i.MX23 EVK Windows Embedded CE 6.0

Reference Manual

Document Number: 924-76402
Rev. 2009.12

L/

=" freescale’

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

Contents

About This Book

AUdIENCE. . o Xi
Suggested Readingo oo Xi
CONVENLIONSottt e e e e e e e e e e e e e e Xi
Definitions, Acronyms, and Abbreviations Xi
Chapter 1
Introduction
11 Getting Startedo e 1-1
12 Windows Embedded CE 6.0 Architecturet 1-1
Chapter 2
Audio Driver
21 AUdiODIIVEr SUMMAEIY . .ottt e e e e e e e e e e 2-1
22 Supported Functionality o 2-2
23 Hardware Operationttt e e e 2-2
231 Audio Hardware DeSIgNot 2-2
232 AudioPlayback. 2-2
233 AUdIORECOIAING. . . . oot e e 2-3
234 Required SOC Peripherals. 2-3
235 Conflictswith SOC Peripherals. e 2-3
2.3.6 Conflictswith Board Peripherals 2-3
237 KNOWN ISSUESo e e 2-3
24 SOMWare OPeralion. oot e e 2-4
241 AudioPlayback.o 2-4
242 AUdIORECOIAING. . . . oot 2-4
243 Audio Driver Compile-Time Configuration Options. 2-4
244 DMA SUDPOI . . e 2-5
245 Power Management 2-6
24.6 Audio Driver Registry SEttings.o .o vttt 2-7
12285 U 10 = 2-8
251 Unit TeSt Hardware.o e 2-8
252 Unit TESt SOMtWareo e e 2-8
253 Buildingthe Audio Driver CETK TeSIS.ot e 2-9
254 Running the Audio Driver CETK TeSIS.ottt e 2-9
26 SystemLevel AudioDriver TESS. 2-9

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor -iii

26.1 Checking for aBoot-TimeMusical Tune. it 2-9

26.2 Confirming Touchpanel Tapsand Keypad Key Presses, 2-9
26.3 Playing Back Sample Audio and Video FilesUsing the MediaPlayer 2-9
264 Using the SDK Sample Audio Applicationsfor Testingt 2-10
27 AudioDriver APl REfErENCe oo 2-10
28 AudioDriver Troubleshooting Guide.t 2-10
281 Checking Build-Time Configuration Options, 2-10
282 Media Player Application Not Found. 2-10
283 Media Player Failsto Load and Play an AudioFile. 2-10
Chapter 3

Backlight Driver

31 Backlight Driver SUMMAIYttt e e e e e e e e e e 31
3.2 Supported Functionalityo 31
33 Hardware Operationttt e e e 31
331 I.MX233-EVK Hardware Operation.ottt e 3-2
34 SOftware Operalion. oot 3-2
341 Backlight Driver Registry Settings. oot 3-2
34.2 Power Management 3-2
B UMt TS . et 3-3
351 Unit TeStHardware.o e e 3-3
352 Unit TESt SOMtWareo e 3-3
353 Running the Backlight Application Test 3-4
36 Backlight APl REFEIENCEo 34
Chapter 4

Battery Driver

4.1 Battery Driver SUMMAY.ottt e e e e e e e 4-1
4.2 Supported FUNCLIONalityo 4-1
4.3 Hardware Operationttt e e 4-2
43.1 Conflictswith Other SOC Peripherals. e 4-2
44 SOftWare OPEraLION.ottt et e e e e e e e 4-2
44.1 Battery Driver Registry Settings.o ot 4-2
4.4.2 Power Management 4-2
A5 UNIE TS 4-2
45.1 Unit TeSt Hardware.o 4-3
4.6 Battery APl REfEIENCE o 4-3
Chapter 5

Boot from Secure Digital/MultiMedia Card (SD/MMC)

51 Bootfrom SD/IMMC SUMMAYot e e e e e e e e e 5-1
52 Supported Functionality 5-1
53 Hardware Operationttt e 5-2

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

-iv Freescale Semiconductor

531 Conflicts with Other Peripheralsand Catalog Items 5-2

54 SOftware Operalion.ttt 5-2
55 CardFlashing Tool 5-2
551 Write Image (EBOOT) toSD Cardot e 5-2
552 SYSEM BOOL 5-2
Chapter 6

Chip Support Package Driver Development Kit (CSPDDK)

6.1 CSPDDK Driver SUMMEIY.ottt et e e e e e e e e e e e e e e e 6-1
6.2 Supported Functionality 6-1
6.3 Hardware Operationottt e e e 6-2
6.3.1 Conflicts with Other Peripheralsand Catalog Items, 6-2
6.4 SOftware OPeration.ttt et e 6-2
6.4.1 Communicating with the CSPDDK e 6-2
6.4.2 Compile-Time Configuration OPtioNSot e e 6-2
6.4.3 REgISITY SEattiNgS. . . . oot 6-2
6.4.4 Power Management 6-3
B.5 UNit Te . . o 6-3
6.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference, 6-3
6.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference.o oo 6-6
6.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference, 6-8
6.5.4 CSPDDK DLL DMA (DDK_DMA) Reference.o e 6-10
6.5.5 CSPDDK POWER (DDK_POWER) Reference 6-15
Chapter 7

Configurable Serial Peripheral Interface (CSPI) Driver

7.1 CSPIDIVEr SUMMAY . . ottt e e e e e e e e e e e e e e et e 7-1
7.2 Supported Functionality e 7-1
721 Conflicts with Other Peripheralsand Catalog Items oo, 7-1
7.2.2 Conflictswith EVK Peripherals. e 7-2
7.3 SOftWare OPeratioN.ottt et e e e 7-2
731 REQISITY SEattiNgS. . . . oot 7-2
7.3.2 Communicatingwiththe CSPI 7-2
7.3.3 CreatingaHandletothe CSPI e 7-2
7.3.4 Data Transfer Operationsottt e e e e 7-3
7.35 ClosingtheHandletothe CSPI e 7-4
7.3.6 Power Management 7-4
T4 UNIt e . . 7-5
74.1 Buildingthe Unit TestS.o e 7-5
7.5 CSPI Driver APl Referenceo 7-5
751 CSPI DIVEr IOCTLS . . et e e e 7-6
752 CSPI Driver SDK WIapper oottt e e e e e e e 7-6
7.5.3 CSPI DriVEr SITUCLUNES o e e e e e e e e e e e e 7-7

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor -v

Chapter 8
Display Driver for LCDIF and PXP

8.1 Display Driver SUMMAIYttt et e e e e e et e e e 8-1
8.2 Supported Functionality 8-1
8.3 Hardware Operationttt 8-2
831 Conflicts with Other Peripheralsand Catalog Items 8-2
8.4 SOftware Operalion.t 8-2
84.1 Software Driver COmPONENTS.ot e e e 8-3
84.2 CommunicatingwiththeDisplay 8-4
84.3 Configuringthe Displayo 8-5
84.4 Power Management 8-5
8.5 UNIt TS . . 8-6
851 Unit TeSt Hardware.o e 8-6
8.5.2 Unit TESt SOMtWareo e e 8-6
853 Buildingthe Unit TeSS.o e 8-7
854 Running the Unit TestS.ot e e 8-8
8.6 Display Driver API Reference oo 8-8
Chapter 9
Dynamic Voltage and Frequency Control (DVFC) Driver
9.1 DVFCDIIVE SUMMEIY . . . oottt et e e et e e e e e e e e e 9-1
9.2 Supported Functionalityo 9-1
921 1.M X233 Supported Functionality 9-2
0.3 Hardware Operationttt e e e 9-2
931 Conflicts with Other Peripheralsand Catalog Items, 9-2
932 LMX233 EVK Configuration. o e e 9-2
0.4 SOftware Operalion. oottt e 9-2
94.1 ILMX233 RegiStry SettingsS. . . . oottt e 9-2
94.2 Loading and INitialization. e 9-2
94.3 OPEIaLION . . . e 9-2
94.4 DDK INtErface. . . . oot 9-3
94.5 Power Management 9-3
0.5 UNIt TS . . 9-4
951 EMX233UNIt TESHING. . . o oo 9-4
Chapter 10
Keypad Driver
10.1 Keypad Driver SUMMANYttt et e e e e e e e e e e e e e 10-1
10.2 Supported FUNCLIONAIITYo 10-1
10.3 Hardware Operationottt e e e e e 10-1
10.3.1 Conflicts with Other Peripheralsand Catalog Items 10-1
10.3.2 Keypad . . 10-2
10.4 SOftWare OpPEration.ottt et e e e e e e 10-2
i.MX23 EVK Windows Embedded CE 6.0 Reference Manual
-Vi Freescale Semiconductor

104.1 Keypad Scan Codesand Virtual Keys e 10-2

10.4.2 Power Management 10-3
104.3 Keypad Registry SettingsS oo 10-3
105 UNIt O . .ot 10-4
10.5.1 Unit TeSt Hardware. 10-4
10.5.2 Unit TESt SOftWare oo 10-4
10.5.3 Buildingthe Unit TEStS.o e 10-4
1054 Running the Unit TestS.o e 10-4
Chapter 11

Inter-Integrated Circuit (12C) Driver

111 12C DRVE SUMMAIY . . . o\ oo oot ettt 11-1
11.2 Supported FUNCHONAIITYo 11-1
11.3 Hardware Operationottt e e e e e e e 11-1
11.3.1 Conflicts with Other Peripheralsand Catalog Items 11-2
114 SOftWare OPEration.ottt et e e e e e e e e e e 11-2
1141 REgISITY SEttingS. . . . oot 11-2
1142 CommunicatingWiththe 12Cot 11-2
114.3 CreatingaHandle. 11-3
1144 Configuring the 12C ot 11-3
1145 Data Transfer Operations v it e e e e e e 11-4
11.4.6 ClosingtheHandle. 11-5
0L T 1 == 11-5
1151 Unit TeSt Hardware. e 11-5
1152 Unit Test SOftWare oo 11-6
1153 Buildingthe Unit TesStS.o 11-6
1154 Running the Unit TestS.o e 11-6
116 Hardware Limitations. oot e 11-6
117 12C Driver APl REFEIENCE.o oot et e e e e e e e 11-6
1171 12CDHVEN TOCTLS ..ttt e et e e e e e e e 11-7
11.7.2 12C Driver SDK ENcapsulation.ouoe e 11-9
11.7.3 12CDIVEN SIUCIUIES . . . oot e e e e e e e e et e e 11-12
Chapter 12

Low-Resolution Analog-Digital Converter (LRADC) Driver

121 LRADC DIVE SUMMAY . . . ottt et et e e e e e e e e e e e e ettt 12-1
12.2 Supported FUNCLIONAIItYo 12-1
12.3 Hardware Operationottt e e e e 12-2
12.3.1 Conflicts with Other Peripheralsand Catalog Itemst 12-2
124 SOftWare OPEration.ottt e e e et e e e e e e 12-2
1241 ADC RegISITY SEtliNgS . . . o vttt e e e 12-2
124.2 Interfacing With the LRADC DIiVEr.o e e 12-2
125 Power Management 12-2
125.1 LD C POWEIUD . ottt 12-3

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor -vii

125.2 LDC PowerDOWN . .. 12-3

1253 IOCTL_POWER_CAPABILITES. e 12-3
1254 IOCTL_POWER _SET . .. e e e e 12-3
1255 IOCTL_POWER _GET . . . ot e e e e e e 12-3
12,6 UNIt O . .ot e e 12-3
127 LRADC SDK APl ReferenCe.o e e 12-3
12.7.1 LRADC SDK FUNCHIONS. . . .ot e e e et 12-3
Chapter 13

NAND Flash Driver

131 Flash Driver SUMMAIYottt e e e e e e e e e e e 13-1
13.2 Supported FUNCLIONAIITYo 13-2
13.3 Hardware Operationottt e e e 13-2
13.3.1 Conflicts with Other Peripheralsand Catalog Items, 13-2
134 SOftWare OpPEration.ottt et e et e e e e e 13-2
134.1 MDD and PDD Layer OVEIVIEWttt e e e e e e 13-2
134.2 Data SITUCIUNES e e e e 13-4
134.3 Adding New Flash Configurations. e 13-6
134.4 REgISITY SEttingS. . . . oo 13-7
134.5 DIMA SUDPOI . . e e 13-7
13.4.6 Power Management 13-7
135 UNIt T . .ot 13-7
135.1 CETK TeStNG. . . . ottt e et e e e e e e e e e e e e 13-7
1352 SYSEM TESHINGot 13-8
Chapter 14

NAND Redundant Boot

141 NAND Redundant BOOt SUMMArYottt et 14-1
14.2 Supported Functionalityo 14-1
14.3 Hardware Operalionottt e e e e e 14-2
14.3.1 Conflicts with Other Peripheralsand Catalog Itemst 14-2
144 SOftWare OPEration.ottt ettt e e e e e e e e 14-2
T O 0 == 14-4
1451 Testing Update Functionality 14-4
14.5.2 Testing Restore Functionality.o 14-4
Chapter 15

Serial Driver

151 Seriad DrivVer SUMMAIYottt e e e e e e e e et e e e e 15-1
15.2 Supported Functionalityt 15-1
153 Hardware Operalionottt e 15-2
153.1 Conflicts with Other Peripheralsand Catalog Items 15-2
15.3.2 KNOWN ISSUES e 15-2

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

-Viii Freescale Semiconductor

154 SOftWare OpEration.ottt ettt e e e e 15-2

154.1 REgISITY SEattiNgS. . . . oot 15-2
154.2 Power Management 15-3
155 UNIt O . .ot 15-3
1551 Unit Test Hardware.o e e et 15-3
1552 Unit Test SOftWare e 15-3
155.3 Buildingthe Unit TEStS.o e 15-3
1554 Running the Unit TestS.o e 15-4
15.6 Seria Driver APl REfErenCe.o 15-4
156.1 Serial PDD FUNCLIONS.o e e e e e 15-5
15.6.2 Serial Driver SITUCIUIES oo e e e e 15-6
Chapter 16

Secure Digital Host Controller (SDHC) Driver

16.1 SDHCDIIVEr SUMMAYottt et e e e e e e e et e e e ettt 16-1
16.2 Supported Functionalityt 16-1
16.3 Hardware Operation oottt e e e 16-2
16.3.1 Conflicts with Other Peripheralsand Catalog Options. 16-2
16.4 SOftWare OpEration.ottt ettt e e e e e 16-2
16.4.1 Required Catalog [tems 16-2
16.4.2 SDHC RegISIIY SEINGS . . . o oottt et e e e e e e 16-3
16.4.3 DIMA SUDPOI . . et e e e e 16-3
164.4 Power Management 16-3
16.5 UNIt TeS . .ot 16-3
16.5.1 Unit Test Hardware.o e et 16-4
16.5.2 Unit Test SOftWare e e 16-4
16.5.3 Buildingthe Unit TeStS.o 16-4
16.5.4 Running the Unit TestS.o e 16-4
16.5.5 SYSEM TESHINGot e 16-6
16.6 SecureDigital Card Driver API Reference. 16-6
Chapter 17

Touch Panel Driver

17.1 Touch Panel Driver SUMMArYttt e e et 17-1
17.2 Supported Functionalityt 17-1
17.3 Hardware Operalionsottt e e e e et 17-1
174 SOftWare OpEratioNSo ottt et e e e e e e 17-2
1741 Touch Driver Registry SEttingso e 17-2
0 T O 0 == (= 17-3
1751 Unit Test Hardware.o e e 17-3
17.5.2 Unit Test SOftWare e 17-3
1753 Runningthe Touch Panel Tests e 17-4
176 TouchPanel APl ReferenCeot e e 17-4

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor -ix

Chapter 18
Universal Serial Bus (USB) On The Go (OTG) Driver

181 USB OTG DrVEr SUMMAEIYo ettt et e e e e et e e et 18-1
18.1.1 Peripheral Driver SUMMary e 18-1
18.1.2 HOSE DIiVEr SUMMAIY . . . oottt e e e e e e e 18-2
18.1.3 OTG (Pin-Detection) Driver SUMMArYt 18-3
18.2 Supported FUNCLIONAIITYo 18-3
183 Hardware Operationottt e e 18-4
18.3.1 Conflicts with Other Peripheralsand Catalog Items, 18-4
18.4 SOftWare OpPEration.ottt et e e e e e e 18-4
184.1 USB OTG Host Controller Driver e e 18-4
18.4.2 USB Peripheral Driver e 18-12
18.4.3 USB OTG Driver (Pin-Detection Driver). e e 18-16
184.4 USB OTG Catalog SEttings o v ov ettt e e e e e 18-18
18.4.5 USB OTG Registry SEttings.o e e e e 18-18
18.4.6 Power Management e 18-20
18.4.7 Peripheral Class DIiVEIS. e 18-23
18.4.8 HOSt ClasS DIiVENS e e e e e e e 18-26
185 KNOWN ISSUES . . . oottt e e e e e e e e 18-28
1851 Host Support for Low Speed Peripherals. i 18-28
18.5.2 Host VBUSPower SUpplyo e 18-28
18.6 Basic Elementsfor Driver Developmentt 18-28
18.6.1 BSP Environment Variables. 18-28
18.6.2 DependenCies Of DIIVErS.t e 18-29
18.7 Application ToolSTfor USB. o 18-29
18.7.1 Application for USB Peripheral Class Driver Switch 18-29
18.7.2 Application for MultispeC PHDC DEMOot 18-30
Chapter 19

USB Boot and KITL

19.1 USBBootand KITL SUMMEYt e 19-1
19.2 Supported FUNCLIONAIITYo 19-1
19.3 Hardware Operationottt e e e 19-1
19.3.1 Conflicts with Other Peripheralsand Catalog Items 19-2
194 SOftWare OPEration.ottt et et e e e e e 19-2
194.1 Software ArChiteCtUre. o e 19-2
194.2 Source Code LayOut ot 19-3
194.3 Power Management 19-3
194.4 REgISITY SEttiNgS. . . . oo 19-3
194.5 DIMA SUDPOI . . e e e 19-3
10,5 UNIt T . o 19-3
1951 BuildingtheUSB Boot and KITL o e 19-4

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

-X Freescale Semiconductor

About This Book

Thisreference manual describes the requirements, implementation details, and testing for each modulein-
cluded in the Freescal e software development kit (SDK) for Microsoft® Windows® CE 6.0.

Audience

This document is intended for device driver devel opers, application developers, and software test engi-
neers who are planning to use the product. This document is also intended for people who want to know
more about Freescale' s software development kit (SDK) for Microsoft Windows CE 6.0.

Suggested Reading

The Freescale manual s can be found at the Freescale Semiconductor, Inc. World Wide Web site listed on
thefront cover of thisdocument. These manuals can be downloaded directly from the Web site, or printed
versions can be ordered. The Microsoft Platform Builder Help may be viewed from within the Platform
Builder application.

* 1.MX233 Applications Processor |C Reference Manual

e .MX233 Release Notes for Windows Embedded CE 6.0
e (.MX233 User's Guide for Windows Embedded CE 6.0
* Microsoft Platform Builder for Windows Embedded CE 6.0 Help

Conventions

This document uses the following notational conventions:
* courier indicatesdirectory or file names and code examples.

» Bold indicates the menu options or buttons the user can select. Cascaded menu options are
delimited with the > symbol.

e |talicindicates areference to another document.

Definitions, Acronyms, and Abbreviations
The following list defines the abbreviations used in this document.

AP application programming interface
BSP board support package

CSP chip support package

CSPI configurable serial peripheral interface
D3DM Direct 3D Mobile

DHCP dynamic host configuration protocol
DPTC dynamic power and temperature control
DVFC dynamic voltage and frequency control
DVFS dynamic voltage and frequency scaling
EBOOT Ethernet bootl oader

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor Xi

EVB platform evaluation board

FAL flash abstraction layer

FIR fast infrared

FMD flash media driver

GDI graphics display interface

GPT genera purpose timer

1°C inter-integrated circuit

IDE integrated devel opment environment

IST interrupt service thread

IPU image processing unit

KITL kernel independent transport layer

LVDS low-voltage differential signaling

MAC media access control

MMC multimedia cards

OAL OEM adaptation layer

OEM original equipment manufacturer

oS operating system

oTG on-the-go

PMIC power management IC

PQOAL production quality OEM adaptation layer
PWM pul se-width modul ator

SD secure digital cards

SDC synchronous display controller

SDHC secure digital host controller

SDIO secure digital 1/0 and combo cards
SDRAM synchronous dynamic random access memory
SDK software development kit

SIM subscriber identification module

SOC system on achip

UART universal asynchronous receiver transmitter
USB universal serial bus

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Xii Freescale Semiconductor

Chapter 1
Introduction
This Freescale board support package (BSP) is based on the Microsoft Windows® Embedded CE 6.0
operating system. This BSP supports the following Freescal e platform(s):
* 1.MX233-EVK Development System
Thiskit supports the Microsoft Windows Embedded CE 6.0 operating system, and requires the use of the
Microsoft Platform Builder, which is an integrated development environment (IDE) for building
customized embedded OS designs. To view feature information, see the BSP Release Notes.
NOTE

Use thisguidein conjunction with the Microsoft Windows Platform Builder

Help (or the identica Platform Builder User Guide).

» Toview the Platform Builder Help, click Help from the Platform

Builder application.

» Toview the online Windows Embedded CE 6.0 documentation, visit:
http://msdn2.microsoft.com/en-ug/library/bb159115.aspx

1.1 Getting Started

For instructions on installing this software release, building, downloading and running the OS image on
the hardware board, see the appropriate User’s Guide.

1.2 Windows Embedded CE 6.0 Architecture

The Windows Embedded CE 6.0 architectureisavariation of the Windows OS for minimalistic computers
and embedded systems. The architecture of the operating system and sub-systems (for example, power
management or DirectDraw) are described in several locationsin the Help. Begin at the following location
in Help topic:

Welcome to Windows Embedded CE 6.0 > Windows Embedded CE Architecture

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 1-1

http://msdn2.microsoft.com/en-us/library/bb159115.aspx

Introduction

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

1-2 Freescale Semiconductor

Chapter 2
Audio Driver

The audio driver module provides audio playback and recording functions. For information about
accessing an application with the audio driver using the methods and functions associated with the
WaveOut or Waveln functionality, see the Platform Builder Help at the following location:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Application
Development
2.1 Audio Driver Summary

Table 2-1 provides the source code location, library dependencies, and other BSP information.

Table 2-1. Audio Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2
SOC Common Path .\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\WAVEDEV?2
SOC Specific Path .\PLATFORM\COMMON\SRC\SOC\<Target SOC>\WAVEDEV2

Platform Specific Path .\PLATFORM\<Target Platform>\SRC\DRIVERS\WAVEDEV2

Driver DLL wavedev2_mx233.dll
SDK Library N/A
Catalog Item Third Party > BSP > Freescale i.MX233 EVK:ARMV4I > Device Drivers > Audio > Audio driver

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables | BSP_NOAUDIO=

NOTE

The selection and use of the Windows Media Player and the various
software codecsis beyond the scope of the audio driver and is not discussed
in this document. For information about these items, see the Platform
Builder Help at thefollowing location: Windows Embedded CE Features
> Audio

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 2-1

Audio Driver

2.2 Supported Functionality

The audio driver enables the system to provide the following software and hardware support:

1. Conformstotheaudio driver architecture as defined for Windows Embedded CE 6.0 and all related
operating systems
Double-buffered DMA operationsto transfer audio data between memory and the hardware FIFO
Two power management modes: full on and full off
Full duplex playback and record

Minimizes power consumption at all timesby using clock gating and by disabling all audio-related
hardware components that are not actively being used

8-96 KHz for both recording and playback
7. Mono and stereo 16-bit sample

a b~ DN

o

2.3 Hardware Operation

This section describes about the audio hardware operation.

2.3.1 Audio Hardware Design

This section describes the connection between the SoC audio peripheralsand the external audio codec, the
access interface of audio codec, and the audio input or output device connections.

2.3.11 i.MX233 Audio Hardware Design

Thei.MX233includesthe AUDIOOUT/DAC and AUDIOIN/ADC moduleson chip. PCM audio samples
aretransferred from a buffer in memory to the AUDIOOUT FIFO, and output to the analog DAC. The
analog audio destination can be stereo headphone amplifier or speaker amplifier on board. Thei.MX233
also features an audio record path that consists of a sigma-delta analog-to-digital converter (ADC),
followed by the AUDIOIN digital multi-stage FIR filter. The ADC oversamples the input from the
microphone or line-in on board.

2.3.2 Audio Playback

By default, the following hardware configuration options are enabled for the playback operation (based on
the default audio driver configuration):

* Theaudio driver is configured to use AUDIOOUT/DAC module and a sample rate at 44.1 KHz.

» The APBX DMA channel is setup to support data between application memory buffers and the
AUDIOOUT FIFO.

» The DAC isenabled to begin the transmission of audio data stream.

* Aninterrupt is generated when a DMA buffer is empty and thisinterrupt is handled by the audio
driver. Theaudio driver refillsthe DMA buffer and returnsit to the DMA controller for processing.

» Due to the double-buffering scheme, the DMA controller smply uses the other DMA buffer to
continue refilling the AUDIOOUT FIFO while the previous DMA buffer is being refilled.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-2 Freescale Semiconductor

2.3.3 Audio Recording

Audio Driver

The following hardware configuration steps are performed just prior to each recording operation (based

upon the default audio driver configuration):
* Theaudio driver is configured to use AUDIOIN/ADC module for recording path.

» The APBX DMA channel is setup to support data between application memory buffers and the

AUDIOIN FIFO.
* The ADC isenabled to begin the receiver of audio data stream.

* Aninterrupt is generated when a DMA buffer isfull and thisinterrupt is handled by the audio
driver. The audio driver copies the data from the full input DMA buffer into application-supplied

buffers and returns the empty DMA buffer to the DMA controller for processing.

* Due to the double-buffering scheme, the DMA controller smply uses the other DMA buffer to
continue receiving data from the AUDIOIN FIFO while the previous DMA buffer is being copied.

234 Required SoC Peripherals

Table 2-2 shows the SoC hardware components required by the audio driver.
Table 2-2. Required SoC Peripherals

Component Use
AUDIOOUT/DAC Playback
AUDIOIN/ADC Record
APBX DMAr Manages the DMA channels that are used for playback and recording

2.3.5 Conflicts with SoC Peripherals

No conflicts.

2.3.6 Conflicts with Board Peripherals

The following section explains about the conflicts of the audio driver with board peripherals:

2.3.6.1 i.MX233 Peripherals Conflicts

No conflicts.

2.3.7 Known Issues

The following section explains about the known issuesin the audio driver:

2.3.7.1 i.MX233 Known Issues

If coexistence of stereo audio driver and SPDIF driver occurs, the default audio device might be SPDIF.

The default audio device may be chosen by AudioRouting application.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

2-3

Audio Driver

2.4 Software Operation

The audio driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help at the following location:

Developing a Device Driver > Windows CE Drivers> Audio Drivers> Audio Driver Development
Concepts

241 Audio Playback

The software operation of the audio driver for playback issimilar to the hardware configuration. Once the
hardware components are configured, the audio driver only handles the output DM A buffer empty
interrupts. Thisisdone by the interrupt handler, which refills each of the output DMA buffers with new
audio data that has been supplied by the application, and then returns the DMA buffer to the DMA
controller.

24.2 Audio Recording

The operation of theaudio driver for recording issimilar to the hardware configuration. Oncethe hardware
components are configured, then the audio driver handles the input DMA buffer full interrupts. Thisis
done by the interrupt handler, which copies the contents of each input DMA buffer to an
application-supplied buffer, and then returns the empty DMA buffer to the DMA controller. If the
application-supplied buffer does not have enough spacefor all of the new data, discard any extradata. The
application is signaled using a callback function when the application-supplied buffer isfull.

243 Audio Driver Compile-Time Configuration Options

The audio driver can be configured for awide variety of operating modes depending on the hardware and
software requirements.

NOTE

Do not change the audio driver configuration settings without a detailed
understanding of the platform hardware configuration and operating
characteristics. Selecting invalid or incorrect configuration settings may
result in the audio driver not loading or operating properly. Conversely, the
audio driver performance and resource usage may be fine-tune by adjusting
these configuration settings. For further information about the configuration
options, see the corresponding source files.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-4 Freescale Semiconductor

Audio Driver

2.4.3.1 i.MX233 Audio Driver Configuration Options

Table 2-3 gives the compile-time configuration options of the i.M X233 stereo audio driver.
Table 2-3. i.MX233 Audio Driver Configuration Options (oemsettings.h)

Configuration Setting

Name Description
INCHANNELS Defines the number of input/recording channels that are available. Can be set to either 1 or 2.
Default is 2.
OUTCHANNELS Defines the number of output/playback channels that are available. Can be set to either 1 or 2.
Default is 2.

BITSPERSAMPLE The number of data bits per audio sample. This must match with the HWSAMPLE typedef and
the AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

HWSAMPLE A typedef that defines the size of each audio data word. This must match the
BITSPERSAMPLE and AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

USE_MIX_SATURATE Enable a check in the software mixer code to guard against saturation. Default is 1.

AUDIO_SAMPLE_MAXand | The valid range of each audio data word. Values that are outside of this range is clipped to the
AUDIO_SAMPLE_MIN max/min value by the saturation protection code if USE_MIX_SATURATE is set to 1. Default is
32767 and -32768.

ENABLE_MIDI If set to 1, MIDI code is included in the driver (~4 Kbytes).

USE_OS_MIXER If set to 1, the driver does not do any internal mixing and relies on the OS mixer.

24.4 DMA Support

The audio driver usesthe DMA controller to transfer digital audio data between the audio application and
the audio FIFOs. This minimizes the processing required by the ARM core and can also reduce the power
consumption during audio playback and recording operations. This section describes the audio driver
DMA implementation issues and trade-offs, and the available compile-time DMA-related configuration
options.
To use DMA transfers, the following items must be properly allocated, managed, and deallocated by the
device driver:

» The DMA data buffers where the application datais kept

* The DMA buffer descriptors, which are used by the DMA hardware to manage the state of each

DMA buffer

The DMA data buffers can be allocated from either the internal memory (which is provided by on-chip
internal RAM) or external memory (which is provided by off-chip external DRAM).

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 2-5

Audio Driver

Table 2-4 describes the issues and considerations for the type of memory to usefor the DMA data buffers.

Table 2-4. DMA Memory Allocation Issues and Considerations

Memory

- Memory Usage Issues and Considerations
Region

Internal * Allows the external memory to be placed in a low power mode while the DMA data buffers are being

processed to reduce system power consumption (as long as nothing else on the system requires access to
external memory)

Less power is required to access the internal RAM

The total size of the internal memory region is limited

The limited amount of internal memory may have to be shared by multiple device drivers

The entire internal memory region must be manually managed with predefined addressed ranges being
reserved for each specific use

External * The total size of the external memory is typically much greater than the size of the internal memory. This
provides much greater flexibility in selecting the size of the DMA data buffers.

* There is typically no need to worry about the possible impact and memory requirements of any other device
driver.

e Memory allocation is handled using the standard Windows Embedded CE 6.0 system calls

* The external memory cannot be placed into a low power mode while the DMA is active

Table 2-5 describes how to configure the build so that the audio driver alocatesits DMA data buffersfrom
either the internal or externa memory. The DMA buffer descriptors can aso be allocated either from
internal or external memory.

Table 2-5. Configuration Options for Internal or External Memory DMA Data Buffer Allocation

Memory

Region Required Configuration Options

Internal | Set the BSP_AUDIO_DMA_BUF_ADDR macro in bsp_cfg.h to an address within the internal memory region.
Set BSP_AUDIO_DMA_BUF_SIZE to the total size (in bytes) for all DMA data buffers that is allocated.

External | Make sure that the BSP_AUDIO_DMA_BUF_ADDR macro is commented out in bsp_cfg.h

2.4.41 i.MX233 Audio DMA Buffer Use

The i.M X233 audio driver supports both playback and recording. Both playback function and recording
function allocate DMA buffer from external memory.

24.5 Power Management

The primary method for limiting power consumption in the audio driver isto gate off al clocksto the SS|
when those clocks are not needed, and to turn off all audio hardware components at the end of each audio
stream. Thisisaccomplished through the DDK Clock SetGatingM ode function call and the various PMIC
audio APIs. In the BSP, the audio modul e can be disabled, and its clocks are turned off whenever there are
no active audio 1/0O operations. The clock gating and the disabling of related audio hardware components
is handled automatically within the audio module and requires no additional configuration or code
changes.

The audio driver operates correctly when resuming after the power down mode.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-6 Freescale Semiconductor

Audio Driver

2.4.5.1 PowerUp

Thisfunction resumes an audio I/0O operation that was previously terminated by calling the PowerDown()
API. It begins by restoring power and re-enabling all of the required audio hardware components. Then
this function restarts the audio DMA transfers to complete the powerup process for the audio driver.

This function isintended to be called only by the Power Manager and must not block or depend on any
hardware interrupts. Therefore, all required timed delays must be handled by using a polling loop instead
of any of the normal wait for an event to be signalled functions. This functionality is currently handled
by IOCTL_POWER_SET and the function isjust a stub.

2.4.5.2 PowerDown

Thisfunction suspendsall currently active audio 1/O operationsjust beforethe entire system entersthelow
power state. This function is intended to be called only by the Power Manager and must not block or
depend on any hardware interrupts. So, first thing this function must do isto signal al of the possible wait
events that the normal audio driver thread may currently be waiting on. If thisfunction does not signal all
waiting events, the PowerDown thread may be blocked waiting for acritical section that iscurrently being
held by the normal audio driver thread. This deadlocks the entire system and prevent it from properly
entering the low power state.

When al waiting events are signalled, the normal audio thread is guaranteed (because of priority
inversion) to run to the point where it releases the required critical section and allows the PowerDown
thread to proceed without the possibility of deadlocking.

When the normal audio thread is not executing inside any critical section, the PowerDown thread can
safely proceed to disable all active audio DMA operations and to power down the associated audio
hardware components. Once thisis done, the audio driver remainsin alow power state until the PowerUp
functioniscalled by the Power Manager. Thisfunctionality iscurrently handled by IOCTL_POWER_SET
and the function isjust a stub.

2.4.5.3 IOCTL_POWER_SET

This Power Manager IOCTL isimplemented for the audio driver. All system suspend and resume
functions are handled by the |IOCTL, which manages the PowerDown and PowerUp functionality. For all
platforms, the following registry entry must be defined:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ Audi 0]

"1 0 ass"="{ A32942B7- 920C- 486b- BOE6- 92A702A99B35} " ; PMCLASS_GENERI C_DEVI CE

Thisregistry entry isrequired for proper power management functionality.

2.4.6 Audio Driver Registry Settings

At least oneregistry key must be properly defined so that the Device Manager |oads the audio driver when
the system is booted. Additional registry keys may also be defined and changed at runtime, to configure
the operation of the audio driver.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 2-7

Audio Driver

2.4.6.1 i.MX233 Audio Driver Registry Settings

The following registry keys are required for the Device Manager to properly load the i.M X233 audio
device driver during the device normal boot process. These registry settings should not be modified. If the
settings are missing or incorrectly defined, then the audio driver may not be loaded and all audio functions
are disabled.

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ Audi 0]
"Prefix"="WAV"
"Dl "="wavedev2_nx233.dl I "
"Il ndex" =dwor d: 2
"Order"=dword: 4
"Priority256"=dword: 95
"I A ass"=multi_sz:"{A32942B7-920C- 486b- BOE6- 92A702A99B35} ",
"{37168569- 61C4- 45f d- BD54- 9442C7DBA46F} "
; Override wave APl | oad order to follow audio driver
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ WAPI MAN]
"Order"=dword: 5
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ WAPI MAN_ACM
"Order"=dword: 5

2.5 Unit Test

The audio driver is tested using the Waveform Audio Driver Test suite included with the Windows
Embedded CE 6.0 Test Kit (CETK). The test suite includes automated and interactive tests used to test
playback and recording functions.

2.5.1 Unit Test Hardware
Table 2-6 identifies the hardware needed to run the unit tests.

Table 2-6. Hardware Requirements

Requirement Description

Stereo headphones or | This is required to confirm that audio playback is working. The headphones or earphones
earphones should have a 3.5 mm jack

Mono microphone —

2.5.2 Unit Test Software
Table 2-7 lists the software required to run the unit tests.

Table 2-7. Software Requirements

Requirement Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation
wavetest.dll Test.dll file

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-8 Freescale Semiconductor

Audio Driver

2.5.3 Building the Audio Driver CETK Tests

The audio driver tests come pre-built as part of the CETK. No steps are required to build these tests. The
wavetest.dll fileisincluded with the CETK filesin the following location:

[Drive]:\Program Fil es\ M crosoft Pl atform Builder\6.00\cepb\wcet k\ ddt k\ ar mv4l

254 Running the Audio Driver CETK Tests

The command line for running the audio driver test is:

tux —o —d wavet est

Alternatively, usethe CETK interfaceinthe Platform Builder. If thefull-duplex operation is not supported,
the command lineis:

tux -o -d wavetest -c “-e”

For detailed information about the audio driver tests, see the Platform Builder Help at the following
location:

Windows Embedded CE Test Kit > CETK Testsand Test Tools> CETK Tests> Audio Tests >
Waveform Audio Driver Test

2.6 System Level Audio Driver Tests

In addition to running the audio driver testsin the CETK, various system-level tests that involve the use
of the audio driver can be performed. The following sections describe how to test the audio driver without
using the CETK.

2.6.1 Checking for a Boot-Time Musical Tune

The normal Windows Embedded CE 6.0 boot procedure includes playing ashort musical tune just before
displaying the touch panel calibration screen. At this point, the audio driver should already have
successfully loaded and the tune should be heard if a headset is attached to the stereo output jack.

2.6.2 Confirming Touchpanel Taps and Keypad Key Presses

The normal Windows Embedded CE 6.0 system configuration includes the ability to playback a short
tapping sound when the stylus makes contact with the touchpanel. These taps should be heard when a
headset is attached to the stereo output jack. A click should also be heard when a key on the keypad is
pressed.

2.6.3 Playing Back Sample Audio and Video Files Using the Media Player

The Microsoft-supplied Media Player application can be used to load and play avariety of audio and video
mediafilesin anumber of different formats. The only requirement isto include the software codecsin the
OS image that may be needed to decode the mediafile. The Media Player includes controls for pausing,
resuming, and stopping playback, and advancing playback to aspecific point. Volume and muting controls
are also provided.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 2-9

Audio Driver

2.6.4 Using the SDK Sample Audio Applications for Testing

The Windows Embedded CE 6.0 SDK that isincluded as part of the Platform Builder includes two
audio-related sample applications. The wavr ec sample application can be used to test the audio recording
function while the wavpl ay sample application provides a command line-based method of playing back
various mediafiles. For additional information about these sample applications, see the Platform Builder
Help at the following location:

Windows Embedded CE Features> Audio > Waveform Audio > Waveform Audio Samples

2.7 Audio Driver APl Reference

For detailed reference information for the audio driver, see the Platform Builder Help at the following
location:

Developing a Device Driver > Windows Embedded CE Drivers> Audio Drivers> Audio Driver
Reference > Waveform Audio Driver Reference

2.8 Audio Driver Troubleshooting Guide

This section describes the techniques to identify and fix the most common problems involving the audio
driver.

2.8.1 Checking Build-Time Configuration Options

Compile-time or link-time errors are probably occur due to incorrect or invalid configuration settings
defined in hwet xt . h OF hwet xt . cpp. See Section 2.4.3.1, “i.M X233 Audio Driver Configuration Options,”
for information about the device driver build configuration options. Follow the build procedure
documented in the Release Notes to compile and link the audio driver. Confirm that the required Platform
Builder catalog items areincluded in the OS design. See Table 2-1 for alist of the required and
recommended audio driver-related catal og items.

2.8.2 Media Player Application Not Found

Make sure that the Media Player catalog item isincluded in the OS design. The Media Player application
isnot included in the final system image if the catalog item is not selected. For more information on this
topic, see the Platform Builder Help at the following location:

Windows Embedded CE Features> Applications and Services> Windows M edia Player for
Windows Embedded CE

2.8.3 Media Player Fails to Load and Play an Audio File

This problem istypically caused by failing to include the appropriate software codec that is required to
handlethe audio fileformat. Seethelist of recommended audio driver catalog itemsin Table 2-1 and make
sure that support for the desired audio file format is included.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

2-10 Freescale Semiconductor

Chapter 3
Backlight Driver

The backlight driver uses the hardware provided by the display module on the device, to control the
backlight on the Liquid Crystal Display (LCD) panel. The backlight driver interfaces with the Windows
CE Power Manager to provide timed control over the display backlight. A timeout interval controls the
length of time that the backlight stays on. The backlight driver is power-manageable, and it meets the
requirements of a power-manageable device by implementing the required power management 1/0
Controls (IOCTLs). The backlight driver uses its own defined timer to set the backlight power states.

3.1 Backlight Driver Summary

Table 3-1 provides a summary of source code location, library dependencies and other BSP information.
Table 3-1. Backlight Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2
SOC Common Path .\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\BACKLIGHT
SOC Specific Path N/A

Platform Specific Path .\PLATFORM\<Target Platform>\SRC\DRIVERS\BACKLIKGHT

Driver DLL backlight.dll
SDK Library N\A
Catalog Item Third Party > BSP > Freescale i.MX233 EVK: ARMV4I| > Device Drivers > Backlight

SYSGEN Dependency SYSGEN_BATTERY=1

BSP Environment Variables |BSP_BACKLIGHT=1

3.2 Supported Functionality

The backlight driver enables the 3-Stack System to provide the following support:
1. Conformsto the Device Manager streams interface
2. Supports 0-10 level adjustment
3. Supports power management mode: full on or full off

3.3 Hardware Operation

This section explains about the hardware operation

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 3-1

Backlight Driver

3.3.1 i.MX233-EVK Hardware Operation

The hardware consists of a PWM implemented by channel 2 of PWM controller.This PWM is dedicated
to drive the backlight of LCD.It can be configured by adjusting the duty cycle in channel 2 of PWM
controller.

3.4 Software Operation

The backlight driver is a stream interface driver and is accessed through the file system APIs. To use the
backlight driver, a handle to the device must first be created using the Cr eateFile function. Subsequent
commandsto the device are issued using the Devicel oControl function with IOCTL codes specifying the
desired operation.

The control of the backlight operation requires a call to the Devicel oControl function. Thefollowing are
the possible choices available for the user:
* |OCTL_POWER_CAPABILITIES, register and inform the Power Manager of capabilities
* |OCTL_POWER_QUERY, where the new power state is returned
* |OCTL_POWER_SET, interfaceto the hardware that controlsthe backlight through the PDD layer
* |OCTL_POWER_GET, where the current power state is returned

3.4.1 Backlight Driver Registry Settings
This section explains about the backlight driver registry settings.

3.4.11 i.MX233-EVK Backlight Driver Registry Setting

The following registry keys are required to properly load backlight driver:
[HKEY_CURRENT_USER)\ Cont r ol Panel \ Backl i ght]

"Bat t Backl i ght Level "=dword: 7F ; Backlight |evel settings. OxFF = Full On
"ACBackl i ght Level "=dword: 7F ; Backlight |evel settings. OxFF = Full On
"BatteryTi neout "=dword: 1E ; 30 seconds

" ACTi meout " =dwor d: 78 ; 2 mnutes

"UseExt "=dword: 1 ; Enabl e timeout when on external power
"UseBattery"=dword: 1 ; Enabl e timeout when on battery

"AdvancedCPL" =" AdvBackl i ght" ; Enabl e Advanced Backlight control panel dialog

3.4.2 Power Management

The backlight driver consumes power primarily through the operation of the LCD panel backlight. To
facilitate the management of this module, the backlight driver implements the IOCTL code
IOCTL_POWER_SET.

3.4.2.1 PowerUp

This function is not implemented for the backlight driver.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

3-2 Freescale Semiconductor

Backlight Driver

3.4.2.2 PowerDown

This function is not implemented for the backlight driver.

3.4.2.3 IOCTL_POWER_SET

The backlight driver implements the IOCTL_POWER_SET IOCTL API with support for the DO (Turn
On) and D4 (Set intensity to 0) power states. These states are handled in the following manner:

» DO—Backlight is enabled for LCD panel and the intensity can be adjusted through the PDD layer
» D4—Backlight intensity is set to O which isthe lowest level of backlight

3.5 Unit Test

The backlight driver is tested by the application test. The following section explains about the hardware
and software regquirements for unit tests.

3.5.1 Unit Test Hardware
This section explains about the hardware required to run the backlight application test.

3.5.1.1 i.MX233-EVK Unit Test Hardware

Table 3-2 lists the required hardware to run the backlight application test.
Table 3-2. Hardware Requirements

Requirement Description

SAMSUNG LMS430HF02 WQVGA Panel | Display panel required for display of graphics data

3.5.2 Unit Test Software
Table 3-3 lists the required software to run the backlight application test.

Table 3-3. Software Requirements

Requirement Description
backlight.dll The backlight driver to implement the backlight functions
Advbacklight.dll The file implements adding an Advanced button to the Backlight Control Panel application

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 3-3

Backlight Driver

3.5.

3 Running the Backlight Application Test

Table 3-4 lists the backlight application test.

Table 3-4. Backlight Application Test

Test Case

Entry Criteria/Procedure/Expected Result

Backlight Level

Entry Criteria: N/A

Procedure:

1.

ok wN

Go to Setting > Control Panel

Double click on the Display icon, then click on the Backlight tab

Click on the Advanced... button

Modify the backlight level setting for both battery and external power
Observe that the backlight level behaves according to the new setting

Expected Result: N/A

Backlight Timeout

Entry Criteria: N/A

Procedure:

1.
2.
3.

Go to Setting > Control Panel
Double click on the Display icon, then click on the Backlight tab

Modify the backlight timeout setting for both battery and external power, and then click on OK

button to apply the changes

Observe the time it takes for the backlight to go out, make sure it correspond with the new

settings entered in step 3

Expected Result: N/A

3.6

Backlight APl Reference

The API for the backlight driver conformsto the stream interface and exposes the standard functions. For
more information, see Platform Builder Help at the following location:

Developing a Device Driver > Windows CE Embedded Drivers> Streams I nterface Drivers

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

3-4

Freescale Semiconductor

Chapter 4
Battery Driver

The battery driver module provides information about the battery level to the OS, and decides whether to
execute the charging or discharging operation. It will aso report battery capability and power supply state

to OS periodically by measuring the battery voltage. When charging, current-limit and voltage-limit is
maintained to protect the charger and battery.

4.1

Battery Driver Summary

Table 4-1 provides a summary of source code location, library dependencies and other BSP information.

Table 4-1. Battery Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC N/A
SOC Common Path N/A
SOC Specific Path N/A

Platform Driver Path

.\PLATFORM\<Target Platform>\SRC\DRIVERS\BATTDRVR

Import Library N/A
Driver DLL battery.dll
Catalog Item Third Party > BSP > Freescale i.MX233 EVK:ARMV4| > Device Drivers >Battery

SYSGEN Dependency

SYSGEN_BATTERY

BSP Environment Variables

BSP_NOBATTERY=
BSP_BATTERY=1(Only for Real Battery)

4.2

Supported Functionality

The battery driver enables the system to provide the following support:

g s~ wDdPE

Conforms to the battery driver interface

Supports two power management modes, full on and full off
Detects power source changes and reports current power source
Supports charging of Lion battery

Auto stop charging if the die temperature is too high

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

4-1

Battery Driver

4.3 Hardware Operation

The battery driver isimplemented with the power module of i.MX233. The power module contains
on-chip analog to control charging function (including voltage monitor and current limiter). The LRADC
channel 7 isused to get the level of voltage in the battery. Thislevel isthen used in determining the
capacity level of the battery.

4.3.1 Conflicts with Other SoC Peripherals

No conflicts.

4.4 Software Operation

After initialization, the BatteryPDDGetStatus() function is called periodically to get the status of the
battery. This function fills the structure SY STEM_POWER_STATUS EX2 and returnsit to the system.
The Power Properties window is updated based on the valuesin this structure.

4.4.1 Battery Driver Registry Settings
The following registry keys are required to properly load battery driver:

; These registry entries |load the battery driver. The I1Cl ass value nust match
; the BATTERY_DRI VER_CLASS definition in battery.h -- this is how the system
; knows which device is the battery driver. Note that we are using
; DEVFLAGS_NAKEDENTRI ES with this driver. This tells the device manager
; toinstantiate the device with the prefix named in the registry but to | ook
; for DLL entry points without the prefix. For exanple, it will ook for Init
; instead of BAT_Init. This allows the prefix to be changed in the registry (if
desired) without editing the driver code.
[HKEY_LOCAL _ I\/ACHI NE\ Drivers\Builtln\Battery]
"Prefix"="BAT"
"D | "="battdrvr. dr
"Fl ags" =dwor d: 8 ; DEVFLAGS_NAKEDENTRI ES
"Order"=dword: 3
"MaxBatt eryVol t age" =dwor d: 1068 ; 4200nV
"BatteryVolt ageH ghLevel "=dword: E74 ; 3700nV
"BatteryVoltageLowlLevel "=dwor d: C80 ; 3200mv
"Pol | I nterval "=dword: 1F4; battery polling interval, in mlliseonds(0.5 seconds)
"1 Class"="{DD176277- CD34- 4980- 91EE- 67DBEF3D8913} "

[HKEY_LOCAL_MACHI NE\ Syst em Event s]
"SYSTEM Bat t er yAPl sReady"="Battery Interface APIs"

4.4.2 Power Management

There is no additional power management implementation for battery driver.

4.5 Unit Test

The battery driver can be tested, by switching on the system and watching the power properties window.
When charging, the charge capacity of the battery can be seen increasing until it is charged to 100%.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

4-2 Freescale Semiconductor

Battery Driver

NOTE
It is not allowed to plug in or remove out the battery after boot up device.

4.5.1 Unit Test Hardware

Thei.MX233-EVK board is required. For real battery mode, switch S12 to the right side and connect a
real lion battery to J13 or J21; For fake battery mode, switch S12 to the left side.

4.6 Battery API Reference

The API for the battery driver conforms to the stream interface and exposes the standard functions. For
more information, see Platform Builder Help at the following location:

Developing a Device Driver > Windows Embedded CE Drivers> Battery Drivers

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 4-3

Battery Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

4-4 Freescale Semiconductor

Chapter 5
Boot from Secure Digital/MultiMedia Card (SD/MMC)

Booting support from SD/MMC includes the following components:
» Boot Image
» Storage for OS binary image (NK)

Boot Image is stored in the SD/MMC card using a special tool, and NK is stored in the FAT partition. The
user can select to boot the system from the SD/MMC card, after the booting procedure.

5.1 Boot from SD/MMC Summary

Table 5-1 provides a summary of source code location, library dependencies and other BSP information.
Table 5-1. Boot from SD/MMC Summary

Driver Attribute Definition

Target Platform (TGTPLAT) |iMX233-EVK

Target SOC N/A
SOC Common Path N/A
SOC Specific Path N/A
Platform Specific Path .\PLATFORM\<Target Platform>SRC\BOOTLOADER
.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\BOOT\FMD\SDMMC

Driver DLL N/A

SDK Library N/A
Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) | N/A

5.2 Supported Functionality

The Boot support from SD/MMC includes:

Supports boot from low or high capacity SD/MMC card
Supports storing OS images to SD/MMC flash

Supports loading OS image from SD/MMC flash to RAM
Supports file system on bootable SD/MMC card

A owbhpRE

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 5-1

Boot from Secure Digital/MultiMedia Card (SD/MMC)

5.3 Hardware Operation

This section explains about the hardware operation of the controller linked with SD/MMC.

5.3.1 Conflicts with Other Peripherals and Catalog Iltems

Onthei.MX233-EVK platform, SSP1 controller is shared between SD/MMC and Ethernet, since both SD
and MMC cannot operate at the same time. If the system is booted from SD/MMC card, before using
Ethernet download and/or KITL, the card must be removed from the slot in order for Ethernet to function
properly. Or, USB-RNDIS can be used for download and KITL to avoid plug or unplug of card.

5.4 Software Operation

On startup while booting from SD/MMC, the Boot ROM is responsible for initializing and bringing the
SD/MMC memory to a proper working state. The Boot ROM executes the boot image and boot up the
EBOOQOT, and then passes control to bootloader which in turn brings up the OS.

In the EBOOT, users can select the booting mode to SDMM C Storage. Then the EBOOT will read the
NK from the FAT partition of the SD/MMC card, and boot up the system.

5.5 Card Flashing Tool

Flashing tool cfimager.exe is used to write the boot image to the SD/MMC. The tool islocated in the
directory <% W NCEROOT%\ SUPPORT\ TOOLS\ COMMON CFI MAGER. Users can follow the instructions in the
readme.txt file in that folder to write the boot image and boot up the system.

5.5.1 Write Image (EBOOT) to SD Card

Plug SD into Card Reader on PC, and run the following command. The *.sb files to flash are copied to
<% W NCEROOT%\ SUPPORT\ TOOLS\ i MX233- EVK\ SDI MAGE. The user can add that path before the filename.

cfimuger -f eboot.sb -d <card reader drive, no col on>
After successful operation, users can copy nk.bin from release directory to <card reader drive>:\.
If users want to boot OS image (NK) without the bootloader (EBOQOT), change the command to

cfimuger -f nk.sb -d <card reader drive, no col on>

5.5.2 System Boot

Plug the flashed card into the board, ensure boot switch is set to the defined value and that the appropriate
fuses are blown, then power on the board.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

5-2 Freescale Semiconductor

Chapter 6
Chip Support Package Driver Development Kit (CSPDDK)
The Chip Support Package Driver Development Kit (CSPDDK) provides an interface to access peripheral

features and SOC configuration shared by the system. The CSPDDK executesasadevicedriver DLL and
exports functions for the following SCC components:

« CLOCK

« GPIO

« |OMUX

« DMA(APBH DMA and APBX DMA)
« POWER

6.1 CSPDDK Driver Summary

Table 6-1 provides a summary of source code location, library dependencies and other BSP information.
Table 6-1. CSPDDK Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2
SOC Specific Path .\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPDDK
Platform Driver Path .\PLATFORM\<Target Platform>SRC\DRIVERS\CSPDDK
Driver DLL cspddk.dll
SDK Library N/A
Catalog Item N/A
SYSGEN Dependency N/A
BSP Environment Variables BSP_NOCSPDDK=

6.2 Supported Functionality

The CSPDDK meets the following requirements:

1. Supports an interface that allows synchronized inter-process access to the following set of shared
SoC resources:

— IOMUX (DDK_IOMUX)
— GPIO (DDK_GPIO)
— DMA (DDK_APBHDMA and DDK_APBXDMA)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-1

Chip Support Package Driver Development Kit (CSPDDK)

— CLK (DDK_CLK)
— POWER(DDK_POWER)
2. Exposes exported functions that can be invoked without incurring a system call (for example, not

astream driver)
6.3 Hardware Operation

See the hardware specification document for detailed operation and programming information.

6.3.1 Conflicts with Other Peripherals and Catalog Iltems
This section explains about the CSPDDK conflicts with other peripherals and catalog items.

6.3.1.1 Conflicts with SoC Peripherals
The following section explains about the CSPDDK conflicts with SoC peripherals.

6.3.1.1.1 iMX233 Peripheral Conflicts
See the .M X233 hardware specification document for possible conflicts.

6.3.1.2 Conflicts with Hardware Peripherals

No conflicts.

6.4 Software Operation

This section explains about the CSPDDK software operation.

6.4.1 Communicating with the CSPDDK

Similar to the CEDDK DLL, the CSPDDK DLL does not require any specia initialization. All of the
initialization required by the CSPDDK is performed when the DLL isloaded into the respective process
space. Drivers that want to utilize the CSPDDK simply need to link to the CSPDDK export library and
invoke the exported functions.

6.4.2 Compile-Time Configuration Options

No options.

6.4.3 Registry Settings

There are no registry settingsthat need to be modified to use the CSPDDK driver. Since most drivers need
to use CSPDDK functionality, the CSPDDK should be one of the first DLLs loaded by Device Manager.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-2 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

6.4.4 Power Management

The CSPDDK exposes interfaces that allow driversto self-manage power consumption by controlling
clocking and pin configuration. The CSPDDK executes as a shared DLL and does not implement the

Power Manager driver IOCTLs or the PowerUp or PowerDown stream interface. However, the CSPDDK

functions are invoked by other drivers during power state transits.

6.5 Unit Test

Due to the heavy use of the CSPDDK routines by other drivers on the system, currently thereis no
additional test case.

6.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference

The DDK_CLK interface allows device driversto configure and query system clock settings.

6.5.1.1 DDK_CLK Enumerations

Table 6-2 lists all the programming elementsin the DDK_CLK enumerations.
Table 6-2. DDK_CLK Enumerations

Programming Element Description
DDK_CLOCK_SIGNAL Clock signal name for querying/setting clock configuration
DDK_CLOCK_GATE_INDEX Index for referencing the corresponding clock gating control bits within the CCM
DDK_CLOCK_GATE_MODE Clock gating modes supported by CCM clock gating registers
DDK_CLOCK_BAUD_SOURCE Input source for baud clock generation
DDK_DVFC_SETPOINT Frequency/voltage setpoints supported by the DVFC driver

6.5.1.2 DDK_CLK Functions
The following are the functions that are used to set DDK_CLK.

6.5.1.2.1 DDKClockSetGatingMode
This function sets the clock gating mode of the peripheral.

BOCOL DDKC ockSet Gat i nghvbde(
DDK_CLOCK_GATE_I NDEX i ndex,
DDK_CLOCK_GATE_MODE npde)

Parameters

index [in] Index for referencing the peripheral clock gating control bits
mode [in] Requested clock gating mode for the peripheral

Return Values Returns TRUE if successful, otherwise returns FALSE

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

6-3

Chip Support Package Driver Development Kit (CSPDDK)

6.5.1.2.2 DDKClockGetGatingMode

This function retrieves the clock gating mode of the peripheral.

BOCOL DDKC ockGet Gat i nghvbde(
DDK_CLOCK_GATE_I NDEX i ndex,
DDK_CLOCK_GATE_MODE *pMode)

Parameters

index [in] Index for referencing the peripheral clock gating control bits
pMode [out] Current clock gating mode for the peripheral

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.3 DDKClockGetFreq

This function retrieves the clock frequency in Hz for the specified clock signal.

BOCOL DDKC ockGet Freq(
DDK_CLOCK_SI GNAL si g,
U NT32 *freq)

Parameters

sg [in] Clock signal

freq [out] Current frequency in Hz

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.4 DDKClockSetFreq
This function sets the clock frequency in Hz for the specified clock signal.

BOCOL DDKC ockSet Freq(
DDK_CLOCK_SI GNAL si g,

U NT32 freq)
Parameters
sg [in] Clock signal.
freq [in] Requested frequency in Hz.
Return Values Returns TRUE if successful, otherwise returns FAL SE.

6.5.1.25 DDKClockConfigBaud

This function configures the input source clock and dividers for the specified CCM peripheral baud clock
output.

BOCOL DDKC ockConfi gBaud(
DDK_CLOCK_SI GNAL si g,
DDK_CLOCK_BAUD_SOURCE sr c,
U NT32 preDiv,

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-4 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

Ul NT32 post Di v)

Parameters

sg [in] Clock signal to configure

src [in] Selectsthe input clock source

preDiv [in] Specifies the value programmed into the baud clock predivider
postDiv [in] Specifies the value programmed into the baud clock postdivider
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.6 DDKClockSetpointRequest

This function requests the DVFC driver to transition to a setpoint that meets or exceeds the voltage and
clocking requirements of the setpoint being requested. This function optionally blocks until the setpoint
reguest has been granted.

BOCOL DDKC ockSet poi nt Request (
DDK_DVFC_SETPO NT set poi nt,

BOCOL bBI ock)
Parameters
setpoint [in] Specifies the setpoint to be requested
bBlock [in] Set TRUE to block until the setpoint has been granted; set FALSE to return
immediately after the request has been submitted
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.7 DDKClockSetpointRelease
This function releases a setpoint previously requested using DDK Clock SetpointRequest.

BOOL DDKC ockSet poi nt Rel ease(
DDK_DVFC_SETPO NT set poi nt)

Parameters
setpoint [in] Specifies the setpoint to be rel eased
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.1.2.8 DDKClockGetSharedConfig

This function obtains areference to the global shared clock configuration data structure. Thisis intended
to be used by the DVFC driver.

PDDK_CLK_CONFI G DDKC ockGet Shar edConfi g(VO D)

Parameters None
Return Values Returns a pointer to the clock configuration data structure.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-5

Chip Support Package Driver Development Kit (CSPDDK)

6.5.1.2.9 DDKClockLock
This function requests alock of the global shared clock configuration data structure.

VO D DDKd ockLock(VA D)
Parameters None

Return Values None

6.5.1.2.10 DDKClockUnLock

This function releases alock of the global shared clock configuration data structure.

VO D DDKd ockUnLock (VO D)

Parameters None
Return Values None

6.5.1.3 DDK_CLK Examples
The following are the example code for the DDK_CLK.
Example 6-1 shows the sample code for CSPDDK clock gating.

Example 6-1. CSPDDK Clock Gating
#i nclude “csp. h” /'l Includes CSPDDK definitions

/] Enabl e |1 2C1 peripheral clock
DDKCl ockSet Gat i nghvbde(DDK_CLOCK_GATE_| NDEX_| 2C1, DDK_CLOCK_GATE MODE_ENABLED ALL);

/] Disable 12Cl1 peripheral clock
DDKCl ockSet Gat i ngMbde(DDK_CLOCK_GATE_| NDEX_| 2C1, DDK_CLOCK_GATE_MODE_DI SABLED) ;

Example 6-2 showsthe sample code for CSPDDK clock rate query.

Example 6-2. CSPDDK Clock Rate Query
#i nclude “csp. h” /'l Includes CSPDDK definitions

U NT32 freq;

/1 Query the current bus clock
DDKCl ockGet Fr eq(DDK_CLOCK_SI GNAL_AHB, &freq);

6.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference

The DDK_GPIO interface allows device drivers to utilize the GPIO ports. Each GPIO port hasasingle
interrupt request line that is shared for all port pins. In addition, configuration, status, and dataregisters
are shared. The DDK_GPIO provides saf e access to the shared GPIO resources.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-6 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

6.5.2.1 DDK_GPIO Enumerations

Table 6-3 lists al the programming elementsin the DDK_GPIO enumerations.
Table 6-3. DDK_GPIO Enumerations

Programming Element Description

DDK_GPIO_BANK Specifies the GPIO module instance

DDK_GPIO_CFG Specifies the configuration of the GPIO pins

6.5.2.2 DDK_GPIO Functions

The following section explains about the DDK_GPIO functions.

6.5.2.2.1 DDKGpioConfig

This function configures the gpio_pin as input/output, sets the drive strength, voltage, and as interrupt
selection (if applicable).

BOOL DDKGpi oConfi g(DDK_I OMUX_PI N gpi o_pi n,
DDK_GPI O_CFG gpi o_cfg,
DDK_| OMUX_PAD DRI VE dri ve,
DDK_| OMUX_PAD_VOLTAGE vol t age,
BOOL bPul | _Enabl e)

Parameters

gpio_pin [in] functional pin name

gpio_cfg [in] structure to configure the pin as input/output, interrupt selection.
drive [in] set the gpio_pin drivestrength.

voltage [in] set the gpio_pin voltage.

bPull_Enable [in] enable/disable the pullup for the gpio_pin.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.2 DDKGpioEnableDataPin
This function sets the value in the register bit to drive on the gpio_pin.

BOOL DDKGpi oEnabl eDat aPi n(DDK_I OMUX_PI N pi n, Ul NT32 dat a)

Parameters

pin [in] functional pin name

data [in] datato be written to the pin.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.3 DDKGpioWriteDataPin
This function sets the value in the register bit to drive on the gpio_pin.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-7

Chip Support Package Driver Development Kit (CSPDDK)

BOOL DDKGpi oW i t eDat aPi n(DDK_I OMUX_PI N pi n, U NT32 dat a)

Parameters

pin [in] functional pin name

data [in] datato be written to the pin.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.4 DDKGpioReadDataPin
This function reads the GPIO port data from the specified pin.

BOOL DDKGpi oReadDat aPi n(DDK_I| OMUX_PI N pi n, U NT32 *pDat a)

Parameters

pin [in] GPIO pin [0-31].

pData [out] pointsto buffer for data read. Data will be shifted to L SB.
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.5 DDKGpioReadintr
This function reads register for the interrupt status.

BOOL DDKGpi oReadl nt r (DDK_I OMUX_PI N pin, U NT32 *pData)

Parameters

pin [in] functional pin name

pData [out] pointer to the data read.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference

TheDDK_IOMUX interfacealowsdevicedriversto configure signal multiplexing and pad configuration.
This control resides inside the IOMUX registers and is shared for the entire system. The DDK_IOMUX
support allows drivers to dynamically update and query their signal multiplexing and pad configuration.

6.5.3.1 DDK_IOMUX Enumerations

Table 6-4 lists al the programming elementsin the DDK_IOMUX enumerations.
Table 6-4. DDK_IOMUX Enumerations

Programming Element Description

DDK_IOMUX_PIN Specifies the functional pin name used to configure the IOMUX.

DDK_IOMUX_PIN_MUXMODE | Specifies the mux mode for a signal

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-8 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

Table 6-4. DDK_IOMUX Enumerations (continued)

Programming Element Description

DDK_IOMUX_PAD_DRIVE Specifies the drive strength for a pad; if no DRIVE bit for a PAD, the
DDK_IOMUX_PAD_DRIVE_NULL should be set.

DDK_IOMUX_PAD_PULL Specifies the pull-up/pull-down/keeper configuration for a pad

DDK_IOMUX_PAD_VOLTAGE Specifies the driver voltage for a pad, either 1.8 V or 3.3 V

6.5.3.2 DDK_IOMUX Functions
This sections explains about the DDK_IOMUX functions.

6.5.3.2.1 DDKlomuxSetPinMux
This function sets the IOMUX mux for the specified IOMUX pin.

BOOL DDKI ormux Set Pi nMux(DDK_I OMUX_PI N pi n, DDK_I OMUX_PI N_MUXMODE nuxnode)

Parameters

pin [in] functional pin name used to configure IOMUX HW_PINCTRL_MUXSEL
muxmode [in] MUX_MODE configuration.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.3.2.2 DDKlomuxGetPinMux
This function gets the IOMUX mux configuration for the specified IOMUX pin.

BOOL DDKI omuxGet Pi nMux(DDK_| OMUX_PI N pin, DDK_I OMUX_PI N_MUXMODE * pMixnode)

Parameters

pin [in] functional pin name used to select the IOMUX output or input path that will
be returned.

pMuxmode [out] MUX_MODE configuration.

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.3.2.3 DDKlomuxSetPadConfig
This function sets the IOMUX pad configuration for the specified IOMUX pad.

BOCOL DDKI ormux Set PadConf i g(DDK_I OMJUX_PI N pi n,
DDK_| OMUX_PAD DRI VE dri ve,
DDK_| OMUX_PAD PULL pul I,
DDK_| OMUX_PAD_VOLTAGE vol t age)
Parameters

pad [in] functional pad name used to select the pad that will be configured.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-9

Chip Support Package Driver Development Kit (CSPDDK)

drive [in] drive strength configuration.

pull [in] pull-up, pull-down, or keeper configuration.
voltage [in] drive voltage configuration

Return Values Returns TRUE if successful, otherwise returns FAL SE.

6.5.3.2.4 DDKlomuxEnablePullup
This function enables the IOMUX pad configuration for the specified IOMUX pad.

BOOL DDKI omuxEnabl ePul | up(DDK_I OMJX_PI N pi n, BOCL bEnabl e)

Parameters

pin [in] functional pin name used to select the IOMUX output or input path that will
be returned.

bEnable [in] enable or disable pullup

Return Values Returns TRUE if successful, otherwise returns FAL SE.

6.5.3.2.5 DDKlomuxGetPadConfig
This function gets the IOMUX pad configuration for the specified IOMUX pad.

BOOL DDKI omuxGet PadConf i g(DDK_I OMJX_PI N pi n,
DDK_| OMUX_PAD DRI VE *pDri ve,
DDK_| OMUX_PAD_PULL *pPul |,
DDK_| OMUX_PAD_VOLTAGE *pVol t age)

Parameters

pin [in] functional pin name used to select the IOMUX output or input path that will
be returned

pDrive [out] drive strength configuration

pPull [out] pull-up, pull-down, or keeper configuration

p\Voltage [out] drive voltage configuration

Return Values Returns TRUE if successful, otherwise returns FAL SE.

6.5.4 CSPDDK DLL DMA (DDK_DMA) Reference

TheDDK_DMA interfacealowsdevicedriversto allocate, configure, and control shared DM A resources.

6.5.4.1 DDK_DMA Functions
This section explains about the DDK_DMA functions.

6.5.4.1.1 DDKApbhStartDma

This function loads the NEXTCOMMAND address and increments the semaphore to start the DMA
operation for first command.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-10 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

BOOL DDKApbhsSt art Dma(Ul NT8 Channel , PVO D nmemAddr PA, Ul NT8 semaphor e)

Parameters

Channel [in] channel number

memAddrPA [in] pointer of memory’s physical address

semaphore [in] DMA semaphore

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.2 DDKApbhStopDma
This function stops the DMA channel.

BOOL DDKApbhSt opDma(Ul NT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.4.1.3 DDKApbhDmalnitChan
This function initializes the requested DMA channel.

BOOL DDKApbhDmal nit Chan(Ul NT8 Channel , BOOL bEnabl el rq)

Parameters

Channel [in] channel number

bEnablelrq [in] enable or disable theirg

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.4 DDKApbhDmaChanCLKGATE

This function clears the interrupt for respective channel.

BOOL DDKApbhDmaChanCLKGATE(Ul NT8 Channel , BOOL bd ockGat e)

Parameters

Channel [in] channel number

bClockGate [in] gate or un-gate the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.5 DDKApbhDmaClearCommandCmpltirq

This function clears the interrupt for respective channel.

BOCOL DDKApbhDmad ear CommandCnpl t I rq(Ul NT8 Channel)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-11

Chip Support Package Driver Development Kit (CSPDDK)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.4.1.6 DDKApbhDmaEnableCommandCmpltirq

This function enables the interrupt for respective channel.

BOCOL DDKApbhDmaEnabl eCommandCrpl t I rg(Ul NT8 Channel , BOOL bEnabl e)

Parameters

Channel [in] channel number

bEnablelrq [in] enable or disable the interrupt for respective channel
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.7 DDKApbhDmaResetChan
This function resetsthe AHB to APBH bridge channel based on the argument channel.

BOOL DDKApbhDmaReset Chan(Ul NT8 Channel , BOOL bReset)

Parameters

Channel [in] channel number

bReset [in] reset or un-reset the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.8 DDKApbhDmaFreezeChan
This function freezes the AHB to APBH bridge channel based on the argument channel.

BOCOL DDKApbhDmaFr eezeChan(Ul NT8 Channel , BOOL bFreeze)

Parameters

Channel [in] channel number

bFreeze [in] freeze or un-freeze the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.9 DDKApbhDmaGetPhore
This function gets the phore of respective channel.

Ul NT32 DDKApbhDnaGet Phore(Ul NT32 Channel)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-12 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

Parameters
Channel [in] channel number
Return Values Returns the virtual channel index if successful, otherwise returns NULL.

6.5.4.1.10 DDKApbxStartDma

This function loads the NEXTCOMMAND address and increments the semaphore to start the DMA
operation for first command.

BOOL DDKApbxSt art Dma(Ul NT8 Channel , PVO D memAddr PA, Ul NT8 semaphor e)

Parameters

Channel [in] channel number

memAddrPA [in] pointer of memory’s physical address

semaphore [in] DMA semaphore

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.11 DDKApbxGetNextCMDAR
This function gets the NEXTCOMMAND address.

Ul NT32 DDKApbxGet Next CMDAR(Ul NT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.4.1.12 DDKApbxStopDma
This function stops the DMA channel.

BOOL DDKApbxSt opDma(Ul NT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.4.1.13 DDKApbxDmalnitChan
This function initializes the requested DMA channel.

BOOL DDKApbxDmal nit Chan(Ul NT8 Channel , BOOL bEnabl el rq)

Parameters
Channel [in] channel number

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-13

Chip Support Package Driver Development Kit (CSPDDK)

bEnablelrq [in] enable/disable theirq
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.4.1.14 DDKApbxDmaGetActivelrq
This function gets the active irg status of DMA channel.

BOOL DDKApbxDmaGet Acti vel rg(Ul NT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.4.1.15 DDKApbxDmaClearCommandCmpltirq

This function clears the interrupt for respective channel.

BOOL DDKApbxDmad ear CommandCnpl t I rq(Ul NT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.4.1.16 DDKApbxDmacClearErrorirq

This function clears the error interrupt for respective channel.

BOOL DDKApbxDmad ear Errorlrqg(U NT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.4.1.17 DDKApbxDmaEnableCommandCmpltirq

This function enables the interrupt for respective channel.

BOCOL DDKApbxDmaEnabl eCommandCrrpl t I rg(Ul NT8 Channel , BOOL bEnabl e)

Parameters

Channel [in] channel number

bEnablelrq [in] enable/disable the interrupt for respective channel
Return Values Returns TRUE if successful, otherwise returns FALSE

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-14 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

6.5.4.1.18 DDKApbxDmaEnableErrorirq

This function enables the interrupt for respective channel.

BOOL DDKApbxDmaEnabl eErrorlrg(U NT8 Channel , BOOL bEnabl e)

Parameters

Channel [in] channel number

bEnablelrq [in] enable or disable the interrupt for respective channel
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.19 DDKApbxDmaResetChan
This function resetsthe AHB to APBX bridge channel based on the argument channel.

BOOL DDKApbxDmaReset Chan(Ul NT8 Channel , BOOL bReset)

Parameters

Channel [in] channel number

bReset [in] reset or un-reset the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.20 DDKApbxDmaFreezeChan
This function freezes the AHB to APBX bridge channel based on the argument channel.

BOCOL DDKApbxDmaFr eezeChan(Ul NT8 Channel , BOOL bFreeze)

Parameters

Channel [in] channel number

bFreeze [in] freeze or un-freeze the channel

Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.5 CSPDDK POWER (DDK_POWER) Reference

The DDK_POWER interface allows device driversto configure and control DC-DC converter, linear reg-
ulators, PSWITCH pin functions, battery monitor and charger, and silicon speed sensor.

6.5.5.1 DDK_POWER Functions
The following are the functions of DDK_POWER.

6.5.5.1.1 DDKPowerlnit

This function initializes the power functionality for the supporting modules.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-15

Chip Support Package Driver Development Kit (CSPDDK)

BOOL DDKPower | ni t (POAER_I NI TVALUES* pl ni t Val ues)

Parameters
plnitValues [in] pointer to the structure POWER_INITVALUES
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.5.1.2 DDKPowerEnableDcdc
This function enables ENABLE _DCDC.

VOl D DDKPower Enabl eDcdc(BOCOL bEnabl e)

Parameters
bEnable [in] TRUE for enable, FALSE for disable
Return Values Returns TRUE if successful, otherwise returns FAL SE

6.5.5.1.3 DDKPowerExecuteBatteryTo5VoltsHandoff
This function hands off power source from battery to 5Volts supply.
VOl D DDKPower Execut eBat t er yTo5Vol t sHandof f (VO D)

Parameters None
Return Values None

6.5.5.1.4 DDKPowerExecute5VoltsToBatteryHandoff
This function hands off power source from 5Volts supply to battery.
voi d DDKPower Execut e5Vol t sToBat t er yHandof f (voi d)

Parameters None
Return Values None

6.5.5.1.5 DDKPowerEnable5VoltsToBatteryHandoff
This function enables the handoff from 5Volts supply to battery.

VOl D DDKPower Enabl e5Vol t sToBat t er yHandof f (VO D)

Parameters None
Return Values None

6.5.5.1.6 DDKPowerEnableBatteryTo5VoltsHandoff
This function enables the handoff from battery to 5Volts.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-16

Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)
voi d DDKPower Enabl eBat t er yTo5Vol t sHandof f (voi d)

Parameters None
Return Values None

6.5.5.1.7 DDKPowerGet5vPresentFlag
This function checksif the 5V supply is present.
BOCOL DDKPower Get 5vPresent Fl ag(VO D)

Parameters None
Return Values If the 5V supply is present returns TRUE, otherwise returns FALSE

6.5.5.1.8 DDKPowerlnitPowerSupplies
This function initializes the power supplies.
Ul NT32 DDKPower | ni t Power Suppl i es(VO D)

Parameters None
Return Values Returns O if successful otherwise returns error value.

6.5.5.1.9 DDKPowerGetDirectBoot

This function checks if direct boot.

BOCOL DDKPower Get Di r ect Boot (voi d)

Parameters None
Return Values If the direct boot returns TRUE, otherwise returns FALSE

6.5.5.1.10 DDKPowerlnitBatteryMonitor

This function initializes the battery monitor for battery module.

Ul NT32 DDKPower | nitBatteryMnitor(LRADC_DELAYTRI GGER eTri gger, Ul NT32 Sanplinglnterval)

Parameters

efrigger [in] Specifiesthe Lradc trigger used

Samplinglinterval [in] Specifies the sampling interval for the Battery value to be sampled
Return Values Returns O if successful elsereturns error values

6.5.5.1.11 DDKPowerGetBatteryMode
This function returns the current Battery Mode.

POWER BATTERYMODE DDKPower Get Bat t er yMbde(VOl D)

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-17

Chip Support Package Driver Development Kit (CSPDDK)
Parameters None
Return Values Returns the battery mode.

6.5.5.1.12 DDKPowerSetCharger
This function is used to set the charger.

VO D DDKPower Set Char ger (DWORD current)

Parameters
current [in] The current value of charger
Return Values None

6.5.5.1.13 DDKPowerStopCharger
This function is used to stop the charger.
VOl D DDKPower St opChar ger ()

Parameters None
Return Values None

6.5.5.1.14 DDKPowerGetBatteryVoltage
This function returns the current Battery voltage.
U NT16 DDKPower Get BatteryVol t age(VO D)

Parameters None
Return Values Returns the battery voltage

6.5.5.1.15 DDKPowerGetBatteryChargingStatus
This function returns the Battery charging status.

BOOL DDKPower Get Bat t er yChar gi ngSt at us(VO D)

Parameters None
Return Values Returns battery charging status

6.5.5.1.16 DDKPowerClear5Virq
This function is used to clear the 5V irq

VO D DDKPower Cl ear 5VI r q()

Parameters None

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-18 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)
Return Values None

6.5.5.1.17 DDKPowerGetLimit
Thisfunction is used to get the limit status.

BOOL DDKPower Get Limit ()

Parameters None
Return Values If the power limit returns TRUE, otherwise returns FAL SE

6.5.5.1.18 DDKPowerGetUSBPhy
This function is used to get the USB PHY information.

BOOL DDKPower Get USBPhy()

Parameters None
Return Values If the USB PHY is plug in returns TRUE, otherwise returns FALSE

6.5.5.1.19 DDKPowerSetVdddValue
This function sets VVddd value.

voi d DDKPower Set VdddVal ue(Ul NT16 ul6Vvddd_nV)

Parameters
ulévddd mv [in] Convert voltage value (mv) to register setting
Return Values None

6.5.5.1.20 DDKPowerGetVdddValue
This function gets VVddd value.
Ul NT32 DDKPower Get VdddVal ue(VO D)

Parameters None
Return Values Returns VVddd current voltage value

6.5.5.1.21 DDKDumpPowerRegisters
This function dumps the power registers used for debugging.

VO D DDKDunpPower Regi st er s(VO D)

Parameters None
Return Values None

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 6-19

Chip Support Package Driver Development Kit (CSPDDK)

6.5.5.1.22 DDKPowerSetLimit
This function is used to set the limit information.
VOl D DDKPower Set Li mit (voi d)

Parameters None
Return Values None

6.5.5.1.23 DDKPowerGetPSwitchlirq
Thisfunction is used to get the PSwitch irg.
BOOL DDKPower Get PSwi t chlrq()

Parameters None
Return Values If the PSwitch irq in returns TRUE, otherwise returns FALSE

6.5.5.1.24 DDKPowerClearPSwitchirq
This function is used to clear the PSwitch irg.
VOl D DDKPower Cl ear PSwi t chl rq()

Parameters None
Return Values None

6.5.5.1.25 DDKPowerGetPSwitchStatus
Thisfunction is used to get the PSwitch status.

DWORD DDKPower Get PSwi t chSt at us()

Parameters None
Return Values Returns the PSwitch status

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

6-20 Freescale Semiconductor

Chapter 7
Configurable Serial Peripheral Interface (CSPI) Driver

The CSPI module provides master functionality of astandard CSPI bus.

71 CSPI Driver Summary

Table 7-1 provides a summary of source code location, library dependencies and other BSP information.
Table 7-1. CSPI Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2
SOC Specific Path .\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPI
Platform Driver Path .\PLATFORM\<Target Platform>\DRIVERS\CSPI
Import Library cspisdk.lib
Driver DLL cspi.dll
Catalog ltem Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > CSPI| Bus 1
SYSGEN Dependency N/A
BSP Environment Variables | BSP_SSP1_CSPI =1

7.2 Supported Functionality

The CSPI driver supports the following features:

Supports the CSPI master mode of operation

Supports CSPI configurable bus feature

Supports configurable access method of polling method
Supports stream interface

Supports two power management modes: full on and full off

g s~ b

7.21 Conflicts with Other Peripherals and Catalog Iltems

This section explains about the conflictsthat the CSPI driver havewith other peripheralsand catalog items.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7-1

Configurable Serial Peripheral Interface (CSPI) Driver

7.21.1 Conflicts with SoC Peripherals

Oni.MX233-EVK platform, SSP moduleis shared by CSPI driver and SD/MMC driver, so these two
drives can not be enabled at the same time.

7.2.2 Conflicts with EVK Peripherals

No conflicts.

7.3 Software Operation

This section explains about the software operation for the CSPI module.

7.3.1 Registry Settings

The following registry keys are required to properly load the CSPI module.
;; CSPI Bus Driver

| F BSP_SSP1_CSPI

| F BSP_NOSSP1_SDHC

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ CSPI 1]
"Prefix"="SPI"
"Dl"="cspi.dI"
"l ndex"=dword: 1

ENDI F ; BSP_NOSSP1_SDHC

ENDI F ; BSP_SSP1_CSPI

7.3.2 Communicating with the CSPI

The CSPI isastream interface driver, and is thus accessed through the file system APIs. To communicate
using the CSPI, ahandle to the device must first be created using the CreateFile function. Subsequent
commandsto the device are issued using the Devicel oControl function with IOCTL codes specifying the
desired operation. If preferred, the Devicel oControl function calls can be replaced with macros that hide
the Devicel oControl cal details. The following are the basic steps:

7.3.3 Creating a Handle to the CSPI

Call the CreateFile function to open aconnection to the CSPI device. A CSPI port must be specified in
thiscall. Theformat is SPIX:, with X being the number indicating the CSPI port. This number should not
exceed the number of CSPI instances on the platform. If an CSPI port does not exist, CreateFile returns
ERROR_FILE_NOT_FOUND.
To open a handle to the CSPI:
1. Insert acolon after the CSPI port for the first parameter, IpFileName
For example, specify SPI1: asthe CSPI port

2. Specify FILE_SHARE_READ |FILE_SHARE_WRITE in the dwShareMode parameter. M ultiple
handles to an CSPI port are supported by the driver.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

7-2 Freescale Semiconductor

Configurable Serial Peripheral Interface (CSPI) Driver

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. Thisflag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.
Example 7-1 is a sample code to open a CSPI port.

Example 7-1. Code to open CSPT port

// Open the serial port.

hSPI = CreateFile (L"SPI1:", /'l name of device
GENERI C_READ | GENERI C_WRI TE, /'l access (read-wite) node
FI LE_SHARE_READ | FILE_SHARE_WRI TE, /1 sharing node
NULL, /] security attributes (ignored)
OPEN_EXI STI NG, /'l creation disposition
FI LE_FLAG_RANDOM ACCESS, /1 flags/attributes
NULL) ; /1 tenmplate file (ignored)

7.3.4 Data Transfer Operations

The CSPI driver provides one command, SPIExchange, that facilitates performing both reads and writes
through the CSPI bus. The basic unit of datatransfer in the CSPI driver isthe CSPI_XCH_PKT, which
contains abuffer for reading and writing data, and a CSPI_BUSCONFI G datum that specifies the desired
bus configuration and XCH method which is used during the SPI transmission. The following steps
explain the process of performing write and read operations through the CSPI bus.

Before these actions can be taken, a handle to the CSPI port must already be opened. Each of these steps
requiresacall to the Devicel oControl function. As parameters, the CSPI port handle, appropriate |OCTL
code, and other input and output parameters are required.

To perform an CSPI transfer:

1. CreateaCSPI_XCH_PKT object and initialize the fields of the packet as follows:

a) InitializeaCSPI_BUSCONFIG datum to specify the bus parametersas SSPCTRLO, SSPCMD,
SSPARG, BITCOUNT, bREAD, and specify the method parameters for use/not use DMA,
use/not use POLLING, send/not send command.

b) Set the pBuf field to the user buffer which sends and receives data.

c) SetthexchCnt field, for the 1-8 bit XCH, the xchCnt = bytes, for the 9-16 bit X CH, the xchCnt
= words, for the 17-32 bit XCH, the xchCnt = dwords.

2. Set the hDevice parameter to the previoudy acquired CSPI port handle.
Set the dwl oControlCode to the SPI_IOCTL_EXCHANGE IOCTL code.

4. SetthelplnBuffer to point tothe CSPI_XCH_PKT object created in step 1. Set ninBuffer Szeto the
size of that packet object.

5. Set IpOutBuffer, |pBytesReturned, and IpOverlapped to NULL. Set nOutBufferSzeto 0.
Example 7-2 demonstrates how to perform a XCH transfer.

w

Example 7-2. Code for XCH transfer

CSPI _BUSCONFI G T buscnfg =

{
0x9000004, //configuration for SSP control register O

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7-3

Configurable Serial Peripheral Interface (CSPI) Driver

0, // command 0

0, // command 1

FALSE, // no DVA

TRUE, /1 polling node

32, /132 bits data

FALSE, //wite data

0, //no command wi Il be sent

}s
DWORD Dat a[11] ;

CSPI _XCH PKT_T xchPkt =
{

&uscnf g,
Dat a,
1, /!l XCH to target SPlI device 1 tinmes
NULL,
0
b
/'l Transfer data via CSPI
Devi cel oControl (hCSPI , /1 file handle to the driver
CSPI _I OCTL_EXCHANGE, /1 110 control code
(PBYTE) &xchPkt, /1 in buffer
si zeof (xchPkt), /1l in buffer size
NULL, /] out buffer
0, /] out buffer size
NULL, /1 nunber of bytes returned
NULL) ; [/ ignored (=NULL)

Asasubstitutefor the Devicel oContr ol call above, aSDK wrap function may be used to simplify the code.
The following is the sample code:

CSPI Exchange(hCSPI, &xchPkt);

7.3.5 Closing the Handle to the CSPI

Call the CloseHandle function to close a handle to the CSPI after an application finishes using it.
CloseHandle has one parameter, which isthe handle returned by the CreateFile function call that opened
the CSPI port.

7.3.6 Power Management

The primary method for limiting power consumption in the CSPI module is to gate off the input clock to
the module when the input CSPI clock is not needed. This is accomplished through the

DDK Clock SetGatingM ode function call. In all of the BSP use cases, the CSPI controller acts as amaster
device. Asaresult, the CSPI clock can be turned off, whenever the modul e is not processing CSPI packets.

Asdescribed in the Data Transfer Oper ations section, the CSPI driver turns on the CSPI clocks and
enables the CSPI module before processing an CSPI XCH, and then disables and turns off clocks to the
CSPI module after the XCH has been done. This limits the time during which the CSPI moduleis
consuming power to the time during which the CSPI is actively performing data transfers.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

7-4 Freescale Semiconductor

Configurable Serial Peripheral Interface (CSPI) Driver

7.3.6.1 PowerUp

This function is not implemented for the CSPI driver. Power to the CSPI module is managed as CSP
transfer operations are processed. There are no additional power management steps needed for the CSPI.

7.3.6.2 PowerDown

This function is not implemented for the CSPI driver.

7.3.6.3 IOCTL_POWER_SET

This function isimplemented for the CSPI driver. When D4 power mode is set, the driver switchesits
operating mode to polling mode that does not produce interrupt events to BSP system. When leaving the
D4 power mode, the driver recoversits origin operating mode.

7.4 Unit Test

The CSPI driver does not use the CETK for unit testing, but uses the test program described in the
following section for unit tests.

7.4.1 Building the Unit Tests

To build the CSPI tests, build an OS image for the desired configuration using these steps:
1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.
2. Changetothe SPI Test directory: \ w NCE600\ SUPPORT\ TEST\ SPI TEST
3. Enter set WINCEREL =1 on the command prompt and press return.
This copies the EXE to the flat release directory.
4. Input build -c to build SPI test.

After the build completes, the SPIAPPEXE fileislocated in the $(_FLATRELEASEDIR) directory.

To run the application within VS2005 use the following steps:

1. Go to the Target menu option and select the Run Programs menu option. This givesalist of
applications that can be run on the OS.

2. Select SPIAPPEXE from thislist.
3. Click on Run to run this application.

7.5 CSPI Driver API Reference

This section explains about the CSPI driver API reference.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7-5

Configurable Serial Peripheral Interface (CSPI) Driver

7.5.1 CSPI Driver IOCTLs

This section consists of descriptions for the CSPI 1/O control codes (IOCTLS). These IOCTLsareused in
callsto Devicel oControl to issue commandsto the CSPI device. Only relevant parametersfor the |OCTL
have a description provided.

7.5.1.1 CSPI_IOCTL_EXCHANGE

ThisDevicel oControl request performsthe transfer of datato atarget device. An CSPI_XCH_PKT object
isrequired, which contains CSPI bus configuration parameters and data buffers. All of the required
information should be stored in the CSPI_XCH_PKT passed in the |pInBuffer field.

Parameters

|plnBuffer Pointer toan CSPI_XCH_PKT structure containing a pointer to bus configuration
parameters and data buffers
ninBufferSze Sizein bytes of the CSPI_XCH_PKT

7.5.2 CSPI Driver SDK Wrapper
This section explains about the CSPI driver SDK wrapper.

7.5.2.1 CSPIOpenHandle

This function retrieves the CSPI device handle.

HANDLE CSPI OpenHandl e(
LPCWSTR | pDevNane

)

Parameters
IpDevName The CSPI device name for retrieving handle from CreateFile()
Return Values Returns Handle for CSPI driver; returns INVALID_HANDLE_VALUE if failure

7.5.2.2 CSPICloseHandle

This function closes a handle of the CSPI stream driver.
BOCOL CSPI O oseHandl e(

HANDLE hDev
)
Parameters
hDev The CSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

7.5.2.3 CSPIExchange

This function performs XCH operations.

BOOL CSPI Tr ansf er (
HANDLE hDev,
PCSPI _XCH PKT_T pCspi XchPkt

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

7-6 Freescale Semiconductor

Configurable Serial Peripheral Interface (CSPI) Driver

)

Parameters

hDev The CSPI device handle retrieved from CreateFile()

pCspiXchPkt [in] Pointer to XCH packet with bus configuration parameters

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

7.5.3 CSPI Driver Structures

This section explains about the CSPI driver structures.

7.5.3.1 CSPI_BUSCONFIG_T

This structure contains the bus configuration information needed during CSPI performs XCH.

/1 CSPI bus configuration

typedef struct

{
SSP_CTRLO SspCtrl 0;
SSP_CVDO SspCnd;
SSP_CMD1 SspArg;

BOOL usedng;
BOOL usepol | i ng;
Ul NT8 bi t count;
BOOL bRead;

BOOL bCn;

} CSPI _BUSCONFI G T, *PCSPI _BUSCONFI G T;
Table 7-2 shows the CSPI_BUSCONFIG_T structure members.
Table 7-2. CSPI_BUSCONFIG_T Structure Members

Member Description
SspCitrl0 Configuration for SSP control register 0
SspCmd Command 0 for SSP
SspArg Command 1for SSP
usedma If TRUE, uses DMA mode, not support DMA now
usepolling If TRUE, uses polling mode, only support polling mode now
bitcount Define bits used in a single XCH, range 1-32.
bRead If TRUE, read data from CSPI
bCmd If TRUE, send command 0 and command 1 to CSPI controller
usedma If TRUE, uses DMA mode
usepolling If TRUE, uses polling mode

7.5.3.2 CSPI_XCH_PKT_T

This structure contains an XCH buffer parameters to be used in data exchange to CSPI device.
/'l CSPI exchange packet

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7-7

Configurable Serial Peripheral Interface (CSPI) Driver

typedef struct
{
PCSPI _BUSCONFI G_T pBusCnfg;
LPVO D pBuf ;
U NT32 xchCnt;
LPWSTR xchEvent ;
U NT32 xchEvent Lengt h;
} CSPI _XCH PKT_T, *PCSPI _XCH PKT_T;

Table 7-3 showsthe CSPI_XCH_PKT _T structure members.
Table 7-3. CSPI_XCH_PKT_T Structure Members

Member Description
pBusCnfg A pointer to CSPI bus configuration object
pBuf A pointer to data buffer
xchCnt Amount of XCH operation to SPI device
xchEvent Asynchronous access using the internal exchange queue
xchEventLength | Event name length including tailing Zero

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

7-8 Freescale Semiconductor

Chapter 8
Display Driver for LCDIF and PXP

The Windows Embedded CE 6.0 BSP display driver isbased on the Microsoft DirectDraw Graphics
Primitive Engine (DDGPE) classes, and supports the Microsoft DirectDraw interface. This driver
combines the functionality of a standard LCD display with DirectDraw support. The display driver
interfaces with the LCD Interface (LCDIF) and Pixel Pipeline (PXP).

The display driver supports the following display type:

« SAMSUNG LM $430HF02 WQV GA Panel

8.1 Display Driver Summary

Table 8-1 identifies the source code location, library dependencies and other BSP information for the
display driver.
Table 8-1. Display Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2
SOC Common Path N/A
SOC Specific Path .\PLATFORM\COMMON\SRC\SOC\<Target SoC>\LCDIF
.\PLATFORM\COMMON\SRC\SOC\< Target SoC>\PXP
Platform Specific Path .\PLATFORM\< Target Platform>\SRC\DRIVERS\DISPLAY
Driver DLL ddi_stmp37xx_chilin.dll
Import Library ddgpe.lib, gpe.lib
Catalog ltems Third Party > BSP > Freescale <Target Platform>: ARMV4| > Device Drivers > Display

> SAMSUNG LMS430HF02(WQVGA)

SYSGEN Dependency SYSGEN_DDRAW=1

BSP Environment Variables |BSP_NODISPLAY=

8.2 Supported Functionality

The display driver enables the 3-Stack board to provide the following software and hardware support:

1. RGB565 user interface
2. DirectDraw Hardware Abstraction Layer (DDHAL)
3. Oneoverlay surface

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

8-1

Display Driver for LCDIF and PXP

4. Video overlays containing image data in any of the following FOURCC pixel formats: RGB565,
YV12

Hardware-accel erated color space conversion in video overlays
Hardware-accel erated image resizing in video overlays

Overlay surface color key feature

Alphablending with an overlay surface

. Two power management modes: full on and full off (resume and suspend)
10. Screen rotation

11. Cropping of an overlay surface

12. Supports SAMSUNG LM $A30HF02 WQV GA Panel

NOTE
The following limitations apply to the display driver overlay support.

© © N o O

13. RGB image resize is not supported

14. Cropping is not supported while performing alpha blending operation

15. The width and height of the overlay surface must conform to an 8-pixel alignment restriction
16. The minimum width (or height if screen isrotated) of an overlay surfaceis 8 pixels

17. The minimum height (or width if screen isrotated) of an overlay surfaceis 8 pixels

18. When using the cropping feature, the x and y coordinate position must conform to 8-pixel
alignment restriction

8.3 Hardware Operation

For operation and programming information, see the chapter on the Pixel Pipeline and LCD Interfacein
the Reference Manual.

8.3.1 Conflicts with Other Peripherals and Catalog ltems

No conflicts.

8.4 Software Operation

This section explains about the software operation of the display driver.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-2 Freescale Semiconductor

Display Driver for LCDIF and PXP

8.4.1 Software Driver Components

Figure 8-1 shows the block diagram explaining the relationship between the software componentsin the
display driver architecture.

| LCD Interface | | Pixel Pipeline |

ddi_stmp37xx_chilin.dll

Figure 8-1. Software Driver Components Block Diagram

A list of the main elements of the display driver architecture is as follows:

» Display Driver—The high level DDGPE-based display driver. Contains implementations for
DirectDraw APIs.

* LCD Interface—Set of functions provide access to LCDIF module for display control setting.

* Pixel Pipeline Driver—A stream interface driver that performs the following processing tasks:
color space conversion, resizing, rotation, and combining.

8.4.1.1 Display Driver

Thedisplay driver isthetop level interface between the display driver and the Windows CE OSor acalling
application. This top level software component is composed of the st mp37xxDbGPE class, which is derived
from the public DDGPE class and inherits the underlying GPE driver functionality. Graphics Device
Interface (GDI) and DirectDraw APIs are implemented at this level.

8.4.1.2 LCD Interface

The LCDIF software component consists of a collection of functions that provide access to the LCDIF
module registers. These functions are called from the display driver to implement the display control. The
major tasks that this component performs include the following:

» Setting bus master and DM A operation modesfor LCD.
» Configuring LCD data bus depending on the packet size.
* Programming timing and parameters to support awide variety of displays.

8.4.1.3 Pixel Pipeline

The PXP driver provides ageneral resource that is capable of performing a set of processing tasks on a
surface:

* Resizing
» Combining of video and graphics data

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 8-3

Display Driver for LCDIF and PXP

* Rotation

» Vertical and horizontal flipping
» Color Space Conversion (CSC)
» Cropping

The PXP driver isthe primary means for performing resizing, rotation, CSC, cropping and combining on
an overlay surface.

8.4.2 Communicating with the Display

Communication with the display driver is accomplished through Microsoft-defined APIs. A framework
for accessing the display driver is provided through the Graphics Device Interface (GDI) and DirectDraw.

8.4.2.1 Using the GDI

The GDI provides basic controls for the display of text and graphics. For more information, see the Help
in the following location:

Windows Embedded CE Features > Shell, GWES and User Interface > Graphics, Windowing and
Events (GWES) > GWES Application Development > Graphics Device Interface (GDI)

8.4.2.2 Using DirectDraw

The DirectDraw API provides support for hardware-accel erated 2-D graphics, offering fast access to
display hardware while retaining compatibility with the GDI. For information about the DirectDraw AP,
see the DirectDraw Help or the MSDN documentation library in the following location:

Windows Embedded CE Features > Graphics > DirectDraw

The following DirectDraw features are supported in the display driver by the PXP hardware:
» Pageflipping with one backbuffer.
* Overlay surfacesusing RGB or YV 12 pixel format.
* Overlaying using acolor key for the overlay surface for RGB colors.
» Stretching of overlay surfaces.

The PXP hardware module is used within the display driver to accelerate the following operations:

» Color space conversion of YUV overlay datato RGB. Thisconversion may berequiredin order to
combine the overlay data with RGB graphics plane data before being displayed.

* Resizing of the overlay surface.
* Rotation of the overlay surface (used when the screen orientation is rotated).

8.4.2.3 Using Display Driver Escape Codes

In some cases, applications might need to communicate directly with adisplay driver. To make this
possible, an escape code mechanismis provided as a part of the display driver.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-4 Freescale Semiconductor

Display Driver for LCDIF and PXP

For adetailed description of standard display driver escape codes, see the CE Help in the following
location:

Developing a Device Driver > Windows Embedded CE Drivers> Display Drivers> Display Driver
Development Concepts> Display Driver Escape Codes

8.4.3 Configuring the Display
The display configuration is based on the GUID registry key, which is described in Section 8.4.3.2,

“Display Registry Settings.” The GUI D registry key indicates the display panel that is being used. The
only one supported display panel isthe SAMSUNG LM S430HF02 WQV GA Panel.

8.4.3.1 Rotation Support
The DirectDraw display driver supports screen rotation.

NOTE

Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw, a DirectDraw display driver with rotation support may yield
more failuresin the GDI or DIRECTDRAW CETK test suite. It is
recommended to run these CETK tests under O rotation degree. See the
Windows CE Help, stating that GDI screen rotation cannot be used with
DirectDraw.

8.4.3.2 Display Registry Settings

A set of registry keysisincluded in the OSimage, depending on the display panel catalog item included
in the OS design.

8.4.3.2.1 i.MX233 Registry Settings

If the SAMSUNG LM $A30HF02 WQV GA pandl is selected, the following registry keys are included:

[HKEY_LOCAL_MACHI NE\ Syst em GDI \ Dri vers]
"GUI D' =" { 1ED47D96- 6842- 4c20- 8705- BFOSADODFC33} "

8.4.4 Power Management

The display driver implements the power management 1/0 Control (IOCTL) codes, such as
IOCTL_POWER_CAPABILITIES, IOCTL_POWER_QUERY, IOCTL_POWER_GET and
IOCTL_POWER_SET.

8.4.4.1 PowerUp

This function isimplemented in the PXP driver. It enables clock gating with the PXP module and resets
the PXP module to its default state. If an PXP operation is previously terminated by calling the
PowerDown() API, the PowerUp() function will restore the PXP module registers and restart the PXP
operation.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 8-5

Display Driver for LCDIF and PXP

8.4.4.2 PowerDown

This function isimplemented in the PXP driver. If the PowerDown() function is called while PXP
operations are going on, it will store current PXP module registers setting temporarily. Then it disables
clock gating with the PXP module and holds the PXP module in its reset (lower power) state.

8.4.4.3 IOCTL_POWER_SET
The display driver implements the IOCTL_POWER_SET IOCTL API with support for the DO (Full On)
and D4 (Off) power states. These states are handled in the following manner:

* DO0O—The LCDIF moduleisenabled. The display panel is enabled. Clock gating is enabled for
clocksto the LCDIF.

* D4—TheLCDIF moduleisdisabled. The display panel is disabled. Clock gating is disabled for
clocksto the LCDIF.

8.5 Unit Test

The display driver is subject to two test suites provided with the Windows CE Test Kit (CETK): the GDI
Test and the DirectDraw Test. Additionally, the video playback is verified using the Windows Media
Player application.

The GDI Test is designed to test agraphics device interface. Thistest verifies that basic shapes, including
rectangles, triangles, circles, and ellipses, are drawn correctly. The test a so examines the color palette of
the display, verifies that the display is correctly divided into multiple regions, and tests whether a device
context can be properly created, stored, retrieved, and destroyed.

The DirectDraw Test analyzes basic DirectDraw functionality including block image transfers (blits),
scaling, color keying, color filling, flipping, and overlaying.

Windows Media Player may be used to play back WMV video files and visually verify correct operation
of video overlays, accelerated color space conversion, and accelerated image resizing.

8.5.1 Unit Test Hardware

The SAMSUNG LM $430HF02 WQV GA panel isneeded to run the GDI and DirectDraw tests. The panel
displays the graphics data.

8.5.2 Unit Test Software

This section explains about the software required for different tests.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-6 Freescale Semiconductor

Display Driver for LCDIF and PXP

8.5.2.1 GDI Tests
Table 8-2 lists the software required to run the GDI tests.

Table 8-2. GDI Software Requirements

Requirement Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation
Gdiapi.dll Main test.dll file
Ddi_test.dll Graphics Primitive Engine (GPE)-based display driver that the GDI API uses to verify the success
of each test case. If Ddi_test.dll is unavailable, run the test with manual verification
8.5.2.2 DirectDraw Tests

Table 8-3 lists the software required to run the DirectDraw tests.

Table 8-3. DirectDraw Software Requirements

Requirement Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation
DDrawTK.dlI Test.dll file
8.5.2.3 Windows Media Player Tests

Table 8-4 lists the software required to perform WMV playback with Windows Media Player.

Table 8-4. Windows Media Player Software Requirements

Requirement Description

Ceplayer.exe Windows Media Player sample application

*.wmv sample video files

Sample windows media files

8.5.3

Building the Unit Tests

The GDI and DirectDraw tests come pre-built as part of the CETK. Ensure that the latest CETK suiteis
installed. No steps are required to build these tests. For information about the tests, see the Help at the
following location:

Windows Embedded CE Test Kit > Running the CETK

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 8-7

Display Driver for LCDIF and PXP

For Windows Media Player testing, there are no build stepsrequired. The Windows Media Player catalog
item must be added to the OS image to ensure that cepl ayer . exe iSincluded in theimage. Additionally,
sample WMV files must be included in the image to demonstrate playback.

8.5.4 Running the Unit Tests

This section explains how to run different types of tests.

8.5.4.1 Running the GDI Tests

The command for running the GDI testsis:
tux —o —d gdiapi.dll -c “/NoResize”

For information about the GDI tests and command line options, see the Platform Builder Help topic:

Windows Embedded CE Test Kit > CETK Testsand Test Tools> CETK Tests> Display Tests >
Graphics Device I nterface Test

8.5.4.2 Running the DirectDraw Tests

The command for running the DirectDraw testsis:
tux —o —d ddrawt k

NOTE

The display driver fails the following DirectDraw CETK test cases: 1240,
1340. The failure occurs because the hardware can not support RGB image
resize, and the failing tests perform RGB pixel format overlay surfaces
resize that violate thisrestriction.

8.5.4.3 Running the Windows Media Player tests
The command for starting playback of aWMYV test video clip in Windows Media Player is:

cepl ayer [wn test file]
For example, cepl ayer motocross_208x160_30f ps. wmv

If audio support is not included in the current BSP, the message Audio hardwareis missing or disabled
appears when the WMV fileis being loaded. Click OK to continue to WMV playback.

To confirm the correct operation of thistest, observe the application and verify whether the video clip have
aclear image, normal coloring, and correct image sizing.

8.6 Display Driver APl Reference

For information about the display driver APIs, see CE Help. No additional custom API information is
required for the features currently supported in the display driver.

For reference information on basic display driver functions, methods, and structures, see the CE Help at
the following location:

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-8 Freescale Semiconductor

Display Driver for LCDIF and PXP
Developing a Device Driver > Windows Embedded CE Drivers> Display Drivers> Display Driver
Reference

For reference information on DirectDraw functions, callbacks, and structures, see the CE Help at the
following location:

Windows Embedded CE Features > Graphics > DirectDraw

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 8-9

Display Driver for LCDIF and PXP

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

8-10 Freescale Semiconductor

Chapter 9

Dynamic Voltage and Frequency Control (DVFC) Driver

The BSP includes the DVFC driver that provides combined support for DVFS (Dynamic Voltage
Frequency Scaling). The DVFC driver plays an important role in the reduction of active power
consumption by dynamically adjusting the voltage and frequency settings of the system. The DVFC driver
responds to DVFC hardware logic or load tracking software that is monitoring CPU loading and
process/temperature performance of the silicon.

9.1

DVFC Driver Summary

Table 9-1 provides a summary of source code location, library dependencies, and other BSP information.

Table 9-1. DVFC Driver Summary

Driver Attribute

Definition

Target Platform

iMX233-EVK

Target SOC

MX233_FSL_V2_

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\DVFC

SOC Specific Path

Platform Specific Path

.\PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC

Driver DLL dvfe.dll
SDK Library N/A
Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4l > Device Drivers > DVFC
driver support using the MC13892
SYSGEN Dependency N/A
BSP Environment Variables |BSP_DVFC =1

9.2

Supported Functionality

The DVFC driver enables the hardware platform to provide the following software and hardware support:
1. Executes as adevicedriver and provides synchronized support of the DV FS power management

feature

2. Exposes stream interface for initialization and power management

3. Supports DO and D4 driver power states and support control of frequency or voltage setpoint based
on Power Manager device power states

4. Supports peripheral setpoint requestsinitiated by CSPDDK clock management code

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

9-1

Dynamic Voltage and Frequency Control (DVFC) Driver

9.2.1 i.MX233 Supported Functionality

1. Supports DVFSfor CPU and AHB

2. Supports reactive CPU load tracking to control setpoint based on system performance
requirements. Current release uses software |oad tracking algorithm

3. Provides voltage control using PMU

9.3 Hardware Operation
This section describes about the DV FC hardware operation.

9.3.1 Conflicts with Other Peripherals and Catalog Iltems

No conflicts.

9.3.2 i.MX233 EVK Configuration
The DVFC driver is dependent DDK Power interface for dynamic voltage control through PMU.

9.4 Software Operation
This section describes about the registry settings.

9.4.1 i.MX233 Registry Settings
The following registry keys are required to properly load the i.M X233 DVFC module.

; DVFC Driver

| F BSP_DVFC
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ DVFC]

"Prefix" = "DVF"

"I ndex" = dword:1

"DI"="dvfc.dlI"

"1 Class" =" {A32942B7- 920C- 486b- BOE6- 92A702A99B35} " ; PMCLASS_CGENERI C_DEVI CE
ENDI F ; BSP_DVFC

9.4.2 Loading and Initialization

The DVFC driver is automatically loaded to kernel space by the Device Manager as a stream driver. As
part of the loading procedure of stream drivers, the device manager invokes the corresponding stream
initialization function exported by the DV FC driver. The initialization sequence includes acall to
platform-specific code (BsPDvf ci ni t) to allow the OEM to configure and tunethe DV FC driver operation.

9.4.3 Operation

The DVFC driver isthe central point in the BSP for controlling voltage and frequency scaling. The DVFC
communicates with the PMIC and CCM to coordinate the DVFS. The DVFC driver responds to setpoint

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

9-2 Freescale Semiconductor

Dynamic Voltage and Frequency Control (DVFC) Driver

requests from DDK_CLK (by driver calling DDK Clock SetGatingM ode) and Power Manager (by
IOCTL_POWER_SET). A shared global datastructure(DDK_CLK _CONFIG) isused to keep track of
reference counts for each setpoint. The DVFC relies on synchronization with the DDK_CLK component
to determine when it is safe to transition to a new setpoint. DV FC integration with the Power Manager
allows drivers and applications direct control of the setpoint by using the SetDevicePower API.

9.4.3.1 i.MX233 Voltage or Frequency Setpoints

The .M X233 DVFC driver supports mutually exclusive voltage and frequency setpoints for the CPU
power domains. Table 9-2 provides the voltage/frequency characteristics for these setpoints.
Table 9-2. i.MX233 DVFC Setpoints

Setpoint Name CPU/AHB Frequency [MHz] VDDD Voltage
DDK_DVFC_SETPOINT_HIGH 454.74/151.58 155V
DDK_DVFC_SETPOINT_MEDIUM 266.82/130.91 1275V
DDK_DVFC_SETPOINT_LOW 160/80 1275V

The setpoint attributes are controlled by the definitions in the platform-specific DVFS header file (found
IN\ PLATFORM <Tar get Pl at f or m»\ SRC\ I NQ\ dvfs. h). The DVFC driver uses these definitions to populate a
global setpoint array (g_SetPointConfig) that is referenced during setpoint transitions. The EMI clock
frequency isfixed to 96MHz, not changed with the setpoint change.

9.4.3.2 i.MX233 Setpoint Mapping

The DVFC driver advertises support for IOCTL_POWER requests from Power Manager. A
IOCTL_POWER_SET request is mapped to a setpoint by the DVFC driver. This mapping allows
applications to use the Power Manager APIs to request changes in the DV FC setpoint. The mapping of
device power states (D0-D4) to DVFC setpointsis located in DvfcM apDevPwr StateToSetpoint (found
IN\ PLATFORM <Tar get Pl at f or m»\ SRC\ DRI VERS\ DVFC\ dvf c. ¢). To change the setpoint mapping for a
specific device power state (DO-D4), modify the code in DvfcM apDevPwr StateToSetpoint.

9.4.4 DDK Interface

The DVFC driver allows other drivers or applicationsto control some aspects of the DV FS operation. Due
to the tight coupling with the system clock configuration, this interface is exposed within CSPDDK
clocking support. See the CSPDDK documentation for the following functions:

» DDKClockSetpointRequest, Section 6.5.1.2.6, “ DDK Clock SetpointRequest.”

» DDKClockSetpointRelease, Section 6.5.1.2.7, “DDK ClockSetpointRelease.”

9.4.5 Power Management

The DVFCisanintegral part of the power management supported by the BSP. However, sincethe DVFC
runs asadriver onthe system, it also supports the Power Manager device driver interface. Thisalowsthe
DVFC driver to be notified of when the system is suspending or resuming and configure the processor
performance accordingly.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 9-3

Dynamic Voltage and Frequency Control (DVFC) Driver

9.4.5.1 PowerUp

This stream interface function is not implemented for the DVFC driver.

9.4.5.2 PowerDown

This stream interface function is not implemented for the DVFC driver.

9.4.5.3 IOCTL_POWER_CAPABILITIES
The DVFC driver advertises that DO-D4 device power states are supported.

9.45.4 IOCTL_POWER_SET
The DVFC driver supports requests to enter DO-D4 device power state.

9.4.5.5 IOCTL_POWER_GET
The DVFC driver reports the current device power state (DO, D1, D2 or D4).

9.5 Unit Test

This section explains about the unit testing.

9.5.1 i.MX233 Unit Testing

A stress test application for the DVFC driver is provided for unit testing. This stress test uses the Power
Manager interface (SetDevicePower) to randomly request setpoints for the CPU and peripheral DVFS
domains. Follow these steps to run this unit test.
1. Open <Target Platform>-Mobility workspace and add the DV FC driver catalog item. Build OS
image.

NOTE

Note that modifications to the default workspace may cause additional
drivers to be included and may prevent the system from transitioning
through all possible DVFS setpoints.

2. Build DVFC stresstest located in \SUPPORT\TEST\APP\PWRMGMT. The resulting application
pwrmgmt.exeis generated in the flat release directory.

3. Boot the OSimage and launch application code such as mediaplayer that can perform continuous
playback. WMA audio playback is agood use case since audio playback can be performed across
all supported setpoints.

4. Launch the stress test application. From the CE shell, the stress test can be launched with the
following command line:

s \rel ease\ pw ngnt . exe

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

9-4 Freescale Semiconductor

Dynamic Voltage and Frequency Control (DVFC) Driver

Board modificationsare required to observe voltage setpoints and are not covered in this document. Debug
messages to indicate setpoint transitions can be enabled using the DVFC_VERBOSE macro found in
\ PLATFORM <Tar get Pl atf or m»\ SRQ\ DRI VERS\ DVFQC\ dvfc. c

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 9-5

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

9-6 Freescale Semiconductor

Chapter 10

Keypad Driver

The keypad driver converts input from the sensor into keyboard events that the driver entersinto the
Graphics, Windowing, and Events Subsystem (GWES).

10.1 Keypad Driver Summary

Table 10-1 provides a summary of source code location, library dependencies and other BSP information.
Table 10-1. Keypad Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2
SOC Common Path .\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\KEYBD
SOC Specific Path N/A

Platform Specific Path .\PLATFORM\<Target Platform>\SRC\DRIVERS\KEYPAD

Driver DLL keypad.dll
SDK Library N/A
Catalog Item Third Party > BSP > Freescale i.MX233 EVK: ARMV4| > Device Drivers > KEYPAD>
KEYPAD

SYSGEN Dependency N/A

BSP Environment Variables | BSP_NOKEYPAD=

10.2 Supported Functionality

The Keypad driver enablesthe hardware platform to provide the following software and hardware support:
1. Conformsto the Microsoft Layout Manager Interface
2. Two power management modes, full on and full off

10.3 Hardware Operation

See the chapter on the Low-Resolution ADC (LRADC) in the hardware specification document for
detailed operation and programming information.

10.3.1 Conflicts with Other Peripherals and Catalog Items

No conflicts.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 10-1

Keypad Driver

10.3.2 Keypad

The keypad driver interfaces with the Windows CE Keyboard Driver Architecture to provide key input
support.

10.3.2.1 i.MX233 EVK Keypad Mapping

The 8-key keypad is located on the personality board and the mapping is shown in Table 10-2.
Table 10-2. 8-key Keypad Mapping

LABEL Key
KEY1 ESC
RIGHT RIGHT
KEY2 WIN
LEFT LEFT
uP uP
DOWN DWON
KEY3 MENU
SELECT ENTER

10.4 Software Operation

The .M X233 Keypad driver does not follows the Microsoft-recommended architecture for keyboard
drivers. Use a standard stream driver for keypad scan.

10.4.1 Keypad Scan Codes and Virtual Keys

Each key on the keypad has a unique scan code, which is added to a buffer whenever that key is pressed
or released. These scan codes, which are hardware specific, are converted to intermediate PS/2 keyboard
scan code values and then converted into virtual keys, which are hardware independent numbers that
identify the key. If akey ispressed from the keyboard, the generated scan code is directly converted into
virtual keys.

10.4.1.1 i.MX233 EVK Scan Code Mapping

Table 10-3 shows the scan code mapping.
Table 10-3. .MX233 EVK Scan Code Mapping Table

Key Keypad Voltage Virtual Key
KEY1 0x0 VK_ESCAPE
RIGHT 0x156 VK_RIGHT

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

10-2 Freescale Semiconductor

Table 10-3. 1.MX233 EVK Scan Code Mapping Table (continued)

Keypad Driver

Key Keypad Voltage Virtual Key
KEY2 Ox2AA VK_RWIN
LEFT Ox3F4 VK_LEFT

upP 0x6B0 VK_UP

DOWN 0x960 VK_DOWN
KEY3 0x80C VK_MENU
SELECT 0xCO00 VK_ENTER

10.4.2 Power Management

The following are the power management functions used by the keypad driver.

10.4.2.1 BSPKppPowerOn

This function is used to power up the keypad. This function configures the necessary settingsin the

registers to bring up the keypad.

10.4.2.2 BSPKppPowerOff
This function powers down the keypad.

10.4.2.3 I0CTL_POWER_CAPABILITIES

This function is not implemented for the keypad driver.

10.4.2.4 I10CTL_POWER_SET

This function is not implemented for the keypad driver.

10.4.2.5 IOCTL_POWER_GET

This function is not implemented for the keypad driver.

10.4.3 Keypad Registry Settings

The following registry keys are required to properly load the keypad device layout and input language.

| F BSP_KEYPAD
[HKEY_LOCAL _MACHI NE\ Dri ver s\ Bui | t I n\ KEYPADS]
"Prefix"="KPD"
"D |"="keypad.dlI"
"l ndex"=dword: 1
"Or der"=dwor d: 6

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ KeyPad$]
" Repeat Lant ency" =dwor d: 3e8

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

10-3

Keypad Driver

" Repeat Rat e" =dwor d: a

" ScanPeri od" =dwor d: 14

" Debounce" =dwor d: 2

"Val i dKeys"=dwor d: b

" LRADC_KeyPAD" =dwor d: 0
"LRADC_Ref er ence" =dword: 6

" LRADC_SCHEDULER" =dwor d: 0

"Hyst eresi s"=dword: 80

"Rel easeVol at ge" =dwor d: 00000e4a

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ KeyPadS\ Key2]
" KeyNane" =" Hot Key0"
" AppNane" ="expl or er. exe"
“Paraneter"=""
"Vol t age" =dwor d: 00000550
" Fl ag" =dwor d: 00000001
"Vi rtual Key" =dwor d: 0000f f f f

ENDI F ; BSP_KEYPAD

10.5 Unit Test

As keypad has only 8 keys, it's not a full-key keypad, it can’t pass the Keyboard Test included in the
Windows CE Test Kit (CETK). A specific manual test to verify the 8-key functionality is described in
following sections.

10.5.1 Unit Test Hardware
e |.MX233 EVK board

10.5.2 Unit Test Software
The manual keypad test requires Microsoft WordPad which can be built into the image.

10.5.3 Building the Unit Tests
No additional steps are required to build the keypad tests.

10.5.4 Running the Unit Tests

The procedure of keyboard testsis as follows:

Input Enter to run the Internet Explorer application

Input Menu

Input Up Down Left and Right

Input Windows Key

Open the help document by click the question mark on Internet Explorer application
Input the ESC to quit from help document

Input Return to quit the Explorer application

N o g s~ wWwDdDPRE

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

10-4 Freescale Semiconductor

Keypad Driver

NOTE

Prior this test, make sure the WordPad itemsis included in the project
(SYSGEN_PWORD).

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 10-5

Keypad Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

10-6 Freescale Semiconductor

Chapter 11

Inter-Integrated Circuit (12C) Driver

The Inter-Integrated Circuit (12C) module provides the functionality of a standard 1°C master. The I2C
module is designed to be compatible with the standard Phillips 1°C bus protocol.

111

I2C Driver Summary

Table 11-1 provides a summary of source code location, library dependencies and other BSP information.

Table 11-1. I2C Driver Summary

Driver Attribute

Definition

Target Platform

iMX233-EVK

Target SOC

MX233_FSL_V2

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\IMX233_FSL_V2\12C

SOC Specific Path

.\PLATFORM\COMMON\SRC\SOC\<Target SOC>\12C

Platform Driver Path

.\PLATFORM\Target Platform>\SRC\DRIVERS\I2C

Import Library N/A
Driver DLL i2csdk.dll i2c.dll
Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > 12CBus
SYSGEN Dependency N/A
BSP Environment Variables BSP_12CBUS=1

11.2 Supported Functionality

The 12C driver supports the following features:
1. 12C communication protocol
2. 1°C master mode of operation

3. Stream interface

11.3 Hardware Operation

The .M X233 12C block has its own dedicated DMA channel in the APBX controller. DMA is used
exclusively to transfer data to and from the bus as PIO mode is not fully supported in hardware.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

Inter-Integrated Circuit (IZC) Driver

11.3.1 Conflicts with Other Peripherals and Catalog Items

The following section explains about the conflicts that the I1°C driver have with other peripherals and
catalog items:

11.3.1.1 Conflicts with SoC Peripherals

No conflicts.

11.3.1.2 Conflicts with Board Peripherals

No conflicts.

11.4 Software Operation

Only master mode isimplemented in the driver; save functions are stubbed out. As mentioned above, PIO
mode is not fully supported in hardware so only DMA mode isimplemented in the driver. The driver
allocates its own DMA buffers for the data transfer. The calling application is expected to setup the data
buffer with the slave address (7-bit or 10-bit) as part of the data to be sent in the format required by the
dave device.

The 1°C APIs should be used to perform any operation on or using the 1°C module. Any array of packets
to be transferred to or from the 1“C bus finish to completion without preemption by another request to
transfer data

11.4.1 Registry Settings
This section explains about the registry settings for the 12C driver.

11.4.1.1 i.MX233 Registry Settings

The following is the registry key to load the 12C.

| F BSP_I 2CBUS
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Buil t1n\ 12
"Prefix"="12C
"Dl"="i2c.dlI"
"l ndex"=dword: 1
"Order"=dword: 3
ENDI F ; BSP_I 2CBUS

11.4.2 Communicating with the IC

The 12C is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the 1°C, ahandle to the device must first be created usi ng the CreateFile function. Subsequent
commandsto the device are issued using the Devicel oControl function with IOCTL codes specifying the
desired operation. Thefollowing are the basic steps. The 12C driver is provided to hide all the IOCTL calls
from the calling application.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-2 Freescale Semiconductor

Inter-Integrated Circuit (IZC) Driver

11.4.3 Creating a Handle

Call the CreateFile function to open aconnection to the 1°C device. An 12C port must be specified in this
call. The port to be opened is12C1: since thereisonly 1 instance of the controller oni.MX233. If an 1%C
port does not exist, CreateFile returns ERROR_FILE_NOT_FOUND.

To open a handle to the 12C:

1. Insert acolon after the I°C port for the first parameter, |pFileName. For example, specify 1 2c1: .

2. Specify FILE_SHARE_READ |FILE_SHARE_WRITE in the dwShareMode parameter. M ultiple
handles to an 1°C port are supported by the driver.

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. Thisflag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

Example 11-1shows how to open an 1°C port.
Example 11-1. Code to Open I2C Port

/] Open the |2C port.

h12C = CreateFile (“l2C1:", /'l name of device
GENERI C_READ | GENERI C_WRI TE, /'l access (read-wite) node
FI LE_SHARE_READ | FILE_SHARE_WRI TE, /| sharing node
NULL, /] security attributes (ignored)
OPEN_EXI STI NG, /'l creation disposition
FI LE_FLAG_RANDOM ACCESS, /1 flags/attributes
NULL) ; /1 tenmplate file (ignored)

Before writing to or reading from an 1%C port, configure the port. When an application opens an 1°C port,
it uses the default configuration settings, which might not be suitable for the device at the other end of the
connection.

11.4.4 Configuring the I’C

Configuring the 12C port for communications involves two main operations:
» Setting the master mode
« Setting the 1°C clock rate

Before these actions can be taken, a handle to the 1°C port must already be opened. Each of these steps
requires acall to the Devicel oControl function. As parameters, the 1°C port handle, appropriate IOCTL
code, and other input and output parameters are required. Use the helper APIs to correctly configure the
port.

Example 11-2 shows the code to configure an 1%C port:
Example 11-2. Code to Configure I12C Port

HANDLE hl 2C = | 2CQpenHandl e(_T("12C1:"));
if (hl2C == | NVALI D_HANDLE VALUE)

{
ERRORMSE 1, (L"Unable to open handle to |12C block\r\n"));

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-3

Inter-Integrated Circuit (IZC) Driver

retVal = -1;
goto exit;

}

if (!'12CSet Mast er Mode(hl 2C))

{
ERRORMBG(1, (L"Unable to set master mode\r\n"));
retVal = -1;
goto exit;

}

if (!12Csetd ockRate(hl2C, EEPROM CLOCK_RATE))

{
ERRORVBG(1, (L"Unable to set clock rate\r\n"));
retVal = -1;
goto exit;

11.4.5 Data Transfer Operations

The 1°C driver provides one command, transfer, that facilitates performing both reads and writes through
the 1°C. The basic unit of datatransfer in the I2C driver isthe 12C_PACKET, which contains a buffer for
reading or writing data and aflag that specifies whether the desired operation isaread or awrite. An array
of these packets makes up an 1I2C_TRANSFER_BLOCK object, which is needed to perform a Transfer
operation. The steps below detail the process of performing write and read operations through the 1%C.

Before these actions can be taken, ahandle to the 1°C port must already be opened, and it should already

be configured in the correct mode with the correct frequency.

To perform an 1°C transfer:

1. Createan array of 12C_PACKET objects and initialize the fields of each packet as follows:

a) SetthebyRWfield to 12C_RW_WRITE to specify that the 1°C operation is awrite, or
12C_RW_READ to specify that the 1°C operation is aread.

b) If byRWissetto12C_ RW_WRITE, create a buffer of bytes and fill it with the datato write to
the slave device. Set the pbyBuf field to point to thisbuffer. If byRWisset to 12C_RW_READ,
create a buffer of bytes to hold the data which is read from the slave device. The data buffer
should include the slave address as required. For reads, an initial write packet with the slave
address may need to be inserted, resulting in more than 1 packet to execute the read operation.

c) SetthewLenfieldtothesize, in bytes, of theread or write buffer. Thisindicates the number of

bytes to write or read.

d) SetthelpiResultfieldto point to an integer that holds the return value from the write operation.

2. Call the 12CTransfer SDK AP to start the 12C transfer.

3. After calingthel2CTransfer function, check the IpiResult field if the function returned FAL SE, to

narrow down the type of error that occurred.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

Inter-Integrated Circuit (IZC) Driver

Example 11-3 demonstrates how to perform atransfer that contains one write of 3 bytes, which consists
of the EEPROM address+direction byte, followed by 2 bytes of internal subaddress of the EEPROM where
subsequent data writes will be stored.

Example 11-3. Code to perform I2C transfer

BYTE pSendByt es[3] ;

| 2C_TRANSFER _BLOCK | 2CXf er Bl ock;
| 2C_PACKET | 2CPacket ;

I NT i Result;

/] addr of EEPROM + high byte + |ow byte of addr within the menory
pSendByt es[0] EEPROM | 2C_ADDR | O0;

pSendByt es[1] = EEPROM SUB_ADDR H _BYTE;

pSendByt es[2] = EEPROM SUB_ADDR LO BYTE;

| 2CXf er Bl ock. pl 2CPacket s
| 2CXf er Bl ock. i NunPacket s

= | 2CPacket ;
= 1;
| 2CPacket . wLen = 3;
| 2CPacket . byRW = |1 2C_RW WRI TE;
| 2CPacket . pbyBuf = pSendByt es;
| 2CPacket .| pi Result = & Result;
if (!l2CTransfer(hl2C, & 2CXf er Bl ock))
{
ERRORMSE(1, (_T("Wite transfer to EEPROM failed!\r\n")));
retVal = -1;
goto exit;

11.4.6 Closing the Handle

Call the CloseHandle function to close the handle to the 1°C after the transfer task is complete.
Cl oszeH andle has one parameter, which isthe handle returned by the CreateFilefunction call that opened
the 1<C port.

11.5 Unit Test

The following section explains about the hardware and software requirements for unit tests.

11.5.1 Unit Test Hardware

This section explains about the hardware test.

11.5.1.1 12C EEPROM Test
24L.C512 or 24 C256 EEPROM module which can be read/write by 1%C.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-5

Inter-Integrated Circuit (IZC) Driver

11.5.2 Unit Test Software

This section explains about the software test.

11.5.2.1 12C EEPROM Test

Please read the following file for information on running the EEPROM test:
W NCE600\ SUPPORT\ APP\ EEPROM 24LCxxx_| 2C _Test\ readne. t xt

11.5.3 Building the Unit Tests

The following section explains how to build the unit tests.

11.5.3.1 12C EEPROM Tests

To build the I2C MCU tests, build an OS image for the desired configuration using these steps:
1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.
2. Change to the 12C EEPROM tests directory: \ w NCE600\ SUPPORT\ APP\ EEPROM 24LCxxx_| 2C_Test
3. Input build -c to build the I2C EEPROM test.

After the build completes, the eepromi2c.exe file islocated in the $(_FLATRELEASEDIR) directory.

11.5.4 Running the Unit Tests

The following section explains how to run the unit tests.

11.5.4.1 12C EEPROM Tests

Run the application using the following command line: eepr oni 2c 256 for 24L C256 or eepr oni 2¢ 512 for
the 24L C512 model. If no argument is specified then 24L C256 is assumed.

If the test passes, the message EEPROM Test completed successfully! is displayed on the console.

11.6 Hardware Limitations
The following is the hardware limitations:

PIO mode is not supported by the hardware; DMA mode is always used. Slave mode is not implemented.

11.7 12C Driver API Reference

This section explains about the reference to 12C driver API.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-6 Freescale Semiconductor

Inter-Integrated Circuit (IZC) Driver

11.7.1 12C Driver IOCTLS

This section contains descriptions of the 2C 1/0 control codes (IOCTLS). These IOCTLsareused in cals
to Devicel oControl to issue commands to the 12C device. Only relevant parameters for the IOCTL have
adescription provided.

11.7.1.1 12C_IOCTL_GET_CLOCK_RATE
This Devicel oControl request retrieves the clock rate

Parameters
[pOutBuffer Pointer to the clock rate.
nOutBuffer Sze Sizein bytes of the clock rate

11.7.1.2 12C_IOCTL_GET_SELF_ADDR

This Devicel oControl request retrievesthe address of the 1°C device. Thismacrois only meaningful if it
iscurrently in Slave mode.

Parameters
[pOutBuffer Pointer to the current 1°C device address, valid range is [0X00—0X 7F]
nOutBuffer Sze Sizein bytes of thel 2C device address

11.7.1.3 12C_IOCTL_IS_MASTER

This Devicel oControl request determines whether the 1°C is currently in Master mode.
Parameters

[pOutBuffer Pointer to a BY TE that contains the return value from the Master mode inquiry:
TRUE if currently in Master mode; FALSE if currently in Slave mode
nOutBuffer Sze Sizein bytes of the return value, should be one byte

11.7.1.4 12C_IOCTL_IS_SLAVE

This Devicel oControl request determines whether the 1°C is currently in Slave mode.
Parameters

[pOutBuffer Pointer to aBY TE that contains the return value from the Slave mode inquiry:
TRUE if currently in Slave mode; FALSE if currently in Master mode
nOutBuffer Sze Sizein bytes of the return value, should be one byte

11.7.1.5 12C_IOCTL_RESET

This Devicel oControl request performs a hardware reset. The I°C driver maintains all of the current
information of the device, including all of the initialized addresses.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-7

Inter-Integrated Circuit (IZC) Driver

11.7.1.6 12C_IOCTL_SET_CLOCK_RATE

This Devicel oControl request initializes the 1°C device with the given clock rate. Note that only two
frequencies are supported: 100 khz and 400 khz. If avalue less than 100 khz is passed in, then the clock
rate is setup for 100 khz, and if a value greater than 100 khz is passed in, then 400 khz is setup.

Parameters
|plnBuffer Pointer to the clock rate.
ninBufferSze Sizein bytes of the clock rate

11.7.1.7 12C_IOCTL_SET_MASTER_MODE
This DeviceloControl request sets the 12C device to Master mode.

11.7.1.8 12C_IOCTL_SET_SELF_ADDR

This DeviceloControl request initializes the 1C device with the given address.

Parameters

| plnBuffer Pointer to the expected | 2C device address, valid range is [OX0O0-0x7F]
ninBufferSize Sizein bytes of the 1°C device address

Remarks The device expectsto respond when any master on the | 2C buswishesto proceed

with any transfer. This IOCTL has no effect if the I°C device isin Master mode.

11.7.1.9 I12C_IOCTL_SET_SLAVE_MODE
This Devicel oControl request setsthe 1°C device to Slave mode.

NOTE
IOCTL is stubbed out because slave mode is not supported.

11.7.1.10 12C_IOCTL_TRANSFER

This Devicel oControl request performs the transfer (read or write) of one or more packets of datato a
target device. An12C_TRANSFER_BLOCK object isexpected, which containsan array of 12C_PACKET
objects to be executed sequentially. All of the required information should be stored in the
12C_TRANSFER_BLOCK passed in the IpInBuffer field.

Parameters

|plnBuffer Pointertoan 12C_TRANSFER_BLOCK structure containing a pointer to an array
of 12C_PACKET objectsspecifying all of theinformation required to perform the
requested Read and Write operations

ninBufferSze Sizein bytes of the |I2C_TRANSFER_BLOCK

11.7.1.11 12C_IOCTL_ENABLE_SLAVE

This Devicel oControl request starts the 1C device to work in slave mode.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-8 Freescale Semiconductor

Inter-Integrated Circuit (IZC) Driver

NOTE
IOCTL is stubbed out because slave mode is not supported.

11.7.1.12 12C_IOCTL_DISABLE_SLAVE

This Devicel oControl request stops the 1°C device to work in slave mode.

11.7.2 12C Driver SDK Encapsulation

This section explains about the functions that are involved in 12C driver SDK encapsulation.

11.7.2.1 12COpenHandle

This function retrieves the 12C device handle.

HANDLE | 2COpenHandl e(
LPCWSTR | pDevNane) ;

Parameters
IpDevName The 12C device name for retrievi ng handle from CreateFile()
Return Values Returns the handle for 12C driver, returns INVALI D_HANDLE_VALUEIf falure

11.7.2.2 12CCloseHandle

This function closes a handle of the I2C stream driver.
BOCL | 2CC oseHandl e(

HANDLE hDev);
Parameters
hDev The 12C device handle retrieved from CreateFile()
Return Values Returns TRUE or FAL SE; if the result is TRUE, the operation is successful

11.7.2.3 12CSetSlaveMode

This function sets the 1°C device in slave mode. This function is for back compatibility. Use
|2CEnableSlave instead.

BOCL | 2CSet Sl aveMode(

HANDLE hDev);
Parameters
hDev 1°C device handle retrieved from CreateFile()
Return Values Returns TRUE or FAL SE; if the result is TRUE, the operation is successful

11.7.2.4 12CSetMasterMode

This function sets the 1°C device in master mode. This function is for back compatibility. The default
setting of driver is master.

BOCL | 2CSet Mast er Mode(
HANDLE hDev);

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-9

Inter-Integrated Circuit (IZC) Driver

Parameters
hDev 1°C device handle retrieved from CreateFile()
Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

11.7.2.5 I12ClsMaster

This function determines whether the 1°C is currently in Master mode. This function isfor back
compatibility.
BOOL | 2Cl sMast er (

HANDLE hDev,
PBOOL pbl sMaster);

Parameters

hDev 1°C device handle retrieved from CreateFile()

pblsMaster TRUE if the I°C device isin master mode

Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

11.7.2.6 I12ClIsSlave

This function determines whether the 1°C is currently in Slave mode.

BOCL | 2Cl sSl ave(
HANDLE hDev,
PBOOL pbl sSl ave);

Parameters

hDev 1°C device handle retrieved from CreateFile()

pblsSave TRUE if the I°C deviceisin Slave mode

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

11.7.2.7 12CGetClockRate

This function retrieves the clock rate.

BOCL | 2CGet d ockRat e(
HANDLE hDev,
PDWORD pwCl kRat e) ;

Parameters

hDev 1°C device handle retrieved from CreateFile()

pdwClkRate Pointer of DWORD variable that retrieves clock rate

Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

11.7.2.8 12CSetClockRate

This function initializes the 1°C device with the given clock rate.

BOCL | 2CSet d ockRat e(
HANDLE hDev,
DWORD dwd kRat e) ;

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-10 Freescale Semiconductor

Inter-Integrated Circuit (IZC) Driver

Parameters

hDev 1°C device handle retrieved from CreateFile()

dwClkRate Clock rate

Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

11.7.2.9 12CSetSelfAddr

This function initializes the 1°C device with the given address. The device is expected to respond when
any master within the 1°C bus wish to proceed with any transfer.

BOCL | 2CSet Sel f Addr (
HANDLE hDev,
BYTE bySel f Addr) ;

Parameters

hDev 1°C device handle retrieved from CreateFile()

bySelfAddr Expected | 2C device address. The valid range of addressis [0x00-Ox7F]
Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

11.7.2.10 12CGetSelfAddr

This function retrieves the address of the 12C device.

BOOL | 2CGet Sel f Addr (
HANDLE hDev,
PBYTE pbySel f Addr);

Parameters

hDev 1°C device handle retrieved from CreateFile()

pbySelfAddr Pointer to BY TE variable that retrieves 1°C device address

Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

11.7.2.11 I12CTransfer

This function performs one or more | 2C read or write operations. pl 2CTransfer Block contains a pointer
to the first of an array of 12C packets to be processed by the 1°C. All the required information for the 1°C
operations should be contained in the array elements of pl2CPackets.

BOOL | 2CTr ansf er (
HANDLE hDev,
Pl 2C_TRANSFER_BLOCK pl 2CTr ansf er Bl ock) ;

Parameters

hDev 1°C device handle retrieved from Createfile()

pl 2CTransfer Block

pl2CPackets [in] Pointer to an array of packetsto be transferred sequentially

iNumPackets [in] Number of packets pointed to by pl2CPackets (the number of packets to be
transferred)

Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-11

Inter-Integrated Circuit (IZC) Driver

11.7.2.12 12CReset

Thisfunction performsahardwarereset. The 1°C driver maintainsall the current information of the device,
which includes all theinitialized addresses.

BOCL | 2CReset (

HANDLE hDev);
Parameters
hDev 1°C device handle retrieved from CreateFile()
Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

11.7.2.13 12CEnableSlave

This function enables a 12C dlave access from the bus. Note that this function has no effect because dave
mode is not supported.

BOCL | 2CEnabl eSl ave(

HANDLE hDev);
Parameters
hDev 1°C device handle retrieved from CreateFile()
Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

11.7.2.14 12CDisableSlave

This function disables I2C slave access from the bus. Note that after the 12C slave interface disabled, 1°C
dave module can be turned off.

BOCL | 2CDi sabl eS| ave(

HANDLE hDev);
Parameters
hDev 1°C device handle retrieved from Createfile()
Return Values Returns TRUE or FAL SE, if theresult is TRUE, the operation is successful

11.7.3 I12C Driver Structures

This section explains about the 1°C driver structures.

11.7.3.1 12C_PACKET

This structure contains the information needed to write or read data using an 1°C port.

typedef struct {
BYTE byRW
PBYTE pbyBuf;
WORD wien;
LPI NT | pi Resul t;
} 12C_PACKET, *Pl2C_PACKET;

Parameters

byRW Determines whether the packet isaread or awrite packet. Set to 12C_RW_READ
for reading and 12C_RW_WRITE for writing.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-12 Freescale Semiconductor

Inter-Integrated Circuit (IZC) Driver

pbyBuf Pointer to abuffer of bytes. For aread operation, thisisthe buffer into which data
isread. For awrite operation, this buffer contains the data to write to the target
device.The dave address must be included as part of this buffer at the right

position.

wLen If the operation isaread, wL en specifies the number of bytesto read into pbyBuf.
If the operation is awrite, wLen specifies the number of bytes to write from
pbyBuf.

|piResult Pointer to an int that contains the return code from the transfer operation

11.7.3.2 12C_TRANSFER_BLOCK

This structure contains an array of packets to be transferred using an 1°C port.

typedef struct {
| 2C_PACKET *pl 2CPacket s;
I NT32 i NunPackets;
} 12C_TRANSFER BLOCK, *PlI 2C_TRANSFER BLOCK;

Parameters
pl2CPackets Pointer to an array of 12C_PACKET objects
iNumPackets Number of 12C_PACKET objects pointed to by pl2CPackets

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11-13

Inter-Integrated Circuit (12C) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

11-14 Freescale Semiconductor

Chapter 12
Low-Resolution Analog-Digital Converter (LRADC) Driver
The LRADC is amultipurpose module used to measure the voltage applied to the dedicated input pins.

Some of the input pins can be used to interface a resistive touchscreen, while other pins can be used for
genera purpose inputs. The LRADC controller is not used directly by the software.

12.1 LRADC Driver Summary

The LRADC driver can be used to measure the voltage of the General Purpose LRADC pins and to
interface with atouchscreeninterface, and battery interface. Thus, only one of the driver interfacesis used
by the touchscreen driver. The LRADC driver interacts with the TSC to drive the LRADC.

Table 12-1 provides a summary of source code location, library dependencies and other BSP information.
Table 12-1. LRADC Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2
SOC Common Path N/A
SOC Specific Path ..PLATFORM\COMMON\SRC\SOC\<Target SOC>\LRADC
Platform Specific Path .\PLATFORM\<Target Platform>SRC\DRIVERS\LRADC
Driver DLL Irade.dll
SDK Library Iradcsdk_$(_SOCDIR).lib
Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > LRADC >
LRADC
SYSGEN Dependency N/A
BSP Environment Variables |BSP_LRADC=1

12.2 Supported Functionality

The LRADC driver enablesthe i.MX233 EVK System to provide the following software support:
1. Configures the Touchscreen setting
2. Retrieves of the Touchscreen samples
3. Configuresthe general conversion setting
4. Retrievesthe general purpose samples

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-1

Low-Resolution Analog-Digital Converter (LRADC) Driver

12.3 Hardware Operation

See the Low-Resolution ADC and Touch-Screen Interface chapter in i.MX233 Applications Processor
Reference Manual for hardware operation details.

12.3.1 Conflicts with Other Peripherals and Catalog Items

Because the LRADC inputs are not multiplexed with other functions, the LRADC module does not have
conflict with other peripherals.

12.4 Software Operation

The LRADC device driver framework for Windows CE is a stream interface driver. A description of the
stream interface driver may be found in the Windows CE Platform Builder documentation at Developing
a Device Driver > Windows CE Drivers> Stream Interface Drivers. The LRADC stream interface
driver controls the LRADC hardware. The LRADC SDK lib provides APIs for Windows CE drivers and
applications. The need to access the LRADC isto use the LRADC SDK lib.

12.4.1 ADC Registry Settings

The following isthe ADC registry key:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t 1 n\ LRADC]

"DII" = "lradc.dll"
"Prefix" = "LDC"
"I ndex" = dword:1

"Order" = dword: 2

12.4.2 Interfacing with the LRADC Driver

This section explains how to interface with the LRADC driver.

12.4.2.1 Stream Interface
The LRADC driver isa stream interface driver, and is accessed through the file system APIs.

12.4.2.2 Using the SDK

The LRADC driver includes awrapper library that smplifiesitsuse. Thislibrary isthe ADC SDK and is
described in Section 12.7, “LRADC SDK APl Reference.”

12.4.2.3 DMA Support
The LRADC driver currently does not support DMA.

12.5 Power Management

This section explains about the power management in the LRADC.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-2 Freescale Semiconductor

Low-Resolution Analog-Digital Converter (LRADC) Driver

12.5.1 LDC_PowerUp

This function is not implemented for the LRADC driver.

12.5.2 LDC _PowerDown

This function is not implemented for the LRADC driver.

12.5.3 IOCTL_POWER_CAPABILITES

The power management capabilities are advertised with the power manager through thisIOCTL. The
LRADC module supports only two power states. DO and DA4.

12.5.4 IOCTL_POWER_SET

This function isimplemented for the LRADC driver. If the clocks are disabled during the suspend (for
exampleif the touchscreen is not awake-up source), then the clocks are re-enabled at thistime in the DO
state. If the touchscreen is not a wake-up source, then the clocks are disabled at thistime in the D4 state.

12.5.5 IOCTL_POWER_GET

ThisOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It doesnot generally issuean IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

12.6 Unit Test

Due to the heavy use of the LRADC routines by other drivers on the system, there are no additional test
Cases.

12.7 LRADC SDK API Reference
The following section explains about the LRADC SDK API references:

12.7.1 LRADC SDK Functions
This section explains about the functions that are in LRADC SDK.

12.7.1.1 LRADCOpenHandle

This function creates a handle to the LRADC stream driver.

HANDLE LRADCOpenHandl e(
LPCWSTR | pDevNarne

)
Parameters
LpDevName [in] Name of the device, for example TEXT("LDC1:")

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-3

Low-Resolution Analog-Digital Converter (LRADC) Driver

Return Values Handle to LRADC driver which is set in this method
NULL indicatesfailure

12.7.1.2 LRADCCloseHandle

This function is used to closes a handle to the LRADC stream driver.

voi d LRADCC| oseHandl e(
HANDLE hLRADC

)

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
Return Values None

12.7.1.3 LRADCConfigureChannel

This function configures a channel with the given settings.

BOOL LRADCConfi gureChannel (
HANDLE hLRADC,
LRADC_CHANNEL eChannel ,
BOCOL bEnabl eDi vi deByTwo,
BOOL bEnabl eAccum
U NT8 u8Nuntanpl es

)

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure

bEnableDivideByTwo [in] TRUE to caused the A/D converter to useits analog divide by two circuit
bEnableAccum [in] TRUE to add successive samples to the 18bit accumulator
u8NumSamples [in] Number of samples that must be converted, between 1 and 16

Return Values TRUE on success and FAL SE indicates afailure

12.7.1.4 LRADCEnableinterrupt

The function enable the Interrupt of the LRADC Channel.

BOOL LRADCEnabl el nt er rupt (
HANDLE hLRADC,
LRADC_CHANNEL eChannel ,

BOOL bVal ue,
Param)e’ters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure
bValue [in] TRUE to enable, FALSE to Disable
Return Values TRUE on success and FAL SE indicates afailure

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-4 Freescale Semiconductor

Low-Resolution Analog-Digital Converter (LRADC) Driver

12.7.1.5 LRADCCIlearInterruptFlag

The function clears the interrupt flag of a specified LRADC channel.

BOOL LRADCEnabl el nt er rupt (
HANDLE hLRADC,
LRADC _CHANNEL eChannel ,

)

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure

Return Values TRUE on success and FAL SE indicates afailure

12.7.1.6 LRADCSetDelayTrigger

The function setsthe ADC conversion sample time of the LRADC Channel.

BOOL LRADCEnabl el nt er rupt (
HANDLE hLRADC,
LRADC_DELAYTRI GCER Del ayTri gger,
U NT32 Triggerlradcs,
U NT32 Del ayTri ggers,
U NT32 LoopCount,
U NT32 Del ayCount,

)

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
DelayTrigger [in] Identifier of LRADC delay Triggers

TriggerLradcs [in] The delay controller to trigger the corresponding LRADC channel
DelayTriggers [in] The delay controller to trigger the corresponding delay channel
LoopCount [in] The number of times this delay counter

DelayCount [in] Delaycount of the delay channel

Return Values TRUE on success and FAL SE indicates afailure

12.7.1.7 LRADCCLearDelayChannel

The function clears the ADC conversion sample time of the LRADC Channel.

BOOL LRADCCLear Del ayChannel (
HANDLE hLRADC,
LRADC_CHANNEL eChannel ,

)

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to clear

Return Values TRUE on success and FAL SE indicates afailure

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-5

Low-Resolution Analog-Digital Converter (LRADC) Driver

12.7.1.8 LRADCSetDelayTriggerKick

The function set the delay trigger kick of the LRADC Channel.

BOOL LRADCEnabl el nt er rupt (
HANDLE hLRADC,
LRADC_DELAYTRI GCER Del ayTri gger,

BOOL bVal ue,
Param)éters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
DelayTrigger [in] Identifier of LRADC delay Triggers
bValue [in] TRUE to enable, FAL SE for Disable
Return Values TRUE on success and FAL SE indicates afailure

12.7.1.9 LRADCGetAccumValue

The function gets the conversion value of a specified LRADC channel.

U NT16 LRADCGet AccunVal ue(
HANDLE hLRADC,
LRADC_CHANNEL Channel ,

)

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure

Return Values Accumulator value of the channel

12.7.1.10 LRADCEnableBatteryMeasurement

The function enable the Interrupt of the LRADC Channel.

BOOL LRADCEnabl eBatt eryMeasur enment (
HANDLE hLRADC,
LRADC_DELAYTRI GGER eTri gger,
U NT32 Triggerlradcs,
LRADC_BATTERYMODE eBatt er yMbde,

)

Parameters

hLRADC [in] Handle to configure retrieved from LRADCOpenHandle

eTrigger [in] Identifier of LRADC delay Triggers

riggerLradcs [in] Specifies the sampling interval for the Battery value update
eBatteryMode [in] Specifies the Battery mode setup

Return Values Return O If the operation is successful otherwise returns error value failure

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-6 Freescale Semiconductor

Low-Resolution Analog-Digital Converter (LRADC) Driver

12.7.1.11 LRADCEnableDieMeasurement

The function enables the LRADC channel for die temperature measurement.

BOOL LRADCEnabl eDi eMeasur enent (
HANDLE hLRADC,

);

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
Return Values Return die temperature.

12.7.1.12 LRADCClearAccum

The function Clears the Accum Value of the specified LRADC channel.

BOOL LRADCEnabl el nt er rupt (
HANDLE hLRADC,
LRADC_CHANNEL Channel ,

)

Parameters

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure

Return Values TRUE on success and FAL SE indicates afailure

12.7.1.13 LRADCEnableTouchDetect

The function set or clear the TOUCH_DETECT_ENABLE in HW_LRADC_CTRLO Register.

BOCOL LRADCEnabl eTouchDet ect (
HANDLE hLRADC,

BOOL bVal ue,
)
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE for set, FALSE for clear
Return Values TRUE on success and FAL SE indicates afailure

12.7.1.14 LRADCGetTouchDetect

The function Read the TOUCH_DETECT_RAW bit of HW_LRADC_STATUS register.

BOOL LRADCGet TouchDet ect (
HANDLE hLRADC,

)

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
Return Values TRUE on success and FAL SE indicates afailure

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-7

Low-Resolution Analog-Digital Converter (LRADC) Driver

12.7.1.15 LRADCEnableTouchDetectInterrupt

The function set or clear the TOUCH_DETECT _IRQ_EN in HW_LRADC_CTRL1 Register.

BOOL LRADCEnabl eTouchDet ect | nt errupt (
HANDLE hLRADC,

BOOL bVal ue,
)
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE to enable, FAL SE for Disable
Return Values TRUE on success and FAL SE indicates afailure

12.7.1.16 LRADCSetAnalogPowerUp

The function set or clear the ADC analog power up.

BOOL LRADCEnabl el nt er rupt (
HANDLE hLRADC,

BOOL bVal ue,
)
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE to enable, FAL SE for Clear
Return Values TRUE on success and FAL SE indicates afailure

12.7.1.17 LRADCCIlearTouchDetect

The function clear the touch detect status.

BOCOL LRADCCI ear TouchDet ect (
HANDLE hLRADC,

)

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
Return Values TRUE on success and FAL SE indicates afailure

12.7.1.18 LRADCEnableTouchDetectXDrive

The function enable or disable the X Channelsin HW_LRADC_CTRLO Register.

BOOL LRADCEnabl eTouchDet ect XDri ve(
HANDLE hLRADC,

BOOL bVal ue,
)
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE to enable, FAL SE for Disable
Return Values TRUE on success and FAL SE indicates afailure

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-8 Freescale Semiconductor

Low-Resolution Analog-Digital Converter (LRADC) Driver

12.7.1.19 LRADCEnableTouchDetectYDrive

The function enable or disable the Y Channelsin HW_LRADC_CTRLO Register.

BOOL LRADCEnabl eTouchDet ect YDri ve(
HANDLE hLRADC,

BOOL bVal ue,
)
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE to enable, FAL SE for Disable
Return Values TRUE on success and FAL SE indicates afailure

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 12-9

Low-Resolution Analog-Digital Converter (LRADC) Driver

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

12-10 Freescale Semiconductor

Chapter 13
NAND Flash Driver

The NAND flash driver provides the functionality of NAND storage accessing. The flash driver follows
Windows CE 6.0 R2 flash driver having module device driver (MDD) and platform-dependent driver
(PDD) model.

13.1 Flash Driver Summary

Windows CE providesdriver support for flash mediadevicesusing MDD or PDD architecture. The MDD
allowsNAND flash storageto be exposed asablock driver that isaccessed by file system. The PDD wraps
FMD layer (flash driver model before R2) asa stream interface called by MDD. The FMD software layer

ported to thei.M X NAND flash controller isresponsible for the actual communication with the
corresponding NAND flash devices.

Theflash driver supports both SLC and MLC NAND flash devices. Asfor page size, 512 byte (small page

Size) is not supported.

Table 13-1 provides a summary of source code location, library dependencies and other BSP information.

Table 13-1. Flash Driver Summary

Driver Attribute

Definition

Target Platform

iMX233-EVK

Target SOC

MX233_FSL_V2

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\NAND

SOC Specific Path

.\PLATFORM\COMMON\SRC\SOC\<Target SOC>\MEDIA\NAND

Platform Specific Path

.\PLATFORM\< Target Platform>SRC\DRIVERS\NANDFMD
.\PLATFORM\<Target Platform>SRC\COMMON\NANDFMD

Driver DLL flashpdd_nand.dll
SDK Library N/A
Catalog Item Device Drivers > Storage Devices > MSFlash Drivers > Flash MDD

Third Party > BSP > Freescale i.MX233 EVK: ARMV4l > Storage Drivers > Flash >
Flash

NAND

SYSGEN Dependency

N/A

BSP Environment Variables

BSP_NONAND_FMD=

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

13-1

NAND Flash Driver

13.2 Supported Functionality

The flash driver enables the EVK System to provide the following software and hardware support:
1. Supports the Windows CE MDD or PDD interface

Supports both MLC and SLC NAND

Supports both 2 Kbyte and 4 Kbyte page size NAND

Boot time dynamic detection of installed flash module

Supports MLC NAND Flash MT29F8GO8MAD as default

Supports MLC NAND Fash MT29F16GOSBMAD

Supports MLC NAND Flash M T29F32G08QAAWP

Supports SLC NAND Flash MT29F16GOSDAA

O N U A~ WD

13.3 Hardware Operation

Seethe chapter onthe NAND Flash Controller (GPMI) in thei.MX233 Multimedia Applications Processor
Reference Manual for detailed operation and programming information.

13.3.1 Conflicts with Other Peripherals and Catalog Items

This section explains the conflicts with other peripherals and catalog items.

13.3.1.1 Conflicts with SoC Peripherals

No conflicts.

13.4 Software Operation

The development concepts for flash media drivers are described in the Windows CE 6.0 Help
Documentation in the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Flash Drivers.

The flash driver supported in the i.MX BSP implements the required PDD functions for interfacing to
NAND Flash devices.

13.4.1 MDD and PDD Layer Overview

The Microsoft Windows Embedded CE 6.0 flash driver component contains two components, the MDD
and the PDD.

The flash driver MDD is responsible for actions such as handling wear-leveling, writing sector
transactions, translating logical sectors to physical sectors, and performing compaction. The flash MDD
can operate regardless of the type of flash media, allowing it to support single-level cell (SLC) NAND,
multi-level cell (MLC) NAND, and NOR media. The OS provides the MDD component.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

13-2 Freescale Semiconductor

NAND Flash Driver

The flash driver PDD is responsible for interacting with the flash hardware, and contains the basic
functions necessary to access aphysical flash. Also, the PDD exposes a stream interface, where the user
can implement the PDD 10CTLs to meet your specific hardware needs. The PDD component is platform
specific, and the Freescale flash driver provides the functionality of the PDD component.

The block diagram shown in Figure 13-1 describesthe high level architecture and basic interactions of the
i.MX NAND driver implementation. The i.MX flash driver PDD consists of three major components:

» Common Logical Layer—Contains logical part of the PDD layer, including parameter check,
memory management, boot time dynamic detection of installed flash module, algorithm for using
multiple NAND chips, and so on. This layer is shared by all platforms.

» SOC Operation Layer—Contains pure hardware operations, including sector reading, sector
writing, block erasing, and so on. No additional logic is present in this layer, except some simple
logic for doing hardware operations. This layer is SOC specific.

» BSP Configuration Layer—This component is used to report flash chip properties to common
logical layer. No algorithm and no hardware operations are needed in this layer. Only report the
reality situation of the flash property on board. Thislayer is board specific.

Thei.MX flash driver currently supports alimited number of commercially available flash modules.
However, thei.MX flash driver software architecture supports new flash modules also. Thei.MX flash
driver must be modified to support new flash modules, by changing the BSP not to support the current flash
module.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 13-3

NAND Flash Driver

Thei.MX flash driver istable driven. That is, by appropriately modifying the data structures, the flash
driver can be reconfigured to support a different flash module. No other source code changes are required.

DISK layer MDD

common logical layer

request hardware
operations from soc layer
based on flash properties

get board configuration P DD

from bsp layer

soc operation layer

\

bsp configuration layer

bsp layer reports nand
properties or set auto
detection mode to let logical
layer scan out the flash
type dynamically based on
NandChipinfo array

Figure 13-1. PDD Layer Block Diagram

13.4.2 Data Structures

The flash modules vary between manufacturers, and even between process-technologies or product
revisions by the same manufacturer. Each module is different, and the flash driver must change to support
these new modules. A number of definitions are used to describe flash modul e characteristics and include

the following:
» Bad block mark
» Block size
* Pagesize

e Command set

The manufacturer's data sheet describes each of these definitionsin detail for a particular flash module.
The manufacturer's data sheet and these definitions are very important to understand when adding a new
flash support to the i.M X flash driver.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

13-4 Freescale Semiconductor

13.4.2.1

NANDTiming

The following code isthe NANDTiming structure:
typedef struct _NANDTI mi ng{

BYTE
BYTE

Dat aSet up;
Dat aHol d;

BYTE AddressSet up;

BYTE

Dat aSanpl e;

} NANDTi nmi ng, *PNANDTi mi ng;

Table 13-2 lists the membersin NANDTiming structure.

Table 13-2. NANDTiming Structure Members

NAND Flash Driver

Member Description
DataSetup Data setup time in microsecond unit.
DataHold Data hold time in microsecond unit.

AddressSetup Address setup time in microsecond unit.

DataSample Data sample time in microsecond unit.

13.4.2.2

NandChipinfo

The following code is the NandChiplnfo structure:

typedef struct _NandChi pl nf o{
Fl ashl nfo fi;

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
WORD
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

NANDCode[NANDI D_LENGTH] ;
NumBl ockCycl es;

Chi pAddr Cycl eNum

Dat aW dt h;

BBMar k Num

BBMar kPage[MAX_MARK _NUM ;
St at usBusyBi t;
StatusErrorBit;

Spar eDat aLengt h;
CndReadSt at us;

CndReadl;

CndRead2;

CndReadl d;

CndReset ;

CmidWitel;

CnmidWite2;

CndEr asel;

CndEr ase2;

NANDTi mi ng ti m ngs;
} NandChi pl nf o, *PNandChi pl nfo;

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

13-5

NAND Flash Driver

Table 13-3 lists the members in NandChiplnfo structure.
Table 13-3. NandChipInfo Structure Members

Member Description
fi Flash information structure, see details in MSDN for Windows CEG6.
NANDCode The first 4 bytes of NAND flash ID.

NumBlockCycles | Number of row address cycles.

ChipAddrCycleNum | Number of row and column address cycles.

DataWidth Bit number of NAND flash, it should be 8bits or 16bits.

BBMarkNum Number of pages, defined by manufacturer, that is used to indicate initial bad block during
manufacturing.

BBMarkPage An array that indicates which pages are used to indicate initial bad block during
manufacturing.

StatusBusyBit Bit number in status byte to indicate BUSY or IDLE status of NAND flash status.

StatusErrorBit Bit number in status byte to indicate PASS or FAIL status of NAND flash operation.

SpareDatalLength | Number of bytes in spare area per page.

CmdReadStatus | Command used to read NAND flash status.

CmdRead1 Command used as initial command for reading operation.

CmdRead2 Command used as start command for reading operation.

CmdReadld Command used to read NAND flash ID.

CmdReset Command used to reset NAND flash.

CmdWrite1 Command used as initial command for writing operation.

CmdWrite2 Command used as start command for writing operation.

CmdErase1 Command used as initial command for erasing operation.

CmdErase2 Command used as start command for erasing operation.
timings Parameters to indication NAND flash timing information.

13.4.3 Adding New Flash Configurations

Thei.MX flash driver istable driven. That is, by appropriately modifying the data structures, the flash
driver can be reconfigured to support adifferent flash module. No other source code changes are
required. The Freescale flash driver supports boot time dynamic detection of previously verified flash
modules. The flash driver dynamically detects the flash modules listed in Section 13.2, * Supported
Functionality.” At boot time, the flash driver query about the installed flash module, and loads the
appropriate flash module configuration to support the specific flash module.

To add an unsupported flash module to the BSP, the flash driver must be configured to support a new
NAND module. After a new flash definition configuration is added, the flash driver will automatically
recognize the new flash module at boot time.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

13-6 Freescale Semiconductor

NAND Flash Driver

To add a new flash module support, a new Nandchi pl nf o data structure member must be added to the
NANDTYPES. h header file. Then the flash driver must be re-compiled and the platform must be rebuilt. The
NANDTYPES. h header file islocated in the following directory:

\ W NCE600\ PLATFORM COMMVON SRC\ SOC\ COMMON_FSL_V2_PDK1_7\ NAND\ | NO\ NANDTYPES. h

NOTE

Theflash driver currently supports 2K+64B page size, 4K+128B page size,
and 4K+218B page size with 8 bit ECC. Thetable configuration method can
be used to support these common flash memory types.

13.4.4 Registry Settings

The registry keys implemented for the flash driver provide basic support for loading and configuring the
NAND as afile system mount. Many configuration options are available and are discussed in Windows
CE 6.0 Help documentation at the following location:

Windows Embedded CE features > File Systems and Storage M anagement > Stor age M anagement
> Sorage Manager Registry Settings

Asdefault, the NAND disk isautomatically formatted and a partition is created, when no NAND partition
is found while booting up. The functionality isimplemented by specifying following items:

" Aut oPar t " =dwor d: 1
" Aut oFor mat " =dwor d: 1

The two items can be deleted to disable the functionality.

13.4.5 DMA Support
The flash driver supports DMA mode.

13.4.6 Power Management
The flash driver handles power requests in MDD layer by default.

13.5 Unit Test

Theflash driver istested using the Windows CE 6.0 Test Kit and additional system used cases. Thissection
describes the test scenarios that are used to verify the operation of the flash driver.

13.5.1 CETK Testing
This section about the CETK testing used to verify the operation of the flash driver.

NOTE

Depending on the state of the NAND flash memory, it may be necessary to
format and partition the NAND device using Storage Manager prior to
running the CETK tests that do not reformat the device automatically.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 13-7

NAND Flash Driver

Table 13-4 liststhe CEKT tests used for the flash driver.

Table 13-4. CEKT Tests

CETK Test Command Line
File System Driver Test tux -o -d fsdtst -¢ "-p MSFlash -z"
Flash Memory Read/Write and Performance Test | tux -o -d flshwear -c"/profile MSFlash /store /flash"
Storage Device Block Diver API Test tux -o -d disktest -c"/profile MSFlash /zorch /part /sectors 256"
Storage Device Block Diver Benchmark Test tux -o -d rw_all -c"/profile MSFlash /zorch /part"

Storage Device Block Diver

Read/Write Test tux -o -d rwtest -c"/profile MSFlash /zorch /part”

13.5.2 System Testing

The following system tests verify the operation of the flash driver:
* Usethe Start > Settings> Control Panel > Sorage M anager to format and create partitions on
the mounted NAND device
» Establish ActiveSync connection over USB and transfer files to or from the NAND storage

« Write mediafilesto
NAND storage

NAND storage. Use Windows Media Player to playback mediafiles from

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

13-8

Freescale Semiconductor

Chapter 14
NAND Redundant Boot

Redundant boot supported from NAND includes the following components:

» Boot Image checking tool

* Boot Image updating tool
Boot Image checking tool is used for checking boot streams integrity every time when system boots up;
Boot Image updating tool is used for updating image. If the update fails, the checking tool can easily

restore the image when next time boots up. These tools cannot run simultaneously to prevent boot stream
corruption.

14.1 NAND Redundant Boot Summary

Table 14-1 provides a summary of source code location, library dependencies and other BSP information.
Table 14-1. NAND Redundant Boot Summary

Driver Attribute Definition

Target Platform (TGTPLAT) |iMX233-EVK

Target SOC N/A
SOC Common Path N/A
SOC Specific Path N/A
Platform Specific Path .\PLATFORM\<Target Platform>\SRC\COMMON\NANDBOOTBURNER
.\PLATFORM\<Target Platform>\SRC\APP\UpdateSB

Driver DLL N/A

SDK Library N/A
Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) | N/A

14.2 Supported Functionality

The NAND Redundant Boot enables the system to provide the following software and hardware support:
1. Supports updating image from certain location on the device.
2. Supports restoring backup image when the update fails.
3. Supports updating backup image when user confirms the updated image works well.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 14-1

NAND Redundant Boot

14.3 Hardware Operation

This section explains about the hardware operations.

14.3.1 Conflicts with Other Peripherals and Catalog Items

No conflict.

14.4 Software Operation
Figure 14-1shows the Boot Image updating tool.

Run ImageUpdate.exe

Y

Input the new image(*.sb)
location and click ‘OK’

v

App will create a sign file on device,
System reboots after updating

v

Checking tool will alert you to continue
updating if the system is booted from
updated image, or alert you to restore the
old image if system fails to boot from
updated image. User could choose to
continue.

N
User confirm to continue?
Y
Continue and reboot End

Shows ‘update successfully’

Figure 14-1. Image Updating Work Flow

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

14-2 Freescale Semiconductor

NAND Redundant Boot

Figure 14-2 shows the Boot Image checking tool.

System boots up

'

Checking tool checks from
which stream this os boots

up
Checking tool reads out two
boot streams.

Booted from first stream,
and update sign exists?

Are the boot streams
identical?

Alert user to update/restore
the other boot stream from
which the OS booted.

'

user choose Y or N?

clear update sign,
and alert user
‘update successfully

— P End

update/restore the boot
image, then reboot.

Figure 14-2. Image Checking Work Flow

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 14-3

NAND Redundant Boot

14.5 Unit Test

The following section describes the testing update and restore functionality:

14.5.1 Testing Update Functionality

Use the following steps to test the update functionality:

1.

© N O WD

Run ImageUpdate.exe

Select the new image(*.sb)

Click OK.

Image is updated and system reboots after update.

Make sure this startup is from new image.

A continue update message appears asking the user to confirm the update.
Click YESto continue.

Image will be updated and system will reboot after this updating.

After this startup, a update successfully message appears.

14.5.2 Testing Restore Functionality

Use the following steps to test the restore functionality:
1

© O N O WD

Run ImageUpdate.exe

Select the new image(*.sb)

Click OK.

Image is updated and system reboots after update.

Make sure this startup is from new image.

There will be a message to ask user to continue updating.

Click NO.

Power off the device, then power on.

After this startup, there will be amessage to ask user to recover.

10. Click YESto continue.
11. Image is recovered and system reboots.
12. Make sure this startup is from old image.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

14-4

Freescale Semiconductor

Chapter 15
Serial Driver

The seria driver interfaces the low level serial driver hardware to the Windows CE serial subsystem.

15.1

Serial Driver Summary

The seria port driver isimplemented as a stream interface driver and supports all the standard 1/0 control
codes and entry points. The seria port driver handlesall the internal UARTs except UART 1 which isused
for debugging. In the BSP implementation, the hardware-specific code that corresponds to the serial port
driver lower layer isimplemented as the platform-dependent driver (PDD). This PDD islinked with
Microsoft-provided public serial MDD library (com_mdd2.lib) to form the whole seria port driver.

Table 15-1 provides a summary of source code location, library dependencies and other BSP information.

Table 15-1. Serial Driver Summary

Driver Attribute

Definition

Target Platform

iMX233-EVK

Target SOC

MX233_FSL_V2

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\MX233_FSL_V2\SERIAL

SOC Specific Path

N/A

Platform Specific Path

.\PLATFORM\<Target Platform>\SRC\DRIVERS\SERIAL

Driver DLL csp_serial.dll
SDK Library N\A
Catalog ltem Third Party > BSP > Freescale <Target Platform>: ARMV4l > Device Drivers > Serial >

UART2

SYSGEN Dependency

N/A

BSP Environment Variables

BSP_SERIAL_UART2 =1

15.2 Supported Functionality

The serial port driver enables the hardware system to provide the following support:

o s~ DN PRE

Conforms to RS232 protocol standard

Supports RTS/CTS hardware flow control function
Supports parity check and optional stop bit
Supports power management mode full on/full off
Supports baud rate up to 3.25 Mbps

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

15-1

Serial Driver

15.3 Hardware Operation

See the chapter Multimedia Applications Processor Reference Manual for detailed operation and
programming information on UART.

15.3.1 Conflicts with Other Peripherals and Catalog Items

The following section explains serial driver conflicts with other peripherals and catalog items.

15.3.1.1 Conflicts with SoC Peripherals

All the pins of UART can be configured for alternate functionality (GPMI, IR, SSP) using thei.M X233
IOMUX. The configuration is specified by BSP serial driver. Changing this configuration would result in
aconflict and prevent proper operation of the UART.

15.3.1.2 Conflicts with Board Peripherals

No conflicts.

15.3.2 Known Issues

DMA modeis not supported due to the DMA module limitation. DMA engine will fail to flush the last
bytes less than 4 bytes into RX buffer.

15.4 Software Operation

The serial driver follows the Microsoft-recommended architecture for seria drivers. The details of this
architecture and its operation can be found in the Platform Builder Help documentation at the following
location:

Developing a Device Driver > Windows CE Drivers> Serial Drivers> Serial Driver Development
Concepts.

15.4.1 Registry Settings
This section explains about the registry settings used to load the serial driver:

15.4.1.1 i.MX233 Registry Settings

The following registry keys are required to load the serial driver:

| F BSP_SERI AL_UART2
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ COM2]
"Devi ceArrayl ndex" =dwor d: 0
"1 oBase" =dwor d: 8006C000
"l oLen"=dwor d: D4
"Prefix"="COM
"D |"="csp_serial.dI"

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

15-2 Freescale Semiconductor

Serial Driver

"I ndex"=dwor d: 2

"Order"=dwor d: 3

"useDMVA" =dwor d: 0
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ COM2\ Uni nodeni

"Tsp"="Uni nodemdl | "

"Devi ceType" =dword: 0

"Friendl yName" ="i . MX233 COV2 UNI MODEM'

"DevConfig"=hex: 10,00, 00,00, 05,00, 00,00, 10,01, 00,00, 00, 4B, 00,00, 00,00, 08, 00, 00,
00, 00, 00, 00
ENDI F ; BSP_SERI AL_UART2

15.4.2 Power Management

The seria driver supports full on/full off power management mode through PowerUp() and
PowerDown() functions.

15.5 Unit Test

The serial driver istested using the Serial Port Driver Test and Serial Communications Test included as a
part of the CETK. The Serial Port Test assesses whether the driver supports configurable device
parameters such as baud rate and data bits. The test also assesses additional functionality such as COM
port events, escape functions and time-outs.

15.5.1 Unit Test Hardware
e |.MX233 EVK board

15.5.2 Unit Test Software
Table 15-2 lists the required software to run the unit tests.

Table 15-2. Software Requirements

Requirement Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation
SerDrvBvt.dll Test.dll file for Serial Port Driver Test

15.5.3 Building the Unit Tests

The serial port driver tests come pre-built as part of the CETK. No steps are required to build these tests.
The Pserial.dll file can be found alongside the other required CETK filesin the following location:

[Drive]:\Program Fil es\ M crosoft Pl atform Builder\6.00\cepb\wet k\ ddt k\ ar mv4i

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 15-3

Serial Driver

15.5.4 Running the Unit Tests
The Serial Port Driver Test executesthetux —o —d serdrvbvt command line on default execution.
For detailed information on the Serial Port Tests, see

Debugging and Testing > Toolsfor Debugging and Testing > Windows CE Test Kit > CETK Tests>
Serial Port Driver Test > Serial Port Driver Test Casesin the Platform Builder Help.

The Serial Port Tests are designed to test that the serial port driver works properly and the APl behaves
correctly, and it should be pass all the test cases. Table 15-3 describes the Serial Port driver test cases.

Table 15-3. Serial Port Driver Test Cases

Test

Case Description

1001 Configures the port and writes data to the port at all possible baud rates, data bits, parities, and stop bits. This
test fails if it cannot send data on the port with a particular configuration.

1002 | Tests the SetCommEvent and GetCommEvent functions. This test fails if the driver does not properly support
the SetCommEvent or GetCommEvent functions.

1003 | Tests the EscapeCommFunction function. This test fails if the driver does not support one of the Microsoft Win32
EscapeCommFunction functions.

1004 | Tests the WaitCommEvent function on the EV_TXEMPTY event. The test creates a thread to send data and
waits for the EV_TXEMPTY event to occur when the thread finishes sending data. This test fails if the
WaitCommEvent function behaves improperly or if the EV_TXEMPTY event does not signal appropriately.

1005 |Tests the SetCommBreak and ClearCommBreak functions. This test fails if the driver does not properly support
the SetCommBreak or ClearCommBreak functions.

1006 |Makes the WaitCommEvent function return a value when the handle for the current COM port is cleared. This
test fails if the WaitCommEvent function behaves improperly.

1007 | Makes the WaitCommEvent function return a value when the handle for the current COM portis closed. This test
fails if the WaitCommEvent function behaves improperly.

1008 | Tests the SetCommTimeouts function and verifies that the ReadFile function properly times out when no data
is received. This test fails if the COM timeouts do not function correctly.

1009 | Verifies that previous Device Control Block (DCB) settings are preserved when the SetCommState function call
fails with DCB settings that are not valid. This test fails if the serial port driver does not keep previous DCB settings
when DCB settings that are not valid are passed to the driver.

15.6 Serial Driver API Reference

The detailed reference information for the serial driver may be found in the Platform Builder Help at the
following location:

Developing a Device Driver > Windows CE Drivers> Serial Port Drivers> Serial Port Driver
Reference

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

15-4 Freescale Semiconductor

Serial Driver

15.6.1 Serial PDD Functions

Table 15-4 shows a mapping of Serial PDD functions to the functions used in the serial driver.
Table 15-4. Serial PDD Functions

PDD Function Pointer

Serial Driver Function

HWiInit SerSeriallnit
HWPostInit SerPostlInit
HWDeinit SerDeinit
HWOpen SerOpen
HWClose SerClose

HWGetIntrType

SL_GetIntrType

HWRxIntrHandler

SL_RxIntrHandler

HWTxIntrHandler

SL_TxIntrHandler

HWModemlIntrHandler

SL_ModemintrHandler

HW.LinelntrHandler

SL_LinelntrHandler

HWGetRxBufferSize SL_GetRxBufferSize
HWPowerOff SerPowerOff
HWPowerOn SerPowerOn
HWClearDTR SL_ClearDTR

HWSetDTR SL_SetDTR
HWClearRTS SL_ClearRTS
HWSetRTS SL_SetRTS
HWEnablelR SerEnablelR
HWDisablelR SerDisablelR

HWClearBreak

SL_ClearBreak

HWSetBreak SL_SetBreak
HWXmitComChar SL_XmitComChar
HWGetStatus SL_GetStatus
HWReset SL_Reset
HWGetModemStatus SL_GetModemStatus
HWGetCommProperties SerGetCommProperties
HWPurgeComm SL_PurgeComm
HWSetDCB SL_SetDCB

HWSetCommTimeouts

SL_SetCommTimeouts

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

15-5

Serial Driver

15.6.2 Serial Driver Structures

This section explains about the serial driver structures.

15.6.2.1 UART_INFO

This structure contains information about the UART Module.

typedef struct {
vol atil e PCSP_UART_REG pUar t Reg;
ULONG sUSR1;
ULONG sUSR2;
BOOL bDSR;
uart Type_c Uart Type;
ULONG ul Di scar d;
BOOL Usel r DA,
ULONG HwAddr ;
EVENT_FUNC Event Cal | back;
PvA D pMDDCont ext ;

DCB dch
COMMTI MEQUTS CommTi neout s;
PLOOKUP_TBL pBaudTabl e;

ULONG Dr oppedByt es;
HANDL E Fl ushDone;
BOOL CTSFI owOX f
BOCL DSRFI owX f;
BOOL AddTXI ntr;
COVSTAT St at us;
ULONG CommErrors;
ULONG Mbdentt at us;
CRI Tl CAL_SECTI ON Transm tCrit Sec;
CRI TI CAL_SECTI ON RegCri t Sec
ULONG Chi pl D;
} UART_INFQ, * PUART_I NFQ,

Parameters

pUartReg Pointer to UART Hardware registers

SUSR1 This value contains the UART status register

SUSR2 This value contains the UART status register

bDSR This boolean value keeps the DSR state

UartType This value contains the type of UART like DCE or DTE

UlDiscard Thisis used to discard the echo charactersin IrDa Mode

UselrDA This boolean value determines the driver isin IR mode or not

HwAddr This value contains the hardware address of the UART Module

EventCallback Thisisacallback to the Model Device Driver

pMDD Context This containsthe context of the UART, which isthe first parameter to the callback
function

dcb This value contains the copy of Device Control Block

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

15-6

Freescale Semiconductor

CommTimeouts

pBaudTable
DroppedBytes
FlushDone
CTSFlowOff
D SRFlowOff
AddTXIntr
Satus
CommErrors
ModemSatus
TransmitCritSec
RegCritSec
ChiplD

Serial Driver

This contains the copy of CommTimeouts structure used to get and set the

time-out parameters for a communication device

Pointer to baud rate table

This value contains the number of bytes dropped

Handle to the flush done event

This boolean value is used to store the CTS flow control state
This boolean value is used to Store the DSR flow control state
This boolean value is used to fake a Tx interrupt

This value contains the comm status
This value contains Win32 comm error status
This value shows the Win32 Modem status

Thisvalueisused as Critical Section for UART registers
Thisvaueisused as Critical Section for UART

This value contains Chip identifier (CHIP_ID_16550 or CHIP_ID_16450)

15.6.2.2 SER_INFO

Thisis a private structure contains the information about the serial.

typedef struct __ SER I NFO {
UART_I NFO uart _i nfo;
BOOL f | Rvbde;
DWORD dwDevl ndex;
DWORD dwl OBase;
DWORD dwl OLen;
PCSP_UART_REG pBaseAddr ess;
Ul NT8 cOpenCount ;
COMVPROP CommPr op;
PHWOBJ pHWADD] ;

BOOL useDVA;
DDK_DMVA_REQ Seri al DmaReqTx;
DDK_DMVA_REQ Seri al DmaReqRx;

PHYSI CAL_ADDRESS Seri al PhysTxDMABuUf f er Addr ;
PHYSI CAL_ADDRESS Seri al PhysRxDMABUT f er Addr ;

PBYTE pSeri al Vi rt TxDVABUf f er Addr ;
PBYTE pSeri al Vi rt RxDMABUf f er Addr ;
Ul NT8 Ser i al DmaChanRx;

U NT8 Seri al DmaChanTx;

U NT8 cur r RxDmaBuf | d;

U NT8 cur r TxDmaBuf | d;

Ul NT dmaRx St art | dx;

Ul NT avai | RxByt eCount ;

Ul NT32 awai t i ngTx DMAConpBnp;

Ul NT32 dmaTxBuf Fi r st UseBnp;

Ul NT16 r xDMABUf Si ze;

Ul NT16 t xDMABuUf Si ze;

} SER INFO, *PSER | NFQ

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

15-7

Serial Driver

Parameters

uart_info This structure contains information about UART

fIRMode This boolean value determines the module is FIR or serial

dwDevlndex This static value contains the device index value which is read from
registry

dwl OBase This static value contains the 1/O Base address of UART module which
is read from registry

dwlOLen This static value containsthe 1/0 length of UART Modulewhichisread
from registry

pBaseAddress Pointer to the start address of the UART registers mapped

cOpenCount Contains count of the concurrent open

CommProp Pointer to CommProp structure

pHWODb; Pointer to PDDs HWODj structure

useDMA Thisboolean flag indicates if SDMA isto be used for transfers through
thisUART

SerialDmaReqTx SDMA request line for Tx

SerialDmaRegRx SDMA request line for Rx

SerialPhysTxDMABuUfferAddr ~ Physical address of Tx SDMA address
Serial PhysRxDMABuUfferAddr ~ Physical address of Rx SDMA address
pSerial VirtTxbDMABufferAddr ~ Virtual address of Tx SDMA address
pSerial VirtRxDMABuUfferAddr ~ Virtual address of Rx SDMA address.

Serial DmaChanRx SDMA virtua channel indices for Rx

SerialDmaChanTx SDMA virtua channel indices for Tx

currRxDmaBufld Index of the buffer descriptor next expected to complete its SDMA in
the Rx SDMA buffer descriptor chains

curr TxDmaBufld Index of the buffer descriptor next expected to complete its SDMA in
the Tx SDMA buffer descriptor chains

dmaRxSartldx Keeps the start index of byte to be delivered to MDD for Read

avail RxByteCount This variable keeps the remaining bytes in the Rx SDMA buffer

awaitingTxDMACompBmp Indicatesif an SDMA request isin progress on Tx SDMA buffer
descriptor

dmaTxBufFirstUseBmp Indicator for first time use of a Tx SDMA buffer descriptor

rxDMABuUfS ze Receive DMA buffer size

txDMABuUfSze Transfer DMA buffer size

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

15-8 Freescale Semiconductor

Chapter 16
Secure Digital Host Controller (SDHC) Driver

The SDHC module supports MM C, SD cards and Secure Digital 1/0. The SDHC driver provides the
interface between the Microsoft SD Bus driver and the SSP hardware.

16.1 SDHC Driver Summary

Table 16-1 provides a summary of source code location, library dependencies and other BSP information.
Table 16-1. eSDHC Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2
SOC Common Path N/A
SOC Specific Path .\PLATFORM\COMMON\SRC\SOC\<Target SOC\SDHC
Platform Specific Path .\PLATFORM\<Target Platform>\SRC\DRIVERS\SDHC
Driver DLL sdhc.dll
SDK Library sdhc_<Target SOC>.lib, sdcardlib.lib, sdhclib.lib, sdbus.lib
Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4| > Device Drivers > SD
Controller > SSP1 SDHC
SYSGEN Dependency SYSGEN_SD_MEMORY=1
BSP Environment Variables | N/A

16.2 Supported Functionality

The SDHC driver enablesthe EVK System to provide the following software and hardware support:
Supports the Synchronous Serial Ports(SSP) Controller

Designed and implemented as close as possible to Standard Host Controller Driver in CE 6.0 R2
Compliant with the SDBUS2 driver provided in CE 6.0 R2

Supports Fast Path

Supports DMA mode of datatransfers

Supports SD, SD High Capacity (up to spec v2.1), MMC (up to spec v4.3), and SDIO cards (up to
spec v2.0). High capacity MM C cards are not supported because SDBUS2 in CE 6.0 R2 does not
support these cards

7. One host supports only one card to be connected to it

o gk wbdrE

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-1

Secure Digital Host Controller (SDHC) Driver

8. DLL supports multipleinstances of the SSP controller
9. Supports the configuration of the block sizes from 1-4096 bytes in single and multi-block modes

10. Support insertion and removal of card, even when system is suspended; when the system resumes,
the card (if present) is remounted

11. Supports the write protect switch on SD cards

12. Supports MM C cardsin 1-bit mode and SD/SDIO cards in 4-bit modes due to limitation in
SDBUS2in CE 6.0 R2

16.3 Hardware Operation

See the i.M X233 Multimedia Applications Processor Reference Manual for detailed operation and
programming information on SSP.

16.3.1 Conflicts with Other Peripherals and Catalog Options

This section explains SDHC driver conflicts with other peripherals and catal og options.

16.3.1.1 Conflicts with SoC Peripherals

No conflicts.

16.3.1.2 Conflicts with Other EVK Peripherals

Onthei.MX233-EVK platform, the SDHC conflicts with Ethernet controller on SSP1 port. If Ethernet
KITL is detected, then SDHC driver does not load. The USB RNDIS KITL can be used instead, so that
KITL and SDHC driver can work simultaneoudly.

16.4 Software Operation

The SDHC driver follows the Microsoft-recommended architecture (standard host controller driver) for
Secure Digital Host Controller drivers, whenever possible. The details of thisarchitecture and its operation
can be found in the Platform Builder Help under the heading Secur e Digital Card Driver Development
Concepts, or in the online documentation at the following URL:
http://msdn2.microsoft.com/en-ug/library/aa925967.aspx

16.4.1 Required Catalog ltems
The following are the required catalog items:

16.4.1.1 SD and MMC Support
Catalog > Device Drivers> SDIO > SD Memory

Additionally, since eSDHC driver supports high capacity cards, it is necessary to define IMGSDBUS2
variableintheworkspace. Both SY SGEN_SD_MEMORY and IMGSDBUS2 are set by default inthe BSP
workspace.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

16-2 Freescale Semiconductor

http://msdn2.microsoft.com/en-us/library/aa925967.aspx

Secure Digital Host Controller (SDHC) Driver

16.4.2 SDHC Registry Settings
This section explains about SDHC registry settings.

16.4.2.1 i.MX233 SDHC Registry Settings

The following registry keys are required to load SDHC driver:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ SDHC]
"Order"=dword: 19
"D | "="sdhc.dl "
"Prefix"="SHC
"l ndex" =dword: 1

[HKEY_LOCAL_MACHI NE\ Syst eml St or ageManager\ Profi | es\ MVC]
" Narme"="MMC Card"
" Fol der " =" MVCMenor y*"

[HKEY_LOCAL_MACHI NE\ Syst em St or ageManager\ Profi | es\ SDMenor y]
"Name"="SD Menory Card"
"Fol der " =" SDMenory"

16.4.3 DMA Support

DMA mode is supported by the SDHC driver. The driver usesthe APBH DMA, which has a special SSP1
DMA channel.

16.4.4 Power Management
The SHC_powerUp and SHC_PowerDown APIs are the entry points for suspend/resume functionality.

16.5 Unit Test
The eSDHC driver is tested using the following tests included as part of the Windows CE 6.0 Test Kit
(CETK).

» File System Driver Test

» Storage Device Block Driver Read/Write Test

» Storage Device Block Driver API Test

» Storage Device Block Driver Performance Test

* Partition Driver Test

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-3

Secure Digital Host Controller (SDHC) Driver

16.5.1 Unit Test Hardware
Table 16-2 lists the required hardware to run the unit tests.

Table 16-2. Hardware Requirements

Requirement Description

SD Cards SanDisk (128MB, 512MB, Extreme Ill SDHC 4GB)
ATP (SDHC 4GB)

A-DATA Turbo (SDHC 4GB)

Kingston (MiniSD 512MB, MicroSD 1GB)

MMC Cards PQI (128 Mbytes)
Kingmax (RS-MMC: 512MB, 1GB)
Transcend (MMCPlus: 1 Gbytes, 4 Gbytes)

16.5.2 Unit Test Software
Table 16-3 lists the required software to run the unit tests.

Table 16-3. Software Requirements

Requirement Description
tux.exe Tux test harness, which is needed for executing the test
kato.dll Kato logging engine, which is required for logging test data
tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation
fsdtst.dll File System Driver Test.dll file
rwtest.dll Storage Device Block Driver Read/Write Test.dll file
disktest.dll Storage Device Block Driver API Test.dll file
disktest_perf.dll Storage Device Block Driver Performance Test
msparttest.dll Partition Driver Test.dll file

16.5.3 Building the Unit Tests

All the above mentioned tests come pre-built as part of the CETK. No steps are required to build these
tests. These test files can be found alongside the other required CETK filesin the following location:

[Drive]:\Program Fil es\ M crosoft Pl atform Buil der\6. 00\ cepb\wcet k\ ddt k\ ar mv4l

16.5.4 Running the Unit Tests

Thefollowing are the tests available and the test procedures for each of the tests. For detailed information
on the below tests see the relevant sub sections under CETK Testsin the Platform Builder Help, or view
the online documentation at the following link: http://msdn2.microsoft.com/en-ug/library/aa934353.aspx

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

16-4 Freescale Semiconductor

http://msdn2.microsoft.com/en-us/library/aa934353.aspx

Secure Digital Host Controller (SDHC) Driver

16.5.4.1 File System Driver Test
The following command is used to run the tests on an SD card:
tux —o —d fsdtst —c “-p SDMenory -z”

For MMC cards, use the following command:
tux —o —d fsdtst —¢c “-p MMC -z2"

Note that thistests all the cards inserted and requires the cards to be formatted prior to running the test.
For higher capacity cards, the test takes along time to complete, and hence it is recommended that the
system power management (from control panel) be configured so that the system does not enter suspend

state during test execution.

16.5.4.2 Storage Device Block Driver Read/Write Tests
The following command line is used to run the tests:
tux —o —d rwest —c “-2z"
NOTE
This command tests only one card at atime.

16.5.4.3 Storage Device Block Driver API Tests

The following command line is used to run the tests:
tux —o —d disktest —c “-z"
NOTE
This command tests only one card at atime.

16.5.4.4 Storage Device Block Driver Performance Tests
The following command line is used to run the tests:

tux —o —d disktest_perf —c “-z -di sk DSK1:"

NOTE
This command tests only one card at atime.

16.5.4.5 Partition Driver Test

The following command line is used to run the tests:
tux —o —d nsparttest —c “-z”
NOTE

The cards should be of size 256 Mbytes and higher. For higher capacity
cards, thetest takeslong timeto complete, and henceit isrecommended that
the system power management (from control panel) be configured so that
the system does not enter suspend state during test execution.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

16-5

Secure Digital Host Controller (SDHC) Driver

16.5.5 System Testing

The following system tests are performed to verify the operation of the SD and MMC memory cards.

* Usethe Start > Settings> Control Panel > Sorage M anager to format and create partitions on
the mounted memory cards.

» Establish ActiveSync connection over USB and transfer files to/from the memory cards.
* Write mediafiles to memory storage. Use Windows Media Player to playback mediafiles from

memory storage.
16.6 Secure Digital Card Driver APl Reference

Detailed reference information for the Secure Digital Card driver may be found in the Platform Builder
Help under the heading Secure Digital Card Driver Reference or in the online documentation at the
following link: http://msdn2.microsoft.com/en-ug/library/aa912994.aspx

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

16-6 Freescale Semiconductor

http://msdn2.microsoft.com/en-us/library/aa912994.aspx
http://msdn2.microsoft.com/en-us/library/aa912994.aspx

Chapter 17
Touch Panel Driver

The touch screen interface provides all the circuitry required for a4-wire resistive touch screen. The touch
screen X plateis connected to TSX1 and TSX2 and the Y plateis connected to TSY1 and TSY 2. A local
supply ADREF serves as reference.

17.1 Touch Panel Driver Summary

Table 17-1 provides a summary of source code location, library dependencies and other BSP information.

Table 17-1. Touch Panel Driver Summary

Driver Attribute Definition
Target Platform iIMX233-EVK
Target SOC MX233_FSL_V2

SOC Common Path .\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\TOUCH

SOC Specific Path
Platform Specific Path .\PLATFORM\<Target Platform>\SRC\DRIVERS\TOUCH

Driver DLL touch.dll
SDK Library N/A
Catalog ltem Third Party > BSP > Freescale i.MX233 EVK:ARMV4I > Device Drivers > TOUCH >
Touchscreen

SYSGEN Dependency |SYSGEN_TOUCH =1

BSP Environment Variables | BSP_NOTOUCH= BSP_LRADC = 1

17.2 Supported Functionality
The touch panel should conform to the standards as explained in documentation at the following location:

Developing a Device Driver > Windows Embedded CE Drivers> Touch Screen Drivers

17.3 Hardware Operations

The hardware consists LRADC and touch screen interface. The touch screen controller configures the
LRADC driver asrequired to do the measurement of the X and Y values of the touchscreen.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 17-1

Touch Panel Driver

17.4 Software Operations

The touch screen driver reads user input from the touch screen hardware and converts the input to touch
events. Then the touch screen events are sent to the Graphics, Windowing, and Events Subsystem
(GWEY). The driver also converts un-calibrated coordinates to calibrated coordinates. Calibrated
coordinates compensate for any hardware anomalies, such as skew or nonlinear sequences.

For thetouch screen driver to work properly it must submit points when the user finger or stylusistouching
the touch screen. When the user finger or stylusisremoved from the screen, the driver must submit at |east
onefinal event indicating that the user finger or stylus tip was removed. The calibrated coordinates must
be reported to the nearest one-quarter of a pixel.

The following steps detail the basic algorithm that are used to sample and calibrate the screen with the
touch screen driver:

1. Cal the TouchPanelEnable function to start the screen sampling
2. Call the TouchPanel GetDeviceCaps function to request the number of sampling points

For every calibration point, perform the following steps:

1. Call TouchPanel GetDeviceCapsto get a calibration coordinate, a crosshair appears on the screen,
touching the cross hair starts the calibration

2. Cadl the TouchPanel ReadCalibrationPoint function to get calibration data
3. Cadll the TouchPanel SetCalibration function to calcul ate the calibration coefficients

17.4.1 Touch Driver Registry Settings

The following registry keys are required to load the touch driver:

I F BSP_NOTOUCH !
| F BSP_LRADC_TOUCH
[HKEY_LOCAL _MACHI NE\ HARDWARE\ DEVI CEMAP\ TOUCH]
"Driver Name"="touch.dl "
"MaxCal Error" =dword: 7
| F BSP_PRECAL
"Cal i brationDat a"="539, 520 280, 259 280, 778 793, 781 794, 259"

; \Welcone.exe: Disable tutorial and calibrati on pages because we already
; have the necessary calibration data.
; Touch calibration (0x02), Stylus (0x04), Popup nmenu (0x08),
; Timezone (0x10), Conpl ete (0x20)
[HKEY_LOCAL_MACHI NE\ Sof t war e\ M cr osof t \ Wl cone]
"Di sabl e" =dwor d: FFFFFFFF
ENDI F ; BSP_PRECAL

; For double-tap default setting

[HKEY_CURRENT_USER\ Cont r ol Panel \ Pen]
"Dbl TapDi st "=dword: 18
" Dbl TapTi me" =dwor d: 637

; For launching the TouchPanel calibration application on boot.
[HKEY_LOCAL_MACHI NE\i ni t]

"Launch80"="t ouchc. exe"

"Depend80" =hex: 14, 00, 1e, 00 ; Wait for standard initialization

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

17-2 Freescale Semiconductor

Touch Panel Driver

; modules to load first (GWES.dlIl and
; Device. exe).

ENDI F ; BSP_LRADC_TOUCH

ENDI F ; BSP_NOTOUCH !

17.5 Unit Tests

The following section explains about the hardware and software requirements for unit tests.

17.5.1 Unit Test Hardware
Table 17-2 lists the required hardware to run the unit tests.

Table 17-2. Hardware Requirements

Requirement Description

LCD panel Display panel required for display of graphics data

17.5.2 Unit Test Software
Table 17-3 lists the required software to run the unit tests.

Table 17-3. Software Requirements

Requirement Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
Ktux.dll Ktux.dll which is required to run in kernel mode
Touchtest.dll The Test.dll File
Touch.dll Touch Panel Driver
NOTE

The touch driver doeswork after the CETK Touch Panel Test. Thisisa
known MSFT CETK issue. The MSFT online help notes that “\When you
complete the test, the operating system does not regain control of the touch
panel. You must reset the touch panel to restore normal operation.” See the
help topic at thefollowing location: CETK Testsand Test Tools> CETK
Tests> Touch Panel Tests

Cases 8011, 90019003 fail. The touch panel shows several lineswhen a
circleor arcisdrawn. Thisisaso aknown MSFT CETK issue. All these
points are captured, but are not painted in time.

Case 8011 cannot draw in the right part of screen after a 90° rotation.
ethca.exe works after rotation and the CETK works when the case runs

again.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 17-3

Touch Panel Driver

17.5.3 Running the Touch Panel Tests
The touch panel test cases can be run by typing:

tux -o -n -d touchtest.dl|l -x <Test case id>
The test case | Ds are described in the documentation at the following location:

Windows Embedded CE Test Kit > CETK Testsand Test Tools>CETK Tests> Touch Panel Tests>
Touch Pand Test

17.6 Touch Panel API Reference

The complete API reference is given in the documentation at the following location:

Developing a Device Driver > Windows Embedded CE Drivers> Touch Screen Drivers> Touch
Screen Driver Reference

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

17-4 Freescale Semiconductor

Chapter 18
Universal Serial Bus (USB) On The Go (OTG) Driver

A USB OTG driver provides High Speed USB 2.0 host and peripheral support for the USB OTG port of
thei.MX chip. The OTG driver automatically performs either a host or periphera functionality at any
given time, depending on the type of USB cable plugged in. There are three components to achieve this
functionality: USB host driver, USB peripheral driver and USB OTG driver. The OTG driver maintains a
state machine to decide whether a host driver or peripheral driver to bein charge. The OTG driver isalso
called as Pin Detection Driver, since the OTG functionality logic depends on the kind of USB cable
plugged in.

Many classdrivers are supported in WinCE. The host driver can be configured to work with mass storage,
HID, printer, and RNDIS peripherals. The peripheral driver can be configured to provide mass storage,
serial, or RNDIS functionality. The peripheral class supports are mutually exclusive, so that only one
configuration can be selected as active configuration. The host functionality support do not have such
limitation, and hence can recognize what kind of peripheral isplugged in and pick theright class driver to
provide functionality.

Besides full OTG functionality, pure host driver and pure client driver options are also provided. These
two options configure our BSP to work in either host-only or peripheral-only mode. In this case, pin
detection driver is not active and no mode change will happen between the host and peripheral.

18.1 USB OTG Driver Summary
This section explains about the USB peripheral driver, host driver and OTG driver.

18.1.1 Peripheral Driver Summary
Table 18-1 lists the attributes of the peripheral driver.

Table 18-1. Peripheral Driver Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2

Common SOC COMMON_FSL_V2

CSP Driver Path .\SOC\<Target SOC>\USBD
.\SOC\<Common Soc>\ms\USBFN

CSP Static Library usb_usbfn_<Target SOC>.lib
usb_usbfn_os_<Target SOC>.lib
usb_ufnmddbase_<Common Soc>.lib

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-1

Universal Serial Bus (USB) On The Go (OTG) Driver

Table 18-1. Peripheral Driver Summary (continued)

Driver Attribute

Definition

Platform Driver Path

\PLATFORM\<Target Platform>\SRC\DRIVERS\USBD

Import Library NA
Driver DLL usbfn.dll
Catalog ltem Third Party > BSP > Freescale <Target Platform>: ARMV4l > Device Drivers > USB Devices > USB

High Speed OTG Device > High Speed OTG Port Pure Client Function

SYSGEN Dependency

SYSGEN_USBFN=1

BSP Environment
Variable

BSP_|
BSP_

NOUSB=
USB_HSOTG_CLIENT=1

USB periphera class drivers are required to provide corresponding functionality. These class drivers are
implemented as WinCE public driver. These class drivers (described in Section 18.4.7, “ Peripheral Class
Drivers’) can be selected through drag and drop from catalog items.

18.1.2 Host Driver Summary

Table 18-2 lists the attributes of the host driver.

Table 18-2. Host Driver Summary

Driver Attribute

Definition

Target Platform (TGTPLAT)

iMX233-EVK

Target SOC (TGTSOC)

MX233_FSL_V2

Common SOC

COMMON_FSL_V2

CSP Driver Path

.\SOC\<Common SOC>\ms\USBH\EHCI
.\SOC\<Common SOC>\ms\USBH\EHCIPDD
.\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library

usbh_ehcdmdd_<Common SOCs.lib
usbh_ehcdpdd_<Common SOC>.lib
usbh_usb2com_<Common SOC>.lib

Platform Driver Path

\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSOTG

Import Library NA
Driver DLL hcd_hsotg.dll
Catalog ltem Third Party > BSP > Freescale <Target Platform>: ARMV4| > Device Drivers > USB

Devices > USB High Speed OTG Device

To support only host mode, choose .. > High Speed OTG Port Pure Host Function.

SYSGEN Dependency

SYSGEN_USB=1

BSP Environment Variable

BSP_NOUSB=
BSP_USB_HSOTG_HOST=1

USB host classdriversarerequired to provide corresponding functionality. As peripheral classdrivers, the
host classdrivers are also implemented as WinCE public driver. See Section 18.4.8, “Host Class Drivers.”

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-2

Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

18.1.3 OTG (Pin-Detection) Driver Summary
Table 18-3 lists the attributes of the OTG driver.

Table 18-3. OTG Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) |iMX233-EVK

Target SOC (TGTSOC) MX233_FSL_V2

CSP Driver Path .\SOC\<Common Soc>\MS\USBOTG\MDD
CSP Static Library usbotgecm_$(_ COMMONSOCDIR)_PDK1_7.lib
Platform Driver Path PLATFORM\<Target Platform>\SRC\DRIVERS\USBOTG
Import Library NA
Driver DLL fsl_usbotg.dll
Catalog ltem Third Party > BSPs > Freescale <Target Platform>: ARMV4| > Device Drivers > USB

Devices > USB High Speed OTG Device > High Speed OTG Port Full OTG Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment Variable |BSP_NOUSB=

BSP_USB_HSOTG_CLIENT=1
BSP_USB_HSOTG_HOST=1
BSP_USBOTG=1

18.2 Supported Functionality

The OTG driver provides the following software and hardware support:

1.
2.

The High Speed OTG or Host driver supports USB specification 2.0

When no cable is connected or a mini-B cable is connected (in either of these cases, the ID pinis
pull up), OTG driver select periphera driver to be in charge. On attachment of amini-A cable (in
thiscase, the ID pinis pull down), OTG driver select the host driver to be in charge.

The peripheral driver can support mass storage, RNDIS, serial and basic personal healthcare
classes. Only one class support is active.

The host driver can support mass storage, HID and Printer classes.

When nothing is attached to the OTG port, the driver configures the USB module to be in low
power state.

When the system is suspended with nothing attached to the OTG or Host port, the system does not
create awake condition upon attachment of the port to ahost or attachment of adevice withmini-A
plug.

When the system is suspended while the OTG or Host port is connected to a host or to adevice
with amini-A plug, the system remains suspended when the OTG port connection is unplugged.

When the system resumes after suspend, any attached devices are enumerated and their class
drivers |loaded appropriately.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-3

Universal Serial Bus (USB) On The Go (OTG) Driver

18.3 Hardware Operation

An EHCI compliant High-Speed OTG Controller and an USB 2.0 UTMI PHY areintegrated oni.M X233
Chip. It provide afull on-chip USB OTG solution.

18.3.1 Conflicts with Other Peripherals and Catalog Items

This section explains USB OTG conflicts with other peripherals and catalog items.

18.3.1.1 Conflicts with SoC Peripherals

No conflicts.

18.3.1.2 Conflicts with Board Peripherals

The MX233 EVK board use pin D10 as both SSP1_DETECT (which isused in SDHC module) and
USB_OTG_ID (whichisused in USB OTG module host related functionalities). So Full OTG driver and
pure host driver cannot coexist with SDHC driver. So in our default BSP configuration, full OTG is not
selected. Instead, SDHC and pure Client Driver is selected.

To enable Full OTG functionality. Add bsp_nosspl_sdhc =1 in Environment Settings. Then select High
Speed OTG port Full OTG function in catalog configuration.

18.4 Software Operation

This section explains about the software operation of the drivers.

18.4.1 USB OTG Host Controller Driver

Thisdriver enablesthe USB host functionality for the OTG port. It isapart of the standard Windows USB
software architecture.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-4 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

Figure 18-1 shows the Windows USB driver architecture.

Application or e g. Application or user
storage device intetface
fundlion/class
specific protocol
Function Driver (e.g. [» Class Driver (e.g.
Mass Storage Class) Mass Storage Class
(ls=usTransfer (I=sueTransfer)
logical pipes/
: endpoints
Function controller TUSE Host device
(client) driver 1 " driver
Client Device LEBHGE'E C'i-'*ﬂtmu'ff
(controller) Driver cdrver s
USH packetzs USH packetz
UEB cakble physical
, zignalling - :
den_ce controller and " IC and board level
PHY Hardware operations

Figure 18-1. Windows USB Driver Architecture

The details about the Windows CE USB driver architecture and usage is found in the following location
under the Platform Builder Help documentation at the following location:

Developing a Device Driver > Windows Embedded CE Drivers>USB Host Drivers
and

Developing a Device Driver > Windows Embedded CE Drivers>USB Host Drivers> USB Host
Controller Drivers> USB Host Controller Driver Development Concepts

When the OTG driver isincluded, the host driver is activated when an USB Mini-A plug is connected to
the Mini USB OTG socket. When pure host mode is selected, the host driver is always in control with
respect to the relevant USB controller. When an USB peripheral device is connected, the host driver
enumerates it and activates the appropriate class driver.

The BSP supports the following USB class drivers:

* Mass Storage—Card Reader with SD or CF cards, USB HDD drive, thumb drive (disk-on-key).
Some card reader firmware is not supported by the Microsoft standard Mass Storage class driver

* HID—USB Keyboard and mouse
« RNDIS—Network Device Interface communication class

Hubs are also supported to extend the USB topol ogy.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-5

Universal Serial Bus (USB) On The Go (OTG) Driver

For more detailed description on host class driver, see the Section 18.4.8, “Host Class Drivers.”

18.4.1.1 User Interface

As described above, user can access to the USB host driver through class drivers. The details on the host
client driversis found under the Windows CE 6.0 Platform Builder Help documentation at the following
location:

Developing a Device Driver > Windows Embedded CE Drivers>USB Host Drivers> USB Host
Controller Drivers> USB Host Client Drivers.

The new class driver codeisto be devel oped using the documentation. See the host client driver interface
functions (for example, IssueBulkTransfer) as documented in the Help topic:

Developing a Device Driver > Windows Embedded CE Drivers>USB Host Drivers> USB Host
Controller Drivers> USB Host Client Drivers> Host Client Driver Reference.

18.4.1.2 Host Controller Configuration
See Section 18.4.4, “USB OTG Catalog Settings,” for information about host controller configuration.

18.4.1.3 Memory Configuration

The USB Host drivers (for all USB host ports) use DMA to perform all USB transfers. The physical
memory for these transfer buffersis allocated as a pool during driver initialization. Unless physical
addresses are specified in APl accesses at the class-driver interface, the driver copies data between the user
or class-provided data buffers and the DMA buffer from the driver physical memory pool.

Host driver checks the registry key PhysicalPageSize for memory pool size. If it isnot available or the
registry setting is less than 128K, the driver uses the default minimal buffer size, 128K, and apply for the
memory using HalAllocateCommonBuffer.

18.4.1.4 Configured Power

USB host driver monitors the configured power for all devices attached to a USB host. The host driver
verifies that each attached device does not exceed the configured current limit.

This power limit isimplemented through the platform-specific function BsPusbhCheckConf i gPower () as
described in Section 18.4.1.8.1, “BSPUsbhCheckConfigPower,” and located in:

\ PLATFORM <Tar get Pl at f or m»\ SRC\ DRI VERS\ USBH\ Conmon\ hwi nit. ¢

Thisfunction ismodified corresponding to the platform hardware capabilities. Currently we set the current
[imit to 500mA.

18.4.1.5 Registry Settings
See the Section 18.4.5, “USB OTG Registry Settings,” for the information about registry settings.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-6 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.1.6 PHY level USB Test

The USB 2.0 specification defines PHY-level test modes for all the USB host ports (see section 7.1.20 for
definitions in USB 2.0 specification). Temporarily this feature will not be enabled in our driver.

18.4.1.7 Unit Test

Different peripherals, such as thumb disk, keyboard and hub, are used to test the host driver functionality.
Manual tests include connecting the peripheral, confirming the connection during plug in, during unplug
and during subsequent plug in of device, datatransfer verification (for mass storage peripherals) and other
expected functionality such as keyboard, mouse and so on.

To verify the RNDIS class device, a CEPC containing Netchip 2280 USB function is attached and used to
access a remote file server on the CEPC. To verify the low-level transport for bulk, interrupt and
isochronoustransfers, the CETK Host test kit is performed. Thisrequiresa CEPC configured with Netchip
2280 USB function and loopback driver.

18.4.1.7.1 USB Host Controller Driver Test

Documentation for the Windows CE 6.0 CETK USB Host tests is found under the Platform Builder
Windows CE product documentation in the following location:

Debugging and Testing > Windows CE Test Kit > CE Test Kit

18.4.1.7.2 Build the Test Image

The following steps are used to build the test image:
1. Checkout the RTM to be tested or install the MSI provided
2. Add the following components from the catal og:

— Freescale <Target Platform>: ARMV 4l > Device Drivers> USB Devices > USB High Speed
OTG Device > High Speed Port Pure Host Function.

— Core OS > Windows CE devices > Core OS Services > USB HOST Support; and all the
sub-components of this catalog item (Sub-Components like USB Storage Class Driver.)

— Core OS > Windows CE devices > File Systems And Data store > Storage Manager;
(Sub-Components: FAT File System, Partition Driver, Storage Manager control panel applet)

— Device Drivers > USB Function > USB Function Clients > Serial.

18.4.1.7.3 Abstract

This test suite can be used to test USB host controller drivers that provide the same interface as Window
CE USB host controller driver does (for more information, see Section 18.4.1.1, “User Interface”), aso it
can be used to verify whether a certain USB host controller (either stand alone card or onboard logic) can
operate with Windows CE.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-7

Universal Serial Bus (USB) On The Go (OTG) Driver

Figure 18-2 shows the test setup and scenario.

Software :
. USB Test E Data loopback
<Client Level> Client Driver = Client Driver
(usbtest.dll) (net2280Ipbk.dll)
e — ﬁ _______________________
USB Bus Driver :
(usbd.dll)
= USB Function
H Bus Driver
<Bus Level> . (net2280.dll)
OHCI/UHCI/EHCI -
Host Controller H
Driver .
AN . N
\4 . \4
H CEPC with
Hardware Test platform with : NetChip2280 USB
USB controller H function controller
Host Side : Device Side

Figure 18-2. Test Setup

This test suite acts as a client driver above USB bus driver (usbd.dll). It is loaded when test deviceis
connected to the host through the USB cable. Thetest deviceisa CEPC with aNetChip2280 USB function
controller card init. After this CEPC is booted up and net2280Ipbk.dll is loaded, the CEPC acts as a
generic USB dataloopback device. USB test suite (the test client driver on the host side) can then stream
dataor issue devicerequeststo or from this dataloopback device. Thisishow the USB host controller and
its corresponding host controller drivers are exercised.

NetChip2280 USB function PCI controller card isaUSB2.0 compatible USB function device. It can be
used to test both USB2.0 and USB1.1 host controllers (EHCI, OHCI or UHCI) and corresponding drivers.

Netchip2280 controller has six endpoints besides endpoint 0. The dataloopback driver (net2280I pback.dll)
configures these endpointsto be three pairs: one bulk IN or OQUT pair, one Interrupt IN or OUT pair, and
onelsochronousIN or OUT pair. The dataloopback tests are done by sending datafrom host sideto device
side through OUT pipe, and receive it back through IN pipe, and then verify the data.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-8 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.1.7.4 Unit Test Hardware

The following are the unit test hardware requirements:

Test platform

Host Controller Card (if not onboard logic)
CEPC

Netchip2280 Card

USB cable

18.4.1.7.5 Unit Test Software

The following are the host side requirements:

Tux.exe
Ddix.dll
Usbtest.dll
Tooltalk.dll
Kato.dll

USB component (usbd.dll, EHCI, OHCI or UHCI host controller driver(s)) must beincluded inthe
run time image.

The following are the device side requirements:

Lufldrv.exe
Net2280Ipbk.dll
NetChip2280 USB function support (net2280.dll) must be included in the CEPC run time image.

18.4.1.7.6 Running the Test

The test procedure is as follows:

1
2. After systemisboot up, run commands | ufl drv, tester should verify that net2280I pbk.dll isloaded
3.

4. After systemisboot up, make surethat thereisno connection between host side and devicethrough

Download runtime image to CEPC with Netchip2280 card on it

Download runtime image to test platform with USB host controller on it

USB cable. Then launch commands tux —o —d ddl x —c¢ “usbtest” “—xYYYY',where*yyvyy” isthe
test case(s) to be run

The test indicates that there should be no connection between host and device side. Then after
seven seconds, the test asks to connect two sides with USB cable

The test main body startsto run

If there are other teststo be run, do not disconnect the USB cable. Type the next test command, and
the tests starts directly. If the USB connection was disconnected before the next test, the test will
ask to make the connection again.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-9

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.1.7.7 Test Cases

Table 18-4 shows the test cases contain in the test suite.
Table 18-4. USB Host Controller Driver Test Cases

Test Case ID Test Description

1001-1315, Data loopback tests:

1501-1515 Concerning the transfer type, there are five categories:

1) Bulk pipe loopback tests (tests with ID end with 1, like xxx1)

2) Interrupt pipe loopback tests (tests with ID end with 2, xxx2)

3) Isochronous pipe loopback tests (tests with ID end with 3, xxx3)

4) All pipe transfer simultaneously (tests with ID end with 4, xxx4)

5) All three types transfers carry on simultaneously (tests with ID end with 5, xxx5) 1

There are five categories for how data is transferred:

1) Normal loopback tests (tests with ID start with 10, like 10)

2) loopback tests using physical memory (tests with ID start with 11, 11xx)

3) loopback tests using a part of allocated physical memory (tests with ID start with 12, 12xx)
4) Normal short transfer loopback tests (tests with ID start with 13, 13xx)

5) Stress short transfer loopback tests (tests with ID start with 15, 15xx)

Also both synchronous and asynchronous transfer methods are exercised (test cases like xx1x using
asynchronous transfer method, test cases like xxOx using synchronous method

There are a total of 5*5*2 = 50 test cases

1401-1413 Additional data loopback tests. that mainly focus on testing APIs like GetTransferStatus(), AbortTransfer()
and CloseTransfer()

2001-2013 Test related to Device requests

9001-9004 Special tests that test APIs such as SuspendDevice(), ResumeDevice() and DisableDevice()

9005 Test that stresses EPO transfer (Vendor Transfer)

' This category of tests is designed for testing some other USB function devices which have more endpoints than host
controller driver can handle. When using Netchip2280, it should be the same as category 4). Tester can just ignore this
category.

By default the data loopback device configures the endpoints with some often-used packet sizes that are
DWORD aligned, and neither too big nor too small. By having al tests list above passed under this
configurationismorethan sufficient for aBV T-type test pass. However, testers can change the packet sizes
(these values are hard-coded in the source code for net2280I pbk.dll) for each endpoint by themselves and
run these test cases again for more comprehensive testing.

This test suite provides away to change packet sizes of on NetChip2280 device on the fly. They are:
» Test case 3001: Using some very small packet sizesin NetChip2280 device full speed
configuration

» Test case 3002: Using some very small packet sizesin NetChip2280 device high speed
configuration

» Test case 3003: Using some irregular packet sizes (like non DWORD-aligned size) in
NetChip2280 device full speed configuration

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-10 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

» Test case 3004: Using some irregular packet sizes (like non DWORD-aligned size) in
NetChip2280 device high speed configuration

» Test case 3005 (High Speed only): Using some very large packet sizes (like 2*1024 for
Isochronous endpoints) in NetChip2280 device full speed configuration. Note that in the real
world, Netchip2280 cannot handle transfers using such large packet size because its onboard FIFO
buffer issmall.

What testers need to do isto run one of the test case above like running those normal tests, then after 15-20
seconds, automatically unload and load the usbtest.dll again through the Platform Builder. It means the
packets sizes on Netchip2280 side have already been changed. Then those normal tests can be run. Use
test case 3011 (for full speed config) and 3012 (for high speed) to restore the default packet sizes.

Another category test that isimportant for USB 2.0 host controllers and driversis called the golden bridge
tests, which means USB 2.0 host controller is connected with afull speed (USB 1.1) device. Thisisthe
only scenario that USB 2.0 host controller performs split transfers.

NetChip2280 can be forced to be afull speed device. In the test setup stage, instead of runs 1 ufi drv to
load loopback driver, runs 1 ufidrv —f. Thisforcesthe Netchip2280 to be configured as a full speed
device.
Also testers are encouraged to do some manual tests. Here are some exampl es:

* Pluginrea USB devices, suspend system, and then resume; USB devices should still be there

* Pluginrea USB devices, suspend system, unplug it, plug in another device, then resume; system
should enumerate that new device properly

* Run one of the data transfer tests, in the middle of transfer stage, suspend the system (host side),
then resume; tests may fail, but system should not crash

* Run one of the data transfer tests, in the middle of transfer stage, disconnect the USB connection;
tests should fail, but system should not crash

18.4.1.8 Platform-Specific API

This section explains about the platform-specific APIs.

18.4.1.8.1 BSPUsbhCheckConfigPower
Thisfunction is used to evaluate whether a device can be supported on the specified USB port.

Parameters
UCHAR bPort [in] Unused. Each USB controller has only one port

DWORD dwCfgPower [in] Power requirement (number of milliamps) requested by the device being
evaluated for attachment support on this port

DWORD dwTotalPower [in] current total power (number of milliamps) used by other previously
attached devices on this port

Return Value Return TRUE if device requesting dwCfgPower can be safely attached
Return FALSE if device can not be attached

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-11

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.1.8.2 BSPUsbSetWakeUp

This function does what is necessary to enable or disable wakeup on the USB port. This function does not
actually enable wake-up when a deviceis currently attached to the port.

Parameters

BOOL bEnable [in] TRUE to enable wakeup, FAL SE to disable wakeup

18.4.1.8.3 BSPUsbCheckWakeUp

This function evaluates the wake-up condition for the relevant USB port, and clears the condition and
interrupt.

Parameters None

Return Value Return TRUE when a wake-up condition was detected
Return FAL SE when no wake-up condition was present

18.4.1.8.4 SetPHYPowerMgmt

Thisfunction is called by the USB driver when transitioning to or from the suspended state (for example,
during system suspend). The function does what is necessary to place the transceiver hardware into a
suspended (fSuspend = TRUE) or running (fSuspend = FALSE) state.

The standard implementation for i.MX System uses a UL PI-bus based 1SP1504 transceiver for the HS
OTG port, and this function configures the ULPI-busfor sleep state. If platform hardware uses other
transceivers, this function must be modified appropriately.

Parameters

BOOL fSuspend [in] TRUE: system or controller is going to suspend mode. FALSE: resuming

18.4.2 USB Peripheral Driver

This driver enables the USB peripheral functionality for thei.MX device. When this driver is active and
thei.MX System is connected to a USB host system (for example, high speed or full speed port of PC), it
is enumerated according to the current active configuration settings, and the appropriate class driver is
loaded on the PC.

System can be configured as one of the following USB functions by setting the appropriate environment
variable during build (drag or drop from the catal og).
» Serid class- Seria ActiveSync
* Massstorage class - expose local storage (ATA hard disk, RAMDISK or other store) as USB drive
* RNDISclass - Remote Network Driver Interface Specification
* PHD class - basic Personal Healthcare Device Class support
When multiple class supports are selected, only one classwill bethe active peripheral support. The default

priority is: Serial Class> Mass Storage Class> RNDIS class> PHD class. Besides, we a'so provide tools
to change current active class, see Section 18.7.1, “ Application for USB Peripheral Class Driver Switch.”

For detailed description on peripheral class driver, see the Section 18.4.7, “ Peripheral Class Drivers.”

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-12 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.2.1 User Interface

The USB client driver provides a standard Windows CE USB driver implementation. For more
information on drivers, see the Help documentation at the following location:

Developing a Device Driver > Windows Embedded CE Drivers> USB Function Drivers> USB
Function Controller Drivers.

User can accessthe USB client driver through function driverssuch asMass Storage or RNDI'S. For further
details on these USB Function drivers, seethefollowing location in the Windows CE 6.0 Platform Builder
help topic:

Developing a Device Driver > Windows Embedded CE Drivers> USB Function Client Drivers.

To get information where new function driver code is to be devel oped, see the Function controller driver
interface functions (for example, IssueTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers> USB Function Controller Drivers
> USB Function Controller Driver Reference.

18.4.2.2 Client Driver Configuration
Seethe Section 18.4.4,“USB OTG Catalog Settings” for information about the client driver configuration.

18.4.2.3 Registry Settings
Seethe 18.4.5, “USB OTG Registry Settings” for information about the registry settings.

18.4.2.4 PHY Test Mode

The USB 2.0 specification defines PHY-level test modes for USB device ports (see the section 7.1.20 for
definitionsin USB 2.0 specification). This mechanism allows a host to configure a device into test mode
by commanding the device with aspecific SET_FEATURE request. Once test mode is entered, the device
is not able to leave test mode. Do not enable this feature in our BSP now.

18.4.2.5 Unit Test

Thereisno CETK test case for USB peripheral drivers. The USB Peripheral driver istested manually for
USB Serial function or USB Mass storage or RNDIS respectively. The test verifies basic USB peripheral
functionality, including attach, detach, and datatransfer. Separate images can be built and downloaded for
each of the three periphera function tests. See the Section 18.4.1.7.2, “Build the Test Image” for building
the image. The peripheral class driver switch tool are also used to do these tests, see the Section 18.7.1,
“Application for USB Peripheral Class Driver Switch.”

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-13

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.2.5.1 Unit Test Hardware
Table 18-5 lists the required hardware to run the unit tests.

Table 18-5. Hardware Requirements

Requirement Description

Host system a PC with proper driver and software installed

USB cable having Mini or Micro USB OTG plug A | For connecting between the PC and peripheral
at one end and Mini or Micro USB OTG plug B on
the other side

ATA, NAND, Thumb disk, SD Card or MMC card | Required as a storage device when the board is
mounted on CE system configured as mass storage class

18.4.2.5.2 Unit Test Software
Table 18-6 shows the software requirements for the USB Function controller driver test.

Table 18-6. Software Requirements

Requirement Description

ActiveSync 4.1 and above | Host side software that is required to be available for testing the Serial class functionality

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-14 Freescale Semiconductor

18.4.2.5.3

Universal Serial Bus (USB) On The Go (OTG) Driver

Running the USB Function Controller Driver Tests

Table 18-7 lists USB Function controller driver tests:

Table 18-7. USB Function Controller Driver Tests

Test Cases

Entry Criteria, Procedure and Expected Results

Board configured as
USB Serial class and
connected to a host
system after the board
boots up completely

Entry Criteria:

Make sure there is no cable connected and the board is turned on and wait until the board boots-up
completely

Procedure:

1. Connect the mini or micro USB OTG plug B to the mini or micro USB OTG socket

2. Observe that the ActiveSync on the host side gets connected and is synchronized

3. Copy files from Host system to the Mobile Device. Files are copied

4. Copy files from the Mobile Device to the Host system. Files gets copied

5. Unplug the mini USB OTG plug B from the i.MX mini USB OTG socket to unload the Serial class
driver

Expected Result:

ActiveSync should get synchronized and copying of files should happen between the Host and the
System

Board configured as
USB Mass storage
client, with DSKx
mounted, and
connected to PC after
the board boots up
completely

Entry Criteria:

Make sure there is no cable connected and the board is turned on and wait until the board boots-up
completely

Procedure:

1. Connect the mini or micro USB OTG plug B to the USB OTG socket

2. Observe that a new disk in My Computer having as Removable Disk appearing in it

3. Copy files from Host system to the new disk drive. Files are copied

4. Copy files from the new disk drive to the Host system. Files gets copied

5. Unplug the mini USB OTG plug B from the mini USB OTG socket to unload the mass storage class
driver

Expected Result:

Files copied into mass storage client device match those copied out (when compared on Windows XP
PC using file compare utility). Note that files are not visible from within the System until the system has
been reset. The file system should not be used inside the System when it is being accessed through
USB as a mass storage client.

Board configured as
USB RNDIS client and
connected to a host
system after the board
boots up completely.
Browsing the Internet

Entry Criteria:

Make sure there is no cable connected and the board is turned on and wait until the board boots-up
completely. See to it that the NIC’s local area connection is not having any IP address

Procedure:

1. Connect the mini USB OTG plug B to the mini USB OTG socket

2. Observe that a new Local area connection in the Network and Dial up connections appears on the
Windows XP machine. Bridge the NIC’s local area connection and the RNDIS’s local area connection
3. Configure the bridge by giving IP address, Subnetmask, Default gateway, DNS

4. On the System, a new Local area connection can be found in the Network and dial up connections.
Configure the local area connection by giving IP address, Subnetmask, Default gateway, DNS

5. In the Internet explorer on the System, configure the Lan settings as per the local area settings
Expected Result:

Browsing the Internet should be possible

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

18-15

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.2.6 Platform-Specific API

This section explains about the functions that are platform-specific.

18.4.2.6.1 InitializeMux

Thisfunction is called to initialize the IOMUX connection within i.MX, from USB controller to the
appropriate device pins for the transceiver. This function isimplemented for the Pure Client situation.

Parameters
int Speed [in] Unused
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

18.4.2.6.2 HardwarePullupDP

Thisfunctioniscalled by the USB client driver when D+ must be pulled-up, in preparation for connection
to a USB host. The standard code configures for 1SP1504 or 1SP1301 transceiver. It is possible to modify
thisroutine to conditionally soft-disable USB connection.

Parameters
CSP_USB REGS*pRegs [in] pointer to the registers for the USB controller
Return Value Return TRUE if D+ signal was pulled-up

18.4.3 USB OTG Driver (Pin-Detection Driver)

Thisdriver isresponsible for detecting the type of USB connector plugged into the USB OTG socket of
thei.MX System. It loads the USB host driver or USB peripheral driver and let it in charge.

18.4.3.1 User Interface

Thereisno user interfaceto thetransceiver driver. Thisdriver merely managesthe USB host or peripheral
drivers, which provide the appropriate programming API.

18.4.3.2 OTG Driver Configuration

See the Section 18.4.4, “USB OTG Catalog Settings” for information on the OTG driver configuration.

18.4.3.3 Registry Settings
See the Section 18.4.5, “USB OTG Registry Settings’ for information on the registry settings.

18.4.3.4 Unit Test

Thereisno CETK test casefor USB OTG driver. It istested using the mini or micro USB OTG plug A
and mini or micro USB OTG plug B. Thetest isdone by manually plugging in different cablesto the OTG
socket on the System and verifiesif the appropriate driver is activated.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-16 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.3.4.1 Unit Test Hardware
Table 18-8 lists the required hardware to run the unit tests.

Table 18-8. Hardware Requirements

Requirement Description
Full OTG configuration selected in BSP Make sure OTG driver is running
PC (with appropriate driver and software installed) To test if control reaches the Host controller driver
Peripherals such as thumb disk, USB keyboard and hub
mini or micro A to A receptacle cable For connecting system with PC and peripherals. System
mini or micro B to A cable acts as peripheral and host accordingly

18.4.3.4.2 Running the OTG Test

Table 18-9 lists OTG tests.
Table 18-9. OTG Tests

Test Cases Entry Criteria, Procedure and Expected Results
Idle case when no Entry Criteria:
cable plugged in Make sure there is no cable connected and the board is turned on, wait until the board boots-up
completely
Procedure:

When the board is powered and completely booted-up, the board should be idle.
Expected Result:
Device boots up and is stable

Switch to peripheral Entry Criteria:

Make sure there is no mini USB OTG plug connected and the board is turned on and wait until the
board boots-up completely

Procedure:

When the board is powered and completely booted-up, connect system to PC with the mini or micro B
to A cable. Verify PC recognizes it correctly.

Expected Result:

PC recognize our board (as peripheral) correctly (Activesync be active, or removable disk be seen, or
network adaptor be recognized).

Switch to host Entry Criteria:

Unplug board from PC (in previous step)

Procedure:

1. Disconnect system with PC and connect a mini or micro A to A receptacle to the OTG socket.

2. Connect the USB peripheral device (such as a thumb disk) to the A receptacle.

3. The peripheral connected gets enumerated and starts functioning. For example, if a USB thumb disk
is connected, a new disk will be accessible on CE system.

Expected Result:

Peripheral should start functioning on CE system

Switch between host Repeat the last 2 steps
and peripheral Expected Result:
System always functions OK as both host and peripheral

18.4.3.5 Platform-Specific API
NA.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-17

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.4 USB OTG Catalog Settings

The driver is selected into the BSP build by dragging and dropping the appropriate catalog item for USB
HS OTG. There are three catalog itemsin Freescalei.M X233 EVK: ARMV4l > Device Drivers> USB
Devices> USB High Speed OTG related to USBOTG functionality:

(a) High Speed OTG Port Full OTG Function
(b) High Speed OTG Port Pure Client Function
(c) High Speed OTG Port Pure Host Function

The selection of (a) will implicitly select (b) and (c), without selecting (a), (b) and (c) separately. So there
are three possible configurations available for BSP users:

(2) All 3 catalogs are explicitly or implicitly selected, corresponding to both host and periphera support
plus OTG pin detection.

(2) Only High Speed OTG Port Pure Client Function is selected, corresponding to peripheral-only
support.

(3) Only High Speed OTG Port Pure Host Function is selected, corresponding to host-only support.

18.4.5 USB OTG Registry Settings

The three possible configurations presented in Section 18.4.4, “USB OTG Catalog Settings,” make three
corresponding registry structure.

18.4.5.1 Registry Structure

» With configuration 1, for full OTG configuration, the generated registry has the following
structure:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t 1 n\ UsbCt g]
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ UsbQt g\ USBFN]
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ UsbQt g\ Hed]

» With configuration 2, for full peripheral-only configuration, the generated registry has the
following structure:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ UFN]|

» With configuration 3, for full host-only configuration, the generated registry has the following
structure:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ HCD_HSOTG]

The contents in Builtln\USBOtg\UsbFN are quite similar to those in Builtin\UFN and the contentsin
Builtln\UsbOtg\Hcd arequite similar to thosein Builtin\HCD_HSOT G. They share most of the settings.
The differenceis that:

In configuration 1, only UsbOtg key islocated under Builtl n key, which meansthe OTG driver will
automatically loaded by the OS. In this case, the OTG driver will decide to load the periphera driver and
the host driver.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-18 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

Inconfiguration2and 3, UFN or HCD_HSOTG isput directly under Builtl n key. So the peripheral driver
or host driver will be loaded by the OS automatically.

18.4.5.2 Registry Key Settings
This section explains about the registry key settings.

18.4.5.2.1 OTG Driver Settings

Table 18-10 liststhe USB OTG transceiver registry settings.
Table 18-10. USB OTG Transceiver Registry Settings

Value Type Content Description
Dl 74 fsl_usbotg.dll Driver dynamic link library
IsrDII sz giisr.dll ISR Chain Handler
DynamicClientLoad | dword 3 We set the value to 0x3, indicating both host driver and peripheral
driver will be loaded dynamically by OTG driver

18.4.5.2.2 Peripheral Driver Settings

Table 18-11 liststhe USB OTG client registry settings.
Table 18-11. USB OTG Client Registry Settings

Value Type | Content Description
Dl 74 usbfn.dll | Driver dynamic link library
OTGSupport | dword 0 obsolete setting, must be set as 0
Priority256 dword 64 The reference peripheral driver IST priority
OTGGroup sz 1 This unique string (example 00 to 99) is used to combine or correlate instances of the
host, function, and transceiver driver within one USB OTG instance

18.4.5.2.3 Host Driver Settings

Table 18-12 lists the default values for the host driver settings.
Table 18-12. hsotg.reg Default Values

Value Type Content Description
DIl sz hcd_hsotg.dll | Driver dynamic link library
OTGSupport dword 0 obsolete setting, must be set as 0
OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine or correlate
instances of the host, function, and transceiver driver within one USB
OTG instance.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-19

Universal Serial Bus (USB) On The Go (OTG) Driver

Table 18-12. hsotg.reg Default Values (continued)

Value Type Content Description

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword NA This value represents the number of bytes allocated for the physical
memory pool of the OTG host driver, and defaults to 128kB. From this
buffer, 75% are allocated for transfer descriptors and the remaining
buffer is available for allocation to simultaneous transfers. In most cases,
only one transfer is active at any time (for example, in the Mass Storage
Class). A good value is at least 3x as large as the largest data buffer
transferred using IssueTransfer(). Our BSP don’t provide this setting and
the driver will use the default 128kB size

18.4.6 Power Management

The USB OTG driver enters the low power mode in the following cases:
* No busactivity for a specified period of time
» System enter suspend state

Similar procedures are takento let the USB module to enter or exit low power modein either of the 2 cases.
The following section explains about the description on the general power management procedures.

18.4.6.1 Power Down Procedure

To set the USB module to low power mode, both PHY and controller should be set to low power mode
respectively.

18.4.6.1.1 Set PHY to Low Power Mode
The following function is called to set the PHY to low power mode:
BSPUsbPhyEnt er LowPower Mbde(pUsbRegs, TRUE)

This function is defined in

.. \'pl atform <Target Platform>\ sr c\ dri ver s\ usbcommon\ usbutils.c

The following procedure is used for setting the PHY to low power mode.

» enable the wakeup interrupt source which can be activated without USB clock
» close power to al PHY sub module

18.4.6.1.2 Close USB Controller Clock

The following function is called to close the USB controller clock:
BSPUSBC ock Swi t ch(FALSE)

This function is defined in

.. \'pl atf orm <Target Platform>\ sr c\ dri ver s\ usbcommn\ usbcl ock. ¢

It gate the IC clock to USB Controller module.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-20 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.6.2 Power Up Procedure

The USB module is powered up by reversing the procedures that are used to exit the low power mode.

18.4.6.2.1 Open USB Controller Clock

The following function is called to open the USB controller clock:
BSPUSBC ock Swi t ch(TRUE)

It ungate the IC clock to USB Controller module.

18.4.6.2.2 Put PHY Out of Low Power Mode

The following function is called to retrieve the PHY from low power mode:
BSPUsbPhyEnt er LowPower Mbde(pUsbRegs, FALSE)

The following procedures are implemented to set the PHY out of low power mode.
» disable the wakeup interrupt source which can be activated without USB clock
» open power to al PHY sub module

18.4.6.3 Processing Methodology

This section explains how to integrate the power down and power up procedure into USB OTG driver.
Sincethe USB OTG driver includethe OTG driver, the host driver and the peripheral driver, the processing
methodology for all the three driversis discussed in this section.

18.4.6.3.1 Host Driver Methodology

1) Auto low power

The host driver IST wait for USB IRQ for aspecified interval of time. Theinterval is defined as a macro
USB_IDLE_TIMEOUT, which is set to 3000msin the BSP. If there are no USB IRQ during this period,
there is nothing to be connected, so the driver will follow the procedure as described in Section 18.4.6.1,
“Power Down Procedure,” to set the USB module to low power mode.

When the moduleisinlow power mode, thedriver issensitive to the USB interrupt. Once such aninterrupt
iscaught, thedriver will follow the procedure described in Section 18.4.6.2, “Power Up Procedure,” to set
the USB module out of low power mode and function normally.

The implementation is found in

CHW : Usbl nt er r upt Thr ead, Which islocated in
SOCQ\ <Common SOC>\ s\ USBH\ EHCI \ chw. cpp

2) Low power mode with system suspend

When the system enters suspend mode, the USB module will enter the low power mode. The power down
procedures as described in Section 18.4.6.1, “ Power Down Procedure,” are aso implemented in host
driver

CHW : Power Mynt Cal | back, which islocated in

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-21

Universal Serial Bus (USB) On The Go (OTG) Driver

SOC\ <Conmon SOC>\ ns\ USBH\ EHCI \ chw. cpp
This function will be called by OS automatically during system suspend.

When the system exits suspend mode, the USB module aso exit the low power mode. The power up
procedures as described in Section 18.4.6.2, “ Power Up Procedure,” are also implemented in

CHW : Power Mgnt Cal | back

This function will be called by OS automatically during system resume.

18.4.6.3.2 Peripheral Driver Methodology
1) Auto low power

The peripheral driver IST wait for USB IRQ for aspecified interval of time. The interval is defined as a
macro IDLE_TIMEOUT, whichisset to 3000msin our BSP. If there are no USB IRQ during this period,
there is nothing to be connected, so the driver will follow the procedure as described in Section 18.4.6.1,
“Power Down Procedure,” to set the USB module to low power mode.

When the moduleisin low power mode, the driver is sensitive to USB interrupt. Once such an interrupt is
caught, the driver will follow the procedure as described in Section 18.4.6.2, “Power Up Procedure,” to
set the USB module out of low power mode and function normally.

The implementation can be found in

I nterrupt Handl e, Which islocated in

SOC\ <Conmon SOC>\ ns\ USBD\ COMMON pdd. ¢
2) Low power mode with system suspend

When the system enters suspend mode, the USB modul e al so entersthe low power mode. The power down
procedures as described in Section 18.4.6.1, “Power Down Procedure,” are implemented in peripheral
driver in

Uf nPdd_Power Down
Whichislocated in
SOC\ <Conmon SOC>\ ns\ USBD\ COMMON pdd. ¢

This function will be called by OS automatically during system suspend.

When the system exits suspend mode, the USB module aso exit low power mode. The power up
procedures as described in Section 18.4.6.2, “Power Up Procedure,” are implemented in

Uf nPdd_Power Up
Which isalso located in
SOC\ <Conmon SOC>\ ns\ USBD\ COMMON pdd. ¢
18.4.6.3.3 OTG Driver Methodology

At any time after systemisboot up, either host driver or peripheral driver isin charge of the USB module.
When USB module need to enter or exit low power mode, all the tasks are done by the in-charge driver.
So there is no need for OTG Driver to provide redundant processing.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-22 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

18.4.6.4 USB Wakeup

For some system design, it is preferred for the host driver that after system goes into suspend mode, an
USB action by peripheral (such as plug, unplug and so on.) can wakeup the whole system. It is not
implemented in i.MX233 yet.

18.4.7 Peripheral Class Drivers

The function drivers can be configured using the Windows CE 6.0 Platform Builder catalog, and are
located at:

Device Drivers> USB Function > USB Function Clients
Besides that, basic Personal Health Care Class (PHCC) support is aso included in the BSP, the catalog is

Third Party > BSP > Freescale<Tar get Platfor m>: ARMV 4l > DeviceDrivers>USB Devices>USB
Functional Class Driver > Personal HealthCare Class Support

The default function driver is launched, when the USB device port is attached to a host. This default
function driver is selected by the registry key (the last instance of this value in reginit.ini applies):
[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri vers]
"DefaultdientDriver"=- ; erase previous default

[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri vers]
"DefaultdientDriver"="Mass_Storage_Cl ass"

or

"DefaultdientDriver"="RND S"
or

"DefaultCientDriver"="Serial _Class"
or

"DefaultdientDriver"="Personal _HealthCare_Cl ass"

18.4.7.1 Mass Storage Function

Table 18-13 lists the mass storage functions.
Table 18-13. Mass Storage Function

Driver Attribute Definition
CSP Driver Path .\SOC\<Common SOC>\ms\USBFN\CLASS
CSP Static Library NA
Platform Driver Path NA
Import Library USBMSFN_LIB_<Common SOC>.lib
UFNCLIENTLIB.LIB
Driver DLL usbmsfn.dll
Catalog Item Device Drivers > USB Function > USB Function Clients > Mass Storage

SYSGEN Dependency SYSGEN_USBFN_STORAGE

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-23

Universal Serial Bus (USB) On The Go (OTG) Driver

The Mass Storage function exposes alocal data store asaUSB peripheral storage device. The device used
can be specified in registry. In platfrom.reg, the following template is provided:

PUBLI C\ Conmon\ OAK\ Fi | es\ common. r eg

"Devi ceNane"=- ;

;. "Devi ceNanme" =" ATA HARD DI SK"
;. "Devi ceNane" =" SDVEMORY CARD'
; "Devi ceNane"="MVC CARD'

;. "Devi ceNane"="USB HARD DI SK"
;. "Devi ceNanme" =" NAND FLASH'

Any item from thislist can be specified to act as the mass storage medium. Uncomment the corresponding
line and rebuild the BSP to make that item active.

If none of theitemsare specified explicitly, apre-coded priority isused to determine what active drive acts
as a mass storage medium. The priority is described as the following:

ATA HARD DI SK > SDMEMORY CARD (MMC CARD) > USB HARD DI SK > NAND FLASH

The platform.reg can also over-ride other USBM SFN related default settings. This alows customizing the
following values which must be properly configured for acommercial device:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri ver s\ Mass_St or age_Cl ass]
; 1 dVendor nust be changed. 045E bel ongs to Mcrosoft and is only to be used for
; prototype devices in your labs. Visit http://ww. usb.org to obtain a vendor id.
"i dVendor" =dwor d: 045E
"Manuf acturer"="Generic Manufacturer (PROTOTYPE--Renmenber to change idVendor)"
"i dProduct " =dwor d: FFFF
"Product"="Ceneric Mass Storage (PROTOTYPE--Remenber to change idVendor)"
"bcdDevi ce" =dwor d: 0

18.4.7.2 Serial Function

The primary use for serial function is ActiveSync. Table 18-14 lists the serial functions.
Table 18-14. Serial Function

Driver Attribute Definition
CSP Driver Path NA
PUBLIC driver path PUBLIC\Common\OAK\Drivers\USBFN\CLASS\SERIAL
CSP Static Library NA
Platform Driver Path NA
Export Library serialusbfn.lib
Import Library com_mdd2.lib
serpddcm.lib
ufnclientlib.lib
Driver DLL SerialUsbFn.dll
Catalog ltem Device Drivers > USB Function > USB Function Clients > Serial Client
SYSGEN Dependency SYSGEN_USBFN_SERIAL

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-24 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

NOTE

ActiveSync has been tested using the connection to PC with the ActiveSync
version 4.1 or above installed. See www.microsoft.com to download the
latest ActiveSync software for the PC. In some cases, DEBUGCHK may be
triggered during attachment to ActiveSync in DEBUG builds.

When SY SGEN_USBFN_SERIAL is defined, the default registry entry is automatically included from:
PUBLI C\ Conmon\ OAK\ FI LES\ common. r eg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercia device:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri vers\ Seri al _O ass]
; 1 dVendor nust be changed. 045E bel ongs to Mcrosoft and is only to be used for
; prototype devices in your labs. Visit http://ww. usb.org to obtain a vendor id.
"i dVendor" =dwor d: 045E
"Manuf acturer"="Generic Manufacturer (PROTOTYPE--Renmenber to change idVendor)"
"i dProduct " =dwor d: 00ce
"Product"="Generic Serial (PROTOTYPE--Renmenber to change idVendor)"
"bcdDevi ce" =dwor d: 0

18.4.7.3 RNDIS Function

The RNDI S function allows communication over USB to be supplied to ethernet NDIS interface of
protocol stack. Table 18-15 lists the RNDI S functions.

Table 18-15. RNDIS Function

Driver Attribute Definition
CSP Driver Path NA
CSP Static Library NA
Platform Driver Path NA
PUBLIC Driver Path PUBLIC\"\OAK\Drivers\USBFN\Class\RNDIS
Import Library ndis.lib
Driver DLL RNDISFN.DLL
Catalog Iltem Device Drivers > USB Function > USB Function Clients > RNDIS Client
SYSGEN Dependency SYSGEN_USBFN_ETHERNET

RNDI S function has been tested using the Freescale RNDI'S class driver located at:

Support\ RNDI S\ ce6_r ndi s. i nf
9N NDI R Syst enB2\ dri ver s\ usb8023x. sys

When SYSGEN_USBFN_ETHERNET is defined, the default registry entry is automatically included
from:

PUBLI C\ Common\ OAK\ FI LES\ common. r eg

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-25

www.microsoft.com

Universal Serial Bus (USB) On The Go (OTG) Driver

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercia device:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri ver s\ RNDI S]

; 1dVendor nust be changed. 045E bel ongs to Mcrosoft and is only to be used for

; prototype devices in your labs. Visit http://ww. usb.org to obtain a vendor id.

"i dVendor " =dwor d: 045E

"Manuf acturer"="Generic Manufacturer (PROTOTYPE--Renmenber to change idVendor)"

"i dProduct " =dwor d: 0301

"Product"="CGeneri ¢ RNDI S (PROTOTYPE- - Renenber to change i dVendor)"
"bcdDevi ce" =dwor d: 0

18.4.7.4 PHDC Function

PHDC collects the personal health related data such as glucose meters and temperature measurements
from portable devices, and then transmit the data to the center agent, for example, PC or health care center
host. Table 18-16 lists the PHDC functions.

Table 18-16. PHDC Function

Driver Attribute Definition
CSP Driver Path .\SOC\<Common SOC>\UFNCLASS\CLASS\PHDC
PUBLIC driver path NA
CSP Static Library NA
Platform Driver Path NA
Export Library NA
Import Library NA
Driver DLL usbphdfn.dlil
Catalog ltem Third Party > BSP > Freescale <Target Platform>: ARMV4l > Device Drivers >
USB Devices > USB Functional Class Driver > Personal HealthCare Class
Support
SYSGEN Dependency NA
BSP Variable BSP_USBFN_PHD_SUPPORT

Asitisanon Microsoft provided class driver, the PHDC class driver currently support basic reliable
personal health data transfer in the continua alliance framework. An peripheral side API is developed to
transfer the multiple personal health measurement, including weight, glucose, blood pressure and
temperature to a PC installed with proper PHDC host driver and application. For more details, see
Section 18.7.2, “Application for Multispec PHDC Demo.”

18.4.8 Host Class Drivers

All host ports support the same class drivers, and this configuration is common to all host ports. Class
drivers must also be configured for the USB host ports. Class driver configuration is common to all host

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-26 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

ports; there is no port-specific configuration for on any class driver. Table 18-17 shows the standard
Microsoft-supplied drivers, and these drivers can be dragged and dropped from the catal og.

Table 18-17. Class Drivers

Class

Driver Configuration Flag Catalog ltem

HID SYSGEN_USB_HID Core OS > Windows CE devices > Core OS Services > USB Host Support >
USB Human Input Device (HID) Class Driver

Printer SYSGEN_USB_PRINTER |.. > USB Printer Class Driver
(and see additional configuration in Section 18.6.2, “Dependencies of Drivers”)

Keyboard SYSGEN_USB_HID .. > Keyboard HID Device
_KEYBOARD (and see additional configuration in Section 18.6.2, “Dependencies of Drivers”)
Mouse SYSGEN_USB_HID .. > Mouse HID Device
_MOUSE (and see additional configuration in Section 18.6.2, “Dependencies of Drivers”)

RNDIS SYSGEN_ETH_USB_HOST |.. > USB Remote NDIS Class Driver

Storage SYSGEN_USB_STORAGE |.. > USB (mass) Storage Class Driver

18.4.8.1 HID Mouse

For mouse support, the cursor isrequired to test or use the mouse. Table 18-18 showsthe HID mouse class
drivers.

Table 18-18. HID Mouse Class Driver

Catalog Item | Configuration Flag Catalog Item

HID SYSGEN_CURSOR | Core OS > Shell and User Interface > User Interface > Customizable Ul > Mouse

18.4.8.2 HID Keyboard

The System keyboard key mapping conflicts with the HID keyboard. So, when the USB keyboard is
included, remove the System keyboard and include the appropriate stub keyboard and keyboard.dll file.
Table 18-19 liststhe HID keyboard driver that is to be removed.

Table 18-19. HID Keyboard Driver to Remove

Remove Item Remove Catalog Item

Keyboard | Third Party > Freescale <Target Platform>: ARMV4| > Device Drivers > Input Devices > Keyboard US or
Keypad

Table 18-20 lists the stub keyboard driver that is to be included.
Table 18-20. ID Keyboard Driver to Include

Catalog Iltem Configuration Flag Catalog ltem
NOP Stub BSP_KEYBD_NOP Device Drivers > Input Devices > Keyboard or Mouse > NOP (Stub)
Keyboard Keyboard or Mouse English

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-27

Universal Serial Bus (USB) On The Go (OTG) Driver

And includethe appropriate keyboard.dll. For example, define SY SGEN_KBD_US and add thefollowing
linesin the platform.bib (immediately before the FILES section):

| F BSP_KEYBD_NOP
kbdmouse. dI | $(_FLATRELEASEDI R) \ KbdnopUs. dl | NK SH
ENDI F; BSP_KEYBD NOP

18.5 Known Issues

This section provides known issues of current BSP. Theseissues are mainly caused by hardwarelimitation,
and hence no software work-around is available.

18.5.1 Host Support for Low Speed Peripherals

Thei.MX233 USB PHY do not support low speed device. So alarge number of USB mouse or keyboard
cannot be recognized if they are connected directly to the root hub. So to utilize them, a high-speed hub
must be used to be the bridge.

Connecting alow speed device through a full speed hub also do not make sense.

18.5.2 Host VBUS Power Supply

The1.M X233 EVK board design do not provide softwareto drive VBUS to 5V, that makes host unable to
detect the periphera connection.

A hardware work-around isto add ajumper on Q8 pin 2 and pin 3. Since pin 2 islined to 5V wall supply
and pin 3islined to VBUS ine, shorting both the pinswill provide a necessary voltage to VBUS and get
host working.

18.6 Basic Elements for Driver Development

This section provides details of the basic elements for driver development in the Platform System.

18.6.1 BSP Environment Variables

Table 18-21 summarizes the System environment variables.

Table 18-21. System Environment Variables Summary

Name Definition

BSP_USBOTG Set to enable Full OTG functionality (enable host-client switching)
on the High Speed OTG port

BSP_USB_HSOTG_CLIENT | Set to include USB client functionality on High Speed OTG port

BSP_USB_HSOTG_HOST | Set to include USB host functionality on High Speed OTG port.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-28 Freescale Semiconductor

Universal Serial Bus (USB) On The Go (OTG) Driver

18.6.2 Dependencies of Drivers

Table 18-22 summarizes the Microsoft-defined environment variables used in the BSP,
Table 18-22. USB Driver

Name Definition
SYSGEN_USBFN_SERIAL Set to support serial class for USB Function controller
SYSGEN_USBFN_STORAGE Set to support mass storage class for USB Function controller

SYSGEN_USBFN_ETHERNET Set to support RNDIS class for USB Function controller

SYSGEN_CURSOR Set to support mouse cursor
SYSGEN_FATFS Set to support FAT16 file system
SYSGEN_PCL Set to support PCL printing
SYSGEN_PRINTING Set to support printer
SYSGEN_STOREMGR Set to support storage manager
SYSGEN_UDFS Set to support Universal Disc File System
SYSGEN_USB Set to support USB driver
SYSGEN_USB_HID Set to support Human Interface driver (HID) class

SYSGEN_USB_HID_CLIENTS Set to support HID clients

SYSGEN_USB_HID_KEYBOARD Set to support HID keyboards
(keyboard stub and associated.dll are required)

SYSGEN_USB_HID_MOUSE Set to support HID mouse

SYSGEN_USB_PRINTER Set to support Printer
(printer driver support, such as PCL (SYSGEN_PCL), may be required)

SYSGEN_USB_STORAGE Set to support storage medium

18.7 Application Tools for USB
This section describes about the application tools that are used for the USB.

18.7.1 Application for USB Peripheral Class Driver Switch

Only one USB peripheral drivers can be active even if there are many. When multiple class drivers are
included in the image, it will be convenient that it can be switched. It is convenient for both the end users
and test engineers. The following executable programs are added in ..\platform\<7arget Piatform>\files:

switchUsh2Msc.exe, switchUsb2Rndis.exe, switchUsh2Serial .exe, switchUsh2Phdc.exe.

These executable programs are selectively integrated into nk.bin during the generation of OS image.
During WinCE start up, the programs can be found in \WINDOWS directory. On execution of these
programs activate the mass storage, RNDIS, Serial or PHDC peripheral drivers respectively.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 18-29

Universal Serial Bus (USB) On The Go (OTG) Driver

18.7.2 Application for Multispec PHDC Demo

A peripheral side GUI is needed to use the PHDC class driver. The application is used to select any data
from the available personal health measurements and send the selected datato PC. The
PHDC_Peripheral_App.exeislocated in the directory ..\platform\<7arget Platform>\files.

During WIinCE start up, thefileisfound in \WINDOWS directory.

On the host side, Continua Alliance CESL Reference Software is necessary to setup PHDC
communication channel. Contact www.continuaal liance.org for more details.

When PC sideis ready, run the PHDC_Periphera_App.exe. It will brings up a GUI with the following
button controls
» Select Device Spec Button—Used to select between the four different personal health data
category.
* Send Measurement Button—Used to send current measurement data category to host.
» Disconnect Button—Used to test PHDC protocol level disconnect.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

18-30 Freescale Semiconductor

www.continuaalliance.org
www.continuaalliance.org

Chapter 19
USB Boot and KITL

USB Boot and KITL are supported by implementing aRNDI S client device over USB on thetarget board.
This feature configures the USB OTG port as a USB device and implements the RNDIS USB function
driver. The USB RNDISdevice actsasanormal ethernet device and connectsto the PC over aUSB cable.
Eboot and KITL then operate with the RNDI S ethernet device.

19.1 USB Boot and KITL Summary

Table 19-1 identifies the source code location, library dependencies, and other BSP information.
Table 19-1. USB Boot and KITL Summary

Driver Attribute Definition
Target Platform iMX233-EVK
Target SOC MX233_FSL_V2

SOC Common Path WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\MS\RNE_MDD
WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\MS\USBKITL

SOC Specific Path WINCE600\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBD\KITL

Platform Specific Path .\PLATFORM\<Target Platform>\SRC\COMMON\USBFN
.\PLATFORM\<Target Platform>\SRC\KITL

Driver DLL fsl_usbfn_rndiskitl.lib
SDK Library N/A
Catalog Item N/A

SYSGEN Dependency | N/A

BSP Environment Variable | N/A

19.2 Supported Functionality

The USB Boot and KITL provides the following software and hardware support:
1. Image downloading over USB RNDIS
2. KITL over USB
3. Provides menu options to determine whether or not to enable USB Boot and/or USB KITL

19.3 Hardware Operation

For detailed operation and programming information of the USB OTG, see the chapter on the High-Speed
USBOTG_UTMI in the corresponding platform User’s Guide.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 19-1

USB Boot and KITL

19.3.1 Conflicts with Other Peripherals and Catalog Items

The USB Boot and KITL does not have conflicts with any other module. However, since USB KITL and
USB OTG drivers share the same USB OTG hardware, the USB OTG drivers should be disabled in the
catalog item when USB KITL isenabled. USB boot does not have such limitation.

19.4 Software Operation

This section explains about the software requirements for USB OTG

19.4.1 Software Architecture

USB Boot and KITL are part of the EBOOT and KITL subsystem. A RNDISclient deviceisimplemented
to support USB Boot and KITL. Figure 19-1 illustrates the USB Boot and KITL software architecture.

USB Boot, KITL or other APP

'

MDD (RNDIS)

v

PDD
(Porting from USB Function Controller PDD Driver

'

USB OTG Hardware

Figure 19-1. USB Boot and KITL Software Architecture Block Diagram

Microsoft has implemented a RNDIS client MDD driver in Windows CE 6.0. The code is in following
location:
% W NCEROOT% Publ i ¢\ Cormon\ Oak\ Dri ver s\ Et hdbg\ Rne_ndd

It generates the static library Rne_ndd. 1i b.

The USB function controller PDD driver is ported to eboot and KITL to support USB Boot and KITL. For
details of USB function controller PDD driver see the Platform Builder Help in the following location:

Developing a Device Driver > Windows Embedded CE Drivers> USB Function Drivers> USB
Function Controller Drivers> USB Function Controller Driver Reference > USB Function
Controller PDD Functions.

Windows CE 6.0 provides an example of USB Boot. It islocated at:
% W NCEROOT% PI at f or M Mai nst onel | I \ Src\ Common\ Usbf n

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

19-2 Freescale Semiconductor

USB Boot and KITL

19.4.2 Source Code Layout

Some files are modified or added to support USB Boot and KITL. They are as follows:

e RNDISPDD driver
% W NCEROOT% Pl at f or mi COVMMON\ SRC\ SOC\ COVMON_FSL_V2\ MB\ USBKI TL\ RNDI S

e USB function controller shared with OS driver
% W NCEROOT?% Pl at f or mi COMMON\ SRC\ SOC\ <Tar get SOC>\ USBD\ COMVON

* Add RNDIS deviceto EBOQOT ethernet initialization routines
% W NCEROOT% PI at f or M <Target Pl at f or n®\ Src\ Boot | oader\ Conmon\ et her. c

» SetupKITL device LogicalLoc and PhysicalLoc to USBOTG physical addressif USB KITL
option in EBOOT menu is selected by user
% W NCEROOT% PI at f ormk <Target Pl at f or n®\ Src\ Boot | oader\ Conmon\ mai n. c

* Implement private OS functions, such as NKCr eat eSt at i cMappi ng(). NKCr eat eSt at i cMappi ng IS
defined in OS. It is not defined for EBOOT while USB Boot requires this function. Soitis
manually defined. Thisfunction just calls OAL PAtoUA ()
% W NCEROOT?% Pl at f or mi COMVON\ SRC\ SOC\ <Tar get SOC>\ USBD\ KI TL

* AddUSB Boot and KITL optionsinto EBOOT menu
% W NCEROOT% PI at f ormk <Target Pl at f or n®\ Src\ Boot | oader\ Eboot \ nenu. c

e Addfsl _rne_nud_$(_COMMONSCCDIR).lib, fsl_rne_pdd $(_COMWONSOCDIR). |i b,
usb_usbfn_$(_SOCDIR).lib, usb_usbfn_eboot_$(_SOCDIR).lib
% W NCEROOT% PI at f ormk <Target Pl at f or n®\ Src\ Boot | oader\ Eboot \ sour ces

* Add USB RNDISKITL devicein KITL initialization routines
% W NCEROOT% Pl at formk <Target Platfornp\Src\Kitl\kitl.c

% W NCEROOT% Pl at f ormk <Target Pl atfornp\ Src\Kitl\sources
19.4.3 Power Management

Power management is not implemented in USB Boot and KITL.

19.4.4 Registry Settings
There are no related register settings for the USB Boot and KITL.

19.4.5 DMA Support

Physical contiguous memory isrequired to support USB DMA. This memory region is hard coded in:
% W NCEROOT% PI at f or M Conmon\ SRC\ SOC\ <Conmmon Soc>\ s\ Usbki t | \ Rndi s\ rndi s_pdd. c

It uses the BSP reserved IPL RAM image region (Starting from
IMAGE_USB_KITL_RAM_PA_START). Thisregion isnot used by other modulesin the BSP, so it can
be used by USB boot and KITL.

19.5 Unit Test

The following section explains how to perform unit tests.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 19-3

USB Boot and KITL

19.5.1 Building the USB Boot and KITL

There is no specia configuration options for building USB Boot and USB KITL. Building the BSP with
default configuration includes the USB Boot and KITL support. The exception isthat the USB OTG
drivers should be deselected from the catalog item view before building the NK imageto use USB KITL,
because USB KITL and OS USB drivers share the same USB OTG hardware and they can not exist
simultaneously. Asaresult USB KITL can not used to debug USB OTG drivers.

The USB OTG driver auto unloads when it detects USB KITL enabled.

i.MX23 EVK Windows Embedded CE 6.0 Reference Manual

19-4 Freescale Semiconductor

	i.MX23 EVK Windows Embedded CE 6.0 Reference Manual
	About This Book
	Audience
	Suggested Reading
	Conventions
	Definitions, Acronyms, and Abbreviations

	Chapter 1 Introduction
	1.1 Getting Started
	1.2 Windows Embedded CE 6.0 Architecture

	Chapter 2 Audio Driver
	2.1 Audio Driver Summary
	Table 2-1. Audio Driver Summary

	2.2 Supported Functionality
	2.3 Hardware Operation
	2.3.1 Audio Hardware Design
	2.3.1.1 i.MX233 Audio Hardware Design

	2.3.2 Audio Playback
	2.3.3 Audio Recording
	2.3.4 Required SoC Peripherals
	Table 2-2. Required SoC Peripherals

	2.3.5 Conflicts with SoC Peripherals
	2.3.6 Conflicts with Board Peripherals
	2.3.6.1 i.MX233 Peripherals Conflicts

	2.3.7 Known Issues
	2.3.7.1 i.MX233 Known Issues

	2.4 Software Operation
	2.4.1 Audio Playback
	2.4.2 Audio Recording
	2.4.3 Audio Driver Compile-Time Configuration Options
	2.4.3.1 i.MX233 Audio Driver Configuration Options
	Table 2-3. i.MX233 Audio Driver Configuration Options (oemsettings.h)

	2.4.4 DMA Support
	Table 2-4. DMA Memory Allocation Issues and Considerations
	Table 2-5. Configuration Options for Internal or External Memory DMA Data Buffer Allocation
	2.4.4.1 i.MX233 Audio DMA Buffer Use

	2.4.5 Power Management
	2.4.5.1 PowerUp
	2.4.5.2 PowerDown
	2.4.5.3 IOCTL_POWER_SET

	2.4.6 Audio Driver Registry Settings
	2.4.6.1 i.MX233 Audio Driver Registry Settings

	2.5 Unit Test
	2.5.1 Unit Test Hardware
	Table 2-6. Hardware Requirements

	2.5.2 Unit Test Software
	Table 2-7. Software Requirements

	2.5.3 Building the Audio Driver CETK Tests
	2.5.4 Running the Audio Driver CETK Tests

	2.6 System Level Audio Driver Tests
	2.6.1 Checking for a Boot-Time Musical Tune
	2.6.2 Confirming Touchpanel Taps and Keypad Key Presses
	2.6.3 Playing Back Sample Audio and Video Files Using the Media Player
	2.6.4 Using the SDK Sample Audio Applications for Testing

	2.7 Audio Driver API Reference
	2.8 Audio Driver Troubleshooting Guide
	2.8.1 Checking Build-Time Configuration Options
	2.8.2 Media Player Application Not Found
	2.8.3 Media Player Fails to Load and Play an Audio File

	Chapter 3 Backlight Driver
	3.1 Backlight Driver Summary
	Table 3-1. Backlight Driver Summary

	3.2 Supported Functionality
	3.3 Hardware Operation
	3.3.1 i.MX233-EVK Hardware Operation

	3.4 Software Operation
	3.4.1 Backlight Driver Registry Settings
	3.4.1.1 i.MX233-EVK Backlight Driver Registry Setting

	3.4.2 Power Management
	3.4.2.1 PowerUp
	3.4.2.2 PowerDown
	3.4.2.3 IOCTL_POWER_SET

	3.5 Unit Test
	3.5.1 Unit Test Hardware
	3.5.1.1 i.MX233-EVK Unit Test Hardware
	Table 3-2. Hardware Requirements

	3.5.2 Unit Test Software
	Table 3-3. Software Requirements

	3.5.3 Running the Backlight Application Test
	Table 3-4. Backlight Application Test

	3.6 Backlight API Reference

	Chapter 4 Battery Driver
	4.1 Battery Driver Summary
	Table 4-1. Battery Driver Summary

	4.2 Supported Functionality
	4.3 Hardware Operation
	4.3.1 Conflicts with Other SoC Peripherals

	4.4 Software Operation
	4.4.1 Battery Driver Registry Settings
	4.4.2 Power Management

	4.5 Unit Test
	4.5.1 Unit Test Hardware

	4.6 Battery API Reference

	Chapter 5 Boot from Secure Digital/MultiMedia Card (SD/MMC)
	5.1 Boot from SD/MMC Summary
	Table 5-1. Boot from SD/MMC Summary

	5.2 Supported Functionality
	5.3 Hardware Operation
	5.3.1 Conflicts with Other Peripherals and Catalog Items

	5.4 Software Operation
	5.5 Card Flashing Tool
	5.5.1 Write Image (EBOOT) to SD Card
	5.5.2 System Boot

	Chapter 6 Chip Support Package Driver Development Kit (CSPDDK)
	6.1 CSPDDK Driver Summary
	Table 6-1. CSPDDK Driver Summary

	6.2 Supported Functionality
	6.3 Hardware Operation
	6.3.1 Conflicts with Other Peripherals and Catalog Items
	6.3.1.1 Conflicts with SoC Peripherals
	6.3.1.1.1 iMX233 Peripheral Conflicts

	6.3.1.2 Conflicts with Hardware Peripherals

	6.4 Software Operation
	6.4.1 Communicating with the CSPDDK
	6.4.2 Compile-Time Configuration Options
	6.4.3 Registry Settings
	6.4.4 Power Management

	6.5 Unit Test
	6.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference
	6.5.1.1 DDK_CLK Enumerations
	Table 6-2. DDK_CLK Enumerations

	6.5.1.2 DDK_CLK Functions
	6.5.1.2.1 DDKClockSetGatingMode
	6.5.1.2.2 DDKClockGetGatingMode
	6.5.1.2.3 DDKClockGetFreq
	6.5.1.2.4 DDKClockSetFreq
	6.5.1.2.5 DDKClockConfigBaud
	6.5.1.2.6 DDKClockSetpointRequest
	6.5.1.2.7 DDKClockSetpointRelease
	6.5.1.2.8 DDKClockGetSharedConfig
	6.5.1.2.9 DDKClockLock
	6.5.1.2.10 DDKClockUnLock

	6.5.1.3 DDK_CLK Examples

	6.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference
	6.5.2.1 DDK_GPIO Enumerations
	Table 6-3. DDK_GPIO Enumerations

	6.5.2.2 DDK_GPIO Functions
	6.5.2.2.1 DDKGpioConfig
	6.5.2.2.2 DDKGpioEnableDataPin
	6.5.2.2.3 DDKGpioWriteDataPin
	6.5.2.2.4 DDKGpioReadDataPin
	6.5.2.2.5 DDKGpioReadIntr

	6.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference
	6.5.3.1 DDK_IOMUX Enumerations
	Table 6-4. DDK_IOMUX Enumerations (continued)

	6.5.3.2 DDK_IOMUX Functions
	6.5.3.2.1 DDKIomuxSetPinMux
	6.5.3.2.2 DDKIomuxGetPinMux
	6.5.3.2.3 DDKIomuxSetPadConfig
	6.5.3.2.4 DDKIomuxEnablePullup
	6.5.3.2.5 DDKIomuxGetPadConfig

	6.5.4 CSPDDK DLL DMA (DDK_DMA) Reference
	6.5.4.1 DDK_DMA Functions
	6.5.4.1.1 DDKApbhStartDma
	6.5.4.1.2 DDKApbhStopDma
	6.5.4.1.3 DDKApbhDmaInitChan
	6.5.4.1.4 DDKApbhDmaChanCLKGATE
	6.5.4.1.5 DDKApbhDmaClearCommandCmpltIrq
	6.5.4.1.6 DDKApbhDmaEnableCommandCmpltIrq
	6.5.4.1.7 DDKApbhDmaResetChan
	6.5.4.1.8 DDKApbhDmaFreezeChan
	6.5.4.1.9 DDKApbhDmaGetPhore
	6.5.4.1.10 DDKApbxStartDma
	6.5.4.1.11 DDKApbxGetNextCMDAR
	6.5.4.1.12 DDKApbxStopDma
	6.5.4.1.13 DDKApbxDmaInitChan
	6.5.4.1.14 DDKApbxDmaGetActiveIrq
	6.5.4.1.15 DDKApbxDmaClearCommandCmpltIrq
	6.5.4.1.16 DDKApbxDmaClearErrorIrq
	6.5.4.1.17 DDKApbxDmaEnableCommandCmpltIrq
	6.5.4.1.18 DDKApbxDmaEnableErrorIrq
	6.5.4.1.19 DDKApbxDmaResetChan
	6.5.4.1.20 DDKApbxDmaFreezeChan

	6.5.5 CSPDDK POWER (DDK_POWER) Reference
	6.5.5.1 DDK_POWER Functions
	6.5.5.1.1 DDKPowerInit
	6.5.5.1.2 DDKPowerEnableDcdc
	6.5.5.1.3 DDKPowerExecuteBatteryTo5VoltsHandoff
	6.5.5.1.4 DDKPowerExecute5VoltsToBatteryHandoff
	6.5.5.1.5 DDKPowerEnable5VoltsToBatteryHandoff
	6.5.5.1.6 DDKPowerEnableBatteryTo5VoltsHandoff
	6.5.5.1.7 DDKPowerGet5vPresentFlag
	6.5.5.1.8 DDKPowerInitPowerSupplies
	6.5.5.1.9 DDKPowerGetDirectBoot
	6.5.5.1.10 DDKPowerInitBatteryMonitor
	6.5.5.1.11 DDKPowerGetBatteryMode
	6.5.5.1.12 DDKPowerSetCharger
	6.5.5.1.13 DDKPowerStopCharger
	6.5.5.1.14 DDKPowerGetBatteryVoltage
	6.5.5.1.15 DDKPowerGetBatteryChargingStatus
	6.5.5.1.16 DDKPowerClear5VIrq
	6.5.5.1.17 DDKPowerGetLimit
	6.5.5.1.18 DDKPowerGetUSBPhy
	6.5.5.1.19 DDKPowerSetVdddValue
	6.5.5.1.20 DDKPowerGetVdddValue
	6.5.5.1.21 DDKDumpPowerRegisters
	6.5.5.1.22 DDKPowerSetLimit
	6.5.5.1.23 DDKPowerGetPSwitchIrq
	6.5.5.1.24 DDKPowerClearPSwitchIrq
	6.5.5.1.25 DDKPowerGetPSwitchStatus

	Chapter 7 Configurable Serial Peripheral Interface (CSPI) Driver
	7.1 CSPI Driver Summary
	Table 7-1. CSPI Driver Summary

	7.2 Supported Functionality
	7.2.1 Conflicts with Other Peripherals and Catalog Items
	7.2.1.1 Conflicts with SoC Peripherals

	7.2.2 Conflicts with EVK Peripherals

	7.3 Software Operation
	7.3.1 Registry Settings
	7.3.2 Communicating with the CSPI
	7.3.3 Creating a Handle to the CSPI
	7.3.4 Data Transfer Operations
	7.3.5 Closing the Handle to the CSPI
	7.3.6 Power Management
	7.3.6.1 PowerUp
	7.3.6.2 PowerDown
	7.3.6.3 IOCTL_POWER_SET

	7.4 Unit Test
	7.4.1 Building the Unit Tests

	7.5 CSPI Driver API Reference
	7.5.1 CSPI Driver IOCTLs
	7.5.1.1 CSPI_IOCTL_EXCHANGE

	7.5.2 CSPI Driver SDK Wrapper
	7.5.2.1 CSPIOpenHandle
	7.5.2.2 CSPICloseHandle
	7.5.2.3 CSPIExchange

	7.5.3 CSPI Driver Structures
	7.5.3.1 CSPI_BUSCONFIG_T
	Table 7-2. CSPI_BUSCONFIG_T Structure Members

	7.5.3.2 CSPI_XCH_PKT_T
	Table 7-3. CSPI_XCH_PKT_T Structure Members

	Chapter 8 Display Driver for LCDIF and PXP
	8.1 Display Driver Summary
	Table 8-1. Display Driver Summary

	8.2 Supported Functionality
	8.3 Hardware Operation
	8.3.1 Conflicts with Other Peripherals and Catalog Items

	8.4 Software Operation
	8.4.1 Software Driver Components
	Figure 8-1. Software Driver Components Block Diagram
	8.4.1.1 Display Driver
	8.4.1.2 LCD Interface
	8.4.1.3 Pixel Pipeline

	8.4.2 Communicating with the Display
	8.4.2.1 Using the GDI
	8.4.2.2 Using DirectDraw
	8.4.2.3 Using Display Driver Escape Codes

	8.4.3 Configuring the Display
	8.4.3.1 Rotation Support
	8.4.3.2 Display Registry Settings
	8.4.3.2.1 i.MX233 Registry Settings

	8.4.4 Power Management
	8.4.4.1 PowerUp
	8.4.4.2 PowerDown
	8.4.4.3 IOCTL_POWER_SET

	8.5 Unit Test
	8.5.1 Unit Test Hardware
	8.5.2 Unit Test Software
	8.5.2.1 GDI Tests
	Table 8-2. GDI Software Requirements

	8.5.2.2 DirectDraw Tests
	Table 8-3. DirectDraw Software Requirements

	8.5.2.3 Windows Media Player Tests
	Table 8-4. Windows Media Player Software Requirements

	8.5.3 Building the Unit Tests
	8.5.4 Running the Unit Tests
	8.5.4.1 Running the GDI Tests
	8.5.4.2 Running the DirectDraw Tests
	8.5.4.3 Running the Windows Media Player tests

	8.6 Display Driver API Reference

	Chapter 9 Dynamic Voltage and Frequency Control (DVFC) Driver
	9.1 DVFC Driver Summary
	Table 9-1. DVFC Driver Summary

	9.2 Supported Functionality
	9.2.1 i.MX233 Supported Functionality

	9.3 Hardware Operation
	9.3.1 Conflicts with Other Peripherals and Catalog Items
	9.3.2 i.MX233 EVK Configuration

	9.4 Software Operation
	9.4.1 i.MX233 Registry Settings
	9.4.2 Loading and Initialization
	9.4.3 Operation
	9.4.3.1 i.MX233 Voltage or Frequency Setpoints
	Table 9-2. i.MX233 DVFC Setpoints

	9.4.3.2 i.MX233 Setpoint Mapping

	9.4.4 DDK Interface
	9.4.5 Power Management
	9.4.5.1 PowerUp
	9.4.5.2 PowerDown
	9.4.5.3 IOCTL_POWER_CAPABILITIES
	9.4.5.4 IOCTL_POWER_SET
	9.4.5.5 IOCTL_POWER_GET

	9.5 Unit Test
	9.5.1 i.MX233 Unit Testing

	Chapter 10 Keypad Driver
	10.1 Keypad Driver Summary
	Table 10-1. Keypad Driver Summary

	10.2 Supported Functionality
	10.3 Hardware Operation
	10.3.1 Conflicts with Other Peripherals and Catalog Items
	10.3.2 Keypad
	10.3.2.1 i.MX233 EVK Keypad Mapping
	Table 10-2. 8-key Keypad Mapping

	10.4 Software Operation
	10.4.1 Keypad Scan Codes and Virtual Keys
	10.4.1.1 i.MX233 EVK Scan Code Mapping
	Table 10-3. I.MX233 EVK Scan Code Mapping Table (continued)

	10.4.2 Power Management
	10.4.2.1 BSPKppPowerOn
	10.4.2.2 BSPKppPowerOff
	10.4.2.3 IOCTL_POWER_CAPABILITIES
	10.4.2.4 IOCTL_POWER_SET
	10.4.2.5 IOCTL_POWER_GET

	10.4.3 Keypad Registry Settings

	10.5 Unit Test
	10.5.1 Unit Test Hardware
	10.5.2 Unit Test Software
	10.5.3 Building the Unit Tests
	10.5.4 Running the Unit Tests

	Chapter 11 Inter-Integrated Circuit (I2C) Driver
	11.1 I2C Driver Summary
	Table 11-1. I2C Driver Summary

	11.2 Supported Functionality
	11.3 Hardware Operation
	11.3.1 Conflicts with Other Peripherals and Catalog Items
	11.3.1.1 Conflicts with SoC Peripherals
	11.3.1.2 Conflicts with Board Peripherals

	11.4 Software Operation
	11.4.1 Registry Settings
	11.4.1.1 i.MX233 Registry Settings

	11.4.2 Communicating with the I2C
	11.4.3 Creating a Handle
	11.4.4 Configuring the I2C
	11.4.5 Data Transfer Operations
	11.4.6 Closing the Handle

	11.5 Unit Test
	11.5.1 Unit Test Hardware
	11.5.1.1 I2C EEPROM Test

	11.5.2 Unit Test Software
	11.5.2.1 I2C EEPROM Test

	11.5.3 Building the Unit Tests
	11.5.3.1 I2C EEPROM Tests

	11.5.4 Running the Unit Tests
	11.5.4.1 I2C EEPROM Tests

	11.6 Hardware Limitations
	11.7 I2C Driver API Reference
	11.7.1 I2C Driver IOCTLS
	11.7.1.1 I2C_IOCTL_GET_CLOCK_RATE
	11.7.1.2 I2C_IOCTL_GET_SELF_ADDR
	11.7.1.3 I2C_IOCTL_IS_MASTER
	11.7.1.4 I2C_IOCTL_IS_SLAVE
	11.7.1.5 I2C_IOCTL_RESET
	11.7.1.6 I2C_IOCTL_SET_CLOCK_RATE
	11.7.1.7 I2C_IOCTL_SET_MASTER_MODE
	11.7.1.8 I2C_IOCTL_SET_SELF_ADDR
	11.7.1.9 I2C_IOCTL_SET_SLAVE_MODE
	11.7.1.10 I2C_IOCTL_TRANSFER
	11.7.1.11 I2C_IOCTL_ENABLE_SLAVE
	11.7.1.12 I2C_IOCTL_DISABLE_SLAVE

	11.7.2 I2C Driver SDK Encapsulation
	11.7.2.1 I2COpenHandle
	11.7.2.2 I2CCloseHandle
	11.7.2.3 I2CSetSlaveMode
	11.7.2.4 I2CSetMasterMode
	11.7.2.5 I2CIsMaster
	11.7.2.6 I2CIsSlave
	11.7.2.7 I2CGetClockRate
	11.7.2.8 I2CSetClockRate
	11.7.2.9 I2CSetSelfAddr
	11.7.2.10 I2CGetSelfAddr
	11.7.2.11 I2CTransfer
	11.7.2.12 I2CReset
	11.7.2.13 I2CEnableSlave
	11.7.2.14 I2CDisableSlave

	11.7.3 I2C Driver Structures
	11.7.3.1 I2C_PACKET
	11.7.3.2 I2C_TRANSFER_BLOCK

	Chapter 12 Low-Resolution Analog-Digital Converter (LRADC) Driver
	12.1 LRADC Driver Summary
	Table 12-1. LRADC Driver Summary

	12.2 Supported Functionality
	12.3 Hardware Operation
	12.3.1 Conflicts with Other Peripherals and Catalog Items

	12.4 Software Operation
	12.4.1 ADC Registry Settings
	12.4.2 Interfacing with the LRADC Driver
	12.4.2.1 Stream Interface
	12.4.2.2 Using the SDK
	12.4.2.3 DMA Support

	12.5 Power Management
	12.5.1 LDC_PowerUp
	12.5.2 LDC_PowerDown
	12.5.3 IOCTL_POWER_CAPABILITES
	12.5.4 IOCTL_POWER_SET
	12.5.5 IOCTL_POWER_GET

	12.6 Unit Test
	12.7 LRADC SDK API Reference
	12.7.1 LRADC SDK Functions
	12.7.1.1 LRADCOpenHandle
	12.7.1.2 LRADCCloseHandle
	12.7.1.3 LRADCConfigureChannel
	12.7.1.4 LRADCEnableInterrupt
	12.7.1.5 LRADCClearInterruptFlag
	12.7.1.6 LRADCSetDelayTrigger
	12.7.1.7 LRADCCLearDelayChannel
	12.7.1.8 LRADCSetDelayTriggerKick
	12.7.1.9 LRADCGetAccumValue
	12.7.1.10 LRADCEnableBatteryMeasurement
	12.7.1.11 LRADCEnableDieMeasurement
	12.7.1.12 LRADCClearAccum
	12.7.1.13 LRADCEnableTouchDetect
	12.7.1.14 LRADCGetTouchDetect
	12.7.1.15 LRADCEnableTouchDetectInterrupt
	12.7.1.16 LRADCSetAnalogPowerUp
	12.7.1.17 LRADCClearTouchDetect
	12.7.1.18 LRADCEnableTouchDetectXDrive
	12.7.1.19 LRADCEnableTouchDetectYDrive

	Chapter 13 NAND Flash Driver
	13.1 Flash Driver Summary
	Table 13-1. Flash Driver Summary

	13.2 Supported Functionality
	13.3 Hardware Operation
	13.3.1 Conflicts with Other Peripherals and Catalog Items
	13.3.1.1 Conflicts with SoC Peripherals

	13.4 Software Operation
	13.4.1 MDD and PDD Layer Overview
	Figure 13-1. PDD Layer Block Diagram

	13.4.2 Data Structures
	13.4.2.1 NANDTiming
	Table 13-2. NANDTiming Structure Members

	13.4.2.2 NandChipInfo
	Table 13-3. NandChipInfo Structure Members

	13.4.3 Adding New Flash Configurations
	13.4.4 Registry Settings
	13.4.5 DMA Support
	13.4.6 Power Management

	13.5 Unit Test
	13.5.1 CETK Testing
	Table 13-4. CEKT Tests

	13.5.2 System Testing

	Chapter 14 NAND Redundant Boot
	14.1 NAND Redundant Boot Summary
	Table 14-1. NAND Redundant Boot Summary

	14.2 Supported Functionality
	14.3 Hardware Operation
	14.3.1 Conflicts with Other Peripherals and Catalog Items

	14.4 Software Operation
	Figure 14-1. Image Updating Work Flow
	Figure 14-2. Image Checking Work Flow

	14.5 Unit Test
	14.5.1 Testing Update Functionality
	14.5.2 Testing Restore Functionality

	Chapter 15 Serial Driver
	15.1 Serial Driver Summary
	Table 15-1. Serial Driver Summary

	15.2 Supported Functionality
	15.3 Hardware Operation
	15.3.1 Conflicts with Other Peripherals and Catalog Items
	15.3.1.1 Conflicts with SoC Peripherals
	15.3.1.2 Conflicts with Board Peripherals

	15.3.2 Known Issues

	15.4 Software Operation
	15.4.1 Registry Settings
	15.4.1.1 i.MX233 Registry Settings

	15.4.2 Power Management

	15.5 Unit Test
	15.5.1 Unit Test Hardware
	15.5.2 Unit Test Software
	Table 15-2. Software Requirements

	15.5.3 Building the Unit Tests
	15.5.4 Running the Unit Tests
	Table 15-3. Serial Port Driver Test Cases

	15.6 Serial Driver API Reference
	15.6.1 Serial PDD Functions
	Table 15-4. Serial PDD Functions

	15.6.2 Serial Driver Structures
	15.6.2.1 UART_INFO
	15.6.2.2 SER_INFO

	Chapter 16 Secure Digital Host Controller (SDHC) Driver
	16.1 SDHC Driver Summary
	Table 16-1. eSDHC Driver Summary

	16.2 Supported Functionality
	16.3 Hardware Operation
	16.3.1 Conflicts with Other Peripherals and Catalog Options
	16.3.1.1 Conflicts with SoC Peripherals
	16.3.1.2 Conflicts with Other EVK Peripherals

	16.4 Software Operation
	16.4.1 Required Catalog Items
	16.4.1.1 SD and MMC Support

	16.4.2 SDHC Registry Settings
	16.4.2.1 i.MX233 SDHC Registry Settings

	16.4.3 DMA Support
	16.4.4 Power Management

	16.5 Unit Test
	16.5.1 Unit Test Hardware
	Table 16-2. Hardware Requirements

	16.5.2 Unit Test Software
	Table 16-3. Software Requirements

	16.5.3 Building the Unit Tests
	16.5.4 Running the Unit Tests
	16.5.4.1 File System Driver Test
	16.5.4.2 Storage Device Block Driver Read/Write Tests
	16.5.4.3 Storage Device Block Driver API Tests
	16.5.4.4 Storage Device Block Driver Performance Tests
	16.5.4.5 Partition Driver Test

	16.5.5 System Testing

	16.6 Secure Digital Card Driver API Reference

	Chapter 17 Touch Panel Driver
	17.1 Touch Panel Driver Summary
	Table 17-1. Touch Panel Driver Summary

	17.2 Supported Functionality
	17.3 Hardware Operations
	17.4 Software Operations
	17.4.1 Touch Driver Registry Settings

	17.5 Unit Tests
	17.5.1 Unit Test Hardware
	Table 17-2. Hardware Requirements

	17.5.2 Unit Test Software
	Table 17-3. Software Requirements

	17.5.3 Running the Touch Panel Tests

	17.6 Touch Panel API Reference

	Chapter 18 Universal Serial Bus (USB) On The Go (OTG) Driver
	18.1 USB OTG Driver Summary
	18.1.1 Peripheral Driver Summary
	Table 18-1. Peripheral Driver Summary (continued)

	18.1.2 Host Driver Summary
	Table 18-2. Host Driver Summary

	18.1.3 OTG (Pin-Detection) Driver Summary
	Table 18-3. OTG Driver Summary

	18.2 Supported Functionality
	18.3 Hardware Operation
	18.3.1 Conflicts with Other Peripherals and Catalog Items
	18.3.1.1 Conflicts with SoC Peripherals
	18.3.1.2 Conflicts with Board Peripherals

	18.4 Software Operation
	18.4.1 USB OTG Host Controller Driver
	Figure 18-1. Windows USB Driver Architecture
	18.4.1.1 User Interface
	18.4.1.2 Host Controller Configuration
	18.4.1.3 Memory Configuration
	18.4.1.4 Configured Power
	18.4.1.5 Registry Settings
	18.4.1.6 PHY level USB Test
	18.4.1.7 Unit Test
	18.4.1.7.1 USB Host Controller Driver Test
	18.4.1.7.2 Build the Test Image
	18.4.1.7.3 Abstract
	Figure 18-2. Test Setup

	18.4.1.7.4 Unit Test Hardware
	18.4.1.7.5 Unit Test Software
	18.4.1.7.6 Running the Test
	18.4.1.7.7 Test Cases
	Table 18-4. USB Host Controller Driver Test Cases

	18.4.1.8 Platform-Specific API
	18.4.1.8.1 BSPUsbhCheckConfigPower
	18.4.1.8.2 BSPUsbSetWakeUp
	18.4.1.8.3 BSPUsbCheckWakeUp
	18.4.1.8.4 SetPHYPowerMgmt

	18.4.2 USB Peripheral Driver
	18.4.2.1 User Interface
	18.4.2.2 Client Driver Configuration
	18.4.2.3 Registry Settings
	18.4.2.4 PHY Test Mode
	18.4.2.5 Unit Test
	18.4.2.5.1 Unit Test Hardware
	Table 18-5. Hardware Requirements

	18.4.2.5.2 Unit Test Software
	Table 18-6. Software Requirements

	18.4.2.5.3 Running the USB Function Controller Driver Tests
	Table 18-7. USB Function Controller Driver Tests

	18.4.2.6 Platform-Specific API
	18.4.2.6.1 InitializeMux
	18.4.2.6.2 HardwarePullupDP

	18.4.3 USB OTG Driver (Pin-Detection Driver)
	18.4.3.1 User Interface
	18.4.3.2 OTG Driver Configuration
	18.4.3.3 Registry Settings
	18.4.3.4 Unit Test
	18.4.3.4.1 Unit Test Hardware
	Table 18-8. Hardware Requirements

	18.4.3.4.2 Running the OTG Test
	Table 18-9. OTG Tests

	18.4.3.5 Platform-Specific API

	18.4.4 USB OTG Catalog Settings
	18.4.5 USB OTG Registry Settings
	18.4.5.1 Registry Structure
	18.4.5.2 Registry Key Settings
	18.4.5.2.1 OTG Driver Settings
	Table 18-10. USB OTG Transceiver Registry Settings

	18.4.5.2.2 Peripheral Driver Settings
	Table 18-11. USB OTG Client Registry Settings

	18.4.5.2.3 Host Driver Settings
	Table 18-12. hsotg.reg Default Values (continued)

	18.4.6 Power Management
	18.4.6.1 Power Down Procedure
	18.4.6.1.1 Set PHY to Low Power Mode
	18.4.6.1.2 Close USB Controller Clock

	18.4.6.2 Power Up Procedure
	18.4.6.2.1 Open USB Controller Clock
	18.4.6.2.2 Put PHY Out of Low Power Mode

	18.4.6.3 Processing Methodology
	18.4.6.3.1 Host Driver Methodology
	18.4.6.3.2 Peripheral Driver Methodology
	18.4.6.3.3 OTG Driver Methodology

	18.4.6.4 USB Wakeup

	18.4.7 Peripheral Class Drivers
	18.4.7.1 Mass Storage Function
	Table 18-13. Mass Storage Function

	18.4.7.2 Serial Function
	Table 18-14. Serial Function

	18.4.7.3 RNDIS Function
	Table 18-15. RNDIS Function

	18.4.7.4 PHDC Function
	Table 18-16. PHDC Function

	18.4.8 Host Class Drivers
	Table 18-17. Class Drivers
	18.4.8.1 HID Mouse
	Table 18-18. HID Mouse Class Driver

	18.4.8.2 HID Keyboard
	Table 18-19. HID Keyboard Driver to Remove
	Table 18-20. ID Keyboard Driver to Include

	18.5 Known Issues
	18.5.1 Host Support for Low Speed Peripherals
	18.5.2 Host VBUS Power Supply

	18.6 Basic Elements for Driver Development
	18.6.1 BSP Environment Variables
	Table 18-21. System Environment Variables Summary

	18.6.2 Dependencies of Drivers
	Table 18-22. USB Driver

	18.7 Application Tools for USB
	18.7.1 Application for USB Peripheral Class Driver Switch
	18.7.2 Application for Multispec PHDC Demo

	Chapter 19 USB Boot and KITL
	19.1 USB Boot and KITL Summary
	Table 19-1. USB Boot and KITL Summary

	19.2 Supported Functionality
	19.3 Hardware Operation
	19.3.1 Conflicts with Other Peripherals and Catalog Items

	19.4 Software Operation
	19.4.1 Software Architecture
	Figure 19-1. USB Boot and KITL Software Architecture Block Diagram

	19.4.2 Source Code Layout
	19.4.3 Power Management
	19.4.4 Registry Settings
	19.4.5 DMA Support

	19.5 Unit Test
	19.5.1 Building the USB Boot and KITL

