP Static Library NA

Platform Driver Path NA

Export Library NA

Import Library NA

Driver DLL usbphdfn.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers >
USB Devices > USB Functional Class Driver > Personal HealthCare Class
Support

SYSGEN Dependency NA

BSP Variable BSP_USBFN_PHD_SUPPORT

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-27

ports; there is no port-specific configuration for on any class driver. Table 18-17 shows the standard
Microsoft-supplied drivers, and these drivers can be dragged and dropped from the catalog.

18.4.8.1 HID Mouse

For mouse support, the cursor is required to test or use the mouse. Table 18-18 shows the HID mouse class
drivers.

18.4.8.2 HID Keyboard

The System keyboard key mapping conflicts with the HID keyboard. So, when the USB keyboard is
included, remove the System keyboard and include the appropriate stub keyboard and keyboard.dll file.
Table 18-19 lists the HID keyboard driver that is to be removed.

Table 18-20 lists the stub keyboard driver that is to be included.

Table 18-17. Class Drivers

Class
Driver

Configuration Flag Catalog Item

HID SYSGEN_USB_HID Core OS > Windows CE devices > Core OS Services > USB Host Support >
USB Human Input Device (HID) Class Driver

Printer SYSGEN_USB_PRINTER .. > USB Printer Class Driver
(and see additional configuration in Section 18.6.2, “Dependencies of Drivers”)

Keyboard SYSGEN_USB_HID
_KEYBOARD

.. > Keyboard HID Device
(and see additional configuration in Section 18.6.2, “Dependencies of Drivers”)

Mouse SYSGEN_USB_HID
_MOUSE

.. > Mouse HID Device
(and see additional configuration in Section 18.6.2, “Dependencies of Drivers”)

RNDIS SYSGEN_ETH_USB_HOST .. > USB Remote NDIS Class Driver

Storage SYSGEN_USB_STORAGE .. > USB (mass) Storage Class Driver

Table 18-18. HID Mouse Class Driver

Catalog Item Configuration Flag Catalog Item

HID SYSGEN_CURSOR Core OS > Shell and User Interface > User Interface > Customizable UI > Mouse

Table 18-19. HID Keyboard Driver to Remove

Remove Item Remove Catalog Item

 Keyboard Third Party > Freescale <Target Platform>: ARMV4I > Device Drivers > Input Devices > Keyboard US or
Keypad

Table 18-20. ID Keyboard Driver to Include

Catalog Item Configuration Flag Catalog Item

NOP Stub
Keyboard

BSP_KEYBD_NOP Device Drivers > Input Devices > Keyboard or Mouse > NOP (Stub)
Keyboard or Mouse English

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-28 Freescale Semiconductor

And include the appropriate keyboard.dll. For example, define SYSGEN_KBD_US and add the following
lines in the platform.bib (immediately before the FILES section):

IF BSP_KEYBD_NOP
 kbdmouse.dll $(_FLATRELEASEDIR)\KbdnopUs.dll NK SH
ENDIF; BSP_KEYBD_NOP

18.5 Known Issues
This section provides known issues of current BSP. These issues are mainly caused by hardware limitation,
and hence no software work-around is available.

18.5.1 Host Support for Low Speed Peripherals

The i.MX233 USB PHY do not support low speed device. So a large number of USB mouse or keyboard
cannot be recognized if they are connected directly to the root hub. So to utilize them, a high-speed hub
must be used to be the bridge.

Connecting a low speed device through a full speed hub also do not make sense.

18.5.2 Host VBUS Power Supply

The i.MX233 EVK board design do not provide software to drive VBUS to 5V, that makes host unable to
detect the peripheral connection.

A hardware work-around is to add a jumper on Q8 pin 2 and pin 3. Since pin 2 is lined to 5V wall supply
and pin 3 is lined to VBUS line, shorting both the pins will provide a necessary voltage to VBUS and get
host working.

18.6 Basic Elements for Driver Development
This section provides details of the basic elements for driver development in the Platform System.

18.6.1 BSP Environment Variables

Table 18-21 summarizes the System environment variables.

Table 18-21. System Environment Variables Summary

Name Definition

BSP_USBOTG Set to enable Full OTG functionality (enable host-client switching)
on the High Speed OTG port

BSP_USB_HSOTG_CLIENT Set to include USB client functionality on High Speed OTG port

BSP_USB_HSOTG_HOST Set to include USB host functionality on High Speed OTG port.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-29

18.6.2 Dependencies of Drivers

Table 18-22 summarizes the Microsoft-defined environment variables used in the BSP.

18.7 Application Tools for USB
This section describes about the application tools that are used for the USB.

18.7.1 Application for USB Peripheral Class Driver Switch

Only one USB peripheral drivers can be active even if there are many. When multiple class drivers are
included in the image, it will be convenient that it can be switched. It is convenient for both the end users
and test engineers. The following executable programs are added in ..\platform\<Target Platform>\files:

switchUsb2Msc.exe, switchUsb2Rndis.exe, switchUsb2Serial.exe, switchUsb2Phdc.exe.

These executable programs are selectively integrated into nk.bin during the generation of OS image.
During WinCE start up, the programs can be found in \WINDOWS directory. On execution of these
programs activate the mass storage, RNDIS, Serial or PHDC peripheral drivers respectively.

Table 18-22. USB Driver

Name Definition

SYSGEN_USBFN_SERIAL Set to support serial class for USB Function controller

SYSGEN_USBFN_STORAGE Set to support mass storage class for USB Function controller

SYSGEN_USBFN_ETHERNET Set to support RNDIS class for USB Function controller

SYSGEN_CURSOR Set to support mouse cursor

SYSGEN_FATFS Set to support FAT16 file system

SYSGEN_PCL Set to support PCL printing

SYSGEN_PRINTING Set to support printer

SYSGEN_STOREMGR Set to support storage manager

SYSGEN_UDFS Set to support Universal Disc File System

SYSGEN_USB Set to support USB driver

SYSGEN_USB_HID Set to support Human Interface driver (HID) class

SYSGEN_USB_HID_CLIENTS Set to support HID clients

SYSGEN_USB_HID_KEYBOARD Set to support HID keyboards
(keyboard stub and associated.dll are required)

SYSGEN_USB_HID_MOUSE Set to support HID mouse

SYSGEN_USB_PRINTER Set to support Printer
(printer driver support, such as PCL (SYSGEN_PCL), may be required)

SYSGEN_USB_STORAGE Set to support storage medium

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-30 Freescale Semiconductor

18.7.2 Application for Multispec PHDC Demo

A peripheral side GUI is needed to use the PHDC class driver. The application is used to select any data
from the available personal health measurements and send the selected data to PC. The
PHDC_Peripheral_App.exe is located in the directory ..\platform\<Target Platform>\files.

During WinCE start up, the file is found in \WINDOWS directory.

On the host side, Continua Alliance CESL Reference Software is necessary to setup PHDC
communication channel. Contact www.continuaalliance.org for more details.

When PC side is ready, run the PHDC_Peripheral_App.exe. It will brings up a GUI with the following
button controls

• Select Device Spec Button—Used to select between the four different personal health data
category.

• Send Measurement Button—Used to send current measurement data category to host.

• Disconnect Button—Used to test PHDC protocol level disconnect.

www.continuaalliance.org
www.continuaalliance.org

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 19-1

Chapter 19
USB Boot and KITL
USB Boot and KITL are supported by implementing a RNDIS client device over USB on the target board.
This feature configures the USB OTG port as a USB device and implements the RNDIS USB function
driver. The USB RNDIS device acts as a normal ethernet device and connects to the PC over a USB cable.
Eboot and KITL then operate with the RNDIS ethernet device.

19.1 USB Boot and KITL Summary
Table 19-1 identifies the source code location, library dependencies, and other BSP information.

19.2 Supported Functionality
The USB Boot and KITL provides the following software and hardware support:

1. Image downloading over USB RNDIS

2. KITL over USB

3. Provides menu options to determine whether or not to enable USB Boot and/or USB KITL

19.3 Hardware Operation
For detailed operation and programming information of the USB OTG, see the chapter on the High-Speed
USBOTG_UTMI in the corresponding platform User’s Guide.

Table 19-1. USB Boot and KITL Summary

Driver Attribute Definition

Target Platform iMX233-EVK

Target SOC MX233_FSL_V2

SOC Common Path WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\MS\RNE_MDD
WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\MS\USBKITL

SOC Specific Path WINCE600\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBD\KITL

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\COMMON\USBFN
..\PLATFORM\<Target Platform>\SRC\KITL

Driver DLL fsl_usbfn_rndiskitl.lib

SDK Library N/A

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variable N/A

USB Boot and KITL

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

19-2 Freescale Semiconductor

19.3.1 Conflicts with Other Peripherals and Catalog Items

The USB Boot and KITL does not have conflicts with any other module. However, since USB KITL and
USB OTG drivers share the same USB OTG hardware, the USB OTG drivers should be disabled in the
catalog item when USB KITL is enabled. USB boot does not have such limitation.

19.4 Software Operation
This section explains about the software requirements for USB OTG.

19.4.1 Software Architecture

USB Boot and KITL are part of the EBOOT and KITL subsystem. A RNDIS client device is implemented
to support USB Boot and KITL. Figure 19-1 illustrates the USB Boot and KITL software architecture.

Figure 19-1. USB Boot and KITL Software Architecture Block Diagram

Microsoft has implemented a RNDIS client MDD driver in Windows CE 6.0. The code is in following
location:
%_WINCEROOT%\Public\Common\Oak\Drivers\Ethdbg\Rne_mdd

It generates the static library Rne_mdd.lib.

The USB function controller PDD driver is ported to eboot and KITL to support USB Boot and KITL. For
details of USB function controller PDD driver see the Platform Builder Help in the following location:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Drivers > USB
Function Controller Drivers > USB Function Controller Driver Reference > USB Function
Controller PDD Functions.

Windows CE 6.0 provides an example of USB Boot. It is located at:
%_WINCEROOT%\Platform\MainstoneIII\Src\Common\Usbfn

USB Boot, KITL or other APP

MDD (RNDIS)

PDD
(Porting from USB Function Controller PDD Driver

USB OTG Hardware

USB Boot and KITL

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 19-3

19.4.2 Source Code Layout

Some files are modified or added to support USB Boot and KITL. They are as follows:

• RNDIS PDD driver
%_WINCEROOT%\Platform\COMMON\SRC\SOC\COMMON_FSL_V2\MS\USBKITL\RNDIS

• USB function controller shared with OS driver
%_WINCEROOT%\Platform\COMMON\SRC\SOC\<Target SOC>\USBD\COMMON

• Add RNDIS device to EBOOT ethernet initialization routines
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\ether.c

• Setup KITL device LogicalLoc and PhysicalLoc to USBOTG physical address if USB KITL
option in EBOOT menu is selected by user
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\main.c

• Implement private OS functions, such as NKCreateStaticMapping(). NKCreateStaticMapping is
defined in OS. It is not defined for EBOOT while USB Boot requires this function. So it is
manually defined. This function just calls OALPAtoUA()
%_WINCEROOT%\Platform\COMMON\SRC\SOC\<Target SOC>\USBD\KITL

• Add USB Boot and KITL options into EBOOT menu
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\menu.c

• Add fsl_rne_mdd_$(_COMMONSOCDIR).lib, fsl_rne_pdd_$(_COMMONSOCDIR).lib,
usb_usbfn_$(_SOCDIR).lib, usb_usbfn_eboot_$(_SOCDIR).lib

%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\sources

• Add USB RNDIS KITL device in KITL initialization routines
%_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\kitl.c

%_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\sources

19.4.3 Power Management

Power management is not implemented in USB Boot and KITL.

19.4.4 Registry Settings

There are no related register settings for the USB Boot and KITL.

19.4.5 DMA Support

Physical contiguous memory is required to support USB DMA. This memory region is hard coded in:
%_WINCEROOT%\Platform\Common\SRC\SOC\<Common Soc>\ms\Usbkitl\Rndis\rndis_pdd.c

It uses the BSP reserved IPL RAM image region (Starting from
IMAGE_USB_KITL_RAM_PA_START). This region is not used by other modules in the BSP, so it can
be used by USB boot and KITL.

19.5 Unit Test
The following section explains how to perform unit tests.

USB Boot and KITL

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

19-4 Freescale Semiconductor

19.5.1 Building the USB Boot and KITL

There is no special configuration options for building USB Boot and USB KITL. Building the BSP with
default configuration includes the USB Boot and KITL support. The exception is that the USB OTG
drivers should be deselected from the catalog item view before building the NK image to use USB KITL,
because USB KITL and OS USB drivers share the same USB OTG hardware and they can not exist
simultaneously. As a result USB KITL can not used to debug USB OTG drivers.

The USB OTG driver auto unloads when it detects USB KITL enabled.

	i.MX23 EVK Windows Embedded CE 6.0 Reference Manual
	About This Book
	Audience
	Suggested Reading
	Conventions
	Definitions, Acronyms, and Abbreviations

	Chapter 1 Introduction
	1.1 Getting Started
	1.2 Windows Embedded CE 6.0 Architecture

	Chapter 2 Audio Driver
	2.1 Audio Driver Summary
	Table 2-1. Audio Driver Summary

	2.2 Supported Functionality
	2.3 Hardware Operation
	2.3.1 Audio Hardware Design
	2.3.1.1 i.MX233 Audio Hardware Design

	2.3.2 Audio Playback
	2.3.3 Audio Recording
	2.3.4 Required SoC Peripherals
	Table 2-2. Required SoC Peripherals

	2.3.5 Conflicts with SoC Peripherals
	2.3.6 Conflicts with Board Peripherals
	2.3.6.1 i.MX233 Peripherals Conflicts

	2.3.7 Known Issues
	2.3.7.1 i.MX233 Known Issues

	2.4 Software Operation
	2.4.1 Audio Playback
	2.4.2 Audio Recording
	2.4.3 Audio Driver Compile-Time Configuration Options
	2.4.3.1 i.MX233 Audio Driver Configuration Options
	Table 2-3. i.MX233 Audio Driver Configuration Options (oemsettings.h)

	2.4.4 DMA Support
	Table 2-4. DMA Memory Allocation Issues and Considerations
	Table 2-5. Configuration Options for Internal or External Memory DMA Data Buffer Allocation
	2.4.4.1 i.MX233 Audio DMA Buffer Use

	2.4.5 Power Management
	2.4.5.1 PowerUp
	2.4.5.2 PowerDown
	2.4.5.3 IOCTL_POWER_SET

	2.4.6 Audio Driver Registry Settings
	2.4.6.1 i.MX233 Audio Driver Registry Settings

	2.5 Unit Test
	2.5.1 Unit Test Hardware
	Table 2-6. Hardware Requirements

	2.5.2 Unit Test Software
	Table 2-7. Software Requirements

	2.5.3 Building the Audio Driver CETK Tests
	2.5.4 Running the Audio Driver CETK Tests

	2.6 System Level Audio Driver Tests
	2.6.1 Checking for a Boot-Time Musical Tune
	2.6.2 Confirming Touchpanel Taps and Keypad Key Presses
	2.6.3 Playing Back Sample Audio and Video Files Using the Media Player
	2.6.4 Using the SDK Sample Audio Applications for Testing

	2.7 Audio Driver API Reference
	2.8 Audio Driver Troubleshooting Guide
	2.8.1 Checking Build-Time Configuration Options
	2.8.2 Media Player Application Not Found
	2.8.3 Media Player Fails to Load and Play an Audio File

	Chapter 3 Backlight Driver
	3.1 Backlight Driver Summary
	Table 3-1. Backlight Driver Summary

	3.2 Supported Functionality
	3.3 Hardware Operation
	3.3.1 i.MX233-EVK Hardware Operation

	3.4 Software Operation
	3.4.1 Backlight Driver Registry Settings
	3.4.1.1 i.MX233-EVK Backlight Driver Registry Setting

	3.4.2 Power Management
	3.4.2.1 PowerUp
	3.4.2.2 PowerDown
	3.4.2.3 IOCTL_POWER_SET

	3.5 Unit Test
	3.5.1 Unit Test Hardware
	3.5.1.1 i.MX233-EVK Unit Test Hardware
	Table 3-2. Hardware Requirements

	3.5.2 Unit Test Software
	Table 3-3. Software Requirements

	3.5.3 Running the Backlight Application Test
	Table 3-4. Backlight Application Test

	3.6 Backlight API Reference

	Chapter 4 Battery Driver
	4.1 Battery Driver Summary
	Table 4-1. Battery Driver Summary

	4.2 Supported Functionality
	4.3 Hardware Operation
	4.3.1 Conflicts with Other SoC Peripherals

	4.4 Software Operation
	4.4.1 Battery Driver Registry Settings
	4.4.2 Power Management

	4.5 Unit Test
	4.5.1 Unit Test Hardware

	4.6 Battery API Reference

	Chapter 5 Boot from Secure Digital/MultiMedia Card (SD/MMC)
	5.1 Boot from SD/MMC Summary
	Table 5-1. Boot from SD/MMC Summary

	5.2 Supported Functionality
	5.3 Hardware Operation
	5.3.1 Conflicts with Other Peripherals and Catalog Items

	5.4 Software Operation
	5.5 Card Flashing Tool
	5.5.1 Write Image (EBOOT) to SD Card
	5.5.2 System Boot

	Chapter 6 Chip Support Package Driver Development Kit (CSPDDK)
	6.1 CSPDDK Driver Summary
	Table 6-1. CSPDDK Driver Summary

	6.2 Supported Functionality
	6.3 Hardware Operation
	6.3.1 Conflicts with Other Peripherals and Catalog Items
	6.3.1.1 Conflicts with SoC Peripherals
	6.3.1.1.1 iMX233 Peripheral Conflicts

	6.3.1.2 Conflicts with Hardware Peripherals

	6.4 Software Operation
	6.4.1 Communicating with the CSPDDK
	6.4.2 Compile-Time Configuration Options
	6.4.3 Registry Settings
	6.4.4 Power Management

	6.5 Unit Test
	6.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference
	6.5.1.1 DDK_CLK Enumerations
	Table 6-2. DDK_CLK Enumerations

	6.5.1.2 DDK_CLK Functions
	6.5.1.2.1 DDKClockSetGatingMode
	6.5.1.2.2 DDKClockGetGatingMode
	6.5.1.2.3 DDKClockGetFreq
	6.5.1.2.4 DDKClockSetFreq
	6.5.1.2.5 DDKClockConfigBaud
	6.5.1.2.6 DDKClockSetpointRequest
	6.5.1.2.7 DDKClockSetpointRelease
	6.5.1.2.8 DDKClockGetSharedConfig
	6.5.1.2.9 DDKClockLock
	6.5.1.2.10 DDKClockUnLock

	6.5.1.3 DDK_CLK Examples

	6.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference
	6.5.2.1 DDK_GPIO Enumerations
	Table 6-3. DDK_GPIO Enumerations

	6.5.2.2 DDK_GPIO Functions
	6.5.2.2.1 DDKGpioConfig
	6.5.2.2.2 DDKGpioEnableDataPin
	6.5.2.2.3 DDKGpioWriteDataPin
	6.5.2.2.4 DDKGpioReadDataPin
	6.5.2.2.5 DDKGpioReadIntr

	6.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference
	6.5.3.1 DDK_IOMUX Enumerations
	Table 6-4. DDK_IOMUX Enumerations (continued)

	6.5.3.2 DDK_IOMUX Functions
	6.5.3.2.1 DDKIomuxSetPinMux
	6.5.3.2.2 DDKIomuxGetPinMux
	6.5.3.2.3 DDKIomuxSetPadConfig
	6.5.3.2.4 DDKIomuxEnablePullup
	6.5.3.2.5 DDKIomuxGetPadConfig

	6.5.4 CSPDDK DLL DMA (DDK_DMA) Reference
	6.5.4.1 DDK_DMA Functions
	6.5.4.1.1 DDKApbhStartDma
	6.5.4.1.2 DDKApbhStopDma
	6.5.4.1.3 DDKApbhDmaInitChan
	6.5.4.1.4 DDKApbhDmaChanCLKGATE
	6.5.4.1.5 DDKApbhDmaClearCommandCmpltIrq
	6.5.4.1.6 DDKApbhDmaEnableCommandCmpltIrq
	6.5.4.1.7 DDKApbhDmaResetChan
	6.5.4.1.8 DDKApbhDmaFreezeChan
	6.5.4.1.9 DDKApbhDmaGetPhore
	6.5.4.1.10 DDKApbxStartDma
	6.5.4.1.11 DDKApbxGetNextCMDAR
	6.5.4.1.12 DDKApbxStopDma
	6.5.4.1.13 DDKApbxDmaInitChan
	6.5.4.1.14 DDKApbxDmaGetActiveIrq
	6.5.4.1.15 DDKApbxDmaClearCommandCmpltIrq
	6.5.4.1.16 DDKApbxDmaClearErrorIrq
	6.5.4.1.17 DDKApbxDmaEnableCommandCmpltIrq
	6.5.4.1.18 DDKApbxDmaEnableErrorIrq
	6.5.4.1.19 DDKApbxDmaResetChan
	6.5.4.1.20 DDKApbxDmaFreezeChan

	6.5.5 CSPDDK POWER (DDK_POWER) Reference
	6.5.5.1 DDK_POWER Functions
	6.5.5.1.1 DDKPowerInit
	6.5.5.1.2 DDKPowerEnableDcdc
	6.5.5.1.3 DDKPowerExecuteBatteryTo5VoltsHandoff
	6.5.5.1.4 DDKPowerExecute5VoltsToBatteryHandoff
	6.5.5.1.5 DDKPowerEnable5VoltsToBatteryHandoff
	6.5.5.1.6 DDKPowerEnableBatteryTo5VoltsHandoff
	6.5.5.1.7 DDKPowerGet5vPresentFlag
	6.5.5.1.8 DDKPowerInitPowerSupplies
	6.5.5.1.9 DDKPowerGetDirectBoot
	6.5.5.1.10 DDKPowerInitBatteryMonitor
	6.5.5.1.11 DDKPowerGetBatteryMode
	6.5.5.1.12 DDKPowerSetCharger
	6.5.5.1.13 DDKPowerStopCharger
	6.5.5.1.14 DDKPowerGetBatteryVoltage
	6.5.5.1.15 DDKPowerGetBatteryChargingStatus
	6.5.5.1.16 DDKPowerClear5VIrq
	6.5.5.1.17 DDKPowerGetLimit
	6.5.5.1.18 DDKPowerGetUSBPhy
	6.5.5.1.19 DDKPowerSetVdddValue
	6.5.5.1.20 DDKPowerGetVdddValue
	6.5.5.1.21 DDKDumpPowerRegisters
	6.5.5.1.22 DDKPowerSetLimit
	6.5.5.1.23 DDKPowerGetPSwitchIrq
	6.5.5.1.24 DDKPowerClearPSwitchIrq
	6.5.5.1.25 DDKPowerGetPSwitchStatus

	Chapter 7 Configurable Serial Peripheral Interface (CSPI) Driver
	7.1 CSPI Driver Summary
	Table 7-1. CSPI Driver Summary

	7.2 Supported Functionality
	7.2.1 Conflicts with Other Peripherals and Catalog Items
	7.2.1.1 Conflicts with SoC Peripherals

	7.2.2 Conflicts with EVK Peripherals

	7.3 Software Operation
	7.3.1 Registry Settings
	7.3.2 Communicating with the CSPI
	7.3.3 Creating a Handle to the CSPI
	7.3.4 Data Transfer Operations
	7.3.5 Closing the Handle to the CSPI
	7.3.6 Power Management
	7.3.6.1 PowerUp
	7.3.6.2 PowerDown
	7.3.6.3 IOCTL_POWER_SET

	7.4 Unit Test
	7.4.1 Building the Unit Tests

	7.5 CSPI Driver API Reference
	7.5.1 CSPI Driver IOCTLs
	7.5.1.1 CSPI_IOCTL_EXCHANGE

	7.5.2 CSPI Driver SDK Wrapper
	7.5.2.1 CSPIOpenHandle
	7.5.2.2 CSPICloseHandle
	7.5.2.3 CSPIExchange

	7.5.3 CSPI Driver Structures
	7.5.3.1 CSPI_BUSCONFIG_T
	Table 7-2. CSPI_BUSCONFIG_T Structure Members

	7.5.3.2 CSPI_XCH_PKT_T
	Table 7-3. CSPI_XCH_PKT_T Structure Members

	Chapter 8 Display Driver for LCDIF and PXP
	8.1 Display Driver Summary
	Table 8-1. Display Driver Summary

	8.2 Supported Functionality
	8.3 Hardware Operation
	8.3.1 Conflicts with Other Peripherals and Catalog Items

	8.4 Software Operation
	8.4.1 Software Driver Components
	Figure 8-1. Software Driver Components Block Diagram
	8.4.1.1 Display Driver
	8.4.1.2 LCD Interface
	8.4.1.3 Pixel Pipeline

	8.4.2 Communicating with the Display
	8.4.2.1 Using the GDI
	8.4.2.2 Using DirectDraw
	8.4.2.3 Using Display Driver Escape Codes

	8.4.3 Configuring the Display
	8.4.3.1 Rotation Support
	8.4.3.2 Display Registry Settings
	8.4.3.2.1 i.MX233 Registry Settings

	8.4.4 Power Management
	8.4.4.1 PowerUp
	8.4.4.2 PowerDown
	8.4.4.3 IOCTL_POWER_SET

	8.5 Unit Test
	8.5.1 Unit Test Hardware
	8.5.2 Unit Test Software
	8.5.2.1 GDI Tests
	Table 8-2. GDI Software Requirements

	8.5.2.2 DirectDraw Tests
	Table 8-3. DirectDraw Software Requirements

	8.5.2.3 Windows Media Player Tests
	Table 8-4. Windows Media Player Software Requirements

	8.5.3 Building the Unit Tests
	8.5.4 Running the Unit Tests
	8.5.4.1 Running the GDI Tests
	8.5.4.2 Running the DirectDraw Tests
	8.5.4.3 Running the Windows Media Player tests

	8.6 Display Driver API Reference

	Chapter 9 Dynamic Voltage and Frequency Control (DVFC) Driver
	9.1 DVFC Driver Summary
	Table 9-1. DVFC Driver Summary

	9.2 Supported Functionality
	9.2.1 i.MX233 Supported Functionality

	9.3 Hardware Operation
	9.3.1 Conflicts with Other Peripherals and Catalog Items
	9.3.2 i.MX233 EVK Configuration

	9.4 Software Operation
	9.4.1 i.MX233 Registry Settings
	9.4.2 Loading and Initialization
	9.4.3 Operation
	9.4.3.1 i.MX233 Voltage or Frequency Setpoints
	Table 9-2. i.MX233 DVFC Setpoints

	9.4.3.2 i.MX233 Setpoint Mapping

	9.4.4 DDK Interface
	9.4.5 Power Management
	9.4.5.1 PowerUp
	9.4.5.2 PowerDown
	9.4.5.3 IOCTL_POWER_CAPABILITIES
	9.4.5.4 IOCTL_POWER_SET
	9.4.5.5 IOCTL_POWER_GET

	9.5 Unit Test
	9.5.1 i.MX233 Unit Testing

	Chapter 10 Keypad Driver
	10.1 Keypad Driver Summary
	Table 10-1. Keypad Driver Summary

	10.2 Supported Functionality
	10.3 Hardware Operation
	10.3.1 Conflicts with Other Peripherals and Catalog Items
	10.3.2 Keypad
	10.3.2.1 i.MX233 EVK Keypad Mapping
	Table 10-2. 8-key Keypad Mapping

	10.4 Software Operation
	10.4.1 Keypad Scan Codes and Virtual Keys
	10.4.1.1 i.MX233 EVK Scan Code Mapping
	Table 10-3. I.MX233 EVK Scan Code Mapping Table (continued)

	10.4.2 Power Management
	10.4.2.1 BSPKppPowerOn
	10.4.2.2 BSPKppPowerOff
	10.4.2.3 IOCTL_POWER_CAPABILITIES
	10.4.2.4 IOCTL_POWER_SET
	10.4.2.5 IOCTL_POWER_GET

	10.4.3 Keypad Registry Settings

	10.5 Unit Test
	10.5.1 Unit Test Hardware
	10.5.2 Unit Test Software
	10.5.3 Building the Unit Tests
	10.5.4 Running the Unit Tests

	Chapter 11 Inter-Integrated Circuit (I2C) Driver
	11.1 I2C Driver Summary
	Table 11-1. I2C Driver Summary

	11.2 Supported Functionality
	11.3 Hardware Operation
	11.3.1 Conflicts with Other Peripherals and Catalog Items
	11.3.1.1 Conflicts with SoC Peripherals
	11.3.1.2 Conflicts with Board Peripherals

	11.4 Software Operation
	11.4.1 Registry Settings
	11.4.1.1 i.MX233 Registry Settings

	11.4.2 Communicating with the I2C
	11.4.3 Creating a Handle
	11.4.4 Configuring the I2C
	11.4.5 Data Transfer Operations
	11.4.6 Closing the Handle

	11.5 Unit Test
	11.5.1 Unit Test Hardware
	11.5.1.1 I2C EEPROM Test

	11.5.2 Unit Test Software
	11.5.2.1 I2C EEPROM Test

	11.5.3 Building the Unit Tests
	11.5.3.1 I2C EEPROM Tests

	11.5.4 Running the Unit Tests
	11.5.4.1 I2C EEPROM Tests

	11.6 Hardware Limitations
	11.7 I2C Driver API Reference
	11.7.1 I2C Driver IOCTLS
	11.7.1.1 I2C_IOCTL_GET_CLOCK_RATE
	11.7.1.2 I2C_IOCTL_GET_SELF_ADDR
	11.7.1.3 I2C_IOCTL_IS_MASTER
	11.7.1.4 I2C_IOCTL_IS_SLAVE
	11.7.1.5 I2C_IOCTL_RESET
	11.7.1.6 I2C_IOCTL_SET_CLOCK_RATE
	11.7.1.7 I2C_IOCTL_SET_MASTER_MODE
	11.7.1.8 I2C_IOCTL_SET_SELF_ADDR
	11.7.1.9 I2C_IOCTL_SET_SLAVE_MODE
	11.7.1.10 I2C_IOCTL_TRANSFER
	11.7.1.11 I2C_IOCTL_ENABLE_SLAVE
	11.7.1.12 I2C_IOCTL_DISABLE_SLAVE

	11.7.2 I2C Driver SDK Encapsulation
	11.7.2.1 I2COpenHandle
	11.7.2.2 I2CCloseHandle
	11.7.2.3 I2CSetSlaveMode
	11.7.2.4 I2CSetMasterMode
	11.7.2.5 I2CIsMaster
	11.7.2.6 I2CIsSlave
	11.7.2.7 I2CGetClockRate
	11.7.2.8 I2CSetClockRate
	11.7.2.9 I2CSetSelfAddr
	11.7.2.10 I2CGetSelfAddr
	11.7.2.11 I2CTransfer
	11.7.2.12 I2CReset
	11.7.2.13 I2CEnableSlave
	11.7.2.14 I2CDisableSlave

	11.7.3 I2C Driver Structures
	11.7.3.1 I2C_PACKET
	11.7.3.2 I2C_TRANSFER_BLOCK

	Chapter 12 Low-Resolution Analog-Digital Converter (LRADC) Driver
	12.1 LRADC Driver Summary
	Table 12-1. LRADC Driver Summary

	12.2 Supported Functionality
	12.3 Hardware Operation
	12.3.1 Conflicts with Other Peripherals and Catalog Items

	12.4 Software Operation
	12.4.1 ADC Registry Settings
	12.4.2 Interfacing with the LRADC Driver
	12.4.2.1 Stream Interface
	12.4.2.2 Using the SDK
	12.4.2.3 DMA Support

	12.5 Power Management
	12.5.1 LDC_PowerUp
	12.5.2 LDC_PowerDown
	12.5.3 IOCTL_POWER_CAPABILITES
	12.5.4 IOCTL_POWER_SET
	12.5.5 IOCTL_POWER_GET

	12.6 Unit Test
	12.7 LRADC SDK API Reference
	12.7.1 LRADC SDK Functions
	12.7.1.1 LRADCOpenHandle
	12.7.1.2 LRADCCloseHandle
	12.7.1.3 LRADCConfigureChannel
	12.7.1.4 LRADCEnableInterrupt
	12.7.1.5 LRADCClearInterruptFlag
	12.7.1.6 LRADCSetDelayTrigger
	12.7.1.7 LRADCCLearDelayChannel
	12.7.1.8 LRADCSetDelayTriggerKick
	12.7.1.9 LRADCGetAccumValue
	12.7.1.10 LRADCEnableBatteryMeasurement
	12.7.1.11 LRADCEnableDieMeasurement
	12.7.1.12 LRADCClearAccum
	12.7.1.13 LRADCEnableTouchDetect
	12.7.1.14 LRADCGetTouchDetect
	12.7.1.15 LRADCEnableTouchDetectInterrupt
	12.7.1.16 LRADCSetAnalogPowerUp
	12.7.1.17 LRADCClearTouchDetect
	12.7.1.18 LRADCEnableTouchDetectXDrive
	12.7.1.19 LRADCEnableTouchDetectYDrive

	Chapter 13 NAND Flash Driver
	13.1 Flash Driver Summary
	Table 13-1. Flash Driver Summary

	13.2 Supported Functionality
	13.3 Hardware Operation
	13.3.1 Conflicts with Other Peripherals and Catalog Items
	13.3.1.1 Conflicts with SoC Peripherals

	13.4 Software Operation
	13.4.1 MDD and PDD Layer Overview
	Figure 13-1. PDD Layer Block Diagram

	13.4.2 Data Structures
	13.4.2.1 NANDTiming
	Table 13-2. NANDTiming Structure Members

	13.4.2.2 NandChipInfo
	Table 13-3. NandChipInfo Structure Members

	13.4.3 Adding New Flash Configurations
	13.4.4 Registry Settings
	13.4.5 DMA Support
	13.4.6 Power Management

	13.5 Unit Test
	13.5.1 CETK Testing
	Table 13-4. CEKT Tests

	13.5.2 System Testing

	Chapter 14 NAND Redundant Boot
	14.1 NAND Redundant Boot Summary
	Table 14-1. NAND Redundant Boot Summary

	14.2 Supported Functionality
	14.3 Hardware Operation
	14.3.1 Conflicts with Other Peripherals and Catalog Items

	14.4 Software Operation
	Figure 14-1. Image Updating Work Flow
	Figure 14-2. Image Checking Work Flow

	14.5 Unit Test
	14.5.1 Testing Update Functionality
	14.5.2 Testing Restore Functionality

	Chapter 15 Serial Driver
	15.1 Serial Driver Summary
	Table 15-1. Serial Driver Summary

	15.2 Supported Functionality
	15.3 Hardware Operation
	15.3.1 Conflicts with Other Peripherals and Catalog Items
	15.3.1.1 Conflicts with SoC Peripherals
	15.3.1.2 Conflicts with Board Peripherals

	15.3.2 Known Issues

	15.4 Software Operation
	15.4.1 Registry Settings
	15.4.1.1 i.MX233 Registry Settings

	15.4.2 Power Management

	15.5 Unit Test
	15.5.1 Unit Test Hardware
	15.5.2 Unit Test Software
	Table 15-2. Software Requirements

	15.5.3 Building the Unit Tests
	15.5.4 Running the Unit Tests
	Table 15-3. Serial Port Driver Test Cases

	15.6 Serial Driver API Reference
	15.6.1 Serial PDD Functions
	Table 15-4. Serial PDD Functions

	15.6.2 Serial Driver Structures
	15.6.2.1 UART_INFO
	15.6.2.2 SER_INFO

	Chapter 16 Secure Digital Host Controller (SDHC) Driver
	16.1 SDHC Driver Summary
	Table 16-1. eSDHC Driver Summary

	16.2 Supported Functionality
	16.3 Hardware Operation
	16.3.1 Conflicts with Other Peripherals and Catalog Options
	16.3.1.1 Conflicts with SoC Peripherals
	16.3.1.2 Conflicts with Other EVK Peripherals

	16.4 Software Operation
	16.4.1 Required Catalog Items
	16.4.1.1 SD and MMC Support

	16.4.2 SDHC Registry Settings
	16.4.2.1 i.MX233 SDHC Registry Settings

	16.4.3 DMA Support
	16.4.4 Power Management

	16.5 Unit Test
	16.5.1 Unit Test Hardware
	Table 16-2. Hardware Requirements

	16.5.2 Unit Test Software
	Table 16-3. Software Requirements

	16.5.3 Building the Unit Tests
	16.5.4 Running the Unit Tests
	16.5.4.1 File System Driver Test
	16.5.4.2 Storage Device Block Driver Read/Write Tests
	16.5.4.3 Storage Device Block Driver API Tests
	16.5.4.4 Storage Device Block Driver Performance Tests
	16.5.4.5 Partition Driver Test

	16.5.5 System Testing

	16.6 Secure Digital Card Driver API Reference

	Chapter 17 Touch Panel Driver
	17.1 Touch Panel Driver Summary
	Table 17-1. Touch Panel Driver Summary

	17.2 Supported Functionality
	17.3 Hardware Operations
	17.4 Software Operations
	17.4.1 Touch Driver Registry Settings

	17.5 Unit Tests
	17.5.1 Unit Test Hardware
	Table 17-2. Hardware Requirements

	17.5.2 Unit Test Software
	Table 17-3. Software Requirements

	17.5.3 Running the Touch Panel Tests

	17.6 Touch Panel API Reference

	Chapter 18 Universal Serial Bus (USB) On The Go (OTG) Driver
	18.1 USB OTG Driver Summary
	18.1.1 Peripheral Driver Summary
	Table 18-1. Peripheral Driver Summary (continued)

	18.1.2 Host Driver Summary
	Table 18-2. Host Driver Summary

	18.1.3 OTG (Pin-Detection) Driver Summary
	Table 18-3. OTG Driver Summary

	18.2 Supported Functionality
	18.3 Hardware Operation
	18.3.1 Conflicts with Other Peripherals and Catalog Items
	18.3.1.1 Conflicts with SoC Peripherals
	18.3.1.2 Conflicts with Board Peripherals

	18.4 Software Operation
	18.4.1 USB OTG Host Controller Driver
	Figure 18-1. Windows USB Driver Architecture
	18.4.1.1 User Interface
	18.4.1.2 Host Controller Configuration
	18.4.1.3 Memory Configuration
	18.4.1.4 Configured Power
	18.4.1.5 Registry Settings
	18.4.1.6 PHY level USB Test
	18.4.1.7 Unit Test
	18.4.1.7.1 USB Host Controller Driver Test
	18.4.1.7.2 Build the Test Image
	18.4.1.7.3 Abstract
	Figure 18-2. Test Setup

	18.4.1.7.4 Unit Test Hardware
	18.4.1.7.5 Unit Test Software
	18.4.1.7.6 Running the Test
	18.4.1.7.7 Test Cases
	Table 18-4. USB Host Controller Driver Test Cases

	18.4.1.8 Platform-Specific API
	18.4.1.8.1 BSPUsbhCheckConfigPower
	18.4.1.8.2 BSPUsbSetWakeUp
	18.4.1.8.3 BSPUsbCheckWakeUp
	18.4.1.8.4 SetPHYPowerMgmt

	18.4.2 USB Peripheral Driver
	18.4.2.1 User Interface
	18.4.2.2 Client Driver Configuration
	18.4.2.3 Registry Settings
	18.4.2.4 PHY Test Mode
	18.4.2.5 Unit Test
	18.4.2.5.1 Unit Test Hardware
	Table 18-5. Hardware Requirements

	18.4.2.5.2 Unit Test Software
	Table 18-6. Software Requirements

	18.4.2.5.3 Running the USB Function Controller Driver Tests
	Table 18-7. USB Function Controller Driver Tests

	18.4.2.6 Platform-Specific API
	18.4.2.6.1 InitializeMux
	18.4.2.6.2 HardwarePullupDP

	18.4.3 USB OTG Driver (Pin-Detection Driver)
	18.4.3.1 User Interface
	18.4.3.2 OTG Driver Configuration
	18.4.3.3 Registry Settings
	18.4.3.4 Unit Test
	18.4.3.4.1 Unit Test Hardware
	Table 18-8. Hardware Requirements

	18.4.3.4.2 Running the OTG Test
	Table 18-9. OTG Tests

	18.4.3.5 Platform-Specific API

	18.4.4 USB OTG Catalog Settings
	18.4.5 USB OTG Registry Settings
	18.4.5.1 Registry Structure
	18.4.5.2 Registry Key Settings
	18.4.5.2.1 OTG Driver Settings
	Table 18-10. USB OTG Transceiver Registry Settings

	18.4.5.2.2 Peripheral Driver Settings
	Table 18-11. USB OTG Client Registry Settings

	18.4.5.2.3 Host Driver Settings
	Table 18-12. hsotg.reg Default Values (continued)

	18.4.6 Power Management
	18.4.6.1 Power Down Procedure
	18.4.6.1.1 Set PHY to Low Power Mode
	18.4.6.1.2 Close USB Controller Clock

	18.4.6.2 Power Up Procedure
	18.4.6.2.1 Open USB Controller Clock
	18.4.6.2.2 Put PHY Out of Low Power Mode

	18.4.6.3 Processing Methodology
	18.4.6.3.1 Host Driver Methodology
	18.4.6.3.2 Peripheral Driver Methodology
	18.4.6.3.3 OTG Driver Methodology

	18.4.6.4 USB Wakeup

	18.4.7 Peripheral Class Drivers
	18.4.7.1 Mass Storage Function
	Table 18-13. Mass Storage Function

	18.4.7.2 Serial Function
	Table 18-14. Serial Function

	18.4.7.3 RNDIS Function
	Table 18-15. RNDIS Function

	18.4.7.4 PHDC Function
	Table 18-16. PHDC Function

	18.4.8 Host Class Drivers
	Table 18-17. Class Drivers
	18.4.8.1 HID Mouse
	Table 18-18. HID Mouse Class Driver

	18.4.8.2 HID Keyboard
	Table 18-19. HID Keyboard Driver to Remove
	Table 18-20. ID Keyboard Driver to Include

	18.5 Known Issues
	18.5.1 Host Support for Low Speed Peripherals
	18.5.2 Host VBUS Power Supply

	18.6 Basic Elements for Driver Development
	18.6.1 BSP Environment Variables
	Table 18-21. System Environment Variables Summary

	18.6.2 Dependencies of Drivers
	Table 18-22. USB Driver

	18.7 Application Tools for USB
	18.7.1 Application for USB Peripheral Class Driver Switch
	18.7.2 Application for Multispec PHDC Demo

	Chapter 19 USB Boot and KITL
	19.1 USB Boot and KITL Summary
	Table 19-1. USB Boot and KITL Summary

	19.2 Supported Functionality
	19.3 Hardware Operation
	19.3.1 Conflicts with Other Peripherals and Catalog Items

	19.4 Software Operation
	19.4.1 Software Architecture
	Figure 19-1. USB Boot and KITL Software Architecture Block Diagram

	19.4.2 Source Code Layout
	19.4.3 Power Management
	19.4.4 Registry Settings
	19.4.5 DMA Support

	19.5 Unit Test
	19.5.1 Building the USB Boot and KITL

