
GMCLIB User's Guide
ARM® Cortex® M7F

NXP Semiconductors Document identifier: CM7FGMCLIBUG
User Guide Rev. 5, 01 November 2021

Contents
Chapter 1 Library... 5

1.1 Introduction..5
1.1.1 Overview... 5
1.1.2 Data types... 5
1.1.3 API definition... 5
1.1.4 Supported compilers... 6
1.1.5 Library configuration..6
1.1.6 Special issues... 6

1.2 Library integration into project (MCUXpresso IDE) .. 7
1.3 Library integration into project (Keil µVision) ..10
1.4 Library integration into project (IAR Embedded Workbench) ... 18

Chapter 2 Algorithms in detail..24
2.1 GMCLIB_Clark...24

2.1.1 Available versions... 24
2.1.2 Declaration.. 24
2.1.3 Function use..24

2.2 GMCLIB_ClarkInv..25
2.2.1 Available versions... 26
2.2.2 Declaration.. 26
2.2.3 Function use..26

2.3 GMCLIB_Park..27
2.3.1 Available versions... 27
2.3.2 Declaration.. 28
2.3.3 Function use..28

2.4 GMCLIB_ParkInv...29
2.4.1 Available versions... 29
2.4.2 Declaration.. 30
2.4.3 Function use..30

2.5 GMCLIB_DecouplingPMSM.. 31
2.5.1 Available versions... 33
2.5.2 GMCLIB_DECOUPLINGPMSM_T_A32 type description..34
2.5.3 GMCLIB_DECOUPLINGPMSM_T_FLT type description..34
2.5.4 Declaration.. 34
2.5.5 Function use..34

2.6 GMCLIB_DTCompLut1D...36
2.6.1 Available versions... 38
2.6.2 GMCLIB_DTCOMPLUT1D_T_F16 type description... 39
2.6.3 Declaration.. 39
2.6.4 Function use..39

2.7 GMCLIB_ElimDcBusRipFOC.. 40
2.7.1 Available versions... 42
2.7.2 Declaration.. 43
2.7.3 Function use..43

2.8 GMCLIB_ElimDcBusRip..44
2.8.1 Available versions... 46
2.8.2 Declaration.. 47
2.8.3 Function use..47

2.9 GMCLIB_SvmStdShifted... 48
2.9.1 Available versions... 51

NXP Semiconductors

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 2 / 98

2.9.1.1 GMCLIB_SVMSTDSHIFTED_T_F16 type description...52
2.9.2 GMCLIB_ADC_CONFIG_T_F16 type description... 52
2.9.3 GMCLIB_PWM_CONFIG_T_F16 type description..52
2.9.4 GMCLIB_PHASE_INDEX_T type description... 53
2.9.5 Declaration.. 53
2.9.6 Function use..53

2.10 GMCLIB_SvmStd.. 54
2.10.1 Available versions... 65
2.10.2 Declaration.. 65
2.10.3 Function use..66

2.11 GMCLIB_SvmIct..66
2.11.1 Available versions... 68
2.11.2 Declaration.. 68
2.11.3 Function use..68

2.12 GMCLIB_SvmU0n... 69
2.12.1 Available versions... 70
2.12.2 Declaration.. 71
2.12.3 Function use..71

2.13 GMCLIB_SvmU7n... 71
2.13.1 Available versions... 73
2.13.2 Declaration.. 73
2.13.3 Function use..74

2.14 GMCLIB_SvmDpwm..74
2.14.1 Available versions... 75
2.14.2 Declaration.. 76
2.14.3 Function use..76

2.15 GMCLIB_SvmExDpwm... 76
2.15.1 Available versions... 78
2.15.2 Declaration.. 78
2.15.3 Function use..78

Appendix A Library types... 80
A.1 bool_t...80
A.2 uint8_t..80
A.3 uint16_t..81
A.4 uint32_t..82
A.5 int8_t..82
A.6 int16_t..83
A.7 int32_t..83
A.8 frac8_t... 84
A.9 frac16_t... 85
A.10 frac32_t... 85
A.11 acc16_t..86
A.12 acc32_t..87
A.13 float_t...87
A.14 GMCLIB_3COOR_T_F16..90
A.15 GMCLIB_3COOR_T_FLT..90
A.16 GMCLIB_2COOR_AB_T_F16... 91
A.17 GMCLIB_2COOR_AB_T_F32... 91
A.18 GMCLIB_2COOR_AB_T_FLT...92
A.19 GMCLIB_2COOR_ALBE_T_F16...92
A.20 GMCLIB_2COOR_ALBE_T_FLT...92

NXP Semiconductors
Contents

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 3 / 98

A.21 GMCLIB_2COOR_DQ_T_F16...93
A.22 GMCLIB_2COOR_DQ_T_F32...93
A.23 GMCLIB_2COOR_DQ_T_FLT.. 93
A.24 GMCLIB_2COOR_SINCOS_T_F16.. 94
A.25 GMCLIB_2COOR_SINCOS_T_FLT..94
A.26 FALSE...95
A.27 TRUE.. 95
A.28 FRAC8.. 95
A.29 FRAC16.. 96
A.30 FRAC32.. 96
A.31 ACC16...96
A.32 ACC32...97

NXP Semiconductors
Contents

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 4 / 98

Chapter 1
Library
1.1 Introduction

1.1.1 Overview
This user's guide describes the General Motor Control Library (GMCLIB) for the family of ARM Cortex M7F core-based
microcontrollers. This library contains optimized functions.

1.1.2 Data types
GMCLIB supports several data types: (un)signed integer, fractional , and accumulator, and floating point. The integer data types
are useful for general-purpose computation; they are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The accumulator data type is a combination of
both; that means it has the integer and fractional portions. The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The exponent allows scaling the numbers from
extremely small to extremely big numbers. Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

• Unsigned 16-bit integer—<0 ; 65535> with the minimum resolution of 1

• Signed 16-bit integer—<-32768 ; 32767> with the minimum resolution of 1

• Unsigned 32-bit integer—<0 ; 4294967295> with the minimum resolution of 1

• Signed 32-bit integer—<-2147483648 ; 2147483647> with the minimum resolution of 1

The following list shows the fractional types defined in the libraries:

• Fixed-point 16-bit fractional—<-1 ; 1 - 2-15> with the minimum resolution of 2-15

• Fixed-point 32-bit fractional—<-1 ; 1 - 2-31> with the minimum resolution of 2-31

The following list shows the accumulator types defined in the libraries:

• Fixed-point 16-bit accumulator—<-256.0 ; 256.0 - 2-7> with the minimum resolution of 2-7

• Fixed-point 32-bit accumulator—<-65536.0 ; 65536.0 - 2-15> with the minimum resolution of 2-15

The following list shows the floating-point types defined in the libraries:

• Floating point 32-bit single precision—<-3.40282 · 1038 ; 3.40282 · 1038> with the minimum resolution of 2-23

1.1.3 API definition
GMCLIB uses the types mentioned in the previous section. To enable simple usage of the algorithms, their names use set prefixes
and postfixes to distinguish the functions' versions. See the following example:

f32Result = MLIB_Mac_F32lss(f32Accum, f16Mult1, f16Mult2);

where the function is compiled from four parts:

• MLIB—this is the library prefix

• Mac—the function name—Multiply-Accumulate

• F32—the function output type

NXP Semiconductors

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 5 / 98

• lss—the types of the function inputs; if all the inputs have the same type as the output, the inputs are
not marked

The input and output types are described in the following table:

Table 1. Input/output types

Type Output Input

frac16_t F16 s

frac32_t F32 l

acc32_t A32 a

float_t FLT f

1.1.4 Supported compilers
GMCLIB for the ARM Cortex M7F core is written in C language or assembly language with C-callable interface depending on the
specific function. The library is built and tested using the following compilers:

• MCUXpresso IDE

• IAR Embedded Workbench

• Keil µVision

For the MCUXpresso IDE, the library is delivered in the gmclib.a file.

For the Kinetis Design Studio, the library is delivered in the gmclib.a file.

For the IAR Embedded Workbench, the library is delivered in the gmclib.a file.

For the Keil µVision, the library is delivered in the gmclib.lib file.

The interfaces to the algorithms included in this library are combined into a single public interface include file, gmclib.h. This is
done to lower the number of files required to be included in your application.

1.1.5 Library configuration
GMCLIB for the ARM Cortex M7F core is written in C language or assembly language with C-callable interface depending on the
specific function. Some functions from this library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It can cause an issue especially when high
optimization level is set. Therefore the optimization level for all inline assembly written functions is defined by compiler pragmas
using macros. The configuration header file RTCESL_cfg.h is located in: specific library folder\MLIB\Include. The optimization
level can be changed by modifying the macro value for specific compiler. In case of any change the library functionality is
not guaranteed.

Similarly as optimization level the High-speed functions execution suppport can be enable by defined symbol
RAM_RELOCATION in project setting described in the High-speed functions execution suppport cheaper for specific compiler.

1.1.6 Special issues
1. The equations describing the algorithms are symbolic. If there is positive 1, the number is the closest number to 1 that

the resolution of the used fractional type allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest (half up).

3. This RTCESL requires the DSP extension for some saturation functions. If the core does not support the DSP extension
feature the assembler code of the RTCESL will not be buildable. For example the core1 of the LPC55s69 has no DSP
extension.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 6 / 98

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB into any MCUXpresso SDK example or
new SDK project using MCUXpresso IDE. The SDK based project uses RTCESL from SDK package.

High-speed functions execution suppport

Some RT (or other) platforms contain high-speed functions execution support by relocating all functions from the default Flash
memory location to the RAM location for much faster code access. The feature is important especially for devices with a slow Flash
interface. This section shows how to turn the RAM optimization feature support on and off.

1. In the MCUXpresso SDK project name node or on the left-hand side, click Properties or select Project > Properties from
the menu. A project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See Figure 1.

3. On the right-hand side, under the MCU C Compiler node, click the Preprocessor node. See Figure 1 .

Figure 1. Defined symbols

4. On the right-hand side of the dialog, click the Add... icon located next to the Defined symbols (-D) title.

5. In the dialog that appears (see Figure 2), type the following:

• RAM_RELOCATION — to turn the RAM optimization feature support on

If the define is defined, all RTCEL functions are put to the RAM.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 7 / 98

Figure 2. Symbol definition

6. Click OK in the dialog.

7. Click OK in the main dialog.

The RAM_RELOCATION macro places the__RAMFUNC(RAM) atribute in front of each function declaration.

Adding RTCESL component to project

The MCUXpresso SDK package is necessary to add any example or new project and RTCESL component. In case the
package has not been downloaded go to mcuxpresso.nxp.com, build the final MCUXpresso SDK package for required board and
download it.

After package is dowloaded, open the MCUXpresso IDE and drag&drop the SDK package in zip format to the Installed SDK
window of the MCUXpresso IDE. After SDK package is dropped the mesage accepting window appears as can be show in
following figure.

Figure 3. MCUXpresso IDE - imporing the SDK package to MCUXpresso IDE

Click OK to confirm the SDK package import. Find the Quickstart panel in left bottom part of the MCUXpresso IDE and click New
project... item or Import SDK example(s)... to add rtcesl component to the project.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 8 / 98

Figure 4. MCUXpresso IDE - create new project or Import SDK example(s)

Then select your board, and clik Next button.

Figure 5. MCUXpresso IDE - selecting the board

Find the Middleware tab in the Components part of the window and click on the checkbox to be the rtcesl component ticked. Last
step is to click the Finish button and wait for project creating with all RTCESL libraries and include paths.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 9 / 98

Figure 6. MCUXpresso IDE - selecting rtcesl component

Type the #include syntax into the code where you want to call the library functions. In the left-hand dialog, open the required .c
file. After the file opens, include the following lines into the #include section:

#include "mlib_FP.h"
#include "gflib_FP.h"
#include "gmclib_FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Keil µVision)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB into an empty project or any
MCUXpresso SDK example or demo application projects using Keil µVision. This example uses the default installation path
(C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL). If you have a different installation path, use that path instead. If any MCUXpresso
SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter otherwise read
next chapter.

NXP pack installation for new project (without MCUXpresso SDK)

This example uses the NXP MKV58F1M0xxx22 part, and the default installation path
(C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL) is supposed. If the compiler has never been used to create any NXP MCU-based
projects before, check whether the NXP MCU pack for the particular device is installed. Follow these steps:

1. Launch Keil µVision.

2. In the main menu, go to Project > Manage > Pack Installer….

3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale (NXP) node.

4. Look for a line called "KVxx Series" and click it.

5. In the right-hand dialog (under the Packs tab), expand the Device Specific node.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 10 / 98

6. Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update options, click the button to install/
update the package. See Figure 7.

7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

Figure 7. Pack Installer

New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and is opened, skip to the next section. Follow
these steps to create a new project:

1. Launch Keil µVision.

2. In the main menu, select Project > New µVision Project…, and the Create New Project dialog appears.

3. Navigate to the folder where you want to create the project, for example C:\KeilProjects\MyProject01. Type the name of the
project, for example MyProject01. Click Save. See Figure 8.

Figure 8. Create New Project dialog

4. In the next dialog, select the Software Packs in the very first box.

5. Type '' into the Search box, so that the device list is reduced to the devices.

6. Expand the node.

7. Click the MKV58F1M0xxx22 node, and then click OK. See Figure 9.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 11 / 98

Figure 9. Select Device dialog

8. In the next dialog, expand the Device node, and tick the box next to the Startup node. See Figure 10.

9. Expand the CMSIS node, and tick the box next to the CORE node.

Figure 10. Manage Run-Time Environment dialog

10. Click OK, and a new project is created. The new project is now visible in the left-hand part of Keil µVision. See Figure 11.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 12 / 98

Figure 11. Project

11. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog appears.

12. Select the Target tab.

13. Select Use Single Precision in the Floating Point Hardware option. See Figure 11.

Figure 12. FPU

High-speed functions execution support

Some RT (or other) platforms contain high-speed functions execution support by relocating all functions from the default Flash
memory location to the RAM location for much faster code access. The feature is important especially for devices with a slow Flash
interface. This section shows how to turn the RAM optimization feature support on and off.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog appears.

2. Select the C/C++ tab. See #unique_19.

3. In the Include Preprocessor Symbols text box, type the following:

• RAM_RELOCATION — to turn the RAM optimization feature support on

If the define is defined, all RTCEL functions are put to the RAM.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 13 / 98

Figure 13. Preprocessor symbols

4. Click OK in the main dialog.

The RAM_RELOCATION macro places the__attribute__ ((section ("ram"))) atribute in front of each function declaration.

Linking the files into the project

GMCLIB requires MLIB and GFLIB to be included too. The following steps show how to include all dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add Group… from the menu. A new group
with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'… from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\MLIB\Include, and select the
mlib_FP.h file. If the file does not appear, set the Files of type filter to Text file. Click Add. See Figure 14.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 14 / 98

Figure 14. Adding .h files dialog

5. Navigate to the parent folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\MLIB, and select the mlib.lib file. If the file does
not appear, set the Files of type filter to Library file. Click Add. See Figure 15.

Figure 15. Adding .lib files dialog

6. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\GFLIB\Include, and select the
gflib_FP.h file. If the file does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\GFLIB, and select the gflib.lib file. If the file does
not appear, set the Files of type filter to Library file. Click Add.

8. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\GMCLIB\Include, and select the
gmclib_FP.h file. If the file does not appear, set the Files of type filter to Text file. Click Add.

9. Navigate to the parent folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\GMCLIB, and select the gmclib.lib file. If the file
does not appear, set the Files of type filter to Library file. Click Add.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 15 / 98

10. Now, all necessary files are in the project tree; see Figure 16. Click Close.

Figure 16. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog appears.

2. Select the C/C++ tab. See Figure 17.

3. In the Include Paths text box, type the following paths (if there are more paths, they must be separated by ';') or add them
by clicking the … button next to the text box:

• "C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\MLIB\Include"

• "C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\GFLIB\Include"

• "C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\GMCLIB\Include"

4. Click OK.

5. Click OK in the main dialog.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 16 / 98

Figure 17. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new project, it is necessary to create a
source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group 1'… from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for example 'main.c'. See Figure 18.

Figure 18. Adding new source file dialog

3. Click Add, and a new source file is created and opened up.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 17 / 98

4. In the opened source file, include the following lines into the #include section, and create a main function:

#include "mlib_FP.h"
#include "gflib_FP.h"
#include "gmclib_FP.h"

int main(void)
{
 while(1);
}

When you click the Build (F7) icon, the project will be compiled without errors.

1.4 Library integration into project (IAR Embedded Workbench)

This section provides a step-by-step guide on how to quickly and easily include the GMCLIB into an empty project or any
MCUXpresso SDK example or demo application projects using IAR Embedded Workbench. This example uses the default
installation path (C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR). If you have a different installation path, use that path instead. If
any MCUXpresso SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter
otherwise read next chapter.

New project (without MCUXpresso SDK)

This example uses the NXP MKV58F1M0xxx22 part, and the default installation path
(C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR) is supposed. To start working on an application, create a new project. If the
project already exists and is opened, skip to the next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project… so that the "Create New Project" dialog appears. See Figure 19.

Figure 19. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:\IARProjects\MyProject01. Type the name of the
project, for example, MyProject01. Click Save, and a new project is created. The new project is now visible in the left-hand
part of IAR Embedded Workbench. See Figure 20.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 18 / 98

Figure 20. New project

5. In the main menu, go to Project > Options…, and a dialog appears.

6. In the Target tab, select the Device option, and click the button next to the dialog to select the MCU. In this example, select
NXP > KV5x > NXP MKV58F1M0xxx22. Select VFPv5 single precision in the FPU option. Click OK. See Figure 21.

Figure 21. Options dialog

High-speed functions execution suppport

Some RT (or other) platforms contain high-speed functions execution support by relocating all functions from the default Flash
memory location to the RAM location for much faster code access. The feature is important especially for devices with a slow Flash
interface. This section shows how to turn the RAM optimization feature support on and off.

1. In the main menu, go to Project > Options…, and a dialog appears.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 19 / 98

2. In the left-hand side column, select C/C++ Compiler.

3. In the right-hand side of the dialog, click the Preprocessor tab (it can be hidden on the right; use the arrow icons
for navigation).

4. In the text box (in Defined symbols: (one per line)), type the following (See Figure 22):

• RAM_RELOCATION — to turn the RAM optimization feature support on

If the define is defined, all RTCEL functions are put to the RAM.

Figure 22. Defined symbols

5. Click OK in the main dialog.

The RAM_RELOCATION macro places the __ramfunc atribute in front of each function declaration.

Library path variable

To make the library integration easier, create a variable that will hold the information about the library path.

1. In the main menu, go to Tools > Configure Custom Argument Variables…, and a dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the name of the group PATH, and click OK.
See Figure 23.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 20 / 98

Figure 23. New Group

3. Click on the newly created group, and click the Add Variable button. A dialog appears.

4. Type this name: RTCESL_LOC

5. To set up the value, look for the library by clicking the '…' button, or just type the installation path into the box:
C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR. Click OK.

6. In the main dialog, click OK. See Figure 24.

Figure 24. New variable

Linking the files into the project

GMCLIB requires MLIB and GFLIB to be included too. The following steps show the inclusion of all dependent modules.

To include the library files into the project, create groups and add them.

1. Go to the main menu Project > Add Group…

2. Type RTCESL, and click OK.

3. Click on the newly created node RTCESL, go to Project > Add Group…, and create a MLIB subgroup.

4. Click on the newly created node MLIB, and go to the main menu Project > Add Files… See Figure 26.

5. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR\MLIB\Include, and select the
mlib_FP.h file. (If the file does not appear, set the file-type filter to Source Files.) Click Open. See Figure 25.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 21 / 98

6. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR\MLIB, and select the mlib.a file. If the
file does not appear, set the file-type filter to Library / Object files. Click Open.

Figure 25. Add Files dialog

7. Click on the RTCESL node, go to Project > Add Group…, and create a GFLIB subgroup.

8. Click on the newly created node GFLIB, and go to the main menu Project > Add Files….

9. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR\GFLIB\Include, and select the
gflib_FP.h file. (If the file does not appear, set the file-type filter to Source Files.) Click Open.

10. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR\GFLIB, and select the gflib.a file. If
the file does not appear, set the file-type filter to Library / Object files. Click Open.

11. Click on the RTCESL node, go to Project > Add Group…, and create a GMCLIB subgroup.

12. Click on the newly created node GMCLIB, and go to the main menu Project > Add Files….

13. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR\GMCLIB\Include, and select the
gmclib_FP.h file. If the file does not appear, set the file-type filter to Source Files. Click Open.

14. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR\GMCLIB, and select the gmclib.a
file. If the file does not appear, set the file-type filter to Library / Object files. Click Open.

15. Now you will see the files added in the workspace. See Figure 26.

Figure 26. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options…, and a dialog appears.

2. In the left-hand column, select C/C++ Compiler.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 22 / 98

3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in the right; use the arrow icons
for navigation).

4. In the text box (at the Additional include directories title), type the following folder (using the created variable):

• $RTCESL_LOC$\MLIB\Include

• $RTCESL_LOC$\GFLIB\Include

• $RTCESL_LOC$\GMCLIB\Include

5. Click OK in the main dialog. See Figure 27.

Figure 27. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file. In the workspace tree, double-click the
main.c file. After the main.c file opens up, include the following lines into the #include section:

#include "mlib_FP.h"
#include "gflib_FP.h"
#include "gmclib_FP.h"

When you click the Make icon, the project will be compiled without errors.

NXP Semiconductors
Library

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 23 / 98

Chapter 2
Algorithms in detail
2.1 GMCLIB_Clark

The GMCLIB_Clark function calculates the Clarke transformation, which is used to transform values (flux, voltage, current) from
the three-phase coordinate system to the two-phase (α-β) orthogonal coordinate system, according to the following equations:

2.1.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

• Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the GMCLIB_Clark function are shown in the following table:

Table 2. Function versions

Function name Input type Output type Result type

GMCLIB_Clark_F16 GMCLIB_3COOR_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * void

Clarke transformation of a 16-bit fractional three-phase system input to a 16-bit fractional two-phase
system. The input and output are within the fractional range <-1 ; 1).

GMCLIB_Clark_FLT GMCLIB_3COOR_T_FLT * GMCLIB_2COOR_ALBE_T_FLT * void

Clarke transformation of a 32-bit single precision floating-point three-phase system input to a
32-bit single-point floating-point two-phase system. The input and output are within the full 32-bit
single-point floating-point range.

2.1.2 Declaration
The available GMCLIB_Clark functions have the following declarations:

void GMCLIB_Clark_F16(const GMCLIB_3COOR_T_F16 *psIn, GMCLIB_2COOR_ALBE_T_F16 *psOut)
void GMCLIB_Clark_FLT(const GMCLIB_3COOR_T_FLT *psIn, GMCLIB_2COOR_ALBE_T_FLT *psOut)

2.1.3 Function use
The use of the GMCLIB_Clark function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

NXP Semiconductors

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 24 / 98

void Isr(void);

void main(void)
{
 /* ABC structure initialization */
 sAbc.f16A = FRAC16(0.0);
 sAbc.f16B = FRAC16(0.0);
 sAbc.f16C = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Clarke Transformation calculation */
 GMCLIB_Clark_F16(&sAbc, &sAlphaBeta);
}

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sAlphaBeta;
static GMCLIB_3COOR_T_FLT sAbc;

void Isr(void);

void main(void)
{
 /* ABC structure initialization */
 sAbc.fltA = 0.0F;
 sAbc.fltB = 0.0F;
 sAbc.fltC = 0.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Clarke Transformation calculation */
 GMCLIB_Clark_FLT(&sAbc, &sAlphaBeta);
}

2.2 GMCLIB_ClarkInv

The GMCLIB_ClarkInv function calculates the Clarke transformation, which is used to transform values (flux, voltage, current) from
the two-phase (α-β) orthogonal coordinate system to the three-phase coordinate system, according to the following equations:

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 25 / 98

2.2.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

• Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the GMCLIB_ClarkInv function are shown in the following table:

Table 3. Function versions

Function name Input type Output type Result type

GMCLIB_ClarkInv_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * void

Inverse Clarke transformation with a 16-bit fractional two-phase system input and a 16-bit fractional
three-phase output. The input and output are within the fractional range <-1 ; 1).

GMCLIB_ClarkInv_FLT GMCLIB_2COOR_ALBE_T_FLT * GMCLIB_3COOR_T_FLT * void

Inverse Clarke transformation with a 32-bit single precision floating-point two-phase system input
and a 32-bit single precision floating-point three-phase output. The input and output are within the
full 32-bit single-point floating-point range.

2.2.2 Declaration
The available GMCLIB_ClarkInv functions have the following declarations:

void GMCLIB_ClarkInv_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)
void GMCLIB_ClarkInv_FLT(const GMCLIB_2COOR_ALBE_T_FLT *psIn, GMCLIB_3COOR_T_FLT *psOut)

2.2.3 Function use
The use of the GMCLIB_ClarkInv function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Clarke Transformation calculation */
 GMCLIB_ClarkInv_F16(&sAlphaBeta, &sAbc);
}

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 26 / 98

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sAlphaBeta;
static GMCLIB_3COOR_T_FLT sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.fltAlpha = 0.0F;
 sAlphaBeta.fltBeta = 0.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Clarke Transformation calculation */
 GMCLIB_ClarkInv_FLT(&sAlphaBeta, &sAbc);
}

2.3 GMCLIB_Park

The GMCLIB_Park function calculates the Park transformation, which transforms values (flux, voltage, current) from the stationary
two-phase (α-β) orthogonal coordinate system to the rotating two-phase (d-q) orthogonal coordinate system, according to the
following equations:

where:

• θ is the position (angle)

2.3.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

• Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the GMCLIB_Park function are shown in the following table:

Table 4. Function versions

Function name Input type Output type Result type

GMCLIB_Park_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_2COOR_DQ_T_F16 * void

GMCLIB_2COOR_SINCOS_T_F16 *

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 27 / 98

Table 4. Function versions (continued)

Function name Input type Output type Result type

The Park transformation of a 16-bit fractional two-phase stationary system input to a 16-bit fractional
two-phase rotating system, using a 16-bit fractional angle two-component (sin / cos) position
information. The inputs and the output are within the fractional range <-1 ; 1).

GMCLIB_Park_FLT GMCLIB_2COOR_ALBE_T_FLT * GMCLIB_2COOR_DQ_T_FLT * void

GMCLIB_2COOR_SINCOS_T_FLT *

The Park transformation of a 32-bit single precision floating-point two-phase stationary system input
to a 32-bit single precision floating-point two-phase rotating system, using a 32-bit single precision
floating-point angle two-component (sin / cos) position information. The two-phase stationary system
input and the output are within the full 32-bit single-point floating-point range; the angle input is within
the range <-1.0 ; 1.0>.

2.3.2 Declaration
The available GMCLIB_Park functions have the following declarations:

void GMCLIB_Park_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, const GMCLIB_2COOR_SINCOS_T_F16
*psAnglePos, GMCLIB_2COOR_DQ_T_F16 *psOut)

void GMCLIB_Park_FLT(const GMCLIB_2COOR_ALBE_T_FLT *psIn, const GMCLIB_2COOR_SINCOS_T_FLT
*psAnglePos, GMCLIB_2COOR_DQ_T_FLT *psOut)

2.3.3 Function use
The use of the GMCLIB_Park function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_2COOR_DQ_T_F16 sDQ;
static GMCLIB_2COOR_SINCOS_T_F16 sAngle;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);

 /* Angle structure initialization */
 sAngle.f16Sin = FRAC16(0.0);
 sAngle.f16Cos = FRAC16(1.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Park Transformation calculation */

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 28 / 98

 GMCLIB_Park_F16(&sAlphaBeta, &sAngle, &sDQ);
}

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sAlphaBeta;
static GMCLIB_2COOR_DQ_T_FLT sDQ;
static GMCLIB_2COOR_SINCOS_T_FLT sAngle;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.fltAlpha = 0.0F;
 sAlphaBeta.fltBeta = 0.0F;

 /* Angle structure initialization */
 sAngle.fltSin = 0.0F;
 sAngle.fltCos = 1.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Park Transformation calculation */
 GMCLIB_Park_FLT(&sAlphaBeta, &sAngle, &sDQ);
}

2.4 GMCLIB_ParkInv

The GMCLIB_ParkInv function calculates the Park transformation, which transforms values (flux, voltage, current) from the
rotating two-phase (d-q) orthogonal coordinate system to the stationary two-phase (α-β) coordinate system, according to the
following equations:

where:

• θ is the position (angle)

2.4.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

• Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the GMCLIB_ParkInv function are shown in the following table:

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 29 / 98

Table 5. Function versions

Function name Input type Output type Result type

GMCLIB_ParkInv_F16 GMCLIB_2COOR_DQ_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_SINCOS_T_F16 *

Inverse Park transformation of a 16-bit fractional two-phase rotating system input to a 16-bit fractional
two-phase stationary system, using a 16-bit fractional angle two-component (sin / cos) position
information. The inputs and the output are within the fractional range <-1 ; 1).

GMCLIB_ParkInv_FLT GMCLIB_2COOR_DQ_T_FLT * GMCLIB_2COOR_ALBE_T_FLT * void

GMCLIB_2COOR_SINCOS_T_FLT *

Inverse Park transformation of a 32-bit single precision floating-point two-phase rotating system input
to a 32-bit single precision floating-point two-phase stationary system, using a 32-bit single precision
floating-point angle two-component (sin / cos) position information. The two-phase rotating system
input and the output are within the full 32-bit single-point floating-point range; the angle input is within
the range <-1.0 ; 1.0> .

2.4.2 Declaration
The available GMCLIB_ParkInv functions have the following declarations:

void GMCLIB_ParkInv_F16(const GMCLIB_2COOR_DQ_T_F16 *psIn, const GMCLIB_2COOR_SINCOS_T_F16
*psAnglePos, GMCLIB_2COOR_ALBE_T_F16 *psOut)

void GMCLIB_ParkInv_FLT(const GMCLIB_2COOR_DQ_T_FLT *psIn, const GMCLIB_2COOR_SINCOS_T_FLT
*psAnglePos, GMCLIB_2COOR_ALBE_T_FLT *psOut)

2.4.3 Function use
The use of the GMCLIB_ParkInv function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_2COOR_DQ_T_F16 sDQ;
static GMCLIB_2COOR_SINCOS_T_F16 sAngle;

void Isr(void);

void main(void)
{
 /* D, Q structure initialization */
 sDQ.f16D = FRAC16(0.0);
 sDQ.f16Q = FRAC16(0.0);

 /* Angle structure initialization */
 sAngle.f16Sin = FRAC16(0.0);
 sAngle.f16Cos = FRAC16(1.0);
}

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 30 / 98

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Park Transformation calculation */
 GMCLIB_ParkInv_F16(&sDQ, &sAngle, &sAlphaBeta);
}

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sAlphaBeta;
static GMCLIB_2COOR_DQ_T_FLT sDQ;
static GMCLIB_2COOR_SINCOS_T_FLT sAngle;

void Isr(void);

void main(void)
{
 /* D, Q structure initialization */
 sDQ.fltD = 0.0F;
 sDQ.fltQ = 0.0F;

 /* Angle structure initialization */
 sAngle.fltSin = 0.0F;
 sAngle.fltCos = 1.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Park Transformation calculation */
 GMCLIB_ParkInv_FLT(&sDQ, &sAngle, &sAlphaBeta);
}

2.5 GMCLIB_DecouplingPMSM

The GMCLIB_DecouplingPMSM function calculates the cross-coupling voltages to eliminate the d-q axis coupling that causes
nonlinearity of the control.

The d-q model of the motor contains cross-coupling voltage that causes nonlinearity of the control. Figure 1 represents the d-q
model of the motor that can be described using the following equations, where the underlined portion is the cross-coupling voltage:

where:

• ud, uq are the d and q voltages

• id, iq are the d and q currents

• Rs is the stator winding resistance

• Ld, Lq are the stator winding d and q inductances

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 31 / 98

• ωel is the electrical angular speed

• ψr is the rotor flux constant

Figure 28. The d-q PMSM model

To eliminate the nonlinearity, the cross-coupling voltage is calculated using the GMCLIB_DecouplingPMSM algorithm, and
feedforwarded to the d and q voltages. The decoupling algorithm is calculated using the following equations:

where:

• ud, uq are the d and q voltages; inputs to the algorithm

• uddec, uqdec are the d and q decoupled voltages; outputs from the algorithm

The fractional representation of the d-component equation is as follows:

The fractional representation of the q-component equation is as follows:

where:

• kd, kq are the scaling coefficients

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 32 / 98

• imax is the maximum current

• umax is the maximum voltage

• ωel_max is the maximum electrical speed

The kd and kq parameters must be set up properly.

The principle of the algorithm is depicted in Figure 2:

Figure 29. Algorithm diagram

2.5.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result may
saturate. The parameters use the accumulator types.

• Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the GMCLIB_DecouplingPMSM function are shown in the following table:

Table 6. Function versions

Function name Input/output type Result type

GMCLIB_DecouplingPMSM_F16 Input GMCLIB_2COOR_DQ_T_F16 * void

GMCLIB_2COOR_DQ_T_F16 *

frac16_t

Parameters GMCLIB_DECOUPLINGPMSM_T_A32 *

Output GMCLIB_2COOR_DQ_T_F16 *

The PMSM decoupling with a 16-bit fractional d-q voltage, current inputs, and a 16-bit
fractional electrical speed input. The parameters are 32-bit accumulator types. The output
is a 16-bit fractional decoupled d-q voltage. The inputs and the output are within the range
<-1 ; 1).

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 33 / 98

Table 6. Function versions (continued)

Function name Input/output type Result type

GMCLIB_DecouplingPMSM_FLT Input GMCLIB_2COOR_DQ_T_FLT * void

GMCLIB_2COOR_DQ_T_FLT *

float_t

Parameters GMCLIB_DECOUPLINGPMSM_T_FLT *

Output GMCLIB_2COOR_DQ_T_FLT *

The PMSM decoupling with a 32-bit single precision floating-point d-q voltage, current,
and electrical speed input. The parameters are 32-bit single precision floating-point types.
The output is a 32-bit single precision floating-point decoupled d-q voltage. The inputs
and the output are within the full 32-bit single-point floating-point range.

2.5.2 GMCLIB_DECOUPLINGPMSM_T_A32 type description

Variable name Input type Description

a32KdGain acc32_t Direct axis decoupling parameter. The parameter is within the range <0 ; 65536.0)

a32KqGain acc32_t Quadrature axis decoupling parameter. The parameter is within the range <0 ;
65536.0)

2.5.3 GMCLIB_DECOUPLINGPMSM_T_FLT type description

Variable name Input type Description

fltLd float_t Direct axis inductance parameter. The parameter is a nonnegative value.

fltLq float_t Quadrature axis inductance parameter. The parameter is a nonnegative value.

2.5.4 Declaration
The available GMCLIB_DecouplingPMSM functions have the following declarations:

void GMCLIB_DecouplingPMSM_F16(const GMCLIB_2COOR_DQ_T_F16 *psUDQ, const GMCLIB_2COOR_DQ_T_F16
*psIDQ, frac16_t f16SpeedEl, const GMCLIB_DECOUPLINGPMSM_T_A32 *psParam,
GMCLIB_2COOR_DQ_T_F16 *psUDQDec)

void GMCLIB_DecouplingPMSM_FLT(const GMCLIB_2COOR_DQ_T_FLT *psUDQ, const GMCLIB_2COOR_DQ_T_FLT
*psIDQ, float_t fltSpeedEl, const GMCLIB_DECOUPLINGPMSM_T_FLT *psParam,
GMCLIB_2COOR_DQ_T_FLT *psUDQDec)

2.5.5 Function use
The use of the GMCLIB_DecouplingPMSM function is shown in the following examples:

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 34 / 98

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_DQ_T_F16 sVoltageDQ;
static GMCLIB_2COOR_DQ_T_F16 sCurrentDQ;
static frac16_t f16AngularSpeed;
static GMCLIB_DECOUPLINGPMSM_T_A32 sDecouplingParam;
static GMCLIB_2COOR_DQ_T_F16 sVoltageDQDecoupled;

void Isr(void);

void main(void)
{
 /* Voltage D, Q structure initialization */
 sVoltageDQ.f16D = FRAC16(0.0);
 sVoltageDQ.f16Q = FRAC16(0.0);

 /* Current D, Q structure initialization */
 sCurrentDQ.f16D = FRAC16(0.0);
 sCurrentDQ.f16Q = FRAC16(0.0);

 /* Speed initialization */
 f16AngularSpeed = FRAC16(0.0);

 /* Motor parameters for decoupling Kd = 40, Kq = 20 */
 sDecouplingParam.a32KdGain = ACC32(40.0);
 sDecouplingParam.a32KqGain = ACC32(20.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Decoupling calculation */
 GMCLIB_DecouplingPMSM_F16(&sVoltageDQ, &sCurrentDQ, f16AngularSpeed,
&sDecouplingParam, &sVoltageDQDecoupled);
}

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_DQ_T_FLT sVoltageDQ;
static GMCLIB_2COOR_DQ_T_FLT sCurrentDQ;
static float_t fltAngularSpeed;
static GMCLIB_DECOUPLINGPMSM_T_FLT sDecouplingParam;
static GMCLIB_2COOR_DQ_T_FLT sVoltageDQDecoupled;

void Isr(void);

void main(void)
{
 /* Voltage D, Q structure initialization */
 sVoltageDQ.fltD = 0.0F;
 sVoltageDQ.fltQ = 0.0F;

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 35 / 98

 /* Current D, Q structure initialization */
 sCurrentDQ.fltD = 0.0F;
 sCurrentDQ.fltQ = 0.0F;

 /* Speed initialization */
 fltAngularSpeed = 0.0F;

 /* Motor parameters for decoupling Kd = 40, Kq = 20 */
 sDecouplingParam.fltLd = 40.0F;
 sDecouplingParam.fltLq = 20.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Decoupling calculation */
 GMCLIB_DecouplingPMSM_FLT(&sVoltageDQ, &sCurrentDQ, fltAngularSpeed,
&sDecouplingParam, &sVoltageDQDecoupled);
}

2.6 GMCLIB_DTCompLut1D

The GMCLIB_DTCompLut1D function implements dead-time-compensation algorithms that return error voltages from measured
currents, knowing the inverter nonlinearity in the Look-Up Table (LUT). The aim of the GMCLIB_DTCompLut1D function is to
make the inverter and the whole control loop more linear, especially around low-duty cycles, where the dead-time effect is
dominant. The error voltage obtained from GMCLIB_DTCompLut1D has the most important impact in the low-motor-speed region,
where the motor-supply voltage is low. The next operation is to transform the error voltages from the three-phase (a, b, c)
system of coordinates to the two-phase (α, β) orthogonal system using the Clarke transformation. The multiplication by UDCBus
voltages is then processed and the output-compensation voltages are obtained after adding input voltages. The principle of the
GMCLIB_DTCompLut1D function is shown in Figure 30.

Figure 30. GMCLIB_DTCompLut1D function block scheme

Adding the GMCLIB_DTCompLut1D function into your application has the following essentials. Each inverter introduces the total
error voltage, which is caused by the dead-time and current-clamping effects and the transistor voltage drop. The actual inverter
output voltage is lower than the required voltage. The total error voltage depends on the actual phase current. The example of the
inverter error characteristic is shown in Figure 31.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 36 / 98

Figure 31. Inverter error characteristic example - voltage error dependency on phase current

The inverter error characteristic is assigned to the GMCLIB_DTCompLut1D algorithm as the LUT, which simply adds the
error-voltage vector to the input-voltage vector. The data for the LUT should be measured from a real inverter for the best
compensation result. The target of the measurement is the voltage-error-to-phase-current dependency, as shown in Figure 32.

Figure 32. Measured inverter voltage error data example for LUT measured for phase current points

The LUT is defined by the table pointer and tableSize parameters. The table output is the error-voltage vector from the
phase-current input vector. The GMCLIB_DTCompLut1D algorithm processes the compensation voltage according to the
following equations: uAerror = GFLIB_Lut1D_F16 ia,Table, TableSizeuBerror = GFLIB_Lut1D_F16 ib,Table, TableSizeuCerror = GFLIB_Lut1D_F16 ic,Table, TableSize

Figure 33. Equations to get the error voltages componnents

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 37 / 98

where:

• uAerror, Berror, and uCerror are the error-voltage components of the error-voltage vector.

• ia, ib, and ic are the current components of the measured-current vector.

• The LUT contains the inverter measured characteristic. See GMCLIB_DTCOMPLUT1D_T_F16 for details.

• The tableSize parameter is the size of the LUT parameter. See GMCLIB_DTCOMPLUT1D_T_F16 for details.

• The GFLIB_Lut1D_F16 parameter is the LUT function (GMCLIB_DTCompLut1D).

When the error voltages are calculated, the GMCLIB_DTCompLut1D algorithm continues using the following equations:

uβDTComp = uα+ 2 × uAError− uBError− uCError × udcbus3uβDTComp = uβ+ uBError− uCError × 3 × udcbus3
Figure 34. DTCompLUT1D function equations

where:

• uαDTComp and uβDTComp are the compensation voltage components and outputs of the GMCLIB_DTCompLut1D function.

• uα, and uβ are the voltage components of the input-voltage vector.

• uAerror, uBerror, and uCerror are the error-voltage components of the error-voltage vector.

• uDCBus is the DC-Bus voltage.

At the end of the GMCLIB_DTCompLut1D algorithm, the error-compensation-voltage componenets (α and β) are added
to the input voltage components (α and β). The addition with saturation is used to avoid overflow and the resuls of the
GMCLIB_DTCompLut1D function are the dead-time-compensated voltage components (UαDTComp and UβDTComp) as inputs for
the SVMShifted function.

2.6.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result. The result is in the range of <-1 ; 1). The result may saturate.
The parameter inludes the table and table size used the table types.

Table 7. Function versions

Function name Input/output type Result type

GMCLIB_DTCompLut1D_F16 Inputs GMCLIB_3COOR_T_F16 *

GMCLIB_2COOR_ALBE_T_F16 *,

frac16_t

void

Parameter GMCLIB_DTCOMPLUT1D_T_F16 *, *

Output GMCLIB_2COOR_ALBE_T_F16 *

The first input argument is the structure of current components represented by the
16-bit fractional values. It contains the abscissas for which the 1-D interpolations
are performed. The second input argument is the structure of voltage components
represented by the two-phase (α, β) orthogonal coordinate system. The last input
argument is the measured 16-bit fractional DC-Bus voltage input.

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 38 / 98

Table 7. Function versions

Function name Input/output type Result type

The parameter structure consists of two members of the
GMCLIB_DTCOMPLUT1D_T_F16 structure type. The first parameter is the pointer
to the LUT and the second parameter is the size of the LUT.

The ouput argument is the strucrure of compensated voltage components
represented by the two-phase (α, β) orthogonal coordinate system, targeted for the
SVMShifted function.

2.6.2 GMCLIB_DTCOMPLUT1D_T_F16 type description

Variable name Input type Description

pf16Table frac16_t * The pointer to a LUT, which contains the 16-bit fractional values of the LUT.

u16TableSize uint16_t The size of the LUT parameter is in the range of <1 ; 15>. It means that the parameter is
log2 of the number of points + 1.

2.6.3 Declaration
The available GMCLIB_DTCompLut1D functions have the following declarations:

GMCLIB_DTCompLut1D_F16(const GMCLIB_3COOR_T_F16 *psIABC, const GMCLIB_2COOR_ALBE_T_F16 *psUAlBe,
frac16_tf16UDCBus, const GMCLIB_DTCOMPLUT1D_T_F16 *psParam, GMCLIB_2COOR_ALBE_T_F16 *psUAlBeDTComp)

2.6.4 Function use
The use of the GMCLIB_DTCompLut1D function is shown in the following example:

Fixed-point version:

#include "gmclib.h"
static GMCLIB_DTCOMPLUT1D_T_F16 sParam;
static GMCLIB_3COOR_T_F16 sIABC;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBe, sUAlBeComp;
static frac16_t f16UDCBus;
static frac16_t f16Table[9] = {FRAC16(-0.7), FRAC16(-0.65), FRAC16(-0.55),
FRAC16(0.2), FRAC16(0.0),
 FRAC16(0.2), FRAC16(-0.8), FRAC16(0.91),
FRAC16(0.99)};
void Isr(void);

void main(void)
{
 /* ABC currents structure initialization */
 sIABC.f16A = FRAC16(0.1);
 sIABC.f16B = FRAC16(0.3);
 sIABC.f16C = FRAC16(-0.2);
 /* Alpha Bete voltages structure initialization */
 sUAlBe.f16Alpha = FRAC16(0.25);
 sUAlBe.f16Beta = FRAC16(0.75);
 /* DC Bus voltage initialization */

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 39 / 98

 f16UDCBus = FRAC16(0.9);
 /* DC Bus voltage initialization */
 sParam.pf16Table = f16Table;
 sParam.u16TableSize = 3;
}
/* Periodical function or interrupt */
void Isr(void)
{
 /* Dead-Time compensation calculation */
 GMCLIB_DTCompLut1D_F16(&sIABC, &sUAlBe, f16UDCBus, &sParam, &sUAlBeComp);
}

2.7 GMCLIB_ElimDcBusRipFOC

The GMCLIB_ElimDcBusRipFOC function is used for the correct PWM duty cycle output calculation, based on the measured
DC-bus voltage. The side effect is the elimination of the the DC-bus voltage ripple in the output PWM duty cycle. This function
is meant to be used with a space vector modulation, whose modulation index (with respect to the DC-bus voltage) is an inverse
square root of 3.

The general equation to calculate the duty cycle for the above-mentioned space vector modulation is as follows:

where:

• UPWM is the duty cycle output

• uFOC is the real FOC voltage

• udcbus is the real measured DC-bus voltage

Using the previous equations, the GMCLIB_ElimDcBusRipFOC function compensates an amplitude of the direct-α and the
quadrature-β component of the stator-reference voltage vector, using the formula shown in the following equations:

where:

• Uα* is the direct-α duty cycle ratio

• Uβ* is the quadrature-β duty cycle ratio

• Uα is the direct-α voltage

• Uβ is the quadrature-β voltage

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 40 / 98

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which take place in
GMCLIB_ElimDcBusRipFOC_Eq1; the equation is as follows:

where:

• UFOC is the scaled FOC voltage

• Udcbus is the scaled measured DC-bus voltage

• UFOC_max is the FOC voltage scale

• Udcbus_max is the DC-bus voltage scale

If this algorithm is used with the space vector modulation with the ratio of square root equal to 3, then the FOC voltage scale is
expressed as follows :

The equation can be simplified as follows:

The GMCLIB_ElimDcBusRipFOC function compensates an amplitude of the direct-α and the quadrature-β component of the
stator-reference voltage vector in the fractional arithmetic, using the formula shown in the following equations:

where:

• Uα* is the direct-α duty cycle ratio

• Uβ* is the quadrature-β duty cycle ratio

• Uα is the direct-α voltage

• Uβ is the quadrature-β voltage

The GMCLIB_ElimDcBusRipFOC function can be used in general motor-control applications, and it provides elimination of the
voltage ripple on the DC-bus of the power stage. Figure 1 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage using a three-phase uncontrolled rectifier.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 41 / 98

Figure 35. Results of the DC-bus voltage ripple elimination

2.7.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

• Fractional output with floating-point input - the output is the fractional portion of the result; the result is within the range <-1 ;
1). The result may saturate. The inputs are floating-point values.

The available versions of the GMCLIB_ElimDcBusRipFOC function are shown in the following table:

Table 8. Function versions

Function name Input type Output type Result
type

GMCLIB_ElimDcBusRipFOC_F16 frac16_t GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_ALBE_T_F16 *

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system, using a 16-bit fractional DC-bus voltage information. The DC-bus
voltage input is within the fractional range <0 ; 1); the stationary (α-β) voltage input and
the output are within the fractional range <-1 ; 1).

GMCLIB_ElimDcBusRipFOC_F16ff float_t GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_ALBE_T_FLT *

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 42 / 98

Table 8. Function versions (continued)

Function name Input type Output type Result
type

Compensation of a 32-bit single precision floating-point two-phase system input to a
16-bit fractional two-phase system, using a 32-bit single precision floating-point DC-bus
voltage information. The DC-bus voltage input is a nonnegative value; the two-phase
voltage input is within the full 32-bit single-point floating-point range, and the output is
within the fractional range <-1 ; 1).

2.7.2 Declaration
The available GMCLIB_ElimDcBusRipFOC functions have the following declarations:

void GMCLIB_ElimDcBusRipFOC_F16(frac16_t f16UDCBus, const GMCLIB_2COOR_ALBE_T_F16 *psUAlBe,
GMCLIB_2COOR_ALBE_T_F16 *psUAlBeComp)

void GMCLIB_ElimDcBusRipFOC_F16ff(float_t fltUDCBus, const GMCLIB_2COOR_ALBE_T_FLT *psUAlBe,
GMCLIB_2COOR_ALBE_T_F16 *psUAlBeComp)

2.7.3 Function use
The use of the GMCLIB_ElimDcBusRipFOC function is shown in the following example:

#include "gmclib.h"

static frac16_t f16UDcBus;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBe;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBeComp;

void Isr(void);

void main(void)
{
 /* Voltage Alpha, Beta structure initialization */
 sUAlBe.f16Alpha = FRAC16(0.0);
 sUAlBe.f16Beta = FRAC16(0.0);

 /* DC bus voltage initialization */
 f16UDcBus = FRAC16(0.8);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* FOC Ripple elimination calculation */
 GMCLIB_ElimDcBusRipFOC_F16(f16UDcBus, &sUAlBe, &sUAlBeComp);
}

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 43 / 98

2.8 GMCLIB_ElimDcBusRip

The GMCLIB_ElimDcBusRip function is used for a correct PWM duty cycle output calculation, based on the measured DC-bus
voltage. The side effect is the elimination of the the DC-bus voltage ripple in the output PWM duty cycle. This function can be used
with any kind of space vector modulation; it has an additional input - the modulation index (with respect to the DC-bus voltage).

The general equation to calculate the duty cycle is as follows:

where:

• UPWM is the duty cycle output

• uFOC is the real FOC voltage

• udcbus is the real measured DC-bus voltage

• imod is the space vector modulation index

Using the previous equations, the GMCLIB_ElimDcBusRip function compensates an amplitude of the direct-α and the quadrature-
β component of the stator-reference voltage vector, using the formula shown in the following equations:

where:

• Uα* is the direct-α duty cycle ratio

• Uβ* is the quadrature-β duty cycle ratio

• Uα is the direct-α voltage

• Uβ is the quadrature-β voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which take place in
GMCLIB_ElimDcBusRipFOC_Eq1; the equation is as follows:

where:

• UFOC is the scaled FOC voltage

• Udcbus is the scaled measured DC-bus voltage

• UFOC_max is the FOC voltage scale

• Udcbus_max is the DC-bus voltage scale

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 44 / 98

Thus, the modulation index in the fractional representation is expressed as follows :

where:

• imodfr is the space vector modulation index in the fractional arithmetic

The GMCLIB_ElimDcBusRip function compensates an amplitude of the direct-α and the quadrature-β component of the
stator-reference voltage vector in the fractional arithmetic, using the formula shown in the following equations:

where:

• Uα* is the direct-α duty cycle ratio

• Uβ* is the quadrature-β duty cycle ratio

• Uα is the direct-α voltage

• Uβ is the quadrature-β voltage

The GMCLIB_ElimDcBusRip function can be used in general motor-control applications, and it provides elimination of the voltage
ripple on the DC-bus of the power stage. Figure 1 shows the results of the DC-bus ripple elimination, while compensating the
ripples of the rectified voltage, using a three-phase uncontrolled rectifier.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 45 / 98

Figure 36. Results of the DC-bus voltage ripple elimination

2.8.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result may
saturate. The modulation index is a non-negative accumulator type value.

• Fractional output with floating-point input - the output is the fractional portion of the result; the result is within the range <-1 ;
1). The result may saturate. The inputs are floating-point values.

The available versions of the GMCLIB_ElimDcBusRip function are shown in the following table:

Table 9. Function versions

Function name Input type Output type Result
type

GMCLIB_ElimDcBusRip_F16sas frac16_t GMCLIB_2COOR_ALBE_T_F16 * void

acc32_t

GMCLIB_2COOR_ALBE_T_F16 *

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system using a 16-bit fractional DC-bus voltage information and a 32-bit
accumulator modulation index. The DC-bus voltage input is within the fractional range
<0 ; 1); the modulation index is a non-negative value; the stationary (α-β) voltage input
and output are within the fractional range <-1 ; 1).

GMCLIB_ElimDcBusRip_F16fff float_t GMCLIB_2COOR_ALBE_T_F16 * void

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 46 / 98

Table 9. Function versions (continued)

Function name Input type Output type Result
type

float_t

GMCLIB_2COOR_ALBE_T_FLT *

Compensation of a 32-bit single precision floating-point two-phase system input to a
16-bit fractional two-phase system using a 32-bit single precision floating-point DC-bus
voltage information and modulation index. The DC-bus voltage and modulation index
inputs are non-negative values; the two-phase voltage input is within the full 32-bit
single-point floating-point range, and the output is within the fractional range <-1 ; 1).

2.8.2 Declaration
The available GMCLIB_ElimDcBusRip functions have the following declarations:

void GMCLIB_ElimDcBusRip_F16sas(frac16_t f16UDCBus, acc32_t a32IdxMod, const GMCLIB_2COOR_ALBE_T_F16
*psUAlBeComp, GMCLIB_2COOR_ALBE_T_F16 *psUAlBe)

void GMCLIB_ElimDcBusRip_F16fff(float_t fltUDCBus, float_t fltIdxMod, const GMCLIB_2COOR_ALBE_T_FLT
*psUAlBeComp, GMCLIB_2COOR_ALBE_T_F16 *psUAlBe)

2.8.3 Function use
The use of the GMCLIB_ElimDcBusRip function is shown in the following example:

#include "gmclib.h"

static frac16_t f16UDcBus;
static acc32_t a32IdxMod;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBe;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBeComp;

void Isr(void);

void main(void)
{
 /* Voltage Alpha, Beta structure initialization */
 sUAlBe.f16Alpha = FRAC16(0.0);
 sUAlBe.f16Beta = FRAC16(0.0);

 /* SVM modulation index */
 a32IdxMod = ACC32(1.3);

 /* DC bus voltage initialization */
 f16UDcBus = FRAC16(0.8);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Ripple elimination calculation */

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 47 / 98

 GMCLIB_ElimDcBusRip_F16sas(f16UDcBus, a32IdxMod, &sUAlBe, &sUAlBeComp);
}

2.9 GMCLIB_SvmStdShifted

The GMCLIB_SvmStdShifted function is based on the GMCLIB_SvmStd function and calculates the appropriate duty-cycle
ratios, which are needed to generate the given stator-reference voltage vector using a special standard space-vector modulation
technique. The GMCLIB_SvmStdShifted function enables the single-shunt measurement and current reconstruction and provides
the data sturctures to configure the ADC and PWM peripherals.

The PWM signal generation by the GMCLIB_SvmStdShifted function applies a four-voltage vector in each PWM period:

• Two of them are inactive – vectors V0 (all switch elements are OFF – 000 states) and V7 (all switch elements are ON –
111 states).

• Two of them are active vectors that generate the motor power. See the table in Figure 37.

Two phase currents are normally available as the DC-Bus current (idcb) during the active voltage vectors in each PWM period. It
is possible to reconstruct all phase currents by measuring two different samples of idcb in each PWM period. The idcb current is 0
during V0 and V7. It can be used for offset measurement.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 48 / 98

Figure 37. Single-shunt current reconstruction principle by GMCLIB_SvmStdShifted

Two different phase-current samples cannot be taken when:

• The voltage vector is crossing the SVM sector border. Only one sample can be taken.

• The modulation index is low. The sampling intervals are too short and no current samples can be taken.

There are many solutions available for these problems. For this function, the shifted-PWM method was used:

• The ON/OFF times are modified (shifted), if necessary.

• The duty cycles are preserved (the applied stator voltage is the same).

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 49 / 98

Figure 38. Problematic current reconstruction cases

A different shifting strategy is applied for both critical cases:

1. Passing active vector:

• Freezes the center edge.

• Moves one critical edge.

• It is used for higher modulation indexes.

2. Low modulation indexes:

• Freezes the center edge.

• Moves both side edges in opposite directions.

• It is used for low modulation indexes.

The right method is selected within the SVM algorithm and shifts are applied by the PWM driver.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 50 / 98

Figure 39. PWM shifting principle for passing active vector and low modulation indexes cases

2.9.1 Available versions
This function is available in the following versions:

• Fractional output - the duty-cycle outputs are the fractional portion of the result. The result is within the range of <0 ; 1). The
result may saturate.

Table 10. Function versions

Function name Input/Output type Result
type

GMCLIB_SvmStdShiffted_F16 Inputs GMCLIB_2COOR_ALBE_T_F16 *, void

Parameter GMCLIB_SVMSTDSHIFTED_T_F16 *

Outputs GMCLIB_ADC_CONFIG_T_F16 * ,
GMCLIB_PWM_CONFIG_T_F16 *

Standard shiffted space vector modulation with a 16-bit fractional
stationary (α-β) input. The parameter is pointed to by an input pointer.
The ouputs are pointed to by output pointers. The result type is a
void type.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 51 / 98

2.9.1.1 GMCLIB_SVMSTDSHIFTED_T_F16 type description

The input to configure the structure for the GMCLIB_SvmStdShifted function.

Variable name Input type Description

f16LowerLim frac16_t Low PWM duty-cycle limit. It influences any duty-cycle output in the sDuty structure of
the PWM configuration structure. This parameter must be lower than f16UpperLim and of
positive value within the range of <0 ; 1) as well. It is set by the user.

f16UpperLim uint16_t High PWM duty-cycle limit. It influences any duty-cycle output in the sDuty structure of the
PWM configuration structure. This parameter must be higher than f16LowerLim and the
value must be within the range of <0 ; 1) as well. It is set by the user.

f16MinT1T2 uint16_t Minimum T1 or T2 time for a sufficient shift. It influences any shift output in the sShift
structure of the PWM configuration structure. This parameter must be of a positive value and
within the range of <0 ; 1). It is set by the user.

2.9.2 GMCLIB_ADC_CONFIG_T_F16 type description
The output structure to configure the ADC peripheral.

Variable name Input type Description

ui16SectorSVM uint16_t The output sector is an integer value within the range of <1 ; 6>.
It is calculated by the algorithm and targeted to configure the ADC
module.

f16SmplFirstEdge frac16_t The output delay for the first edge sample measurement. It is a
16-bit fractional value within the range of <-1 ; 1). It is calculated by
the algorithm and targeted to configure the ADC module.

f16SmplSecondEdge frac16_t The output delay for the second sample measurement. It is a 16-bit
fractional value within the range of <-1 ; 1). It is calculated by the
algorithm and targeted to configure the ADC module.

eSmplOnePh GMCLIB_PHASE_INDEX_T The output value sets the first sample channel (phase) index. It
is assigned from the algorithms and the enumeration value marks
phase A, B, or C.

eSmplTwoPh GMCLIB_PHASE_INDEX_T The output value sets the second sample channel (phase) index. It
is assigned from the algorithms and the enumeration value marks
phase A, B, or C.

eCalcPh GMCLIB_PHASE_INDEX_T The output value sets the calculated sample channel (phase)
index. It is assigned from the algorithms and the enumeration value
marks phase A, B, or C.

2.9.3 GMCLIB_PWM_CONFIG_T_F16 type description
The output structure to configure the PWM peripheral.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 52 / 98

Variable name Input type Description

sDuty f16A frac16_t The phase-A duty cycle is a 16-bit fractional value within the range of <0 ;
1). It is calculated by the algorithms and targeted to configure the PWM
module. It may be limited by upper or lower limits.

f16B frac16_t The phase-B duty cycle is a 16-bit fractional value within the range of <0 ;
1). It is calculated by the algorithms and targeted to configure the PWM
module. It may be limited by upper or lower limits.

f16C frac16_t The phase-C duty cycle is a 16-bit fractional value within the range of <0 ;
1). It is calculated by the algorithms and targeted to configure the PWM
module. It may be limited by upper or lower limits.

sShift f16A frac16_t The phase-A shift is a 16-bit fractional value within the range of <-1 ; 1). It
is calculated by the algorithms and targeted to configure the PWM module.

f16B frac16_t The phase-B shift is a 16-bit fractional value within the range of <-1 ; 1). It
is calculated by the algorithms and targeted to configure the PWM module.

f16C frac16_t The phase-C shift is a 16-bit fractional value within the range of <-1 ; 1). It
is calculated by the algorithms and targeted to configure the PWM module.

2.9.4 GMCLIB_PHASE_INDEX_T type description
The enum data type for labeling the phases in the GMCLIB_ADC_CONFIG_T_F16 structure.

Name Value Description

kPhaseA 0U Phase A

kPhaseB 1U Phase B

kPhaseC 2U Phase C

2.9.5 Declaration
The available GMCLIB_SvmStdShifted function has the following declaration:

void GMCLIB_SvmStdShifted_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, const GMCLIB_SVMSTDSHIFTED_T_F16
*psParam, GMCLIB_ADC_CONFIG_T_F16 *psCfgMeas, GMCLIB_PWM_CONFIG_T_F16 *psCfgPWM)

2.9.6 Function use
The use of the GMCLIB_SvmStdShifted function is shown in the following example:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBetaIn;
static GMCLIB_SVMSTDSHIFTED_T_F16 sParam;
static GMCLIB_ADC_CONFIG_T_F16 sCfgMeas;
static GMCLIB_PWM_CONFIG_T_F16 sCfgPWM;

void Isr(void);

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 53 / 98

void main(void)
{
 /* Alpha, Beta voltage inputs */
 sAlphaBetaIn.f16Alpha = FRAC16(0.25);
 sAlphaBetaIn.f16Beta = FRAC16(0.1)
 /* Set SvmStdShifted parameter */
 sParam.f16LowerLim = FRAC16(0.01);
 sParam.f16UpperLim = FRAC16(0.9);
 sParam.f16MinT1T2 = FRAC16(0.1);
}
/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation update the output structures sCfgMeas and sCfPWM
 to confugure the ADC and PWM modules */
 GMCLIB_SvmStdShifted_F16(&sAlphaBetaIn, &sParam, &sCfgMeas, &sCfgPWM);
}

2.10 GMCLIB_SvmStd

The GMCLIB_SvmStdfunction calculates the appropriate duty-cycle ratios, which are needed for generation of the given
stator-reference voltage vector, using a special standard space vector modulation technique.

The GMCLIB_SvmStd function for calculating the duty-cycle ratios is widely used in modern electric drives. This function
calculates the appropriate duty-cycle ratios, which are needed for generating the given stator reference voltage vector, using a
special space vector modulation technique, called standard space vector modulation.

The basic principle of the standard space vector modulation technique can be explained using the power stage diagram shown
in Figure 1.

Figure 40. Power stage schematic diagram

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 54 / 98

The top and bottom switches are working in a complementary mode; for example, if the top switch SAt is on, then the corresponding
bottom switch SAb is off, and vice versa. Considering that the value 1 is assigned to the ON state of the top switch, and value
0 is assigned to the ON state of the bottom switch, the switching vector [a, b, c]T can be defined. Creating of such vector
allows for numerical definition of all possible switching states. Phase-to-phase voltages can then be expressed in terms of the
following states:

where UDCBus is the instantaneous voltage measured on the DC-bus.

Assuming that the motor is completely symmetrical, it is possible to write a matrix equation, which expresses the motor phase
voltages shown in GMCLIB_SvmStd_Eq1.

In a three-phase power stage configuration (as shown in Figure 1), eight possible switching states (shown in Figure 2) are feasible.
These states, together with the resulting instantaneous output line-to-line and phase voltages, are listed in Table 1.

Table 11. Switching patterns

A B C Ua Ub Uc UAB UBC UCA Vector

0 0 0 0 0 0 0 0 0 O000

1 0 0 2UDCBus/3 -UDCBus/3 -UDCBus/3 UDCBus 0 -UDCBus U0

1 1 0 UDCBus/3 UDCBus/3 -2UDCBus/3 0 UDCBus -UDCBus U60

0 1 0 -UDCBus/3 2UDCBus/3 -UDCBus/3 -UDCBus UDCBus 0 U120

0 1 1 -2UDCBus/3 UDCBus/3 UDCBus/3 -UDCBus 0 UDCBus U240

0 0 1 -UDCBus/3 -UDCBus/3 2UDCBus/3 0 -UDCBus UDCBus U300

1 0 1 UDCBus/3 -2UDCBus/3 UDCBus/3 UDCBus -UDCBus 0 U360

1 1 1 0 0 0 0 0 0 O111

The quantities of the direct-α and the quadrature-β components of the two-phase orthogonal coordinate system, describing the
three-phase stator voltages, are expressed using the Clark transformation, arranged in a matrix form:

The three-phase stator voltages - Ua, Ub, and Uc, are transformed using the Clark transformation into the direct-α and the
quadrature-β components of the two-phase orthogonal coordinate system. The transformation results are listed in Table 2.

Table 12. Switching patterns and space vectors

A B C Uα Uβ Vector

0 0 0 0 0 O000

1 0 0 2UDCBus/3 0 U0

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 55 / 98

Table 12. Switching patterns and space vectors (continued)

A B C Uα Uβ Vector

1 1 0 UDCBus/3 UDCBus/√3 U60

0 1 0 -UDCBus/3 UDCBus/√3 U120

0 1 1 -2UDCBus/3 0 U240

0 0 1 -UDCBus/3 -UDCBus/√3 U300

1 0 1 UDCBus/3 -UDCBus/√3 U360

1 1 1 0 0 O111

Figure 2 depicts the basic feasible switching states (vectors). There are six nonzero vectors - U0, U60,U120, U180, U240, and U300,
and two zero vectors - O111 and O000, usable for switching. Therefore, the principle of the standard space vector modulation lies
in applying the appropriate switching states for a certain time, and thus generating a voltage vector identical to the reference one.

Figure 41. Basic space vectors

Referring to this principle, the objective of the standard space vector modulation is an approximation of the reference stator voltage
vector US, with an appropriate combination of the switching patterns, composed of basic space vectors. The graphical explanation
of this objective is shown in Figure 3 and Figure 4.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 56 / 98

Figure 42. Projection of reference voltage vector in the respective sector

The stator reference voltage vector US is phase-advanced by 30° from the direct-α, and thus can be generated with an appropriate
combination of the adjacent basic switching states U0 and U60. These figures also indicate the resultant direct-α and quadrature-β
components for space vectors U0 and U60.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 57 / 98

Figure 43. Detail of the voltage vector projection in the respective sector

In this case, the reference stator voltage vector US is located in sector I, and can be generated using the appropriate duty-cycle
ratios of the basic switching states U0 and U60. The principal equations concerning this vector location are as follows:

where T60 and T0 are the respective duty-cycle ratios, for which the basic space vectors T60 and T0 should be applied within the
time period T. Tnull is the time, for which the null vectors O000 and O111 are applied. Those duty-cycle ratios can be calculated using
the following equations:

Considering that normalized magnitudes of basic space vectors are |U60| = |U0| = 2 / √3, and by the substitution of the trigonometric
expressions sin 60° and tan 60° by their quantities 2 / √3, and √3, respectively, the GMCLIB_SvmStd_Eq5 can be rearranged for
the unknown duty-cycle ratios T60 / T and T0 / T as follows:

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 58 / 98

Sector II is depicted in GMCLIB_SvmStd_Img5. In this particular case, the reference stator voltage vector US is generated using
the appropriate duty-cycle ratios of the basic switching states T60 and T120. The basic equations describing this sector are
as follows:

where T120 and T60 are the respective duty-cycle ratios, for which the basic space vectors U120 and U60 should be applied within
the time period T. Tnull is the time, for which the null vectors O000 and O111 are applied. These resultant duty-cycle ratios are
formed from the auxiliary components, termed A and B. The graphical representation of the auxiliary components is shown
in GMCLIB_SvmStd_Img6.

Figure 44. Projection of the reference voltage vector in the respective sector

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 59 / 98

Figure 45. Detail of the voltage vector projection in the respective sector

The equations describing those auxiliary time-duration components are as follows:

Equations in GMCLIB_SvmStd_Eq8 have been created using the sine rule.

The resultant duty-cycle ratios T120 / T and T60 / T are then expressed in terms of the auxiliary time-duration components, defined
by GMCLIB_SvmStd_Eq9as follows:

Using these equations, and also considering that the normalized magnitudes of the basic space vectors are |U120| = |U60| = 2 / √3 ,
the equations expressed for the unknown duty-cycle ratios of basic space vectors T120 / T and T60 / T can be expressed as follows:

The duty-cycle ratios in the remaining sectors can be derived using the same approach. The resulting equations will be similar to
those derived for sector I and sector II.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 60 / 98

To depict the duty-cycle ratios of the basic space vectors for all sectors, we define:

• Three auxiliary variables:

• Two expressions - t_1 and t_2, which generally represent the duty-cycle ratios of the basic space vectors in the respective
sector (for example, for the first sector, t_1 and t_2), represent duty-cycle ratios of the basic space vectors U60 and U0; for the
second sector, t_1 and t_2 represent duty-cycle ratios of the basic space vectors U120 and U60, and so on.

The expressions t_1 and t_2, in terms of auxiliary variables X, Y, and Z for each sector, are listed in Table 3.

Table 13. Determination of t_1 and t_2 expressions

Sectors U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

t_1 X Y -Y Z -Z -X

t_2 -Z Z X -X -Y Y

For the determination of auxiliary variables X, Y, and Z, the sector number is required. This information can be obtained using
several approaches. The approach discussed here requires the use of modified Inverse Clark transformation to transform
the direct-α and quadrature-β components into balanced three-phase quantities uref1, uref2, and uref3, used for straightforward
calculation of the sector number, to be shown later.

The modified Inverse Clark transformation projects the quadrature-uβ component into uref1, as shown in GMCLIB_SvmStd_Img7
and GMCLIB_SvmStd_Img8, whereas voltages generated by the conventional Inverse Clark transformation project the direct-uα
component into uref1.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 61 / 98

Figure 46. Direct-ua and quadrature-ub components of the stator reference voltage

GMCLIB_SvmStd_Img7 depicts the direct-uα and quadrature-uβ components of the stator reference voltage vector US, which were
calculated using equations uα = cos ϑ and uβ = sin ϑ, respectively.

Figure 47. Reference voltages Uref1, Uref2, and Uref3

The sector identification tree shown in GMCLIB_SvmStd_Img9 can be a numerical solution of the approach shown
in GMCLIB_SvmStd_Img8.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 62 / 98

Figure 48. Identification of the sector number

In the worst case, at least three simple comparisons are required to precisely identify the sector of the stator reference voltage
vector. For example, if the stator reference voltage vector is located as shown in GMCLIB_SvmStd_Img3, the stator-reference
voltage vector is phase-advanced by 30° from the direct α-axis, which results in the positive quantities of uref1 and uref2, and the
negative quantity of uref3; see GMCLIB_SvmStd_Img8. If these quantities are used as the inputs for the sector identification tree,
the product of those comparisons will be sector I. The same approach identifies sector II, if the stator-reference voltage vector is
located as shown in GMCLIB_SvmStd_Img5. The variables t1, t2, and t3, which represent the switching duty-cycle ratios of the
respective three-phase system, are calculated according to the following equations:

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic space vectors given for the respective
sector; Table 3, GMCLIB_SvmStd_Eq3, and GMCLIB_SvmStd_Eq15 are specific solely to the standard space vector modulation
technique; other space vector modulation techniques discussed later will require deriving different equations.

The next step is to assign the correct duty-cycle ratios - t1, t2, and t3, to the respective motor phases. This is a simple task,
accomplished in a view of the position of the stator reference voltage vector; see .

Table 14. Assignment of the duty-cycle ratios to motor phases

Sectors U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

pwm_a t3 t2 t1 t1 t2 t3

pwm_b t2 t3 t3 t2 t1 t1

pwm_c t1 t1 t2 t3 t3 t2

The principle of the space vector modulation technique consists of applying the basic voltage vectors UXXX and OXXX for certain
time, in such a way that the main vector generated by the pulse width modulation approach for the period T is equal to the original
stator reference voltage vector US. This provides a great variability of arrangement of the basic vectors during the PWM period T.
These vectors might be arranged either to lower the switching losses, or to achieve diverse results, such as center-aligned PWM,
edge-aligned PWM, or a minimal number of switching states. A brief discussion of the widely used center-aligned PWM follows.

Generating the center-aligned PWM pattern is accomplished by comparing the threshold levels pwm_a, pwm_b, and pwm_c with
a free-running up-down counter. The timer counts to one, and then down to zero. It is supposed that when a threshold level is larger
than the timer value, the respective PWM output is active. Otherwise, it is inactive; see GMCLIB_SvmStd_Img10.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 63 / 98

Figure 49. Standard space vector modulation technique — center-aligned PWM

GMCLIB_SvmStd_Img11 shows the waveforms of the duty-cycle ratios, calculated using standard space vector modulation.

For the accurate calculation of the duty-cycle ratios, direct-α, and quadrature-β components of the stator reference voltage
vector, it must be considered that the duty cycle cannot be higher than one (100 %); in other words, the assumption

must be met.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 64 / 98

Figure 50. Standard space vector modulation technique

2.10.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmStd function are shown in the following table.

Table 15. Function versions

Function name Input type Output type Result type

GMCLIB_SvmStd_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard space vector modulation with a 16-bit fractional stationary (α-β) input and a 16-bit fractional
three-phase output. The result type is a 16-bit unsigned integer, which indicates the actual SVM
sector. The input is within the range <-1 ; 1); the output duty cycle is within the range <0 ; 1). The
output sector is an integer value within the range <1 ; 6>.

2.10.2 Declaration
The available GMCLIB_SvmStd functions have the following declarations:

uint16_t GMCLIB_SvmStd_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 65 / 98

2.10.3 Function use
The use of the GMCLIB_SvmStd function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmStd_F16(&sAlphaBeta, &sAbc);
}

2.11 GMCLIB_SvmIct

The GMCLIB_SvmIctfunction calculates the appropriate duty-cycle ratios, which are needed for generation of the given
stator-reference voltage vector using the general sinusoidal modulation technique.

The GMCLIB_SvmIct function calculates the appropriate duty-cycle ratios, needed for generation of the given stator reference
voltage vector using the conventional Inverse Clark transformation. Finding the sector in which the reference stator voltage vector
US resides is similar to GMCLIB_SvmStd. This is achieved by first converting the direct-α and the quadrature-β components of
the reference stator voltage vector US into the balanced three-phase quantities uref1, uref2, and uref3 using the modified Inverse
Clark transformation:

The calculation of the sector number is based on comparing the three-phase reference voltages uref1, uref2, and uref3 with zero.
This computation is described by the following set of rules:

After passing these rules, the modified sector numbers are then derived using the following formula:

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 66 / 98

The sector numbers determined by this formula must be further transformed to correspond to those determined by the sector
identification tree. The transformation which meets this requirement is shown in the following table:

Table 16. Transformation of the sectors

Sector* 1 2 3 4 5 6

Sector 2 6 1 4 3 5

Use the Inverse Clark transformation for transforming values such as flux, voltage, and current from an orthogonal rotating
coordination system (uα, uβ) to a three-phase rotating coordination system (ua, ub, and uc). The original equations of the Inverse
Clark transformation are scaled here to provide the duty-cycle ratios in the range <0 ; 1). These scaled duty cycle ratios pwm_a,
pwm_b, and pwm_c can be used directly by the registers of the PWM block.

The following figure shows the waveforms of the duty-cycle ratios calculated using the Inverse Clark transformation.

Figure 51. Inverse Clark transform modulation technique

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 67 / 98

For an accurate calculation of the duty-cycle ratios and the direct-α and quadrature-β components of the stator
reference voltage vector, the duty cycle cannot be higher than one (100 %); in other words, the assumption

must be met.

2.11.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmIct function are shown in the following table:

Table 17. Function versions

Function name Input type Output type Result type

GMCLIB_SvmIct_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (α-β) input and a 16-bit
fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates the actual
SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the range <0 ; 1).
The output sector is an integer value within the range <1 ; 6>.

2.11.2 Declaration
The available GMCLIB_SvmIct functions have the following declarations:

uint16_t GMCLIB_SvmIct_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.11.3 Function use
The use of the GMCLIB_SvmIct function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmIct_F16(&sAlphaBeta, &sAbc);
}

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 68 / 98

2.12 GMCLIB_SvmU0n

The GMCLIB_SvmU0nfunction calculates the appropriate duty-cycle ratios, which are needed for generation of the given
stator-reference voltage vector using the general sinusoidal modulation technique.

The GMCLIB_SvmU0n function for calculating of duty-cycle ratios is widely used in modern electric drives. This function calculates
the appropriate duty-cycle ratios, which are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with O000 nulls, where only one type of null vector O000 is used (all
bottom switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with O000 nulls is in many aspects identical to the approach
presented in GMCLIB_SvmStd. However, a distinct difference lies in the definition of the variables t1, t2, and t3 that represent
switching duty-cycle ratios of the respective phases:

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic space vectors that are defined for the
respective sector in Table 2-7.

The generally used center-aligned PWM is discussed briefly in the following sections. Generating the center-aligned PWM pattern
is accomplished practically by comparing the threshold levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter.
The timer counts up to 1 (0x7FFF) and then down to 0 (0x0000). It is supposed that when a threshold level is larger than the timer
value, the respective PWM output is active. Otherwise it is inactive (see GMCLIB_SvmU0n_Img1).

Figure 52. Space vector modulation technique with O000 nulls — center-aligned PWM

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 69 / 98

Figure GMCLIB_SvmU0n_Img1 shows calculated waveforms of the duty cycle ratios using space vector modulation with
O000 nulls.

For an accurate calculation of the duty-cycle ratios, direct-α, and quadrature-β components of the stator reference
voltage vector, consider that the duty cycle cannot be higher than one (100 %); in other words, the assumption

must be met.

Figure 53. Space vector modulation technique with O000 nulls

2.12.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmU0n function are shown in the following table:

Table 18. Function versions

Function name Input type Output type Result type

GMCLIB_SvmU0n_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (α-β) input, and a 16-bit
fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates the actual

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 70 / 98

Table 18. Function versions

Function name Input type Output type Result type

SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the range <0 ; 1).
The output sector is an integer value within the range <1 ; 6>.

2.12.2 Declaration
The available GMCLIB_SvmU0n functions have the following declarations:

uint16_t GMCLIB_SvmU0n_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.12.3 Function use
The use of the GMCLIB_SvmU0n function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmU0n_F16(&sAlphaBeta, &sAbc);
}

2.13 GMCLIB_SvmU7n

The GMCLIB_SvmU7n function calculates the appropriate duty-cycle ratios, which are needed for generation of the given
stator-reference voltage vector, using the general sinusoidal modulation technique.

The GMCLIB_SvmU7n function for calculating the duty-cycle ratios is widely used in modern electric drives. This function
calculates the appropriate duty-cycle ratios, which are needed for generating the given stator reference voltage vector using a
special space vector modulation technique called space vector modulation with O111 nulls, where only one type of null vector O111
is used (all top switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with O111 nulls is identical (in many aspects) to the approach
presented in GMCLIB_SvmStd. However, a distinct difference lies in the definition of variables t1, t2, and t3 that represent switching
duty-cycle ratios of the respective phases:

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 71 / 98

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic space vectors defined for the respective
sector in Table 2-7.

The generally-used center-aligned PWM is discussed briefly in the following sections. Generating the center-aligned PWM pattern
is accomplished by comparing threshold levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The timer
counts up to 1 (0x7FFF) and then down to 0 (0x0000). It is supposed that when a threshold level is larger than the timer value,
the respective PWM output is active. Otherwise, it is inactive (see GMCLIB_SvmU7n_Img1).

Figure 54. Space vector modulation technique with O111 nulls — center-aligned PWM

Figure GMCLIB_SvmU7n_Img1 shows calculated waveforms of the duty-cycle ratios using Space Vector Modulation with
O111 nulls.

For an accurate calculation of the duty-cycle ratios, direct-α, and quadrature-β components of the stator reference voltage
vector, it must be considered that the duty cycle cannot be higher than one (100 %); in other words, the assumption

must be met.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 72 / 98

Figure 55. Space vector modulation technique with O111 nulls

2.13.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmU7n function are shown in the following table:

Table 19. Function versions

Function name Input type Output type Result type

GMCLIB_SvmU7n_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (α-β) input and a 16-bit
fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates the actual
SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the range <0 ; 1).
The output sector is an integer value within the range <1 ; 6>.

2.13.2 Declaration
The available GMCLIB_SvmU7n functions have the following declarations:

uint16_t GMCLIB_SvmU7n_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 73 / 98

2.13.3 Function use
The use of the GMCLIB_SvmU7n function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmU7n_F16(&sAlphaBeta, &sAbc);
}

2.14 GMCLIB_SvmDpwm

The GMCLIB_SvmDpwmfunction calculates the appropriate duty-cycle ratios needed for the generation of the given stator-
reference voltage vector using the general non-sinusoidal modulation technique. The GMCLIB_SvmDpwmfunction is a subset of
the GMCLIB_SvmExDpwmfunction and includes a power factor angle input. Both functions are identical if φ = 0.

The GMCLIB_SvmDpwm function belongs to the discontinuous PWM modulation techniques for 3-phase voltage inverters. The
advantages of the discontinuous PWM technique are lower switching loses, but, on the other hand, it can cause higher harmonic
distortion at low modulation indexes. The current sensing at low modulation indexes is more complicated and less precise when
compared with the symmetrical modulation techniques like GMCLIB_SvmStd. Therefore, the discontinuous and continous SVM
are usually combined together.

Finding the sector in which the reference stator voltage vector US resides is similar to GMCLIB_SvmStd. This is achieved
by converting the direct-α and quadrature-β components of the reference stator voltage vector US into the balanced 3-phase
quantities uref1, uref2, and uref3 using the modified Inverse Clarke transformation:

The sector calculation is based on comparing the 3-phase reference voltages uref1, uref2, and uref3 with zero. This computation is
described by the following figure:

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 74 / 98

Figure 56. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt resistors are used. The
GMCLIB_SvmDpwmfunction does not require the sector directly, but it requires the portion identification explained in the
following. The Inverse Clarke transformation converts the uα, uβ voltage components of the reference stator voltage vector US to
3-phase voltage components ua, ub, and uc. The portion identification selects the portion from the ua, ub, and uc voltages, based
on the following conditions.

Figure 57. Identification of the portion number

Finally, the corresponding duty cycle is selected according to the portion from the column of the following table.

Table 20. Duty cycle calculation from portions

Portions I II III IV V VI

Voltage
boundaries

U330,U30 U30,U90 U90,U150 U150,U210 U210,U270 U270,U330

pwm_a 1 0 - uref3 1 + uref2 0 1 - uref3 0 + uref2

pwm_b 1 - uref2 0 + uref1 = uβ 1 0 - uref2 1 + uref1 = 1 + uβ 0

pwm_c 1 + uref3 0 1 - uref1 = 1 - uβ 0 + uref3 1 0 - uref1 = 0 - uβ

2.14.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmDpwm function are shown in the following table:

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 75 / 98

Table 21. Function versions

Function name Input type Output type Result type

GMCLIB_SvmDpwm_F1
6

GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard discontinuous PWM with a 16-bit fractional stationary (α-β) input, and a 16-bit fractional
3-phase output. The result type is a 16-bit unsigned integer, which indicates the actual SVM sector.
The input is within the range <-1 ; 1); the output duty cycle is within the range <0 ; 1). The output
sector is an integer value within the range <1 ; 6>.

2.14.2 Declaration
The available GMCLIB_SvmDpwm functions have the following declarations:

uint16_t GMCLIB_SvmDpwm_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.14.3 Function use
The use of the GMCLIB_SvmDpwm function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);

/* Periodical function or interrupt */
}

 void Isr(void)
{
 /* Standard Discountinues PWM SVM calculation */
 u16Sector = GMCLIB_SvmGenDpwm_F16(&sAlphaBeta, &sAbc);
}

2.15 GMCLIB_SvmExDpwm

The GMCLIB_SvmExDpwmfunction calculates the appropriate duty-cycle ratios needed for the generation of the given stator-
reference voltage vector using the general non-sinusoidal modulation technique. The GMCLIB_SvmExDpwmfunction is a
superset of the GMCLIB_SvmDpwmfunction without the power factor angle input.

The GMCLIB_SvmExDpwm function belongs to the discontinuous PWM modulation techniques for a 3-phase voltage inverter.
The advantages of the discontinuous PWM technique are lower switching loses, but, on the other hand, it can cause higher
harmonic distortion at low modulation indexes. The current sensing at low modulation indexes is more complicated and less
precise when compared to the symmetrical modulation techniques like GMCLIB_SvmStd. Therefore, the discontinuous and
continuous SVM are usually combined together.

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 76 / 98

Finding the sector in which the reference stator voltage vector US resides is similar to GMCLIB_SvmStd. This is achieved
by converting the direct-α and quadrature-β components of the reference stator voltage vector US into the balanced 3-phase
quantities uref1, uref2, and uref3 using the modified Inverse Clarke transformation:

The sector calculation is based on comparing the 3-phase reference voltages uref1, uref2, and uref3 with zero. This computation is
described by the following figure:

Figure 58. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt resistors are used. The
GMCLIB_SvmExDpwmfunction does not require the sector directly, but it requires the portion identification explained in following
text. The Park transformation uses the phase shift of the generated phase voltages and currents - φ angle to rotate the reference
stator voltage vector US to US* with the uα*, uβ* components. The inverse Clarke transformation converts the uα*, uβ* voltage
components to 3-phase voltage components ua*, ub*, and uc*. The portion identification selects the portion from the ua*, ub*, and
uc* voltages based on the following conditions.

Figure 59. Identification of the portion number

Finally, the corresponding duty cycle is selected according to the portion from the column of the following table.

Table 22. Duty cycle calculation from portions

Portions I II III IV V VI

Voltage
boundaries

U330,U30 U30,U90 U90,U150 U150,U210 U210,U270 U270,U330

pwm_a 1 0 - uref3 1 + uref2 0 1 - uref3 0 + uref2

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 77 / 98

Table 22. Duty cycle calculation from portions (continued)

pwm_b 1 - uref2 0 + uref1 = uβ 1 0 - uref2 1 + uref1 = 1 + uβ 0

pwm_c 1 + uref3 0 1 - uref1 = 1 - uβ 0 + uref3 1 0 - uref1 = 0 - uβ

2.15.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmExDpwm function are shown in the following table:

Table 23. Function versions

Function name Input type Output type Result type

GMCLIB_SvmExDpwm_
F16

GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

GMCLIB_2COOR_SINCOS_T_F16 *

Extended discontinuous PWM with a 16-bit fractional stationary (α-β) input, the second input using a
16-bit fractional (sin(φ) / cos(φ)) structure of φ angle (-1/6 ; 1/6) in fraction corresponding (-π/6 ; π/6)
in radians - angle of the power factor, it is a phase shift of the generated phase voltages and currents
and a 16-bit fractional 3-phase output. The result type is a 16-bit unsigned integer which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the range
<0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.15.2 Declaration
The available GMCLIB_SvmExDpwm functions have the following declarations:

uint16_t GMCLIB_SvmExDpwm_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn,const GMCLIB_2COOR_SINCOS_T_F16
*psAngle, GMCLIB_3COOR_T_F16 *psOut)

2.15.3 Function use
The use of the GMCLIB_SvmExDpwm function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_2COOR_SINCOS_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);

 /* Power factor angle structure initialization */
 sAngle.f16Cos = FRAC16(1.0);
 sAngle.f16Sin = FRAC16(0.0);
}

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 78 / 98

/* Periodical function or interrupt */
void Isr(void)
{
 /* Extended Discountinues PWM calculation */
 u16Sector = GMCLIB_SvmExDpwm_F16(&sAlphaBeta, &sAngle, &sAbc);
}

NXP Semiconductors
Algorithms in detail

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 79 / 98

Appendix A
Library types
A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two states: TRUE (1) or FALSE (0). Its definition
is as follows:

typedef unsigned short bool_t;

The following figure shows the way in which the data is stored by this type:

Table 24. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused Logi
cal

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1

FALSE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within the range <0 ; 255>. Its definition is
as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

Table 25. Data storage

7 6 5 4 3 2 1 0

Value Integer

255 1 1 1 1 1 1 1 1

F F

Table continues on the next page...

NXP Semiconductors

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 80 / 98

Table 25. Data storage (continued)

11 0 0 0 0 1 0 1 1

0 B

124 0 1 1 1 1 1 0 0

7 C

159 1 0 0 1 1 1 1 1

9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables within the range <0 ; 65535>. Its definition is
as follows:

typedef unsigned short uint16_t;

The following figure shows the way in which the data is stored by this type:

Table 26. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer

65535 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F F F F

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 5

15518 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

40768 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 81 / 98

A.4 uint32_t

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables within the range <0 ; 4294967295>. Its definition
is as follows:

typedef unsigned long uint32_t;

The following figure shows the way in which the data is stored by this type:

Table 27. Data storage

31 24 23 16 15 8 7 0

Value Integer

4294967295 F F F F F F F F

2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

3451051828 C D B 2 D F 3 4

A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the range <-128 ; 127>. Its definition is as follows:

typedef char int8_t;

The following figure shows the way in which the data is stored by this type:

Table 28. Data storage

7 6 5 4 3 2 1 0

Value Sign Integer

127 0 1 1 1 1 1 1 1

7 F

-128 1 0 0 0 0 0 0 0

8 0

60 0 0 1 1 1 1 0 0

3 C

Table continues on the next page...

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 82 / 98

Table 28. Data storage (continued)

-97 1 0 0 1 1 1 1 1

9 F

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the range <-32768 ; 32767>. Its definition is
as follows:

typedef short int16_t;

The following figure shows the way in which the data is stored by this type:

Table 29. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer

32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-32768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

15518 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-24768 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the range <-2147483648 ; 2147483647>. Its
definition is as follows:

typedef long int32_t;

The following figure shows the way in which the data is stored by this type:

Table 30. Data storage

Table continues on the next page...

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 83 / 98

Table 30. Data storage (continued)

31 24 23 16 15 8 7 0

Value S Integer

2147483647 7 F F F F F F F

-2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

-843915468 C D B 2 D F 3 4

A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;

The following figure shows the way in which the data is stored by this type:

Table 31. Data storage

7 6 5 4 3 2 1 0

Value Sign Fractional

0.99219 0 1 1 1 1 1 1 1

7 F

-1.0 1 0 0 0 0 0 0 0

8 0

0.46875 0 0 1 1 1 1 0 0

3 C

-0.75781 1 0 0 1 1 1 1 1

9 F

To store a real number as frac8_t, use the FRAC8 macro.

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 84 / 98

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is
as follows:

typedef short frac16_t;

The following figure shows the way in which the data is stored by this type:

Table 32. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Fractional

0.99997 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

0.47357 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-0.75586 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is
as follows:

typedef long frac32_t;

The following figure shows the way in which the data is stored by this type:

Table 33. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995 7 F F F F F F F

Table continues on the next page...

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 85 / 98

Table 33. Data storage (continued)

-1.0 8 0 0 0 0 0 0 0

0.02606645970 0 3 5 6 2 5 5 0

-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-256 ; 256). Its definition is
as follows:

typedef short acc16_t;

The following figure shows the way in which the data is stored by this type:

Table 34. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional

255.9921875 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-256.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

1.0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 8 0

-1.0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

F F 8 0

13.7890625 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

0 6 E 5

-89.71875 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0

D 3 2 4

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 86 / 98

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables within the range <-65536 ; 65536). Its
definition is as follows:

typedef long acc32_t;

The following figure shows the way in which the data is stored by this type:

Table 35. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional

65535.999969 7 F F F F F F F

-65536.0 8 0 0 0 0 0 0 0

1.0 0 0 0 0 8 0 0 0

-1.0 F F F F 8 0 0 0

23.789734 0 0 0 B E 5 1 6

-1171.306793 F D B 6 5 8 B C

To store a real number as acc32_t, use the ACC32 macro.

A.13 float_t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE 754. It is able to store the full precision
(normalized) finite variables within the range <-3.40282 · 1038 ; 3.40282 · 1038) with the minimum resolution of 2-23. The smallest
normalized number is ±1.17549 · 10-38. Nevertheless, the denormalized numbers (with reduced precision) reach yet lower values,
from ±1.40130 · 10-45 to ±1.17549 · 10-38. The standard also defines the additional values:

• Negative zero

• Infinity

• Negative infinity

• Not a number

The 32-bit type is composed of:

• Sign (bit 31)

• Exponent (bits 23 to 30)

• Mantissa (bits 0 to 22)

The conversion of the number is straighforward. The sign of the number is stored in bit 31. The binary exponent is decoded as
an integer from bits 23 to 30 by subtracting 127. The mantissa (fraction) is stored in bits 0 to 22. An invisible leading bit (it is not

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 87 / 98

actually stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a value 0.25, and so on. As a result,
the mantissa has a value between 1.0 and 2. If the exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used
to enable the gradual underflow.

The float_t type definition is as follows:

typedef float float_t;

The following figure shows the way in which the data is stored by this type:

Table 36. Data storage - normalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

(2.0 - 2-23) · 2127 0 1 1 1 1 1 1 1 0 1

≈ 3.40282 · 1038 7 F 7 F F F F F

-(2.0 - 2-23) · 2127 1 1 1 1 1 1 1 1 0 1

≈ -3.40282 · 1038 F F 7 F F F F F

2-126 0 0 0 0 0 0 0 0 1 0

≈ 1.17549 · 10-38 0 0 8 0 0 0 0 0

-2-126 1 0 0 0 0 0 0 0 1 0

≈ -1.17549 · 10-38 8 0 8 0 0 0 0 0

1.0 0 0 1 1 1 1 1 1 1 0

3 F 8 0 0 0 0 0

-1.0 1 0 1 1 1 1 1 1 1 0

B F 8 0 0 0 0 0

π 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1

≈ 3.1415927 4 0 4 9 0 F D B

-20810.086 1 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0

C 6 A 2 9 4 2 C

Table continues on the next page...

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 88 / 98

Table 36. Data storage - normalized values (continued)

Table 37. Data storage - denormalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

0.0 0

0 0 0 0 0 0 0 0

-0.0 1 0

8 0 0 0 0 0 0 0

(1.0 - 2-23) · 2-126 0 0 0 0 0 0 0 0 0 1

≈ 1.17549 · 10-38 0 0 7 F F F F F

-(1.0 - 2-23) · 2-126 1 0 0 0 0 0 0 0 0 1

≈ -1.17549 · 10-38 8 0 7 F F F F F

2-1 · 2-126 0 0 0 0 0 0 0 0 0 1 0

≈ 5.87747 · 10-39 0 0 4 0 0 0 0 0

-2-1 · 2-126 1 0 0 0 0 0 0 0 0 1 0

≈ -5.87747 · 10-39 8 0 4 0 0 0 0 0

2-23 · 2-126 0 1

≈ 1.40130 · 10-45 0 0 0 0 0 0 0 1

-2-23 · 2-126 1 0 1

≈ -1.40130 · 10-45 8 0 0 0 0 0 0 1

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 89 / 98

Table 38. Data storage - special values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

∞ 0 1 1 1 1 1 1 1 1 0

7 F 8 0 0 0 0 0

-∞ 1 1 1 1 1 1 1 1 1 0

F F 8 0 0 0 0 0

Not a number * 1 1 1 1 1 1 1 1 non zero

7/F F 800001 to FFFFFF

A.14 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_F16 structure type corresponds to the three-phase stationary coordinate system, based on the A, B, and
C components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16A;
 frac16_t f16B;
 frac16_t f16C;
} GMCLIB_3COOR_T_F16;

The structure description is as follows:

Table 39. GMCLIB_3COOR_T_F16 members description

Type Name Description

frac16_t f16A A component; 16-bit fractional type

frac16_t f16B B component; 16-bit fractional type

frac16_t f16C C component; 16-bit fractional type

A.15 GMCLIB_3COOR_T_FLT

The GMCLIB_3COOR_T_FLT structure type corresponds to the three-phase stationary coordinate system, based on the A, B, and
C components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{
 float_t fltA;
 float_t fltB;

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 90 / 98

 float_t fltC;
} GMCLIB_3COOR_T_FLT;

The structure description is as follows:

Table 40. GMCLIB_3COOR_T_FLT members description

Type Name Description

float_t fltA A component; 32-bit single precision floating-point type

float_t fltB B component; 32-bit single precision floating-point type

float_t fltC C component; 32-bit single precision floating-point type

A.16 GMCLIB_2COOR_AB_T_F16

The GMCLIB_2COOR_AB_T_F16 structure type corresponds to the general two-phase stationary coordinate system, based on
the A and B orthogonal components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16A;
 frac16_t f16B;
} GMCLIB_2COOR_AB_T_F16;

The structure description is as follows:

Table 41. GMCLIB_2COOR_AB_T_F16 members description

Type Name Description

frac16_t f16A A-component; 16-bit fractional type

frac16_t f16B B-component; 16-bit fractional type

A.17 GMCLIB_2COOR_AB_T_F32

The GMCLIB_2COOR_AB_T_F32 structure type corresponds to the general two-phase stationary coordinate system, based on
the A and B orthogonal components. Each member is of the frac32_t data type. The structure definition is as follows:

typedef struc
{
 frac32_t f32Alpha;
 frac32_t f32Beta;
} GMCLIB_2COOR_AB_T_F32;

The structure description is as follows:

Table 42. GMCLIB_2COOR_AB_T_F32 members description

Type Name Description

frac32_t f32A A component; 32-bit fractional type

frac32_t f32B B component; 32-bit fractional type

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 91 / 98

A.18 GMCLIB_2COOR_AB_T_FLT

The GMCLIB_2COOR_AB_T_FLT structure type corresponds to the general two-phase stationary coordinate system, based on
the A and B orthogonal components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{
 float_t fltAlpha;
 float_t fltBeta;
} GMCLIB_2COOR_AB_T_FLT;

The structure description is as follows:

Table 43. GMCLIB_2COOR_AB_T_FLT members description

Type Name Description

float_t fltA B-component; 32-bit single precision floating-point type

float_t fltB B-component; 32-bit single precision floating-point type

A.19 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase stationary coordinate system, based on the
Alpha and Beta orthogonal components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16Alpha;
 frac16_t f16Beta;
} GMCLIB_2COOR_ALBE_T_F16;

The structure description is as follows:

Table 44. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description

frac16_t f16Apha α-component; 16-bit fractional type

frac16_t f16Beta β-component; 16-bit fractional type

A.20 GMCLIB_2COOR_ALBE_T_FLT

The GMCLIB_2COOR_ALBE_T_FLT structure type corresponds to the two-phase stationary coordinate system based on the
Alpha and Beta orthogonal components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{
 float_t fltAlpha;
 float_t fltBeta;
} GMCLIB_2COOR_ALBE_T_FLT;

The structure description is as follows:

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 92 / 98

Table 45. GMCLIB_2COOR_ALBE_T_FLT members description

Type Name Description

float_t fltApha α-component; 32-bit single precision floating-point type

float_t fltBeta β-component; 32-bit single precision floating-point type

A.21 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16D;
 frac16_t f16Q;
} GMCLIB_2COOR_DQ_T_F16;

The structure description is as follows:

Table 46. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description

frac16_t f16D D-component; 16-bit fractional type

frac16_t f16Q Q-component; 16-bit fractional type

A.22 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the frac32_t data type. The structure definition is as follows:

typedef struct
{
 frac32_t f32D;
 frac32_t f32Q;
} GMCLIB_2COOR_DQ_T_F32;

The structure description is as follows:

Table 47. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description

frac32_t f32D D-component; 32-bit fractional type

frac32_t f32Q Q-component; 32-bit fractional type

A.23 GMCLIB_2COOR_DQ_T_FLT

The GMCLIB_2COOR_DQ_T_FLT structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{
 float_t fltD;

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 93 / 98

 float_t fltQ;
} GMCLIB_2COOR_DQ_T_FLT;

The structure description is as follows:

Table 48. GMCLIB_2COOR_DQ_T_FLT members description

Type Name Description

float_t fltD D-component; 32-bit single precision floating-point type

float_t fltQ Q-component; 32-bit single precision floating-point type

A.24 GMCLIB_2COOR_SINCOS_T_F16

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase coordinate system, based on the Sin and
Cos components of a certain angle. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16Sin;
 frac16_t f16Cos;
} GMCLIB_2COOR_SINCOS_T_F16;

The structure description is as follows:

Table 49. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description

frac16_t f16Sin Sin component; 16-bit fractional type

frac16_t f16Cos Cos component; 16-bit fractional type

A.25 GMCLIB_2COOR_SINCOS_T_FLT

The GMCLIB_2COOR_SINCOS_T_FLT structure type corresponds to the two-phase coordinate system, based on the Sin and
Cos components of a certain angle. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{
 float_t fltSin;
 float_t fltCos;
} GMCLIB_2COOR_SINCOS_T_FLT;

The structure description is as follows:

Table 50. GMCLIB_2COOR_SINCOS_T_FLT members description

Type Name Description

float_t fltSin Sin component; 32-bit single precision floating-point type

float_t fltCos Cos component; 32-bit single precision floating-point type

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 94 / 98

A.26 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = FALSE; /* bVal = FALSE */
}

A.27 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = TRUE; /* bVal = TRUE */
}

A.28 FRAC8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as follows:

#define FRAC8(x) ((frac8_t)((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>, which corresponds to <-1.0 ; 1.0-2-7>.

#include "mlib.h"

static frac8_t f8Val;

void main(void)
{
 f8Val = FRAC8(0.187); /* f8Val = 0.187 */
}

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 95 / 98

A.29 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is as follows:

#define FRAC16(x) ((frac16_t)((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) : 0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ; 0x7FFF>, which corresponds to
<-1.0 ; 1.0-2-15>.

#include "mlib.h"

static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.736); /* f16Val = 0.736 */
}

A.30 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is as follows:

#define FRAC32(x) ((frac32_t)((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000) : 0x7FFFFFFF))

The input is multiplied by 2147483648 (=231). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds
to <-1.0 ; 1.0-2-31>.

#include "mlib.h"

static frac32_t f32Val;

void main(void)
{
 f32Val = FRAC32(-0.1735667); /* f32Val = -0.1735667 */
}

A.31 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as follows:

#define ACC16(x) ((acc16_t)((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : 0x7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ; 0x7FFF> that corresponds to
<-256.0 ; 255.9921875>.

#include "mlib.h"

static acc16_t a16Val;

void main(void)
{

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 96 / 98

 a16Val = ACC16(19.45627); /* a16Val = 19.45627 */
}

A.32 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as follows:

#define ACC32(x) ((acc32_t)((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds to
<-65536.0 ; 65536.0-2-15>.

#include "mlib.h"

static acc32_t a32Val;

void main(void)
{
 a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */
}

NXP Semiconductors
Library types

GMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 97 / 98

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at
the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01 November 2021
Document identifier: CM7FGMCLIBUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Library
	1.1 Introduction
	1.1.1 Overview
	1.1.2 Data types
	1.1.3 API definition
	1.1.4 Supported compilers
	1.1.5 Library configuration
	1.1.6 Special issues

	1.2 Library integration into project (MCUXpresso IDE)
	1.3 Library integration into project (Keil µVision)
	1.4 Library integration into project (IAR Embedded Workbench)

	2 Algorithms in detail
	2.1 GMCLIB_Clark
	2.1.1 Available versions
	2.1.2 Declaration
	2.1.3 Function use

	2.2 GMCLIB_ClarkInv
	2.2.1 Available versions
	2.2.2 Declaration
	2.2.3 Function use

	2.3 GMCLIB_Park
	2.3.1 Available versions
	2.3.2 Declaration
	2.3.3 Function use

	2.4 GMCLIB_ParkInv
	2.4.1 Available versions
	2.4.2 Declaration
	2.4.3 Function use

	2.5 GMCLIB_DecouplingPMSM
	2.5.1 Available versions
	2.5.2 GMCLIB_DECOUPLINGPMSM_T_A32 type description
	2.5.3 GMCLIB_DECOUPLINGPMSM_T_FLT type description
	2.5.4 Declaration
	2.5.5 Function use

	2.6 GMCLIB_DTCompLut1D
	2.6.1 Available versions
	2.6.2 GMCLIB_DTCOMPLUT1D_T_F16 type description
	2.6.3 Declaration
	2.6.4 Function use

	2.7 GMCLIB_ElimDcBusRipFOC
	2.7.1 Available versions
	2.7.2 Declaration
	2.7.3 Function use

	2.8 GMCLIB_ElimDcBusRip
	2.8.1 Available versions
	2.8.2 Declaration
	2.8.3 Function use

	2.9 GMCLIB_SvmStdShifted
	2.9.1 Available versions
	2.9.1.1 GMCLIB_SVMSTDSHIFTED_T_F16 type description

	2.9.2 GMCLIB_ADC_CONFIG_T_F16 type description
	2.9.3 GMCLIB_PWM_CONFIG_T_F16 type description
	2.9.4 GMCLIB_PHASE_INDEX_T type description
	2.9.5 Declaration
	2.9.6 Function use

	2.10 GMCLIB_SvmStd
	2.10.1 Available versions
	2.10.2 Declaration
	2.10.3 Function use

	2.11 GMCLIB_SvmIct
	2.11.1 Available versions
	2.11.2 Declaration
	2.11.3 Function use

	2.12 GMCLIB_SvmU0n
	2.12.1 Available versions
	2.12.2 Declaration
	2.12.3 Function use

	2.13 GMCLIB_SvmU7n
	2.13.1 Available versions
	2.13.2 Declaration
	2.13.3 Function use

	2.14 GMCLIB_SvmDpwm
	2.14.1 Available versions
	2.14.2 Declaration
	2.14.3 Function use

	2.15 GMCLIB_SvmExDpwm
	2.15.1 Available versions
	2.15.2 Declaration
	2.15.3 Function use

	A Library types
	A.1 bool_t
	A.2 uint8_t
	A.3 uint16_t
	A.4 uint32_t
	A.5 int8_t
	A.6 int16_t
	A.7 int32_t
	A.8 frac8_t
	A.9 frac16_t
	A.10 frac32_t
	A.11 acc16_t
	A.12 acc32_t
	A.13 float_t
	A.14 GMCLIB_3COOR_T_F16
	A.15 GMCLIB_3COOR_T_FLT
	A.16 GMCLIB_2COOR_AB_T_F16
	A.17 GMCLIB_2COOR_AB_T_F32
	A.18 GMCLIB_2COOR_AB_T_FLT
	A.19 GMCLIB_2COOR_ALBE_T_F16
	A.20 GMCLIB_2COOR_ALBE_T_FLT
	A.21 GMCLIB_2COOR_DQ_T_F16
	A.22 GMCLIB_2COOR_DQ_T_F32
	A.23 GMCLIB_2COOR_DQ_T_FLT
	A.24 GMCLIB_2COOR_SINCOS_T_F16
	A.25 GMCLIB_2COOR_SINCOS_T_FLT
	A.26 FALSE
	A.27 TRUE
	A.28 FRAC8
	A.29 FRAC16
	A.30 FRAC32
	A.31 ACC16
	A.32 ACC32

