

i.MX53 ARD
Windows Embedded Compact 7

Reference Manual

Part Number: 924-76370
Rev. WCE700_MX53_ER_1105

06/2011

Freescale and the Freescale logo are trademarks or registered trademarks of
Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or
service names are the property of their respective owners. Microsoft and Windows
are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

© Freescale Semiconductor, Inc., 2011. All rights reserved.

Information in this document is provided solely to enable system and software implementers to

use Freescale Semiconductor products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits or integrated circuits based on

the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any

products herein. Freescale Semiconductor makes no warranty, representation or guarantee

regarding the suitability of its products for any particular purpose, nor does Freescale

Semiconductor assume any liability arising out of the application or use of any product or

circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters which may be provided in Freescale

Semiconductor data sheets and/or specifications can and do vary in different applications and

actual performance may vary over time. All operating parameters, including “Typicals” must

be validated for each customer application by customer’s technical experts. Freescale

Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applications

intended to support or sustain life, or for any other application in which the failure of the

Freescale Semiconductor product could create a situation where personal injury or death may

occur. Should Buyer purchase or use Freescale Semiconductor products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Freescale

Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such unintended or

unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent

regarding the design or manufacture of the part.

How to Reach Us:
Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor -iii

Contents

About This Book

Chapter 1
Introduction

1.1 Getting Started . 3-1
1.2 Windows Embedded Compact 7 Architecture . 3-1

Chapter 2
Asynchronous Sample Rate Converter (ASRC) Driver

2.1 ASRC Driver Summary . 4-1
2.2 Supported Functionality . 4-1
2.3 Hardware Operation . 4-2
2.3.1 Conflicts with Other Peripherals and Catalog Items . 4-2
2.4 Software Operation . 4-2
2.4.1 Required Catalog Items . 4-2
2.4.2 ASRC Registry Settings . 4-2
2.4.3 DMA Support . 4-2
2.4.4 Power Management . 4-2
2.5 Unit Test . 4-3
2.5.1 Building the Unit Tests . 4-3
2.5.2 Running the Unit Tests . 4-3
2.6 ASRC Driver API Reference . 4-4
2.6.1 ASRC SDK Functions . 4-4
2.6.2 Example for Using SDK Functions . 4-4
2.6.3 Memory->ASRC->ESAI Mode . 4-6

Chapter 3
ATA/ATAPI Driver

3.1 ATA/ATAPI Driver Summary . 5-1
3.2 Supported Functionality . 5-1
3.3 Hardware Operation . 5-2
3.3.1 Conflicts with Other Peripherals. 5-3
3.3.2 Cabling . 5-3
3.4 Software Operation . 5-3
3.4.1 Application/User Interface to ATA/ATAPI drives. 5-3
3.4.2 ATA/ATAPI Driver Configuration . 5-3

Windows Embedded Compact 7 BSP Reference Manual

-iv Freescale Semiconductor

3.4.3 Power Management . 5-4
3.4.4 Registry Settings . 5-4
3.4.5 DMA Support . 5-6
3.5 Unit Test . 5-7
3.5.1 Unit Test Hardware. 5-7
3.5.2 Unit Test Software . 5-8
3.5.3 Building the Storage Device Tests . 5-8
3.5.4 Running the Storage Media Tests . 5-9
3.6 Basic Elements for Driver Development . 5-11
3.6.1 BSP Environment Variables . 5-11
3.6.2 Mutual Exclusive Drivers . 5-11
3.6.3 Dependencies of Drivers. 5-11
3.7 Block Device API Reference . 5-11
3.7.1 IOCTL_DISK_DEVICE_INFO . 5-12
3.7.2 IOCTL_DISK_GET_STORAGEID. 5-12
3.7.3 IOCTL_DISK_GETINFO . 5-12
3.7.4 IOCTL_DISK_GETNAME . 5-13
3.7.5 IOCTL_DISK_READ . 5-13
3.7.6 IOCTL_DISK_SETINFO. 5-13
3.7.7 IOCTL_DISK_WRITE. 5-13
3.7.8 IOCTL_DISK_FLUSH_CACHE . 5-14
3.7.9 IOCTL_CDROM_DISC_INFO . 5-14
3.7.10 IOCTL_CDROM_EJECT_MEDIA . 5-14
3.7.11 IOCTL_CDROM_GET_SENSE_DATA. 5-14
3.7.12 IOCTL_CDROM_ISSUE_INQUIRY . 5-15
3.7.13 IOCTL_CDROM_PAUSE_AUDIO . 5-15
3.7.14 IOCTL_CDROM_PLAY_AUDIO_MSF. 5-15
3.7.15 IOCTL_CDROM_READ_SG . 5-16
3.7.16 IOCTL_CDROM_READ_TOC . 5-16
3.7.17 IOCTL_CDROM_RESUME_AUDIO. 5-16
3.7.18 IOCTL_CDROM_SEEK_AUDIO_MSF . 5-17
3.7.19 IOCTL_CDROM_STOP_AUDIO . 5-17
3.7.20 IOCTL_CDROM_TEST_UNIT_READY . 5-17
3.7.21 IOCTL_DVD_GET_REGION . 5-18

Chapter 4
Backlight Driver

4.1 Backlight Driver Summary . 6-1
4.2 Supported Functionality . 6-1
4.3 Hardware Operation . 6-2
4.4 Software Operation . 6-2
4.4.1 Backlight Driver Registry Settings . 6-2
4.4.2 Power Management . 6-3
4.5 Unit Test . 6-3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor -v

4.5.1 Unit Test Hardware. 6-3
4.5.2 Unit Test Software . 6-4
4.5.3 Building the Unit Tests . 6-4
4.5.4 Running the Unit Tests . 6-4
4.6 Backlight API Reference . 6-4

Chapter 5
Battery Driver

5.1 Battery Driver Summary. 7-1
5.2 Supported Functionality . 7-1
5.3 Hardware Operation . 7-1
5.3.1 Conflicts with Other SoC Peripherals. 7-2
5.4 Software Operation . 7-2
5.4.1 Battery Driver Registry Settings. 7-2
5.4.2 Power Management . 7-2
5.5 Unit Test . 7-2
5.5.1 Unit Test Hardware. 7-2
5.6 Battery API Reference . 7-3

Chapter 6
Boot from Secure Digital/MultiMedia Card (SD/MMC)

6.1 Boot from SD/MMC Summary . 8-1
6.2 Supported Functionality . 8-1
6.3 Hardware Operation . 8-2
6.3.1 Conflicts with Other Peripherals and Catalog Items . 8-2
6.4 Software Operation . 8-2
6.4.1 Card Memory Layout . 8-2

Chapter 7
Camera Driver for IPUv3

7.1 Camera Driver Summary . 9-1
7.2 Supported Functionality . 9-2
7.3 Hardware Operation . 9-3
7.3.1 IPUv3 Overview . 9-3
7.3.2 Conflicts with Other Peripherals and Catalog Items . 9-4
7.4 Software Operation . 9-4
7.4.1 Software Architecture . 9-4
7.4.2 Communicating with the Camera . 9-9
7.4.3 Registry Settings . 9-9
7.5 Power Management . 9-11
7.5.1 PowerUp . 9-11
7.5.2 PowerDown . 9-11
7.5.3 IOCTL_POWER_SET . 9-11

Windows Embedded Compact 7 BSP Reference Manual

-vi Freescale Semiconductor

7.6 Unit Test . 9-12
7.6.1 Unit Test Hardware. 9-12
7.6.2 Unit Test Software . 9-13
7.6.3 Building the Unit Tests . 9-14
7.6.4 Running the Unit Tests . 9-15
7.7 Camera Driver API Reference . 9-17

Chapter 8
Controller Area Network (CAN) Driver

8.1 CAN Driver Summary . 10-1
8.2 Supported Functionality . 10-1
8.3 Hardware Operation . 10-1
8.3.1 Conflicts with Other Peripherals and Catalog Items . 10-2
8.4 Software Operation . 10-2
8.4.1 Communicating with the CAN . 10-2
8.4.2 Creating a Handle to the CAN . 10-2
8.4.3 Configuring the CAN . 10-3
8.4.4 Data Transfer Operations . 10-3
8.4.5 Closing the Handle to the CAN . 10-5
8.4.6 Power Management . 10-5
8.4.7 CAN Registry Settings . 10-5
8.5 Unit Test . 10-6
8.5.1 Unit Test Hardware. 10-6
8.5.2 Unit Test Software . 10-6
8.5.3 Building the Unit Tests . 10-6
8.5.4 Running the Unit Tests . 10-7

Chapter 9
Chip Support Package Driver Development Kit (CSPDDK)

9.1 CSPDDK Driver Summary. 11-1
9.2 Supported Functionality . 11-1
9.3 Hardware Operation . 11-2
9.3.1 Conflicts with Other Peripherals and Catalog Items . 11-2
9.4 Software Operation . 11-2
9.4.1 Communicating with the CSPDDK . 11-2
9.4.2 Compile-Time Configuration Options . 11-2
9.4.3 Registry Settings . 11-4
9.4.4 Power Management . 11-4
9.5 Unit Test . 11-4
9.5.1 Unit Test Hardware. 11-4
9.5.2 Unit Test Software . 11-4
9.5.3 Building the Unit Tests . 11-4
9.5.4 Running the Unit Tests . 11-5
9.6 CSPDDK DLL Reference. 11-5

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor -vii

9.6.1 CSPDDK DLL System Clocking (DDK_CLK) Reference . 11-5
9.6.2 CSPDDK DLL GPIO (DDK_GPIO) Reference. 11-10
9.6.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference . 11-13
9.6.4 CSPDDK DLL SDMA (DDK_SDMA) Reference . 11-17

Chapter 10
Display Driver for IPUv3

10.1 Display Driver Summary . 12-1
10.2 Supported Functionality . 12-2
10.3 Hardware Operation . 12-3
10.3.1 IPUv3 Overview . 12-3
10.3.2 Display Configurations . 12-4
10.3.3 Conflicts with Other Peripherals and Catalog Items . 12-4
10.4 Software Operation . 12-5
10.4.1 Software Architecture . 12-5
10.4.2 Communicating with the Display . 12-9
10.4.3 Configuring the Display . 12-12
10.4.4 Power Management . 12-16
10.5 Unit Test . 12-17
10.5.1 Unit Test Hardware. 12-17
10.5.2 Unit Test Software . 12-18
10.5.3 Building the Unit Tests . 12-19
10.5.4 Running the Unit Tests . 12-20
10.6 Display Driver API Reference . 12-22
10.6.1 GDI and DirectDraw APIs . 12-22
10.6.2 Driver Escape Code Extensions . 12-22
10.6.3 Dual Display API . 12-24

Chapter 11
Dynamic Voltage and Frequency Control (DVFC) Driver

11.1 DVFC Driver Summary . 13-1
11.2 Supported Functionality . 13-1
11.2.1 i.MX53 ARD Supported Functionality. 13-2
11.3 Hardware Operation . 13-2
11.3.1 Conflicts with Other Peripherals and Catalog Items . 13-2
11.3.2 i.MX53 ARD Configuration . 13-2
11.4 Software Operation . 13-2
11.4.1 i.MX53 ARD Registry Settings . 13-2
11.4.2 Loading and Initialization . 13-3
11.4.3 Operation . 13-3
11.4.4 DDK Interface. 13-4
11.4.5 Power Management . 13-4
11.5 Unit Test . 13-5

Windows Embedded Compact 7 BSP Reference Manual

-viii Freescale Semiconductor

Chapter 12
Enhanced Configurable Serial Peripheral Interface (eCSPI) Driver

12.1 eCSPI Driver Summary . 14-1
12.2 Supported Functionality . 14-1
12.2.1 Conflicts with Other Peripherals and Catalog Items . 14-2
12.3 Software Operation . 14-2
12.3.1 Registry Settings . 14-2
12.3.2 Communicating with the eCSPI . 14-2
12.3.3 Creating a Handle to the eCSPI . 14-2
12.3.4 Data Transfer Operations . 14-3
12.3.5 Closing the Handle to the eCSPI . 14-4
12.3.6 Power Management . 14-4
12.4 Unit Test . 14-5
12.5 eCSPI Driver API Reference . 14-5
12.5.1 eCSPI Driver IOCTLS . 14-5
12.5.2 eCSPI Driver SDK Wrapper. 14-6
12.5.3 eCSPI Driver Structures . 14-7

Chapter 13
Enhanced Secure Digital Host Controller (eSDHC) Driver

13.1 eSDHC Driver Summary . 15-1
13.2 Supported Functionality . 15-1
13.3 Hardware Operation . 15-2
13.3.1 Conflicts with Other Peripherals and Catalog Options. 15-2
13.4 Software Operation . 15-2
13.4.1 Required Catalog Items . 15-2
13.4.2 eSDHC Registry Settings . 15-3
13.4.3 DMA Support . 15-3
13.4.4 Power Management . 15-4
13.5 Unit Test . 15-5
13.5.1 Unit Test Hardware. 15-5
13.5.2 Unit Test Software . 15-5
13.5.3 Building the Unit Tests . 15-6
13.5.4 Running the Unit Tests . 15-6
13.5.5 System Testing . 15-8
13.6 Secure Digital Card Driver API Reference. 15-8

Chapter 14
Enhanced Serial Audio Interface (ESAI) Driver

14.1 ESAI Driver Summary . 16-1
14.2 Supported Functionality . 16-1
14.3 Hardware Operation . 16-2
14.3.1 Conflicts with Other Peripherals and Catalog Items . 16-2

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor -ix

14.3.2 Hardware Limitation. 16-2
14.4 Software Operation . 16-3
14.4.1 Required Catalog Items . 16-3
14.4.2 Scenario Settings. 16-3
14.4.3 ESAI Registry Settings . 16-3
14.4.4 Supported Wave Data Format. 16-4
14.4.5 DMA Support . 16-4
14.4.6 Power Management . 16-4
14.5 Unit Test . 16-5
14.5.1 Building the Unit Test. 16-5
14.5.2 Hardware Setup. 16-6
14.5.3 Running the Unit Test. 16-6

Chapter 15
Global Positioning System (GPS) Driver

15.1 GPS Driver Summary . 17-1
15.1.1 Application Layer . 17-2
15.1.2 GPS Core Driver Layer. 17-2
15.1.3 GPS HAL Driver Layer . 17-3
15.2 Supported Functionality . 17-3
15.3 Hardware Operation . 17-3
15.3.1 Conflicts with Other Peripherals and Catalog Items . 17-3
15.3.2 Hardware Operation . 17-3
15.4 Software Operation . 17-4
15.4.1 Communicating with the GPS Module . 17-4
15.4.2 Power Management . 17-4
15.4.3 GPS Driver Registry Settings . 17-4
15.5 Unit Test . 17-4

Chapter 16
Graphics Processing Unit (GPU)

16.1 GPU Driver Summary . 18-1
16.2 Supported Functionality . 18-2
16.3 Hardware Operation . 18-2
16.3.1 Conflicts with Other Peripherals and Catalog Items . 18-2
16.4 Software Operation . 18-2
16.4.1 Communicating with the GPU . 18-2
16.4.2 GPU Driver Files . 18-2
16.4.3 Power Management . 18-3
16.4.4 GPU Registry Settings . 18-3
16.5 Unit Test . 18-4
16.5.1 Unit Test Hardware. 18-4
16.5.2 Unit Test Software . 18-4
16.6 GPU Driver API Reference . 18-6

Windows Embedded Compact 7 BSP Reference Manual

-x Freescale Semiconductor

Chapter 17
Inter-Integrated Circuit (I2C) Driver

17.1 I2C Driver Summary. 19-1
17.2 Supported Functionality . 19-1
17.3 Hardware Operation . 19-2
17.3.1 Conflicts with Other Peripherals and Catalog Items . 19-2
17.4 Software Operation . 19-2
17.4.1 Registry Settings . 19-2
17.4.2 Communicating with the I2C . 19-2
17.4.3 Creating a Handle . 19-3
17.4.4 Configuring the I2C . 19-3
17.4.5 Data Transfer Operations . 19-4
17.4.6 Closing the Handle . 19-6
17.4.7 Power Management . 19-6
17.5 Unit Test . 19-6
17.6 I2C Driver API Reference. 19-6
17.6.1 I2C Driver IOCTLS . 19-7
17.6.2 I2C Driver SDK Encapsulation. 19-9
17.6.3 I2C Driver Structures . 19-15

Chapter 18
IIM(IC Identification Module) Driver

18.1 IIM Driver Summary . 20-1
18.2 Supported Functionality . 20-1
18.3 Hardware Operation . 20-2
18.3.1 Conflicts with Other Peripherals and Catalog Items . 20-2
18.4 Software Operation . 20-2
18.4.1 Fuse reading . 20-2
18.4.2 Fuse reading . 20-2
18.4.3 Fuse reading . 20-3
18.5 Unit Test . 20-3
18.5.1 Fuse reading . 20-3
18.5.2 Fuse Sensing . 20-3
18.5.3 Fuse Programming . 20-4

Chapter 19
NAND Flash Driver

19.1 NAND Flash Driver Summary . 21-1
19.2 Supported Functionality . 21-1
19.3 Hardware Operation . 21-2
19.4 Software Operation . 21-2
19.4.1 NAND Flash Driver Registry Settings . 21-2
19.4.2 NAND Flash Driver Optimization . 21-3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor -xi

19.5 Power Management . 21-3
19.6 Unit Test . 21-3
19.6.1 System Testing . 21-3
19.6.2 Performance Testing . 21-4

Chapter 20
Power Management IC (PMIC)

20.1 PMIC Summary . 22-1
20.2 Supported Functionality . 22-2
20.3 Hardware Operation . 22-2
20.3.1 Conflicts with Other On-Chip Peripherals . 22-2
20.3.2 Conflicts with Other ARD Peripherals . 22-2
20.4 Software Operation . 22-2
20.4.1 Configuring the PMIC . 22-2
20.4.2 Creating a Handle to the PMIC. 22-2
20.4.3 Write Operations. 22-3
20.4.4 Read Operations . 22-3
20.4.5 Closing the Handle to the PMIC. 22-3
20.4.6 Power Management . 22-3
20.4.7 PMIC Registry Settings . 22-4
20.4.8 DMA Support . 22-4
20.5 Unit Test . 22-4
20.5.1 Unit Test Hardware. 22-4
20.5.2 Unit Test Software . 22-4
20.5.3 Running the PMIC Tests. 22-5

Chapter 21
Serial Driver

21.1 Serial Driver Summary . 23-1
21.2 Hardware Operation . 23-2
21.2.1 Conflicts with Other Peripherals and Catalog Items . 23-2
21.3 Software Operation . 23-2
21.3.1 Registry Settings . 23-2
21.3.2 Power Management . 23-2
21.4 Unit Test . 23-2
21.4.1 Unit Test Hardware. 23-3
21.4.2 Unit Test Software . 23-4
21.4.3 Building the Unit Tests . 23-4
21.4.4 Running the Unit Tests . 23-4
21.5 Serial Driver API Reference . 23-5
21.5.1 Serial PDD Functions . 23-5
21.5.2 Serial Driver Structures . 23-6

Chapter 22

Windows Embedded Compact 7 BSP Reference Manual

-xii Freescale Semiconductor

Sony/Philips Digital Interface (SPDIF) Driver

22.1 SPDIF Driver Summary . 24-1
22.2 Supported Functionality . 24-1
22.2.1 Conflicts with Other Peripherals and Catalog Items . 24-2
22.2.2 Known Issues . 24-2
22.3 Software Operation . 24-2
22.3.1 SPDIF Receiver (RX) . 24-2
22.3.2 Compile-Time Configuration Options . 24-3
22.3.3 Registry Settings . 24-3
22.3.4 DMA Support . 24-3
22.4 Power Management . 24-4
22.4.1 PowerUp . 24-4
22.4.2 PowerDown . 24-5
22.5 Unit Test . 24-5
22.5.1 Unit Test Hardware. 24-5
22.5.2 Unit Test Software . 24-5
22.5.3 Building the Unit Tests . 24-6
22.5.4 Running the Unit Tests . 24-6
22.6 System Testing . 24-6
22.7 SPDIF Driver API Reference . 24-6

Chapter 23
Touch Panel Driver

23.1 Touch Panel Driver Summary . 25-1
23.2 Supported Functionality . 25-1
23.3 Hardware Operations . 25-1
23.3.1 Conflicts with SOC Peripherals . 25-2
23.4 Software Operations . 25-2
23.4.1 Touch Driver Registry Settings . 25-2
23.5 Unit Tests . 25-3
23.5.1 Unit Test Hardware. 25-3
23.5.2 Unit Test Software . 25-3
23.5.3 Running the Touch Panel Tests . 25-3
23.6 Touch Panel API Reference . 25-3

Chapter 24
Temperature Sensor Driver

24.1 Temperature Sensor Driver Summary . 26-1
24.2 Supported Functionality . 26-1
24.3 Hardware Operation . 26-2
24.3.1 Conflicts with Other Peripherals and Catalog Options. 26-2
24.4 Software Operation . 26-2
24.4.1 Application/User Interface to Temperature Sensor drives . 26-2

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor -xiii

24.4.2 Temperature Sensor Driver Configuration . 26-2
24.4.3 Power Management . 26-3
24.4.4 Registry Settings . 26-3
24.5 Unit Test . 26-4
24.5.1 Unit Test Hardware. 26-4
24.5.2 Unit Test Software . 26-4
24.5.3 Building the Temperature Sensor Tests . 26-4
24.5.4 Running the Storage Media Tests . 26-4
24.6 Basic Elements for Driver Development . 26-5
24.6.1 BSP Environment Variables . 26-5
24.6.2 Mutual Exclusive Drivers . 26-5
24.6.3 Dependencies of Drivers. 26-5
24.7 Device API Reference . 26-5
24.7.1 IOCTL_TPS_READ. 26-5

Chapter 25
Universal Serial Bus (USB) Driver

25.1 USB OTG Driver Summary . 27-1
25.1.1 USB OTG Client Driver Summary. 27-1
25.1.2 OTG Host Driver Summary . 27-2
25.1.3 OTG (Pin-Detection) Driver Summary (For High-Speed Only) . 27-3
25.2 USB Host Driver Summary . 27-3
25.2.1 HS Host1 Driver Summary. 27-3
25.2.2 HS Host2 Driver Summary. 27-4
25.3 Supported Functionality . 27-5
25.4 Hardware Operation . 27-5
25.4.1 Conflicts with Other Peripherals and Catalog Items . 27-5
25.5 Software Operation . 27-6
25.5.1 USB OTG Host Controller Driver . 27-6
25.5.2 USB Client Driver . 27-16
25.5.3 USB OTG Driver (Pin-Detection Driver). 27-20
25.5.4 USB OTG Catalog Settings . 27-21
25.5.5 USB OTG Registry Settings . 27-22
25.5.6 Power Management . 27-23
25.5.7 Function Drivers . 27-25
25.5.8 Class Drivers. 27-28
25.6 Basic Elements for Driver Development . 27-29
25.6.1 BSP Environment Variables . 27-30
25.6.2 Dependencies of Drivers. 27-30
25.7 Application Tools for USB . 27-30
25.7.1 Application Tool for USB Device Class Select . 27-30

Chapter 26

Windows Embedded Compact 7 BSP Reference Manual

-xiv Freescale Semiconductor

USB Boot and KITL

26.1 USB Boot and KITL Summary . 28-1
26.2 Supported Functionality . 28-1
26.3 Hardware Operation . 28-1
26.3.1 Conflicts with Other Peripherals and Catalog Items . 28-2
26.4 Software Operation . 28-2
26.4.1 Software Architecture . 28-2
26.4.2 Source Code Layout . 28-2
26.4.3 Power Management . 28-3
26.4.4 Registry Settings . 28-3
26.5 Unit Test . 28-3
26.5.1 Building the USB Boot and KITL . 28-3
26.5.2 Testing USB Boot and KITL . 28-3

Chapter 27
UUT(Universal Updater Tool) Driver

27.1 Universal Updater Tool Driver Summary . 29-1
27.2 Supported Functionality . 29-1
27.3 Hardware Operation . 29-2
27.4 Software Operation . 29-2
27.5 Test operation . 29-2

Chapter 28
Video Processing Unit (VPU)

28.1 VPU Driver Summary . 30-1
28.2 Supported Functionality . 30-1
28.3 Hardware Operation . 30-2
28.3.1 Conflicts with Other Peripherals and Catalog Items . 30-2
28.4 Software Operation . 30-2
28.4.1 Communicating with the VPU . 30-2
28.4.2 Power Management . 30-2
28.4.3 Codecs Registry Settings . 30-3
28.5 Unit Test . 30-3
28.5.1 Unit Test Hardware. 30-3
28.5.2 Unit Test Software . 30-3
28.5.3 Running the VPU Application Test . 30-3
28.6 VPU Driver API Reference . 30-4
28.7 Sample Demo Application . 30-4
28.7.1 System Requirements . 30-4
28.7.2 Building the OS Image and VPU Test Application . 30-5

Chapter 29

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor -xv

WLAN Driver

29.1 WLAN Driver Summary . 31-1
29.2 Supported Functionality . 31-2
29.3 Hardware Operation . 31-2
29.3.1 Conflicts with Other Peripherals. 31-2
29.4 Software Operation . 31-2
29.4.1 Wi-Fi Registry Setting . 31-2
29.5 Unit Test . 31-4
29.5.1 Running CTK Test: WiFi Authentication Tests . 31-4
29.5.2 Test the WLAN Communication without Protection . 31-5

Windows Embedded Compact 7 BSP Reference Manual

-xvi Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor -xvii

About This Book
This reference manual describes the requirements, implementation details, and testing for each module
included in the Freescale software development kit (SDK) for Microsoft® Windows® Embedded Compact
7.

Audience
This document is intended for device driver developers, application developers, and software test
engineers who plan to use the product. This document is also intended for people who wants to know more
about Freescale’s software development kit (SDK) for Microsoft Windows Embedded Compact 7.

Suggested Reading
The Freescale manuals can be found at the Freescale Semiconductor, Inc. World Wide Web site listed on
the back of the front cover of this document. These manuals can be downloaded directly from the Web site,
or printed versions can be ordered. The Microsoft Platform Builder Help may be viewed from within the
Platform Builder application.

• i.MX53 ARD Release Notes for Windows Embedded Compact 7
• i.MX53 ARD User’s Guide for Windows Embedded Compact 7
• Microsoft Platform Builder for Windows Embedded Compact 7 Help

Conventions
This document uses the following notational conventions:

• Courier indicates directory or file names and code examples.
• Bold indicates the menu options or buttons the user can select. Cascaded menu options are

delimited with the > symbol.
• Italic indicates a reference to another document.

Definitions, Acronyms, and Abbreviations
Table i contains acronyms and abbreviations used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

API Application programming interface

BSP Board support package

CSP Chip support package

Windows Embedded Compact 7 BSP Reference Manual

-xviii Freescale Semiconductor

CSPI Configurable serial peripheral interface

D3DM Direct 3D Mobile

DHCP Dynamic host configuration protocol

DPTC Dynamic power and temperature control

DVFC Dynamic voltage and frequency control

DVFS Dynamic voltage and frequency scaling

EBOOT Ethernet bootloader

EVB Platform evaluation board

FAL Flash abstraction layer

FIR Fast infrared

FMD Flash media driver

GDI Graphics display interface

GPT General purpose timer

I2C Inter-integrated circuit

IDE Integrated development environment

IST Interrupt service thread

IPU Image processing unit

KITL Kernel independent transport layer

LVDS Low-voltage differential signaling

MAC Media access control

MMC Multimedia cards

OAL OEM adaptation layer

OEM Original equipment manufacturer

OS Operating system

OTG On-the-go

PMIC Power management IC

PQOAL Production quality OEM adaptation layer

PWM Pulse-width modulator

SD Secure digital cards

SDC Synchronous display controller

SDHC Secure digital host controller

SDIO Secure digital I/O and combo cards

SDRAM Synchronous dynamic random access memory

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor -xix

SDK Software development kit

SIM Subscriber identification module

SOC System on a chip

UART Universal asynchronous receiver transmitter

USB Universal serial bus

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

Windows Embedded Compact 7 BSP Reference Manual

-xx Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 1-1

Chapter 1
Introduction
This Freescale board support package (BSP) is based on the Microsoft Windows® Embedded Compact 7
operating system. This BSP supports the following Freescale platform(s):

• i.MX53 ARD Development System

This kit supports the Microsoft Windows Embedded Compact 7 operating system, and requires the use of
the Microsoft Platform Builder, which is an integrated development environment (IDE) for building
customized embedded operating system designs. To view feature information, study the BSP Release
Notes.

NOTE
Use this guide in conjunction with the Microsoft Windows Platform Builder
Help (or the identical Platform Builder User Guide).

• To view the Platform Builder Help, click Help from within the Platform
Builder application.

• To view the online Windows Embedded Compact 7 documentation,
visit:
http://msdn.microsoft.com/en-us/library/gg154201.aspx

1.1 Getting Started
For instructions on installing this software release, building, downloading and running the OS image on
the hardware board, refer to the appropriate User Guide.

1.2 Windows Embedded Compact 7 Architecture
The Windows Embedded Compact 7 architecture is a variation of the Windows operating system for
minimalistic computers and embedded systems. The architecture of the operating system and sub-systems
(for example, power management or DirectDraw) are described in several locations in the Help.

Introduction

Windows Embedded Compact 7 BSP Reference Manual

1-2 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 2-1

Chapter 2
Asynchronous Sample Rate Converter (ASRC) Driver
The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an
input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate
conversion of up to 10 channels. The ASRC supports up to three sampling rate pairs.

2.1 ASRC Driver Summary
Table 2-1 provides a summary of source code location, library dependencies and other BSP information.

2.2 Supported Functionality
The ASRC driver enables the ARD board to provide the following software and hardware support:

1. Supports standard stream interface for application usage.
2. Supports flexible 8/16/24 bit width of input data, and 16/24 bit width of output data.
3. Supports input sample rate range: 8K–96K
4. Supports output sample rate range: 32K–96K
5. One conversion pair (with two channels) is available for application usage (only for stereo wave

conversion), other pairs are reserved for further audio driver usage.

Table 2-1. ASRC Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\ASRC

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ASRC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ASRC

Driver DLL asrc.dll

SDK Library asrcbase_common_fsl_v3.lib, asrc_common_fsl_v3.lib, asrcbase_<Target SOC>.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > ASRC

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOAUDIO=
BSP_ASRC=1

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded Compact 7 BSP Reference Manual

2-2 Freescale Semiconductor

2.3 Hardware Operation
Refer to the chapter on the Asynchronous Sample Rate Converter (ASRC) in the hardware specification
document for detailed operation and programming information.

2.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

2.4 Software Operation
The ASRC driver follows the Microsoft standard stream interface driver architecture.

2.4.1 Required Catalog Items
N/A

2.4.2 ASRC Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Asrc]
"Prefix"="ARC"
 "Dll"="asrc.dll"
 "Order"=dword:28
 "Index"=dword:1
 "PairIndex"=dword:0
 "MaxChnNum"=dword:2
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

The PariIndex registry key indicates which sampling rate pair of ASRC hardware module should be used
by ASRC driver. In ASRC driver, pair A is fixed to be used.

The MaxChnNum registry key is used to restrict the maximum channel used by ASRC driver.

2.4.3 DMA Support

2.4.3.1 DMA Support

For the stream interface driver, two SDMA channels are allocated for data transfer: one for data transfer
from memory to ASRC input FIFO, and the other for data transfer from ASRC output FIFO to memory.
For both the input and output DMA, dual-buffer is used for chain operation.

2.4.4 Power Management
No power management is implemented yet in the ASRC driver.

2.4.4.1 PowerUp

This function is not implemented

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 2-3

2.4.4.2 PowerDown

This function is not implemented

2.4.4.3 IOCTL_POWER_CAPABILITIES

N/A

2.4.4.4 IOCTL_POWER_GET

N/A

2.4.4.5 IOCTL_POWER_SET

N/A

2.5 Unit Test
Because the supported wave format by ASRC can be different from general wave file, the wave file used
for ASRC test can be converted to different format. The ASRC driver function can be tested by converting
the wave file through the ASRC stream interface, and the output wave file can be verified by stereo audio
playback function.

2.5.1 Building the Unit Tests
The source code for the ASRC test case be found under the directory:
\WINCE700\SUPPORT\TEST\ASRC\

And there are three sub-directory in this directory:
\WINCE700\SUPPORT\TEST\ASRC\FILE_CONVERT
\WINCE700\SUPPORT\TEST\ASRC\ASRC_TEST
\WINCE700\SUPPORT\TEST\ASRC\ASRC_PLAYER

To build each application, select “Open Release Directory in Build Window” in the IDE menu, enter the
source code directory in the command prompt window, and type “build -c” to build the program.

2.5.2 Running the Unit Tests
Three simple applications are available for ASRC unit test: file_convert.exe, asrc_test.exe,
asrc_player.exe.

• File_convert.exe can be used to convert general 16-bit wave file to the file containing one of the
wave format (24-bit packed in 32-bit package, bit0–bit23 valid) supported by ASRC.
Example: file_convert temp\input_16bit.wav temp\output_24bit.wav

• Asrc_test.exe is used for the ASRC function test.
Example: asrc_test temp\input.wav temp\output.wav 48000
In this case, the test program configures ASRC to work in 24-bit data fomat mode for both input
and output, reads data from the file input.wav, sends the audio data to ASRC module, reads back

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded Compact 7 BSP Reference Manual

2-4 Freescale Semiconductor

the data processed by ASRC and writes the output data to file output.wav. The sample rate is
converted to 48K.

• Asrc_player is used for output wave file verification. This application directly plays back 24-bit
wave file through stereo audio codec.
Example: asrc_player temp\output.wav

NOTE
These three applications are mainly used for simple function test and API
demo usage. Users might encounter wave file format related failures (like
wave format chunk length and fact chunk is not well handled). Editing the
source code can resolve these problems.

2.6 ASRC Driver API Reference
The API follows the standard stream interface API. This section lists the SDK function for ASRC
application interface.

2.6.1 ASRC SDK Functions
HANDLE ASRCOpenHandle(DWORD* pPairIndex);
BOOL ASRCCloseHandle(HANDLE hASRC, DWORD dwPairIndex);
BOOL ASRCOpenPair(HANDLE hASRC,PASRC_OPEN_PARAM pOpenParam);
BOOL ASRCGetCapability(HANDLE hASRC,PASRC_CAP_PARAM pCapParam);
BOOL ASRCClosePair(HANDLE hASRC,DWORD dwPairIndex);
BOOL ASRCConfig(HANDLE hASRC, PASRC_CONFIG_PARAM pConfigParam);
BOOL ASRCAddInputBuffer(HANDLE hASRC, PASRCHDR pHdrIn);
BOOL ASRCAddOutputBuffer(HANDLE hASRC, PASRCHDR pHdrOut);
BOOL ASRCStart(HANDLE hASRC, DWORD dwPairIndex);
BOOL ASRCStop(HANDLE hASRC, DWORD dwPairIndex);

Important note for using the SDK functions:
• Both input and output buffer length (number of bytes) must be a multiple of the internal ASRC

DMA buffer size (which can be attained by ASRCGetCapability,
ASRC_CAP_PARAM.dwInputBlockSize and ASRC_CAP_PARAM.dwOutputBlockSize), or
driver failure may occur.

• Do not call ASRCStop until the entire wave file has been processed. Because the ASRC internal
memory might not be cleared, stopping the ASRC and re-starting it introduces noise.

• The ASRC hardware module continues procession after it is started. So input buffer under-run
causes noise and more output data numbers than expected.

2.6.2 Example for Using SDK Functions
Below is some sample code for using the SDK functions, refer to the demo test application and design
document for more details.
#include “asrc_sdk.h”
......
// request the asrc pair first
g_hASRC = ASRCOpenHandle(&g_dwPairIndex);

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 2-5

//qurery the capability
ASRCGetCapability(g_hASRC,&capParam);
// the input buffer size should be multiple of capParam.dwInputBlockSize, same for output
buffer.

// open the pair for operation
openParam.inputChnNum = 2; // for application usage, set this value as 2 now
openParam.outputChnNum = 2; //for application usage, set this value as 2 now
openParam.pairIndex = (ASRC_PAIR_INDEX)g_dwPairIndex;
openParam.hEventInputDone = g_hInputEvent;
openParam.hEventOutputDone = g_hOutputEvent;
openParam.inputDataWidth = 32;
openParam.outputDataWidth = 32;
ASRCOpenPair(g_hASRC,&openParam);

// config the pair for conversion
configParam.clkMode = ASRC_CLK_NONE_SRC;
configParam.pairIndex = (ASRC_PAIR_INDEX)g_dwPairIndex;
configParam.inputBitClkRate = g_dwInputSampleRate*2*24;
configParam.outputBitClkRate= g_dwOutputSampleRate*2*24;
configParam.inputSampleRate = g_dwInputSampleRate;
configParam.outputSampleRate = g_dwOutputSampleRate;
configParam.inputValidBitsPerSample = ASRC_IDATA_WIDTH_16BIT;
configParam.outputValidBitsPerSample = ASRC_ODATA_WIDTH_16BIT;
configParam.inputDataAlign = ASRC_DATA_ALIGN_LSB;
configParam.outputDataAlign = ASRC_DATA_ALIGN_LSB;
configParam.outputExtension = ASRC_DATA_EXTENSION_NOSIGN;
ASRCConfig(g_hASRC,&configParam);
.......
//add input buffers
for(i=0;i<INPUT_BUF_NUM;i++){
 ASRCAddInputBuffer(g_hASRC, &g_hdrInput[i]);
}
......
//add output buffers
for(i=0;i<OUTPUT_BUF_NUM;i++){
 ASRCAddOutputBuffer(g_hASRC, &g_hdrOutput[i]);
}
//start conversion
ASRCStart(g_hASRC,g_dwPairIndex);
......
// wait for the input event
WaitForSingleObject(g_hInputEvent, INFINITE);
// handle the input buffer here
......
//wait for the output event
WaitForSingleObject(g_hOutputEvent, INFINITE);
//handle the output buffer here
......
//when all the input data is processed, and output data has been received as expected, stop it
ASRCStop(g_hASRC,g_dwPairIndex);
// close pair
ASRCClosePair(g_hASRC,g_dwPairIndex);
// release the pair
ASRCCloseHandle(g_hASRC, g_dwPairIndex);

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded Compact 7 BSP Reference Manual

2-6 Freescale Semiconductor

2.6.3 Memory->ASRC->ESAI Mode
In the general mode, ASRC is used for Memory->ASRC->Memory audio data transfer, which means the
user data from memory buffer (audio file) is send to ASRC, converted and then put back into memory
(audio file). In this mode, ASRC will choose the fast working clock for transfer. But in quite a lot
application cases, users may want to send the data converted by asrc directly to the waveform audio device
for playback instead of store them in files. To do this ,users need to use the Memory->ASRC->ESAI mode.
In this mode ,the ASRC working clock is synchronous to the wave device clock, so during the same
interval, the audio data produced by ASRC can be just comsumed by wave device, and it will be easy for
users to manager the data buffers.

To use this mode, users need to set different clkMode while config converstion pair, and outputSampleRate
must be set correctly according to the wave device:
...

configParam.clkMode = ASRC_CLK_ONE_SRC_OUTPUT;

configParam.inClkSrc = ASRC_SRC_ASRCK1;

configParam.outClkSrc = ASRC_SRC_ESAI_TX;

...

configParam.outputSampleRate = g_dwOutputSampleRate;

ASRCConfig(g_hASRC,&configParam);

...

In this mode, clk Mode is set as ASRC_CLK_ONE_SRC_OUTPUT, while in general mode it is set as
ASRC_CLK_NONE_SRC. The others are same.

Also, another two SDK functions are provided to support this working mode:

BOOL ASRCSuspend(HANDLE hASRC, DWORD dwPairIndex);
BOOL ASRCResume(HANDLE hASRC, DWORD dwPairIndex);

The suspend function can be used to halt the conversion when there is the risk that the buffers
used to keep the data produced by ASRC might be overrunned. And the resume function is then
called to continue the converstion when the buffer level becomes normal.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 3-1

Chapter 3
ATA/ATAPI Driver
ATA/ATAPI driver in Windows Embedded Compact 7 BSP is a block driver, used as the underlying layer
for File Systems and USB mass storage. It is constructed as a stream interface driver that exposes I/O
control interfaces (IOCTL_DISK_XXX, DISK_IOCTL_XXX, IOCTL_CDROM_XXX,
IOCTL_DVD_XXX). The file system uses these I/O control interfaces to access the ATA/ATAPI devices.

ATAPI driver uses the ATA bus and interface to send command packets to ATAPI device.

3.1 ATA/ATAPI Driver Summary
Table 3-1 provides a summary of source code location, library dependencies and other BSP information.

3.2 Supported Functionality
The ATA driver provides the following support:

1. Provides standard Microsoft Block Storage Device API, including disk information management,
formatting, block data read/write with full scatter-gather buffer support.

Table 3-1. ATA/ATAPI Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\ATA

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ATA

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BLOCK\ATA

Driver DLL sata.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX53 ARD: ARMV7 > Storage Drivers > SATA Drivers > SATA Hard
Disk Drive Support (ATA driver)
Third Party > BSP > Freescale i.MX53 ARD: ARMV7 > Storage Drivers > SATA Drivers > SATA
CD/DVD ROM Support (ATAPI driver)

SYSGEN Dependency SYSGEN_STOREMGR_CPL,SYSGEN_MSPART,SYSGEN_FATFS,SYSGEN_EXFAT,SYSGEN_UDF
S

BSP Environment Variable BSP_NOATA=
BSP_SATA=1
BSP_ATA=1 (ATA driver)
BSP_ATAPI=1 (ATAPI driver)

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

3-2 Freescale Semiconductor

2. Supports two power management modes, full on and full off.
3. Driver reuse buffers allocated by upper layer by using DMA scatter/gather list to improve

performance by reducing data copies.
4. Supports FAT file system.
5. Supports exFAT file system.
6. Supports full sustained (media) data throughput capacity of Hitachi Travelstar 5K500.B-320 (or

equivalent) at SATA 1.5-Gbps Generation 1 mode.

The ATAPI driver provides the following support:
1. Provides standard Microsoft Block Storage Device API, including disk information management,

block data read with full scatter-gather buffer support.
2. Supports two power management modes, full on and full off.
3. Supports CD/UDFS file system.
4. Supports full sustained (media) data throughput capacity of Continental DVD-ROM (or

equivalent) at SATA 1.5-Gbps Generation 1 mode.

3.3 Hardware Operation
The i.MX SOC contains an on-chip SATA controller which uses DesignWare Cores SATA AHCI Core.

The DesignWare Cores SATA AHCI Core (commonly referred to as the DWC_ahsata), implements the
Serial Advanced Technology Attachment (SATA) storage interface for physical storage devices.

The DWC_ahsata is an AHCI-compliant SATA AHCI Host Bus Adaptor (HBA). Together with the
corresponding multi-port physical layer (PHY), it forms a complete AHCI HBA interface.

Figure 3-1. ATA Hardware Block Diagram

PHY0

PHY1

PHY2

PHY3

Port0

Port1

Port2

Port3

B
us

 In
te

rf
ac

e

PHY
Interface

DWC_ahsata

AHCI HBA

SATA
Devices

Sy
st

em
 B

us
AHB Master

AHB Slave

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 3-3

Although 4 ports are shown, only PORT0 and PHY0 are present.

The following are the supported features of the DWC_ahsata:
• Supports SATA 1.5-Gbps Generation 1.
• Compliant with Serial ATA Specification 2.6, and AHCI Revision 1.1 specifications.
• Supports one SATA devices (port 0).
• Internal DMA engine per port.

Refer to the SATA chapter in the hardware specification document for detailed operation and programming
information.

3.3.1 Conflicts with Other Peripherals

3.3.1.1 Conflicts with SoC Peripherals

No conflicts.

3.3.1.2 Conflicts with board Peripherals

No conflicts.

3.3.2 Cabling
The SATA standard defines a data cable with seven conductors (3 grounds and 4 active data lines in two
pairs).

The SATA standard specifies a different power connector than the decades-old four-pin Molex connector
found on pre-SATA devices. Like the data cable, it is wafer-based, but its wider 15-pin.

3.4 Software Operation

3.4.1 Application/User Interface to ATA/ATAPI drives
The ATA/ATAPI device exports a standard stream interface to the Windows File System. Application-level
access to ATA/ATAPI disks is via the Windows File System, using functions such as CreateFile() and
CloseHandle().

The File System, or user software which requires block device access to the ATA/ATAPI, does so through
the standard Windows CE Block Device IOCTLs. These IOCTLs provide interfaces to acquire disk
information and to read/write blocks (disk sectors) of data.

3.4.2 ATA/ATAPI Driver Configuration
The driver is configured into the BSP build by check the catalog item listed in Table 3-1. This defines the
environment variable/configuration option: BSP_NOATA, BSP_SATA, BSP_ATA for ATA driver,
BSP_NOATA, BSP_SATA, BSP_ATAPI for ATAPI driver. Configuration for the ATA/ATAPI is then

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

3-4 Freescale Semiconductor

provided through registry settings imported from platform.reg. These settings can be modified to select
working mode, and the device prefix and index, if necessary.

3.4.2.1 Prefix and Index

The default device prefix is “DSK”.

When no Index is configured for the ATA/ATAPI block device, the bus enumerator assigns an index
according to the order of block device loading. When removable storage is attached to USB host ports (as
mass storage class), or when RAMDISK is included, the index assigned to these block devices can
influence indexes automatically assigned by the bus enumerator.

3.4.3 Power Management
The ATA/ATAPI supports two power management modes, ON (D0) and OFF (D4). These modes are
managed via the standard Windows Power Manager. Power Manager uses IOCTL_POWER_SET to
switch the disk power state, according to inactivity settings configured in Power Manager. As for standard
block drivers, PowerUp and PowerDown functions are called by the Device Manager.

The primary method for limiting power consumption in the ATA/ATAPI module is to gate off all clocks to
the module when those clocks are not needed. This is accomplished through the
DDKClockSetGatingMode function call. The clock is turned on during initialization process and is turned
off after initialization is completed. Data transfer operations are handled in DSK_IOCTL function to
process the IOCTL calls from the File System. The ATA/ATAPI driver turns on the clock and enables the
ATA/ATAPI module before processing any data transfer. After the block of data has been processed, the
ATA/ATAPI module is disabled and the clock is turned off.

3.4.3.1 PowerUp

This function called by Device Manager sets a flag to indicate power is up.

3.4.3.2 PowerDown

This function called by Device Manager ensures volatile data is stored in RAM and sets a flag to indicate
power is down.

3.4.3.3 IOCTL_POWER_SET

This IOCTL handles the request to change disk power state (D0 or D4), called by Power Manager (or
SetDevicePower() API).

3.4.4 Registry Settings

3.4.4.1 ATA Driver

The ATA driver settings are taken from platform.reg, which can be customized for each particular build.
These registry values are located under the registry key:

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 3-5

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SATA]

The values under that registry key should be defined in platform.reg. These can be qualified with the
BSP_NOATA, BSP_SATA, BSP_ATA system variable for configurable catalog item support.

Standard registry entries also to be included for the ATA device after the above key are shown in Table 3-3.

In addition to these values, the ATA makes use of the HDProfile information from the StorageManager
registry keys. Default values are as below:
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\HDProfile]
"Name"="ATA Hard Disk Drive"
"Folder"="Hard Disk"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\HDProfile\FATFS]
"EnableCacheWarm"=dword:00000000

3.4.4.2 ATAPI Driver

The ATAPI driver settings are taken from platform.reg, which can be customized for each particular build.
These registry values are located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SATA]

The values under that registry key should be defined in platform.reg. These can be qualified with the
BSP_NOATA, BSP_SATA, BSP_ATAPI system variable for configurable catalog item support.

Table 3-2. ATA Driver Registry Setting Values

Value Type Content Description

Dll sz sata.dll Driver dynamic link library

IClass sz "{A4E7EDDA-E575-4252-9D6B-4195D48BB865}" GUID for a power-manageable block device

InterruptDriven dword 01
(00)

enable interrupt driven I/O
(disable interrupt; not used normally)

Table 3-3. ATA Driver Registry Setting Values

Value Type Content Description

Prefix sz “DSK” Device identifier (combined with Index for DSK1 for example)

Index dword 1 Instance of ATA drive (if not configured in the registry, automatically assigned
when driver loads)

Order dword 10 Early, to allow file system loading

WriteCache dword 01 disk internal cache is enabled within drive

LookAhead dword 01 disk read-ahead to internal is enabled within drive

DeviceId dword 00 primary device ID

HDProfile sz “HDProfile” Storage Manager profile to be used in GetDeviceInfo (see below)

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

3-6 Freescale Semiconductor

Standard registry entries also to be included for the ATA device after the above key are shown in Table 3-5.

In addition to these values, the ATA makes use of the CDProfile information from the StorageManager
registry keys. Default values are as below:
"Name"="IDE CDROM/DVD Drive"
 "Folder"=LOC_STORE_CD_FOLDER
 "DefaultFileSystem"="MSIFS_CD"
 "PartitionDriver"="CDRom.DLL"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\CDProfile\CDRom]
 "UseLegacyReadIOCTL"=dword:1

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\CDProfile\PartitionTable]

3.4.5 DMA Support
All data transfers between the device and system memory occur through the HBA, which acts as a bus
master to system memory. Whether the transaction is of a DMA type or a PIO type, the HBA fetches and
stores data to memory, offloading the CPU.

All transfers are performed using DMA. The use of the PIO command type is strongly discouraged. PIO
has limited support for errors, for example, the ending status field of a PIO transfer is given to the HBA
during the PIO Setup FIS, before the data is transferred.

For ATA driver, it always uses the scatter gather method.

If the buffer from the upper layer meets the following criteria:

Table 3-4. ATAPI Driver Registry Setting Values

Value Type Content Description

Dll sz sata.dll Driver dynamic link library

IClass sz "{A4E7EDDA-E575-4252-9D6B-4195D48BB865}" GUID for a power-manageable block device

InterruptDriven dword 01
(00)

enable interrupt driven I/O
(disable interrupt; not used normally)

Table 3-5. ATAPI Driver Registry Setting Values

Value Type Content Description

Prefix sz “DSK” Device identifier (combined with Index for DSK1 for example)

Index dword 1 Instance of ATA drive (if not configured in the registry, automatically assigned
when driver loads)

Order dword 10 Early, to allow file system loading

WriteCache dword 01 disk internal cache is enabled within drive

LookAhead dword 01 disk read-ahead to internal is enabled within drive

DeviceId dword 00 primary device ID

CDProfile sz “CDProfile” Storage Manager profile to be used in GetDeviceInfo (see below)

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 3-7

• Start of the buffer is a cache-line (32 byte) aligned address.
• Number of bytes to be transferred is cache-line (32 byte) aligned.

The ATA driver builds the Scatter Gather DMA Buffer Descriptors, but does not allocate or manage DMA
buffers internally. All buffers are allocated and managed by the upper layers, the details of the buffer are
given in the request submitted to the driver. For every request submitted to it, the driver attempts to build
a DMA Scatter Gather Buffer Descriptor list for the buffer.

For ATAPI driver, it allocates and manages DMA buffers internally.

3.5 Unit Test
The ATA driver is tested using the Storage Media - Hard Drive Tests included as part of the Compact Test
Kit (CTK). There are no custom CTK test cases for ATA driver. The Storage Media - Hard Drive Tests
used to test ATA driver include:

• File System Driver Tests for Hard Drive
• File System Performance Tests for Hard Drive
• Large File Support Tests for Hard Drive
• Partition Driver Test for Hard Drive
• Storage Block Device Driver API Test for Hard Drive
• Storage Device Block Driver Performance Test for Hard Drive
• Storage Device Block Driver ReadWrite Test for Hard Drive

The ATAPI driver is tested using the Storage Media - CD/DVD Tests included as part of the Compact Test
Kit (CTK). There are no custom CTK test cases for ATAPI driver. The Storage Media - CD/DVD Tests
used to test ATAPI driver include:

• Audio CD Driver Test
• CD.DVD-ROM Block Driver Test
• CD.DVD-ROM File System Driver Test

3.5.1 Unit Test Hardware
Table 3-6 lists the required hardware to run the ATA driver unit tests.

Table 3-7 lists the required hardware to run the ATAPI driver unit tests.

Table 3-6. ATA Driver Hardware Requirements

Requirement Description

i.MX SOC and attached Hitachi Travelstar 5K500.B-320. Other drives supporting SATA 1.5-Gbps Generation 1 mode may be
used.

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

3-8 Freescale Semiconductor

3.5.2 Unit Test Software
Table 3-8 lists the required software to run the Storage Device Tests.

Table 3-10. ATAPI Driver Software Requirements

3.5.3 Building the Storage Device Tests
The Storage Device Tests come pre-built as part of the CTK. No steps are required to build these tests. All
the test .dll files can be found alongside the other required CTK files in the following location:
\Program Files\WindowsEmbeddedCompact7TestKit\tests\target\armv7

Table 3-7. ATAPI Driver Hardware Requirements

Requirement Description

i.MX SOC and attached Continental DVD-ROM. Other drives supporting SATA 1.5-Gbps Generation 1 mode may be
used.

Table 3-8. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test.

Kato.dll Kato logging engine, which is required for logging test data.

Table 3-9. ATA Driver Software Requirements

Requirement Description

Fsdtst.dll Test .dll file used to perform File System Driver Test for Hard Drive.

Fsperflog.dll, ceperf.dll,
perfscenario.dll

Test .dll file used to perform File System Performance Tests for Hard Drive.

fsLargeFiles.dll Test .dll file used to perform Large File Support Tests for Hard Drive.

Msparttest.dll Test .dll file used to perform Partition Driver Test for Hard Drive.

Disktest.dll Test .dll file used to perform Storage Block Device Driver API Test for Hard Drive.

PerfLog.dll,
Disktest_perf.dll

Test .dll file used to perform Storage Device Block Driver Performance Test for Hard Drive.

Rwtest.dll Test .dll file used to perform Storage Device Block Driver ReadWrite Test for Hard Drive.

Requirement Description

cddatest.dll Test .dll file used to perform Audio CD Driver Test.

cdromtest.dll Test .dll file used to perform CD.DVD-ROM Block Driver Test.

Udftest.dll Test .dll file used to perform CD.DVD-ROM File System Driver Test.

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 3-9

3.5.4 Running the Storage Media Tests
The tests can be launched from command line or CE Target Control window in Platform Builder.

3.5.4.1 ATA Driver

These CTK tests destroy any information residing on the hard disk.

The command line for running the File System Driver Test is:
tux -o -d fsdtst -c "-p HDProfile -zorch"

it performs file system tests which cover all required File System API functions.

The command line option HDProfile refers to the registry setting used to establish storage device profile
information to the Storage Manager:
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\HDProfile]
"Name"="ATA Hard Disk Drive"
"Folder"="Hard Disk"

NOTE
Format and create partition on disk before test. The command line option
“-zorch” is case sensitive (help message within the test .dll is not correct)
and is used to confirm over-writing of all information on the hard disk. Test
cases 5019, 5022 can be safely skipped.

The command line for running the File System Performance Tests is:
tux -o -d fsperflog -c "-p HDProfile -zorch"

The command line for running the Large File Support Tests is:
tux -o -d fsLargeFiles -c "-p HDProfile -zorch"

The command line for running the Partition Driver Test is:
tux -o -d msparttest -c "-store DSK1: -zorch"

The command line for running the Storage Device Block Driver API Test is:
tux -o -d disktest -c "-p HDProfile -zorch -sectors 65536"

NOTE
The free program memory to be adjusted to be larger than 64 Mbytes in
control panel, CTK cases 4021 can be safely skipped.

The command line for running the Storage Device Block Driver Performance Test is:
tux -o -d disktest_perf -c "-profile HDProfile -zorch"

The command line for running the Storage Device Block Driver ReadWrite Test is:
tux -o -d rwtest -c "-p HDProfile -zorch"

NOTE
Do not include NANDFlash driver or SD driver in the image, the CTK open
DSK1 as default to test which may be NANDFlash or SD card instead of
hard disk.

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

3-10 Freescale Semiconductor

For detailed information on the Storage Media - Hard Drive Tests, refer to:
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - Hard Drive

Tests > File System Driver Test for Hard Drive
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - Hard Drive

Tests > File System Performance Tests for Hard Drive
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - Hard Drive

Tests > Large File Support Tests for Hard Drive
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - Hard Drive

Tests > Partition Driver Test for Hard Drive
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - Hard Drive

Tests > Storage Block Device Driver API Test for Hard Drive
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - Hard Drive

Tests > Storage Device Block Driver Performance Test for Hard Drive
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - Hard Drive

Tests > Storage Device Block Driver ReadWrite Test for Hard Drive

3.5.4.2 ATAPI Driver

The command line for running the Audio CD Driver Test is:
tux -o -d cddatest

Assesses the functionality of a CD-ROM block driver that supports the audio CD format

NOTE
Put audio CD into the CDROM drive

The command line for running the CD.DVD-ROM Block Driver Test is:
tux -o -d cdromtest

NOTE
A complete image of the CD or DVD media needs to be used for testing. The
image is stored on the development workstation in a file named
Cdsector.dat. To create Cdsector.dat for media in the CD-ROM drive or
CD/DVD-ROM drive, run test case 6101.

The command line for running the CD.DVD-ROM File System Driver Test is:
tux -o -d udftest

For detailed information on the Storage Media - CD/DVD Tests, refer to:
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - CD/DVD Tests

> Audio CD Driver Test
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - CD/DVD Tests

> CD.DVD-ROM Block Driver Test
• Windows Embedded Compact 7 > Compact Test Kit (CTK) > Storage Media - CD/DVD Tests

> CD.DVD-ROM File System Driver Test

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 3-11

3.6 Basic Elements for Driver Development
This chapter provides details of the basic elements for ATA/ATAPI driver development.

3.6.1 BSP Environment Variables

3.6.2 Mutual Exclusive Drivers
The ATA driver conflicts with ATAPI driver and they cannot be used together.

3.6.3 Dependencies of Drivers

Table 3-12 summarizes the Microsoft defined environment variables used in the BSP.

3.7 Block Device API Reference
The primary interface to the ATA/ATAPI block device is through the standard Windows CE Block Device
IOCTLs as described in the following sections. Application-level access to ATA/ATAPI disks should be
performed through the Windows File System.

Table 3-11. BSP Environment Variables

Name Definition

BSP_NOATA Set to disable ATA/ATAPI driver

BSP_SATA Set to enable ATA/ATAPI driver

BSP_ATA Set to enable ATA driver

BSP_ATAPI Set to enable ATAPI driver

Table 3-12. Microsoft Defined Environment Variables

Names Definition

SYSGEN_STOREMGR Set to support storage manager

SYSGEN_STOREMGR_CPL Set to support storage manager in control panel

SYSGEN_MSPART Set to support partition driver.

Table 3-13. ATA Driver Environment Variables

Names Definition

SYSGEN_FATFS Set to support FAT32 file system

SYSGEN_EXFAT Set to support EXFAT file system

Table 3-14. ATAPI Driver Environment Variables

Names Definition

SYSGEN_UDFS Set to support CDFS/UDFS file system

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

3-12 Freescale Semiconductor

For reverse compatibility deprecated DISK_IOCTLs are also supported but not documented here. See
Windows Embedded Compact 7 Help for further details.

The driver also supports the standard XXX_Init, XXX_Deinit, XXX_Open and XXX_Close routines, as
used by Device Manager and the bus enumerator to load the driver. When the registry settings for
ATA/ATAPI are correct, these functions are handled automatically, and need no further documentation
here.

3.7.1 IOCTL_DISK_DEVICE_INFO
This DeviceIoControl request returns storage information to block device drivers.

Parameters
lpInBuffer [in] Pointer to a STORAGEDEVICEINFO structure.
nInBufferSize [in] Specifies the size of the STORAGEDEVICEINFO structure.
lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.2 IOCTL_DISK_GET_STORAGEID
This DeviceIoControl request returns the current STORAGE_IDENTIFICATION structure for a particular
storage device.

Parameters
hDevice [in] Handle to the block device storage volume, which can be obtained by opening

the FAT volume by its file system entry. The following code example shows how
to open a PC Card storage volume.
hVolume = CreateFile(TEXT("\Storage Card\Vol:"),
GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0,
NULL);

lpOutBuffer [out] Set to the address of an allocated STORAGE_IDENTIFICATION structure.
This buffer receives the storage identifier data when the IoControl call returns

nOutBufferSize [out] Set to the size of the STORAGE_IDENTIFICATION structure and also
additional memory for the identifiers. For Advanced Technology Attachment
(ATA) disk devices, the identifiers consist of 20 bytes for a manufacturer identifier
string, and also 10 bytes for the serial number of the disk.

lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.3 IOCTL_DISK_GETINFO
This DeviceIoControl request returns notifies the block device drivers to return disk information.

Parameters
lpOutBuffer [out] Pointer to a DISK_INFO structure.
nOutBufferSize [out] Specifies the size of the DISK_INFO structure.

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 3-13

lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.4 IOCTL_DISK_GETNAME
This DeviceIoControl request services the request from the FAT file system for the name of the folder that
determines how users access the block device. If the driver does not supply a name, the FAT file system
uses the default name passed to it by the file system.

Parameters
lpOutBuffer [out] Specifies a buffer allocated by the file system driver. The device driver fills

this buffer with the folder name. The folder name must be a Unicode string.
nOutBufferSize [out] Specifies the size of lpOutBuffer. Always set to MAX_PATH where

MAX_PATH includes the terminating NULL character.
lpBytesReturned [out] Set by the device driver to the length of the returned string and also the

terminating NULL character.

3.7.5 IOCTL_DISK_READ
This DeviceIoControl request services FAT file system requests to read data from the block device.

Parameters
lpInBuffer [in] Pointer to a SG_REQ structure.
nInBufferSize [in] Specifies the size of the SG_REQ structure.
lpBytesReturned [out] Pointer to a DWORD to receive total bytes returned. Set to NULL if you do

not need to return this value.

3.7.6 IOCTL_DISK_SETINFO
This DeviceIoControl request services FAT file system requests to set disk information.

Parameters
lpInBuffer [in] Pointer to a DISK_INFO structure.
nInBufferSize [in] Specifies the size of DISK_INFO.
lpBytesReturned [out] Pointer to a DWORD to receive total bytes returned.

3.7.7 IOCTL_DISK_WRITE
This DeviceIoControl request services FAT file system requests to write data to the block device.

Parameters
lpInBuffer [in] Pointer to an SG_REQ structure.
nInBufferSize [in] Specifies the size of SG_REQ.
lpBytesReturned [out] Pointer to a DWORD to receive total bytes returned.

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

3-14 Freescale Semiconductor

3.7.8 IOCTL_DISK_FLUSH_CACHE
This DeviceIoControl request issues the ATA FLUSH CACHE command to the disk.
Parameters [No parameters]

3.7.9 IOCTL_CDROM_DISC_INFO
This IOCTL retrieves disk information to fill the CDROM_DISCINFO structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_DISC_INFO to retrieve disk information and fill the

CDROM_DISCINFO structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in, out] On input, set to the address of an allocated CDROM_DISCINFO

structure. This is the memory needed for the structure and information storage. On
output, a filled CDROM_DISCINFO structure.

nOutBufSize [in] Set to the size of the CDROM_DISCINFO.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.10 IOCTL_CDROM_EJECT_MEDIA
The IOCTL ejects the CD-ROM.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_EJECT_MEDIA to eject the CD-ROM.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.11 IOCTL_CDROM_GET_SENSE_DATA
This IOCTL specifies retrieval of CD-ROM sense information contained in a CD_SENSE_DATA
structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_GET_SENSE_DATA to retrieve CD-ROM sense

information and fill the CD_SENSE_DATA structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 3-15

lpOutBuf [in, out] On input, set to the address of an allocated CD_SENSE_DATA structure.
On output, a filled CD_SENSE_DATA structure.

nOutBufSize [in] Set to the size of the CD_SENSE_DATA.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.12 IOCTL_CDROM_ISSUE_INQUIRY
This IOCTL retrieves information used in the INQUIRY_DATA structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_ISSUE_INQUIRY to retrieve information and fill

the INQUIRY_DATA structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in, out] On input, set to the address of an allocated INQUIRY_DATA structure.

On output, a filled INQUIRY_DATA structure.
nOutBufSize [in] Set to the size of the INQUIRY_DATA.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.13 IOCTL_CDROM_PAUSE_AUDIO
This IOCTL suspends audio play.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_PAUSE_AUDIO to pause audio playback if it was

playing.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.14 IOCTL_CDROM_PLAY_AUDIO_MSF
This IOCTL plays audio from the specified range of the medium.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_PLAY_AUDIO_MSF to play audio based on the

information in the CDROM_PLAY_AUDIO_MSF structure.
lpInBuf [in] Set to the address of an allocated CDROM_PLAY_AUDIO_MSF structure.
nInBufSize [in] Set to the size of the CDROM_PLAY_AUDIO_MSF structure.

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

3-16 Freescale Semiconductor

lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

sent. On output, set to the number of bytes written from the supplied buffer.

3.7.15 IOCTL_CDROM_READ_SG
This IOCTL reads scatter buffers from the CD-ROM and the information is stored in the CDROM_READ
structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_READ_SG to read scatter buffers from the

CD-ROM and store the information in the CDROM_READ structure.
lpInBuf [in] Set to the address of an allocated SGX_BUF structure.
nInBufSize [in] Set to the size of the SGX_BUF.
lpOutBuf [in, out] On input, set to the address of an allocated CDROM_READ structure.

This is the memory needed for the structure and info storage. On output, a filled
CDROM_READ structure.

nOutBufSize [in] Set to the size of the CDROM_READ.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.16 IOCTL_CDROM_READ_TOC
This I/O control returns the table of contents of the medium.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_READ_TOC to retrieve the table of contents

information and store it into the CDROM_TOC structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in, out] On input, set to the address of an allocated CDROM_TOC structure. On

output, a filled CDROM_TOC structure.
nOutBufSize [in] Set to the size of the CDROM_TOC.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.17 IOCTL_CDROM_RESUME_AUDIO
This IOCTL resumes a suspended audio operation.
Parameters

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 3-17

dwIoControlCode [in] Set to IOCTL_CDROM_RESUME_AUDIO to resume audio playback if it
was paused.

lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.18 IOCTL_CDROM_SEEK_AUDIO_MSF
This IOCTL moves the heads to the specified minutes, seconds, and frames on the medium.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_SEEK_AUDIO_MSF.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.19 IOCTL_CDROM_STOP_AUDIO
This IOCTL stops audio play.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_STOP_AUDIO to stop audio playback.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.20 IOCTL_CDROM_TEST_UNIT_READY
This IOCTL retrieves disc ready information and fills the CDROM_TESTUNITREADY structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_TEST_UNIT_READY to retrieve disc ready

information and fill the CDROM_TESTUNITREADY structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.

ATA/ATAPI Driver

Windows Embedded Compact 7 BSP Reference Manual

3-18 Freescale Semiconductor

lpOutBuf [in, out] On input, set to the address of an allocated
CDROM_TESTUNITREADY structure. This is the memory needed for the
structure and info storage. On output, a filled CDROM_TESTUNITREADY
structure.

nOutBufSize [in] Set to the size of the CDROM_TESTUNITREADY.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.21 IOCTL_DVD_GET_REGION
This IOCTL returns DVD disk and drive regions.
Parameters
hDevice [in] Set to a handle to a block device.
dwIoControlCode [in] Specifies this IOCTL.
lpInBuffer Not used.
nInBufferSize Not used.
lpOutBuffer [out] Pointer to a DVD_REGIONCE structure.
nOutBufferSize Not used.
lpBytesReturned Not used.
lpOverlapped Not used.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 4-1

Chapter 4
Backlight Driver
The Windows Embedded Compact 7 BSP backlight driver follows Microsoft recommended backlight
driver PDD/MDD architecture. The backlight driver uses PWM module on the SoC, to control the
backlight on the Liquid Crystal Display (LCD) panel. The backlight driver is power-manageable, and it
meets the requirements of a power-manageable device by implementing the required power management
I/O Controls (IOCTLs).

4.1 Backlight Driver Summary
Table 4-1 provides a summary of source code location, library dependencies and other BSP information.

4.2 Supported Functionality
The backlight driver provides the following support:

1. Conforms to the Device Manager streams interface
2. Supports 0–36 level adjustment
3. Supports power management mode: full on or full off

Table 4-1. Backlight Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\BACKLIGHT

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BACKLIKGHT

Driver DLL backlight.dll

SDK Library N\A

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV7> Device Drivers > Smart Backlight
Control > Backlight control using the PWM

SYSGEN Dependency SYSGEN_BATTERY=1

BSP Environment Variables BSP_BACKLIGHT_PWM=1

Backlight Driver

Windows Embedded Compact 7 BSP Reference Manual

4-2 Freescale Semiconductor

4.3 Hardware Operation
The backlight driver operate PWM module to set backlight level. The backlight level can be configured
by writing the PWM LPCCR register.For more operation and programming information, see the chapter
on the PWM in the i.MX53Applications Processor Reference Manual.

4.4 Software Operation
The backlight driver is a stream interface driver and is accessed through the file system APIs. To use the
backlight driver, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation.

The control of the backlight operation requires a call to the DeviceIoControl function. The following are
the possible choices available for the user:

• IOCTL_POWER_CAPABILITIES, register and inform the Power Manager of capabilities
• IOCTL_POWER_QUERY, where the new power state is returned
• IOCTL_POWER_SET, interface to the hardware that controls the backlight through the PDD layer
• IOCTL_POWER_GET, where the current power state is returned

4.4.1 Backlight Driver Registry Settings
This section explains about the backlight driver registry settings.

i.MX53 ARDThe following registry keys are required to properly load backlight driver:
[HKEY_CURRENT_USER\ControlPanel\Backlight]
 "BattBacklightLevel"=dword:FF ; Backlight level settings. 0xFF = Full On
 "ACBacklightLevel"=dword:FF ; Backlight level settings. 0xFF = Full On
 "UseExt"=dword:0 ; Enable timeout when on external power
 "UseBattery"=dword:0 ; Enable timeout when on battery
 "AdvancedCPL"="AdvBacklight" ; Enable Advanced Backlight control panel dialog
 "BatteryTimeout"=dword:1E ; 30 Seconds
 "ACTimeout"=dword:78 ; 2 Minutes

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Backlight]
 "Dll" = "backLight.Dll"
 "Prefix" = "BKL"
 "Flags"=dword:8 ;DEVFLAGS_NAKEDENTRIES
 "Index" = dword:1
 "Order" = dword:11 ; After display driver
 "IClass" = multi_sz:"{F922DDE3-6A6D-4775-B23C-6842DB4BF094}",
 "{0007AE3D-413C-4e7e-8786-E2A696E73A6E}"
 "MinBrightness"=dword:0 ;Off
 "MaxBrightness"=dword:FF ;On
 "SupportedDx"=dword:11 ; D0 | D4 (bitwise 00010001)

 "RegKey"=dword:80000001 ;HKEY_CURRENT_USER
 "RegSubKey"="ControlPanel\\Backlight"

Backlight Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 4-3

4.4.2 Power Management
The backlight driver consumes power primarily through the operation of the LCD panel backlight. To
facilitate the management of this module, the backlight driver implements the IOCTL code
IOCTL_POWER_SET.

4.4.2.1 PowerUp

This function is not implemented for the backlight driver.

4.4.2.2 PowerDown

This function is not implemented for the backlight driver.

4.4.2.3 IOCTL_POWER_SET

The backlight driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Turn
On) and D4 (Set intensity to 0) power states. These states are handled in the following manner:

• D0—Backlight is enabled for LCD panel and the intensity can be adjusted through the PDD layer
• D4—Backlight intensity is set to 0 which is the lowest level of backlight

4.5 Unit Test
The backlight driver is subject to one test suites provided with the Windows Embedded Compact Test Kit
(CTK): the backlight API Test. The following section explains about the hardware and software
requirements for unit tests.

The Backlight API test suite is a very simple functionality test that verifies all IOCTL calls for a single
backlight. The test simply calls the IOCTL and verifies that it returns. It includes power manager IOCTL
calls that matters to the backlight driver.

4.5.1 Unit Test Hardware
This section explains about the hardware required to run the backlight application test.

4.5.1.1 i.MX53 ARD Unit Test Hardware
Table 4-2 lists the required hardware to run the backlight application test.

Table 4-2. Hardware Requirements

Requirement Description

Toshiba XGA LVDS panel Display panel required for display of graphics data

Backlight Driver

Windows Embedded Compact 7 BSP Reference Manual

4-4 Freescale Semiconductor

4.5.2 Unit Test Software

4.5.2.1 Backlight API Test

Table 4-3 lists the software required to run the backlight API tests.

4.5.3 Building the Unit Tests

4.5.3.1 Backlight API Test

The Backlight API test comes pre-built as part of the CTK. No steps are required to build these tests. For
information about the tests, see the Help:

Windows Embedded Compact 7 > Compact Test Kit (CTK)

4.5.4 Running the Unit Tests

4.5.4.1 Running the Backlight API Test

The command line for running the Backlight API test is:
tux.exe -o -d backlightapitest.dll -c "-p"

The -p command line flags is included to enable Power Management test. For information about the
Backlight API test and command line options, see the Platform Builder Help:

Windows Embedded Compact 7 > Compact Test Kit (CTK) > Backlight Tests

4.6 Backlight API Reference
The API for the backlight driver conforms to the stream interface and exposes the standard functions. For
more information, see Platform Builder Help at the following location:

Windows Embedded Compact 7 > Device Driver > Streams Interface Drivers

Table 4-3. Software Requirements

Requirement Description

Tux.exe Test harness, required for executing the test .

Kato.dll Logging engine, required for logging the test data .

backlightapitest.dll Library containing the test cases.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 5-1

Chapter 5
Battery Driver
The battery driver module provides information about the battery level to the OS. The battery driver is
essentially a stub in this platform.The battery driver module is used to provide information about the
battery level to the OS and control the charging and discharging function. When fake battery driver
selected in catalog items view, the battery driver is essentially a stub and will not support charging
function.

5.1 Battery Driver Summary

Table 5-1 provides a summary of source code location, library dependencies and other BSP information.

5.2 Supported Functionality
The battery driver enables the system to provide the following support:

1. Conforms to the battery driver interface

5.3 Hardware Operation
The currenti.MX53 ARD does not support battery monitoring or charging.

Table 5-1. Battery Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC N/A

SOC Common Path N/A

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BATTDRVR\Fake

Import Library N/A

Driver DLL battdrvr.dll

Catalog Item Third Party -> BSP -> Freescale <Target Platform>: ARMV7 -> Device Drivers -> Battery -> Fake
Battery Driver

SYSGEN Dependency SYSGEN_BATTERY

BSP Environment Variables BSP_NOBATTERY=
BSP_FAKE_BATTERY=1

Battery Driver

Windows Embedded Compact 7 BSP Reference Manual

5-2 Freescale Semiconductor

5.3.1 Conflicts with Other SoC Peripherals
No conflicts.

5.4 Software Operation
After initialization, the BatteryPDDGetStatus() function is called periodically to get the status of the
battery. This function fills the structure SYSTEM_POWER_STATUS_EX2 and returns it to the system.
The Power Properties window is updated based on the values in this structure.

5.4.1 Battery Driver Registry Settings
The following registry keys are required to properly load battery driver:
; These registry entries load the battery driver. The IClass value must match
; the BATTERY_DRIVER_CLASS definition in battery.h -- this is how the system
; knows which device is the battery driver.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Battery]
 "Prefix"="BAT"
 "Dll"="battery.dll"
 "Flags"=dword:8 ; DEVFLAGS_NAKEDENTRIES
 "Order" = dword:9
 "IClass"="{DD176277-CD34-4980-91EE-67DBEF3D8913}"
 "BattFullLiftTime" = dword:8 ;Batt Spec defined: in unit of hr, here 8hr is assumed
 "BattFullCapacity"=dword:320 ;Batt Spec defined: in unit of mAh, here 800mAhr is assumed
 "BattMaxVoltage"=dword:1068 ;Batt Spec defined: in unit of mV, here 4200mV is assumed
 "BattMinVoltage"=dword:BB8 ;Batt Spec defined: in unit of mV, here 3000mV is assumed
 "BattPeukertNumber"=dword:73 ;Batt Spec defined, here 1.15 is assumed
 "BattChargeEff"=dword:50 ;Batt Spec defined, here 0.80 is assumed
 "Ioctl"=dword:290418 ; IOCTL to use for PostInit callback

; HIVE BOOT SECTION

[HKEY_LOCAL_MACHINE\System\Events]
 "SYSTEM/BatteryAPIsReady"="Battery Interface APIs"
; END HIVE BOOT SECTION

5.4.2 Power Management
There is no additional power management implementation for battery driver.

5.5 Unit Test

5.5.1 Unit Test Hardware
The battery driver does not include any unit tests.

Battery Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 5-3

5.6 Battery API Reference
The API for the battery driver conforms to the stream interface and exposes the standard functions. For
more information, refer to the Platform Builder Help at the following location:

Windows Embedded Compact 7 > Device Drivers > Battery Drivers

Battery Driver

Windows Embedded Compact 7 BSP Reference Manual

5-4 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 6-1

Chapter 6
Boot from Secure Digital/MultiMedia Card (SD/MMC)

• Boot support from SD/MMC includes the following components:EBOOT (may also be referred to
as bootloader in this document)

• Storage for OS binary image (NK)

NOTE:
SD/MMC boot requires a card that is at least 96 Mbytes.

6.1 Boot from SD/MMC Summary
Table 6-1 provides a summary of source code location, library dependencies and other BSP information.

6.2 Supported Functionality
The boot support from SD/MMC includes:

1. Boot from low or high capacity SD/MMC card at least 96 Mbytes in size
2. Storing bootloader and SD/MMC EBOOT images to SD/MMC flash
3. Storing OS images to SD/MMC flash
4. Loading OS image from SD/MMC flash to RAM
5. File system on bootable SD/MMC card

Table 6-1. Boot from SD/MMC Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX53_ARD

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\BOOTLOADER
..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\BOOT\FMD\SDMMC

Driver DLL N/A

SDK Library N/A

Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) N/A

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded Compact 7 BSP Reference Manual

6-2 Freescale Semiconductor

6. eSD2.1 and eMMC 4.3 boot from boot partition if boot partition can be configured to be at least
96 Mbytes in size; otherwise, boot from user partition on these devices is supported

6.3 Hardware Operation

6.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

6.4 Software Operation
To store and load a boot image to SD/MMC cards using EBOOT, the SDFMD (SD Flash Media Driver)
library is used which exposes functions to perform erase, read and write operations on SD/MMC flash.
The FMD layer provides support for all types of cards (high as well as low capacity SD/MMC cards). It
also supports 1 and 4-bit and 8-bit modes for data transfer that is configurable through the
BSP_MMC4BitSupported() function found in the BSP portion of EBOOT.

For preparing and downloading the SD/MMC bootloader and for usage of the SD/MMC bootloader, refer
to the BSP User'sGuide.

6.4.1 Card Memory Layout
SD cards that do not meet the v2.1 spec and MMC cards that do not meet the v4.3 spec have only one
physical partition. To allow storage of boot images as well as file system on these card, EBOOT can add
a partition table (MBR) to the card that reserves the initial 96 Mbytes for boot images (EBOOT, NK) and
the remaining portion of the card for the file system. The card must then be inserted into a PC to format
the file system partition. Subsequently, it can be used as a boot device as well as to store and load user files
once the OS has loaded. Refer to the BSP User's Guide for details.

eSD v2.1 and eMMC v4.3 both provide the capability of having more than one physical partition, thus
eliminating the need to put an MBR on the device. Reading, writing, and erasing one partition has no effect
on the other partitions. During boot, the ROM code selects the boot partition #1 on the eSD v2.1 device
and either boot partition #1 or #2 on the eMMC v4.3 device (depending on which partition is enabled in
the EXT_CSD register), and subsequently reads out the data that is flashed to the boot partition and
executes it. EBOOT provides menu options to create and enable/disable boot partitions on both devices
using the MMC and SD Utilities sub-menu. Refer to the BSP User's Guide for details.

Before the NK OS image is launched, EBOOT disables the boot partition, and the user partition, where the
file system can be stored, is activated. As soon as system is reset, the ROM code re-enables the boot
partition and reads out and executes the boot images.

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 6-3

6.4.1.1 i.MX53 Card Memory Layout

Figure 6-1 shows the card memory layout for the i.MX53.

Figure 6-1. Card Memory Layout

A Master Boot Record (MBR) is placed by EBOOT (this functionality can be accessed using the EBOOT
menu) at sector 0 of the card to reserve the first 96 Mbytes of the card for boot images, and allocate the
remaining portion to the file system.

The MBR is only required on cards that are older than eSD v2.1 and eMMC v4.3 because these newer
devices can have multiple physical partitions. On these devices, the first 96 Mbytes shown above are

Master Boot Record
(1 KB)

NK OS Image
(94 MB)

Eboot
(512 KB)

Eboot backup
(512 KB)

Reserved
(895 KB)

Boot Configuration
(128 KB)

File System Partition
(card size - 96 MB)

96 MB

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded Compact 7 BSP Reference Manual

6-4 Freescale Semiconductor

flashed on a separate boot partition (without an MBR at sector 0), and the file system partition referenced
above is another separate physical partition, which should only be active while OS is running.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 7-1

Chapter 7
Camera Driver for IPUv3
The camera driver is based on the Windows Embedded Compact 7 Camera Device Driver Interface. This
interface provides basic support for video and still image capture devices. The camera driver conforms to
the architecture for Windows CE stream interface drivers and can support two camera instances, It allows
applications to use the middleware layer provided by the DirectShow video capture infrastructure to
communicate with and control the camera.

At the lower layer, the camera driver performs several tasks including:
• Communicating with and configuring the camera device through the I2C interface
• Configuring the submodules (CSI, SMFC and so on) of the Image Processing Unit v3 (IPUv3) for

captured images
• Performing post-processing tasks with IPUv3 for the video preview data

The camera driver is compatible with the Tvin sensor ADV7180 .

The camera driver can support two camera instances. Camera1 use sensor ADV7180, Camera2 use CSI
test mode. Of course, if use other sensor, the sensor special control code must be implemented and driver
register item "CameraId" must be changed.

7.1 Camera Driver Summary
Table 7-1 provides a summary of source code location, library dependencies and other BSP information.

Table 7-1. Camera Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\IPUV3\CAMERA

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\IPUV3\CAMERA

Driver DLL camera.dll

SDK Library N/A

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

7-2 Freescale Semiconductor

7.2 Supported Functionality
The Camera driver enables the hardware platform to provide the following software and hardware support:

1. Windows Embedded Compact 7 Camera Device Driver Interface
2. Preview and Capture/Sill pins for camera1 application
3. Capture/Sill pins for camera2 application
4. ADV7180 TVin sensor for camera1 driver
5. Format from sensor output to CSI input (RGB565, YUV422)
6. Output resolution for Preview pin

— 640×480 for VGA
— 320×240 for QVGA
— 160×120 for QQVGA
— 352×288 for CIF
— 174×144 for QCIF

7. Output resolution for Still pin
— 720×576 for PAL
— 720×480 for NTSC

8. Output resolution for Capture pin

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > Camera > CSI0
> CMOS OV3640 Support
Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > Camera > CSI0
> CMOS OV5642 Support
Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > Camera > CSI0
> TVin ADV7180 Support
Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > Camera > CSI1
> CSI TESTMODE Support

SYSGEN Dependency SYSGEN_IMAGING_BMP_ENCODE
SYSGEN_IMAGING_JPG_ENCODE
SYSGEN_IMAGING_BMP_DECODE
SYSGEN_IMAGING_JPG_DECODE
SYSGEN_DSHOW_DISPLAY
SYSGEN_DSHOW_CAPTURE
SYSGEN_DSHOW_DMO
SYSGEN_DSHOW_VIDREND

BSP Environment Variables BSP_I2CBUS3 = 1
BSP_PP = 1

For Camera driver 1:
BSP_TVIN_ADV7180 = 1

For Camera driver 2:
BSP_CSI_TESTMODE = 1

Table 7-1. Camera Driver Summary (continued)

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 7-3

— 720×576 for PAL
— 720×480 for NTSC

9. Output format for Preview pin (RGB565)
10. Output format for Still pin (UYVY, YV12, NV12)
11. Output format for Capture pin (UYVY, YV12, NV12)

7.3 Hardware Operation
Several hardware modules are involved in the operation of the camera driver. The input device (camera
sensor) captures external image data. All other hardware elements of the camera driver are in the Image
Processing Unit v3 (IPUv3). The IPUv3 Camera Sensor Interface (CSI) receives data from the sensor and
converts the data into a format understood by the IPUv3. This data subsequently flows through the Sensor
Multi FIFO Controller (SMFC) module for encoding or to the Image Converter (IC) for viewfinding where
it undergoes post-processing. The encoding data or viewfinding data is then transferred by the IPUv3
DMA module to the final destination in the system memory .

For detailed operation and programming information, see the chapter on the Image Processing Unit
(IPUv3) in the i.MX53 Applications Processor Reference Manual.

7.3.1 IPUv3 Overview
The low-level operation of the camera driver is based on the IPUv3. The IPUv3 is broken down into
functional submodules. The following list describes the function each of these submodules:

• Camera Sensor Interface (CSI)—Gets data from the sensor and transfers data to one or more of the
following: ISP, IC, SMFC

• Sensor Multi FIFO Controller (SMFC)—Controls FIFOs for the IDMAC channels related to the
camera system

• Control Module (CM)—Provides control and synchronization for the entire IPUv3
• Image DMA Controller (IDMAC)—Transfers data to and from system memory
• Image Converter (IC)—Performs resizing, color conversion, combining with graphics, and

horizontal inversion
• Image Rotator (IRT)—Performs rotation (90° or 180°) and inversion (vertical or horizontal)
• Post-processor Driver (PP)—General purpose image processing driver that performs the following

processing tasks: color space conversion, resizing, rotation, and combining

The IPUv3 also contains the following regions of internal memory that store information used in the
operation of the IPUv3:

• Task Parameter Memory (TPM)—Holds color space conversion coefficients and offsets
• Channel Parameter Memory (CPMEM)—Holds configuration information for each IDMAC

channel

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

7-4 Freescale Semiconductor

7.3.2 Conflicts with Other Peripherals and Catalog Items

7.3.2.1 Conflicts with SoC Peripherals

No conflicts.

7.3.2.2 i.MX53 Peripheral Conflicts

No conflicts.

7.4 Software Operation
The development concepts for camera driver is described in the Windows Embedded Compact 7 Help
Documentation section under the topic:

Windows Embedded Compact 7> Device Drivers > Camera Drivers.

7.4.1 Software Architecture

7.4.1.1 Software Driver Components

Figure 7-1 shows the relationship between software components in the camera driver architecture.

Figure 7-1. Camera Driver Architecture

Figure 7-1 shows the following main elements of the camera driver architecture:
• Camera driver MDD—Provides general interface to application
• Camera driver PDD—Implements the corresponding functions to encapsulate hardware specific

code needed to write directly to the specific device
• CSI wrapper—Implements the sensor configuration and CSI module configuration
• SMFC wrapper—Implements the management of data comes from CSI
• PP wrapper—Implements the frame rotation/flip/mirror function

 WinCE OS Software Layer

 Camera driver MDD

 Camera driver PDD

 CSI Wrapper

Sensor CSI

 SMFC Wrapper

 SMFC CM IDMA CPMEM

 PP Wrapper

 PP

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 7-5

7.4.1.2 Data Flow

Figure 7-2 shows the data flow of the camera driver. The sensor passes the frame data to the CSI module,
which then passes the data to the SMFC. The SMFC sets up the data for the IDMAC. The camera driver
sets a pointer to an external memory buffer which is filled by the DMA after the IDMAC is complete. The
camera driver uses the frame data in the external memory as the Capture/Still Pin output. Simultaneously,
this frame data is used as the PP input for the Color Space Conversion (CSC), size change, and
rotation/flip/mirror operation. The camera driver uses the PP output as the Preview Pin output. Since the
frame data in the Capture/Still Pin does not pass the PP module, rotation, flip, or mirror operations cannot
be achieve on the Capture/Still Pin.

Figure 7-2. Camera Driver Data Flow

NOTE
The data for the Preview Pin depends on the data for Capture Pin. The
hardware used by the Capture Pin must be configured and initiated before
the Preview Pin to prepare the buffer. To enable these two pins, the Capture
Pin must be configured before the Preview Pin to start earlier than the
Preview Pin. If Preview Pin is already enabled, and then the Capture Pin
should be enabled, the Preview Pin must be stopped first. Then the Capture
Pin must be configured and started. Then the Preview Pin can be re-stared.

If an application uses client allocate buffer mode for the Capture Pin, then
it should pay close attention to the process time required for one frame
buffer. This is because data for the Preview Pin is based on data for the
Capture Pin. If the application process time for one frame is too long to give
the buffer back to driver, then the Capture Pin has no buffer to fill and the
Preview Pin has no buffer input and output. This causes Preview frame loss.

Application Capture/Still Pin Preview Pin

Software
Camera
Driver

Capture/Still Pin Preview Pin

Sensor IDMACSMFC CSI External Memory
Queue1

PP (*) External Memory
Queue2

Note (*): PP here is a concept, it includes many HW modules, such as IC IRT IDMAC and so on.

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

7-6 Freescale Semiconductor

There are two CSI interfaces, four SMFC channals. Camera1 use CSI0,
SMFC(IDMAC channal0), PP; Camera2 use CSI1, SMFC(IDMAC
channal2). So Camera1 can support Preview pin and Capture/Still pin, but
Camera2 only support Captrue/Still pin.

7.4.1.3 Buffer Management

Buffers can be allocated either by camera driver or by the client as follows:
• Driver Allocate Buffers Mode—Buffers are allocated in hardware memory. The driver must have

its own memory allocator and the client must retrieve the list of allocated buffers from the driver.
A driver indicates its support for the buffer allocation model through the
CSPROPERTY_BUFFER_DRIVER property. The client retrieves the list of buffers by calling
DeviceIoControl with IOCTL_CS_BUFFERS and specifying CS_ALLOCATE.

• Client Allocate Buffers Mode—Buffers are allocated by the client and the client must initialize the
buffers before it gives them to the driver. Once the client is done with the buffer, it must free the
memory for the buffer. The driver indicates its support for the buffer allocation model through the
CSPROPERTY_BUFFER_CLIENT_UNLIMITED property. The client negotiates the number of
buffers by calling DeviceIoControl with IOCTL_CS_PROPERTY and specifying the property
CSPROPERTY_BUFFER_COUNT. The client sends the buffers to the driver using
IOCTL_CS_BUFFERS and specifying CS_ENQUEUE. The client releases the processed buffers
by using IOCTL_CS_BUFFERS and specifying CS_DEALLOCATE.

7.4.1.3.1 Buffer Allocated by the Driver

If the camera pin is running under CSPROPERTY_BUFFER_DRIVER mode, buffers are allocated by the
driver. The buffer state includes three mode: Idle, Busy, and Filled. The camera driver uses a queue to keep
the buffer state, which means if one buffer is in the Idle Queue, it is in the Idle State. Figure 7-3 shows the
buffer state diagram for this mode.

Figure 7-3. CSPROPERTY_BUFFER_DRIVER Mode Buffer State Diagram

Idle Busy

Filled

SetActive

SetFilledGetFilled

Allocate new
buffer

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 7-7

• Idle Queue—Once a buffer is allocated by driver, it is in the idle queue. Otherwise, the filled buffer
is used by user and this buffer is set to the idle queue. GetFilled or Allocate new buffer can set one
buffer to Idle.

• Busy Queue—Once a buffer is set to IDMAC, it is in the busy queue and hardware begins using
this buffer. SetActive can be used to transfer one buffer from Idle to Busy.

• Filled Queue—Once the IDMAC interrupt is received, the buffer is filled with frame data and it is
in a filled queue. SetFilled can be used to transfer one buffer from Busy to Filled.

Once a buffer is allocated, it must be in one and only one queue, until it is free.

The following steps illustrate the process of the driver allocated buffers:
1. Application allocates a buffer using IOCTL_CS_BUFFERS and specifying CS_ALLOCATE.
2. MDD receives IOCTL, allocates buffer for the MDD layer, then calls PDD allocate interface to

inform the PDD to allocate the buffer.
3. PDD calls the proper module allocate interface to allocate the buffer according to the PIN type.

PDD allocated buffers are all in Idle queue.
4. When the module begins to operate, it checks if there are any buffers in the Idle queue. If true, it

gets a buffer (PHY address) from Idle Queue and sets this PHY address as the hardware output
address. Then is sets this buffer to Busy Queue, which means this buffer is in use by the hardware.

5. When an interrupt from hardware is received, one buffer in Busy Queue is filled with image data.
The module gets this buffer from the Busy Queue and sets this buffer to the Filled Queue. At the
same time, step l is repeated to pipeline the chain.

6. After the buffer enters into the Filled Queue, the MDD callback function is called to get this filled
buffer.

7. The MDD callback function calls GetFilled() through the PDD interface to get the filled buffer
provided by module. After GetFilled() returns, the filled buffer transfers to the Idle Queue from
Filled Queue to make it available for the next iteration.

8. The module copies the image data from the filled buffer to the MDD idle buffer and sends this filled
MDD buffer to MsgQ shared with the application.

9. Application receives the filled image data by calling ReadMsgQ. It may use memcpy to copy
image data from the MDD buffer to the application buffer.

10. Application processes the image data.
11. Application enqueues the MDD buffer to make it available for the next iteration for MDD layer

with using IOCTL_CS_BUFFERS and specifying CS_ENQUEUE.

7.4.1.3.2 Buffer Allocated by the Client

If the camera pin is running under CSPROPERTY_BUFFER_CLIENT_UNLIMITED mode, the buffers
are allocated by the client. Compared to buffer allocated by driver mode, this mode adds a new state for
buffer state: locked state.

• Locked Queue—Once buffers are registered by the client, they are in locked queue. Because in
buffer allocated by client mode, buffers are shared between driver and application, it needs a state

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

7-8 Freescale Semiconductor

to synchronize the buffer access. The locked state means the application is using this buffer and the
driver cannot use it. An Enqueue interface is used to give the buffer ownership back to the driver.

Figure 7-4 shows the buffer state diagram for this mode.

Figure 7-4. CSPROPERTY_BUFFER_CLIENT_UNLIMITED Mode Buffer State Diagram

The following steps describe the procedure of client allocating buffer:
1. Application allocates a buffer using IOCTL_CS_BUFFERS and specifying CS_ALLOCATE.
2. MDD receives the IOCTL, saves the buffer address as registered, then calls the PDD register

interface to inform the PDD to register this buffer.
3. PDD calls proper module register interface to register the buffer for this module according to the

PIN type. After registering, the buffer is in Locked queue and is owned by the application.
4. Application enqueues the buffer using IOCTL_CS_BUFFERS and specifying CS_ENQUEUE.
5. MDD calls the PDD Enqueue interface to enqueue the buffer.
6. PDD calls the proper module Enqueue interface to enqueue this buffer. After Enqueue, the buffer

is in Idle queue, means it is owned by the driver.
7. When the module begins to operate, it checks if there are any buffers in the Idle queue. If true, it

gets a buffer (PHY address) from Idle Queue and sets this PHY address as the hardware output
address. Then is sets this buffer to Busy Queue, which means this buffer is in use by the hardware.

8. When an interrupt from hardware is received, one buffer in Busy Queue is filled with image data.
The module gets this buffer from the Busy Queue and sets this buffer to the Filled Queue. At the
same time, step l is repeated to pipeline the chain.

9. After the buffer enters into the Filled Queue, the MDD callback function is called to get this filled
buffer.

Idle Busy

Locked Filled

SetActive

SetFilled

GetFilled

Enqueue

Register new
Buffer

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 7-9

10. The MDD callback function calls GetFilled() through the PDD interface to get the filled buffer
provided by module. After GetFilled() returns, the filled buffer transfers to the Idle Queue from
Filled Queue to make it available for the next iteration.

11. For the buffer sharing between all three layers, no memcpy from the module buffer to MDD buffer
is required. The MDD determines if the buffer has been enqueued. If true, it sends this filled buffer
to MsgQ shared with the application. Otherwise, it fails.

12. For the buffer sharing between all three layers, no memcpy from the MDD buffer to the application
buffer is required. The application receives the filled image data by calling ReadMsgQ.

13. Application processes the image data.
14. Application calls the Enqueue interface to make it available for the next iteration for MDD.
15. MDD calls the Enqueue interface to make it available for the next iteration for PDD.
16. PDD calls the proper module Enqueue interface to make it available for the next iteration for

module.

7.4.2 Communicating with the Camera
Communication with the camera driver is accomplished through Camera APIs defined by Microsoft for
Windows Embedded Compact 7. Applications may access these Camera APIs directly or through the
DirectShow video capture support.

7.4.2.1 Using the Windows CE Video Camera Device Driver Interface

The Windows CE Video Camera Device Driver Interface provides basic support for video and still image
capture devices. For information about using camera APIs, see the Windows Embedded Compact 7 Help
topic:

Windows Embedded Compact 7 > Device Drivers > Camera Drivers > Camera Driver Reference.

7.4.2.2 Using DirectShow for Video Capture

DirectShow provides support in its architecture for the creation of filter graphs for video capture. For
information about using DirectShow for video capture, see the Windows Embedded Compact 7 Help:

Windows Embedded Compact 7 > Audio, Graphics and Media > DirectShow.

7.4.3 Registry Settings
Two sets of registry settings are important for proper camera driver operation. One set is for the camera
driver and the other is for the DirectShow Capture Pins. This section describes the registry keys used to
select the camera sensor used on the SoC.

7.4.3.1 Registry Settings

The following registry keys are required to properly load the Camera Driver.
#if (defined BSP_CMOS_OV3640 || defined BSP_CMOS_OV5642 || defined BSP_TVIN_ADV7180)
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Camera1]

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

7-10 Freescale Semiconductor

 "Prefix"="CAM"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:1

IF BSP_CMOS_OV3640
 "CameraId"=dword:0
ENDIF BSP_CMOS_OV3640

IF BSP_CMOS_OV5642
 "CameraId"=dword:2
ENDIF BSP_CMOS_OV5642

IF BSP_TVIN_ADV7180
 "CameraId"=dword:4
ENDIF BSP_TVIN_ADV7180

 "CSIInterface"=dword:0
 ;CameraId default is 0.
 ; 0=0v3640;
 ; 1,2,3 are reserved for sensor support;
 ; 4,5 for TVin support
 ; 9 for CSI Test Mode
 ;CSIInterface default is 0.
 ; 0=CSI1 Interface;
 ; 1=CSI2 Interface;
 ; 2 is reserved for both CSI Interface in case of dual camere support
 "IClass"=multi_sz: "{CB998A05-122C-4166-846A-933E4D7E3C86}",
 "{A32942B7-920C-486b-B0E6-92A702A99B35}"

[HKEY_LOCAL_MACHINE\Software\Microsoft\DirectX\DirectShow\Capture1]
 "Prefix"="PIN"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:1
 "PinCount"=dword:3 ;Pin count. Max = 3; default = 2
 "MemoryModel"=dword:1 ; Pin memory mode.
 "IClass"=multi_sz:"{C9D092D6-827A-45E2-8144-DE1982BFC3A8}",
 "{A32942B7-920C-486b-B0E6-92A702A99B35}"
#endif

#if (defined BSP_CSI_TESTMODE)
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Camera2]
 "Prefix"="CAM"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:2

IF BSP_CSI_TESTMODE
 "CameraId"=dword:9
ENDIF BSP_CSI_TESTMODE

 "CSIInterface"=dword:1
 ;CameraId default is 0.
 ; 0=0v3640;
 ; 1,2,3 are reserved for sensor support;
 ; 4,5 for TVin support

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 7-11

 ; 9 for CSI Test Mode
 ;CSIInterface default is 0.
 ; 0=CSI1 Interface;
 ; 1=CSI2 Interface;
 ; 2 is reserved for both CSI Interface in case of dual camere support
 "IClass"=multi_sz: "{CB998A05-122C-4166-846A-933E4D7E3C86}",
 "{A32942B7-920C-486b-B0E6-92A702A99B35}"

[HKEY_LOCAL_MACHINE\Software\Microsoft\DirectX\DirectShow\Capture2]
 "Prefix"="PIN"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:2
 "PinCount"=dword:2 ;Pin count. Max = 3; default = 2
 "MemoryModel"=dword:1 ; Pin memory mode.
 "IClass"=multi_sz:"{C9D092D6-827A-45E2-8144-DE1982BFC3A8}",
 "{A32942B7-920C-486b-B0E6-92A702A99B35}"
#endif

7.5 Power Management
The camera driver consumes power primarily through the operation of various IPUv3 sub-modules, such
as the CSI, SMFC and the IC. The CSI, SMFC and IC modules are enabled when the camera device is set
to a running state. Support for transitioning to the Suspend and Resume states is provided through the
IOCTL_POWER_SET IOCTL.

7.5.1 PowerUp
This function is not implemented for the camera driver.

7.5.2 PowerDown
This function is not implemented for the camera driver.

7.5.3 IOCTL_POWER_SET
The camera driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Full On)
and D4 (Off) power states.

These states are handled in the following manner:
• D0—Action is only taken when resuming from the D4 state. If the camera is running when the

transition to the D4 state occurs, the camera returns to a running state, re-enabling the sensor and
IPUv3 submodules.

• D4—Action is only taken if the camera is running when the request to transition to the D4 state
occurs.

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

7-12 Freescale Semiconductor

7.6 Unit Test
Because the Camera Driver API was introduced with Windows Embedded Compact 7, there are CTK tests
written and provided by Microsoft.

The Camera CTK tests include the following:
• Camera and DirectShow Graph Integration Test — The Graph Building Tests test building a graph

with all components and building graphs with single components.
• Camera Driver Data Structure Verification — The Camera Driver Data Structure Verification Test

queries the camera driver for various properties and formats.
• Camera Driver Name Tests — The Camera Driver Name Tests ensure that the Camera Driver uses

the right GUID and naming convention for DShow based drivers, pins and third party drivers.
• Camera Driver Preview and Capture Stream Functionality Verification — The Camera Driver

Preview and Capture Stream Functionality Verification Test verifies the functionality of the still,
preview and capture streams on the camera driver.

• Camera Performance Certification Test — This Test suite collects the Performance data of Camera
on the Windows Embedded Compact device.

• Camera Performance Test — The Camera Performance Test requires a Windows Embedded
Compact device with camera functionality. The Camera Performance Test gathers performance
data for various DirectShow capture scenarios.

• Camera Quality Verification Test — The Camera Quality Verification test offers semi-automated
verification of video data delivered by the camera driver. The test exercises supported resolutions,
formats, and orientations as well as supported camera controls and video properties, such as
controlling zoom, brightness, and contrast.

• Video Capture Filter Test — The Video Capture Filter Test tests directly the video capture filter,
which exercises the camera driver. This test is ideal for component level testing of the camera
driver via DirectShow, without involving the entire video capture graph.

Additionally, for Windows Embedded Compact 7, a camera application may be used to preview and
capture images.

7.6.1 Unit Test Hardware
Table 7-2 lists the required hardware to run the unit tests.

Table 7-2. Hardware Requirements

Requirement Description

Camera sensor ADV7180 Tvin Sensor

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 7-13

7.6.2 Unit Test Software

7.6.2.1 CTK Test

Table 7-3 lists the required software to run the camera test.
.

The configuration file capconfig.ini is required for CameraPerfTests.dll.

7.6.2.2 Custom Camera Test

The camapp.exe executable file is needed to run the custom camera application.

The camapp1_preview.exe and camapp2_capture.exe executable files are needed to validate dual camera
driver.

7.6.2.3 Camera Application Test

No additional actions are required to include the Windows Embedded Compact camera application in an
OS image beyond the required registry keys.

Table 7-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

CameraGraphTests.dll
CameraGrabber.dll

Library containing the “Camera and DirectShow Graph Integration Test “ cases

CamTestProperties.dll Library containing the “Camera Driver Data Structure Verification” cases

CameraDriverNameTest.d
ll

Library containing the “Camera Driver Name Tests “ cases

CamIOTests.dll Library containing the “Camera Driver Preview and Capture Stream Functionality Verification “ cases

cameraperfcerttest.dll Library containing the “Camera Performance Certification Test “ cases

CameraPerfTests.dll Library containing the “Camera Performance Test “ cases

cameraqualitytests.dll Library containing the “Camera Quality Verification Test “ cases

Vidcaptest.dll Library containing the “Video Capture Filter Test “ cases

camera.dll Driver DLL file

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

7-14 Freescale Semiconductor

7.6.3 Building the Unit Tests

7.6.3.1 CTK Test

All the above mentioned tests come pre-built as part of the CTK. No steps are required to build these tests.
These test files can be found with the other required CTK files in the following location:
[Drive]:\Program Files\WindowsEmbeddedCompact7TestKit\tests\target\armv7

7.6.3.2 Custom Camera Application Test

In order to build the custom Camera application, complete the following steps:

Build an OS image for the desired configuration:
1. Add a new folder named APP under the folder ..\PLATFORM\<Target Platform>\SRC

2. Create an empty directory file under the folder ..\PLATFORM\<Target Platform>\SRC\APP

3. Copy the folder of CAMAPP under the folder SUPPORT\APP to SRC\APP

4. Select the Solution Explorer of the Platform Builder Workspace window
5. Expand Platform > <Target Platform> > Src > App > CAMAPP
6. Right-click on the CAMAPP folder and select Rebuild

The CAMAPP execution file (camapp.exe) is created in the obj\release or obj\debug folder under the
CAMAPP folder.And the camapp.exe file is copied to the workspace release directory.

CAMAPP uses GDI API to display a picture as default. CAMAPP also can support DDRAW to accelerate
picture displaying. To use DDRAW, change the file CameraWindow.cpp under the folder APP as follows:

Change
//#define DIRECT_DRAW_MODE

to
#define DIRECT_DRAW_MODE

Camapp default works on Camera sensor Mode, for ARD Board, need switch camapp to TVIN mode.

To use TVIN mode, change the file CameraWindow.cpp under the folder APP as follows:

Change
//#define TVIN_MODE

to

#define TVIN_MODE

Then, repeat steps 4–6 listed above to build the custom camera application.

Another way to build the custom camera application is as follows:
1. Select the Solution Explorer of the Platform Builder Workspace window
2. Select Subprojects in Solution Explorer
3. Right-click Subprojects and select Add Existing Subproject to add the CAMAPP project

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 7-15

4. Right-click on the CAMAPP project and select Rebuild

The CAMAPP execution file (camapp.exe) is created in the workspace release directory.

When validate dual camera driver, please build the dual camera application following steps:
1. Add a new folder named APP under the folder ..\PLATFORM\<Target Platform>\SRC

2. Create an empty directory file under the folder ..\PLATFORM\<Target Platform>\SRC\APP

3. Copy the folders of CAMAPP_Preview and CAMAPP_Capture under the folder
SUPPORT\APP\Dual_Camera_App to SRC\APP

4. Select the Solution Explorer of the Platform Builder Workspace window
5. Expand Platform > <Target Platform> > Src > App
6. Right-click on the CAMAPP_Preview folder and select Rebuild
7. Right-click on the CAMAPP_Capture folder and select Rebuild

The Dual camera application execution files (camapp1_preview.exe camapp2_capture.exe) are created
copied to the workspace release directory.

7.6.4 Running the Unit Tests

7.6.4.1 Running the Camera Unit Tests

7.6.4.1.1 Running the Camera CTK Test

For detailed information about the tests in this section, see the Windows Embedded CE 6.0 Help topic:

Windows Embedded Compact 7 > Compact Test Kit(CTK) > Multimedia-Camera Tests

Use this command line to run the Camera and DirectShow Graph Integration Tests :
Tux -o -d cameragraphtests.dll

Use this command line to run the Camera Driver Data Structure Verification Tests:
Tux -o -d camtestproperties.dll

Use this command line to run the Camera Driver Name Tests:
Tux -o -d cameradrivernametest.dll

Use this command line to run the Camera Driver Preview and Capture Stream Functionality Verification
Tests:
Tux -o -d camiotests.dll

Use this command line to run the Camera Performance Certification Tests:
Tux -o -d cameraperfcerttest.dll

Use this command line to run the Camera Performance Test:
Tux -o -d cameraperftests.dll -c "-c \windows\capconfig.ini"

Use this command line to run the Camera Quality Verification Tests:
Tux -o -d cameraqualitytests.dll

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

7-16 Freescale Semiconductor

Use this command line to run the Video Capture Filter Tests:
Tux -o -d vidcaptest.dll

NOTE
Please run camera CTK for Camera1 and Camera2 separately. If run CTK
for Camera1, make sure no BSP environment variable is selected under
CSI1, and when run for Camera2, make sure no BSP environment variable
is selected under CSI0.

Please run camera CTK and CamApp separately. If you want to run CTK,
make sure it runs before CamApp runing, and at that time, no CamApp is
running.

The camera CTK requires some system DLLs and environment variables.
Check that the variables listed below are selected. If these variables are not
selected, select them and Sysgen the image.
SYSGEN_IMAGING_BMP_ENCODE
SYSGEN_IMAGING_JPG_ENCODE
SYSGEN_IMAGING_BMP_DECODE
SYSGEN_IMAGING_JPG_DECODE
SYSGEN_DSHOW_DISPLAY
SYSGEN_DSHOW_CAPTURE
SYSGEN_DSHOW_DMO
SYSGEN_DSHOW_VIDREND

The performance test requires the configuration file capconfig.ini which
specifies what to test. Before testing, copy this file under the corresponding
folder such as \release from the following location:

[Drive]:\Program Files\WindowsEmbeddedCompact7TestKit\tests\target\armv7

For ARD board, Tvin Driver is a special customized camera driver, so CTK
test isn’t needed.

Some CTK Camera Tests fail:

• Camera Performance Certification Tests subcase#201, #300 and #400
failed.

7.6.4.1.2 Running the Custom Camera Application Test

The following command executes the Custom Camera Application:
camapp.exe

Then application will show sensor image on the screen as default by using camera1 preview pin, and
following operations are available: change resolution, rotate image, still image and save it, and so on.

Following commands for dual camera appliciation:

camapp1_preview.exe

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 7-17

camapp2_capture.exe

As default, camapp1_preview.exe will show sensor image on the screen by using camera1 preview pin,
because of using CSI test mode, camapp2_capture.exe will show a chess board on the screen by using
camera2 capture pin.

7.7 Camera Driver API Reference
For the camera driver API reference, see the Windows Embedded Compact 7 documentation. For
reference information on basic camera driver functions, methods, and structures, see the Windows
Embedded Compact 7 Help:

Windows Embedded Compact 7 > Device Drivers > Camera Drivers > Camera Driver Reference.

Camera Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

7-18 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 8-1

Chapter 8
Controller Area Network (CAN) Driver
The CAN module provides the low level functionality of a CAN protocol according to the CAN 2.0B
protocol spec. The CAN module only supports Message Buffer mode.

8.1 CAN Driver Summary
Table 8-1 provides a summary of source code location, library dependencies and other BSP information.

8.2 Supported Functionality
The CAN driver enables the Hardware System to provide the following software and hardware support:

1. Supports the CAN communication protocol
2. Provides a stream interface driver implementing the programming interface defined in this

document
3. Supports two power management modes, full on and full off

8.3 Hardware Operation
Refer to the chapter on CAN in the Multimedia Applications Processor Reference Manual for detailed
operation and programming information.

Table 8-1. CAN Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\CANBUS

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CANBUS

Driver DLL can.dll

SDK Library cansdk.lib

Catalog Item Third Party -> BSP -> Freescale i.MX53 ARD:ARMV7 -> Device Drivers -> CANBUS

SYSGEN Dependency N/A

BSP Environment Variables BSP_CANBUS1=1
BSP_CANBUS2=1

Controller Area Network (CAN) Driver

Windows Embedded Compact 7 BSP Reference Manual

8-2 Freescale Semiconductor

8.3.1 Conflicts with Other Peripherals and Catalog Items

8.3.1.1 Conflicts with SoC Peripherals

No conflicts.

8.3.1.2 Conflicts with ARD Peripherals

No conflicts.

8.4 Software Operation

8.4.1 Communicating with the CAN
The CAN driver is a stream interface driver, and is thus accessed through the file system APIs. To
communicate using the CAN, a handle to the device must first be created using the CreateFile function.
Subsequent commands to the device are issued using the DeviceIoControl function with IOCTL codes
specifying the desired operation. If preferred, the DeviceIoControl function calls can be replaced with
macros that hide the DeviceIoControl call details. The basic steps are detailed below.

8.4.2 Creating a Handle to the CAN
Call the CreateFile function to open a connection to the CAN device. A CAN port must be specified in
this call. The format is “CANX”, with X being the number indicating the CAN port. This number should
not exceed the number of CAN instances on the platform. If an CAN port does not exist, CreateFile
returns ERROR_FILE_NOT_FOUND.

To open a handle to the CAN:
1. Insert a colon after the CAN port for the first parameter, lpFileName. For example, specify CAN1:

as the CAN port.
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an CAN port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open an CAN1 port.
// Open the CAN port.
hCAN = CreateFile (CAN1_FID, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

Controller Area Network (CAN) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 8-3

Before writing to or reading from an CAN port, the port must be configured. When an application opens
an CAN port, it uses the default configuration settings, which might not be suitable for the device at the
other end of the connection.

8.4.3 Configuring the CAN
Configuring the CAN port for communications involves one main operation: setting the CAN for transmit
or receiver mode. Before this action can be taken, a handle to the CAN port must already be opened. Each
of these steps requires a call to the DeviceIoControl function. As parameters, the CAN port handle,
appropriate IOCTL code, and other input and output parameters are required.

To configure an CAN port:
1. Set the hDevice parameter to the previously acquired CAN port handle.
2. Set the dwIoControlCode to the following IOCTL code: CAN_IOCTL_SET_CAN_MODE
3. Set the lpInBuffer to point to the variable to use for the CAN port setting. Set nInBufferSize to the

size of that variable.
4. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

The following code example shows how to configure the CAN port.
// Set CAN mode
 DeviceIoControl(hCAN, // file handle to the driver

CAN_IOCTL_SET_CAN_MODE, // I/O control code
&ChangedMode, // in buffer
sizeof(DWORD) // in buffer size
NULL, // out buffer
0, // out buffer size
NULL, // number of bytes returned
NULL); // ignored (=NULL)

As a substitute for the DeviceIoControl calls above, sdk may be used to simplify the code. The following
code shows an example:
CANSetMode(HANDLE hCAN,DWORD index,CAN_MODE mode);

8.4.4 Data Transfer Operations
The CAN driver provides one command, Transfer, that facilitates performing both reads and writes
through the CAN. The basic unit of data transfer in the CAN driver is the CAN_PACKET, which contains
a buffer for reading or writing data and a flag that specifies whether the desired operation is a Read or a
Write. An array of these packets makes up an CAN_TRANSFER_BLOCK object, which is needed to
perform a Transfer operation. The steps below detail the process of performing write and read operations
through the CAN.

Before these actions can be taken, a handle to the CAN port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the CAN port handle, appropriate IOCTL
code, and other input and output parameters are required.

Controller Area Network (CAN) Driver

Windows Embedded Compact 7 BSP Reference Manual

8-4 Freescale Semiconductor

To perform an CAN transfer:
1. Create an array of CAN_PACKET objects and initialize the fields of each packet as follows:

a) Set the byIndex field to the message buffer index for exchange data, the maximun value is 64.
b) Set the byRW field to CAN_RW_WRITE to specify that the CAN operation is a Write, or

CAN_RW_READ to specify that the CAN operation is a Read.
c) Set the format field to CAN_STANDARD to specify that the CAN frame format is a standard,

or CAN_EXTENDED to specify that the CAN frame format is a extended.
d) Set the frame field to CAN_DATA to specify that the CAN RTR format is a data, or

CAN_REMOTE to specify that the CAN RTR frame format is a remote.
e) Set the ID field to the message buffer ID for exchange data, for standard frame only supports

11 bit frame identification, extended frame can support 29 bit frame identification.
f) Set the wLen field to size, in bytes, of the read or write buffer. This indicates the number of

bytes to write or read.
g) Set the pbybuf field to the read or write buffer.
h) Set the lpiResult field to point to an integer that holds the return value from the write operation.

2. Set the hDevice parameter to the previously acquired CAN port handle.
3. Set the dwIoControlCode to the CAN_IOCTL_TRANSFER IOCTL code.
4. Set the lpInBuffer to point to the CAN_TRANSFER_BLOCK object created in step 1. Set

nInBufferSize to the size of that packet object.
5. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.
6. After calling the DeviceIoControl function, check the lpiResult field to ensure that the operation

was successful. If lpiResult points to the CAN_NO_ERROR value, the operation was successful.
Otherwise, there was an error.

The following code example demonstrates how to perform a transfer that contains one write.
CAN_PACKET cp = {0};
CAN_TRANSFER_BLOCK ctb = {0};

cp.byIndex=(DWORD)lpParameter;
cp.byRW=CAN_RW_READ;
cp.fromat=CAN_EXTENDED;
cp.frame =CAN_DATA;
cp.ID=0x1234456;
cp.wLen=8;
cp.pbyBuf=(PBYTE)data;
cp.lpiResult=&ret;
ctb.pCANPackets=&cp;
ctb.iNumPackets=1;

 // Transfer data via CAN
if (!DeviceIoControl(hCAN, // file handle to the driver
 CAN_IOCTL_TRANSFER, // I/O control code
 pCANTransferBlock, // in buffer
 sizeof(CAN_TRANSFER_BLOCK), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // pointer to number of bytes returned

Controller Area Network (CAN) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 8-5

 NULL)) // ignored (=NULL)
 {
 DEBUGMSG(ZONE_ERROR,
 (TEXT("%s: CAN_IOCTL_TRANSFER failed!\r\n"), __WFUNCTION__));
 return FALSE;
 }

As a substitute for the DeviceIoControl call above, the SDK function as following:
CANTransfer(g_hReader, &ctb);

8.4.5 Closing the Handle to the CAN
Call the CloseHandle function to close a handle to the CAN when an application is done using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the CAN port.

8.4.6 Power Management

8.4.6.1 PowerUp

This function is not implemented for the CAN driver.

8.4.6.2 PowerDown

This function is not implemented for the CAN driver.

8.4.6.3 IOCTL_POWER_CAPABILITIES

The power management capabilities are handled with the Power Manager through this IOCTL. The CA N
module supports only two power states: D0 and D4.

8.4.6.4 IOCTL_POWER_SET

This IOCTL requests a change from one device power state to another. D0 and D4 are the only two
supported CEDEVICE_POWER_STATE in the CAN driver. Any request that is not D0 is changed to a
D4 request and results in the system entering into suspend state, while for a value of D0 the system is
resumed. For all platforms, the following registry entry must be defined:
"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

8.4.6.5 IOCTL_POWER_GET

This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

8.4.7 CAN Registry Settings
The following registry keys are required to properly load the CAN1 and CAN2 module.

Controller Area Network (CAN) Driver

Windows Embedded Compact 7 BSP Reference Manual

8-6 Freescale Semiconductor

IF BSP_CANBUS1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN1]
 "Prefix"="CAN"
 "Dll"="can.dll"
 "Index"=dword:1
 "Order"=dword:9
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"
ENDIF ; BSP_CANBUS1

IF BSP_CANBUS2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN2]
 "Prefix"="CAN"
 "Dll"="can.dll"
 "Index"=dword:2
 "Order"=dword:9
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"
ENDIF ; BSP_CANBUS2

8.5 Unit Test
The CAN unit test cases verify the functionality of the CAN driver with the CAN controller. The CAN
driver can also be used to verify the functionality of the CAN driver.

8.5.1 Unit Test Hardware
The i.MX53 ARD board include CANBUS1 controller and CANBUS2 controller.So we can connected to
the data exchange is tested between the two controller (one Board). The CANBUSs are not connect
directly. An external transceiver on board is needed. The i.MX53 ARD board already contains this
transceiver. The two controller transceiver must be connected by the CAN port (using an serial invert
female-female).

8.5.2 Unit Test Software
Table 8-2 lists the required software to run the unit tests.

8.5.3 Building the Unit Tests
To build the CAN tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the CAN Tests directory: \WINCE700\SUPPORT\TEST\CANBUS\CANApp
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the file to the flat release directory.

Table 8-2. Software Requirements

Requirement Description

CANApp.exe Test file

Controller Area Network (CAN) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 8-7

4. Input build -c to build the CAN test.

After the build completes, the CANApp.exefile is located in the $(_FLATRELEASEDIR) directory.

8.5.4 Running the Unit Tests
On the tested board run the application with this command CANApp.exe -r and CANApp.exe -s

Controller Area Network (CAN) Driver

Windows Embedded Compact 7 BSP Reference Manual

8-8 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-1

Chapter 9
Chip Support Package Driver Development Kit (CSPDDK)
The Chip Support Package Driver Development Kit (CSPDDK) provides an interface to access peripheral
features and SOC configurations shared by the system. The CSPDDK executes as a device driver DLL
and exports functions for the following SCC components:

• System clocking (CCM)
• GPIO
• DMA (SDMA)
• Pin multiplexing and pad configuration (IOMUX)

9.1 CSPDDK Driver Summary
Table 9-1 provides a summary of source code location, library dependencies and other BSP information.

9.2 Supported Functionality
The CSPDDK meets the following requirements:

1. Supports an interface that allows synchronized inter-process access to the following set of shared
SoC resources:
— GPIO (DDK_GPIO)
— SDMA (DDK_SDMA)
— IOMUX (DDK_IOMUX)

Table 9-1. CSPDDK Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFROM\COMMON\SRC\SOC\COMMON_FSL_V3\CSPDDK

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPDDK

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CSPDDK

Driver DLL cspddk.dll

SDK Library N/A

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOCSPDDK=

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-2 Freescale Semiconductor

— CCM (DDK_CLK)
2. Exposes exported functions that can be invoked without incurring a system call (for example, not

a stream driver)

9.3 Hardware Operation
Refer to the i.MX53 Applications Processor Reference Manual for detailed operation and programming
information.

9.3.1 Conflicts with Other Peripherals and Catalog Items

9.3.1.1 Conflicts with SoC Peripherals

Refer to the i.MX53 Applications Processor Reference Manual for possible conflicts

9.3.1.2 Conflicts with Board Peripherals

No conflicts.

9.4 Software Operation

9.4.1 Communicating with the CSPDDK
The CSPDDK DLL does not require any special initialization. All of the initialization required by the
CSPDDK is performed when the DLL is loaded into the respective process space. Drivers that want to
utilize the CSPDDK simply need to link to the CSPDDK export library and invoke the exported functions.

9.4.2 Compile-Time Configuration Options
The CSPDDK exposes compile-time options for configuring the SDMA support. In some cases, these
compilation variables are also leveraged by driver code to expose a central point of controlling SDMA
functionality. Table 9-2 describes the available CSPDDK compile options.

Table 9-2. CSPDDK Configurable Options

Compilation Variable Header File Description

IMAGE_WINCE_DDKSDMA_IRAM_PA_START image_cfg.h Physical starting address in internal RAM (IRAM) where the shared
SDMA data structures are located.

IMAGE_WINCE_DDKSDMA_IRAM_OFFSET image_cfg.h Offset in bytes from the base of IRAM for the SDMA data
structures.

IMAGE_WINCE_DDKSDMA_IRAM_SIZE image_cfg.h Size in bytes of the IRAM reserved for SDMA data structures.

IMAGE_WINCE_CSPDDK_RAM_PA_START image_cfg.h Physical starting address in external RAM where the shared
CSPDDK data structures are located. The DDK_CLK and
DDK_SDMA uses space from this region. This address must
correspond to the region reserved in config.bib.

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-3

The CSPDDK manages the allocation of buffer descriptor chains for drivers and applications. The
allocation scheme first attempts to allocate the buffer descriptor chain from a fixed memory pool within
the region specified by BSP_SDMA_MC0PTR. If the CSPDDK is unable to allocate enough storage from
this fixed pool, it dynamically allocates the necessary storage from external memory.

To decrease power consumption in system uses cases such as audio playback, it is beneficial to configure
BSP_SDMA_MC0PTR to point to a reserved internal RAM (IRAM) region and allocate the audio buffers
in IRAM. This configuration does not require external memory cycles in the data flow from the audio
buffers to the SSI and allows the CSPDDK to utilize EMI clock gating to significantly reduce the power
consumption. Refer to Chapter 5, “Audio Drivers“,” for more information on configuring audio DMA
support.

IMAGE_WINCE_CSPDDK_RAM_OFFSET image_cfg.h Offset in bytes from the base of external RAM for the shared
CSPDDK data structures.

IMAGE_WINCE_CSPDDK_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for CSPDDK data
structures. This size must correspond to the region reserved in
config.bib.

IMAGE_WINCE_DDKSDMA_RAM_PA_START image_cfg.h Physical starting address in external RAM where the shared
DDK_SDMA data structures are located. This starting address must
fall within the region reserved by the IMAGE_WINCE_CSPDDK
definitions.

IMAGE_WINCE_DDKSDMA_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for DDK_SDMA data
structures. This size must fall within the region reserved by the
IMAGE_WINCE_CSPDDK definitions.

IMAGE_WINCE_DDKCLK_RAM_PA_START image_cfg.h Physical starting address in external RAM where the shared
DDK_CLK data structures are located. This starting address must
fall within the region reserved by the IMAGE_WINCE_CSPDDK
definitions.

IMAGE_WINCE_DDKCLK_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for DDK_CLK data
structures. This size must fall within the region reserved by the
IMAGE_WINCE_CSPDDK definitions.

BSP_SDMA_MC0PTR bsp_cfg.h Starting address for the shared SDMA data structures.Set to
IMAGE_WINCE_IRAM_SDMA_PA_START to use internal RAM
or IMAGE_WINCE_DDKSDMA_PA_START to use external
RAM.

BSP_SDMA_CHNPRI_xxx bsp_cfg.h Assigns a SDMA channel priority to the respective peripheral. Refer
to the individual driver chapters for more information on the specific
priorities.

BSP_SDMA_SUPPORT_xxx bsp_cfg.h Boolean to specifies if SDMA-based transfers are enabled for each
respective peripheral. Refer to the individual driver chapters for
more information on the DMA support provided.

Table 9-2. CSPDDK Configurable Options (continued)

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-4 Freescale Semiconductor

9.4.3 Registry Settings
There are no registry settings that need to be modified to use the CSPDDK driver. Since most drivers need
to use CSPDDK functionality, the CSPDDK should be one of the first DLLs loaded by Device Manager.

9.4.4 Power Management
The CSPDDK exposes interfaces that allow drivers to self-manage power consumption by controlling
clocking and pin configuration. The CSPDDK executes as a shared DLL and does not implement the
Power Manager driver IOCTLs or the PowerUp/PowerDown stream interface. However, the CSPDDK
functions are invoked by other drivers during power state transitions.

9.5 Unit Test
Due to the heavy use of the CSPDDK routines by other drivers on the system, the CSPDDK tests are
currently limited to testing the interface exposed by the DDK_SDMA.

9.5.1 Unit Test Hardware
Table 9-3 lists the required hardware to run the unit tests.

9.5.2 Unit Test Software
Table 9-4 lists the required software to run the unit tests.

9.5.3 Building the Unit Tests
To build the CSPDDK tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

Table 9-3. Hardware Requirements

Requirement Description

No additional hardware required

Table 9-4. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Ktux.dll Required to run tests in kernel mode

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target
device and the development workstation

SDMATEST.dll Test .dll file

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-5

2. Change to the SDMA Tests directory: \WINCE700\SUPPORT\TEST\SDMA
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the DLL to the flat release directory.
4. Input build -c to build the CSPDDK test.

After the build completes, the SDMATEST.dll file is located in the $(_FLATRELEASEDIR) directory.

9.5.4 Running the Unit Tests
The command line for running the DDK_SDMA tests is tux –o –d SDMATEST -n. The CSPDDK_SDMA
tests do not contain any test-specific command line options. Table 9-5 describes the test cases contained
in the DDK_SDMA tests.

9.6 CSPDDK DLL Reference

9.6.1 CSPDDK DLL System Clocking (DDK_CLK) Reference
The DDK_CLK interface allows device drivers to configure and query system clock settings.

9.6.1.1 DDK_CLK Enumerations

Table 9-5. DDK_SDMA Test Cases

Test Case Description

SDMA Open/Close Channel Tests open/close operation of the SDMA virtual channels. Attempts to open all available channels
and verify that the correct virtual channel ID is returned. All successfully opened channels are
then closed.

SDMA ExtMemory-to-ExtMemory Tests the SDMA ability to perform a external memory to external memory transfer. A virtual
channel is requested and then DMA buffers are used to define a memory transfer. The transfer is
done in both directions and the results are verified. This transfer is interrupt-driven and uses the
standard OAL interrupt registration procedures normally used by device drivers.

Table 9-6. DDK_CLK Enumerations

Programming Element Description

DDK_CLOCK_SIGNAL Clock signal name for querying/setting clock configuration

DDK_CLOCK_GATE_INDEX Index for referencing the corresponding clock gating control bits in the CCM

DDK_CLOCK_GATE_MODE Clock gating modes supported by CCM clock gating registers

DDK_CLOCK_BAUD_SOURCE Input source for baud clock generation

DDK_CLOCK_CKO1_SRC Clock output source one (CKO1) signal selections

DDK_CLOCK_CKO2_SRC Clock output source two (CKO2) signal selections

DDK_CLOCK_CKO_DIV Clock output source (CKO) divider selections

DDK_CLOCK_OVERRIDE_ENABLE_INDEX Index for referencing the corresponding clock enable signal to be overridden

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-6 Freescale Semiconductor

9.6.1.2 DDK_CLK Functions

9.6.1.2.1 DDKClockSetGatingMode

This function sets the clock gating mode of the peripheral.
BOOL DDKClockSetGatingMode(

DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE mode)

Parameters
index [in] Index for referencing the peripheral clock gating control bits
mode [in] Requested clock gating mode for the peripheral
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.2 DDKClockGetGatingMode

This function retrieves the clock gating mode of the peripheral.
BOOL DDKClockGetGatingMode(

DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE *pMode)

Parameters
index [in] Index for referencing the peripheral clock gating control bits
pMode [out] Current clock gating mode for the peripheral
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.3 DDKClockGetFreq

This function retrieves the clock frequency in Hz for the specified clock signal.
BOOL DDKClockGetFreq(

DDK_CLOCK_SIGNAL sig,
UINT32 *freq)

Parameters
sig [in] Clock signal
freq [out] Current frequency in Hz
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.4 DDKClockSetFreq

This function sets the clock frequency in Hz for the specified clock signal.
BOOL DDKClockSetFreq(

DDK_CLOCK_OVERRIDE_MODE Clock enable signal override mode supported by CCM Enable Override Register

DDK_CLOCK_BRM_INDEX Index for BRM

DDK_DVFC_SETPOINT Frequency/voltage setpoints supported by the DVFC driver

Table 9-6. DDK_CLK Enumerations (continued)

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-7

DDK_CLOCK_SIGNAL sig,
UINT32 freq)

Parameters
sig [in] Clock signal
freq [in] Requested frequency in Hz
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.5 DDKClockConfigBaud

This function configures the input source clock and dividers for the specified CCM peripheral baud clock
output.

BOOL DDKClockConfigBaud(
DDK_CLOCK_SIGNAL sig,
DDK_CLOCK_BAUD_SOURCE src,
UINT32 preDiv,
UINT32 postDiv)

Parameters
sig [in] Clock signal to configure
src [in] Selects the input clock source
preDiv [in] Specifies the value programmed into the baud clock predivider
postDiv [in] Specifies the value programmed into the baud clock postdivider
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.6 DDKClockSetCKO1

This function configures the clock output source 1 (CKO1) signal.
BOOL DDKClockSetCKO1(

BOOL bEnable,
DDK_CLOCK_CKO1_SRC index,
DDK_CLOCK_CKO_DIV div)

Parameters
bEnable [in] Set to TRUE to enable CKO1 output; set to FALSE to disable CKO1 output
index [in] Selects the CKO1 source signal
div [in] Specifies the CKO1 divide factor
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.7 DDKClockSetCKO2

This function configures the clock output source 2 (CKO2) signal.
BOOL DDKClockSetCKO2(

BOOL bEnable,
DDK_CLOCK_CKO2_SRC index,
DDK_CLOCK_CKO_DIV div)

Parameters
bEnable [in] Set to TRUE to enable CKO2 output; set to FALSE to disable CKO2 output

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-8 Freescale Semiconductor

index [in] Selects the CKO2 source signal
div [in] Specifies the CKO2 divide factor
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.8 DDKClockSetOverride

This function sets the override mode for clock enable mode.
BOOL DDKClockSetOverride(

DDK_CLOCK_OVERRIDE_ENABLE_INDEX index,
DDK_CLOCK_OVERRIDE_MODE mode)

Parameters
index [in] Index for referencing the clock enable signal
mode [in] Requested override mode for the clock enable signal
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.9 DDKClockGetOverride

This function gets the override mode for clock enable mode.
BOOL DDKClockGetOverride(

DDK_CLOCK_OVERRIDE_ENABLE_INDEX index,
DDK_CLOCK_OVERRIDE_MODE *mode)

Parameters
index [in] Index for referencing the clock enable signal
pMode [out] Pointer to the buffer to save current override model for clock enable signal
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.10 DDKClockSetBRM

This function setting BRM value.
BOOL DDKClockSetBRM(

DDK_CLOCK_BRM_INDEX index,
UINT32 brmVal)

Parameters
index [in] Specifies the clock to set BRM value
brmVal [in] Value of BRM.
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.11 DDKClockGetBRM

This function retrieve the BRM Setting Value
BOOL DDKClockGetBRM(

DDK_CLOCK_BRM_INDEX index,
UINT32 *pbrmVal)

Parameters
index [in] Specifies the clock to set BRM value

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-9

pbrmVal [out] Point to Value of BRM
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.12 DDKClockSetpointRequest

This function requests the DVFC driver to transit to a setpoint that meets or exceeds the voltage and
clocking requirements of the setpoint being requested. This function optionally blocks until the setpoint
request has been granted.

BOOL DDKClockSetpointRequest(
DDK_DVFC_SETPOINT setpoint,
DDK_DVFC_DOMAIN domain,
BOOL bBlock)

Parameters
setpoint [in] Specifies the setpoint to be requested
domain [in] Specifies DVFC domain for which the setpoint is requested
bBlock [in] Set TRUE to block until the setpoint has been granted; set FALSE to return

immediately after the request has been submitted
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.13 DDKClockSetpointRelease

This function releases a setpoint previously requested using DDKClockSetpointRequest.
BOOL DDKClockSetpointRelease(

DDK_DVFC_SETPOINT setpoint,
DDK_DVFC_DOMAIN domain)

Parameters
setpoint [in] Specifies the setpoint to be released
domain [in] Specifies DVFC domain for which the setpoint is requested
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.1.2.14 DDKClockGetSharedConfig

This function obtains a reference to the global shared clock configuration data structure. This is intended
to be used by the DVFC driver.

PDDK_CLK_CONFIG DDKClockGetSharedConfig(VOID)
Parameters None
Return Values Returns a pointer to the clock configuration data structure

9.6.1.2.15 DDKClockLock

This function requests a lock of the global shared clock configuration data structure.
VOID DDKClockLock(VOID)

Parameters None
Return Values None

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-10 Freescale Semiconductor

9.6.1.2.16 DDKClockUnLock

This function releases a lock of the global shared clock configuration data structure.
VOID DDKClockUnLock(VOID)

Parameters None
Return Values None

9.6.1.3 DDK_CLK Examples
Example 9-1. CSPDDK Clock Gating

#include “csp.h” // Includes CSPDDK definitions

// Enable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_ENABLED_ALL);

// Disable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_DISABLED);

Example 9-2. CSPDDK Clock Rate Query

#include “csp.h” // Includes CSPDDK definitions

UINT32 freq;

// Query the current bus clock
DDKClockGetFreq(DDK_CLOCK_SIGNAL_AHB, &freq);

9.6.2 CSPDDK DLL GPIO (DDK_GPIO) Reference
The DDK_GPIO interface allows device drivers to utilize the GPIO ports. Each GPIO port has a single
interrupt request line that is shared for all port pins. In addition, configuration, status, and data registers
are shared. The DDK_GPIO provides safe access to the shared GPIO resources.

9.6.2.1 DDK_GPIO Enumerations

9.6.2.2 DDK_GPIO Functions

9.6.2.2.1 DDKGpioSetConfig

This function sets the GPIO configuration (direction and interrupt) for the specified pin.

Table 9-7. DDK_GPIO Enumerations

Programming Element Description

DDK_GPIO_PORT GPIO module instance

DDK_GPIO_DIR Direction the GPIO pins

DDK_GPIO_INTR Detection logic used for generating GPIO interrupts

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-11

BOOL DDKGpioSetConfig(
DDK_GPIO_PORT port,
UINT32 pin,
DDK_GPIO_DIR dir,
DDK_GPIO_INTR intr)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0-31]
dir [in] Direction for the pin
intr [in] Interrupt configuration for the pin
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.2.2.2 DDKGpioWriteData

This function writes the GPIO port data to the specified pins.
BOOL DDKGpioWriteData(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 data)

Parameters
port [in] GPIO module instance
portMask [in] Bit mask for data port pins to be written
data [in] Data to be written
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.2.2.3 DDKGpioWriteDataPin

This function writes the GPIO port data to the specified pin.
BOOL DDKGpioWriteDataPin(

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 data)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0-31]
data [in] Data to be written [0 or 1]
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.2.2.4 DDKGpioReadData

This function reads the GPIO port data from the specified pins.
BOOL DDKGpioReadData(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 *pData)

Parameters

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-12 Freescale Semiconductor

port [in] GPIO module instance
portMask [in] Bit mask for data port pins to be read
pData [out] Points to buffer for data read
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.2.2.5 DDKGpioReadDataPin

This function reads the GPIO port data from the specified pin.
BOOL DDKGpioReadDataPin (

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 *pData)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0–31]
pData [out] Points to buffer for data read; data is shifted to the LSB
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.2.2.6 DDKGpioReadIntr

This function reads the GPIO port interrupt status for the specified pins.
BOOL DDKGpioReadIntr(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 *pStatus)

Parameters
port [in] GPIO module instance
portMask [in] Bit mask for interrupt status bits to be read
pStatus [out] Points to buffer for interrupt status
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.2.2.7 DDKGpioReadIntrPin

This function reads the GPIO port interrupt status from the specified pin.
BOOL DDKGpioReadIntrPin(

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 *pStatus)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0–31]
pStatus [out] Points to buffer for interrupt status; status is shifted to the LSB
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-13

9.6.2.2.8 DDKGpioClearIntrPin

This function clears the GPIO interrupt status for the specified pin.
BOOL DDKGpioClearIntrPin(

DDK_GPIO_PORT port,
UINT32 pin)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0–31]
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.2.3 DDK_GPIO Example
Example 9-3. CSPDDK GPIO Configuration

#include “csp.h” // Includes CSPDDK definitions

// Configure GPIO1_3 as a level-sensitive interrupt input
DDKGpioSetConfig(DDK_GPIO_PORT1, 3, DDK_GPIO_DIR_IN, DDK_GPIO_INTR_HIGH_LEV);

// Clear interrupt status for GPIO1_3
DDKGpioClearIntrPin(DDK_GPIO_PORT1, 3);

9.6.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference
The DDK_IOMUX interface allows device drivers to configure signal multiplexing and pad configuration.
This control resides inside the IOMUX registers and is shared for the entire system. The DDK_IOMUX
support allows drivers to dynamically update and query their signal multiplexing and pad configuration.

9.6.3.1 DDK_IOMUX Enumerations
Table 9-8. DDK_IOMUX Enumerations

Programming Element Description

DDK_IOMUX_PIN Functional pin name used to configure the IOMUX. The enum value corresponds to the index to
the SW_MUX_CTL registers

DDK_IOMUX_PIN_MUXMODE Mux mode for a signal

DDK_IOMUX_PIN_SION Configuration on Software Input On Field to force the selected mux mode Input path no matter of
mux mode functionality. If no SION bit for a PIN, the DDK_IOMUX_PIN_SION_NULL should
be set

DDK_IOMUX_PAD Functional pad name used to configure the IOMUX. The enum value corresponds to the bit offset
within the SW_PAD_CTL registers

DDK_IOMUX_PAD_SLEW Slew rate for a pad; if no SLEW bit for a PAD, the DDK_IOMUX_PAD_SLEW_NULL should be
set

DDK_IOMUX_PAD_DRIVE Drive strength for a pad; if no DRIVE bit for a PAD, the DDK_IOMUX_PAD_DRIVE_NULL
should be set.

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-14 Freescale Semiconductor

9.6.3.2 DDK_IOMUX Functions

9.6.3.2.1 DDKIomuxSetPinMux

This function sets the IOMUX configuration for the specified IOMUX pin.
BOOL DDKIomuxSetPinMux(

DDK_IOMUX_PIN pin,
DDK_IOMUX_PIN_MUXMODE muxmode,
DDK_IOMUX_PIN_SION sion)

Parameters
pin [in] Functional pin name used to select the pin that is configured
muxmode [in] Mux mode configuration
sion [in] Sion configuration
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.3.2.2 DDKIomuxGetPinMux

This function gets the IOMUX configuration for the specified IOMUX pin.
BOOL DDKIomuxGetPinMux(

DDK_IOMUX_PIN pin,
DDK_IOMUX_PIN_MUXMODE *pMuxmode,
DDK_IOMUX_PIN_SION *pSion)

Parameters
pin [in] Functional pin name used to select the pin that is returned
pMuxmode [out] Mux mode configuration
pSion [out] Sion configuration
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.3.2.3 DDKIomuxSetPadConfig

This function sets the IOMUX pad configuration for the specified IOMUX pin.

DDK_IOMUX_PAD_OPENDRAIN Open drain for a pad; if no ODE bit for a PAD, the DDK_IOMUX_PAD_OPENDRAIN_NULL
should be set

DDK_IOMUX_PAD_INMODE Specifies the CMOS/open drain mode for a pad; if no DDR_INPUT bit for a PAD, the
DDK_IOMUX_PAD_INMODE_NULL should be set

DDK_IOMUX_PAD_HYSTERESIS Hysteresis mode for a pad; if no HYS bit for a PAD, the
DDK_IOMUX_PAD_HYSTERESIS_NULL should be set

DDK_IOMUX_PAD_OUTVOLT Specifies the output voltage mode for a pad; if no HVE bit for a PAD, the
DDK_IOMUX_PAD_OUTVOL_NULL should be set

DDK_IOMUX_PAD_PULL Pull-up/pull-down/keeper configuration for a pad

DDK_IOMUX_SELECT_INPUT Functional pad name to be selected and involved in Daisy Chain

Table 9-8. DDK_IOMUX Enumerations (continued)

Programming Element Description

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-15

BOOL DDKIomuxSetPadConfig(
DDK_IOMUX_PAD pad,
DDK_IOMUX_PAD_SLEW slew,
DDK_IOMUX_PAD_DRIVE drive,
DDK_IOMUX_PAD_OPENDRAIN openDrain,
DDK_IOMUX_PAD_PULL pull,
DDK_IOMUX_PAD_HYSTERESIS hysteresis,
DDK_IOMUX_PAD_INMODE inputMode,
DDK_IOMUX_PAD_OUTVOLT outputVol)

Parameters
pad [in] Functional pad name used to select the pad that is configured
slew [in] Slew rate configuration
drive [in] Drive strength configuration
openDrain [in] Open drain configuration
pull [in] Pull-up/pull-down/keeper configuration
hysteresis [in] Hysteresis configuration
inputMode [in] Input mode (CMOS/DDR) configurationoutputVolt[in] Output voltage

configuration
Return Values Returns TRUE if successful, otherwise returns FALSE.

9.6.3.2.4 DDKIomuxGetPadConfig

This function gets the IOMUX pad configuration for the specified IOMUX pad.
BOOL DDKIomuxSetPadConfig(

DDK_IOMUX_PAD pad,
DDK_IOMUX_PAD_SLEW *pSlew,
DDK_IOMUX_PAD_DRIVE *pDrive,
DDK_IOMUX_PAD_OPENDRAIN *pOpenDrain,
DDK_IOMUX_PAD_PULL *pPull,
DDK_IOMUX_PAD_HYSTERESIS *pHysteresis,
DDK_IOMUX_PAD_INMODE *pInputMode,DDK_IOMUX_PAD_OUTVOLT *pOutputVol)

Parameters
pad [in] Functional pad name used to select the pad that is configured
pSlew [out] Slew rate configuration
pDrive [out] Drive strength configuration
pOpenDrain [out] Open drain configuration
pPull [out] Pull-up/pull-down/keeper configuration
pHysteresis [out] Hysteresis configuration
pInputMode [out] Input mode (CMOS/DDR) configurationpOutputVolt[out] Output voltage

configuration
Return Values Returns TRUE if successful, otherwise returns FALSE.

9.6.3.2.5 DDKIomuxSetGpr0

This function writes a value into IOMUX GPR0.

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-16 Freescale Semiconductor

BOOL DDKIomuxSetGpr0(UINT32 data)
Parameters
data [in] Data to be written
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.3.2.6 DDKIomuxGetGpr0

This function read a value from IOMUX GPR0.
UINT32 DDKIomuxGetGpr0(VOID)

Return Values Returns IOMUX GPR0 value

9.6.3.2.7 DDKIomuxSetGpr1

This function writes a value into IOMUX GPR1.
BOOL DDKIomuxSetGpr1(UINT32 data)

Parameters
data [in] Data to be written
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.3.2.8 DDKIomuxGetGpr1

This function read a value from IOMUX GPR1.
UINT32 DDKIomuxGetGpr1(VOID)

Return Values Returns IOMUX GPR1 value

9.6.3.2.9 DDKIomuxSetGpr2

This function writes a value into IOMUX GPR2.
BOOL DDKIomuxSetGpr2(UINT32 data)

Parameters
data [in] Data to be written
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.3.2.10 DDKIomuxGetGpr2

This function read a value from IOMUX GPR2.
UINT32 DDKIomuxGetGpr2(VOID)

Return Values Returns IOMUX GPR2value

9.6.3.2.11 DDKIomuxSelectInput

This function writes a daisy value into the IOMUX SELECT_INPUT register to select the pad that is the
input to the port.

BOOL DDKIomuxSelectInput(
DDK_IOMUX_SELEIN port,
UINT32 daisy)

Parameters

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-17

port [in] Port to select input
daisy [in] Data to be written
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.3.3 DDK_IOMUX Examples
Example 9-4. CSPDDK IOMUX Signal Multiplexing

#include “csp.h” // Includes CSPDDK definitions

// Configure the signal multiplexing for GPIO1_5. The ALT0 mux mode is configured
// and the regular sion is assigned for the GPIO1_5 ot the GPIO module.
DDKIomuxSetPinMux(DDK_IOMUX_PIN_GPIO1_5, DDK_IOMUX_PIN_MUXMODE_ALT0,
DDK_IOMUX_PIN_SION_REGULAR);

Example 9-5. CSPDDK IOMUX Pad Configuration

#include “csp.h” // Includes CSPDDK definitions

// Configure the GPIO1_5 pad for the following configuration: fast slew rate,
// high drive strength, and remainder fields are invalid for GPIO1_5.
DDKIomuxSetPadConfig(DDK_IOMUX_PIN_GPIO1_5, DDK_IOMUX_PAD_SLEW_FAST,
DDK_IOMUX_PAD_DRIVE_HIGH, DDK_IOMUX_PAD_OPENDRAIN_NULL, DDK_IOMUX_PAD_PULL_NULL,
DDK_IOMUX_PAD_HYSTERESIS_NULL, DDK_IOMUX_PAD_INMODE_NULL,
DDK_IOMUX_PAD_OUTPUT_NULL);

9.6.4 CSPDDK DLL SDMA (DDK_SDMA) Reference
The DDK_SDMA interface allows device drivers to allocate, configure, and control shared SDMA
resources.

9.6.4.1 DDK_SDMA Enumerations

9.6.4.2 DDK_SDMA Functions

9.6.4.2.1 DDKSdmaOpenChan

This function attempts to find an available virtual SDMA channel that can be used to support a
memory-to-memory, peripheral-to-memory, or memory-to-peripheral transfers.

UINT8 DDKSdmaOpenChan(
DDK_DMA_REQ dmaReq,

Table 9-9. DDK_SDMA Enumerations

Programming Element Description

DDK_DMA_ACCESS Width of the data for a peripheral DMA transfer

DDK_DMA_FLAGS Mode flags within the DMA buffer descriptor

DDK_DMA_REQ DMA request used to trigger SDMA channel execution

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-18 Freescale Semiconductor

UINT8 priority)
Parameters
dmaReq [in] Specifies the DMA request that is bound to a virtual channel
priority [in] Priority assigned to the opened channel
Return Values Returns a non-zero virtual channel index if successful, otherwise returns 0

9.6.4.2.2 DDKSdmaUpdateSharedChan

This function allows a channel that has multiple DMA requests combined into a shared DMA event to be
reconfigured for one of the alternate DMA requests.

BOOL DDKSdmaUpdateSharedChan(
UINT8 chan,
DDK_DMA_REQ dmaReq)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
dmaReq [in] Specifies the DMA request that is bound to a virtual channel
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.4.2.3 DDKSdmaCloseChan

This function closes a virtual DMA channel previously opened by DDKSdmaOpenChan.
BOOL DDKSdmaCloseChan(

UINT8 chan)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan function
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.4.2.4 DDKSdmaAllocChain

This function allocates a chain of buffer descriptors for a virtual DMA channel.
BOOL DDKSdmaAllocChain(

UINT8 chan,
UINT32 numBufDesc)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
numBufDesc [in] Number of buffer descriptors to be allocated for the chan
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.4.2.5 DDKSdmaFreeChain

This function frees a chain of buffer descriptors previously allocated with DDKSdmaAllocChain.
BOOL DDKSdmaFreeChain(

UINT8 chan)
Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-19

Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.4.2.6 DDKSdmaSetBufDesc

This function configures a buffer descriptor for a DMA transfer.
BOOL DDKSdmaSetBufDesc(

UINT8 chan,
UINT32 index,
UINT32 modeFlags,
UINT32 memAddr1PA,
UINT32 memAddr2PA,
DDK_DMA_ACCESS dataWidth,
UINT16 numBytes)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan.
index [in] Index of buffer descriptor within the chain to be configured.
modeFlags [in] Specifies the buffer descriptor mode word flags that control the continue,

wrap, and interrupt settings
memAddr1PA [in] For memory-to-memory transfers, this parameter specifies the physical

memory source address for the transfer. For memory-to-peripheral transfers, this
parameter specifies the physical memory source address for the transfer. For
peripheral-to-memory transfers, this parameter specifies the physical memory
destination address for the transfer

memAddr2PA [in] Used only for memory-to-memory transfers to specify the physical memory
destination address for the transfer. Ignored for memory-to-peripheral and
peripheral-to-memory transfers

dataWidth [in] Used only for memory-to-peripheral and peripheral-to-memory transfers to
specify the width of the data for the peripheral transfer. Ignored for
memory-to-memory transfers

numBytes [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.4.2.7 DDKSdmaGetBufDescStatus

This function retrieves the status of the done and error bits from a single buffer descriptor within of a chain.
BOOL DDKSdmaGetBufDescStatus(

UINT8 chan,
UINT32 index,
UINT32 *pStatus)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
index [in] Index of buffer descriptor within the chain
pStatus [in] Points to a buffer that is filled with the status of the buffer descriptor
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-20 Freescale Semiconductor

9.6.4.2.8 DDKSdmaGetChainStatus

This function retrieves the status of the done and error bits from all of the buffer descriptors of a chain.
BOOL DDKSdmaGetChainStatus(

UINT8 chan,
UINT32 *pStatus)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
pStatus [in] Points to an array filled with the status of each buffer descriptor in the chain
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.4.2.9 DDKSdmaClearBufDescStatus

This function clears the status of the done and error bits within the specified buffer descriptor.
BOOL DDKSdmaClearBufDescStatus(

UINT8 chan,
UINT32 index)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
index [in] Index of buffer descriptor within the chain
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.4.2.10 DDKSdmaClearChainStatus

This function clears the status of the done and error bits within all of the buffer descriptors of a chain.
BOOL DDKSdmaClearChainStatus(

UINT8 chan)
Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.4.2.11 DDKSdmaInitChain

This function initializes a buffer descriptor chain and the context for a channel. It should be invoked when
before a virtual DMA channel is initially started, and when the DMA channel is stopped and restarted.

BOOL DDKSdmaInitChain(
UINT8 chan,
UINT32 waterMark)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
waterMark [in] Specifies the watermark level used by the peripheral to generate a DMA

request. This parameter tells the DMA how many transfers to complete for each
assertion of the DMA request. Ignored for memory-to-memory transfers

Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 9-21

9.6.4.2.12 DDKSdmaStartChan

This function starts the specified channel.
BOOL DDKSdmaStartChan(

UINT8 chan)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

9.6.4.2.13 DDKSdmaStopChan

This function stops the specified channel.
BOOL DDKSdmaStopChan(

UINT8 chan,
BOOL bKill)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
bKill [in] Set TRUE to terminate the channel if it is actively running. Set FALSE to

allow the channel to continue running until it yields
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded Compact 7 BSP Reference Manual

9-22 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-1

Chapter 10
Display Driver for IPUv3
The Windows Embedded Compact 7 BSP display driver is based on the Microsoft DirectDraw Graphics
Primitive Engine (DDGPE) classes and supports the Microsoft DirectDraw interface. This driver
combines the functionality of a standard LCD display with DirectDraw support. The display driver
interfaces with the Image Processing Unit v3 (IPUv3).

The MX53 ARD supports the following display types:
• Toshiba XGA LVDS panel
• HannStar XGA LVDS panel
• VGA analog output
• D1 TV Output following the NTSC or PAL television standard
• 720p TV Output following the 720p60 or 720p50 television standard
• 1080i TV Output following the 1080i30 television standard

10.1 Display Driver Summary
Table 10-1 identifies the source code location, library dependencies and other BSP information.

Table 10-1. Display Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\IPUV3\DISPLAY

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SoC>\IPUV3\DISPLAY

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\IPUV3\DISPLAY

Driver DLL ddraw_ipu.dll

SDK Library N/A

Catalog Items
Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > Display > Display
Port0 > IPU Support for the LVDS1 Panel
Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > Display > Display
Port1 > IPU Support for the LVDS2 Panel
Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > Display > Display
Port1 > IPU Support for VGA output
Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > Display > Display
Port1 > TVE Output Support

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-2 Freescale Semiconductor

10.2 Supported Functionality
The display driver provides the following software and hardware support:

1. Variety of display types and resolutions (see Section 10.3.2, “Display Configurations.”)
2. Dual simultaneous output for two display devices (see Section 10.4.3.2, “Dual Display Support.”)
3. RGB565, RGB888 and RGB8888 frame buffer pixel format
4. DirectDraw Hardware Abstraction Layer (DDHAL)
5. Up to three overlay surfaces
6. One overlay surface on each display when two displays are on (two active overlay surfaces total)
7. Video overlays containing image data in any of the following FOURCC pixel formats:

— RGB565
— UYVY
— YV12
— NV12

8. Hardware-accelerated color space conversion in video overlays
9. Hardware-accelerated image resizing in video overlays, resizing ratios ranging from 1:8 to 1000:1
10. Overlay surface color keying
11. Alpha blending with an overlay surface, through use of a global alpha value
12. Alpha blending with an overlay surface containing per-pixel alpha data (only ARGB8888 format)
13. Cropping of an overlay surface
14. Screen rotation of 0°, 90°, 180°, or 270°
15. Gamma correction support for dumb display device (DVI, LVDS)
16. De-interlacing of a video overlay
17. CVBS, S-Video, YPbPr and RGB TV output mode

The following limitations apply to the display driver overlay support:
1. The dimensions of the overlay surface may not exceed 2048x2048
2. The width of the overlay surface must conform to an 8-pixel alignment restriction
3. The minimum width (or height if screen is rotated) of an overlay surface is 8 pixels
4. The minimum height (or width if screen is rotated) of an overlay surface is 8 pixels
5. Overlays are not supported when using a rotated screen with a resolution larger than 1024×768

SYSGEN Dependency SYSGEN_DDRAW=1

BSP Environment Variables BSP_NODISPLAY=
BSP_DISPLAY_LVDS1 = 1 for LVDS Panel on display port 0
BSP_DISPLAY_LVDS2 = 1 for LVDS Panel on display port 1
BSP_DISPLAY_VGA = 1 for VGA Output
BSP_DISPLAY_TVE = 1 for TV Encoder support

Table 10-1. Display Driver Summary (continued)

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-3

6. When using the cropping feature, the x coordinate position must conform to the 8-pixel alignment
restriction

7. When using the cropping feature with a surface using the YV12 pixel format, the x coordinate
position must conform to 16-pixel alignment restriction and the y coordinate position must
conform to 4-pixel alignment restriction

8. For a display using interlaced output (for example NTSC/PAL TV), the target overlay surface must
have an even surface height

9. The area of overlay surface must be divisible by 32 for YV12 format

While the display driver is in output mode whose resolution is larger than 1024x1024, the following
supported features become unavailable due to the limited bandwidth and increased system loading
associated with these modes:

• Dual simultaneous output to an LCD
• Support for more than one active overlay surface
• Screen rotation of 90°, 180°, or 270°
• Cropping of an overlay surface

10.3 Hardware Operation
For operation and programming information, see the chapter on the IPUv3 in the i.MX53Applications
Processor Reference Manual.

10.3.1 IPUv3 Overview
The low-level operation of the display driver is based on the IPUv3. The IPUv3 is broken down into
functional submodules. The following list describes the function each of these submodules:

• Control Module (CM)—Provides control and synchronization for the entire IPUv3
• Image DMA Controller (IDMAC)—Transfers data to and from system memory
• Display Processor (DP)—Performs the processing required for data sent to display, including color

space conversion and image combining
• Image Converter (IC)—Performs resizing, color conversion, combining with graphics, and

horizontal inversion
• Image Rotator (IRT)—Performs rotation (90° or 180°) and inversion (vertical or horizontal)
• Video De-Interlacer (VDI)—Performs de-interlacing of interlaced video content
• Display Interface 0 and 1 (DI0/DI1)—Provides interface to displays, display controllers, and

related devices
• Display Controller (DC)—Controls the display ports
• Display Multi-FIFO Controller (DMFC)—Controls FIFOs for IDMAC channels related to the

display system

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-4 Freescale Semiconductor

The IPUv3 also contains regions of internal memory that store information used in the operation of the
IPUv3.

• Task Parameter Memory (TPM)—Holds color space conversion coefficients and offsets
• Channel Parameter Memory (CPMEM)—Holds configuration information for each IDMAC

channel
• Look-Up Table (LUT)—Holds a table of look-up values, providing support for palettized pixel

formats

10.3.2 Display Configurations
The IPUv3 features two display ports each capable of generating output for one display. The platform
catalog allows for the selection of only one display type for each display port—Display Port 0 and Display
Port 1. Choosing a configuration that includes a display for both Display Port 0 and Display Port 1 allows
the use of dual display mode.When a display is selected for both display ports, the display device on
Display Port 0 is the default display device and is the only display that will be active when the system boots
up (the display device on Display Port 1 will be turned off by default). See Section 10.4.2.1.2, “Changing
To Dual Display Mode,” and Section 10.4.3.2, “Dual Display Support,” for details on configuring and
changing to dual display mode. The catalog, and thus the OS image, may also be configured to select a
display from only one of the display ports. Choose this configuration to switch between different display
types or supporting multiple simultaneous displays.

10.3.2.1 i.MX53 ARD

The following displays and resolutions may be selected for the i. MX53 ARD:
• Display Port 0

— Toshiba 8.4” XGA LVDS display (LT084AC37100)—1024×768
— HannStar 10” XGA LVDS display (HSD100PXN1)—1024×768

• Display Port 1
— HannStar 10” XGA LVDS display (HSD100PXN1)—1024×768
— VGA analog output—800×600, 1024×768, 1280×1024, 1680×1050
— TV Output support for NTSC and PAL standard televisions and 720p and 1080i

HDTVs—720×480, 720×576, 1280×720, 1920×1080

10.3.3 Conflicts with Other Peripherals and Catalog Items

10.3.3.1 Conflicts with SoC Peripherals

No conflicts.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-5

10.3.3.2 i.MX53 ARD Peripheral Conflicts

There are pin confliction between VGA port, Ethernet port and Nor Flash. When VGA port is selected,
LAN9220 component must be disabled and Nor Flash can not be used as storage. Also the jumpers J11
and J12 on ARD CPU board must jump to [1,2].

Note: The detail hardware information must be adjusted according to hardware update. The information
above is from ARD CPU board version 1.0.

10.4 Software Operation

10.4.1 Software Architecture

10.4.1.1 Software Driver Components

Figure 10-1 shows the relationship between software components in the display driver architecture.

Figure 10-1. Software Architecture

WinCE OS Software Layer

Display Driver (DDGPE class)

IPU Base Driver

Display Interface Layer

DC DI IDMAC LUTCPMEM

DP

Pre-Processor (PRP)

CM

TPMCPMEMIDMACIRTIC DMFC

CM DPDMFC

CM

Ddraw_ipu.dll

Ipu_base.dll

PP Driver

TPMCPMEMIDMACIRTICCM

pp.dll

VDI Driver

CM

vdi.dll

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-6 Freescale Semiconductor

Figure 10-1 shows the main elements of the display driver architecture:
• Display Driver—The high level DDGPE-based display driver. Contains implementations for

DirectDraw APIs
• Display Interface Layer—Set of functions that performs high-level display operations

(DisplaySetSrcBuffer, DisplayUpdate) and retrieves display information (DisplayGetPixelDepth,
DisplayGetSupportedModes)

• Pre-processor Driver (PRP)—Sub-driver dedicated to the display driver that performs the
following processing tasks: color space conversion, resizing, rotation, and combining

• Post-processor Driver (PP)—General purpose image processing driver that performs the following
processing tasks: color space conversion, resizing, rotation, and combining

• Video De-Interlacer Driver (VDI)—Driver for the IPUv3 video de-interlacing hardware block,
which processes interlaced video fields and outputs progressive video frames

• IPUv3 Base Driver —Stream interface driver that controls the allocation of buffers from video
memory. This driver also completes all IPUv3 interrupt handling

• Low-Level APIs (IPUv3 Submodules)—Functions that provide access to IPUv3 registers and
internal memories

10.4.1.1.1 Display Driver

The display driver is the top level interface between the display driver and the Windows CE OS or a calling
application. This top level software component is composed of the DDIPU class, which is derived from
the public DDGPE class and inherits the underlying GPE driver functionality. Graphics Device Interface
(GDI) and DirectDraw APIs are implemented at this level, and calls are made into the Display Interface
Layer to retrieve display information, enable and disable the display, and control what is sent to the display.

10.4.1.1.2 Display Interface Layer

The Display Interface Layer provides the main parts of the display driver. It handles requests from the
Display Driver and manages a number of IPUv3 submodules in order to control what is sent to the active
display devices. The tasks that this component performs include the following:

• Retrieving display information (for example supported modes, pixel formats)
• Handling requests to allocate video memory
• Initializing, enabling, and disabling display panels
• Initializing, enabling, and disabling IPUv3 submodules
• Handling requests to update the UI contents on the display
• Handling requests to update the overlay contents on the display
• Managing processing tasks for an overlay surface

The Display Interface Layer interfaces with the IPUv3 driver, through the stream interface to handle
requests to allocate video memory buffers. The Display Interface Layer interfaces with the CM to control
flow of data to the display. The DI and DC are called to configure the display ports. The IDMAC, CPMEM,
DMFC, and LUT are called to control the transfer of display data to through the IDMAC. The DP and PRP
are accessed to process overlay surfaces and combine with the UI when an overlay surface is active.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-7

10.4.1.1.3 Pre-Processor Driver

The Pre-Processor (PRP) driver provides the display driver with the means for performing the following
processing tasks on an overlay surface:

• Resizing
• Combining of video and graphics data
• Rotation (90°)
• Vertical and horizontal flipping
• Color Space Conversion (CSC)
• Cropping

The PRP driver uses the IC and IRT submodules to perform these processing tasks. The PRP driver also
accesses the DP to configure the processing flow through the IPUv3.

The PRP driver is the primary means for performing resizing, rotation, and cropping on an overlay surface.
Although the PRP driver is capable of CSC and combining, this task is typically left to the DP submodule,
which can more effectively perform these tasks.

10.4.1.1.4 Post-Processor Driver

The Post-Processing (PP) driver provides a general resource capable of performing a set of processing
tasks on a surface. The PP is capable of performing the same set of processing tasks as the PRP driver:

• Resizing
• Combining of video and graphics data
• Rotation (90°)
• Vertical and horizontal flipping
• Color Space Conversion
• Cropping

The PP driver also uses the IC and IRT submodules to perform these processing tasks. The IC and IRT
submodules provide time-sharing of tasks between the PRP and PP, so both drivers can perform a
processing task simultaneously.

The PP driver is currently used within the display driver to aid in the resizing and combining of overlay
surfaces when multiple overlay surfaces are active.

10.4.1.1.5 Video De-Interlacer Driver

The Video De-Interlacer (VDI) driver handles the task of converting de-interlaced video content into
progressive video content. The VDI hardware applies a high-quality three-field motion-adaptive filter,
which retains the full image resolution for slow motion video, while preventing motion artifacts in
dynamic, fast motion video.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-8 Freescale Semiconductor

10.4.1.1.6 IPUv3 Base Driver

The IPUv3 base driver is accessed through a stream interface and serves two primary purposes in the
operation of the display driver:

• Provides centralized management of video memory
• Provides centralized interrupt handling for the entire IPUv3

10.4.1.1.7 Low Level APIs

At the lowest level of software in the display driver architecture, register accesses exert direct control over
the IPUv3 submodules. A library is created for each IPUv3 submodule containing the functions providing
access to its registers. These functions are called from the Display Interface Layer, the PRP, the PP, and
the IPUv3 Base driver.

10.4.1.2 Video Memory Requirements

Memory must be reserved for the following types of surfaces:
• UI Surfaces (Primary Surfaces)—Primary surface holding the graphics data that makes up the main

User Interface screen, along with back buffers for the primary surface.
• Video Processing Surfaces, Stage 1—Internal buffers used by the display driver when processing

video frames or other overlay surfaces. These buffers hold the output from the first processing task.
• Video Processing Surfaces, Stage 2—Additional buffers used for processing video frames. These

buffers are only used in cases in which both rotation and resizing are required. In this case, a second
set of buffers is needed to hold the output from the second processing task.

• Application Surfaces—Includes all surfaces created by applications, including buffers used in
decoding video frames. The number and size of buffers in this category can vary greatly, so we
attempt to construct a worst-case scenario, and add some additional buffering to that case.

Figure 10-2 shows the amount of memory required for each of the surfaces based on assumptions about
how many surfaces are needed and the maximum resolutions for LCD and video content that are used in
a hypothetical embedded system. For the application surfaces, an estimate has been made based on the size
and number of surfaces needed to decode worst-case video content, and some additional buffering has
been added to that to ensure space for additional surfaces. It is also important to note that the number of
video processing surfaces multiplies with the number of simultaneous overlays that are used. Therefore,
when developing a system that uses three simultaneous overlay surfaces, the number of video processing
buffers increases proportionally.

Table 10-2. Surface Memory Requirements

Surface Type Number of Surfaces Maximum Size Bytes

UI (Primary Surface) 1–3 LCD Size (VGA) 640x480x2x3 = 1.8 Mbytes

Video Processing, Stage 1 2 Max Video Size (D1) 720x576x2x2 = 1.6 Mbytes

Video Processing, Stage 2 2 LCD Size (VGA) 640x480x2x2 = 1.2 Mbytes

Application N/A N/A ~ 6 Mbytes

Total 10.6 Mbytes

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-9

10.4.2 Communicating with the Display
Communication with the display driver is accomplished through Microsoft-defined APIs. A framework
for accessing the display driver is provided through the Graphics Device Interface (GDI) and DirectDraw.

10.4.2.1 Using the Graphics Device Interface

The Graphics Device Interface (GDI) provides basic controls for the display of text and graphics. For
information, see the Help:

Windows Embedded CE Features > Shell, GWES and User Interface > Graphics, Windowing and
Events (GWES) > GWES Application Development > Graphics Device Interface

10.4.2.1.1 Changing the Display Mode

The GDI function ChangeDisplaySettingsEx is used to change the display mode. For information and
syntax on this function, see the Windows Embedded Compact 7 documentation:

Windows Embedded Compact 7> Shell and UI > Graphics, Windowing and Events (GWES) >
GWES Reference > GDI Reference > GDI Functions > ChangeDisplaySettingsEx

In order to transition between display (e.g. LCD and TV) modes, ChangeDisplaySettingsEx must be called
with the target width (dmPelsWidth) and target height (dmPelsHeight) equal to that for the desired display
mode. If the target width and height do not match the width and height of one of the supported display
modes, the ChangeDisplaySettingsEx call fails.

For example, when attempting to switch from LCD mode to NTSC TV mode, the dmPelsWidth should be
set to 720 and the dmPelsHeight should be set to 480.

NOTE
There may be multiple display modes supported by the display driver that
support the same resolution. To distinguish between these modes, the
calling application should use the display frequency (no two display modes
have the same resolution and frequency). The display frequency is set using
the SET_DISPLAY_FREQUENCY DrvEscape code (see
Section 10.4.2.3.1, “Setting the Display Frequency,”), and must be set
before calling ChangeDisplaySettingsEx to change the mode.

10.4.2.1.2 Changing To Dual Display Mode

Display mode transitions may also trigger the enabling of dual display mode. In order for the display driver
to allow a transition to dual display mode, the display driver must be configured and built with dual display
supported (see Section 10.4.3.2, “Dual Display Support,”). Once a device with dual display support
transitions from a display mode associated with Display Port 0 to a display mode associated with Display
Port 1, dual display mode becomes active. At this point, the secondary primary surface is shown on the
secondary display (the LCD transitioned from), and may be accessed through the steps described in
Section 10.6.3, “Dual Display API.”

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-10 Freescale Semiconductor

10.4.2.2 Using DirectDraw

The DirectDraw API provides support for hardware-accelerated 2-D graphics, offering fast access to
display hardware while retaining compatibility with the GDI. For information about the DirectDraw API,
see the DirectDraw Help or the MSDN documentation library topic:

Windows Embedded Compact 7 > Audio, Graphics and Media > DirectDraw

The following DirectDraw features are supported in the display driver by the IPUv3 hardware:
• Page flipping with one backbuffer
• Overlay surfaces using the RGBA, RGB, YV12, NV12, or UYVY pixel formats
• Multiple overlay surfaces, up to a maximum of five simultaneous surfaces
• Overlaying using a color key for the overlay surface for RGB colors
• Overlaying using a color key for the non-overlay graphics surface for RGB colors
• Overlaying using a global alpha value
• Stretching of overlay surfaces

The IPUv3 contains multiple image processing hardware blocks, which are used within the display driver
to accelerate the following operations:

• Color space conversion of YUV overlay data to RGB. This conversion is may be required in order
to combine the overlay data with RGB graphics plane data before being displayed.

• Resizing of the overlay surface.
• Rotation of the overlay surface (used when the screen orientation is rotated).

10.4.2.3 Using Display Driver Escape Codes

In some cases, applications might need to communicate directly with a display driver. To make this
possible, an escape code mechanism is provided as part of the display driver. For a detailed description of
standard display driver escape codes, see the Help:

Windows Embedded Compact 7 > Device Drivers > Display Drivers > Display Driver Reference >
Display Driver Functions > DrvEscape

10.4.2.3.1 Setting the Display Frequency

The display driver provides the following two driver escape codes to allow applications to set and query
the display frequency:

• DISPLAY_SET_OUTPUT_FREQUENCY
• DISPLAY_GET_OUTPUT_FREQUENCY

The display frequency must be set in order to disambiguate between display modes that use the same
resolution (for example 720p50 and 720p60). The display frequency should be set before calling
ChangeDisplaySettingsEx to set the display mode. See Section 10.6.2.1,
“DISPLAY_SET_DISPLAY_FREQUENCY Escape Code,” for information about how to use these APIs.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-11

10.4.2.3.2 Video De-Interlacing

Since there is no other way to pass information about whether an overlay surface is interlaced through the
DirectDraw API, video de-interlacing is enabled through the DISPLAY_IS_VIDEO_INTERLACED
driver escape code. Video de-interlacing is primarily used when decoding and playing back interlaced
video content, so the video playback application must use the driver escape code to request that the display
driver enable interlaced video mode. Refer to Section 10.6.2.1,
“DISPLAY_SET_DISPLAY_FREQUENCY Escape Code,” for information about how to use the API to
enable video de-interlacing.

10.4.2.4 Using The Display Driver Control Panel Application

A control panel application provides access to additional display driver functionality. Look for the icon
shown in Figure 10-2 in Windows CE control panel.

Figure 10-2. Display Driver Icon

The control panel application supports the following display driver features:
• Rotation between 0°, 90°, 180°, and 270°
• Gamma correction configuration for a synchronous display device, The gamma value may be set

between 0.5 and 3.5. The default gamma value is 1.0.
• Display mode configuration with a drop-down box listing all of the display modes supported by

the display driver. Each display mode is listed as a combination of the mode width, height, and
frequency. For example, 800×480@60Hz represents the WVGA panel LCD mode, and
720×480@50Hz represents NTSC TV mode. The resolution of the current mode is displayed in the
box.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-12 Freescale Semiconductor

The GUI of the display driver control panel application is shown in Figure 10-3.

Figure 10-3. Display Driver GUI

NOTE
Because Windows Embedded Cmpact 7 only identifies display modes from
the width, height, and frequency, the least significant digit of the frequency
is varied to distinguish otherwise identical modes. For example, both the
VGA and DVI display types support a 1024×768@60Hz mode, so the DVI
mode is represented as 1024×768@60Hz and the VGA mode is represented
as 1024×768@61Hz.

10.4.3 Configuring the Display
The primary means for configuring the display is through the selection of a display panel type in the
Platform Builder catalog. The selection of a panel in the catalog causes a BSP environment variable to be
selected, which ultimately leads to the inclusion in the OS image of a PanelType registry key. The
PanelType registry key, which is described in Section 10.4.3.4, “16BPP and 32BPP are supported.
Display Registry Settings,” specifies the display panel that is being used to the display driver. The
PanelType provides the display driver an index into an array containing all of the main display
configuration information for the panel—panel resolution, timings, pixel mappings, and additional
information.

10.4.3.1 Rotation Support

The DirectDraw display driver may be configured to allow screen rotation through a parameter in the
bspdisplay.h file. If the BSP_DIRECTDRAW_SUPPORT_ROTATION parameter is set to TRUE, the
DirectDraw display driver supports rotation. If it is set to FALSE, it does not.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-13

NOTE
The rotation feature is disabled when the panel resolution is larger than
1024×768 or more than one panel is enabled.

10.4.3.2 Dual Display Support

The DirectDraw display driver may be configured to support dual independent displays. In dual display
mode, a secondary display device may be enabled to display contents from a secondary frame buffer,
which is independent from the primary frame buffer. Dual display support is configured through a
parameter in the bspdisplay.h file. If the BSP_ENABLE_SECONDARY_PRIMARY_SURFACE parameter
is set to TRUE, the DirectDraw display driver supports dual displays. If it is set to FALSE, it does not
support dual displays.

NOTE
Due to a system bandwidth loading limitation, the dual display support
feature is automatically disabled when one of display device’s resolution is
larger than 1024×768.

10.4.3.3 Display Driver Blit Acceleration

Two on-chip Graphics Processing Unit (GPU) cores, GPU2D and GPU3D, may be accessed through the
display driver to accelerate a subset of the GDI graphical blit operations. The subsequent sections provide
details on the features offered by these two GPU cores, and how to configure the BSP to enable
acceleration through these GPU cores.

NOTE
GPU2D Graphic acceleration is enabled in default BSP. If customer doesn’t
need the hardware acceleration, BSP_DISPLAY_Z160 should be removed
in platform environment variable table to disable it. And for no hardware
GDI acceleration system, setting flag
BSP_VID_MEM_CACHE_WRITETHROUGH can get additional graphic
performance boost. But application needs to be careful about cache
maintainance for all video memory access at that time.

10.4.3.3.1 GPU2D Graphics Acceleration

GPU2D core graphics acceleration may be enabled through the following steps:
1. Enable the GPU base by setting the BSP_GPU_BASE environment variable. This may be

achieved by selecting at least one GPU catalog item from the Third Party Catalog.
2. Enable the GPU2D component by setting the platform environment variable

BSP_DISPLAY_Z160=1. This may be achieved by navigating to the project properties, and
adding the environment variable in the Configuration Properties->Environment window.

10.4.3.3.1.3 Supported Acceleration Features

1. Solid color fills.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-14 Freescale Semiconductor

2. BitBlt() - Simple operations not requiring rotation or resizing.
3. StretchBlt() - Support for COLORONCOLOR and BILINEAR stretch modes. For a DDraw blt,

the default stretch mode is BILINEAR.
4. PolyLine() - Support for horizontal and vertical line draws and bias whose llGamma equals to 0.
5. PatBlt() - Pattern copy blits are accelerated.
6. Mask blt: MaskBlt() function calls use this feature. For ROP4 value MAKEROP4(SRCCOPY,

0X00AA0029)
7. Blitting a UYVY surface to an RGB surface: The UYVY data format should be yCbCr.

 The Y,U,V data range is:

 Y = 0.257R + 0.504G + 0.098B + 16(16~235)

 U = -0.148R - 0.291G + 0.439B + 128(16~240)

 V = 0.439R - 0.368G - 0.071B + 128(16~240)
8. Alphablend blt: Both perpixel alpha and constant alpha are supported. To enable this feature, the

“alphablend API”(SYSGEN_GDI_ALPHABLEND) catalog item must be included in the OS
image.

9. The following accelerated ROP operations: BLACKNESS, PATCOPY, SRCCOPY, WHITENESS.
10. All of the above features are also supported when the screen is rotated
11. 16BPP and 32BPP are supported.

10.4.3.3.1.4 Hardware Restrictions

• The GPU2D cannot draw a line with a non-zero llGamma value.
• Due to a GPU2D precision limitation, the coordinates of certain pixels be offset by small amount

after an accelerated blit completes. As a result, the MaskBlt and StretchBlt GDI CTK tests may
not pass(case #208,218,...).

• The GPU2D bilinear algorithm differs from the algorithm used in the Micorsoft-provided emulated
blit software routines. As a result, the GPU2D bilinear stretch blt will result in a mismatch with
the CTK reference image(case #218,222).

• GPU2D fails the AlphaBlend CTK test(case #231). The color output after an alpha blend blit
operation may have a single-bit mismatch when compared with the reference image.

10.4.3.3.2 GPU3D Graphics Acceleration

GPU3D core graphics acceleration may be enabled through the following steps:
1. Enable the GPU base by setting the BSP_GPU_BASE environment variable. This may be

achieved by selecting at least one GPU catalog item from the Third Party Catalog..
2. Enable the GPU3D component by setting the platform environment variable

BSP_DISPLAY_Z430=1. This may be achieved by navigating to the project properties, and
adding the environment variable in the Configuration Properties->Environment window.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-15

10.4.3.3.2.5 Supported Acceleration Features

1. Solid color fills.
2. BitBlt() - Simple operations not requiring rotation or resizing.
3. StretchBlt() - Support for COLORONCOLOR and BILINEAR stretch modes. For a DDraw blt,

the default stretch mode is BILINEAR.
4. PatBlt() - Pattern copy blits are accelerated.
5. The following accelerated ROP operations: BLACKNESS, PATCOPY, SRCCOPY, WHITENESS.

10.4.3.4 16BPP and 32BPP are supported. Display Registry Settings

Depending on the display panel catalog item(s) included in the OS design, a series of registry keys are
optionally included in the OS image. These keys provide information to the display driver about the panel
type, frame buffer format, and video memory size.

The following is a sample set of registry keys that might be included for a given display panel:

[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU]
 "Bpp"=dword:10 ; RGB565
 "VideoBpp"=dword:20 ; RGB666 (32bpp internal)
 "VideoMemSize"=dword:2000000 ; 32MB

[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU\DI0]
 "PanelType"=dword:2
 "EnableOnBoot"=dword:1 ; TRUE

If a secondary display panel is selected from Display Port 1 (DI1), a similar set of registry keys is added
under the [HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU\DI1] subkey. When panels from both
DI0 and DI1 are selected, the panel under DI0 is the default panel upon device boot-up. If only a panel
connected to DI1 is selected, that panel is the default panel upon device boot-up.
When the OS image is configured to use graphics acceleration through the GPU, the C2DFlag key is also
included. The C2DFlag key controls the types of graphical blit operations that are accelerated by the GPU.
The following bits control which blits are accelerated:

• Bit 0 - Enable/Disable solid color fill acceleration
• Bit 1 - Enable/Disable pattern fill acceleration
• Bit 2 - Enable/Disable simple bitblt (without rotation, stretchblt) acceleration
• Bit 3 - Enable/Disable line draw acceleration
• Bit 4 - Enable/Disable maskblt acceleration
• Bit 5 - Enable/Disable stretchblt acceleration
• Bit 8 - Enable/Disable acceleration for rotated screen cases

The C2DThreshold key controls the size of graphical blit operaitons that are accelerated by the GPU.
When C2DThreshold is set, only size larger than C2DThreshold×C2DThreshold will be accelerated by the
GPU.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-16 Freescale Semiconductor

In the following example, acceleration is enabled for pattern fill, line draw, stretchblt, and rotated screen
cases whose operation size is larger than 100×100, while acceleration is disabled for solid color fill, simple
bitblt, and maskblt:

[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU]
"C2DFlag"=dword:12a ; Flag for c2d

"C2DThreshold"=dword:64 ; 100

10.4.3.4.1 TV Out Register Setting

For TVE out register setting there have a specifical variable for TV output mode.
[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU\DI1]

"TVOutputMode"=dword:6 ; TVE Component YPrPb for both SDTV and HDTV

The TVOutputMode settings might be configured as follows:
• 0 is for TVE standby
• 1 is for TVE composite on channel #0
• 2 is for TVE composite on channel #2
• 3 is for TVE composite on channel #0 and #2
• 4 is for TVE S-video on channel #0 and #1
• 5 is for TVE S-video on channel #0 and #1, and composite on channel #2
• 6 is for TVE component YPrPb on channel #0, #1 and #2
• 7 is for TVE component RGB on channel #0, #1 and #2

(Note: The default setting for TVOutputMode in TVEv2 is 6, i.e. component output).

10.4.4 Power Management
The display driver consumes power primarily through the operation of the display panel, and through the
following IPUv3 sub-modules:

• Image Converter (IC)—performs color conversion and resizing on video data
• Image Rotation (IRT) submodule—performs rotation
• Display Processor—performs color space conversion and combining of video and graphics data

The display driver also controls the operation of TVE, LVDS module, calling to enable or disable the
corresponding module and its clocks. To facilitate management of these modules, the display driver
implements the power management I/O Control (IOCTL) codes, such as
IOCTL_POWER_CAPABILITIES, IOCTL_POWER_QUERY, IOCTL_POWER_GET and
IOCTL_POWER_SET.

10.4.4.1 PowerUp

This function is not implemented for the display driver.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-17

10.4.4.2 PowerDown

This function is not implemented for the display driver.

10.4.4.3 IOCTL_POWER_SET

The display driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Full On)
and D4 (Off) power states. These states are handled in the following manner:

• D0—The display panel is enabled. The IPUv3 DI and DC modules are enabled to send data to the
display. If video is active, additional submodules may also be enabled to process and convert video
data. If TV output mode is active, enable the TVE module and its clocks.

• D4—The DI and DC submodules of the IPUv3 are disabled. The display panel is disabled. If TV
output mode was enabled, disable the TVE and its clocks.

10.5 Unit Test
The display driver is subject to two test suites provided with the Windows Embedded Compact Test Kit
(CTK): the Graphics Device Interface (GDI) Tests and the DirectDraw Tests. Additionally, video playback
may be verified by using the PlayWnd application. The video de-interlacing functionality of the display
driver may be tested through a custom CTK test suite.

The GDI Test is designed to test a graphics device interface. This test verifies that basic shapes, including
rectangles, triangles, circles, and ellipses, are drawn correctly. The test also examines the color palette of
the display, verifies that the display is correctly divided into multiple regions, and tests whether a device
context can be properly created, stored, retrieved, and destroyed.

The DirectDraw Test analyzes basic DirectDraw functionality including block image transfers (blits),
scaling, color keying, color filling, flipping, and overlaying.

PlayWnd may be used to play back WMV video files and visually verify correct operation of video
overlays, accelerated color space conversion, and accelerated image resizing.

The Video De-Interlacing test reads from a sample input file containing interlaced video frames. These
frames are de-interlaced and displayed to the screen.

10.5.1 Unit Test Hardware
The display driver unit tests require the inclusion of a display panel to display graphics and video data.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-18 Freescale Semiconductor

10.5.2 Unit Test Software

10.5.2.1 GDI Tests

Table 10-6 lists the software required to run the GDI tests.

10.5.2.2 DirectDraw Tests

Table 10-7 lists the software required to run the DirectDraw tests.

10.5.2.3 Windows Media Player Tests

Table 10-8 lists the software required to perform WMV playback with Windows Media Player.

Table 10-6. Software Requirements

Requirement Description

Tux.exe Test harness, required for executing the test .

Kato.dll Logging engine, required for logging the test data .

Gdit.dll Main test library .

Ddi_test.dll Graphics Primitive Engine (GPE)®Cbased display driver that the GDI API uses to verify the success of each test
case. If Ddi_test.dll is unavailable, run the test with manual verification.

Table 10-7. Direct Draw Software Requirements

Requirement Description

Tux.exe Tux test harness, required for executing the test

Kato.dll Kato logging engine, required for logging test data

Ddautoblt.dll Test library for DDraw Blt test .

DDfunc.dll Test library for DirectDraw Functionality Test

ddi.dll.cfg Configuration file for supported driver capabilities. It is used in DirectDraw Functionality
Test.

DDints.dll Test library for DirectDraw Interface Tests

DDrawTK.dll Test library for DirectDraw Verification Tests

Table 10-8. Windows Media Player Software Requirements

Requirement Description

PlayWnd. exe Movie Player sample application

*.wmv sample video files Sample windows media files

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-19

10.5.2.4 Multiple Overlay Custom Test

A custom test is provided to test the display driver support for multiple overlays. Table 10-9 lists the
software required to run the MultipleOverlay test.

10.5.2.5 Video De-Interlacing Custom CTK Test

A custom test is provided to test the de-interlacing functionality of the display driver. Table 10-10 lists the
software required to run the VDI test.

10.5.3 Building the Unit Tests

10.5.3.1 GDI/DirectDraw Tests

The GDI and DirectDraw tests come pre-built as part of the CTK. No steps are required to build these tests.
For information about the tests, see the Help:

Windows Embedded Compact 7 > Compact Test Kit (CTK)

10.5.3.2 PlayWnd Tests

For PlayWnd testing, there are no build steps required. playwnd.exe always is included in the image.
Additionally, sample WMV files must be included in the image to demonstrate playback.

10.5.3.3 Multiple Overlay Custom Test

The MultipleOverlay application is included with the BSP release. To build the application complete the
following steps:

1. Open the BSP sample solution in Microsoft Visual Studio
2. Click Build OS > Open Release Directory to open the command prompt
3. Navigate to the test directory: \WINCE700\SUPPORT\APP\MultipleOverlay
4. Build the application with the command build -c
5. The binary MultipleOverlay.exe is automatically copied into the release directory

Table 10-9. Multiple Overlay Software Requirement

Requirement Description

MultipleOverlay.exe Multiple overlay sample test application

Table 10-10. Video De-Interlacing Software Requirement

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Vdi_test.dll VDI test .dll file

stefan_interlaced_320x240_30frames.yv12 Test input file containing Interlaced video input

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-20 Freescale Semiconductor

10.5.3.4 Video De-Interlacing Custom CTK Test

To build the VDI test, build an OS image for the desired configuration using the following steps:
1. Within Platform Builder, choose Build OS > Open Release Directory.

A DOS prompt is displayed.
2. Navigate to the VDI test directory: \WINCE700\SUPPORT\TESTS\VDI
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the DLL to the flat release directory.
4. Execute the build -c to build the VDI test.

After the build completes, the vdi_test.dll file is located in the $(_FLATRELEASEDIR) directory.

10.5.4 Running the Unit Tests

10.5.4.1 Running the GDI Tests

The command line for running the GDI tests is:
tux –o –d gdit.dll -c “/NoResize /NoRotate”

The NoResize and NoRotate command line flags must be included to prevent test failures caused by illegal
mode changes. For information about the GDI tests and command line options, see the Platform Builder
Help:

Windows Embedded Compact 7 > Compact Test Kit (CTK) > Display - GDI Tests

10.5.4.2 Running the DirectDraw Tests

Table 10-11 lists the command line for running the DirectDraw tests.
Table 10-11. The command line for running the DirectDraw tests

Command Description

tux -o -d ddautoblt.dll DDraw Blt test .

tux -o -d ddfunc.dll DirectDraw Functionality Test

tux -o -d ddints DirectDraw Interface Tests

tux –o –d ddrawtk DirectDraw Verification Tests

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-21

NOTE
The display driver fails in the following DirectDraw functionality testcases :
304,404,526,540,556 and 640. The failure occurs for case 304, 404 because
Ddraw capability flag can not cover some surface types hardware supported.
The failure occurs for case 526 because YUV offscreen surface is not
supported. The failure occurs for case 540, 640 is in Microsoft middleware
code. The failure occurs for case 556 because the test case expected result
is conflict with MSDN description which driver design follows.

The display driver is possible to fail in the following DirectDraw interface testcases
: 518, 523, 771 and 1821. The failure may occur for case 518 when the test
resolution is large than 1600x1200 which test case can’t handle. The failure
occurs for case 523 because NV12 fourcc value can’t be recognized by test
case but supported by hardware. The failure may occurs for case 771 when
two display mode with the same resolution is supported by display driver.
The failure may occur for case 1821 because hardware doesn’t support 8x8
overlay surface size, the minimum overlay surface hardware can fully
support is 16x16.

The display driver fails or aborts in the following DirectDraw verification
testcases: 400, 410, 420, 430, 500, 502, 504, 506, 508, 510, 512, 514, 516,
518, 520, 1240, 1250, 1340 and 1350. The failure 400 ~ 520 occurs because
flag DDSCAPS_VIDEOPORT is used for secondary panel support.
DDSCAPS_VIDEOPORT is enabled; however, a real videoport feature is
not implemented. This causes all CTK test cases involving videoport to fail.
The failure 1240, 1250, 1340, 1350 occurs because hardware doesn’t
support 8x8 overlay surface size, the minimum overlay surface hardware
can fully support is 16x16.

10.5.4.3 Running the PlayWnd tests

The command line for starting playback of a WMV test video clip in PlayWnd is:
playwnd [wmv test file]

For example, playwnd motocross_208x160_30fps.wmv

To confirm the correct operation of this test, observe the application and verify that the video clip is playing
at a smooth rate (it should not drop frames or otherwise appear jerky). It should have a clear image, normal
coloring, and correct image sizing.

10.5.4.4 Running the Multiple Overlay Custom Test

In the CE target shell window, execute the following command to start the MultipleOverlay application:
s MultipleOverlay.exe

The correct operation of this application is to create several mosquito images, which float around the main
display screen area. The topmost mosquito shows no bordering area, while the other is contained in a black
box (this is due to source color keying only working for the topmost overlay surface).

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-22 Freescale Semiconductor

Press the ESC key on the keypad to end the application.

10.5.4.5 Running the Video De-Interlacing CTK Custom Test

Before executing the VDI CTK test, the VDI test input file, stefan_interlaced_320x240_30frames.yv12,
must be copied from the VDI test directory into the $(_FLATRELEASEDIR) directory.

The command line for running the VDI test is
tux –o –d vdi_test

The VDI test does not require any test specific command line options.

Once executed, a sequence of 30 video frames are shown on the display panel. Each frame is shown for
approximately one second. There should be no artifacts, and each image should be of good image quality.
If successful, the test completes and the debug output shows that it has passed.

10.6 Display Driver API Reference
For information about the display driver APIs, see the CE Help. The only display driver feature that
requires a customized API is dual display support, where a custom API is required to access the secondary
primary surface.

10.6.1 GDI and DirectDraw APIs
For reference information on basic display driver functions, methods, and structures, see the CE Help:

Windows Embedded Compact 7 > Device Drivers > Display Drivers > Display Driver Reference

For reference information on DirectDraw functions, callbacks, and structures, see the CE Help:

Windows Embedded Compact 7 > Audio, Graphics and Media > DirectDraw

10.6.2 Driver Escape Code Extensions
Driver escape codes may be added and used by the display driver to provide access to display driver
functionality beyond what is provided through GDI and DirectDraw. The display driver achieves this by
defining driver escape codes, along with any structures needed to pass parameters to the display driver.
These driver escape code extensions are detailed in the following sections.

10.6.2.1 DISPLAY_SET_DISPLAY_FREQUENCY Escape Code

The DISPLAY_SET_DISPLAY_FREQUENCY escape code must be used with the ExtEscape() driver
escape function in order to set the display frequency in the display driver. The display frequency should
be set before calling ChangeDisplaySettingsEx to set the display mode. The combination of the resolution
parameter from the ChangeDisplaySettingsEx and the frequency set through
DISPLAY_SET_DISPLAY_FREQUENCY allows the display driver to choose the correct display mode
to enable. In the case where multiple display modes share the same resolution but different frequencies,
this function must be used to help select the correct display mode.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-23

The parameters listed below are for the ExtEscape() function and must be set in order to enable or disable
interlaced video mode.
Parameters
cbInput A pointer to a DWORD containing the desired display frequency, in Hz
lpszInData Must be equal to the size of a DWORD or the function call fails

10.6.2.2 DISPLAY_GET_DISPLAY_FREQUENCY Escape Code

The DISPLAY_GET_DISPLAY_FREQUENCY escape code must be used with the ExtEscape() driver
escape function in order to retrieve the display frequency in the display driver.

The parameters listed below are for the ExtEscape() function and must be set in order to enable or disable
interlaced video mode.
Parameters
cbOutput A pointer to a DWORD that holds the current display frequency, in Hz
lpszOutData Must be equal to the size of a DWORD or the function call fails

10.6.2.3 DISPLAY_IS_VIDEO_INTERLACED Escape Code

The DISPLAY_IS_VIDEO_INTERLACED escape code must be used with the ExtEscape() driver escape
function in order to enable or disable interlaced video mode in the display driver. Interlaced video mode
ensures that the display driver treats incoming video overlay surfaces as interlaced video frames. After
calling this function to enable interlaced video mode, all subsequent video frames undergo video
de-interlacing to convert those frames into progressive frames before being displayed, until this function
is called again to disable the mode.

The parameters listed below are for the ExtEscape() function and must be set in order to enable or disable
interlaced video mode.
Parameters
cbInput Pointer to an InterlacedVideoData structure, containing information about

whether to enable or disable interlaced video mode and which field is the top field
lpszInData Must be equal to the size of the InterlacedVideoData structure or the function call

fails

10.6.2.4 DISPLAY_SETCRRECT Escape Code

The DISPLAY_SETCRRECT escape code must be used with the ExtEscape() driver escape function in
order to setup the conditional read area in the display driver. Conditional read is a feature for reducing bus
bandwidth through mask some primary surface data. Application can set one or more rectangles in which
data will be masked before sending to the screen. These rectangles can be overlapped or not. This feature
will not impact overlay surface data transfering.

The parameters listed below are for the ExtEscape() function and must be setup for configuring
conditional read feature.
Parameters

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-24 Freescale Semiconductor

cbInput Pointer to an SetCRRectData structure, containing information about the position
and size of an rectangle in which the data will be drawn or not drawn.

lpszInData Must be equal to the size of the SetCRRectData structure or the function call fails

10.6.3 Dual Display API
Microsoft does not provide native support for dual independent displays in Windows Embedded Compact
7. The Windows Embedded Compact 7 documentation describes support for Multiple Screens and for a
Secondary Display Driver, but both of these features are critically limited and insufficient to provide dual
independent display support. As a result, a custom extension to the DirectDraw APIs is required to allow
an application to access a secondary primary surface for the secondary display.

10.6.3.1 Dual Display Interface

When the display is configured to support dual display, a secondary display primary surface is only created
after the secondary display device is enabled, and is deleted once the secondary display device is disabled.
A custom flag has been created to allow applications to access this primary surface. This flag,
DDSCAPS_PRIMARYSURFACE2, must be used when calling the DirectDraw CreateSurface() function
to create a handle to the secondary primary surface. Once the application has a handle to the DirectDraw
surface for the secondary primary surface, the DirectDraw Blt() function may be used to render into the
surface and onto the secondary display. The secondary display can also support one overlay surface, which
must be created based on the secondary primary surface.

The follow code fragment shows how an application might draw to the secondary display:
#define DDSCAPS_PRIMARYSURFACE2 (DDSCAPS_PRIMARYSURFACE|DDSCAPS_VIDEOPORT)
// Create DirectDraw object
hRet = DirectDrawCreate(NULL, &g_pDD, NULL);
if (hRet != DD_OK)

return InitFail(hWnd, hRet, TEXT("DirectDrawCreate FAILED"));

// Set Level to DDSCL_NORMAL, or else main display primary may be wiped out!
hRet = g_pDD->SetCooperativeLevel(hWnd, DDSCL_NORMAL);
if (hRet != DD_OK)

return InitFail(hWnd, hRet, TEXT("SetCooperativeLevel FAILED"));

// Get a pointer to the secondary display primary surface
memset(&ddsd, 0, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE2;
hRet = g_pDD->CreateSurface(&ddsd, &g_pDDSPrimary, NULL);
if (hRet != DD_OK)

return InitFail(hWnd, hRet, TEXT("CreateSurface FAILED"));

// Create back buffer with size equal to primary to blit from
memset(&ddsd, 0, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.ddsCaps.dwCaps = DDSCAPS_SYSTEMMEMORY;
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT;
ddsd.dwWidth = 480;
ddsd.dwHeight = 640;

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 10-25

ddsd.ddpfPixelFormat = ddpfOverlayFormats[0];
hRet = g_pDD->CreateSurface(&ddsd, &g_pDDSBack[0], NULL);

// Load image onto backbuffer
LoadImageOntoSurface(g_pDDSBack[0], szImg1);

// Blt from back buffer onto secondary primary surface
g_pDDSPrimary->Blt(&rd, g_pDDSBack[i++], &rs, NULL, NULL);

10.6.3.2 Dual Display API Limitations

The dual display API limitations are as follows:
• The Windows manager has no awareness of the secondary display primary surface and cannot

draws windows, menus, buttons, and other objects to the secondary display. Therefore, a custom
application must handle all drawing to the secondary display, using the interface described in this
section.

• Due to incompatibilities between DirectDraw middleware and the customized secondary display
primary surface the Flip() function cannot be used with the secondary primary surface.

• The custom flag created to allow access to the secondary display primary surface reuses the
DirectDraw DDSCAPS_VIDEOPORT flag. As a result, attempts to create and use video ports
result in failures. Additionally, the DirectDraw Verfication CTK tests related to video ports return
as FAILED (these tests previously returned SKIPPED).

• There is no touch support for the secondary display device when in dual display mode.
• Due to system bus bandwidth limitation, some display features are limited when two display

devices are on.

Display Driver for IPUv3

Windows Embedded Compact 7 BSP Reference Manual

10-26 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 11-1

Chapter 11
Dynamic Voltage and Frequency Control (DVFC) Driver
The BSP includes the DVFC driver that provides combined support for DVFS (Dynamic Voltage
Frequency Scaling). The DVFC driver plays an important role in the reduction of active power
consumption by dynamically adjusting the voltage and frequency settings of the system. The DVFC driver
responds to DVFC hardware logic or load tracking software that is monitoring CPU loading and
process/temperature performance of the silicon.

11.1 DVFC Driver Summary
Table 11-1 provides a summary of source code location, library dependencies, and other BSP information.

11.2 Supported Functionality
The DVFC driver enables the hardware platform to provide the following software and hardware support:

1. Executes as a device driver and provides synchronized support of the DVFS power management
feature.

2. Exposes stream interface for initialization and power management.
3. Supports D0 and D4 driver power states and support control of frequency or voltage setpoint based

on Power Manager device power states.

Table 11-1. DVFC Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\DVFC

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC

Driver DLL dvfc.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > DVFC driver
support using the on-board PMIC

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOPMIC =
BSP_DVFC = 1

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded Compact 7 BSP Reference Manual

11-2 Freescale Semiconductor

4. Supports peripheral setpoint requests initiated by CSPDDK clock management code.

11.2.1 i.MX53 ARD Supported Functionality
1. Supports DVFS for CPU (GP) and peripheral (LP) power domains
2. Exposes separate Power Manager stream interfaces for CPU and peripheral domains to provide

individual control of setpoint for each domains
3. Supports reactive CPU load tracking to control setpoint based on system performance

requirements. Current release uses software load tracking algorithm.
4. Provides voltage control using LTC3598 PMIC

11.3 Hardware Operation
This section describes about the DVFC hardware operation.

11.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

11.3.2 i.MX53 ARD Configuration
The DVFC driver is dependent upon the LTC3598 PMIC interface for dynamic voltage control through
the I2C2 port. The LTC3598 SDK import library is used by the DVFC driver to access the PMIC interface.

11.4 Software Operation
This section describes about the registry settings.

11.4.1 i.MX53 ARD Registry Settings
The following registry keys are required to properly load the i.MX53 ARD DVFC module.

IF BSP_NOPMIC !
IF BSP_DVFC
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DVFC1]
 "Prefix" = "DVF"
 "Index" = dword:1
 "Dll"="dvfc.dll"
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DVFC2]
 "Prefix" = "DVF"
 "Index" = dword:2
 "Dll"="dvfc.dll"
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 11-3

[HKEY_LOCAL_MACHINE\SYSTEM\CEDDK]
 "CalibrateStallCounter"=dword:0
ENDIF DVFC
ENDIF BSP_NOPMIC !

11.4.2 Loading and Initialization
The DVFC driver is automatically loaded to kernel space by the Device Manager as a stream driver. As
part of the loading procedure of stream drivers, the device manager invokes the corresponding stream
initialization function exported by the DVFC driver. The initialization sequence includes a call to
platform-specific code (BSPDvfcInit) to allow the OEM to configure and tune the DVFC driver operation.

11.4.3 Operation
The DVFC driver is the central point in the BSP for controlling voltage and frequency scaling. The DVFC
communicates with the PMIC and CCM to coordinate the DVFS. The DVFC driver responds to setpoint
requests from DDK_CLK (by driver calling DDKClockSetGatingMode) and Power Manager (by
IOCTL_POWER_SET). A shared global data structure (DDK_CLK_CONFIG) is used to keep track of
reference counts for each setpoint. The DVFC relies on synchronization with the DDK_CLK component
to determine when it is safe to transition to a new setpoint. DVFC integration with the Power Manager
allows drivers and applications direct control of the setpoint by using the SetDevicePower API.

11.4.3.1 i.MX53 ARD Voltage/Frequency Setpoints

The i.MX53 ARD DVFC driver supports mutually exclusive voltage and frequency setpoints for the CPU
and peripheral power domains. Table 11-2 and Table 11-3 provide the voltage/frequency characteristics
for these setpoints.

The setpoint attributes are controlled by the definitions in the platform-specific DVFS header file (found
in \PLATFORM\<Target Platform>\SRC\INC\dvfs.h). The DVFC driver uses these definitions to populate a
global setpoint array (g_SetPointConfig) that is referenced during setpoint transitions.

Table 11-2. i.MX53 ARD DVFC Setpoints for CPU Domain

Setpoint Name CPU Frequency (MHz) Core Voltage

DDK_DVFC_SETPOINT_HIGH 800 1.1 V

DDK_DVFC_SETPOINT_MEDIUM 400 0.95 V

DDK_DVFC_SETPOINT_LOW 166 0.95 V

Table 11-3. i.MX53 ARD DVFC Setpoints for Peripheral Domain

Setpoint Name AXI/AHB/DDR Frequency (MHz) Core Voltage

DDK_DVFC_HIGH2 200/133/400 1.300 V

DDK_DVFC_SETPOINT_HIGH 200/66/400 1.300 V

DDK_DVFC_SETPOINT_MEDIUM 166/66/333 1.300 V

DDK_DVFC_SETPOINT_LOW 42/42/333 1.300 V

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded Compact 7 BSP Reference Manual

11-4 Freescale Semiconductor

11.4.3.2 i.MX53 ARD Setpoint Mapping

The peripherals may not be able to operate properly in all of the supported setpoints due to minimum
frequency/voltage requirements. Therefore, drivers that support these peripherals need a method of
communicating setpoint requirements. The setpoint requirements for drivers are expressed in terms of the
the following parameters:

• Internal AHB bus frequency requirement
• Internal AXI peripheral bus frequency requirement
• Peripheral domain (LP) voltage requirement

These parameters are statically mapped to clock nodes managed by drivers through the CSPDDK. Each
time a driver enables module clocks using DDKClockSetGatingMode, the CSPDDK maps the
voltage/frequency requirements for the specified clock node to a supported peripheral domain setpoint that
meets those requirements. The static mapping can be changed by modifying the periphSetpointReq
elements of the globally shared DDK_CLK_CONFIG data structure. This mapping occurs in
\PLATFORM\<Target Platform>\SRC\COMMON\BSPCMN\bspargs.c.

WARNING
Do not map a peripheral to a set of voltage/frequency requirements that
violate the electrical specification or do not provide adequate clocking for
the peripheral protocol specification.

The DVFC driver advertises support for IOCTL_POWER requests from the Power Manager. A
IOCTL_POWER_SET request is mapped to a setpoint by the DVFC driver. This mapping allows
applications to use the Power Manager APIs to request changes in the DVFC setpoint. The mapping of
device power states (D0–D4) to DVFC setpoints is located in DvfcMapDevPwrStateToSetpoint (found
in \PLATFORM \<Target Platform>\SRC\DRIVERS\DVFC\COMMON\dvfc.c). The DVFC driver exposes two
separate stream interfaces to allow individual control of the CPU and peripheral power domain setpoints.
Stream DVF1 is mapped to the CPU domain and DVF2 is mapped to the peripheral domain. To change
the setpoint mapping for a specific device power state (D0–D4), modify the code in
DvfcMapDevPwrStateToSetpoint.

11.4.4 DDK Interface
The DVFC driver allows other drivers or applications to control some aspects of the DVFS operation. Due
to the tight coupling with the system clock configuration, this interface is exposed within CSPDDK
clocking support. See the CSPDDK documentation for the following functions:

• DDKClockSetpointRequest, Section 9.6.1.2.12, “DDKClockSetpointRequest.”
• DDKClockSetpointRelease, Section 9.6.1.2.13, “DDKClockSetpointRelease.”

11.4.5 Power Management
The DVFC is an integral part of the power management supported by the BSP. However, as the DVFC
runs as a driver on the system, it also supports the Power Manager device driver interface. This allows the
DVFC driver to be notified of when the system is suspending or resuming and configure the processor
performance accordingly.

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 11-5

11.4.5.1 PowerUp

This stream interface function is not implemented for the DVFC driver.

11.4.5.2 PowerDown

This stream interface function is not implemented for the DVFC driver.

11.4.5.3 IOCTL_POWER_CAPABILITIES

The DVFC driver advertises that D0–D4 device power states are supported.

11.4.5.4 IOCTL_POWER_SET

The DVFC driver supports requests to enter D0–D4 device power state.

11.4.5.5 IOCTL_POWER_GET

The DVFC driver reports the current device power state (D0, D1, D2 or D4).

11.5 Unit Test
A stress test application for the DVFC driver is provided for unit testing. This stress test uses the Power
Manager interface (SetDevicePower) to randomly request setpoints for the CPU and peripheral DVFS
domains. Follow these steps to run this unit test:

1. Open the <Target Platform>_Mobility workspace and add the DVFC driver catalog item. Build OS
image.

NOTE
Modifications to the default workspace may cause additional drivers to be
included and may prevent the system from transitioning through all possible
DVFS setpoints.

NOTE
Due to the hardware dependency, USBH1, SATA, and TPS drivers need to
be removed to achieve the lowest power consumption.

If BSP_DISPLAY_Z160 is set in the workspace, the VCC power will
remain high after resuming from suspend due to unknown reason.
Removing this variable from the workspace could temporarily workaround
this issue.

2. Build the DVFC stress test located in \SUPPORT\TEST\APP\PWRMGMT. The resulting application
pwrmgmt.exe is generated in the flat release directory.

3. Boot the OS image and launch application code such as media player that can perform continuous
playback. WMA audio playback is a good use case since audio playback can be performed across
all supported setpoints.

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded Compact 7 BSP Reference Manual

11-6 Freescale Semiconductor

4. Launch the stress test application. From the CE shell, the stress test can be launched with the
following command line:
s \release\pwrmgmt.exe

5. Debug messages to indicate setpoint transitions can be enabled using the DVFC_VERBOSE
macro found in \PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC\COMMON\dvfc.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 12-1

Chapter 12
Enhanced Configurable Serial Peripheral Interface (eCSPI)
Driver
The Enhanced Configurable Serial Peripheral Interface (eCSPI) module provides master functionality of
a Enhanced CSPI bus. The eCSPI module includes larger receive and transmit buffers than the CSPI and
also includes more flexible tail data operations.

12.1 eCSPI Driver Summary
The following table provides a summary of source code location, library dependencies and other BSP
information.

12.2 Supported Functionality
The eCSPI driver supports the following features:

1. eCSPI master mode of operation
2. eCSPI configurable bus feature
3. eCSPI multiple channel method
4. DMA exchange mode
5. Configurable access method of interrupt mode and DMA mode
6. Buffering exchange for asychronous SPI access
7. Stream interface

Table 12-1. eCSPI Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\ECSPI

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ECSPI

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ECSPI

SDK Library ecspisdk.lib

Driver DLL ecspi.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>:ARMV7 > Device Drivers > CSPI Bus

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOCSPI =

Enhanced Configurable Serial Peripheral Interface (eCSPI) Driver

Windows Embedded Compact 7 BSP Reference Manual

12-2 Freescale Semiconductor

8. Two power management modes, full on and full off

12.2.1 Conflicts with Other Peripherals and Catalog Items

12.2.1.1 Conflicts with SoC Peripherals

The i.MX53 eCSPI1 conflicts with EIM module.

12.2.1.2 Conflicts with Board Peripherals

The i.MX53 ARD eCSPI1 conflicts with LAN9220 module.

12.3 Software Operation

12.3.1 Registry Settings

12.3.1.1 i.MX53 Registry Settings
The following registry keys are required to properly load the eCSPI module.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ECSPI1]
 "Prefix"="SPI"
 "Dll"="ecspi.dll"
 "Index"=dword:1
 "Order"=dword:1
 "IClass"=multi_sz:"{A32942B7-920C-486b-B0E6-92A702A99B35}"

12.3.2 Communicating with the eCSPI
The eCSPI is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the eCSPI, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. If preferred, the DeviceIoControl function calls can be replaced with macros that hide
the DeviceIoControl call details. The basic steps are detailed in the following sections.

12.3.3 Creating a Handle to the eCSPI
Call the CreateFile function to open a connection to the eCSPI device. An eCSPI port must be specified
in this call. The format is SPIX:, with X being the number indicating the eCSPI port. This number should
not exceed the number of eCSPI instances on the platform. If an eCSPI port does not exist, CreateFile
returns ERROR_FILE_NOT_FOUND.

To open a handle to the eCSPI:
1. Insert a colon after the eCSPI port for the first parameter, lpFileName.

— For example, specify SPI1: as the eCSPI port.

Enhanced Configurable Serial Peripheral Interface (eCSPI) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 12-3

2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple
handles to an eCSPI port are supported by the driver.

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter.
— This flag is required.

4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open a eCSPI port:
// Open the serial port.
hSPI = CreateFile (L”SPI1:”, // name of device

GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
NULL, // security attributes (ignored)
OPEN_EXISTING, // creation disposition
FILE_FLAG_RANDOM_ACCESS, // flags/attributes
NULL); // template file (ignored)

12.3.4 Data Transfer Operations
The eCSPI driver provides one command, CSPIExchange, that facilitates performing both reads and writes
through the eCSPI bus. The basic unit of data transfer in the eCSPI driver is the CSPI_XCH_PKT, which
contains a RX buffer for reading data, a TX buffer for writing data and a CSPI_BUSCONFIG datum that
specifies the desired bus configuration and XCH method which is used during the SPI transmission. The
steps below detail the process of performing write and read operations through the eCSPI bus.

Before these actions can be taken, a handle to the eCSPI port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the eCSPI port handle, appropriate IOCTL
code, and other input and output parameters are required.

To perform an eCSPI transfer:
1. Create a CSPI_XCH_PKT object and initialize the fields of the packet as follows:

a) Initialize a CSPI_BUSCONFIG datum to specify the bus parameters CHANNEL SELECT,
DATA RATE, BURST LENGTH, SSPOL, POL, DRCTL, and specify the method parameters
for using or not using the DMA. The BURST LENGTH unit is bit.

b) Set the pTxBuf field to the user buffer with the transmit data.
c) Set the pRxBuf field to the user buffer which receives data. If there is no receive data, set the

field to NULL.
d) Set the xchCnt field. The xchCnt unit is 32-bit. xchCnt must equal BurstLength/32 or

BurstLength/32 +1 (if BurstLength is not multiple of 32-bits).
e) Specify the xchEvent parameter and the xchEventlength including the tail zero character.

Otherwise, set xchEvent to NULL and xchEventlength to 0. When using xchEvent, the XCH
data is queued inside the driver.

2. Set the hDevice parameter to the previously acquired eCSPI port handle.
3. Set dwIoControlCode to the SPI_IOCTL_EXCHANGE IOCTL code.
4. Set the lpInBuffer to point to the CSPI_XCH_PKT object created in step 1. Set nInBufferSize to the

size of that packet object.

Enhanced Configurable Serial Peripheral Interface (eCSPI) Driver

Windows Embedded Compact 7 BSP Reference Manual

12-4 Freescale Semiconductor

5. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

The following code example demonstrates how to perform a XCH transfer:
CSPI_BUSCONFIG_T buscnfg =
{ 0, //use channel 0

16000000, //XCH speed 16M
32*64, //Burstlength 64 DWORDS
FALSE, // SSPOL: Active LOW
FALSE, // POL: Active high polarity
0, // DRCTL: Don’t care SPI_RDY
FALSE}; //Don't use DMA

DWORD TxData[1024];
DWORD RxData[1024];

CSPI_XCH_PKT_T xchPkt =
{ &buscnfg,

TxData,
RxData,
64, // DWORD, Equal Burstlength/32
NULL,
0};

// optional asynchronous event, recommended
hEvent = CreateEvent(0, FALSE, FALSE, L"RX_EVENT");
xchpkt.xchEvent = L"RX_EVENT";
xchpkt.xchEventLength = sizeof(L"RX_EVENT");

// Transfer data via eCSPI
CSPIExchange(hCSPI, &xchPkt);
// optional
WaitForSingleObject(hEvent, INFINITE);
// Code for dealing received DATA

12.3.5 Closing the Handle to the eCSPI
Call the CloseHandle function to close a handle to the eCSPI after an application finishes using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the eCSPI port.

12.3.6 Power Management
The primary method for limiting power consumption in the eCSPI module is to gate off the input clock to
the module when the input eCSPI clock is not needed. This is accomplished through the
DDKClockSetGatingMode function call. In the all Windows Compact 7 BSP use cases, the eCSPI
controller acts as a master device. As a result, the eCSPI clock can be turned off, whenever the module is
not processing eCSPI packets.

12.3.6.1 PowerUp

This function is not implemented for the eCSPI driver. Power to the eCSPI module is managed as eCSPI
transfer operations are processed. There are no additional power management steps needed for the eCSPI.

Enhanced Configurable Serial Peripheral Interface (eCSPI) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 12-5

12.3.6.2 PowerDown

This function is not implemented for the eCSPI driver.

12.3.6.3 IOCTL_POWER_SET

This function is implemented for the eCSPI driver. When D4 power mode is set, the driver enters into D4
mode after finishing the last running burst transmission. When the driver leaves D4 power mode, it
recovers its original operating mode.

12.4 Unit Test
The eCSPI is used for PMIC or SPIFlash, the following methods are used to test it:

• Loopback test
• Access SPI flash on board through the eCSPI port

A eCSPI sample test application may be found at directory: \WINCE700\SUPPORT\TEST\ECSPI

12.5 eCSPI Driver API Reference

12.5.1 eCSPI Driver IOCTLS
This section consists of descriptions for the eCSPI I/O control codes (IOCTLs). These IOCTLs are used
in calls to DeviceIoControl to issue commands to the eCSPI device. Descriptions are provided only for
relevant parameters of the IOCTL.

12.5.1.1 CSPI_IOCTL_EXCHANGE

This DeviceIoControl request performs the transfer of data to a target device. An SPI_XCH_PKT object
is required, which contains the eCSPI bus configuration parameters and TX/RX data buffers. All of the
required information should be stored in the SPI_XCH_PKT passed in the lpInBuffer field.
Parameters
lpInBuffer Pointer to an SPI_XCH_PKT structure containing a pointer to bus configuration

parameters and TX/RX data buffers
nInBufferSize Size in bytes of the SPI_XCH_PKT

12.5.1.2 CSPI_IOCTL_ENABLE_LOOPBACK

This DeviceIoControl request sets the LOOPBACK flag in the eCSPI hardware.

12.5.1.3 CSPI_IOCTL_DISABLE_LOOPBACK

This DeviceIoControl request clears the LOOPBACK flag in the eCSPI hardware.

Enhanced Configurable Serial Peripheral Interface (eCSPI) Driver

Windows Embedded Compact 7 BSP Reference Manual

12-6 Freescale Semiconductor

12.5.2 eCSPI Driver SDK Wrapper

12.5.2.1 CSPIOpenHandle

This function retrieves the eCSPI device handle.
HANDLE CSPIOpenHandle(

LPCWSTR lpDevName);

Parameters
lpDevName eCSPI device name for retrieving handle from CreateFile()
Return Values Returns handle for eCSPI driver, returns INVALID_HANDLE_VALUE if failure

12.5.2.2 CSPICloseHandle

This function closes a handle of the eCSPI stream driver.
BOOL CSPICloseHandle(

HANDLE hDev);
Parameters
hDev eCSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

12.5.2.3 CSPIEnableLoopback

This function sets the eCSPI controller work in loopback mode to inspect if data value during XCH is
correct.

BOOL CSPIEnbaleLoopback(
HANDLE hDev);

Parameters
hDev eCSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

12.5.2.4 CSPIEnableLoopback

This function sets the eCSPI controller work in loopback mode. So that inspect if data value during XCH
is right.

BOOL CSPIEnbaleLoopback(
 HANDLE hDev
);

Parameters
hDev The eCSPI device handle retrieved from CreateFile().
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

Enhanced Configurable Serial Peripheral Interface (eCSPI) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 12-7

12.5.2.5 CSPIExchange

This function performs XCH operations.
BOOL CSPITransfer(

HANDLE hDev,
PCSPI_XCH_PKT_T pCspiXchPkt);

Parameters
hDev eCSPI device handle retrieved from CreateFile()
pCspiXchPkt [in] Pointer to XCH packet with bus configuration parameters
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

12.5.3 eCSPI Driver Structures

12.5.3.1 CSPI_BUSCONFIG_T

This structure contains the bus configuration information needed to during eCSPI performs XCH.
// eCSPI bus configuration
typedef struct
{
 UINT8 ChannelSelect; //CS0, CS1, CS2, CS3
 UINT32 Freq;
 UINT32 BurstLength; //bitcount, recommend 32bit as unit.
 BOOL SSPOL;
 BOOL SCLKPOL;
 BOOL SCLKPHA;
 UINT8 DRCTL;
 BOOL usedma;
} CSPI_BUSCONFIG_T, *PCSPI_BUSCONFIG_T;

Table 12-2. CSPI_BUSCONFIG_T Structure Members

Member Description

ChannelSelect Select XCH channel, range 0–3

Freq Data bandrate

BurstLength Define bits used in a single XCH, range 1–32×64

SSPOL SPI SS Polarity Select
FALSE: active low
TRUE: active high

SCLKPOL SPI Clock Polarity Control
FALSE: active high polarity (0 = Idle)
TRUE: active low polarity (1 = Idle)

SCLKPHA SPI Clock/Data Phase Control
FALSE: phase 0 operation
TRUE: phase 1 operation

Enhanced Configurable Serial Peripheral Interface (eCSPI) Driver

Windows Embedded Compact 7 BSP Reference Manual

12-8 Freescale Semiconductor

12.5.3.2 CSPI_XCH_PKT_T

This structure contains an XCH buffer parameters to be used in data exchange to eCSPI device.
// eCSPI exchange packet
typedef struct
{
 PCSPI_BUSCONFIG_T pBusCnfg;
 LPVOID pTxBuf;
 LPVOID pRxBuf;
 UINT32 xchCnt;
 LPWSTR xchEvent;
 UINT32 xchEventLength;
} CSPI_XCH_PKT_T, *PCSPI_XCH_PKT_T;

DRCTL DRCTL of eCSPI XCH operation
00: Do not care SPI_RDY
01: Burst triggered by failing edge of SPI_RDY
10: Burst triggered by low level of SPI_RDY
11: Reserved

usedma True: use DMA mode

Table 12-3. CSPI_XCH_PKT_T Structure Members

Member Description

pBusCnfg Pointer to eCSPI bus configuration object

pTxBuf Pointer to Tx data buffer

pRxBuf Pointer to Rx data buffer

xchCnt Amount of XCH operation to SPI device. xchCnt is 32-bit unit and must equal BurstLength/32 or
BurstLength/32 +1 (if BurstLength is not multiple of 32-bit)

xchEvent Asychronous access using the internal exchange queue

xchEventLength Event name length including tailing Zero

Table 12-2. CSPI_BUSCONFIG_T Structure Members (continued)

Member Description

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 13-1

Chapter 13
Enhanced Secure Digital Host Controller (eSDHC) Driver
The eSDHC module supports Multimedia Cards (MMC), Secure Digital Cards (SD) and Secure Digital
I/O and Combo Cards (SDIO). The eSDHC driver provides the interface between the Microsoft SD Bus
driver and the eSDHC hardware.

13.1 eSDHC Driver Summary
Table 13-1 provides a summary of source code location, library dependencies and other BSP information.

13.2 Supported Functionality

The eSDHC driver enables the hardware to provide the following software and hardware support:
1. Enhanced Secure Digital Host Controllers
2. Fast Path
3. DMA or PIO modes of data transfers based on value of eSDHC driver registry key, DisableDMA
4. SD, SD High Capacity (up to spec v2.1), MMC (up to spec v4.3), and SDIO cards (up to spec v2.0).

Table 13-1. eSDHC Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\ESDHC

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ESDHC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ESDHC

Driver DLL esdhc.dll

SDK Library esdhcbase_common_fsl_v3.lib, esdhcbase_<Target SOC>.lib, sdcardlib.lib, sdhclib.lib, sdbus.lib

Catalog Item Third Party > BSP > Freescale i.MX53 ARD: ARMV7 > Device Drivers > SD Host Controller >
Enhanced SD Host Controller 1 (ESDHC1) Support

Third Party > BSP > Freescale i.MX53 ARD: ARMV7 > Device Drivers > SD Host Controller >
Enhanced SD Host Controller 2 (ESDHC2) Support

SYSGEN Dependency SYSGEN_SD_MEMORY=1

BSP Environment Variables BSP_NOSDHC=1
BSP_ESDHC1=1
BSP_ESDHC2=1

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded Compact 7 BSP Reference Manual

13-2 Freescale Semiconductor

5. One host supports only one card connected to it
6. DLL supports multiple instances of the eSDHC controller
7. Configuration of the block sizes from 1–4096 bytes in single and multi-block modes
8. Insertion and removal of card, even when system is suspended; when the system resumes, the card

(if present) is remounted
9. Power states on(D0) and off (D4), D1–D3 states are treated as D4
10. Clocks are gated in D4 state, and ungated in D0 state, except for SDIO cards for which clocks are

never gated. Clocks are never gated if BSP_CLK_GATING_BETWEEN_CMDS_SDHC macro is
FALSE or undefined in the bsp_cfg.h file

11. Write protect switch on SD cards
12. Combo cards (for example, SD memory + WiFi functionality on same card)
13. MMC cards in 1-bit/4-bit mode and SD/SDIO cards in 4-bit modes

13.3 Hardware Operation
Refer to the chapter on the eSDHC in the i.MX53 Applications Processor Reference Manual for detailed
operation and programming information.

13.3.1 Conflicts with Other Peripherals and Catalog Options

13.3.1.1 Conflicts with SoC Peripherals

13.3.1.2 Conflicts with Other Board Peripherals

13.4 Software Operation
The eSDHC driver follows the Microsoft-recommended architecture (standard host controller driver) for
Secure Digital Host Controller drivers, whenever possible.

13.4.1 Required Catalog Items

13.4.1.1 SD and MMC Memory Card Support

Core OS > Windows Embedded Compact > Device Drivers > SD > SD Clients > SD Memory

13.4.1.2 SDIO Wifi Card Support

Third Party > BSP > Freescale i.MX53 SMD: ARMV7 > Device Drivers > WiFi > Atheros AR6102
(SDIO) Driver

13.4.2 eSDHC Registry Settings

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 13-3

13.4.2.1 i.MX53 SDHC Registry Settings
; @CESYSGEN IF CE_MODULES_SDBUS

IF BSP_ESDHC1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ESDHC1]
 "Order"=dword:21
 "Dll"="esdhc.dll"
 "Prefix"="SHC"
 "Index"=dword:1
 ;"DisableDMA"=dword:1 ; Use this reg setting to disable
both internal and external DMA
 "MaximumClockFrequency"=dword:3197500 ; 52 MHz max clock speed
 ;"WakeupSource"=dword:1 ; this will enable system wakeup
when card is inserted or removed during suspend state
ENDIF BSP_ESDHC1

IF BSP_ESDHC2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ESDHC2]
 "Order"=dword:21
 "Dll"="esdhc.dll"
 "Prefix"="SHC"
 "Index"=dword:2
 ;"DisableDMA"=dword:1 ; Use this reg setting to disable
both internal and external DMA
 "MaximumClockFrequency"=dword:3197500 ; 52 MHz max clock speed
 ;"WakeupSource"=dword:1 ; this will enable system wakeup
when card is inserted or removed during suspend state
ENDIF BSP_ESDHC2

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\MMC]
 "Name"="MMC Card"
 "Folder"="MMCMemory"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\SDMemory]
 "Name"="SD Memory Card"
 "Folder"="SDMemory"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\SDHCMemory]
 "Name"="SD Memory Card"
 "Folder"="SDMemory"

; @CESYSGEN ENDIF CE_MODULES_SDBUS

13.4.3 DMA Support

13.4.3.1 DMA Support

DMA mode is supported by the eSDHC driver. The driver does not allocate or manage DMA buffers
internally except for a start buffer and an end buffer for non-aligned buffers that are provided to the driver.
For every request submitted to it, the driver attempts to build a DMA Scatter Gather Buffer Descriptor list
for the buffer passed to it by the upper layer. For cases where this list cannot be built, the driver falls back
to the non-DMA mode of transfer.

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded Compact 7 BSP Reference Manual

13-4 Freescale Semiconductor

13.4.3.1.1 i.MX53 DMA Support

For the i.MX53, both DMA and non-DMA mode are supported by the driver. DMA mode is used by
default, and user can change the DisableDMA value in registry file esdhc_mx53.reg to enable non-DMA
mode. Internal DMA on eSDHC is used. Two internal DMA modes are supported by the eSDHC
hardware: Simple DMA and Advanced DMA (ADMA). The driver supports only ADMA mode.

For ADMA1, the upper layer should ensure that the start of the buffer is a page aligned address (4096
bytes). Due to cache coherency issues arising from the processor and DMA access of the memory, the
above criteria is further restricted for the read or receive operation (it is not applicable for write or transmit)
such that the number of bytes to transfer in the last buffer should be cache line size (64 bytes) aligned.

For a buffer chain that does not meet the above criteria, the driver uses its own start and end buffers that
are page and cache-aligned. When the DMA completes, a memcpy is done from the temporary start and
end buffers back to the original non-aligned buffers.

ADMA2 removes these restrictions, so all types of buffer addresses and sizes can be supported. However,
cache line alignment for address of the starting buffer and the length of the last buffer are required.

13.4.4 Power Management
The eSDHC driver does self-management of the module clocks for power savings during inactivity. Only
two power states are supported by the driver: D0 when all clocks are on, and D4 when all clocks are gated.
The IOCTL_POWER calls are never entered in this driver because it does not register with the CE Power
Manager. Instead, the SHC_powerUp and SHC_PowerDown APIs are the entry points for suspend and
resume functionality.

13.4.4.1 i.MX53 Power Management

The eSDHC driver conserves power by making calls to the clock management hardware, CCM, to gate
clocks to eSDHC module in between commands sent to the card. Clocks are also turned off when there is
no card present in the socket. Clock gating can be turned off by setting the
BSP_CLK_GATING_BETWEEN_CMDS_SDHC macro to FALSE or if it is undefined in bsp_cfg.h file.
Clocks cannot be gated at the CCM when a SDIO card is plugged in because the eSDHC is unable to wake
up upon interrupt from the SDIO card. In this case, clocks are only gated at the eSDHC, not at the CCM.

The power supply for the SD ports is shared with other peripherals. The PMIC driver determines when it
is safe to grant the eSDHC driver request to turn off the supply. The eSDHC driver requests to turn off this
supply whenever there is no card plugged in or when the system is suspended. When a card is inserted or
the system resumes from suspend, the eSDHC driver requests to turn on this supply. The
SHC_PowerDown and SHC_PowerUp APIs calls down to the BspESDHCSetSlotVoltage function, which
actually handles the communication with the PMIC driver.

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 13-5

13.5 Unit Test
The eSDHC driver is tested using the following tests included as part of the Windows Embedded Compact
7 Test Kit (CTK).

• File System Driver Test
• File System Performance Test
• Storage Device Block Driver Read/Write Test
• Storage Device Block Driver API Test
• Storage Device Block Driver Performance Test
• SD Bus FunctionalTest

13.5.1 Unit Test Hardware
Table 13-2 lists the required hardware to run the unit tests.

13.5.2 Unit Test Software
Table 13-3 lists the required software to run the unit tests.

Table 13-2. Hardware Requirements

Requirement Description

SD Cards SanDisk (128MB, 512MB, Extreme III SDHC 4GB)
ATP (SDHC 4GB)
A-DATA Turbo (SDHC 4GB)
Kingston (MiniSD 512MB, MicroSD 1GB)

MMC Cards PQI (128 Mbytes)
Kingmax (RS-MMC: 512MB, 1GB)
Transcend (MMCPlus: 1 Gbytes, 4 Gbytes)

Table 13-3. Software Requirements

Requirement Description

tux.exe Tux test harness, which is needed for executing the test

kato.dll Kato logging engine, which is required for logging test data

sdmemtux.dll Library that contains the sdbus test cases

sdtst.dll Test client driver

fsdtst.dll File System Driver Test .dll file

fsperflog.dll File system performance test library

ceperf.dll Module containing functions that monitor and log performance

perfscenario.dll Module containing functions that monitor and log performance

btsperflog.dll Generate ceperfformatted output

perflog.dll Logging library that provides functionality for timing and logging the performance data generated by the test dll.

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded Compact 7 BSP Reference Manual

13-6 Freescale Semiconductor

13.5.3 Building the Unit Tests
All the above mentioned tests come pre-built as part of the CTK. No steps are required to build these tests.
These test files can be found alongside the other required CTK files in the following location:
[Drive]:\Program Files\WindowsEmbeddedCompact7TestKit\tests\target\armv7

13.5.4 Running the Unit Tests
The following sections describe the tests available and the test procedures for each of the tests. For detailed
information on these tests see the relevant subsections under CTK Tests in the Platform Builder Help, or
view the online documentation at the following URL:
http://msdn.microsoft.com/en-us/library/gg154684.aspx

13.5.4.1 File System Driver Test

Use command line
tux –o –d fsdtst –c “-p SDMemory –zorch”

to run the tests on an SDSC card.

For SDHC card, use
tux –o –d fsdtst –c “-p SDHCMemory –zorch”

For MMC cards, use
tux –o –d fsdtst –c “-p MMC –zorch”

This tests all the cards inserted and requires the cards to be formatted prior to running the test. For higher
capacity cards, the test takes a long time to complete, and hence it is recommended that the system power
management (from control panel) be configured so that the system does not enter suspend state during test
execution.

13.5.4.2 Storage Device Block Driver Read/Write Tests

Use the command line:

For SDSC:
tux –o –d rwtest –c “-profile SDMemory -zorch”

For SDHC:
tux –o –d rwtest –c “-profile SDHCMemory -zorch”

rwtest.dll Storage Device Block Driver Read/Write Test .dll file

disktest.dll Storage Device Block Driver API Test .dll file

disktest_perf.dll Storage Device Block Driver Performance Test

Table 13-3. Software Requirements

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 13-7

For MMC:
tux –o –d rwtest –c “-profile MMC -zorch”

to run the tests. This only tests one card at a time.

13.5.4.3 Storage Device Block Driver API Tests

Use the command line

For SDSC:
tux –o –d disktest –c “-profile SDMemory -zorch”

For SDHC:
tux –o –d disktest –c “-profile SDHCMemory -zorch”

For MMC:
tux –o –d disktest –c “-profile MMC -zorch”

to run the tests. This only tests one card at a time.

13.5.4.4 Storage Device Block Driver Performance Tests

Use the command line

For SDSC:
tux –o –d disktest_perf –c “-profile SDMemory -zorch”

For SDHC:
tux –o –d disktest_perf –c “-profile SDHCMemory -zorch”

For MMC:
tux –o –d disktest_perf –c “-profile MMC -zorch”

to run the tests. This tests only one card at a time.

13.5.4.5 SD Bus Level Funcational Test

Use command line

For SDSC:
tux –o –d sdmemtux.dll –c “/device sd”

For SDHC:
tux –o –d sdmemtux.dll –c “/device sdhc”

For MMC:
tux –o –d sdmemtux.dll –c “/device mmc” -x !1011 -x !1012

to run the tests.

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded Compact 7 BSP Reference Manual

13-8 Freescale Semiconductor

13.5.5 System Testing
The following system tests are performed to verify the operation of the SD and MMC memory cards:

• Use the Start > Settings > Control Panel > Storage Manager to format and create partitions on
the mounted memory cards

• Establish ActiveSync connection over USB and transfer files to and from the memory cards
• Write media files to memory storage and use Windows Media Player to playback media files from

memory storage.

13.6 Secure Digital Card Driver API Reference
Detailed reference information for the Secure Digital Card driver may be found in the Platform Builder
Help under the heading Secure Digital Card Driver Reference or in the online documentation at the
following URL: http://msdn.microsoft.com/en-us/library/gg157412.aspx

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 14-1

Chapter 14
Enhanced Serial Audio Interface (ESAI) Driver
The Enhanced Serial Audio Interface (ESAI) provides a serial port for serial communication with a variety
of serial devices.

14.1 ESAI Driver Summary
The ESAI consists of independent transmitter and receiver sections, each section with its own clock
generator. It is called synchronous because all serial transfers are synchronized to a clock. Up to eight
transmitters and four receivers are supported. Table 14-1 provides a summary of source code location,
library dependencies and other BSP information.

14.2 Supported Functionality
The ESAI audio driver enables the ARD System to provide the following software and hardware support:

1. Conforms to the audio driver architecture as defined for Windows Embedded Compact 7 and all
related operating systems

2. Uses double-buffered DMA operations to transfer audio data

Table 14-1. ESAI Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\ESAI
..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\ESAI2

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ESAI

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ESAI
..\PLATFORM\<Target Platform>\SRC\DRIVERS\ESAI2

Driver DLL esai_cs42888.dll

SDK Library esai_common_fsl_v3.lib, esai2_common_fsl_v3.lib, esai_<Target SOC>.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > ESAI Support
Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > ESAI stereo +
5.1 Channel output Support

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables BSP_NOAUDIO=
BSP_ESAI=1 for ESAI support
BSP_ESAI2=1 for ESAI stereo + 5.1 Channel output Suppor
BSP_ASRC=1

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded Compact 7 BSP Reference Manual

14-2 Freescale Semiconductor

3. Supports multi-channel PCM wave data playback function
4. Supports multi-channel PCM wave data record function
5. Supports 16-bit and 24-bit PCM data.
6. Supports 1–8 channel PCM data playback. (Refer to software operation for detail)
7. Supports 1–4 channel PCM data record. (Refer to software operation for detail)
8. Supports playback function with Freescale hardware platforms that include the CS42888

multi-channel audio Codec
9. Supports playback without ASRC support at sample rate 48KHz (according to the external

oscillator).
10. Supports playback with ASRC support from sample rate 32K–192K
11. Supports record function with Freescale hardware platform that includes the CS42888 Codec
12. Supports record sample rate 48KHz (according to the external oscillator)

14.3 Hardware Operation
Refer to the chapter on the ESAI in the hardware specification document for detailed operation and
programming information.

14.3.1 Conflicts with Other Peripherals and Catalog Items
N/A

14.3.2 Hardware Limitation

14.3.2.1 Channel Order

In the ESAI hardware implementation, all the transmitters share one data FIFO. When multiple
transmitters are used, the audio data from the FIFO is transferred to the different transmitters in sequence,
such as TX0, TX1, TX2, TX3, TX0, TX1, TX2, TX3, and so on. Since the different transmitters use the
same slot mask, when multiple transmitters are used, the channel mask is not handled well. The channel
mask can only be used when only one transmitter is being used.

Also, the mapping from channel number to the transmitter port changes according to the channel numbers
when multiple transmitters are used.

For example, when four transmitters are used for 1–8 channels of audio playback:

Channel Number = 8: CH0,CH4->TX0, CH1,CH5->TX1, CH2,CH6->TX2, CH3,CH7->TX3

Channel Number = 6: CH0,CH3->TX0, CH1,CH4->TX1, CH2,CH5->TX2

Channel Number = 4, CH0,CH2->TX0, CH1,CH3->TX1

Channel Number = 2, CH0,CH1->TX0

For receive, the problem is similar and the channel number should be even for both playback and record.

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 14-3

14.3.2.2 Sample Rate

The ESAI module only supports 48KHz recording. Therefore, playback and record can only be performed
under 48kHz sample rate at same time.

14.4 Software Operation
The audio driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help:

Developing a Device Driver > Windows CE Drivers > Audio Drivers > Audio Driver Development
Concepts.

14.4.1 Required Catalog Items
Third Party > BSP > Freescale<Target Platform>:ARMV7 > Device Drivers >I2C Bus > I2C Bus2

14.4.2 Scenario Settings
Software implements two scenarios for different use cases.

One is generic ESAI multi-channel output and input case. ESAI will enable the relative output and input
channels according to the channel number of original bit stream, and it doesn’t support audio mixer. This
case is the default setting of ESAI driver, which can be enabled by selecting the calatlog item of ‘ESAI
Support’. And all the description in this chapter is referring to this case.

The other is two zone output and input case, which can be enabled by selecting the calatlog item of ‘ESAI
stereo + 5.1 Channel output Support’. In this case, ESAI supports two zones output including one stereo
and one 5.1 channel, and supports two zones input including two individual stereo. Application can use
wFormatTag member in WAVEFORMATEX structure to designate different zones while opening ESAI
device, WAVE_FORMAT_PCM for front zone and WAVE_FORMAT_EXTENSIBLE for back zone. In
this scenario, software is involved for data position arrangement in DMA buffer for different channel,
sample rate conversion and audio mixer. ASRC hardware is not used.

14.4.3 ESAI Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ESAI]
"Prefix"="WAV"
 "Dll"="esai_cs42888.dll"
 "Index"=dword:3
 "Order"=dword:8
 "Priority256"=dword:95
 "AudioProtocol"=dword:2

 "SupportWAVEFORMATEX"=dword:1
 "IClass"=multi_sz:"{A32942B7-920C-486b-B0E6-92A702A99B35}",
 "{E92BC203-8354-4043-A06F-2A170BF6F227}",

 "{37168569-61C4-45fd-BD54-9442C7DBA46F}"

The AudioProtocol key value can be set to 0 (one transmitter with network mode) or 2 (multi-transmitter
with normal mode). When AudioProtocol is set to 0, one transmitter is used and the channel mask is well

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded Compact 7 BSP Reference Manual

14-4 Freescale Semiconductor

handled. Since all the audio data is transferred on one serial bus, the frame rate is limited by the bit clock.
Sample rate beyond 48 K is not supported. In this mode, the mapping from slot number to the transmitter
port is fixed.

When AudioProtocol is set to 2, multiple transmitters are used and 8-channel wave format is supported.
To keep the mapping relationship between slot number and transmitters, the audio data needs to be packed
to 8-channel format before it is transferred to the ESAI interface. In this case, the channel mask does not
take effect.

This AudioProtocol affects only the playback function. For the record function, the bus protocol is decided
by the driver and is not selectable.

The SupportWAVEFORMATEX key is used to determine whether ESAI driver supports
WAVEFORMATEX data structure. When the registry key is set to 1, this format structure is supported.

14.4.4 Supported Wave Data Format
In general, to access the ESAI audio interface, the WAVEFORMATEXTENSIBLE data structure is used:
typedef struct {
 WAVEFORMATEX Format;
 union {
 WORD wValidBitsPerSample;
 WORD wSamplesPerBlock;
 WORD wReserved;
 } Samples;
 DWORD dwChannelMask;
 GUID SubFormat;
} WAVEFORMATEXTENSIBLE, *PWAVEFORMATEXTENSIBLE;

Format.wFormatTag must be set to WAVE_FORMAT_EXTENSIBLE. The dwChannelMask member
does not take effect while AudioProtocol is set to 2 in the registry file. Format.nChannels can be set from
1 to 8, but when AudioProtocol is set to 2 in the registry file, only even number can be used (such as 2, 4,
6,8). For 24-bit audio data packed in bits 23–0 of the 32 bits, set Samples.wValidBitsPerSample to 24 and
Format.wBitsPerSample to 32. The SubFormat member is not used since only PCM data is supported.

14.4.5 DMA Support

14.4.5.1 DMA Support

Double-buffer is used for audio data transfer.

14.4.6 Power Management
The primary method for limiting power consumption in ESAI driver is to stop all active audio DMA
operations, and to disable all audio hardware components at the end of each audio stream.

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 14-5

14.4.6.1 PowerUp

This function resumes an audio I/O operation that was previously terminated by calling the PowerDown()
API. It begins by re-enabling all of the required audio hardware components. Then this function restarts
the audio DMA transfers to complete the powerup process for the audio driver. This functionality is
currently handled by IOCTL_POWER_SET and the function is just a stub.

14.4.6.2 PowerDown

This function suspends all currently active audio I/O operations just before the entire system enters the low
power state. It stops all active audio DMA operations and to disalbe the associated audio hardware
components. Once this is done, the audio driver remains in a low power state until the PowerUp function
is called by the Power Manager. This functionality is currently handled by IOCTL_POWER_SET and the
function is just a stub.

14.4.6.3 IOCTL_POWER_CAPABILITIES

This function return the power capability of the ESAI driver that it support D0 and D4 status.

14.4.6.4 IOCTL_POWER_GET

This function is not implemented for the ESAI driver.

14.4.6.5 IOCTL_POWER_SET

This Power Manager IOCTL is implemented for the audio driver. All system suspend and resume
functions are handled by the IOCTL, which manages the PowerDown and PowerUp functionality.

14.5 Unit Test
If the SupportWAVEFORMATEX key is set to 0, ESAI driver interface supports only wave data that
conforms with the WAVEFORMATEXTENSIBLE structure. Therefore the driver might not be supported
by general audio applications.

14.5.1 Building the Unit Test
To build the ESAI tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the M_Player Tests directory: \WINCE700\SUPPORT\TEST\ESAI\M_PLAYER
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the .exe file to the flat release directory
4. Enter build -c at the prompt and press return
5. Change to the M_Recorder Tests directory: \WINCE700\SUPPORT\TEST\ESAI\M_RECORDER
6. Enter set WINCEREL=1 on the command prompt and press return.

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded Compact 7 BSP Reference Manual

14-6 Freescale Semiconductor

This copies the .exe file to the flat release directory
7. Enter build -c at the prompt and press return
8. Change to the D_Player Tests directory: \WINCE700\SUPPORT\TEST\ESAI\D_PLAYER
9. Enter set WINCEREL=1 on the command prompt and press return.

This copies the .exe file to the flat release directory
10. Enter build -c at the prompt and press return

After the build completes, the m_player.exe, m_recorder.exe and D_player files are located in the
$(_FLATRELEASEDIR) directory.

14.5.2 Hardware Setup
N/A

14.5.3 Running the Unit Test

14.5.3.1 Playback Function Test

The m_player application is used for the playback function test. Earphone or speakers can be used to hear
the sound.

Usage: m_player wave_file_name [-n channel_number] [-m channel_mask] [-ne]

Example: m_player temp\source.wav -n 6 -m 0x3f

In this example, the source.wav is played through the ESAI in six channels and the channel mask is 0x3f.
The wave file used for testing is a general stereo wave file and the application extends it to multi-channel
wave format. The wave file can be a 16-bit or 24-bit data file.

To run the application within VS2008, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select m_player.exe from this list and
click on Run to run this application.

14.5.3.2 Record Function Test

The m_recorder application is used for the record function test. The sound from the audio input line is
recorded in the destination wave file and can be played later for verification.

Usage: m_recorder wave_file_name seconds_length sample_rate bit_depth channel_number
channel_mask

Example: m_record temp\target.wav 10 48000 16 4 0xf

In this example, the target.wav file is recorded through the ESAI. The file is in wave format: 10 seconds
in length, 48 KHz sample rate, 16-bit depth, 4 channels and the channel mask is 0xf.

If the bit depth is set to 32, the recorded data is 24-bit (packed into bits 23–0 of the 32 bits). The channel
number indicates the number of channels in the audio data, and the mask indicates which channel contains
data and which channel contains zero. Zeros should not be present in the data, but there is a limitation in

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 14-7

the hardware conversion process that generates zeros. If a bit in the mask is zero, the corresponding bits
are zeros in the interleaved audio data. The channel number also includes such “zero-data” channel.

To run the application within VS2008, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select m_player.exe from this list and
click on Run to run this application.

14.5.3.3 Full Duplex Function Test

The d_player application is used for full duplex function test. The sound from the audio input line is
recorded in memory temporarily and meanwhile the memory audio data is output through earphone or
speakers.

Usage: d_player [-n chn_num][-s sample_rate][-b bit_depth][-t seconds]

Example: d_player -n 4 -s 48000 -b 16 -t 60

In this example, the full-duplex works over ESAI for 60 seconds, the wave format is 4 channels, 16-bit
bitdepth, with sample rate at 48000 HZ for both playback and record.

To run the application within VS2008, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select m_player.exe from this list and
click on Run to run this application.

NOTE
These applications are mainly used for simple function test and API demo
usage. User might encounter wave file format related failures (like wave
format chunk length and “fact” chunk is not well handled). Edit the source
code to resolve the problem.

In general, ESAI driver needs wave data that conforms with the
WAVEFORMATEXTENSIBLE structure for operation. Also ESAI driver
doesn’t support audio mixer. Hence audio driver CTK is not appropriate for
ESAI driver testing.

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded Compact 7 BSP Reference Manual

14-8 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 15-1

Chapter 15
Global Positioning System (GPS) Driver
The Global Positioning System (GPS) enables a GPS receiver to determine its location, speed/direction,
and time.

15.1 GPS Driver Summary
This platform supports the Atheros AR1520A Single Chip Assisted-GPS (A-GPS) solution. AR1520A™
is an A-GPS solution that integrates a high performance A-GPS baseband signal processor with a
low-noise GPS RF Tuner into a single CMOS die. AR1520A delivers high sensitivity, low power
consumption and fast time-to-first-fix (TTFF) in a small, inexpensive package.

The external GPS module is supported using the UART port and GPIO resources. Because the chipset
features a host-based architecture, you must load certain software components on the platform in order to
enable full operation.

The following table provides a summary of source code location, library dependencies and other BSP
information.

Most GPS software modules are provided in binary form only. This application also provides source code
format for the driver that supports access to the hardware. To enable the GPS module, select the
corresponding elements from the Catalog for the current OS Design. The binary files and the registry
settings that correspond to the elements selected are included in the OS run-time image.

Table 15-1. GPS Driver Summary

Driver Attribute Definition

Target Platform

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPS

Driver DLL athrgpsctrl.dll, OrionSvc.dll, OrionSys.dll, OrionVSP.dll

SDK Library N\A

Catalog Item Third Party > BSPs > Freescale <Target Platform>: ARMV7 > Device Drivers > GPS

SYSGEN Dependency N/A

BSP Environment Variables BSP_GPS=1
BSP_SERIAL_UART2 =1

Global Positioning System (GPS) Driver

Windows Embedded Compact 7 BSP Reference Manual

15-2 Freescale Semiconductor

The GPS module uses UART on the SMD platform. Resetting and power on/power off to the GPS module
are controlled by the GPIO pins. The GPS module functionality is segmented into subsystems. All of the
subsystems do not need to be selected in order to enable GPS on the platform.

The following table shows the architecture of GPS driver. Three layers in the GPS software system.
• Application layer
• GPS core driver layer
• GPS HAL driver layer

Figure 15-1. Software Architecture of GPS Driver

15.1.1 Application Layer
Handset applications, TCP/IP stack and the GSM layer3 belong to the application layer. Handset
applications, such as VisualGpsce.exe, MobileOA.exe or any other mapping software, can receive
standard NMEA data to show position with a friendly user interface. TCP/IP stack and GSM layer3 can
provide A-GPS navigation service to enable GPS functionality even when satellite signal is not good
enough to get fix.

15.1.2 GPS Core Driver Layer
The deep color part (GLL) belongs to GPS core driver layer. The GPS core driver runs at host and
communicates with GPS chip by calling GPS HAL driver. The driver is used for position calculation and
assistance data management.

Global Positioning System (GPS) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 15-3

15.1.3 GPS HAL Driver Layer
GPS HAL drivers provide hardware related resource, such as serial port driver, non-volatile storage and
GPIO functions. The driver is called as athrgpsctrl.dll, and source code can be found at:

PLATFORM\<Target Platform>\SRC\DRIVERS\GPS\GPSCTROL.

15.2 Supported Functionality
The GPS driver provides the following software and hardware support:

1. Integrates the AR1520A GPS module from Atheros company
2. Supports power management mode full on/full off

15.3 Hardware Operation
The GPS driver exchanges data and command between GPS application layer and hardware module via
UART2 port

15.3.1 Conflicts with Other Peripherals and Catalog Items

15.3.1.1 Conflicts with SoC Peripherals

GPS uses UART2 port as communication port which confilicts with PATA module

15.3.1.2 Conflicts with Board Peripherals

None.

15.3.2 Hardware Operation

15.3.2.1 UART Port

For i.MX53 SMD board, UART2 port is used to communicate with the GPS module. If a different UART
port is used for this purpose, then the following registry must be changed correspondingly:

..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPS\FILSE\Orion.ini:

"ReceiverComPortName"="COMx:", where “x” should be specified according to the UART actually
used ("COM2:").

15.3.2.2 GPIO Control

The GPIO pins are used to control the GPS module as shown in The following table.

Global Positioning System (GPS) Driver

Windows Embedded Compact 7 BSP Reference Manual

15-4 Freescale Semiconductor

If different pins are used for such purpose, then some source code must be updated to reflect the
difference. Refer to the following source file for details:
..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPS\GPSCTROL\gpsctrl.cpp

15.4 Software Operation

15.4.1 Communicating with the GPS Module
Software applications communicate with the GPS module through a virtual COM port (COM8). The
virtual COM port is a standard stream interface driver, and is thus accessed through the file system APIs.
For example, the Win32 API CreateFile() call can be used to obtain a handle and ReadFile() can be used
to read the NMEA data stream output by the GPS module.

15.4.2 Power Management
The GPS_PowerUp and GPS_PowerDown functions are used to bring the GPS module into and out of
standby mode. The code is designed to keep the power consumption of the GPS module at a minimal level
when the standby power state is invoked.

15.4.3 GPS Driver Registry Settings

15.4.3.1 Configuration Registry Keys

The following configuration is to load GPSCtrol driver.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GPSReset]
 "Prefix"="AGC"
 "Dll"="athrgpsctrl.dll"
 "Index"=dword:0

 "Order"=dword:20

15.5 Unit Test
A navigation application is necessary to test the GPS driver. There are a simple GPS test application
located as Control Panel -> Orion which is provided by Atheros. Freescale does not provide a navigation
application. The customer may contact Atheros for navigation application and more information.

Table 15-2. GPIO Control

GPIO Name PIN Value Description

GPS_RESET_B PATA_DATA12 0: Reset of GPS module is asserted
1: Reset of GPS module is de-asserted

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 16-1

Chapter 16
Graphics Processing Unit (GPU)
The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D graphics
applications. The GPU3D (3D graphics processing unit) is based on the AMD Z430 core, which is an
embedded engine capable of DirectX9 Shader Model 3.0+ program execution and accelerates user level
graphics APIs such as OpenGL ES 1.1 and 2.0.. The GPU2D (2D graphics processing unit) is based on the
AMD Z160 core, which is an embedded 2D and vector graphics accelerator targeting the OpenVG 1.1
graphics API and feature setThe GPU driver is delivered only as binary code.

16.1 GPU Driver Summary
Below table provides a summary of source code location, library dependencies and other BSP information.

Table 16-1. GPU Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPU

Driver DLL amdgslldd.dll essc.dll lib2d-z160.dll
lib2dz160k.dll lib2dz430k.dll lib2d-z430.dll libEGL.dll
libGLES_CM.dll libGLESv1_CM.dll libGLESv2.dll libgsl.dll
ibgslmemcfg.dll libgsluser.dl l libgslWrapperk.dll libkos.dll
libOpenVG.dll libos.dll libpanel.dll librenderboy.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform> > Device Drivers > GPU > Graphics Processing Unit >
OpenGL ES support
Third Party > BSP > Freescale <Target Platform> > Device Drivers > GPU > Graphics Processing Unit >
OpenVG support

SYSGEN Dependency N/A

BSP Environment
Variables

BSP_GPU_BASE=1
BSP_GPU_OPENGLES=1
BSP_GPU_OPENVG=1

Graphics Processing Unit (GPU)

Windows Embedded Compact 7 BSP Reference Manual

16-2 Freescale Semiconductor

16.2 Supported Functionality
The GPU driver enables the board to provide the following software and hardware support:

1. EGL™ (interface between Khronos rendering APIs such as OpenGL ES or OpenVG and the
underlying native platform window system) 1.3 API defined by Khronos Group

2. OpenGL® ES (royalty-free, cross-platform API for full-function 2D and 3D graphics on
embedded systems) 1.1 API defined by Khronos Group

3. OpenGL ES 2.0 API defined by Khronos Group
4. OpenVG™ (royalty-free, cross-platform API that provides a low-level hardware acceleration

interface for vector graphics libraries such as Flash and SVG) 1.1 API defined by Khronos Group
5. D0 (Full On) and D4 (Off) power states

16.3 Hardware Operation
Refer to the GPU chapter in thei.MX53Applications Processor Reference Manual for detailed hardware
operation and programming information.

16.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

16.4 Software Operation

16.4.1 Communicating with the GPU
The GPU driver is divided into two layers. The first layer is running in kernel mode, acting as the base
driver for the whole stack and providing the essential hardware access, device management, memory
management, command stream management, context management and power management. The second
layer is running in user mode, implementing the stack logic and providing following APIs to the upper
layer applications such as:

• EGL 1.3 API
• OpenVG 1.1 API
• OpenGL ES 1.1 and 2.0 API

16.4.2 GPU Driver Files
Listed below is a brief introduction to the GPU driver files. This list is not complete. The platform.bib file
contains the complete list.

• Files that reside in kernel space:
— amdgslldd.dll—base GPU driver and the standard stream interface driver, provides essential

access to GPU hardware

Graphics Processing Unit (GPU)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 16-3

— libkos.dll—contains OS helper functions
— libgsl.dll—contains common Graphics System Layer (GSL) logic
— lib2dz160k.dll—contains Z160 c2d helper functions
— libgslmemcfg.dll—contains memory configuration helper functions
— lib2dz430k.dll—contains Z430 c2d helper functions

• Files that reside in user space
— libos.dll—contains OS helper functions
— libgsluser.dll—contains common Graphics System Layer (GSL) logic
— lib2d-z160.dll—contains Z160 c2d helper functions
— libpanel.dll—contains GPU configuration helper functions so that some configurations could

be customized during runtime, instead of hard-built images
— libEGL.dll—contains EGL implementation
— libOpenVG.dll—contains OpenVG 1.1 implementation
— essc.dll—contains shader compiler logic
— librenderboy.dll—contains the logic of rendering framework
— lib2d-z430.dll—contains Z430 c2d helper functions
— libGLES_CM.dll—contains OpenGL ES 1.1 implementation
— libGLESv1_CM.dll—contains OpenGL ES 1.1 implementation, different wrapper
— libGLESv2.dll—contains OpenGL ES 2.0 implementation

16.4.3 Power Management
The GPU driver implements the PowerUp and PowerDown APIs with support for the D0 (Full On) and
D4 (Off) power states. These states are handled in the following manner:

• D0—GPU clocks are not enabled until the GPU driver is required to enable the clocks, for
example, when an OpenGL ES application is launched. The GPU driver disabled the clocks when
applications exit. Additionally, the graphics core has integrated power management design that
supports gated clock branches used to turn off idle blocks within the core. This block-level clock
gating is managed automatically in the core and GPU driver enables this capability when configure
the core at the initialization time.

• D4—GPU clocks are disabled and power supplies are also disabled when possible.

16.4.4 GPU Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GSL]
"Prefix"="GSL"
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GSL]
"Dll"="amdgslldd.dll"
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GSL]
"Index"=dword:1
"IClass"="{8DD679CE-8AB4-43c8-A14A-EA4963FAA715}" ; PMCLASS_GENERIC_DEVICE

[HKEY_LOCAL_MACHINE\Drivers\GPU]

Graphics Processing Unit (GPU)

Windows Embedded Compact 7 BSP Reference Manual

16-4 Freescale Semiconductor

;"MemSize"=dword:2000000 ; 32MB
In above Registry setting, key “MemSize“ is used to set the gpu memory pool size. Customer can
set it according to different board and 3D/2D use cases requirement.

;"ISTPriorityLevel"=dword:98 ; used for adjust GPU interrupt thread priority level.
;"EnableFlipping"=dword:0 ; non-zero indicates enabled
;"WaitForVB"=dword:0 ; non-zero indicates enabled

The GPU driver exports Common 2D (C2D) APIs to accelerate 2D operations. Two C2D implementations,
C2D Z430 and C2D Z160, are provided. They use different GPU cores and expose the same APIs.

Currently reference codes are added into the display driver to accelerate following GDI operations using
C2D Z430 or C2D Z160. For information, please refer to 10.4.3.3, “Display Driver Blit Acceleration“

16.5 Unit Test
The following sections describe the unit tests for the GPU driver.

16.5.1 Unit Test Hardware
No special requirements.

16.5.2 Unit Test Software
The following sections describe the software for the GPU driver unit tests.

16.5.2.1 Tiger Test

This test application verifies the basic functionality of OpengVG 1.1. It is included into the release image
and is located under \Windows\tiger.exe. Click to launch this test and a rotating tiger appears on the screen
as shown in follow figure.

Figure 16-1. Cube Test

Graphics Processing Unit (GPU)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 16-5

16.5.2.2 OpenVG 1.1 Conformance Test

The OpenVG 1.1 conformance test is standard OpenVG conformance test designed by the Khronos Group.
Visit the Khronos Group website at http://www.khronos.org/opengles/adopters/login/ for detailed
information about how to download the source code, build the test binaries and run this tests.

16.5.2.3 Cube Test

This test application verifies the basic functionality of OpengGL ES 1.1. It is included in the release image
and is located under \Windows\cube.exe. Click to launch this test and a rotating cube appears on the screen
as shown in follow figure. Press ESC to exit this application.

Figure 16-2. Cube Test

Graphics Processing Unit (GPU)

Windows Embedded Compact 7 BSP Reference Manual

16-6 Freescale Semiconductor

16.5.2.4 Triangle Test

This test application verifies the basic functionality of OpengGL ES 2.0. It is included in the release image
and is located under \Windows\triangle.exe. Click to launch this test and a triangle appears on the screen
as shown in follow firgure. Press ESC to exit this application.

Figure 16-3. Triangle Test

16.5.2.5 OpenGL ES 1.1/2.0 Conformance Test

The OpenGL ES 1.1 and 2.0 conformance tests are standard OpenGL ES conformance test designed by
the Khronos Group. Visit the Khronos Group website at http://www.khronos.org/opengles/adopters/login/
for detailed information about how to download the source code, build the test binaries and run these tests.

16.5.2.6 Known Issues
• Refer to the release notes for up-to-date known issue list

16.6 GPU Driver API Reference
• For OpenGL ES 1.1 and 2.0 API refer to http://www.khronos.org/opengles/ for detailed

specifications
• For EGL 1.3 API refer to http://www.khronos.org/egl/ for detailed specifications
• For OpenVG 1.1 API refer to http://www.khronos.org/openvg/ for detailed specifications

•

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 17-1

Chapter 17
Inter-Integrated Circuit (I2C) Driver
The Inter-Integrated Circuit (I2C) module provides the functionality of a standard I2C master. The I2C
module is designed to be compatible with the standard Phillips I2C bus protocol.

17.1 I2C Driver Summary
Table 17-1 provides a summary of source code location, library dependencies and other BSP information.

17.2 Supported Functionality
The I2C driver supports the following features:

1. I2C communication protocol
2. Multiple I2C controllers
3. I2C master mode of operation
4. Stream interface
5. Two power management modes: full on and full off

Table 17-1. I2C Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\I2C

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\I2C

Platform Driver Path ..\PLATFORM\Target Platform>\SRC\DRIVERS\I2C

Import Library N/A

Driver DLL i2csdk.dll i2c.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > I2CBus

SYSGEN Dependency N/A

BSP Environment Variables BSP_I2CBUS2=1 or BSP_I2CBUS3=1

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

17-2 Freescale Semiconductor

17.3 Hardware Operation

17.3.1 Conflicts with Other Peripherals and Catalog Items
The following section explains about the conflicts that the I2C driver have with other peripherals and
catalog items:

17.3.1.1 Conflicts with SoC Peripherals

No conflicts.

17.3.1.2 Conflicts with Board Peripherals

No conflicts.

17.4 Software Operation
The I2C APIs should be used to perform any operation on or using the I2C module. Any array of packets
to be transferred to or from the I2C bus finish to completion without preemption by another request to
transfer data.

17.4.1 Registry Settings
This section explains about the registry settings for the I2C driver.

17.4.1.1 i.MX53 Registry Settings
The following registry keys are required to properly load the I2C module.IF BSP_I2CBUS2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C2]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:2
 "Order"=dword:2
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE
ENDIF ; BSP_I2CBUS2

IF BSP_I2CBUS3
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C3]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:3
 "Order"=dword:2
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE
ENDIF ; BSP_I2CBUS3

17.4.2 Communicating with the I2C
The I2C is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the I2C, a handle to the device must first be created using the CreateFile function. Subsequent

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 17-3

commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. The following are the basic steps. The I2C driver is provided to hide all the IOCTL calls
from the calling application.

17.4.3 Creating a Handle
Call the CreateFile function to open a connection to the I2C device. An I2C port must be specified in this
call. If an I2C port does not exist, CreateFile returns ERROR_FILE_NOT_FOUND.

To open a handle to the I2C:
1. Insert a colon after the I2C port for the first parameter, lpFileName. For example, specify I2C1:.
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an I2C port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

Example 17-1shows how to open an I2C port.

Example 17-1. Code to Open I2C Port

 // Open the I2C port.
 hI2C = CreateFile (CAM_I2C_PORT, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

Before writing to or reading from an I2C port, configure the port. When an application opens an I2C port,
it uses the default configuration settings, which might not be suitable for the device at the other end of the
connection.

17.4.4 Configuring the I2C
Configuring the I2C port for communications involves two main operations:

• Setting the master mode
• Setting the I2C clock rate

Before these actions can be taken, a handle to the I2C port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the I2C port handle, appropriate IOCTL
code, and other input and output parameters are required. Use the helper APIs to correctly configure the
port.

Example 17-2 shows the code to configure an I2C port:

Example 17-2. Code to Configure I2C Port

HANDLE hI2C = I2COpenHandle(_T("I2C1:"));

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

17-4 Freescale Semiconductor

if (hI2C == INVALID_HANDLE_VALUE)
{

ERRORMSG(1, (L"Unable to open handle to I2C block\r\n"));
retVal = -1;
goto exit;

}

if (!I2CSetMasterMode(hI2C))
{

ERRORMSG(1, (L"Unable to set master mode\r\n"));
retVal = -1;
goto exit;

}

if (!I2CSetFrequency(hI2C, EEPROM_CLOCK_RATE))
{

ERRORMSG(1, (L"Unable to set frequency\r\n"));
retVal = -1;
goto exit;

}

17.4.5 Data Transfer Operations
The I2C driver provides one command, transfer, that facilitates performing both reads and writes through
the I2C. The basic unit of data transfer in the I2C driver is the I2C_PACKET, which contains a buffer for
reading or writing data and a flag that specifies whether the desired operation is a read or a write. An array
of these packets makes up an I2C_TRANSFER_BLOCK object, which is required to perform a Transfer
operation. The steps below detail the process of performing write and read operations through the I2C.

Before these actions can be taken, a handle to the I2C port must already be opened, and it should already
be configured in the correct mode with the correct frequency.

To perform an I2C transfer:
1. Create an array of I2C_PACKET objects and initialize the fields of each packet as follows:

a) Set the byRW field to I2C_RW_WRITE to specify that the I2C operation is a write, or
I2C_RW_READ to specify that the I2C operation is a read.

b) Set the byAddr field to the 7-bit I2C slave address of the device to which the data is written.

NOTE
c) The byAddr field requires the 7-bit I2C slave address, aligned to the least significant 7 bits.

This address is shifted left one bit and OR-ed with the read/write bit to compose the 8-bit value
sent out during the I2C slave address cycle. In older versions of this driver, the slave address
was entered as the most significant 7 bits of the 8-bit value.If byRW is set to I2C_RW_WRITE,
create a buffer of bytes and fill it with the data to write to the slave device. Set the pbyBuf field
to point to this buffer. If byRW is set to I2C_RW_READ, create a buffer of bytes to hold the
data which is read from the slave device.

d) Set the wLen field to the size, in bytes, of the read or write buffer. This indicates the number of
bytes to write or read.

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 17-5

e) Set the lpiResult field to point to an integer that holds the return value from the write operation.
2. Call the I2CTransfer SDK API to start the I2C transfer.
3. After calling the I2CTransfer function, check the lpiResult field if the function returned FALSE, to

narrow down the type of error that occurred.

The following code example demonstrates how to perform a transfer that contains one write and one read
packet. The write is performed before the read operation.
I2C_TRANSFER_BLOCK I2CXferBlock;
I2C_PACKET I2CPacket[2];
BYTE byAddr = 0x2D; // Slave Address
BYTE byOutData = 0x39; // Data to write
BYTE byInData; // Read buffer

// Packet 0 contains write operation
I2CPacket[0].pbyBuf = (PBYTE) &byOutData;
I2CPacket[0].wLen = sizeof(byOutData);

I2CPacket[0].byRW = I2C_RW_WRITE;
I2CPacket[0].byAddr = byAddr;
I2CPacket[0].lpiResult = lpiResult;

// Packet 1 contains read operation
I2CPacket[1].pbyBuf = (PBYTE) &byInData;
I2CPacket[1].wLen = sizeof(byInData);

I2CPacket[1].byRW = I2C_RW_READ;
I2CPacket[1].byAddr = byAddr;
I2CPacket[1].lpiResult = lpiResult;

I2CXferBlock.pI2CPackets = I2CPacket;
I2CXferBlock.iNumPackets = 2;

// Transfer data via I2C
if (!I2CTransfer(hI2C,&I2CXferBlock))

{
ERRORMSG(1, (_T("Data transfer failed!\r\n")));
retVal = -1;
goto exit; // examine value in lpiResult

17.4.5.1 }Repeated Start

The array of I2C_PACKET objects passed to the Transfer command is guaranteed to be performed
sequentially, without interruption or preemption by another driver that is attempting to access the I2C
module. A START command of the I2C initiates the transmission of the first packet in the
I2C_TRANSFER_BLOCK array. For subsequent packets, a change in the direction of communication
(from read to write or write to read) or a change in the target slave address triggers a REPEATED START
command before the transmission of the packet. Thus, if a REPEATED START is required between data
transfers with a target I2C device, all of those data transfers should be contained within a single
I2C_TRANSFER_BLOCK. The final packet in the I2C_TRANSFER_BLOCK is succeeded by an I2C
STOP command.

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

17-6 Freescale Semiconductor

17.4.6 Closing the Handle
Call the CloseHandle function to close the handle to the I2C after the transfer task is complete.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the I2C port.

17.4.7 Power Management
The power management method used in the I2C module is to gate off all clocks to the module when those
clocks are not needed. This is accomplished through the DDKClockSetGatingMode function call. In
most BSP use cases, the I2C module operates in master mode and never in slave mode. As a result, the I2C
module can be disabled, and its clocks turned off, whenever the module is not processing packets. In
contrast, when the I2C module operates in slave mode, the module has to be enabled, and have its clocks
turned on at all times to properly receive the interrupt that signals the start of a data transfer from another
I2C master device.

As described in the Data Transfer Operations section, the I2C data transfer operations are handled in
I2C_TRANSFER_BLOCK objects, which contain one or more packets of I2C data. The I2C driver turns
on the I2C clocks and enables the I2C module before processing an I2C_TRANSFER_BLOCK, and then
disables and turns off clocks to the I2C module after the block of packets has been processed. This limits
the time during which the I2C module is consuming power to the time during which the I2C is actively
performing data transfers.

17.4.7.1 PowerUp

This function is not implemented for the I2C driver. Power to the I2C module is managed as I2C transfer
operations are processed. There are no additional power management steps needed for the I2C.

17.4.7.2 PowerDown

This function is not implemented for the I2C driver.

17.4.7.3 IOCTL_POWER_SET

This function is implemented for the I2C driver. When D4 power mode is set, the driver switches its
operating mode to polling that does not produce interrupt events to the BSP system. When leaving the D4
power mode, the driver recovers its original operating mode.

17.5 Unit Test
The functionality of this driver is tested by other drivers, like eCompass, Accelerometer, SSI drivers and
so on.

So far, the CTK I2C test is not applicable.

17.6 I2C Driver API Reference
This section explains about the reference to I2C driver API.

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 17-7

17.6.1 I2C Driver IOCTLS
This section contains descriptions of the I2C I/O control codes (IOCTLs). These IOCTLs are used in calls
to DeviceIoControl to issue commands to the I2C device. Only relevant parameters for the IOCTL have
a description provided.

17.6.1.1 I2C_IOCTL_GET_CLOCK_RATE
This DeviceIoControl request retrieves the clock rate
Parameters
lpOutBuffer Pointer to the divisor index clock rate. The true clock frequency is platform

dependent. See the I2C specification for more information
nOutBufferSize Size in bytes of the divisor indexclock rate

17.6.1.2 I2C_IOCTL_GET_SELF_ADDR

This DeviceIoControl request retrieves the address of the I2C device. This macro is only meaningful if it
is currently in Slave mode.
Parameters
lpOutBuffer Pointer to the current I2C device address, valid range is [0x00–0x7F]
nOutBufferSize Size in bytes of the I2C device address

17.6.1.3 I2C_IOCTL_IS_MASTER

This DeviceIoControl request determines whether the I2C is currently in Master mode.
Parameters
lpOutBuffer Pointer to a BYTE that contains the return value from the Master mode inquiry:

TRUE if currently in Master mode; FALSE if currently in Slave mode
nOutBufferSize Size in bytes of the return value, should be one byte

17.6.1.4 I2C_IOCTL_IS_SLAVE

This DeviceIoControl request determines whether the I2C is currently in Slave mode.
Parameters
lpOutBuffer Pointer to a BYTE that contains the return value from the Slave mode inquiry:

TRUE if currently in Slave mode; FALSE if currently in Master mode
nOutBufferSize Size in bytes of the return value, should be one byte

17.6.1.5 I2C_IOCTL_RESET

This DeviceIoControl request performs a hardware reset. The I2C driver maintains all of the current
information of the device, including all of the initialized addresses.

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

17-8 Freescale Semiconductor

17.6.1.6 I2C_IOCTL_SET_CLOCK_RATE

This DeviceIoControl request initializes the I2C device with the given clock rate. This IOCTL does not
expect to receive the absolute peripheral clock frequency. Rather, it expects the clock rate divisor index
stated in the I2C specification. If absolute clock frequency must be used, use the macro
I2C_MACRO_SET_FREQUENCY.
Parameters
lpInBuffer Pointer to the clock rate divisor index.divisor index. See the I2C specification to

obtain the true clock frequency
nInBufferSize Size in bytes of the clock rate divisor index divisor index

17.6.1.7 I2C_IOCTL_SET_FREQUENCY

This DeviceIoControl request estimates the nearest clock rate acceptable for I2C device and initialize the
I2C device to use the estimated clock rate divisor. If the estimated clock rate divisor index is required, see
the macro I2C_MACRO_GET_CLOCK_RATE to determine the estimated index.
Parameters
lpInBuffer Pointer to the desired I2C frequency
nInBufferSize Size in bytes of the I2C frequency requested

17.6.1.8 I2C_IOCTL_SET_MASTER_MODE

This DeviceIoControl request sets the I2C device to Master mode.

17.6.1.9 I2C_IOCTL_SET_SELF_ADDR

This DeviceIoControl request initializes the I2C device with the given address.
Parameters
lpInBuffer Pointer to the expected I2C device address, valid range is [0x00–0x7F]
nInBufferSize Size in bytes of the I2C device address
Remarks The device expects to respond when any master on the I2C bus wishes to proceed

with any transfer. This IOCTL has no effect if the I2C device is in Master mode.

17.6.1.10 I2C_IOCTL_SET_SLAVE_MODE

This DeviceIoControl request sets the I2C device to Slave mode.

17.6.1.11 I2C_IOCTL_TRANSFER

This DeviceIoControl request performs the transfer (read or write) of one or more packets of data to a
target device. An I2C_TRANSFER_BLOCK object is expected, which contains an array of I2C_PACKET
objects to be executed sequentially. All of the required information should be stored in the
I2C_TRANSFER_BLOCK passed in the lpInBuffer field.

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 17-9

Parameters
lpInBuffer Pointer to an I2C_TRANSFER_BLOCK structure containing a pointer to an array

of I2C_PACKET objects specifying all of the information required to perform the
requested Read and Write operations

nInBufferSize Size in bytes of the I2C_TRANSFER_BLOCK

17.6.1.12 I2C_IOCTL_ENABLE_SLAVE

This DeviceIoControl request starts the I2C device to work in slave mode.

17.6.1.13 I2C_IOCTL_DISABLE_SLAVE

This DeviceIoControl request stops the I2C device to work in slave mode.

17.6.1.14 I2C_IOCTL_GET_SLAVESIZE

This DeviceIoControl request gets the interface buffer size of the I2C device for slave mode.

17.6.1.15 I2C_IOCTL_SET_SLAVESIZE

This DeviceIoControl request sets the interface buffer size of the I2C device for slave mode. The maximum
size for the buffer is configured by I2CSLAVEBUFSIZE.

17.6.1.16 I2C_IOCTL_GET_SLAVE_TXT

This DeviceIoControl request gets the current data from interface buffer of the I2C device for slave mode.
Both slave device or external master can change this data.

17.6.1.17 I2C_IOCTL_SET_SLAVE_TXT

This DeviceIoControl request sets data to interface buffer of the I2C device for slave mode. An external
I2C master can get this data immediately from driver after it connects the slave.

17.6.2 I2C Driver SDK Encapsulation
This section explains about the functions that are involved in I2C driver SDK encapsulation.

17.6.2.1 I2COpenHandle

This function retrieves the I2C device handle.
HANDLE I2COpenHandle(

LPCWSTR lpDevName);

Parameters
lpDevName The I2C device name for retrieving handle from CreateFile()
Return Values Returns the handle for I2C driver, returns INVALID_HANDLE_VALUE if failure

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

17-10 Freescale Semiconductor

17.6.2.2 I2CCloseHandle

This function closes a handle of the I2C stream driver.
BOOL I2CCloseHandle(

HANDLE hDev);
Parameters
hDev The I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

17.6.2.3 I2CSetSlaveMode

This function sets the I2C device in slave mode. This function is for back compatibility. Use
I2CEnableSlave instead.

BOOL I2CSetSlaveMode(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

17.6.2.4 I2CSetMasterMode

This function sets the I2C device in master mode. This function is for back compatibility. The default
setting of driver is master.

BOOL I2CSetMasterMode(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.5 I2CIsMaster

This function determines whether the I2C is currently in Master mode. This function is for back
compatibility.

BOOL I2CIsMaster(
HANDLE hDev,
PBOOL pbIsMaster);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbIsMaster TRUE if the I2C device is in master mode
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.6 I2CIsSlave

This function determines whether the I2C is currently in Slave mode.
BOOL I2CIsSlave(

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 17-11

HANDLE hDev,
PBOOL pbIsSlave);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbIsSlave TRUE if the I2C device is in Slave mode
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

17.6.2.7 I2CGetClockRate

This function retrieves the clock rate.
divisor. This value is not the absolute peripheral clock frequency. The value retrieved should be
compared against the I2C specifications to obtain the true frequency.BOOL I2CGetClockRate(

HANDLE hDev,
PWORD pwClkRate);

Parameters
hDev I2C device handle retrieved from CreateFile()
pwClkRate Pointer of WORD variable that retrieves divisor index. See the I2C specification

to obtain the true clock frequency
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.8 I2CSetClockRate

This function initializes the I2C device with the given clock rate.

This function does not expect to receive the absolute peripheral clock frequency. Rather, it expects the
clock rate divisor index stated in the I2C specification. If absolute clock frequency must be used, use the
function I2CSetFrequency().

BOOL I2CSetClockRate(
HANDLE hDev,
WORD wClkRate);

Parameters
hDev I2C device handle retrieved from CreateFile()
wClkRate Divisor index. See the I2C specification to obtain the true clock frequency
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.9 I2CSetFrequency

This function estimates the nearest clock rate acceptable for I2C device and initializes the I2C device to
use the estimated clock rate divisor. If the estimated clock rate divisor index is required, see the macro
I2CGetClockRate to determine the estimated index.

BOOL I2CSetFrequency(
HANDLE hDev,
DWORD dwFreq);

Parameters
hDev I2C device handle retrieved from CreateFile()

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

17-12 Freescale Semiconductor

dwFreq Desired frequency, unit is Hz
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.10 I2CSetSelfAddr

This function initializes the I2C device with the given address. The device is expected to respond when
any master within the I2C bus wish to proceed with any transfer.

BOOL I2CSetSelfAddr(
HANDLE hDev,
BYTE bySelfAddr);

Parameters
hDev I2C device handle retrieved from CreateFile()
bySelfAddr Expected I2C device address. The valid range of address is [0x00–0x7F]
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.11 I2CGetSelfAddr

This function retrieves the address of the I2C device.
BOOL I2CGetSelfAddr(

HANDLE hDev,
PBYTE pbySelfAddr);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbySelfAddr Pointer to BYTE variable that retrieves I2C device address
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.12 I2CTransfer

This function performs one or more I2C read or write operations. pI2CTransferBlock contains a pointer
to the first of an array of I2C packets to be processed by the I2C. All the required information for the I2C
operations should be contained in the array elements of pI2CPackets.

BOOL I2CTransfer(
HANDLE hDev,
PI2C_TRANSFER_BLOCK pI2CTransferBlock);

Parameters
hDev I2C device handle retrieved from CreateFile()
pI2CTransferBlock
pI2CPackets [in] Pointer to an array of packets to be transferred sequentially
iNumPackets [in] Number of packets pointed to by pI2CPackets (the number of packets to be

transferred)
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 17-13

17.6.2.13 I2CReset

This function performs a hardware reset. The I2C driver maintains all the current information of the device,
which includes all the initialized addresses.

BOOL I2CReset(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.14 I2CEnableSlave

This function enables a I2C slave access from the bus. After the I2C slave interface is enabled, the I2C slave
driver waits for an external master access.

BOOL I2CEnableSlave(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.15 I2CDisableSlave

This function disables I2C slave access from the bus. Note that after the I2C slave interface disabled, I2C
slave module can be turned off.

BOOL I2CDisableSlave(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.16 I2CGetSlaveSize

This function returns the I2C slave interface buffer length. The I2C slave driver directly returns data to the
master from the interface buffer. The interface buffer can be set at any time, even when the I2C slave
module has been turned off.

BOOL I2CGetSlaveSize(
HANDLE hDev,
PDWORD pdwSize);

Parameters
hDev I2C device handle retrieved from CreateFile()
pdwSize Pointer to DWORD variable that retrieves interface buffer length
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

17-14 Freescale Semiconductor

17.6.2.17 I2CSetSlaveSize

This function sets the I2C slave interface buffer length. The maximum acceptable length is
I2CSLAVEBUFSIZE. If input length is longer than I2CSLAVEBUFSIZE, the operation fails, and the
original buffer length is not changed. The I2C slave driver directly returns data to the master from the
interface buffer. The interface buffer can be set at any time, even when the I2C slave module has been
turned off.

BOOL I2CSetSlaveSize(
HANDLE hDev,
DWORD dwSize);

Parameters
hDev I2C device handle retrieved from CreateFile()
dwSize DWORD variable that sets interface buffer length
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.18 I2CGetSlaveText

This function returns the I2C slave interface buffer text. The I2C slave driver directly returns data to the
master from the interface buffer. The interface buffer can be accessed at any time, even when the I2C slave
module has been turned off.

BOOL I2CGetSlaveText(
HANDLE hDev,
PBYTE pbyTextBuf,
DWORD dwBufSize,
PDWORD pdwTextLen);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbyTextBuf User buffer to store text returned from interface buffer
pdwBufSize User buffer size
pdwTextLen Actual data bytes returned
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.2.19 I2CSetSlaveText

This function returns the I2C slave interface buffer text. The I2C slave driver directly returns data to the
master from the interface buffer. The interface buffer can be accessed at any time, even when the I2C slave
module has been turned off.

BOOL I2CSetSlaveText(
HANDLE hDev,
PBYTE pbyTextBuf,
DWORD dwTextLen);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbyTextBuf User buffer to store text to interface buffer
dwTextLen Text length in user buffer

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 17-15

Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

17.6.3 I2C Driver Structures
This section explains about the I2C driver structures.

17.6.3.1 I2C_PACKET

This structure contains the information needed to write or read data using an I2C port.
typedef struct {

BYTE byAddr;
BYTE byRW;
PBYTE pbyBuf;
WORD wLen;
LPINT lpiResult;

} I2C_PACKET, *PI2C_PACKET;

Parameters
byAddr 7-bit slave address that specifies the target I2C device to or from which data is read

or written
byRW Determines whether the packet is a read or a write packet. Set to I2C_RW_READ

for reading and I2C_RW_WRITE for writing.
Set to I2C_POLLING_MODE to force polling mode for transfer.
pbyBuf Pointer to a buffer of bytes. For a read operation, this is the buffer into which data

is read. For a write operation, this buffer contains the data to write to the target
device.

wLen If the operation is a read, wLen specifies the number of bytes to read into pbyBuf.
If the operation is a write, wLen specifies the number of bytes to write from
pbyBuf.

lpiResult Pointer to an int that contains the return code from the transfer operation

17.6.3.2 I2C_TRANSFER_BLOCK

This structure contains an array of packets to be transferred using an I2C port.
typedef struct {

I2C_PACKET *pI2CPackets;
INT32 iNumPackets;

} I2C_TRANSFER_BLOCK, *PI2C_TRANSFER_BLOCK;

Parameters
pI2CPackets Pointer to an array of I2C_PACKET objects
iNumPackets Number of I2C_PACKET objects pointed to by pI2CPackets

Inter-Integrated Circuit (I2C) Driver

Windows Embedded Compact 7 BSP Reference Manual

17-16 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 18-1

Chapter 18
IIM(IC Identification Module) Driver
The IC Identification Module (IIM) provides an interface for reading and in some cases programming
and/or overriding identification and control information stored in on-chip fuse elements. The module
supports laser fuses (L-Fuses) and/or electrically-programmable poly fuses (e-Fuses). The IIM driver only
supports e-Fuses operation.

18.1 IIM Driver Summary
The IIM driver provide three basic functionalities for IIM operation: fuse reading, fuse sensing and fuse
programming.

Both fuse reading and fuse sensing are used to read the value of a fuse, still, there are differences between
them: fuse reading is used to read the value of software fuse value in shadow cache, while fuse sensing is
used to read the fuse elements themselves. The reasons for caching the fuse values are to reduce the risk
of accidental programming of e-Fuses due to repeated reads, and to reduce power consumption associated
with sense cycles.

Table 18-1 provides a summary of source code location, library dependencies and other BSP information.

18.2 Supported Functionality
Fuse reading, fuse sensing and fuse programming.

Table 18-1. Flash Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\IIM

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\IIM

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\IIM

Driver DLL iim.dll

SDK Library N\A

Catalog Item N\A

SYSGEN Dependency N\A

BSP Environment Variables BSP_IIM=1

IIM(IC Identification Module) Driver

Windows Embedded Compact 7 BSP Reference Manual

18-2 Freescale Semiconductor

18.3 Hardware Operation
Refer to the chapter of IIM in the User guide or Reference Manual for detailed operation and
programming information.

18.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

18.4 Software Operation
IIM module is packed to a stream interface module. This means one can easily use the functionality by
passing IOCTL requests into it.

Those IOCTL requests can be passed into IIM.dll by calling DeviceIoControl. There is an example about
how to do this. Please refer to ..\PLATFORM\<Target Platform>\SRC\DRIVERS\UUT\bspuut.cpp for details.

18.4.1 Fuse reading
Input parameter: DWORD FuseAddr.

FuseAddr is the address of the fuse to read.

Output parameter:BYTE FuseValue.

FuseValue is the value of the fuse to read.

18.4.2 Fuse reading
Input parameter: FuseSenseAddr Addr;.

FuseSenseAddr is a struct:

typedef struct {

DWORD AddrOffset;

BYTE Bit;

}FuseSenseAddr, *PFuseSenseAddr;

AddrOffset is the address of the fuse to sense.

Table 18-2. IOCTL request

IOCTL code functionality

IOCTL_IIM_FUSE_READ fuse reading

IOCTL_IIM_FUSE_SENSE fuse sensing

IOCTL_IIM_FUSE_PROGRAM fuse programming

IIM(IC Identification Module) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 18-3

Bit is the bit offset of the fuse to sense.

Output parameter:BYTE FuseValue.

FuseValue is the value of the fuse to sense.

18.4.3 Fuse reading
Input parameter: FuseProg Fuse;.

FuseProg is defined like this:

typedef struct {

DWORD AddrOffset;

BYTE val;

}FuseProg, *PFuseProg;

AddrOffset is the address of the fuse to program.

val is the value of the fuse to program.

Output parameter: None.

18.5 Unit Test
There is no CTK provided for this module. The best way to test the module is to create a testbench which
calls the IOCTL of the module.

Another way is to use MfgTool to do the test. Regarding usage of MfgTool, you can refer to MfgTool
chapter.

Regarding to the fuse address and bit definition, please refer to i.MX53 fuse mapping table if you are
authenticated to get it.

18.5.1 Fuse reading
Add below sentense to ucl.xml:

<CMD type="push" body="FuseRead:0x00000860">read fuse value.</CMD>

Here 0x00000860 is the address of fuse, change it to what you want.

You can open a console to get the value of the fuse to read.

18.5.2 Fuse Sensing
Add below sentense to ucl.xml:

<CMD type="push" body="FuseSense:0x00000860:0x00000003">read fuse value.</CMD>

IIM(IC Identification Module) Driver

Windows Embedded Compact 7 BSP Reference Manual

18-4 Freescale Semiconductor

Here 0x00000860 is the address of fuse, 0x00000003 is the bit offset of the address. Change them to what
you want.

You can open a console to get the value of the fuse to sense.

18.5.3 Fuse Programming
Add below sentense to ucl.xml:

<CMD type="push" body="FuseProgram:0x00000860:0x00000010">read fuse value.</CMD>

Here 0x00000860 is the address of fuse, 0x00000010 is the value of the fuse to program. Change them to
what you want.

You can open a console to check the result.

Warning:the operation will lead to un-resumable result since a fuse is one-time programmable
element. Please make sure you fully understand the meaning of the fuse to be programmed.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 19-1

Chapter 19
NAND Flash Driver
The NAND flash driver provides the functionality of NAND storage accessing. The flash driver follows
Windows Embedded Compact 7 flash driver PDD/MDD architecture.

19.1 NAND Flash Driver Summary
Windows CE provides driver support for flash media devices using MDD or PDD architecture. The MDD
allows NAND flash storage to be exposed as a block driver that is accessed by file system. The PDD wraps
FMD layer as a stream interface called by MDD. The FMD software layer ported to the i.MX NAND flash
controller is responsible for the actual communication with the corresponding NAND flash devices.

The flash driver supports both SLC and MLC NAND flash devices. As for page size, 512 byte (small page
size) is not supported.

Table 19-1 provides a summary of source code location, library dependencies and other BSP information.

19.2 Supported Functionality
The Flash driver provides the following support:

1. Supports the Windows CE MDD or PDD interface

2. Supports both MLC and SLC NAND

Table 19-1. Flash Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\Nand

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\NAND

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BLOCK\NANDFMD
..\PLATFORM\<Target Platform>\SRC\COMMON\NANDFMD

Driver DLL flashpdd_nand.dll

SDK Library N\A

Catalog Item Device Drivers > Storage Devices > MSFlash Drivers > Flash MDD
Third Party > BSP > Freescale> Storage Drivers > MSFlash Drivers> Samsung K9LBG08U0D /
Micron MT29F16G08ABACA NAND Flash support

SYSGEN Dependency sysgen_flashmdd=1

BSP Environment Variables BSP_NONAND_FMD=

NAND Flash Driver

Windows Embedded Compact 7 BSP Reference Manual

19-2 Freescale Semiconductor

3. Supports both 2 Kbyte and 4 Kbyte page size NAND

4. Supports MLC NAND Flash K9LBG08U0D as default

5. Supports SLC NAND Flash MT29F16G08ABACA

19.3 Hardware Operation
The Flash driver use NFC module to operate NAND flash chips. For detailed operation and configuration
information, see the NFC chapter in the i.MX53 Applications Processor Reference Manual.

19.4 Software Operation
The development concepts for flash media drivers are described in the Windows Embedded Compact 7
Help Documentation section under the topic Windows Embedded Compact 7> Device Drivers> Flash
Drivers >. The NAND FMD supported in the i.MX BSP implements the required FMD functions for
interfacing to NAND Flash devices.

19.4.1 NAND Flash Driver Registry Settings

19.4.1.1 This section explains about the Flash driver registry settings.NAND Flash Driver
Registry Setting

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\FlashPDD]
 "Dll"="flashmdd.dll"
 "FlashPddDll"="flashpdd_nand.dll"
 "Prefix"="DSK"
 "Profile"="MSFlash"
 "IClass"=multi_sz:"{A4E7EDDA-E575-4252-9D6B-4195D48BB865}",
 "{8DD679CE-8AB4-43c8-A14A-EA4963FAA715}"
 "FriendlyName"="NAND Flash Driver"
 "Order"=dword:20
 "Priority256"=dword:76
; @CESYSGEN IF FILESYS_FSREGHIVE
 ;"Flags"=dword:1000
; @CESYSGEN ENDIF FILESYS_FSREGHIVE

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\MSFlash]
 "DefaultFileSystem"="FATFS"
 "PartitionDriver"="FLASHPART.dll"
 "AutoFormat"=dword:1
 "AutoPart"=dword:1
 "AutoMount"=dword:1
 "Name"="NAND FLASH Storage"
 "Folder"="NANDFlash"
 ;"FormatExfat"=dword:1
; @CESYSGEN IF FILESYS_FSREGHIVE
 "FormatTfat"=dword:1
 ;"MountAsBootable"=dword:1
 ;"MountPermanent"=dword:1
; @CESYSGEN ENDIF FILESYS_FSREGHIVE

NAND Flash Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 19-3

Note: AutoFormat and AutoPart are set to 1 to enable automatical formating and partitioning operation for
NAND flash disk. If one needs to manually do this, please set them to 0.

19.4.2 NAND Flash Driver Optimization
There are performance and power comsumption optimization in NAND flash driver, to get this, below
code in public directory is moved into COMMON_FSL_V3\Nand:

..\WINCE700\public\COMMON\oak\drivers\block\msflash\FlashPddDispatch

..\WINCE700\public\COMMON\oak\drivers\block\msflash\FlashPddFmdWrapper

In COMMON_FSL_V3\Nand, there are two method are provided: big sector interleave and OCQ interleave to implement interleaving
operation. Only OCQ interleave method is guaranteed to work, big sector interleave method is provided as a reference.

19.5 Power Management
The NAND FMD currently does not support power management.

19.6 Unit Test
The Flash driver is subject to one test suites provided by Windows Embedded Compact Test Kit (CTK). It
can be found in CTK catalog: storage media\Flash.

Note: Please skip Storage Device Block Driver ReadWrite Test for Flash item in the catalog because the test doesn’t use

IOCTL_FLASH_XXX interface to access NAND flash driver.

19.6.1 System Testing
The following system tests were performed to verify the operation of the NAND FMD:

Use the Start −> Settings −> Control Panel −> Storage Manager to format and create partitions on the
mounted NAND device .

Establish ActiveSync connection over USB and transfer files to/from the NAND storage.

CTK Test Command Line

File System Driver Test for Flash tux -o -d fsdtst -c "-p MSFlash -zorch"

File System Performance Test for Flash tux -o -d fsperflog -c "-p MSFlash -zorch"

Partition driver Test for Flash tux -o -d msparttest.dll -c "-profile MSFlash -zorch -store"

Storage Device Block Driver API Test for Flash tux -o -d disktest -c "-p MSFlash -zorch -part -sectors 256"

Flash Driver PDD validation Test for Flash tux -o -d flashpddtest -c "-p MSFlash -zorch"

Flash Memory Read Write Performance Test tux -o -d flshwear -c "/profile MSFlash /store /flash"

NAND Flash Driver

Windows Embedded Compact 7 BSP Reference Manual

19-4 Freescale Semiconductor

Write media files to NAND storage. Use Windows Media Player to playback media files from NAND
storage.

19.6.2 Performance Testing
The below tool is provided to test NAND flash driver performance:

..\WINCE700\support\TEST\FLASHRW

The test is based on file system level and result shows the performance of file read/write.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 20-1

Chapter 20
Power Management IC (PMIC)
The LTC3589 PMIC is power management and user interface power Management and User Interface component
to support for controlling the PMIC multi-function device.

20.1 PMIC Summary
This chapter provides information to develop:

• Device drivers that interface directly with the power management IC (PMIC) hardware
components. The PMIC that is specifically referenced in this document is the LTC3589.

• Applications that use the special hardware capabilities that are provided by the PMIC (for example,
touch I/O, BackLight function.).

This chapter describes the API provided by pmic driver which allows complete access to the functionality
of the PMIC. This document is intended for device driver and application developers who need to
understand and gain access to the functionality provided by the PMIC. Table 20-1 provides a summary of
source code location, library dependencies and other BSP information.

Table 20-1. PMIC Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\PMIC\LTC3589

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\PMIC\LTC3589

Driver DLL pmicPdk_ltc3589.dll

SDK Library pmicSdk_ltc3589.lib

Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) BSP_PMIC_LTC3589= 1
BSP_NOPMIC=

Power Management IC (PMIC)

Windows Embedded Compact 7 BSP Reference Manual

20-2 Freescale Semiconductor

20.2 Supported Functionality
The PMIC device driver framework for Windows CE is a stream interface driver .It provides a SDK dll.A
description of the stream interface driver will be found in the Windows CE Platform Builder
documentation at Windows Embedded Compact 7 > Device Drivers> Stream Interface Drivers.

The PMIC Stream Interface driver controls the PMIC hardware directly using the SPI or I2C bus. The
Stream Interface driver provides an IOCTL interface for SDK DLLs. The SDK DLLs provide APIs for
Windows CE drivers and applications.

The API covers the PMIC functionality of the following areas:
1. Register Access
2. Regulators

20.3 Hardware Operation
Refer to the LTC3589 document for details on the LTC3589 PMIC.

20.3.1 Conflicts with Other On-Chip Peripherals

20.3.1.1 i.MX53 Peripheral Conflicts

No conflicts.

20.3.2 Conflicts with Other ARD Peripherals
No conflicts.

20.4 Software Operation

20.4.1 Configuring the PMIC
The PMIC module can be used by applications or device drivers. For example, the battery API of the
PMIC is used by the battery driver. Configuring the PMIC port for communications involves some basic
operations. A handle to the desired PMIC port must be opened prior to accessing the module registers. This
handle is required to call the DeviceIoControl function. The function parameters include the PMIC port
handle, appropriate IOCTL code, and other input and output parameters.

20.4.2 Creating a Handle to the PMIC
Before calling any PMIC API make sure that the PMIC device is attached by calling the CreateFile
function which opens a file and it returns a handle that can be used to access the pmic hardware. If the pmic
hardware does not exist, CreateFile returns ERROR_FILE_NOT_FOUND.

Power Management IC (PMIC)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 20-3

To open a handle to the PMIC:
1. Insert a colon after the PMI1 port for the first parameter, lpFileName.

For example, specify PMI1: as the PMIC port.
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to a PMIC port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open a PMIC port.
// Open the PMIC port.
hPMI = CreateFile(TEXT("PMI1:"),

GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
NULL, // security attributes (ignored)
OPEN_EXISTING// sharing mode // creation disposition
FILE_FLAG_RANDOM_ACCESS, //flags and attributes
NULL); // template file (ignored)

if ((hPMI == NULL) || (hPMI == INVALID_HANDLE_VALUE))
{

ERRORMSG(1, (_T("Failed in create File()\r\n")));
}

20.4.3 Write Operations
The PMIC driver does not provide an interface to write through the PMIC_Write (stream write) function.
The PMIC_Write is a stub function and always returns success.

20.4.4 Read Operations
Like the write operation, the PMIC driver does not provides for reading through the PMIC_Read function.
This is a stub function and always returns success.

20.4.5 Closing the Handle to the PMIC
Call the CloseHandle function to close a handle to the PMIC when an application is done using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the PMIC port.

20.4.6 Power Management
The primary method for limiting power consumption in the PMIC module is to gate off all clocks to the
module when those clocks are not needed. This is accomplished through the DDKClockSetGatingMode
function call. The PMIC module clock is enabled whenever any of the PMIC registers need to be accessed
and then disabled once it is done.

Power Management IC (PMIC)

Windows Embedded Compact 7 BSP Reference Manual

20-4 Freescale Semiconductor

20.4.6.1 PowerUp

This function is not implemented for the PMIC driver.

20.4.6.2 PowerDown

This function is not implemented for the PMIC driver.

20.4.6.3 IOCTL_POWER_CAPABILITIES

The power management capabilities are controlled with the power manager through this IOCTL. The
PMIC module supports only two power states: D0 and D4.

20.4.6.4 IOCTL_POWER_SET

This IOCTL requests a change from one device power state to another. D0 and D4 are the only two
supported CEDEVICE_POWER_STATE in the PMIC driver. Any request that is not D0 is changed to
a D4 request and results in the system entering into suspend state. For a request of value of D0, the system
is resumed.

20.4.6.5 IOCTL_POWER_GET

This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

20.4.7 PMIC Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PMI]
 "Prefix"="PMI"
 "Dll"="pmicpdk_ltc3589.dll"
 "Index"=dword:1
 "Order"=dword:2
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

20.4.8 DMA Support
No support.

20.5 Unit Test

20.5.1 Unit Test Hardware
The LTC3589 PMIC ARD boards are required.

20.5.2 Unit Test Software
No software is necessary for this test.

Power Management IC (PMIC)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 20-5

20.5.3 Running the PMIC Tests
The PMIC driver has no CTK test case.The pmic fuction is tested by other driver.

Power Management IC (PMIC)

Windows Embedded Compact 7 BSP Reference Manual

20-6 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 21-1

Chapter 21
Serial Driver
The serial driver interfaces the low level serial driver hardware to the Windows CE serial subsystem.

21.1 Serial Driver Summary
The serial port driver is implemented as a stream interface driver and supports all the standard I/O control
codes and entry points. The serial port driver handles all the internal UARTs except UART1 which is used
for debugging. In the BSP implementation, the hardware-specific code that corresponds to the serial port
driver lower layer is implemented as the platform-dependent driver (PDD). This PDD is linked with
Microsoft-provided public serial MDD library (com_mdd2.lib) to form the whole serial port driver.

Table 21-1 provides a summary of source code location, library dependencies and other BSP information.
Supported Functionality

The serial port driver enables the hardware system to provide the following support:
1. Conforms to RS232 protocol standard
2. Supports RTS/CTS hardware flow control function
3. Supports parity check and optional stop bit
4. Supports power management mode full on/full off

Table 21-1. Serial Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\SERIAL

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SERIAL

Driver DLL csp_serial.dll

SDK Library N\A

Catalog Item Third Party -> BSP -> Freescale <Target Platform>: ARMV7 -> Device Drivers > Serial ->
UART2 serial port support
Third Party -> BSP -> Freescale <Target Platform>: ARMV7 -> Device Drivers -> Serial ->
UART3 serial port support

SYSGEN Dependency N/A

BSP Environment Variables BSP_SERIAL_UART2 =1
BSP_SERIAL_UART3 =1

Serial Driver

Windows Embedded Compact 7 BSP Reference Manual

21-2 Freescale Semiconductor

5. Supports DMA transfer
6. Supports baud rate up to 4 Mbps

NOTE
For low power consideration, the input clock of the UART driver is 24 MHz,
other than 66.5 MHz, so the actual max baudrate is 1.5 Mbps.

21.2 Hardware Operation
Refer to the Multimedia Applications Processor Reference Manual for detailed operation and
programming information on UART.

21.2.1 Conflicts with Other Peripherals and Catalog Items
The following section explains serial driver conflicts with other peripherals and catalog items.

21.2.1.1 Conflicts with SoC Peripherals

All UART pins can be configured for alternate functionality (PATA, USB, CAN) using the i.MX53
IOMUX. The configuration is specified by the BSP serial driver. Changing this configuration can result in
a conflict and prevent proper operation of the UART.

21.2.1.2 Conflicts with Board Peripherals

NA

21.3 Software Operation
The serial driver follows the Microsoft recommended architecture for serial drivers. The details of this
architecture and its operation can be found in the MSDN Help documentation at the following location:

Windows Embedded Compact 7 -> Device Drivers -> Serial Port Drivers.

21.3.1 Registry Settings
This section explains the registry settings used to load the serial driver.

21.3.2 Power Management
The serial driver supports full on/full off power management mode through PowerUp() and
PowerDown() functions.

21.4 Unit Test
The serial driver is tested using the Serial Port Driver Test and the command line is following:

tux -o -d serdrvbvt -c "-p COMn:"

Serial Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 21-3

Note: n is COM number

The Serial Port Test assesses if the driver supports configurable device parameters such as baud rate and
data bits. The test also assesses additional functionality such as COM port events, escape functions, and
time-outs.

21.4.1 Unit Test Hardware
The following hardware is used for the unit test:

• i.MX53 ARD board

Serial Driver

Windows Embedded Compact 7 BSP Reference Manual

21-4 Freescale Semiconductor

21.4.2 Unit Test Software
Table 21-2 lists the required software to run the unit tests.

21.4.3 Building the Unit Tests
The serial port driver tests are pre-built as part of the CTK. No steps are required to build these tests. The
SerDrvBvt.dll file can be found alongside the other required CTK files in the following location:
[Drive]:\Program Files\WindowsEmbeddedCompact7TestKit\tests\target\armv7

21.4.4 Running the Unit Tests
The Serial Port Driver Test executes the tux –o –d serdrvbvt -c “-p COMn:“command line on default
execution.

For detailed information on the Serial Port Tests, see

Windows Embedded Compact 7 -> Compact Test Kit(CTK) -> Communication Bus Tests -> Serial
Port Driver BVT Test > Serial Port Driver in the MSDN Help.

The Serial Port Tests are designed to test that the serial port driver works properly and the API behaves
correctly, and it should be pass all the test cases.

Table 21-3 describes the Serial Port driver test cases.

Table 21-2. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

SerDrvBvt.dll Test.dll file for Serial Port Driver Test

Table 21-3. Serial Port Driver Test Cases

Test Case Description

1001 Configures the port and writes data to the port at all possible baud rates, data bits, parities, and stop bits. This test fails if it
cannot send data on the port with a particular configuration.

1002 Tests the SetCommEvent and GetCommEvent functions. This test fails if the driver does not properly support the
SetCommEvent or GetCommEvent functions.

1003 Tests the EscapeCommFunction function. This test fails if the driver does not support one of the Microsoft Win32
EscapeCommFunction functions.

1004 Tests the WaitCommEvent function on the EV_TXEMPTY event. The test creates a thread to send data and waits for the
EV_TXEMPTY event to occur when the thread finishes sending data. This test fails if the WaitCommEvent function
behaves improperly or if the EV_TXEMPTY event does not signal appropriately.

1005 Tests the SetCommBreak and ClearCommBreak functions. This test fails if the driver does not properly support the
SetCommBreak or ClearCommBreak functions.

1006 Makes the WaitCommEvent function return a value when the handle for the current COM port is cleared. This test fails if
the WaitCommEvent function behaves improperly.

Serial Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 21-5

21.5 Serial Driver API Reference
The detailed reference information for the serial driver may be found in the MSDN Help at the following
location:

Windows Embedded Compact 7 -> Compact Test Kit(CTK) -> Communication Bus Tests -> Serial
Port Driver BVT Test > Serial Port Driver

21.5.1 Serial PDD Functions
Table 21-4 shows a mapping of Serial PDD functions to the functions used in the serial driver.

1007 Makes the WaitCommEvent function return a value when the handle for the current COM port is closed. This test fails if
the WaitCommEvent function behaves improperly.

1008 Tests the SetCommTimeouts function and verifies that the ReadFile function properly times out when no data is received.
This test fails if the COM timeouts do not function correctly.

1009 Verifies that previous Device Control Block (DCB) settings are preserved when the SetCommState function call fails with
DCB settings that are not valid. This test fails if the serial port driver does not keep previous DCB settings when DCB settings
that are not valid are passed to the driver.

Table 21-4. Serial PDD Functions

PDD Function Pointer Serial Driver Function

HWInit SerSerialInit

HWPostInit SerPostInit

HWDeinit SerDeinit

HWOpen SerOpen

HWClose SerClose

HWGetIntrType SL_GetIntrType

HWRxIntrHandler SL_RxIntrHandler

HWTxIntrHandler SL_TxIntrHandler

HWModemIntrHandler SL_ModemIntrHandler

HWLineIntrHandler SL_LineIntrHandler

HWGetRxBufferSize SL_GetRxBufferSize

HWPowerOff SerPowerOff

HWPowerOn SerPowerOn

HWClearDTR SL_ClearDTR

HWSetDTR SL_SetDTR

HWClearRTS SL_ClearRTS

Table 21-3. Serial Port Driver Test Cases (continued)

Test Case Description

Serial Driver

Windows Embedded Compact 7 BSP Reference Manual

21-6 Freescale Semiconductor

21.5.2 Serial Driver Structures
This section explains the serial driver structures.

21.5.2.1 UART_INFO

This structure contains information about the UART Module.
typedef struct {
 volatile PCSP_UART_REG pUartReg;
 ULONG sUSR1;
 ULONG sUSR2;
 BOOL bDSR;
 uartType_c UartType;
 ULONG ulDiscard;
 BOOL UseIrDA;
 ULONG HwAddr;
 EVENT_FUNC EventCallback;
 PVOID pMDDContext;
 DCB dcb
 COMMTIMEOUTS CommTimeouts;
 PLOOKUP_TBL pBaudTable;
 ULONG DroppedBytes;
 HANDLE FlushDone;
 BOOL CTSFlowOff;
 BOOL DSRFlowOff;
 BOOL AddTXIntr;
 COMSTAT Status;
 ULONG CommErrors;
 ULONG ModemStatus;
 CRITICAL_SECTION TransmitCritSec;

HWSetRTS SL_SetRTS

HWEnableIR SerEnableIR

HWDisableIR SerDisableIR

HWClearBreak SL_ClearBreak

HWSetBreak SL_SetBreak

HWXmitComChar SL_XmitComChar

HWGetStatus SL_GetStatus

HWReset SL_Reset

HWGetModemStatus SL_GetModemStatus

HWGetCommProperties SerGetCommProperties

HWPurgeComm SL_PurgeComm

HWSetDCB SL_SetDCB

HWSetCommTimeouts SL_SetCommTimeouts

Table 21-4. Serial PDD Functions (continued)

PDD Function Pointer Serial Driver Function

Serial Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 21-7

 CRITICAL_SECTION RegCritSec
 ULONG ChipID;
 } UART_INFO, * PUART_INFO;

Parameters
pUartReg Pointer to UART Hardware registers
sUSR1 This value contains the UART status register
sUSR2 This value contains the UART status register
bDSR This boolean value keeps the DSR state
UartType This value contains the type of UART like DCE or DTE
UlDiscard This is used to discard the echo characters in IrDa Mode
UseIrDA This boolean value determines the driver is in IR mode or not
HwAddr This value contains the hardware address of the UART Module
EventCallback This is a callback to the Model Device Driver
pMDDContext This contains the context of the UART, which is the first parameter to the callback

function
dcb This value contains the copy of Device Control Block
CommTimeouts This contains the copy of CommTimeouts structure used to get and set the

time-out parameters for a communication device
pBaudTable Pointer to baud rate table
DroppedBytes This value contains the number of bytes dropped
FlushDone Handle to the flush done event
CTSFlowOff This boolean value is used to store the CTS flow control state
DSRFlowOff This boolean value is used to Store the DSR flow control state
AddTXIntr This boolean value is used to fake a Tx interrupt
Status This value contains the comm status
CommErrors This value contains Win32 comm error status
ModemStatus This value shows the Win32 Modem status
TransmitCritSec This value is used as Critical Section for UART registers
RegCritSec This value is used as Critical Section for UART
ChipID This value contains Chip identifier (CHIP_ID_16550 or CHIP_ID_16450)

21.5.2.2 SER_INFO

This is a private structure contains the information about the serial.
typedef struct __SER_INFO {
 UART_INFO uart_info;
 BOOL fIRMode;
 DWORD dwDevIndex;
 DWORD dwIOBase;

Serial Driver

Windows Embedded Compact 7 BSP Reference Manual

21-8 Freescale Semiconductor

 DWORD dwIOLen;
 PCSP_UART_REG pBaseAddress;
 UINT8 cOpenCount;
 COMMPROP CommProp;
 PHWOBJ pHWObj;

BOOL useDMA;
 DDK_DMA_REQ SerialDmaReqTx;
 DDK_DMA_REQ SerialDmaReqRx;
 PHYSICAL_ADDRESS SerialPhysTxDMABufferAddr;
 PHYSICAL_ADDRESS SerialPhysRxDMABufferAddr;
 PBYTE pSerialVirtTxDMABufferAddr;
 PBYTE pSerialVirtRxDMABufferAddr;
 UINT8 SerialDmaChanRx;
 UINT8 SerialDmaChanTx;
 UINT8 currRxDmaBufId;
 UINT8 currTxDmaBufId;
 UINT dmaRxStartIdx;
 UINT availRxByteCount;
 UINT32 awaitingTxDMACompBmp;
 UINT32 dmaTxBufFirstUseBmp;
 UINT16 rxDMABufSize;
 UINT16 txDMABufSize;
} SER_INFO, *PSER_INFO;

Parameters
uart_info This structure contains information about UART
fIRMode This boolean value determines the module is FIR or serial
dwDevIndex This static value contains the device index value which is read from registry
dwIOBase This static value contains the I/O Base address of UART module which is read

from registry
dwIOLen This static value contains the I/O length of UART Module which is read from

registry
pBaseAddress Pointer to the start address of the UART registers mapped
cOpenCount Contains count of the concurrent open
CommProp Pointer to CommProp structure
pHWObj Pointer to PDDs HWObj structure
useDMA This boolean flag indicates if SDMA is to be used for transfers through this UART
SerialDmaReqTx SDMA request line for Tx
SerialDmaReqRx SDMA request line for Rx
SerialPhysTxDMABufferAddrPhysical address of Tx SDMA address
SerialPhysRxDMABufferAddrPhysical address of Rx SDMA address
pSerialVirtTxDMABufferAddrVirtual address of Tx SDMA address
pSerialVirtRxDMABufferAddrVirtual address of Rx SDMA address.
SerialDmaChanRx SDMA virtual channel indices for Rx
SerialDmaChanTx SDMA virtual channel indices for Tx

Serial Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 21-9

currRxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in the Rx
SDMA buffer descriptor chains

currTxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in the Tx
SDMA buffer descriptor chains

dmaRxStartIdx Keeps the start index of byte to be delivered to MDD for Read
availRxByteCount This variable keeps the remaining bytes in the Rx SDMA buffer
awaitingTxDMACompBmpIndicates if an SDMA request is in progress on Tx SDMA buffer descriptor
dmaTxBufFirstUseBmp Indicator for first time use of a Tx SDMA buffer descriptor
rxDMABufSize Receive DMA buffer size
txDMABufSize Transfer DMA buffer size

Serial Driver

Windows Embedded Compact 7 BSP Reference Manual

21-10 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 22-1

Chapter 22
Sony/Philips Digital Interface (SPDIF) Driver
The Sony/Philips Digital Interface (SPDIF) audio module is a stereo transceiver that allows the processor
to transmit and receive digital audio.

22.1 SPDIF Driver Summary
The SPDIF driver module (spdifdev.dll) provides receiver (RX)functions as a waveform audio driver.
For more information about the waveform audio driver, see the MSDN Help topic:

Windows Embedded Compact 7 -> Audio, Graphics and Media -> Waveform Audio

The following table provides the source code location, library dependencies, and other BSP information.

22.2 Supported Functionality
The SPDIF driver enables the board to provide the following software and hardware support:

1. Conforms to the Microsoft audio driver architecture as defined for Windows Embedded Compact
7 and all related operating systems

2. Supports Freescale hardware platforms that include the SPDIF module
3. Double-buffered DMA operations to transfer audio data between memory and the SPDIF TX/RX

FIFO

Table 22-1. SPDIF Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\SPDIFDEV

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SPDIF

Driver DLL spdifdev.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale<Target Platform>:ARMV7 > Device Drivers > SPDIF > SPDIF Input
support

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables BSP_NOAUDIO=
BSP_SPDIF=1

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded Compact 7 BSP Reference Manual

22-2 Freescale Semiconductor

4. Two power management modes, full on and full off
5. PCM data and compressed data transmission according with IEC958 spec
6. RX function support
7. Support 44.1KHz, 48 KHz sample rate

22.2.1 Conflicts with Other Peripherals and Catalog Items

22.2.1.1 Conflicts with SoC Peripherals

No conflicts

22.2.1.2 Conflicts with board Peripherals

No conflicts.

22.2.2 Known Issues
The SPDIF driver may cause the audio playback driver CTK to fail. To run the audio playback driver CTK,
remove the SPDIF driver from the catalog temporarily or run the AudioRouting application to select Audio
Output/Input as the default device.

Because there is not exact 22.5792MHz oscillator on board, 44.1KHz sample rate has a little inaccuracy,
and some TV/monitor with poor compatibility may not play the audio with that samplerate.

22.3 Software Operation
The SPDIF driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the MSDN Help:

Developing a Device Driver > Windows Embedded CE Drivers > Audio Drivers > Audio Driver
Development Concepts

22.3.1 SPDIF Receiver (RX)
The operation of the SPDIF driver for receiving is similar to the hardware configuration. Once the
hardware components are configured, the audio driver handles the input DMA buffer full interrupts. This
is done via the interrupt handler, which copies the contents of each input DMA buffer to an
application-supplied buffer, and then returns the empty DMA buffer to the SDMA controller. If the
application-supplied buffer does not have enough space for all of the new data, any extra data is discarded.
The application is signaled using a callback function when the application-supplied buffer is full. The
SPDIF driver also picks-up C Channel and U Channel information, so the application can query these
when need.

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 22-3

22.3.2 Compile-Time Configuration Options
The following table shows the compile-time configuration options.

22.3.3 Registry Settings
At least one registry key must be properly defined so that the Device Manager loads the SPDIF driver
when the system is booted. The following registry keys are required in order for the Device Manager to
properly load the SPDIF device driver during the normal device boot process. These registry settings
should typically not be modified. If they are missing or incorrectly defined, then the SPDIF driver may not
be loaded and all SPDIF functions are disabled.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SPDIF]
"Prefix"="WAV"
"Dll"="spdifdev.dll"
"Index"=dword:2
"Order"=dword:6
;"Priority256"=dword:99
"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

22.3.4 DMA Support
As indicated previously, the SPDIF driver uses the SDMA controller to transfer the digital audio data
between the audio application and the RX FIFOs. This minimizes the processing required by the core and
can also reduce the power consumption during SPDIF transmitting and receiving operations. This section
describes the SPDIF driver DMA implementation issues and trade-offs, and the available compile-time
DMA-related configuration options.

In order to use DMA transfers, the following items must be properly allocated, managed, and deallocated
by the device driver:

• The DMA data buffers where the application data is kept
• The DMA buffer descriptors, which are used by the DMA hardware to manage the state of each

DMA buffer

The DMA data buffers can be allocated from either internal memory (which is provided by on-chip
internal RAM) or external memory (which is provided by off-chip external DRAM). The issues and
considerations for the type of memory to use for the DMA data buffers is as follows:

• Internal memory region:
— Allows the external memory to be placed in a low power mode while the DMA data buffers are

being processed to reduce system power consumption (as long as nothing else on the system

Table 22-2. SPDIF Driver Configuration Options (hwctxt.cpp)

Configuration Setting Name Description

AUDIO_DMA_PAGE_SIZE The size in bytes of each DMA buffer. Default is 6144 bytes.

SPDIF_SFCSR_RX_WATERMARK The receiver watermarks that are to be used with SPDIF RX FIFO. The default is 16.

SPDIF_RX_ENABLED Enable/Disable SPDIF RX module by define/undef this macro.

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded Compact 7 BSP Reference Manual

22-4 Freescale Semiconductor

requires access to external memory). Also, less power is required to access the internal RAM
than to access.

— Total size of the internal memory region is limited.
— The limited amount of internal memory may have to be shared by multiple device drivers.
— The entire internal memory region must be manually managed with predefined addressed

ranges being reserved for each specific use.
• External memory region:

— The total size of the external memory is typically much greater than the size of the internal
memory. This provides much greater flexibility in selecting the size of the DMA data buffers.

— There is typically no need to worry about the possible impact and memory requirements of any
other device driver.

— Memory allocation is handled using the standard Windows Embedded Compact 7 system calls.
— The external memory cannot be placed into a low power mode while the DMA is active.

The build configuration options such that the SPDIF driver allocates its DMA data buffers from either
internal or external memory are as follows:

• Internal memory region—Set the BSP_SPDIF_DMA_BUF_ADDR macro in bsp_cfg.h to an
address within the internal memory region. Also set BSP_SPDIF_DMA_BUF_SIZE to the total
size (in bytes) for all DMA data buffers that are allocated.

• External memory region—Comment out the BSP_SPDIF_DMA_BUF_ADDR macro in
bsp_cfg.h

The DMA buffer descriptors can also be allocated from either internal or external memory.

22.4 Power Management
The primary method for limiting power consumption in the SPDIF driver is to gate off all clocks to the
SPDIF when those clocks are not needed and set SPDIF to lower power mode. This is accomplished
through the DDKClockSetGatingMode function call and the SPDIF related register setting. The clock
gating and the disabling of the SPDIF is handled automatically within the SPDIF module and requires no
additional configuration or code changes. The SPDIF driver operates correctly after resuming from the
power down mode.

22.4.1 PowerUp
This function resumes an SPDIF I/O operation that was previously terminated by calling the PowerDown()
API. It begins by restoring power and then it restarts the DMA transfers to complete the powerup process
for the SPDIF driver. This function is intended to be called only by the Power Manager and must not block
or depend on any hardware interrupts. Therefore, all required timed delays must be handled by using a
polling loop instead of any of the normal wait for an event to be signalled functions. This functionality is
currently handled by IOCTL_POWER_SET and the function is just a stub.

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 22-5

22.4.1.1 i.MX53 PowerUp Support

Power enables the clock and exits the SPDIF from lower-power mode.

22.4.2 PowerDown
This function suspends all currently active SPDIF I/O operations just before the entire system enters the
low power state. This function is intended to be called only by the Power Manager and must not block or
depend on any hardware interrupts. This functionality is currently handled by IOCTL_POWER_SET and
the function is just a stub.

22.4.2.1 i.MX53 Power Down Support

Power gates the clock and sets the SPDIF to lower-power mode.

22.4.2.2 IOCTL_POWER_SET

This Power Manager IOCTL is implemented for the SPDIF driver. All system suspend and resume
handling is handled by the IOCTL, which handles the PowerDown and PowerUp functionality. For all
platforms, the following registry entry must be defined for proper power management functionality:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SPDIF]
"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

22.5 Unit Test

22.5.1 Unit Test Hardware
The following table lists the required hardware to run the unit tests.

22.5.2 Unit Test Software
The following table lists the required software to run the unit tests.

Table 22-3. Hardware Requirements

Requirement Description

M-Audio Card on PC M-Audio Card to send/receive SPDIF digital data

Table 22-4. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device
and the development workstation

spdiftest.dll Test.dll file

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded Compact 7 BSP Reference Manual

22-6 Freescale Semiconductor

22.5.3 Building the Unit Tests
To build the SPDIF tests, build an OS image for the desired configuration using the following steps:

1. Within Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the SPDIF Tests directory: \WINCE700\SUPPORT\TEST\SPDIF
3. Enter set WINCEREL=1 on the command prompt and hit return.

This copies the built DLL to the flat release directory.
4. Input build -c at the prompt and press return.

After the build completes, the spdif_test.dll file is located in the $(_FLATRELEASEDIR) directory.

22.5.4 Running the Unit Tests
The command line for running the SPDIF test is:

tux –o -n –d spdiftest.dll

To redirect the test results to a file, add the option –f. The SPDIF tests do not contain any test-specific
command line options.

22.6 System Testing
In addition to running the SPDIF driver tests, simple applications can be developed to perform various
system-level tests that involve the use of the SPDIF driver. For example, a small modification can be made
to WAVPLAY and WAVEREC to test the SPDIF TX and RX functions (Windows CE sample application
source code located in WINCE700\PUBLIC\COMMON\SDK\SAMPLES\AUDIO).

pwfx->wFormatTag = WAVE_FORMAT_WMASPDIF; // SPDIF FORMAT

For perform this testing, a SPDIF receiver device which can be used to receive audio data from the i.MX53
board is required, such as an M-Audio USB card (which can be connected to the PC by the USB port).

The TX path should be connected as follows:

M-Audio optical port [out] <—> line dual-optical interface <—> i.MX53 SPDIF RX optical port

Then Spectralab can be used play audio data to the ARD SPDIF device.

22.7 SPDIF Driver API Reference
SPDIF driver is a standard waveform audio driver. For detailed reference information for the SPDIF driver,
see the MSDN Help:

Windows Embedded Compact 7 -> Device Drivers -> Audio Drivers -> Waveform Audio Driver
Reference

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 23-1

Chapter 23
Touch Panel Driver
The touch screen interface can be provided I2C multi-finger Touch controller(HSD100).The soc use I2C
get the touch panel point. And if the multi-finger Touch controller has any touch data to be sent to host
computer,the controller pulls the interrupt pin low to generate an interrupt to host computer .

23.1 Touch Panel Driver Summary
Table 23-1 provides a summary of source code location, library dependencies, and other BSP information.

23.2 Supported Functionality
The touch panel should conform to the standards as explained in the documentation below:

Windows Embedded Compact 7 > Device Drivers > Touch Screen Drivers

23.3 Hardware Operations
The hardware consists of a LCD Panel with a touch screen and a HSD100 touch controller and LVDS
panel. The I2C module sends control information to the HSD100 and reads back the touch samples. From
the touch sample ,the touch controller will provide single touch point and multi touch point different
report.More details about the I2C can be found in “Inter-Integrated Circuit(I2C) Driver”.

Table 23-1. Touch Panel Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\MTOUCH

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\TOUCH

Driver DLL touch.dll

SDK Library N/A

Catalog Item Third Party -> BSP -> Freescale i.MX53 ARD:ARMV7 -> Device Drivers -> TOUCH ->
HSD100 Multi-finger TOUCH

SYSGEN Dependency SYSGEN_TOUCH = 1

BSP Environment Variables BSP_NOTOUCH=

BSP_TOUCH_HSD100=1

Touch Panel Driver

Windows Embedded Compact 7 BSP Reference Manual

23-2 Freescale Semiconductor

23.3.1 Conflicts with SOC Peripherals
NO Conflict.

23.4 Software Operations
The touch screen driver reads user input from the touch screen hardware and converts the input to touch
events. The touch screen events are then sent to the Graphics, Windowing, and Events Subsystem
(GWES). The driver also converts un-calibrated coordinates to calibrated coordinates. Calibrated
coordinates compensate for any hardware anomalies, such as skew or nonlinear sequences.

For the touch screen driver to work properly, it has to submit points while the user’s finger or stylus is
touching the touch screen. When the user’s finger or stylus is removed from the screen, the driver must
submit at least one final event indicating that the user’s finger or stylus tip is removed. The calibrated
coordinates must be reported to the nearest one-quarter of a pixel.

The wince700 touch screen stream interface driver support Multi-finger touch function.When two fingers
continue press,touch screen driver can get two points.The driver will report the two points to the Graphics,
Windowing, and Events Subsystem (GWES).

23.4.1 Touch Driver Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Touch]
 "Prefix"="TCH"
 "Dll"="touch.dll"
 "Flags"=dword:8 ; DEVFLAGS_NAKEDENTRIES
 "Index"=dword:1
 "Order"=dword:25
 ; IClass = touch driver class & power managed device
 "IClass"=multi_sz:"{25121442-08CA-48dd-91CC-BFC9F790027C}",
 "{A32942B7-920C-486b-B0E6-92A702A99B35}"
 "Priority256"=dword:6D ; touch ist priority = 109
 ;Below values are not used; Kept just to keep the Touch BVT passing!
 "SysIntr"=dword:0

 "InitialSamplesDropped"=dword:2 ; Number of samples to be dropped after pen down
 "SampleRate"=dword:C8 ; samples per second, default is 200

; how long touch proxy will wait for touch driver to load
[HKEY_LOCAL_MACHINE\SYSTEM\GWE\TouchProxy]
 "DriverLoadTimeoutMs"=dword:1388 ; 5 seconds

[HKEY_LOCAL_MACHINE\SYSTEM\GWE\UserInput]
 "TouchInputTimeout"=dword:3E8 ; 1 second

[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]

IF BSP_TOUCH_HSD100
 "CalibrationData"="2164,1560 875,587 887,2496 3460,2519 3453,584 "
ENDIF

; For double-tap default setting
[HKEY_CURRENT_USER\ControlPanel\Pen]

Touch Panel Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 23-3

 "DblTapDist"=dword:18
 "DblTapTime"=dword:637

23.5 Unit Tests
This section explains the unit tests.

23.5.1 Unit Test Hardware
Table 23-2 lists the hardware required to run the unit tests.

23.5.2 Unit Test Software
Table 23-3 lists the software required to run the unit tests.

.

23.5.3 Running the Touch Panel Tests
The touch panel test cases can be run by entering the following:

tux -o -n -d touchfunc.dll -x <Test case id>
tux -o -n -d touchbvt.dll

The test case IDs are described in the documentation at:

Windows Embedded Compact 7>Compact Test Kit (CTK)>Input - Touch Tests

23.6 Touch Panel API Reference

The complete API reference is available in the documentation at:
Windows Embedded Compact 7 > Device Drivers > Touch Screen Drivers >Touch Stream Interface
Driver Reference

Table 23-2. Hardware Requirements

Requirement Description

 LCD panel Display panel required for displaying graphics data.

Table 23-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Ktux.dll Ktux.dll which is required to run in kernel mode

touchfunc.dll The Test.dll File

touchbvt.dll TBVT Test dll file

Touch Panel Driver

Windows Embedded Compact 7 BSP Reference Manual

23-4 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 24-1

Chapter 24
Temperature Sensor Driver
Temperature Sensor driver in Windows Embedded Compact 7 BSP is constructed as a stream interface
driver that exposes I/O control codes (IOCTL_TPS_READ, IOCTL_TPS_WRITE,
IOCTL_POWER_CAPABILITIES, IOCTL_POWER_SET, IOCTL_POWER_GET). The application
uses these I/O control codes to access the Temperature Sensor function.

24.1 Temperature Sensor Driver Summary
Table 24-1 provides a summary of source code location, library dependencies and other BSP information.

24.2 Supported Functionality
The Temperature Sensor driver provides the following support:

1. Real-time die temperature.
2. No extra pins required, access is through JTAG interface or Parallel CR Control port.
3. Supports two power management modes, full on and full off.

Table 24-1. Temperature Sensor Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\TPS

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\TPS

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\TPS

Driver DLL tps.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > TPS > Temperature Sensor

SYSGEN Dependency N/A

BSP Environment Variable BSP_TPS=1

Temperature Sensor Driver

Windows Embedded Compact 7 BSP Reference Manual

24-2 Freescale Semiconductor

24.3 Hardware Operation
The i.MX SOC contains an on-chip Temperature Sensor which is included in SATA controller, i.e. the
Synopses DesignWare Cores SATA AHCI Core.

The die's temperature is derived using measured voltages from the internal analog circuitry. These voltages
are first converted to a digital value through an ADC, then these values are simply read from register. Refer
to the SATA chapter in the hardware specification document for measuring and calculating the
temperature.

Synopsys has verified the temperature sensor's function in the lab environment. The equation for the
temperature calculation is a quadratic curve fit to simulation and experimental data. The temperature
measurement has been proven to be supply-independent, with an absolute error of less than 5oC. The
temperature measurement can be made without disturbing data traffic.

Refer to the SATA chapter in the hardware specification document for detailed operation and programming
information.

24.3.1 Conflicts with Other Peripherals and Catalog Options

24.3.1.1 Conflicts with SoC Peripherals

No conflicts.

24.3.1.2 Conflicts with board Peripherals

No conflicts.

24.4 Software Operation

24.4.1 Application/User Interface to Temperature Sensor drives
The Temperature Sensor driver exports a standard streams interface to the Windows File System.
Application-level access to Temperature Sensor is via the Windows File System, using functions such as
CreateFile() and CloseHandle().

The user software which requires access to the Temperature Sensor, does so through the self defined
IOCTLs, such as IOCTL_TPS_READ. They provide interface to read temperature data.

24.4.2 Temperature Sensor Driver Configuration
The driver is configured into the BSP build by check the catalog item listed in Table 24-1. It defines the
environment variable/configuration option: BSP_TPS for Temperature Sensor driver. Configuration for
the Temperature Sensor is then provided through registry settings imported from platform.reg. These
settings can be modified to select the Temperature Sensor prefix and index.

Temperature Sensor Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 24-3

24.4.2.1 Prefix and Index

The default device prefix is “TPS”.

The default device index is 1.

24.4.3 Power Management
The Temperature Sensor supports two power management modes, ON (D0) and OFF (D4). These modes
are managed via the standard Windows Power Manager. Power Manager uses IOCTL_POWER_SET to
switch the power state, according to inactivity settings configured in Power Manager. As for standard
stream interface driver, PowerUp and PowerDown functions are called by the Device Manager.

The primary method for limiting power consumption in the Temperature Sensor module is to gate off all
clocks to the module when those clocks are not needed. This is accomplished through the
DDKClockSetGatingMode function call. The clock is turned on during initialization process and is turned
off after initialization is completed. The Temperature Sensor driver turns on the clock and enables the
Temperature Sensor module before processing any temperature measurement. After the measurement, the
Temperature Sensor module is disabled and the clock is turned off.

24.4.3.1 PowerUp

This function called by Device Manager sets a flag to indicate power is up.

24.4.3.2 PowerDown

This function called by Device Manager ensures volatile data is stored in RAM and sets a flag to indicate
power is down.

24.4.3.3 IOCTL_POWER_SET

This IOCTL handles the request to change power state (D0 or D4), called by Power Manager (or
SetDevicePower() API).

24.4.4 Registry Settings

24.4.4.1 Temperature Sensor driver

The Temperature Sensor driver settings are taken from platform.reg, which can be customized for each
particular build. These registry values are located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\TPS]

The values under that registry key should be defined in platform.reg. They can be qualified with the
BSP_TPS system variable for configurable catalog item support.

Temperature Sensor Driver

Windows Embedded Compact 7 BSP Reference Manual

24-4 Freescale Semiconductor

Standard registry entries also to be included for the Temperature Sensor after the above key are shown in
Table 24-3.

24.5 Unit Test
The Temperature Sensor driver is tested using self defined test application.

24.5.1 Unit Test Hardware
Table 24-4 lists the required hardware to run the Temperature Sensor driver unit tests.

24.5.2 Unit Test Software
Table 24-5 lists the required software to run the Temperature Sensor driver unit tests.

24.5.3 Building the Temperature Sensor Tests
The source code for the Temperature Sensor driver unit tests can be found under the directory:
\WINCE700\SUPPORT\TEST\TPS\

To build each application, select “Open Release Directory in Build Window” in the IDE menu, enter the
source code directory in the command prompt window, and type “build -c” to build the program.

24.5.4 Running the Storage Media Tests
The tests can be launched from command line or CE Target Control window in Platform Builder.

Table 24-2. Temperature Sensor driver Registry Setting Values

Value Type Content Description

Dll sz tps.dll Driver dynamic link library

Table 24-3. Temperature Sensor driver Registry Setting Values

Value Type Content Description

Prefix sz “TPS” Device identifier (combined with Index for TPS1 for example)

Index dword 1 Instance of Temperature Sensor

Table 24-4. Temperature Sensor driver Hardware Requirements

Requirement Description

i.MX platform. The i.MX SOC contains an on-chip Temperature Sensor which is
included in SATA controller.

Table 24-5. Software Requirements

Requirement Description

tps.exe Self defined test application, which read the temperature data and output.

Temperature Sensor Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 24-5

The command line for running the File System Driver Test is:
tps.exe

This application read the temperature data and output.

24.6 Basic Elements for Driver Development
This chapter provides details of the basic elements for driver development.

24.6.1 BSP Environment Variables

24.6.2 Mutual Exclusive Drivers
N/A.

24.6.3 Dependencies of Drivers
N/A.

24.7 Device API Reference
The primary interface to the Temperature Sensor block device is through the standard Windows CE Device
IOCTLs as described in the following sections. Application-level access to Temperature Sensor should be
through the Windows File System.

The driver also supports the standard XXX_Init, XXX_Deinit, XXX_Open and XXX_Close routines, as
used by Device Manager and the bus enumerator to load the driver. When the registry settings for
Temperature Sensor are correct, these functions are handled automatically, and need no further
documentation here.

24.7.1 IOCTL_TPS_READ
This DeviceIoControl request returns the temperature data.

Parameters
hDevice [in] Handle to the Temperature Sensor. The following code example shows how

to open the Temperature Sensor.
HANDLE hTPS = CreateFile(TEXT("TPS1:"), GENERIC_READ |
GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);

lpOutBuffer [out] Set to the address of an allocated UINT32 variable. This variable receives
the temperature data when the IoControl call returns

Table 24-6. BSP Environment Variables

Name Definition

BSP_TPS Set to enable Temperature Sensor driver

Temperature Sensor Driver

Windows Embedded Compact 7 BSP Reference Manual

24-6 Freescale Semiconductor

nOutBufferSize [out] Set to the size of the allocated UINT32 variable.
lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-1

Chapter 25
Universal Serial Bus (USB) Driver
The OTG USB driver provides High Speed USB 2.0 host and device support for the USB On The Go
(OTG) port of the i.MX. The OTG driver automatically selects either host or device functionality at any
given time, depending on the USB cable/mini-plug configuration. This is achieved by a set of three drivers:
USB OTG host controller driver, USB client driver and/or USB transceiver controller (Full Function)
driver, which performs the host/function client switching.

The USB host driver can be configured for class support for mass storage, HID, printer, and RNDIS
peripherals. The device/client portion can be configured to provide mass storage, serial, or RNDIS
function. The Full Function OTG transceiver driver automatically selects between the host or client driver.
The host or client can also be configured as the only mode for the OTG port, using the Pure Host or Pure
Client catalog item. All the OTG catalog items are exclusive. (See Section 25.1, “USB OTG Driver
Summary.”).

25.1 USB OTG Driver Summary

25.1.1 USB OTG Client Driver Summary
Table 25-1 provides a summary of source code location, library dependencies and other BSP information
for the USB OTG client driver.

Table 25-1. OTG Client Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

Common SOC COMMON_FSL_V3

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBD
..\PLATFORM\COMMON\SRC\SOC\<Common Soc>\ms\USBFN

CSP Static Library usb_usbfn_<Target SOC>.lib
usb_usbfn_os_<Target SOC>.lib
usb_ufnmddbase_<Common Soc>.lib

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\USBD

Import Library N/A

Driver DLL usbfn.dll

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-2 Freescale Semiconductor

USB clients require a function driver to be loaded. A client can only present one function. Only one of the
function drivers (described in Section 25.5.7, “Function Drivers,”) should be configured through drag and
drop. If more than one is configured, the serial function is the default unless the registry is manually
modified.

25.1.2 OTG Host Driver Summary
Table 25-2 provides a summary of source code location, library dependencies and other BSP information
for the USB OTG host driver.

Host driver requires a set of class drivers to be loaded. See Section 25.5.8, “Class Drivers,” for class driver
information.

Catalog Item High Speed OTG:
Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > USB Devices > USB High
Speed OTG Device
To support only client/device mode, choose .. > High Speed OTG Port Pure Client Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment
Variable

BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1

Table 25-2. OTG Host Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX53_ARD

Target SOC (TGTSOC) MX53_FSL_V3

Common SOC COMMON_FSL_V3

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\EHCI
..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>.lib
usbh_ehcdpdd_<Common SOC>.lib
usbh_usb2com_<Common SOC>.lib

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSOTG

Import Library N/A

Driver DLL hcd_hsotg.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > USB Devices >
USB High Speed OTG Device
To support only host mode, choose .. >High Speed OTG Port Pure Host Function.

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_HOST=1

Table 25-1. OTG Client Driver Summary (continued)

Driver Attribute Definition

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-3

25.1.3 OTG (Pin-Detection) Driver Summary (For High-Speed Only)
Table 25-3 provides a summary of source code location, library dependencies and other BSP information
for the USB OTG transceiver driver.

25.2 USB Host Driver Summary

25.2.1 HS Host1 Driver Summary
Table 25-4 provides a summary of source code location, library dependencies and other BSP information
for the HS host driver.

Table 25-3. OTG Transceiver Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX53_ARD

Target SOC (TGTSOC) MX53_FSL_V3

Common SOC COMMON_FSL_V3

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Common Soc>\MS\USBOTG\MDD

CSP Static Library usbotgcm_<Common SOC>.lib

Platform Driver Path PLATFORM\<Target Platform>\SRC\DRIVERS\USBOTG

Import Library N/A

Driver DLL fsl_usbotg.dll

Catalog Item Third Party > BSPs > Freescale <Target Platform>: ARMV7 > Device Drivers > USB Devices
> USB High Speed OTG Device > High Speed OTG Port Full OTG Function Support

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1
BSP_USB_HSOTG_HOST=1
BSP_USBOTG=1

Table 25-4. HS Host1 Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX53_ARD

Target SOC (TGTSOC) MX53_FSL_V3

Common SOC COMMON_FSL_V3

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\EHCI
..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>.lib
usbh_ehcdpdd_<Common SOC>.lib
usbh_usb2com_<Common SOC>.lib

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSH1

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-4 Freescale Semiconductor

The host driver requires a set of class drivers to be loaded. See Section 25.5.8, “Class Drivers,” for more
information.

25.2.2 HS Host2 Driver Summary

The host driver requires a set of class drivers to be loaded. See Section 25.5.8, “Class Drivers,” for more
information.

Import Library N/A

Driver DLL hcd_hsh1.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > USB Devices > USB
High Speed Host1
To support high speed host, choose .. >High Speed Host1

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSH1=1

Table 25-5. HS Host2 Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX53_ARD

Target SOC (TGTSOC) MX53_FSL_V3

Common SOC COMMON_FSL_V3

CSP Driver Path ..\SOC\<Common SOC>\ms\USBH\EHCI
..\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>.lib
usbh_ehcdpdd_<Common SOC>.lib
usbh_usb2com_<Common SOC>.lib

Platform Driver Path \PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSH2

Import Library N/A

Driver DLL hcd_hsh2.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV7 > Device Drivers > USB Devices >
USB High Speed Host2
To support only host mode, choose .. >High Speed Host Function.

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSH2=1

Table 25-4. HS Host1 Driver Summary (continued)

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-5

25.3 Supported Functionality
The OTG driver provides the following software and hardware support:

1. High Speed OTG/Host driver supports USB specification 2.0.
2. When a cable is not connected or a mini-B cable is connected (in either of these cases, the ID pin

is pull up), OTG driver selects the peripheral driver to be in charge. On attaching a mini-A cable
(in this case, the ID pin is pull down), OTG driver selects the host driver to be in charge.

3. OTG port as client/peripheral supports mass storage, RNDIS and serial clients
4. OTG port as host or HS Host supports mass storage, HID and RNDIS classes
5. When nothing is attached to the OTG/Host port, the driver configures the controller and transceiver

into a low power state
6. When the system is suspended with nothing attached to the Host port, while a device attaching to

Host port, the behavior of the system, remain suspended or resume can be configured by the
compile option.

7. When the system is suspended while a device attached to the Host port, while it is unplugged, the
behavior of the system, remain suspended or resume can be configured by the compile option

8. When the system resumes after suspend, any attached devices are enumerated and their class
drivers loaded appropriately

9. Data transfer rates on the client port exceeds 40 Mbits/sec in Mass Storage client

25.4 Hardware Operation

25.4.1 Conflicts with Other Peripherals and Catalog Items

25.4.1.1 Conflicts with SoC Peripherals

No conflicts.

25.4.1.2 Conflicts with Board Peripherals

No conflicts.

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-6 Freescale Semiconductor

25.5 Software Operation

25.5.1 USB OTG Host Controller Driver
This driver enables the USB host functionality for the OTG, H1 and H2 port. It is part of the standard
Windows USB software architecture as shown in Figure 25-1.

Figure 25-1. Windows USB Driver Architecture

For further details of the Windows CE USB driver architecture and usage, see the Platform Builder
Windows Embedded Compact 7 help topic:

Windows Embedded Compact 7 > Device Drivers > USB Host Drivers

The BSP supports the following USB class drivers:
• Mass Storage—SD cards, CF cards, HDD drive, thumb drive (disk-on-key); some card reader

firmware is not supported by the Microsoft standard Mass Storage class driver
• HID—Keyboard and mouse
• RNDIS—Network Device Interface communication class

Hubs are supported in all configurations with Full and Low Speed peripherals.

25.5.1.1 User Interface

User access to the USB host driver is by class drivers. For further details on these Host Client Drivers refer
to the Platform Builder Windows Embedded Compact 7 help topic:

Class Driver (e.g.
Mass Storage Class)

USB Host device
driver

Application or user
interface

USB Host controller
driver

MX31 USB
controller hardware
& PHY

device controller and
PHY

Client Device
(controller) Driver

Function controller
(client) driver

Function driver (e.g.
Mass Storage
Function)

Application or e.g.
storage device

USB cable physical
signalling

logical pipes /
endpoints

function/class
specific protocol

(IssueTransfer) (IssueTransfer)

USB packets USB packets

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-7

Windows Embedded Compact 7 > Device Drivers > USB Host Drivers > USB Host Controller
Drivers > Host Client Driver Reference.

25.5.1.2 Host Controller Configuration

The driver is configured into the BSP build by dragging and dropping the appropriate catalog item for USB
HS OTG. By default, host support is included along with peripheral/device and transceiver support.
Additional classes to be supported must also be selected from the Core OS catalog. See Section 25.5.1.5,
“Registry Settings,” for details on excluding OTG host support from the build.

The internal i.MX USB OTG signals can be multiplexed to a choice of pins on the IC as described in the
IOMUX chapter of the i.MX53 Applications Processor Reference Manual.

25.5.1.3 Memory Configuration

The USB Host drivers (for all USB host ports) use DMA to perform all USB transfers. The physical
memory for these transfer buffers is allocated as a pool at driver initialization. Unless physical addresses
are specified in API accesses at the class-driver interface, the driver copies data between the
user/class-provided data buffers and the DMA buffer from the driver physical memory pool.

The default DMA physical memory pool size is 128 Kbyte. This value can be altered by registry setting
PhysicalPageSize.

25.5.1.4 Vbus/Configured Power

USB provides a means to monitor the configured power of devices attached to a USB host. The host driver
verifies that each attached device does not exceed the configured power limit.

This power limit is implemented via the platform-specific function BSPUsbhCheckConfigPower() as
described in Section 25.5.1.7.1, “BSPCheckConfigPower,” and located in:

\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\Common\hwinit.c

This function must be modified to correspond with the platform hardware capabilities.

The i.MX system can supply a total of 100 mA to attached devices on the OTG port and the default
behavior does not need to be modified. All bus powered hubs that have been tested require 500 mA and
therefore are not supported for use. Self-powered hubs are required to expand the number of USB sockets
and also to support devices that require greater than 100 mA.

25.5.1.5 Registry Settings

25.5.1.5.1 OTG Registry Settings

Refer to the Section 25.5.5, “USB OTG Registry Settings,” for information about OTG registry settings.

25.5.1.5.2 HSH1 Registry Settings

The USB OTG host controller settings are values located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\HCD_HSH1]

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-8 Freescale Semiconductor

Table 25-6 lists the USB registry settings.

25.5.1.5.3 HSH2 Registry Settings

The USB OTG host controller settings are values located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\HCD_HSH2]

Table 25-7 lists the USB registry settings.

Table 25-6. hsh1.reg Default Values

Value Type Content Description

Dll sz hcd_hsh1.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable host driver on the OTG. If no host support
is required (client only) then this value can be set to 0, though the
HCD_HSOTG key is not normally configured in the image at all when pure
Host function is selected.

OTGGroup sz 02 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB OTG
instance.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword 20000 This value represents the number of bytes allocated for the physical memory
pool of the OTG host driver, and defaults to 128 Kbytes. From this buffer, 75%
are allocated for transfer descriptors and the remaining buffer is available for
allocation to simultaneous transfers. In most cases, only one transfer is active
at any time (for example, in the Mass Storage Class). A good value is at least
3x as large as the largest data buffer transferred using IssueTransfer(). This key
is optional, if it does not exists in the registry, it takes the default value,
otherwise a specific value can be assigned.

IClass multi_sz "{A32942B7-92
0C-486b-B0E6-
92A702A99B35

}"

This indicate the USB Host is a Generic power-manageable devices

Table 25-7. hsh2.reg Default Values

Value Type Content Description

Dll sz hcd_hsh2.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable host driver on the OTG. If no host support
is required (client only) then this value can be set to 0, though the
HCD_HSOTG key is not normally configured in the image at all when pure
Host function is selected.

OTGGroup sz 02 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB OTG
instance.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-9

25.5.1.6 Unit Test

The USB driver has many devices to be tested. Tests are performed manually and include connecting the
devices, and confirming the attach, detach (on unplug) re-attach (on subsequent plug in of device), and
transferring and verifying data (and/or functions).

WCE700 also provides Windows Embeded Compact Test Kit to do the related driver test. And it includes
two parts of test, one part is included in Windows Embedded Compact Test Kit, and another one is
included in Windows CEPC test

25.5.1.6.1 Windows Embedded CTK test

Documentation for the WCE700 CTK test refer to :

Windows Embedded Compact 7 > Compact Test Kit(CTK)

25.5.1.6.1.1 Prepare for CTK test

The following steps are used to build the image to be tested:
1. Checkout the RTM to be tested or install the MSI provided
2. Add the following components from the catalog:

— Freescale <Target Platform> :ARMV7-Device Drivers-USB Devices-USB High Speed
Host1-High Speed Host 1

— Freescale <Target Platform> :ARMV7-Device Drivers-USB Devices-USB High Speed OTG
Device

— Core OS > Windows Embedded Compact > Device Drivers > USB > USB HOST > USB
HOST Support

— Core OS > Windows Embedded Compact > Device Drivers > USB > USB HOST > USB Class
drivers, and all the sub-components of this catalog item (Sub-Components like USB Storage
Class Driver.)

— Core OS > Windows Embedded Compact > Device Drivers > USB > USB Function > USB
Function Support.

PhysicalPageSize dword 20000 This value represents the number of bytes allocated for the physical memory
pool of the OTG host driver, and defaults to 128 Kbytes. From this buffer, 75%
are allocated for transfer descriptors and the remaining buffer is available for
allocation to simultaneous transfers. In most cases, only one transfer is active
at any time (for example, in the Mass Storage Class). A good value is at least
3x as large as the largest data buffer transferred using IssueTransfer(). This key
is optional, if it does not exists in the registry, it takes the default value,
otherwise a specific value can be assigned.

IClass multi_sz "{A32942B7-92
0C-486b-B0E6-
92A702A99B35

}"

This indicate the USB Host is a Generic power-manageable devices

Table 25-7. hsh2.reg Default Values (continued)

Value Type Content Description

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-10 Freescale Semiconductor

— Core OS > Windows Embedded Compact > Device Drivers > USB > USB Function > USB
Function Clients, and all the sub-components except Composite Function driver.

— Core OS > Windows Embedded Compact > File Systems And Data store > Storage Manager;
(Sub-Components: FAT File System, Partition Driver, Storage Manager Control Panel Applet)

— Core OS > Windows Embedded Compact > ActiveSync > File Sync
3. Sysgen and build the image

After image generated, it should be downloaded to target device, for more information about image
download, please refer to BSP reference guide.

25.5.1.6.1.2 Run CTK test

If Windows Embedded Compact Test Kit is included when you install Windows Embedded Compact 7,
then you can find it at:

Start > All Programs > WindowsEmbededCompact7TestKit

If you want to run CTK with graph tool,before you can run test suites, you need to connect to device
successfully. Or you can copy the required softwares to device and run it manually on device without graph
tool.

The following test case suite need to be test for USB driver.
1. USB Function Driver verification tests

lTable 25-3 lists the software required for the USB Funtion Driver Verification Test.

execute "tux -o -n -d usbfnbvt" to run test case.

for more information about this test suite, please refer to:

Windows Embedded Compact 7 > Compact Test Kit(CTK) > USB ­ Function Tests
2. USB Host Driver verification tests

Table 25-4 lists the software required for the USB Host Driver Verification Test.

Table 25-3. Software Requirements

Requirement Description

Tux.exe Test harness, required for executing the test .

Kato.dll Logging engine, required for logging the test data .

ktux.dll Test harness, required to execute kernel-mode tests.

usbfnbvt.dll Library that contains the test code, loaded by the Tux test harness

Table 25-4. Software Requirements

Requirement Description

Tux.exe Test harness, required for executing the test .

Kato.dll Logging engine, required for logging the test data .

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-11

execute "tux -o -n -d usbhostbvt" to run test case.

for more information about this test suite, please refer to:

Windows Embedded Compact 7 > Compact Test Kit(CTK) > USB ­ Host Tests > USB Host Driver
Verification Tests

3. USB OTG BUS IOCTL test

Table 25-5 lists the software required for the USB Host Driver Verification Test.

execute "tux -o -n -d otgtest.dll" to run test case.

for more information about this test suite, please refer to:

Windows Embedded Compact 7 > Compact Test Kit(CTK) > USB ­ OTG Tests
4. USB Host High speed EHCI (2.0) interface tests

All these test cases require a CEPC Hardware, please refer to Table 25.5.1.6.2 to get more information

25.5.1.6.2 WCE700 CEPC test

25.5.1.6.2.1 Abstract

This test suite can be used to test USB host controller drivers that provide the same interface as Windows
CE USB host controller driver does (for more information, see Section 25.5.1.1, “User Interface,”). It also
can be used to verify whether a certain USB host controller (either stand alone card or onboard logic) can
operate with Windows CE. The test setup and scenario is shown in Figure 25-2.

This test suite acts as a client driver above the USB bus driver (usbd.dll). It is loaded when a test device
is connected to the host through a USB cable. The test device is a CEPC with a NetChip2280 USB function
controller card in it. After this CEPC is booted up and net2280lpbk.dll is loaded, the CEPC acts as a
generic USB data loopback device. The USB test suite (the test client driver on the host side) can then
stream data or issue device requests to or from this data loopback device. This is how the USB host
controller and its corresponding host controller drivers are exercised.

ktux.dll Test harness, required to execute kernel-mode tests.

usbhostbvt.dll Library that contains the test code, loaded by the Tux test harness

Table 25-5. Software Requirements

Requirement Description

Tux.exe Test harness, required for executing the test .

Kato.dll Logging engine, required for logging the test data .

ktux.dll Test harness, required to execute kernel-mode tests.

USB OTG Driver Driver Library

otgtest.dll Test library

Table 25-4. Software Requirements (continued)

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-12 Freescale Semiconductor

The NetChip2280 USB function PCI controller card is a USB2.0 compatible USB function device. It can
be used to test both USB2.0 and USB1.1 host controllers (EHCI/OHCI/UHCI) and corresponding drivers.

The Netchip2280 controller has six endpoints besides endpoint 0. The data loopback driver
(net2280lpback.dll) configures these endpoints to be three pairs: one bulk IN/OUT pair, one Interrupt
IN/OUT pair, and one Isochronous IN/OUT pair. The data loopback tests are done by sending data from
host side to device side through the OUT pipe, receiving it back through the IN pipe, and then verify the
data.

Figure 25-2. Test Setup

25.5.1.6.3 Unit Test Hardware

• Test platform
• Host Controller Card (if not onboard logic)
• CEPC
• Netchip2280 Card
• USB cable

Test platform with
USB controller

CEPC with
NetChip2280 USB
function controller

Hardware

Software

OHCI/UHCI/EHCI
Host Controller
Driver

USB Bus Driver
(usbd.dll)

USB Function
Bus Driver
(net2280.dll)

USB Test
Client Driver
(usbtest.dll)

Data loopback
Client Driver
(net2280lpbk.dll)

<Bus Level>

<Client Level>

Host Side Device Side

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-13

25.5.1.6.4 Unit Test Software

Host side requirements:
• Tux.exe
• Ddlx.dll
• Usbtest.dll
• Tooltalk.dll
• Kato.dll
• USB component (usbd.dll, EHCI/OHCI/UHCI host controller driver(s)) must be included in the

run time image
— Regular test: usbtest.dll, usbd.dll
— Peformance test: ceperf.dll, perfscenario.dll, guidgenerator.dll, usbperf.dll
— Stress test: usbstress.dll, xxx_clicker.dll

 Device side requirements:
• Lufldrv.exe
• Net2280lpbk.dll
• NetChip2280 USB function support (net2280.dll) must be included in the CEPC run time image
• LpBkCfg1.dll
• LpBkCfg2.dll
• LpBkPerfCfg.dll

25.5.1.6.5 Running the Test

The test procedure is as follows:
1. Download the runtime image to the CEPC (Windows Embedded CE PC-based hardware platform)

with the Netchip2280 card on it
2. After the system is booted up, run s lufldrv, the tester should verify that net2280lpbk.dll is

loaded
3. Download the runtime image to the test platform with a USB host controller on it
4. After the system is booted up, make sure there is no connection between the host side and the

device through the USB cable. Then launch command s tux –o –d ddlx –c “usbtest” “–xYYYY”,
where YYYY is the test case(s) to be run

5. The test indicates that there should be no connection between host and device side. Then after
seven seconds, the test asks to connect two sides with a USB cable

6. The test main body starts to run
7. After test(s) is(are) done, and if other tests in the test suite are to be run, do not disconnect the two

sides of the USB cable. Type the next test command, and the tests starts directly. If the USB
connection was disconnected before the next test, the tests asks to make the connection again
before the test begins

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-14 Freescale Semiconductor

25.5.1.6.6 Test Cases

Table 25-2 shows the test cases contained in the test suite.

By default, the data loopback device configures the endpoints with some often-used packet sizes that are
DWORD aligned, and neither too big nor too small. By having all tests in Table 25-2 pass under this
configuration is more than sufficient for a BVT-type test pass. However, testers can change the packet sizes
(these values are hard-coded in the source code for net2280lpbk.dll) for each endpoint by themselves and
run these test cases again for more comprehensive testing.

This test suite provides a way to change packet sizes of on NetChip2280 device on the fly. They are:
• Test case 3001—Using very small packet sizes in NetChip2280 device full speed configuration
• Test case 3002—Using very small packet sizes in NetChip2280 device high speed configuration
• Test case 3003—Using irregular packet sizes (like non DWORD-aligned size) in NetChip2280

device full speed configuration
• Test case 3004—Using irregular packet sizes (like non DWORD-aligned size) in NetChip2280

device high speed configuration

Table 25-2. USB Host Controller Driver Test Cases

Test Case ID Test Description

1001-1315,
1501-1515

Data loopback tests:
Concerning the transfer type, there are five categories:
1) Bulk pipe loopback tests (tests with ID end with 1, like xxx1)
2) Interrupt pipe loopback tests (tests with ID end with 2, xxx2)
3) Isochronous pipe loopback tests (tests with ID end with 3, xxx3)
4) All pipe transfer simultaneously (tests with ID end with 4, xxx4)
5) All three types transfers carry on simultaneously (tests with ID end with 5, xxx5) 1

There are five categories for how data is transferred:
1) Normal loopback tests (tests with ID start with 10, like 10)
2) loopback tests using physical memory (tests with ID start with 11, 11xx)
3) loopback tests using a part of allocated physical memory (tests with ID start with 12, 12xx)
4) Normal short transfer loopback tests (tests with ID start with 13, 13xx)
5) Stress short transfer loopback tests (tests with ID start with 15, 15xx)

Also both synchronous and asynchronous transfer methods are exercised (test cases like xx1x using asynchronous
transfer method, test cases like xx0x using synchronous method

There are a total of 5×5×2 = 50 test cases

1 This category of tests is designed for testing some other USB function devices which have more endpoints than host controller driver can
handle. When using Netchip2280, it should be the same as category 4). Tester can just ignore this category.

1401-1413 Additional data loopback tests. that mainly focus on testing APIs like GetTransferStatus(), AbortTransfer() and
CloseTransfer()

2001-2013 Test related to Device requests

9001-9004 Special tests that test APIs such as SuspendDevice(), ResumeDevice() and DisableDevice()

9005 Test that stresses EP0 transfer (Vendor Transfer)

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-15

• Test case 3005 (High Speed only)—Using very large packet sizes (like 2×1024 for Isochronous
endpoints) in NetChip2280 device full speed configuration. In the real world, Netchip2280 cannot
handle transfers using such large packet size because its onboard FIFO buffer is small

Run one of the test case above, then after 15–20 seconds, usbtest.dll is unloaded and loaded again
automatically through the Platform Builder. The packets sizes on netchip2280 side have already been
changed. Then those normal tests can be run. Use test case 3011 (for full speed config) and 3012 (for high
speed) to restore the default packet sizes.

Another category test that is important for USB2.0 host controllers and drivers is called the golden bridge
tests, which means USB2.0 host controller is connected with a full speed (USB1.1) device. This is the only
scenario that USB2.0 host controller performs split transfers.

NetChip2280 can be forced to be a full speed device. In the test setup stage, instead of run s lufldrv to
load loopback driver, run s lufldrv –f. This forces the Netchip2280 to be configured as a full speed
device.

Also testers are encouraged to do some manual tests. Here are some examples:
• Plug in real USB devices, suspend system, and then resume; USB devices should still be there
• Plug in real USB devices, suspend system, unplug it, plug in another device, then resume; system

should enumerate that new device properly
• Run one of the data transfer tests, in the middle of transfer stage, suspend the system (host side),

then resume; tests may fail, but system should not crash
• Run one of the data transfer tests, in the middle of transfer stage, disconnect the USB connection;

tests should fail, but system should not crash

25.5.1.7 Platform-Specific API

This section describes the platform-specific API functions.

25.5.1.7.1 BSPCheckConfigPower

This function is used to evaluate whether a device can be supported on the specified USB port.

Parameters
UCHAR bPort [in] Unused. Each USB controller has only one port
DWORD dwCfgPower [in] Power requirement (number of milliamps) requested by the device being

evaluated for attachment support on this port
DWORD dwTotalPower[in] current total power (number of milliamps) used by other previously attached

devices on this port
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

Return FALSE if device can not be attached

25.5.1.7.2 BSPUsbSetWakeUp

This function enables or disables the wakeup on the USB port. This function does not actually enable
wake-up when a device is currently attached to the port.

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-16 Freescale Semiconductor

Parameters
BOOL bEnable [in] TRUE to enable wakeup, FALSE to disable wakeup

25.5.1.7.3 BSPUsbCheckWakeUp

This function evaluates the wake-up condition for the relevant USB port, and clears the condition and
interrupt.
Parameters None
Return Value Return TRUE when a wake-up condition was detected

Return FALSE when no wake-up condition was present

25.5.1.7.4 SetPHYPowerMgmt

This function is called by the USB driver when transitioning to or from the suspended state (for example,
during system suspend). The function does what is necessary to place the transceiver hardware into a
suspended (fSuspend = TRUE) or running (fSuspend = FALSE) state.

The standard implementation for a i.MX system uses a ULPI-bus based ISP1504 transceiver for the HS
OTG port, and this function configures the ULPI-bus for sleep state. If platform hardware uses other
transceivers, this function must be modified appropriately.

Parameters
BOOL fSuspend [in] TRUE: system/controller is going to suspend mode. FALSE: resuming

25.5.2 USB Client Driver
This driver enables the USB device functionality for the i.MX device. It is activated when a USB Mini B
connector is connected to the Mini USB OTG socket. When the i.MX System is connected to a USB host
system (for example, high speed or full speed port of PC), it is enumerated according to the current
configuration settings, and the appropriate class driver is loaded on the PC. By default the system is
configured for USB serial class. The system can be configured as one of the following USB functions by
setting the appropriate environment variable during build (drag/drop from the catalog):

• Serial class—Serial ActiveSync
• Mass storage—expose local storage (ATA hard disk, RAMDISK or other store) as USB drive

25.5.2.1 User Interface

The USB client driver provides a standard Windows CE USB driver implementation. For an overview see:

Windows Embedded Compact 7 > Device Drivers > USB Function Drivers > USB Function
Controller Drivers.

User access to the USB client driver is through function drivers such as Mass Storage or RNDIS. For
further details on these USB Function drivers, refer to the Windows Embedded Compact 7 Platform
Builder help topic:

Windows Embedded Compact 7 > Device Drivers > USB Function Client Drivers.

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-17

Where new function driver code is to be developed, refer to the Function controller driver interface
functions (for example, IssueTransfer) as documented in:

Windows Embedded Compact 7 > Device Drivers > USB Function Controller Drivers > USB
Function Controller Driver Reference.

25.5.2.2 Client Driver Configuration

Refer to the Section 25.5.4, “USB OTG Catalog Settings,” for information about the client driver
configuration.

25.5.2.3 Registry Settings

Refer to the Section 25.5.5, “USB OTG Registry Settings,” for information about the registry settings.

25.5.2.4 Unit Test

Beside the CTK tests for USB Funtion driver, there still has some test case for it. The USB function is
tested by configuring the i.MX system as either USB serial function, USB mass storage or RNDIS function
and connecting it directly to a host PC. These tests verifie basic USB peripheral/client functionality,
including attach, detach, and data transfer. Separate images must be built and downloaded for each of the
three peripheral function tests.

25.5.2.4.1 Unit Test Hardware

Table 25-3 lists the required hardware to run the unit tests.

25.5.2.4.2 Unit Test Software

Table 25-4 shows the software requirements for the USB Function controller driver test.

Table 25-3. Hardware Requirements

Requirement Description

Host system To test if control reaches the Host controller driver

USB cable having Mini USB OTG plug A at one end
and Mini USB OTG plug B on the other side

For connecting between the host and the device

Storage medium such as Nand Flash, eSDHC, U-Disk Required as a storage device when the board is configured as
mass storage class

Table 25-4. Software Requirements

Requirement Description

ActiveSync 4.1 and above Host side software that is required to be available for testing the Serial class functionality

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-18 Freescale Semiconductor

25.5.2.4.3 Running the USB Function Controller Driver Tests

Table 25-5 lists USB function controller driver tests.

25.5.2.5 Platform-Specific API

This section describes the platform-specific API functions.

25.5.2.5.1 InitializeMux

This function is called to initialize the IOMUX connection within i.MX, from the USB controller to the
appropriate device pins for the transceiver. This function is implemented for the Pure Client situation.

Table 25-5. USB Function Controller Driver Tests

Test Cases Entry Criteria/Procedure/Expected Results

Board configured as USB
Serial class and connected
to a host system after the
board boots up
completely

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait until the board
boots-up completely
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that the ActiveSync on the host side gets connected and is synchronized
3. Copy files from Host system to the Mobile Device. Files are copied
4. Copy files from the Mobile Device to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the i.MX mini USB OTG socket to unload the Serial class driver
Expected Result:
ActiveSync should get synchronized and copying of files should happen between the Host and the System

Board configured as USB
Mass storage client, with
ATA drive as DSK1
mounted, and connected
to a host system after the
board boots up
completely

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait until the board
boots-up completely
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that a new disk in My Computer having as Removable Disk appearing in it
3. Copy files from Host system to the new disk drive. Files are copied
4. Copy files from the new disk drive to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the mini USB OTG socket to unload the mass storage class driver
Expected Result:
Files copied into mass storage client device match those copied out (when compared on Windows XP PC using
file compare utility). Note that files are not visible from within the System until the system has been reset. The
file system should not be used inside the System when it is being accessed via USB as a mass storage client.

Board configured as USB
RNDIS client and
connected to a host
system after the board
boots up completely.
Browsing the Internet

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait until the board
boots-up completely. See to it that the NIC’s local area connection is not having any IP address
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that a new Local area connection in the Network and Dial up connections appears on the Windows
XP machine. Bridge the NIC’s local area connection and the RNDIS’s local area connection
3. Configure the bridge by giving IP address, Subnetmask, Default gateway, DNS
4. On the System, a new Local area connection can be found in the Network and dial up connections. Configure
the local area connection by giving IP address, Subnetmask, Default gateway, DNS
5. In the Internet explorer on the System, configure the Lan settings as per the local area settings
Expected Result:
Browsing the Internet should be possible

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-19

Parameters
int Speed [in] Unused
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

25.5.2.5.2 HardwarePullupDP

This function is called by the USB client driver when D+ must be pulled-up, in preparation for connection
to a USB host. The standard code configures for ISP1504/ISP1301 transceiver. It is possible to modify this
routine to conditionally soft-disable USB connection.
Parameters
CSP_USB_REGS *pRegs[in] pointer to the registers for the USB controller
Return Value Return TRUE if D+ signal was pulled-up

25.5.3 USB OTG Driver (Pin-Detection Driver)
This driver is responsible for detecting the type of USB connector plugged into the USB OTG socket of
the i.MX System. It loads the USB host driver or USB peripheral driver and let it in charge.

25.5.3.1 User Interface

There is no user interface to the transceiver driver. This driver merely manages the USB host or peripheral
drivers, which provide the appropriate programming API.

25.5.3.2 OTG Driver Configuration

See the Section 25.5.4, “USB OTG Catalog Settings” for information on the OTG driver configuration.

25.5.3.3 Registry Settings

See the Section 25.5.5, “USB OTG Registry Settings” for information on the registry settings.

25.5.3.4 Unit Test

It is tested using the mini or micro USB OTG plug A and mini or micro USB OTG plug B. The test is done
by manually plugging in different cables to the OTG socket on the System and verifies if the appropriate
driver is activated.

25.5.3.4.1 Unit Test Hardware

Table 25-6 lists the required hardware to run the unit tests.
Table 25-6. Hardware Requirements

Requirement Description

 Full OTG configuration selected in BSP Make sure the OTG driver is running

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-20 Freescale Semiconductor

25.5.3.4.2 Running the OTG Test

Table 25-7 lists OTG tests.

25.5.3.5 Platform-Specific API

NA.

25.5.4 USB OTG Catalog Settings
The driver is selected into the BSP build by dragging and dropping the appropriate catalog item for USB
HS OTG.. There are 3 catalog items in Freescale i.MX53 ARD: ARMV7> Device Drivers > USB
Devices > USB High Speed OTG related to USBOTG functionality:

PC (with appropriate driver and software installed)
Peripherals such as thumb disk, USB keyboard, and hub

To test if control reaches the Host controller driver

mini or micro A to A receptacle cable
mini or micro B to A cable

For connecting system with PC and peripherals. System acts as
peripheral and host accordingly

Table 25-7. OTG Tests

Test Cases Entry Criteria, Procedure and Expected Results

Idle case when the cable
is not plugged in

Entry Criteria:
Ensure there is no cable connected and the board is turned ON, wait until the board boots-up completely
Procedure:
When the board is powered and completely booted-up, the board should be idle.
Expected Result:
Device boots up and is stable

Switch to peripheral Entry Criteria:
Ensure there is no mini USB OTG plug connected and the board is turned ON and wait until the board boots-up
completely
Procedure:
When the board is powered and completely booted-up, connect the system to PC with the mini or micro B to A
cable. Verify if PC recognizes it correctly.
Expected Result:
PC recognize the board (as peripheral) correctly (Activesync is active, or removable disk is visible, or network
adaptor is recognized).

Switch to host Entry Criteria:
Unplug board from PC (in previous step)
Procedure:
1. Disconnect the system with PC and connect a mini or micro A to A receptacle to the OTG socket.
2. Connect the USB peripheral device (such as a thumb disk) to the A receptacle.
3. The connected peripheral gets enumerated and starts functioning. For example, if an USB thumb disk is
connected, a new disk is accessible on the CE system.
Expected Result:
Peripheral should start functioning on the CE system.

Switch between host and
peripheral

Repeat the last 2 steps
Expected Result:
System always functions OK as both host and peripheral.

Table 25-6. Hardware Requirements

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-21

(a) High Speed OTG Port Full OTG Function

(b) High Speed OTG Port Pure Client Function

(c) High Speed OTG Port Pure Host Function

The selection of (a) implicitly selects (b) and (c), without selecting (a), (b) and (c) separately. So there are
3 possible configurations available for BSP users:

(1) All 3 catalogs are explicitly or implicitly selected, corresponding to both host and peripheral support
plus OTG pin detection.

(2) Only High Speed OTG Port Pure Client Function is selected, corresponding to peripheral-only
support.

(3) Only High Speed OTG Port Pure Host Function is selected, corresponding to host-only support.

25.5.5 USB OTG Registry Settings
3 possible configurations available in Section 25.5.4, “USB OTG Catalog Settings,” forms 3
corresponding registry structure.

25.5.5.1 Registry Structure
• With configuration 1, for full OTG configuration, the generated registry has the following

structure:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbOtg]
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbOtg\USBFN]
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbOtg\Hcd]

• With configuration 2, for full peripheral-only configuration, the generated registry has the
following structure:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UFN]

• With configuration 3, for full host-only configuration, the generated registry has the following
structure:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\HCD_HSOTG]

The contents in BuiltIn\USBOtg\UsbFN are similar to those in BuiltIn\UFN and the contents in
BuiltIn\UsbOtg\Hcd are similar to those in BuiltIn\HCD_HSOTG. Most of the settings are common
between the both. The differences are as follows:

In configuration 1, only UsbOtg key is located under BuiltIn key, which means the OTG driver is
automatically loaded by the OS. In this case, the OTG driver decides to load the peripheral driver and the
host driver.

In configuration 2 and 3, UFN or HCD_HSOTG is put directly under BuiltIn key. So the peripheral driver
or host driver is loaded automatically by the OS.

25.5.5.2 Registry Key Settings

This section explains about the registry key settings.

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-22 Freescale Semiconductor

25.5.5.2.1 OTG Driver Settings

Table 25-8 lists the USB OTG transceiver registry settings.

25.5.5.2.2 Peripheral Driver Settings

Table 25-9 lists the USB OTG client registry settings.

25.5.5.2.3 Host Driver Settings

Table 25-10 lists the default values for the host driver settings.

Table 25-8. USB OTG Transceiver Registry Settings

Value Type Content Description

Dll sz fsl_usbotg.dll Driver dynamic link library

IsrDll sz

DynamicClientLoad dword 3 The value is set to 0x3, indicating both host driver and peripheral driver are
loaded dynamically by the OTG driver.

Table 25-9. USB OTG Client Registry Settings

Value Type Content Description

Dll sz usbfn.dll Driver dynamic link library

OTGSupport dword 0 obsolete setting, must be set as 0

Priority256 dword 64 The reference peripheral driver IST priority

OTGGroup sz 1 This unique string (for example, 00 to 99) is used to combine or correlate instances of the host,
function, and transceiver driver within one USB OTG instance

Table 25-10. OTG Host Default Values

Value Type Content Description

Dll sz hcd_hsotg.dll Driver dynamic link library

OTGSupport dword 0 obsolete setting, must be set as 0

OTGGroup sz 01 This unique string (for example, 00 to 99) is used to combine or correlate
instances of the host, function, and transceiver driver within one USB OTG
instance.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword NA This value represents the number of bytes allocated for the physical memory
pool of the OTG host driver, and defaults to 128 Kbyte. From this buffer, 75%
is allocated for transfer descriptors and the remaining buffer is available for
allocation to simultaneous transfers. In most cases, only one transfer is active
at any time (for example, in the Mass Storage Class). A good value is at least
3x as large as the largest data buffer transferred using IssueTransfer().
The BSP does not provide this setting and the driver uses the default 128 Kbyte
size.

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-23

25.5.6 Power Management
The USB OTG driver enters the low power mode in the following cases:

• No bus activity for a specified period of time
• System enters the suspend state

Similar procedures are followed to let the USB module to enter or exit low power mode in either of the 2
cases. The following section explains about the description on the general power management procedures.

25.5.6.1 PowerUp

Each of the OTG client, host and transceiver drivers have PowerUp routine associated. (For the host driver,
this is referenced by the MDD to a function PowerMgmtCallback()).

For the host, the routine does the following:
• Ungate the USB peripheral block clock
• Force the port to resume and clear PHCD bit in the portsc register
• Reset and configure USB host controller
• Disable the wake-up conditions
• Set the PHY to normal work mode using SetPHYPowerMgmt(FALSE) platform routine
• Enable the interrupts and start the USB controller

For the client, the routine does the following:
• Ungate the USB peripheral block clock
• Force the port to resume
• Disable the wake-up conditions
• Enable the interrupts and start the USB controller

For the transceiver driver, the PowerUp routine calls the relevant platform-specific callback routine,
pfnUSBPowerUp().

Under normal circumstances there is nothing to be done in this routine, since the OTG port is normally in
a suspended state within the transceiver mode. (It is only in transceiver mode when nothing is connected
to the port, and thus has already been automatically suspended).

25.5.6.2 PowerDown

As for the PowerUp routine, OTG client, host and transceiver drivers have PowerDown routine associated.
(For the host driver, this is referenced via the MDD to a function PowerMgmtCallback()).

For the host, the routine does the following:
• Verify the wake-up conditions using the BSPUsbCheckWakeUp() platform routine
• Stop the host controller
• Suspend the relevant port
• Set the PHY to low power mode using SetPHYPowerMgmt(TRUE) platform routine

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-24 Freescale Semiconductor

• Gate the USB peripheral block clock

For the client, the routine does the following:
• Stop the USB controller
• Clear any outstanding interrupts
• Enable appropriate wake-up condition
• Suspend the relevant port (suspends the PHY)
• Gate the USB peripheral block clock

For the transceiver driver, the PowerDown routine calls the relevant platform-specific callback routine,
pfnUSBPowerDown().

Under normal circumstances there is nothing to be done in this routine, since the transceiver remains in its
suspended state while nothing is connected to the port. Should any attachment have been made, the
transceiver wakes through its wake-up mechanism and launch the appropriate (client or host) driver.

25.5.6.3 Suspend/Resume Operations
• Mass Storage Host/Client—Device is mounted automatically, but any unfinished browse/copy is

terminated
• ActiveSync Client—Once browsing into the content of device. A system suspend/resume causes

device to not be mounted until unplug and plug cable again
• HID Host—Client is recognized again automatically

25.5.7 Function Drivers
The function drivers can be configured into the image using the Windows Embedded Compact 7 Platform
Builder catalog, and are located at:

Core OS > Windows Embedded Compact > Device Drivers > USB > USB Function > USB Function
Clients

The default function driver is launched when the USB device port is attached to a host. This default
function driver is selected by the registry key (the last instance of this value in reginit.ini applies):

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"=-; erase previous default
[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"="Mass_Storage_Class"

or
 "DefaultClientDriver"="RNDIS"

or
 "DefaultClientDriver"="Serial_Class"

Unless the BSP is configured with persistent registry storage, it only makes sense to configure a single
function driver into the image, and this one becomes default.

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-25

25.5.7.1 Mass Storage Function

The Mass Storage function exposes a local data store as a USB peripheral storage device. The device used
can be specified in registry. In platfrom.reg, the following template is provided:

PUBLIC\Common\OAK\Files\common.reg
"DeviceName"=-;
; "DeviceName"="ATA HARD DISK"
; "DeviceName"="SDMEMORY CARD"
; "DeviceName"="MMC CARD"
; "DeviceName"="USB HARD DISK"
; "DeviceName"="NAND FLASH"

Any item from this list can be specified to act as the mass storage medium. Uncomment the corresponding
line and rebuild the BSP to make that item active. If none of the items are specified explicitly, a pre-coded
priority is used to determine what active drive acts as mass storage medium. The priority is described as
the following:

ATA HARD DISK > SDMEMORY CARD (MMC CARD) > USB HARD DISK > NAND FLASH

platform.reg can also over-ride other USBMSFN related default settings. This allows customizing the
following values which must be properly configured for a commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Mass_Storage_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:FFFF
 "Product"="Generic Mass Storage (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

25.5.7.2 Serial Function

The primary use for the serial function is ActiveSync.

Table 25-11. Mass Storage Function

Driver Attribute Definition

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBFN\CLASS

CSP Static Library N/A

Platform Driver Path N/A

Import Library USBMSFN_LIB_<Common SOC>.lib
UFNCLIENTLIB.LIB

Driver DLL usbmsfn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Mass Storage

SYSGEN Dependency SYSGEN_USBFN_STORAGE

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-26 Freescale Semiconductor

NOTE
ActiveSync has been tested using connection to a PC with ActiveSync
version 4.1 installed. See www.Microsoft.com to download the latest
ActiveSync software for the PC. In some cases, DEBUGCHK may be
triggered during attachment to ActiveSync in DEBUG builds.

When SYSGEN_USBFN_SERIAL is defined, the default registry entry is automatically included from:
PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Serial_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:00ce
 "Product"="Generic Serial (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

25.5.7.3 RNDIS Function

The RNDIS function allows communication over USB to be supplied to ethernet NDIS interface of
protocol stack.

Table 25-12. Serial Function

Driver Attribute Definition

CSP Driver Path N/A

PUBLIC driver path PUBLIC\Common\OAK\Drivers\USBFN\CLASS\SERIAL

CSP Static Library N/A

Platform Driver Path N/A

Export Library serialusbfn.lib

Import Library com_mdd2.lib
serpddcm.lib
ufnclientlib.lib

Driver DLL SerialUsbFn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Serial Client

SYSGEN Dependency SYSGEN_USBFN_SERIAL

Table 25-13. RNDIS Function

Driver Attribute Definition

CSP Driver Path N/A

CSP Static Library N/A

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-27

When SYSGEN_USBFN_ETHERNET is defined, the default registry entry is automatically included
from:

PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\RNDIS]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
"idVendor"=dword:045E
"Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
"idProduct"=dword:0301
"Product"="Generic RNDIS (PROTOTYPE--Remember to change idVendor)"
"bcdDevice"=dword:0

25.5.8 Class Drivers
All host ports support the same class drivers, and this configuration is common to all host ports. Class
drivers must also be configured for the USB host ports. Class driver configuration is common to all host
ports—there is no port-specific configuration to be completed on any class driver.

Table 25-14 shows the standard Microsoft-supplied drivers that are available by drag and drop from the
catalog.

Platform Driver Path N/A

PUBLIC Driver Path PUBLIC\COMMON\OAK\Drivers\USBFN\Class\RNDIS

Import Library ndis.lib

Driver DLL RNDISFN.DLL

Catalog Item Device Drivers > USB Function > USB Function Clients > RNDIS Client

SYSGEN Dependency SYSGEN_USBFN_ETHERNET

Table 25-14. Class Drivers

Class Driver Configuration Flag Catalog Item

HID SYSGEN_USB_HID Core OS > Windows CE devices > Core OS Services > USB Host
Support > USB Human Input Device (HID) Class Driver

Printer SYSGEN_USB_PRINTER .. > USB Printer Class Driver1

Keyboard SYSGEN_USB_HID_KEYBOARD .. > USB HID Keyboard Only1

SYSGEN_USB_HID_MOUSE .. > USB HID Mouse Only1

RNDIS SYSGEN_ETH_USB_HOST Core OS > Windows CE devices > Core OS Services > USB Host
Support > USB Remote NDIS Class Driver

Storage SYSGEN_USB_STORAGE Core OS > Windows CE devices > Core OS Services > USB Host
Support > USB Storage Class Driver

Table 25-13. RNDIS Function

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-28 Freescale Semiconductor

Drag and drop all the class drivers required for the USB Host class.

NOTE
When no USB host ports are configured in the image, ensure that no class
drivers are selected, otherwise host libraries are included by default from
logic in: PUBLIC\CEBASE\OAK\Misc\winceos.bat

25.5.8.1 HID Mouse

For mouse support, the cursor is required to test and use the mouse as shown in Table 25-15.

25.5.8.2 HID Keyboard

The system keyboard key mapping conflicts with that used for the HID keyboard. When USB keyboard
support is included, remove the System keyboard (Table 25-16) and include the appropriate stub keyboard
and keyboard .dll (Table 25-17)

Include stub keyboard:

Also, include the appropriate keyboard .dll. For example, define SYSGEN_KBD_US and add the
following lines in the platform.bib (immediately before the FILES section):

IF BSP_KEYBD_NOP
 kbdmouse.dll $(_FLATRELEASEDIR)\KbdnopUs.dll NK SH
ENDIF; BSP_KEYBD_NOP

25.6 Basic Elements for Driver Development
This section provides details of the basic elements for driver development in the Platform System.

1 See additional configuration in Section 25.6.2, “Dependencies of Drivers.”

Table 25-15. HID Mouse Class Driver

Catalog Item Configuration Flag Catalog Item

HID SYSGEN_CURSOR Core OS > Shell and User Interface > User Interface > Mouse

Table 25-16. HID Keyboard Driver to Remove

Remove Item Remove Catalog Item

 Keyboard Third Party > Freescale <Target Platform>: ARMV4I > Device Drivers > Input Devices > Keyboard/Mouse

Table 25-17. ID Keyboard Driver to Include

Catalog Item Configuration Flag Catalog Item

NOP Stub
Keyboard

BSP_KEYBD_NOP Device Drivers > Input Devices > Keyboard/Mouse > NOP (Stub)
Keyboard/Mouse English

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-29

25.6.1 BSP Environment Variables
Table 25-18 shows the system environment variables.

25.6.2 Dependencies of Drivers
Table 25-19 summarizes the Microsoft-defined environment variables used in the BSP.

25.7 Application Tools for USB
An application tool is provided for USB device class selection.

25.7.1 Application Tool for USB Device Class Select
There are three types of USB device classes: ActiveSync, MSC and RNDIS. An application with a GUI is
provided to switch between the three classes.

Table 25-18. System Environment Variables Summary

Name Definition

BSP_USB Set to configure USB in BSP

BSP_USB_HSOTG_CLIENT Set to include USB client functionality on High Speed OTG port

BSP_USB_HSOTG_HOST Set to include USB host functionality on High Speed OTG port.

Table 25-19. USB Driver

Name Definition

SYSGEN_USBFN_SERIAL Set to support serial class for USB Function controller

SYSGEN_USBFN_STORAGE Set to support mass storage class for USB Function controller

SYSGEN_USBFN_ETHERNET Set to support RNDIS class for USB Function controller

SYSGEN_CURSOR Set to support mouse cursor

SYSGEN_FATFS Set to support FAT16 file system

SYSGEN_STOREMGR Set to support storage manager

SYSGEN_UDFS Set to support Universal Disc File System

SYSGEN_USB Set to support USB driver

SYSGEN_USB_HID Set to support Human Interface driver (HID) class

SYSGEN_USB_HID_CLIENTS Set to support HID clients

SYSGEN_USB_HID_KEYBOARD Set to support HID keyboards (keyboard stub and associated .dll are required)

SYSGEN_USB_HID_MOUSE Set to support HID mouse

SYSGEN_USB_PRINTER Set to support Printer
(printer driver support, such as PCL (SYSGEN_PCL), may be required)

SYSGEN_USB_STORAGE Set to support storage medium

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-30 Freescale Semiconductor

Figure 25-3 shows the tool to switch the USB device class. Make sure the OTG port is operating under the
USB device mode (by connecting the mini-B connector of the USB OTG cable to the OTG port in the
board) before pressing the Apply button to switch USB device class.

Figure 25-3. USB Device Class Switch User Interface

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 25-31

Universal Serial Bus (USB) Driver

Windows Embedded Compact 7 BSP Reference Manual

25-32 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 26-1

Chapter 26
USB Boot and KITL
USB Boot and KITL are supported by implementing a RNDIS client device over USB on the target board.
This feature configures the USB OTG port as a USB device and implements the RNDIS USB function
driver. The USB RNDIS device acts as a normal ethernet device and connects to the PC over a USB cable.
Eboot and KITL then operate with the RNDIS ethernet device.

26.1 USB Boot and KITL Summary
Table 26-1 identifies the source code location, library dependencies, and other BSP information.

26.2 Supported Functionality
The USB Boot and KITL provides the following software and hardware support:

1. Image downloading over USB RNDIS
2. KITL over USB
3. Provides menu options to determine whether or not to enable USB Boot and/or USB KITL

26.3 Hardware Operation
For detailed operation and programming information of the USB OTG, see the chapter on the High-Speed
USBOTG_UTMI in the corresponding platform User’s Guide.

Table 26-1. USB Boot and KITL Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\MS\USBDBGRNDISMDD
..\PLATFORM\COMMON\SRC\COMMON\KITLDRV\USBDBG\USBDBGSERMDD

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBDBGRNDISPDD

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\COMMON\USBFN
..\PLATFORM\<Target Platform>\SRC\KITL

Driver DLL fsl_usbfn_rndiskitl.lib

SDK Library N/A

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variable N/A

USB Boot and KITL

Windows Embedded Compact 7 BSP Reference Manual

26-2 Freescale Semiconductor

26.3.1 Conflicts with Other Peripherals and Catalog Items
The USB Boot and KITL does not have conflicts with any other module. However, since USB KITL and
USB OTG drivers share the same USB OTG hardware, the USB OTG drivers should be disabled in the
catalog item when USB KITL is enabled. USB boot does not have such limitation.

26.4 Software Operation
This section explains about the software requirements for USB OTG.

26.4.1 Software Architecture
USB Boot and KITL are part of the EBOOT and KITL subsystem. A RNDIS client device is implemented
to support USB Boot and KITL. Figure 26-1 illustrates the USB Boot and KITL software architecture.

Figure 26-1. USB Boot and KITL Software Architecture Block Diagram

A RNDIS client MDD driver is implemented based on RNDIS client MDD driver provided by MSFT in
Windows Embedded Compact 7. The original MSFT’s code is in following location:
%_WINCEROOT%\PLATFORM\COMMON\SRC\COMMON\KITLDRV\USBDBG\USBDBGRNDISMDD

Also, a serial client MDD driver can be found here
%_WINCEROOT%\PLATFORM\COMMON\SRC\COMMON\KITLDRV\USBDBG\USBDBGSERMDD

26.4.2 Source Code Layout
Some files are modified or added to support USB Boot and KITL. They are as follows:

• RNDIS PDD driver
%_WINCEROOT%\Platform\COMMON\SRC\SOC\<Target SOC>\USBDBGRNDISPDD

• USB function controller shared with OS driver
%_WINCEROOT%\Platform\COMMON\SRC\SOC\<Target SOC>\USBD\COMMON

• Add RNDIS device to EBOOT ethernet initialization routines

USB Boot, KITL or other APP

MDD (RNDIS)

PDD
(Porting from USB Function Controller PDD Driver

USB OTG Hardware

USB Boot and KITL

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 26-3

%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\ether.c

• Setup KITL device LogicalLoc and PhysicalLoc to USBOTG physical address if USB KITL
option in EBOOT menu is selected by user
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\main.c

• Add USB Boot and KITL options into EBOOT menu
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\menu.c

• Add oal_usbdbgsermdd.lib, fsl_usbdbgrndismdd_$(_COMMONSOCDIR).lib,
fsl_usbdbgrndispdd_$(_SOCDIR).lib, usb_usbfn_eboot_$(_SOCDIR).lib to

%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\sources

• Add USB RNDIS KITL device in KITL initialization routines
%_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\kitl.c
%_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\sources

26.4.3 Power Management
Power management is not implemented in USB Boot and KITL.

26.4.4 Registry Settings
There are no related register settings for the USB Boot and KITL.

26.5 Unit Test
The following section explains how to perform unit tests.

26.5.1 Building the USB Boot and KITL
There is no special configuration options for building USB Boot and USB KITL. Building the BSP with
default configuration includes the USB Boot and KITL support. The exception is that the USB OTG
drivers should be deselected from the catalog item view before building the NK image to use USB KITL,
because USB KITL and OS USB drivers share the same USB OTG hardware and they can not exist
simultaneously. As a result USB KITL can not used to debug USB OTG drivers.

The USB OTG driver auto unloads when it detects USB KITL enabled.

26.5.2 Testing USB Boot and KITL
The steps to test USB Boot and KITL are as follows:

1. Connect the target board to a PC with a USB cable and power on the board.
2. At the EBOOT menu, change the boot configuration to match the following:

0) IP address: 192.168.0.2
1) Subnet Mask: 255.255.255.0
3) DHCP: Disabled
6) Set MAC Address : 0-12-34-56-78-12
I) KITL Work mode: Polling
K) KITL Enable Mode: Enable

USB Boot and KITL

Windows Embedded Compact 7 BSP Reference Manual

26-4 Freescale Semiconductor

P) KITL Passive Mode: Disable
E) Select Ether Device: USB RNDIS

3. Press d to download image over USB. If this is the first time running USB Boot or KITL with the
PC, the PC pops up a Found New Hardware Wizard dialog box and prompts the user to install the
driver for Microsoft Windows CE RNDIS virtual adapter on the Windows PC. The driver can be
found at:WINCE700\platform\common\src\common\kitldrv\usbdbg\usbdbgrndismdd\host. If
USB Serial is selected in option E, then no addtional driver need.

4. After the driver is installed successfully, the Microsoft Windows CE RNDIS virtual adapter should
be displayed in Network Connections on the PC. Configure this network connection properly. Use
a static IP address (such as 192.168.0.3) in the same subnet as the target board. If USB Serial is
selected in option E, then this step can be skip.

5. Check Platform Builder Target > Connectivity options to make sure the target device is selected.
The image should be able to be download EBOOT. If USB Serial is selected in option E, please
make sure the (auto)UsbSer is selected in Connectivity.

6. To test USB KITL, press r in the EBOOT menu to enable USB KITL. After the NK starts up, the
KITL operates over the USB.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 27-1

Chapter 27
UUT(Universal Updater Tool) Driver
The universal updater tool Driver provides the functionality of manufacturing tool (also called universal
updater tool) client driver.

27.1 Universal Updater Tool Driver Summary
The UUT driver is a part of manufacturing tool to provide image burning functionality in mass production
stage. Greatly different with typical BSP driver, UUT has no any dedicated hardware to drive. UUT is
more likely an application which uses a number of drivers like USB, SD or NAND driver. We call UUT a
driver just because it is packaged as a driver format and developed by BSP team.

UUT is so complicated and unique that we create an independent package to contain it. All the docs related
to UUT usage, structure and mechanism are listed in Mfgtool package which is released along with BSP
package.We only describe BSP related feature and resource here.

Table 27-1 provides a summary of source code location, library dependencies and other BSP information.

Note: Different with typical BSP driver, UUT need a unique project to do building work. One can find the
project in OSDesings\iMX53_ARD_UUT.

27.2 Supported Functionality
The UUT driver provides the following functionalities:

1. Supports imaging burning, including EBOOT and NK image.

Table 27-1. Flash Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\UUT

SOC Specific Path N\A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\UUT

Driver DLL uut.dll, UUTApp.exe

SDK Library N\A

Catalog Item N\A

SYSGEN Dependency N\A

BSP Environment Variables BSP_UUT=1

UUT(Universal Updater Tool) Driver

Windows Embedded Compact 7 BSP Reference Manual

27-2 Freescale Semiconductor

2. Supports both NAND flash and SD/MMC meida, Regarding the type of NAND flash UUT can
support, please refer to the dedicated driver part. In fact, UUT is an applicaiton which can invoke
NAND flash driver functions. That is to say, UUT can supports the NAND flash type which is
supported by NAND flash driver.

3. Supports file writing to specified media.
4. Supports OTP programming.

27.3 Hardware Operation
Please refer to <Manufacturing Tool Factory Operation manual.docx> in Mfgtool\Document.

27.4 Software Operation
Please refer to <MFG client driver guide.doc> in Mfgtool\Document.

27.5 Test operation
Please refer to <Manufacturing Tool User's Manual.doc> in Mfgtool\Document.

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 28-1

Chapter 28
Video Processing Unit (VPU)
The Video Processing Unit (VPU) is a multi-media video processing module. The multi-instance use case
is supported by VPU API. This chapter describes the following topics:

• Brief information of VPU DLL
• API provided by Freescale which allow complete access to the full functionality of the VPU
• VPU control scheme based on the API with some practical programming issues

This document is intended for application developers who use the VPU to implement a high performance
video codec and need to understand and gain access to the functionality provided by the VPU.

28.1 VPU Driver Summary
Table 28-1 provides a summary of source code location, library dependencies and other BSP information.

28.2 Supported Functionality
The VPU driver enables the hardware platform to provide the following software and hardware support:

1. All APIs defined by Freescale
2. Interrupt mode
3. Multi-task function provided by the hardware
4. Power management using chip stop mode to power down the VPU while system suspends

Table 28-1. VPU Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC MX53_FSL_V3

SOC Common Path N/A

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\VPU

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\VPU

Driver DLL vpu.dll

SDK Library vpusdk_<Target SOC>.lib

Catalog Item Third Party > BSP > Freescale <Target Platform> > Device Drivers > VPU > Video
Processing Unit Support

SYSGEN Dependency N/A

BSP Environment Variables BSP_VPU=1

Video Processing Unit (VPU)

Windows Embedded Compact 7 BSP Reference Manual

28-2 Freescale Semiconductor

5. Gates off VPU clock at any time when VPU is idle
6. Uses on chip RAM for performance-sensitive buffers, such as encode search RAM
7. Support decoding for:

— H.264 BP/MP/HP
— VC-1 SP/MP/AP
— MPEG-4 SP/ASP except GMC
— H.263 Base Profile
— MPEG-1/2 MP@HL
— MJPEG standards up to HD (1920×1080 or 2048×1024) resolution
— JPG up to 8192×8192

8. Support encoding for:
— H.264 up to BP@L3.0
— H.263 Version 2 Interactive and Streaming Wireless Profile Level 60
— MPEG4 up to SP@L5.0
— MJPEG Baseline profile

For detailed VPU features, refer to the i.MX5x VPU Application Programming Interface Windows
Embedded Compact 7 Reference Manual.

28.3 Hardware Operation
Refer to the chapter on Video Processing Unit (VPU) Chapter in the i.MX53 Applications Processor
Reference Manual for detailed hardware operation and programming information.

28.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

28.4 Software Operation

28.4.1 Communicating with the VPU
The VPU software is divided into two parts: the driver and the API static library. The VPU driver is
implemented as a stream interface driver and is thus accessed through the file system APIs. The static
library, VPUSDK_<Target SOC>.lib, that wraps the file system APIs to access the VPU driver, opens the
VPU driver to get a handle and calls the IOCTL codes to the driver to control the VPU hardware.
Applications can easily use the APIs from the static library to control the VPU hardware regardless of the
VPU stream interface driver.

28.4.2 Power Management
The VPU driver consumes power primarily through the VPU decode and encode operations. Even when
the VPU is idle, the internal BIT processor consumes power. When the system enters the suspend state,

Video Processing Unit (VPU)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 28-3

the VPU module is powered off to save power. To facilitate power management of the VPU module, the
VPU driver implements the power management I/O Control (IOCTL) codes, such as
IOCTL_POWER_CAPABILITIES, IOCTL_POWER_QUERY, IOCTL_POWER_GET and
IOCTL_POWER_SET.

28.4.3 Codecs Registry Settings
The following registry keys are required to properly load the decoder drivers:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\VPU]
 "Prefix"="VPU"
 "Dll"="vpu.dll"
 "Order"=dword:5

[HKEY_LOCAL_MACHINE\Drivers\VPU\Decoder]
 "UserDataBufferSize"=dword:10000

28.5 Unit Test
The VPU can be tested using a custom VPU test application.

28.5.1 Unit Test Hardware
Table 28-2 lists the required hardware to run the VPU application test.

28.5.2 Unit Test Software
Table 28-3 lists the required software to run the VPU application test.

28.5.3 Running the VPU Application Test

28.5.3.1 Decoding Test

The following items are needed to run the decoding test:
• Windows Embedded Compact 7 OS image with display plane support
• Windows Embedded Compact 7 Target Control and KITL support

Table 28-2. Hardware Requirements

Requirement Description

Display plane Need a display plane to show the video

Table 28-3. Software Requirements

Requirement Description

vpu.dll VPU stream interface driver

decdemo.exe Decoding the bitstream date file and displaying the decoded images on the LCD

encdemo.exe Encoding the YUV(4:2:0) file and saving the encoded stream to a file

Video Processing Unit (VPU)

Windows Embedded Compact 7 BSP Reference Manual

28-4 Freescale Semiconductor

• Bitstream data file

The procedure for the decoding test is as follows:
1. Change the dec.cfg configuration file according to the bitsteam format, image size to display,

frame rate and other parameters. Detailed information is in the readme.txt and dec.cfg files.
2. Run Windows Embedded Compact 7 Target Control Debugging command s decdemo.exe

[path]\dec.cfg.

The decoded image should be displayed on the display panel.

28.5.3.2 Encoding Test

The following items are needed to run the encoding test:
• Windows Embedded Compact 7 OS image with LCD support
• Windows Embedded Compact 7 Target Control and KITL support
• YUV(4:2:0) image to be encoded

The procedure for the encoding test is as follows:
1. Change the enc.cfg configuration file according to the bitsteam format, size of the YUV image,

frame rate and other parameters. Detailed information is in the readme.txt and enc.cfg files.
2. Run Windows Embedded Compact 7 Target Control Debugging command s encdemo.exe

[path]\nec.cfg.

The encoded stream should be saved to a file.

28.6 VPU Driver API Reference
The API functions are defined by Freescale and a third party IP vender. For details, refer to the i.MX5x
VPU Application Programming Interface Windows Embedded Compact 7 Reference Manual.

28.7 Sample Demo Application
This section describes how to build and run the custom VPU test application. The VPU decoding demo
application can be found in the following locations:
\WINCE700\SUPPORT\APP\VPU\DECTEST

The encoding demo application can be found under
\WINCE700\SUPPORT\APP\VPU\ENCTEST

The demo application provides an example of how to implement a video decoder or encoderusing the VPU
video acceleration hardware by calling the predefined API.

28.7.1 System Requirements
In order to build and run the VPU demo application, the following requirements must be met:

• The OS image must be built with the VPU driver from the Catalog

Video Processing Unit (VPU)

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 28-5

• The OS image must include SD Host Controller drivers or storage drivers, such as ATA, NAND,
SD from the Catalog to enable fast loading of test data

28.7.2 Building the OS Image and VPU Test Application

28.7.2.1 Building the OS Image

To build the image:
1. Include Third Party > BSPs > Freescale <Target Platform> > Device Drivers > Video

Processing Unit on Windows Embedded Compact 7
2. Optionally include Third Party > BSP > Freescale <Target Platform> > Device Drivers > SD

Host Controller (or Storage Drivers) on Windows Embedded Compact 7

28.7.2.2 Building and Running the Decoding Demo Application

To build and run the decoding demo application:
1. Click Build > Open Release Directory in Build Window on Windows Embedded Compact 7 to

open the command prompt.
2. Run command set wincerel=1 in command prompt window.
3. Change the current path to \WINCE700\SUPPORT\APP\VPU\DECTEST
4. Build the application with build -c command.
5. Run the VPU application from the Windows Embedded Compact 7 Target Control with the

command s dectest \release\dec.cfg (if the dec.cfg file is copied to \release directory). Make
sure the parameters set in the dec.cfg file are correct for the bitstream and hardware display. For
detailed information, refer to the readme.txt and dec.cfg files in
\WINCE700\SUPPORT\APP\VPU\DECTEST.

28.7.2.3 Building and Running the Encoding Demo Application

To build and run the encoding demo application:
1. Click Build > Open Release Directory in Build Window on Windows Embedded Compact 7 to

open the command prompt.
2. Run command set wincerel=1 in command prompt window.
3. Change the current path to \WINCE700\SUPPORT\APP\VPU\ENCTEST
4. Build the application with build -c command.
5. Run the VPU application from the Windows Embedded Compact 7 Target Control with the

command s enctest \release\enc.cfg (if enc.cfg file is copied to \release directory). Make sure
the parameters set in the enc.cfg file are correct for the bitstream and hardware display. For detailed
information, refer to the readme.txt and enc.cfg files in \WINCE700\SUPPORT\APP\VPU\ENCTEST.

Video Processing Unit (VPU)

Windows Embedded Compact 7 BSP Reference Manual

28-6 Freescale Semiconductor

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 29-1

Chapter 29
WLAN Driver
The WLAN driver is used to drive the AR6102 and AR6003 modules to implement Wi-Fi functionality.
The WLAN module exchanges data with the i.MX device.

NOTE
for AR6003, there are two kind of wifi adapter, a SDIO card and a miniPCIe
card.

29.1 WLAN Driver Summary
WLAN driver is provided in binary form instead of source codes. Table 29-1 provides a summary of the
source code location, library dependencies, and other BSP information.

Table 29-1. WLAN Client Driver Summary

Driver Attribute Definition

Target Platform iMX53_ARD

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\SDIO\WIFI\AR6102
..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V3\SDIO\WIFI\AR6003

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SDIO\WiFi\AR6102
..\PLATFORM\<Target Platform>\SRC\DRIVERS\SDIO\WiFi\AR6003

Import Library N/A

Driver DLL For AR6003: AR6003_NDIS_SDIO.dll
For AR6102: AR6102_NDIS_SDIO.dll, athsrvc.dll

Catalog Item Third Party > BSP -> Freescale <Target Platform>: ARMV7 > Device Drivers > WiFi > Atheros AR6003
(SDIO) Driver
Third Party > BSP -> Freescale <Target Platform>: ARMV7 > Device Drivers > WiFi > Atheros AR6102
(SDIO) Driver

SYSGEN Dependency SYSGEN_ETH_80211_NWIFI
SYSGEN_EAP
SYSGEN_AUTH_NTLM
SYSGEN_AUTH_SCHANNEL

BSP Environment
Variable BSP_AR6003_SDIO = 1

BSP_AR6102_SDIO = 1

WLAN Driver

Windows Embedded Compact 7 BSP Reference Manual

29-2 Freescale Semiconductor

The Recommended Catalog Items listed in Table 29-1 should be included in the OS design in order to
provide Wi-Fi functionality.

29.2 Supported Functionality
The Wi-Fi driver provides the following software and hardware support:
Drives wifi module in AR6102:

1. Supports scanning and connection to 802.11b/g AP
2. Supports WPA, WPA2, WEP, WAPI

Drives wifi module in AR6003:
1. Supports scanning and connection to 802.11a/b/g/n AP
2. Supports WPA, WPA2, WEP, WAPI

On Windows Embedded Compact 7, it supports:
1. 802.11 authentication
2. 802.1x authentication
3. Automatic configuration
4. Native 802.11
5. Wi-Fi Protected Access
6. Extensible Authentication Protocol
7. Wired Equivalent Privacy
8. Roaming

29.3 Hardware Operation
The Wi-Fi client driver exchanges data and commands between the SD stack and the Wi-Fi hardware
through SDIO port, so does the miniPCIe card.

29.3.1 Conflicts with Other Peripherals
No Conflicts with other peripherals. But these wifi adapters will conflict with each other, which is caused
by the client driver provided by vendor. So make sure only one type of supported wifi adapters is enabled
on the system.

29.4 Software Operation

29.4.1 Wi-Fi Registry Setting
The following registry keys are required to properly load and configure WLAN driver

For AR6003:
[HKEY_LOCAL_MACHINE\Comm\AR6K_SD]

WLAN Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 29-3

 "DisplayName"="AR6003 WLAN Adapter SD"
 "Group"="NDIS"
 "ImagePath"="AR6003_NDIS_SDIO.dll"

[HKEY_LOCAL_MACHINE\Comm\AR6K_SD\Linkage]
 "Route"=multi_sz:"AR6K_SD1"

[HKEY_LOCAL_MACHINE\Comm\AR6K_SD1]
 "DisplayName"="AR6003 WLAN Adapter SD"
 "Group"="NDIS"
 "ImagePath"="AR6003_NDIS_SDIO.dll"
 "Wireless"=dword:1

[HKEY_LOCAL_MACHINE\Comm\AR6K_SD1\Parms]
 "*PhysicalMediaType"=dword:00000009
 "*MediaType"=dword:00000010
 "*IfType"=dword:00000047
 "binRoot"="\\Release"
 "clkFreq"=dword:18CBA80
 "nodeAge"=dword:1D4C0
 "enableUARTprint"=dword:1
 "tcmd"=dword:0
 "bkScanEnable"=dword:1
 "powerSaveMode"=dword:2

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-0200-FUNC-1]
 "Dll"="AR6003_NDIS_SDIO.dll"
 "Prefix"="DRG"

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-0201-FUNC-1]
 "Dll"="AR6003_NDIS_SDIO.dll"
 "Prefix"="DRG"

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-0300-FUNC-1]
 "Dll"="AR6003_NDIS_SDIO.dll"
 "Prefix"="DRG"

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-0301-FUNC-1]
 "Dll"="AR6003_NDIS_SDIO.dll"
 "Prefix"="DRG"

For AR6102:
[HKEY_LOCAL_MACHINE\Comm\AR6K_SD]
 "DisplayName"="AR6000 WLAN Adapter SD"
 "Group"="NDIS"
 "ImagePath"="ar6k_ndis_sdio.dll"
 "Wireless"=dword:1

[HKEY_LOCAL_MACHINE\Comm\AR6K_SD\Linkage]
 "Route"=multi_sz:"AR6K_SD1"

[HKEY_LOCAL_MACHINE\Comm\AR6K_SD1]
 "DisplayName"="AR6000 WLAN Adapter SD"
 "Group"="NDIS"
 "ImagePath"="ar6k_ndis_sdio.dll"
 "Wireless"=dword:1

WLAN Driver

Windows Embedded Compact 7 BSP Reference Manual

29-4 Freescale Semiconductor

[HKEY_LOCAL_MACHINE\Comm\AR6K_SD1\Parms]
 "BtCoexAntConfig"=dword:0
 "eepromFile"="calData_15dBm.bin"

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-0108-FUNC-1]
 "Dll"="ar6k_ndis_sdio.dll"
 "Prefix"="DRG"

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-0109-FUNC-1]
 "Dll"="ar6k_ndis_sdio.dll"
 "Prefix"="DRG"

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-010a-FUNC-1]
 "Dll"="ar6k_ndis_sdio.dll"
 "Prefix"="DRG"

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-010b-FUNC-1]
 "Dll"="ar6k_ndis_sdio.dll"
 "Prefix"="DRG"

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-0201-FUNC-1]
 "Dll"="ar6k_ndis_sdio.dll"
 "Prefix"="DRG"

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-0271-CARDID-0200-FUNC-1]
 "Dll"="ar6k_ndis_sdio.dll"
 "Prefix"="DRG"

[HKEY_LOCAL_MACHINE\Services\ATHSRVC]
 "FriendlyName"="AthSrvc"
 "Dll"="ATHSRVC.Dll"
 "Order"=dword:10
 "Keep"=dword:1
 "Prefix"="ATH"
 "Index"=dword:0
 "appId"=dword:1

29.5 Unit Test
WLAN test includes manual WLAN connection without protection.

29.5.1 Running CTK Test: WiFi Authentication Tests
The Wi-Fi Authentication tests run a variety of authentication and encryption methods to validate Wi-Fi
functionality for a device, as shown in the table that follows.

WLAN Driver

Windows Embedded Compact 7 BSP Reference Manual

Freescale Semiconductor 29-5

29.5.2 Test the WLAN Communication without Protection
This test covers the practical functionality of the Wireless LAN driver to connect to any public wireless
network for internet access. For this test, it is required to have a test board and any wireless access point
(maybe a wireless router) without any protection to the Internet access. The test is considered passed if the
user can access http://www.google.com and view its contents. To run the test:

1. Turn on the board
2. If Wireless driver can be successfully loaded, a dialog window listing the available wireless

networks will be shown.
3. Select the wireless network without protection that you can use to navigate through the Internet
4. Open Internet Explorer from the desktop icon
5. Navigate through the Internet to http://www.google.com

Table 29-2. Authentication methods

Authentication method Description

Opened All associations are accepted.

Shared All associations are accepted, but the clinet must use WEP
encryption.

WPA Wi-Fi Protected Access. Requires EAP authentication.

WPA-PSK WPA with a pre-shared key (PSK).

WPA2 Wi-Fi Protected Access 2. Requires EAP authentication.

WPA2-PSK WPA2 with PSK.

http://www.google.com
http://www.google.com

	i.MX53 ARD Windows Embedded Compact 7
	About This Book
	Audience
	Suggested Reading
	Conventions
	Definitions, Acronyms, and Abbreviations
	Table i. Acronyms and Abbreviated Terms

	Chapter 1 Introduction
	1.1 Getting Started
	1.2 Windows Embedded Compact 7 Architecture

	Chapter 2 Asynchronous Sample Rate Converter (ASRC) Driver
	2.1 ASRC Driver Summary
	2.2 Supported Functionality
	2.3 Hardware Operation
	2.4 Software Operation
	2.5 Unit Test
	2.6 ASRC Driver API Reference

	Chapter 3 ATA/ATAPI Driver
	3.1 ATA/ATAPI Driver Summary
	3.2 Supported Functionality
	3.3 Hardware Operation
	3.4 Software Operation
	3.5 Unit Test
	3.6 Basic Elements for Driver Development
	3.7 Block Device API Reference

	Chapter 4 Backlight Driver
	4.1 Backlight Driver Summary
	4.2 Supported Functionality
	4.3 Hardware Operation
	4.4 Software Operation
	4.5 Unit Test
	4.6 Backlight API Reference

	Chapter 5 Battery Driver
	5.1 Battery Driver Summary
	5.2 Supported Functionality
	5.3 Hardware Operation
	5.4 Software Operation
	5.5 Unit Test
	5.6 Battery API Reference

	Chapter 6 Boot from Secure Digital/MultiMedia Card (SD/MMC)
	6.1 Boot from SD/MMC Summary
	6.2 Supported Functionality
	6.3 Hardware Operation
	6.4 Software Operation

	Chapter 7 Camera Driver for IPUv3
	7.1 Camera Driver Summary
	7.2 Supported Functionality
	7.3 Hardware Operation
	7.4 Software Operation
	7.5 Power Management
	7.6 Unit Test
	7.7 Camera Driver API Reference

	Chapter 8 Controller Area Network (CAN) Driver
	8.1 CAN Driver Summary
	8.2 Supported Functionality
	8.3 Hardware Operation
	8.4 Software Operation
	8.5 Unit Test

	Chapter 9 Chip Support Package Driver Development Kit (CSPDDK)
	9.1 CSPDDK Driver Summary
	9.2 Supported Functionality
	9.3 Hardware Operation
	9.4 Software Operation
	9.5 Unit Test
	9.6 CSPDDK DLL Reference

	Chapter 10 Display Driver for IPUv3
	10.1 Display Driver Summary
	10.2 Supported Functionality
	10.3 Hardware Operation
	10.4 Software Operation
	10.5 Unit Test
	10.6 Display Driver API Reference

	Chapter 11 Dynamic Voltage and Frequency Control (DVFC) Driver
	11.1 DVFC Driver Summary
	11.2 Supported Functionality
	11.3 Hardware Operation
	11.4 Software Operation
	11.5 Unit Test

	Chapter 12 Enhanced Configurable Serial Peripheral Interface (eCSPI) Driver
	12.1 eCSPI Driver Summary
	12.2 Supported Functionality
	12.3 Software Operation
	12.4 Unit Test
	12.5 eCSPI Driver API Reference

	Chapter 13 Enhanced Secure Digital Host Controller (eSDHC) Driver
	13.1 eSDHC Driver Summary
	13.2 Supported Functionality
	13.3 Hardware Operation
	13.4 Software Operation
	13.5 Unit Test
	13.6 Secure Digital Card Driver API Reference

	Chapter 14 Enhanced Serial Audio Interface (ESAI) Driver
	14.1 ESAI Driver Summary
	14.2 Supported Functionality
	14.3 Hardware Operation
	14.4 Software Operation
	14.5 Unit Test

	Chapter 15 Global Positioning System (GPS) Driver
	15.1 GPS Driver Summary
	15.2 Supported Functionality
	15.3 Hardware Operation
	15.4 Software Operation
	15.5 Unit Test

	Chapter 16 Graphics Processing Unit (GPU)
	16.1 GPU Driver Summary
	16.2 Supported Functionality
	16.3 Hardware Operation
	16.4 Software Operation
	16.5 Unit Test
	16.6 GPU Driver API Reference

	Chapter 17 Inter-Integrated Circuit (I2C) Driver
	17.1 I2C Driver Summary
	17.2 Supported Functionality
	17.3 Hardware Operation
	17.4 Software Operation
	17.5 Unit Test
	17.6 I2C Driver API Reference

	Chapter 18 IIM(IC Identification Module) Driver
	18.1 IIM Driver Summary
	18.2 Supported Functionality
	18.3 Hardware Operation
	18.4 Software Operation
	18.5 Unit Test

	Chapter 19 NAND Flash Driver
	19.1 NAND Flash Driver Summary
	19.2 Supported Functionality
	19.3 Hardware Operation
	19.4 Software Operation
	19.5 Power Management
	19.6 Unit Test

	Chapter 20 Power Management IC (PMIC)
	20.1 PMIC Summary
	20.2 Supported Functionality
	20.3 Hardware Operation
	20.4 Software Operation
	20.5 Unit Test

	Chapter 21 Serial Driver
	21.1 Serial Driver Summary
	21.2 Hardware Operation
	21.3 Software Operation
	21.4 Unit Test
	21.5 Serial Driver API Reference

	Chapter 22 Sony/Philips Digital Interface (SPDIF) Driver
	22.1 SPDIF Driver Summary
	22.2 Supported Functionality
	22.3 Software Operation
	22.4 Power Management
	22.5 Unit Test
	22.6 System Testing
	22.7 SPDIF Driver API Reference

	Chapter 23 Touch Panel Driver
	23.1 Touch Panel Driver Summary
	23.2 Supported Functionality
	23.3 Hardware Operations
	23.4 Software Operations
	23.5 Unit Tests
	23.6 Touch Panel API Reference

	Chapter 24 Temperature Sensor Driver
	24.1 Temperature Sensor Driver Summary
	24.2 Supported Functionality
	24.3 Hardware Operation
	24.4 Software Operation
	24.5 Unit Test
	24.6 Basic Elements for Driver Development
	24.7 Device API Reference

	Chapter 25 Universal Serial Bus (USB) Driver
	25.1 USB OTG Driver Summary
	25.2 USB Host Driver Summary
	25.3 Supported Functionality
	25.4 Hardware Operation
	25.5 Software Operation
	25.6 Basic Elements for Driver Development
	25.7 Application Tools for USB

	Chapter 26 USB Boot and KITL
	26.1 USB Boot and KITL Summary
	26.2 Supported Functionality
	26.3 Hardware Operation
	26.4 Software Operation
	26.5 Unit Test

	Chapter 27 UUT(Universal Updater Tool) Driver
	27.1 Universal Updater Tool Driver Summary
	27.2 Supported Functionality
	27.3 Hardware Operation
	27.4 Software Operation
	27.5 Test operation

	Chapter 28 Video Processing Unit (VPU)
	28.1 VPU Driver Summary
	28.2 Supported Functionality
	28.3 Hardware Operation
	28.4 Software Operation
	28.5 Unit Test
	28.6 VPU Driver API Reference
	28.7 Sample Demo Application

	Chapter 29 WLAN Driver
	29.1 WLAN Driver Summary
	29.2 Supported Functionality
	29.3 Hardware Operation
	29.4 Software Operation
	29.5 Unit Test

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

