NXP Semiconductors
User's Guide

Document identifier: CWARMvV8TM
Rev. 11.5.0, 06/2020

CodeWarrior Development Studio for QorlQ LS
series - ARM V8 ISA, Targeting Manual

h o
P

NXP Semiconductors

Contents
Chapter 1 IntrodUcCtioN...........euuiiiiiii e e 6
1.1 REIEASE NOTES....ciiiiiiiiiie ettt e ettt e e e e e e e ettt e e e e e e e e s nn e e e e e e e e e e e annneees 6
1.2 ADOUL thiS MANUAL......coiii et e e e e e et e e e e e e e e annne 6
1.3 Accompanying DOCUMENTALION............uiiiiiiie e e e e 6
Chapter 2 Working with Projects...........ccceeiii e 8
2.1 ARMVE NEW ProjeCt WIZard...........coouiiiiiiiiiiiieeee ettt e e e e e s eeeeaeees 8
2.2 CodeWarrior Executable Importer WIizard.............ccooiiiiiiiiieeiieeee e 10
P O =T (] T [o] o] (=T e £ PP 12
2.3.1 Creating CodeWarrior Bareboard project...........cou i 13
2.3.2 Creating CodeWarrior Linux Application project............coooiiiiiie e 13
2.4 Preprocess/Disassemble fileS........oou i 14
PR B 1= o T8 Lo o 1 o i o]] [T o £ TSRS 16
2.5.1 Debugging Bareboard Project..........couo i 17
2.5.2 Debugging Linux Application Project...........cou i 18
Chapter 3 ARMv8 Build Properties...........ccciieeeiiiiiiiee e eeee e s 20
3.1 Changing BuUild Properties..........oouuuieiiiiiieeeeiiee ettt e e e e 20
3.2 ARMVS8 DUIIA SEHINGS. e e e e e nnnees 20
K 0 B 1= 1o T e o ToT T USRI 22
K320 @ o] 11171 7<= 1 (o] P SRR 24
K I G BT = o1 o TSR PPPPRR 25
K I 3 1T o 18 T [|1 T T SRS 26
3.2.5 Cross ARM GNU ASSEMDIET..........uuiiiiiiiiiie ettt e e e 27
K T I o =To T (o ToT T T o] TP PP ORI 27
K N 1 T 10T 1= USRS 27
3.2.5.3 WAININGS. ...ttt ettt ettt e et a e e bt e bt e bt e e e bt et e e e e e e beeeeaa 28
3.2.5.4 MiSCEIIANEOUS. ...ttt ettt e ekttt e e e s bt e e asb e e e sbt e e s anbeeeanbeeenans 28
3.2.6 Cross ARM C COMPIIET.........eeiiiieiiiie et e e et e e e e e e e 28
K I I o =To (o ToT T T T o] TP PP PP SR PP 29
K N 1 T 10T 1= PSPPSR 29
3.2.6.3 OPHIMIZALION. ...ttt ettt et e et n e nne e n 30
3.2.6.4 WWAININGS. ... ettt ettt ettt a et e sttt e ettt e e eh et eea ket e e bt e eh bt e e e b et e et e e nne e e e bneenan 30
3.2.6.5 MISCEIIANEOUS........ceeiiiiiie ettt e bttt e et e s bt e e sttt e ebt e e s ebneeeaabeeenan 30
3.2.7 CroSS ARM € LINKET......coiiiiiiiie ettt e e e ettt e e e et e e e e e e nbee e e e e anneeas 31
K A T € T=T o T=T - | PO PP R TSUPPPPUPRN: 31
K o] - 1 S PP OPU R TSUPPPPUPRN: 32
3.2.7.3 MISCEIIANEOUS. ...ttt ettt ekttt e et e bt e e st et e sbt e e s ebneeeanteeenans 33
3.2.8 Cross ARM GNU Create FIash IMage.........oouuiiiiiiiiiiiie e 34
K T I € T=T 01T - | PO UU R UPPPPUPRN: 34
3.2.9 Cross ARM GNU Create LiSting........c.ueeieiiiiiiiiai et ee e 35
e B R € T=T o T=T - | PO UP R UPPPPUPRO: 35
3.2.10 Cross ARM GNU PriNt SIZE......coouuuiiiiiiiiiie ettt et e 36
K [0 B €11 1= = | PSP PTSUPPPPUPRO: 36
Chapter 4 Preparing Target...........uuuiiiiiiiiiiiiceeceeeeccse e s 37
4.1 Preparing hardware targets...........eeoe oo 37

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 2/162

NXP Semiconductors

Contents

Chapter 5 Configuring Target..........coi i e 38
5.1 Target Connection configurator OVEIVIEW.coiiiiiiiiiiieee e 38
5.2 CoNfiIGUIatioN TYPES......eeiiiiiiiii et e e e e e e e e e e e as 40
5.3 Operations With CONfIQUIrAtiONS..........coiiiiiii e 42
5.4 Configure the target configuration using Target Connection Configurator............................. 42
5.5 Target ConNeCtioN EAIO...........oiiiiiii e e e e e e 44
5.6 Generating GDB script from a configuration................oooi i 46
5.7 Debugger Server CONNECLION............u i ittt e et e et e e e e e e e e e e e e e e e aees 46
5.8 Logging ConfiQUIratioN............ooiiiiiiiiiiiiiie e e e e e e e e e e e e e e 47
Chapter 6 FSL Debugger References.............ucceceeeiiiiiiiieeivccieeeecccsssee e eeeeceeeen 49
6.1 Customizing debug CONfIGQUIrAtioN..........cooiiiiiiii e 49
00 .= o PRSPPSO 51

2 I 1= o 18 T [1) RSP PRR 52

L IRC IR =1 o (1] o T RSP 54

Tt I s T T o7 YOS 56

5.1.5 OS AWAIENESS. ...ceeiiiieeeeeiieieitet ettt eta e e e e e et s s etateeeeeeeaaaeassaa e ssteaeeeeeaaaaeeaasaaanssssesneneaaaaseesanaannnenes 57

6.1.6 Other SYMDOIS.coii e et e e e e st e e e e e e e e e e nneee 58

0t A 0o 2 12 o o USSR 60

6.1.8 Trace @Nnd ProOfile.......cooiiiiiiiiii et e e e e e e e e e e e s e e s e ereeeaaaeeeaaaaanns 61

6.2 ReQISIErS fRAUIES. ...t e e 62
6.2.1 PEIIPNEIAIS VIBW...cciiiiiiiiie ittt ettt et e et e e e et e e e e b e e e e e e nnbe e e e e eannees 62

6.2.2 GDB custom register COMMAaNS............ooiiiiiiiiii e 63

6.2.2.1 reg_WIIte COMMANG........eiiiiii ittt e e ettt e e e e ettt e e e e e ettt e e e e e e nsaeeeaeeeannsaeeeeeaasbeeeaaesn 63

(I3 (=Te I (== To [eTo)1 10 T- T o Lo FO SRS UUPSPR 64

6.2.2.3 reg_Print COMMEANG.ottt ettt ettt e s bt e e aa bt e e ebe e e s aneeeeanbeeenans 65

6.2.2.4 reg_eXPOrt COMMEANT......cooiiiiiiiiei ettt ettt e ekt e e et et e sbe e e e anb et e aanteeenbeeeeanbeeenans 66

LR IO IS I 11 = 1= g o TR 67
6.3.1 LiNUX KEIMNEI @WAIENESS. ...cciiiiieieieiiieee ettt e e e e e e e e e s et eeeaaeeeeesaaennnrnnaeeeeeaaeens 67

6.3.1.1 List Linux kernel information..............oooi i e e e 67

6.3.1.1.1 GDB COMMEANGS......itiiiieeeiiiiie e e ettt e e e ettt e e e e e et e e e e e aentbeeeaeesasneaeeaeeaannsaeeeeesansseeeaeean 68

6.3.1.1.2 EClIPSE VIBW....coiiiiiiiiii ettt ettt bt 68

6.3.1.2 LiNUX KEINEI AEDUG. ...t ettt ene e 68

6.3.1.2.1 GDB COMMEANGS......itiiiieeeeiiiie e e e ettt e e e et e e e e e e st eee e e s asbeeeeeesasnsaeeeeeasnnsaeeeeesansseeeaeean 68

6.3.1.3 Linux kernel image version VErifiCation..............ccoouiiiiiiiiiiic e 70

5.3.2 U-BOOTt AWAIENESS.coi ittt e e e e e e e e e et et e e e eaeeeessaaannsenteeeeeeaaeeeeeaaaannrnnes 71

6.3.2.1 List U-BOOt iNfOrmMation............cooiiiiiiiiiie ettt e e e et e e e e e e e e e e e enees 71

6.3.2.2 U-Boot image version VErifiCatioN.............coiiiiiiiiiiiii et 71

R IR L Ut o = 1= T =Y TSR 71

6.3.3.1 Load debug data for all loaded EFl iMages...........oouiiiiiiiiiiiiie it 71

6.3.3.1.1 GDB COMMEANG.......uiiiiiiiiiiiii ettt e ettt e e e e ettt e e e e s eaeae e e e e s sastaeeeaesassseeeeeeansseeaeeaannes 72

6.3.3.2 Show information for all [oaded EFI iMages.........cc.cooiiiiiiiiii e 72

6.3.3.2.1 GDB COMMEANG.......uiiiiieiiiiiie ettt ettt e e e e et ee e e e s stbe e e e e s eastaeeeaesassaeeeeeeansseeaeeaannes 72

6.3.3.2.2 EClIPSE VIBW....ciiiiiiiiiii ettt bbbt 73

6.4 Launch a hardware GDB debug session where no configuration is available........................ 73
6.4.1 Create a debug CONfIGUIALION...........oiiiiiiiiei e 73

6.5 Memory t00IS GDB XtENSIONS........ciiiiiiiiiie e e e e e e e eeas 74
6.5.1 MEM_SPACES COMMEAN........uuiiiiiiiiiieee e e e ittt eeeeeaeee e e s s nereaereeeaaaeeeaaaaansnsansneeaeaaeeessaaannnnnnes 74

STV 2 1= 0 A C=T= (o Ioto)0 0] 1 4 =T o Vo 1 74

6.5.3 MEM_WItE COMMIANG......ciieeeiie et e e et e e e e et e e e e e e et e e e e s e e st e e eeeeasbaaeeesensnnnaaeaees 75

6.5.4 MEM_Till COMMEANG... ..ot ettt e e e e e e e e e e eeaaeeeeeseeaaaeeaeeenes 76

6.5.5 MEM_COMPAre COMMEANG........coiiiiiieeiiiiiiiiieiieeere e e e e e e e e e eeeeeaaaeeesasaannenreeeeeeeaaaeeesaaaannsensenes 77

ST G I a1 410 o] .41 ¢ =T o SRR 78

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 3/162

NXP Semiconductors

Contents

6.6 Connection tools GDB @XIENSIONS.......cciiiiiiiiiiiiiiiie et e e e e e 79
6.6.1 CW-lauNCh COMMEANG. ..ottt et e e et e e e et e e e e e nbbe e e e e anneeas 79

6.6.2 CW-0IAaQ COMMENT. ...ttt e ettt e e e bttt e e e e aabe e e e e e snbeeeeeeanbeeeeeesanbeeeaeeann 81

6.7 Miscellaneous to0ls GDB eXtENSIONS.........ccuuuiiiiiiieiiiieie e 83
6.7.1 template COMMEANG... ...t et e et e e s e b e e e s annneeeeean 83

I 2R] oo I oo 191 0 £ =T o RSP RRR 84

ARG I (0T T oo .02 F= T o Lo O PR 85

6.7.4 diSCOVET COMIMANT. ... iiiiiii ittt ettt e e e ettt e e e ettt e e e e e aabee e e e e anbeeeaeeanbeeeeeesanbeeeaeeann 86

I AR (oo I ete] 421 1 4 F=T o T RSP RRPR 87

LSS 1Y ToT oY1 1o oo) o ¢ 4= o 1= SR 90
LIRS 1@ I =TT o] o Yo ORI 91
Chapter 7 Flash Programmer.............oieiieiiiieiccce e s n s e e e e 94
7.1 Configuring flash ProgramMET.........oooi i 94
7.2 Starting flash ProgrammMEr...........oo oo e s aaeeeas 94
7.3 USINg flash programmMer.........ooi ittt e e e e e e e e e e 95
7.3.1 Erase flash MeEMOIY ..ottt e et e e e e e e e e enreeas 95

7.3.2 Write binary file in flash MemMOTrY ... 96

7.3.3 Dump flash Mmemory CONtENT...........ooi e e 96

7.3.4 ProteCt MemMOrY CONEN......coi ittt ettt e e e sttt e e e s st e e e e s sanbeeeeeeanes 97

7.3.5 Unprotect Memory CONTENT..... ..o e e e 97

7.3.6 List supported flash eVICES..........ueiiiii e 97

7.3.7 Associate flash device With DOArd............ocueiiiiiii e 97

7.3.8 Read manufacturer and deviCe ID...........c..oiiiiiiiiii e 98

7.3.9 Verify flash memory CONTENT.........ooo e 98

7.4 Switch current device used for flash programming.............oooociiiiiiiei i 98
7.5 SD/eMMC flash programmeEr..............coiii oot e e e e eneeeees 99
7.6 Viewing details about flash deviCe..............ueiiiiiiiiii e 99
7.7 Using flash programmer from eclipsSe IDE............ooooiiiiiiiiii e 99
7.7.1 How to open CodeWarrior flash Programmer WindOW..............ccooiiiiiiiiiiiiiei e 99

7.7.2 Device selection and information..............cooiiiiiii e 100

7.7.3 Manage a flash programmer SEQUENCE.ocuuiiiiiiiiiiiiee et saeeee e 101

7.7.4 Launch a flash programmer command SEQUENCE..........ccoiuuiieeiiiiiiie et 102

7.7.5 IMPOIt €XPOI SEQUENCE.....ciieeeiie ittt ittt e e e e e e e e e ettt e e taeaee e s s s s nnseeaeeeeeaaaeeeeesaaannnsseeeneeeaaanens 104
Chapter 8 Use Cases.......ccciuviiiiiiiiiiiiieeeciiieses s s e e seese e e e e e s 105
S T L = ToTo] e [=1 o TU T PRSP PPRPRP 105
T I B O R To T =T (F o PP PPPRR 105

8.1.2 Create an ARMv8 project for U-Boot debug............oooiiiiiiiiiiii e 105

8.1.3 U-BOOt dEDUG SUPPOIL. ...t e e st e e e e eee s 108

8.1.3.1 Setting the source path MapPiNg........ccoouiiiiii e 108

8.1.3.2 DebUQG CAP@DIIITIES. ... eeeeiieiieeeei e 110

8.2 Linux appliCation dEDUQG.coiiiiiiiiieiii e 111
S B IR UGt (U J PP SPT 112

8.2.2 Debugging simple Linux appliCation............c.uuiiiiiiiiiee e 112

8.2.2.1 Creating simple Linux application ProjecCt...........cocuii ettt 112

8.2.2.2 Updating remote CONNECHION.uiiiiiiie it 112

8.2.2.3 USING SYSTOOL.ceiteiiiittie ettt ettt ettt e et e et s bttt a e bt e e et e e ab e e e s b e e e ab e nane e e bae s 114

8.2.2.4 Debugging Linux application Project...........coi it 116

8.2.3 Debugging a Linux application using a shared library...........cc.ccocciiiiiiiiii e, 117

8.2.3.1 Creating Linux shared library project............ccoo i 117

8.2.3.2 Updating remote CONNECHION.iiiiiiii it 119

8.2.3.3 Updating launch configuration for Linux application using shared library.............cccocccceviiiennnnn 119

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 4/162

NXP Semiconductors

Contents

8.2.3.4 Debugging Linux shared library project...........ooioiiiiiiiiii e 120

8.2.4 Attaching to a Linux appliCation............cooiiiiiiiiii e 120

8.2.5 Debugging multi-process remote applications.............cooiiiiiiiiiiii e 122

8.3 LINUX KEINEI AEDUG. ettt et e e e e e e e e e e e e e e e e annes 123
8.3.1 LiNUX KEINEI SEIUP ...ttt e e ettt e e e st e e e e snbeeeeeens 123

8.3.2 Create an ARMv8 project for Linux kernel debug...........oocciiiiiiiiiii e 124

8.3.3 Linux Kernel debug SUPPOI.........uuiiiiiiiiiie ettt e e e 126

8.3.3.1 Setting the source path MapPiNg.........cocuiiiii e 126

8.3.3.2 Debug and Kernel Awareness capabilities.cccoviiiiiiiiiiiiii e 129

L RS 1Y oo [] (=X o [=1 oTU o o 1 T RSP 130

8.3.4.1 Module debugging USE CASES............cccouiiiiiiiiiiiii et 130

8.3.4.2 Module debugging from EClipS€ GUI.........coouiiiiiiiiiii e 132

SR | Y o 11 o1 [R 133
S Mg U =TT o F SR 134

8.4.2 Create an ARMv8 project for UEFI debug............coiiiiiiiiiiiiii e 134

8.4.3 UEF| debug SUPPOM... ...ttt ettt e e s e e e e nnneee s 136

8.4.3.1 Starting from the ReSet POINt.........cocuiiiiiii e 136

8.4.3.2 Adding debug information for EFl images loaded at runtime............cccccciiiiiiiiii i, 136

8.4.3.3 Viewing information about EFl image loaded at runtime............ccooeiiiiiiinii i 138

8.5 Import and configure AMP example ProjeCtS.........c..uuiiiiiieeiiiiiieieeee e 139
8.6 BOAIrd RECOVETY.....cci ittt e e e e ettt e e e e e e e s et e e e e e e e e e aannes 140
S Tt T O @ 1YY T = S 140

8.6.2 Program valid RCW in flash device using Flash Programmer.............cccccooiiiiiiiiiiiine e 141

8.6.3 Program U-Boot in flash device using Flash Programmer..............ccccciiiiiiiiiieeiieeeee 144

8.7 SECUIE DEDUG. ...ttt e e e e ettt e e e e e e et e e e e e e e e e s nnnneeeeaens 146
(07 gF=T ol (=T gke BN (o10] o] =TT g oo 1 o To PR 148
9.1 Diagnostic Information EXPOrt.............ueiiiiiiiiiiiee e 148
9.1.1 General settings for Diagnostic INformation...............cooiii e 148

9.1.2 Export Diagnostic INfOrmMation............eoiiiiiiiii e 150

9.2 CoNNECLION AIAGNOSTICS.uuieiiiiieii ittt e e e e e e e e e e e s s e e eeeeeeeanas 153
9.2.1 Using connection diagnOSHICS.ccuiiiiiiiiiiiiiiiii et 153

9.2.2 User-defined connection diagnostiCs teSTS.......cooiiiiiiiiiiiiii e 156

9.3 Prevent core from entering non-recoverable state due to unmapped memory access......... 156
9.4 Board recovery in case of missing/corrupt RCW in I[FC memory........cccccoooiiiiiieiieeiiiininnee. 157
9.4.1 Board recovery using a hard-coded RCW OptioNn..........ocueiiiiiiiiiiii e 157

9.4.2 Board recovery by overriding RCW through JTAG.........ooiiiiiiiie e 157

S TN 1o o o o T PP PPPPPRRPRR 158
S G I =o' 1] T PP PPPRRRPN 158
S A NN Dl T =Y T T o o PP 159
o =R 161

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 5/162

NXP Semiconductors

Chapter 1
Introduction

This manual explains how to use the CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA product. This chapter
presents an overview of the manual.

The topics in this chapter are:
» Release Notes - Lists new features, bug fixes, and incompatibilities
« About this Manual - Describes the contents of this manual

» Accompanying Documentation - Describes supplementary CodeWarrior documentation, third-party documentation, and
references.

1.1 Release notes
Release notes lists new features, bug fixes, and incompatibilities.

Before using the CodeWarrior IDE, read the developer notes. These notes contain important information about last-minute
changes, bug fixes, incompatible elements, or other topics that may not be included in this manual.

NOTE
The release notes for specific components of the CodeWarrior IDE are located in the ARMv S folder in the
CodeWarrior for CW4NET installation directory.

1.2 About this Manual
This topic lists each chapter of this manual, which describes a different area of software development.

The following table lists the contents of this manual.

Table 1. Manual contents

Chapter Description
Introduction This chapter.
Working with Projects Lists the various project types and explains how to create projects.

ARMv8 Build Properties Explains the CodeWarrior build tools and build tool configurations.

Preparing Target Explains how to prepare for debug various target types.

Configuring Target Explains Target Connection Configuration (TCC) feature.

FSL Debugger References | Explains debugger features.

Flash Programmer Explains how to configure, start, and use flash programmer
Use Cases Lists U-Boot debug, Linux application debug, and Linux kernel debug, and UEFI use cases.
Troubleshooting Lists troubleshooting information.

1.3 Accompanying Documentation

The Documentation page describes the documentation included in this version of CodeWarrior Development Studio for QorlQ
LS series - ARM V8 ISA.

You can access the Documentation page by:

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 6/162

NXP Semiconductors

Introduction

* Opening START_HERE.html in <CWinstallDir>1CW _ARMv8IARMv8|Help folder
 Selecting Help > Documentation.

To view the online help for the CodeWarrior tools select Help > Help Contents from the IDE menu bar.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 71162

NXP Semiconductors

Chapter 2
Working with Projects

This chapter lists the various project types and explains how to create and work with projects.
The topics in this chapter are:

* ARMv8 New Project wizard

» CodeWarrior Executable Importer wizard

» Creating projects

* Preprocess/Disassemble files

* Debugging projects

2.1 ARMv8 New Project wizard

The New Project wizard presents a selection of sample projects preconfigured for build using the bundled Linaro GCC
toolchains.

Hello World projects for bareboard and Linux oriented (C, C++, ASM, static and shared library) build/debug scenarios are enclosed
with the product. As compared to the existing CodeWarrior products, the New Project wizard functionality in CodeWarrior for
ARMVS8 has been refined to generating copies of the existing pre-configured projects.

All the debugger connection settings are refactored in the Target Connection Configuration dialog.

The ARMv8 New Project wizard enables you to create both bareboard and Linux Application projects in little endian format. To
access the ARMv8 New Project wizard, in the Workbench window, select File > New > ARMv8 Stationery.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 8/162

NXP Semiconductors

Working with Projects

¥ CodeWarrior Project O =

CodeWarrior Project

Create a project

Project name: | |

LIse default location

Location: | CfUsers Browse...
Available stationeries: Description:
type filter text | Creates a ﬁimple Assernbly pr.t:r_iect for bare board. The

program executes forever in a while loop.
v = ARMNE

w [~ Bare board
@& Hello World Assembly Project
& Hello World C Project
@ Hello World C Static Library Project
& Hello World C++ Project
@ Hello World C++ Static Library Project
w [Linux Application Debug
w = Afrchbd
@& Helle World C Project
@ Hello World C Static Library Project
& Hello World C Shared Library Project
@ Hello World C++ Project
& Hello World C++ Static Library Project

Endianness: | little endian

@' Finish Cancel

Figure 1. ARMv8 Project wizard

The left panel of the wizard displays a list of available sample projects and the right side panel provides short description for each
of the stationery.

The table lists and explains the ARMv8 New Project wizard options.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 9/162

NXP Semiconductors

Working with Projects

Table 2. ARMv8 New Project wizard options

Option

Description

Project name

Enter the name for the new project in this text box.

Note: Do not use the reserved/special characters/symbols such as < (less than), > (greater than), : (colon),
" (double quote), / (forward slash), \ (backslash), | (vertical bar or pipe), ? (question mark), @ (at), *
(asterisk) in the project name. The special characters/symbols in the project name may result in an
unexpected behavior.

Use default location

Stores the files required to build the program in the current workspace directory. The project files are
stored in the default location. Clear the Use default location checkbox and click Browse to select a new
location.

Location Specifies the directory that contains the project files. Click Browse to navigate to the desired directory.
This option is available only when Use default location checkbox is clear.

Available List the various stationeries available for you to create a project. The stationeries are categorized under:

Stationeries Bareboard and Linux Application Debug.

2.2 CodeWarrior Executable Importer wizard

The CodeWarrior Executable Importer wizard allows users to import CodeWarrior ELF images of various types.

* Linux Application

» Bare-board
* Linux Kernel
» U-boot

« UEFI

You can access the wizard from File > New > CodeWarrior Executable Importer.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

10/162

NXP Semiconductors

Working with Projects

ﬁi CodeWarricr Executable Importer L@g

Import CodeWarrior executable files, type is auto-detected
€3 Value must be an existing file

Select executable:

Select type:

(@ Linux Application

Bare-board
Linux Kernel
U-boot
UEFI

@ ned> | [Finish | [Cancel

Figure 2. CodeWarrior Executable Importer, Select executable

Once the executable is selected the image type is auto-detected based on the symbol table. The user can overwrite the value
by selecting another type.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

117162

NXP Semiconductors

Working with Projects

¥ CodeWarrior Executable Imparter uﬂlﬁ

Import CodeWarrior executable files, type is auto-detected

CodeWarrior auto-detected a Linux Kernel executable

Select executable: CAHOMEB\WORK\elf_imagesiwmlinux

Select type: Details:
() Linux Application Abrchid, little endian
(") Bare-board
- erenedt 3.14.0-Layerscape2-SDK+ gd37f8ae; #1
1@ Linux Kernel SMP PREEMPT Fri Jul 25 16:40:41 EEST 2014
) U-boot
&) UER
@- < Back Mext » Finish] ’ Cancel

Figure 3. CodeWarrior Executable Importer, type is auto-detected

An error message is displayed and the user is not allowed to finish the project creation if the selected executable does not have
the ELF or UEFI format. The created project contains the executable image as a linked resource and also a default launch
configuration file with all the setup ready to debug.

[Project Explorer 532 b & ¥ = 0
4 =5 Debug_vmlinux
; gﬂ;f' Binaries
. % vmlinux - [nonedle]
|Z Debug_vmlinux.launch

Figure 4. Project creation with CodeWarrior Executable Importer wizard

The launch configuration file is created automatically after the project creation. User only needs to review/change the settings
and start the debug session.

2.3 Creating projects

This section explains how to use the ARMv8 New Project wizard to quickly create new projects with default settings, build and
launch configurations.

The section explains:
» Creating CodeWarrior Bareboard project

» Creating CodeWarrior Linux Application project

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 12/162

NXP Semiconductors

Working with Projects

2.3.1 Creating CodeWarrior Bareboard project

You can create a CodeWarrior Bareboard project using the ARMv8 Stationery wizard.
1. From CodeWarrior IDE menu bar, select File > New > ARMv8 Stationery
2. From Available stationaries, select ARMv8 > Bare board > Hello World C Project.

3. In Project name text box, enter FirstProjectTest.

NOTE
The Location text box shows the default workspace location. To change this location, uncheck the Use default
location text box and click Browse to select a new location.

4. Click Finish.

The new project appears in the Project Explorer view.

Before you build and debug the project, ensure that t:?;lrzget board is ready. For details, see Preparing Target.
5. Build the bare metal project.
6. Debug the bare metal project. Refer Debugging Bareboard project.
You can create a CodeWarrior Bareboard project for following configurations:
» Assembly Project
» C Project
» C Static Library Project
» C++ Project

» C++ Static Library Project

2.3.2 Creating CodeWarrior Linux Application project
You can create a CodeWarrior Bareboard project using the ARMv8 Stationery wizard.
1. From CodeWarrior IDE menu bar, select File > New > ARMv8 Stationery.
2. From Available stationeries, select ARMv8 > Linux Application Debug > Hello World C Project.

3. In Project name text box, enter FirstLinuxProject.

NOTE
The Location text box shows the default workspace location. To change this location, uncheck the Use default
location text box and click Browse to select a new location.

4. Click Finish.

The new project appears in the Project Explorer view.

Before you build and debug the project, ensure that t:t(e)t-gfget board is ready. For details, see Preparing Target.
5. Build the Linux application project.
6. Debug the Linux application project. Refer Debugging projects
You can create a Linux application project for following configurations:
» C Project
« C Static Library Project

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 137162

NXP Semiconductors

» C Shared Library Project
» C++ Project
» C++ Static Library Project

For further details about application debug projects, refer Linux application debug.

2.4 Preprocess/Disassemble files

You can access the Preprocess/Disassemble commands from the Project Explorer or Editor view.

The Preprocess/Disassemble commands are available to the user:

» from the menu that appears when you right-click on a file in the Project Explorer view, or

Working with Projects

« from the menu that appears when you open the file in the Editor view and right-click inside the Editor view.

Undo
Revert File
Save

Open Declaration

Open Type Hierarchy
Open Call Hierarchy
Quick Outline

Quick Type Hierarchy
Explore Macro Expansion
Toggle Source/Header
Open With

Show In

Cut
Copy
Paste

Quick Fix
Source

Refactor

Declarations
References

Search Text

Make Targets
Resource Configurations
Preprocess

Disassemble

Profile As
Debug As

Resource

File Edit Source Refactor MNavigate Search Project Run Window Help
; ; JorlQ LS series - AR
= b % - - : b T - ci; - I i b - - !
Y | %+ |~ 5 @~ G [CASE - R AT RA"E Window Help
[Project Explorer 52 = <}‘==;'>| ¢ =~ — 0O v Q|
a2 5 prj i
> ;%,D' Binaries &) main.c 83
> [Includes @®| Name
[runtime
4 @B src . int rec(i
s exception.S 1
> | [mpei=—e if (x
s st New b X
> Debu
&) Open retun
: [~ Linke) }
2 prjla Open With »
[, readr B Copy Cirl+C int fb(in
Paste Ctrl+V regis
Delete Delete
) m +=
Remove from Context Ctrl+Alt+ Shift+Down n=mn
Source 3
~etun
Move... , retur
Rename... F2
int fa(in
fxy Import.. {
&y Export.. regis
w =K
| Refresh F5
y -=
Index 4 k = f
Make Targets 3
Resource Configurations 3 } retur
Preprocess int main(
Disassemble i
4
Profiling Tools »
Clean Selected File(s)
Ouvilal Comlmmdmal Cilmdet

Figure 5. Project Explorer view and Editor view

Ctrl+Z

Ctrl+5

F3
F4
Ctrl+Alt+H
Ctrl+0
Ctrl+T
Ctrl+=
Ctrl+Tab
3
Alt+Shift+W »
Ctrl+X
Ctrl+C
Ctrl+V

Ctrl+1
Alt+5Shift+5 »
»

Path Locati

The result of preprocessing a file or disassembling an object code is provided to the user in the Editor. Upon invocation, the
Preprocess command preprocesses the C/C++/ASM file and shows the resulting text in a new file. Similarly, upon invocation,
the Disassemble command compiles and disassembles the C/C++/ASM file or directly disassembles the binary file. In all the

cases, the resulted files are located in the active configuration directory.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

14/162

NXP Semiconductors

Working with Projects

a 5 py

[Project Explorer 52

+ 3% Binaries
> [Includes

=& s

src\main.o:
srchymain.o

architecture: aarche4, flags @x@ee80811:

file format elfe4-littleaarchs4

main2861100166306439094 Ist &5

> (2 runtime HAS RELOC, HAS SYMS
4 (5 sre start address @x@200000008080808
> [8] exceptions private flags = @:
> [€] main.c .
Sections:
> [8) starts Idx Name Size wMA LMA File off
4 [Debug @ .group 2 48
» (2= runtime 1 .text 48
4 [src 2 .data LE]
> |mb exception.o - [none/le] 3 .bss 48
4 .text.rec 3c 48
> mj start.o - [none/le] 5 .text.fh 54 84
[#| exception.d 6 .text.fa 44 dg
[#| maind 7 .text.main 3@ 1lc
= main2861100166806439094.Ist 8 .debug_info 121 1l4c
[€ main3833328046102968676.c 9 .debug_abbrev al 26d
18 .debug_aranges 3@e
#| start.d —
= . 11 .debug_ranges 58 36e
L@ subdir.mk 12 .debug_macro 11 3be
> %5 pri.elf - [none/le] 13 .debug_macro 528 3cf
| @ makefile 14 .debug_line 96 gef
@& objects.mk 15 .debug_str Be8818ch 985
i hex 16 .comment 3 280224b
S 17 .debug_frame ba eeee22be
El post SYMBOL TABLE:
=l primap feaeEeERaBABE088 1 df *ABS* GPGPEPEE2E280808 main.c
L@ sources.mk aecoepapeeeREERE 1 d .text ©800000022220000 .text
. (= Linker Files 0BEEOROREE0BEE00 1 d .data OBBAOBORDODEEEDE .data
= nrilaunch feecoepopeeeRaeE8 1 d .bss fGee0eEERREAREEREA .bss
=P Beae000000000008 1 d .text.rec ©O000020200080000 .text.rec
& readme.t PeREREEEEREAREEE 1 d .text.fb GefeeeeeEERR0000 .tewt.fh
4 | 1
Figure 6. Editor view
NOTE

A new Console is created for each operation.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

15/162

NXP Semiconductors

Working with Projects

B Console & NI = =

Preprocessor

PPepPocessing file : main.c -
"C:\Freescale\CWANET_v2017.12\CW_ARMvB\Cross_Tools\gcc-linaro-aarché4-none-elf-4.9.3\bin\aar/=
1 "..\\src\\main.c"

1 "C:\\Users\\b17@89\\eclipse-workspace\\Project_ 2\\Debug//"

1 "<built-in»"

#define _ STDC__ 1

#define _ STDC_VERSIOW _ 201112L

#define _ STDC UTF_ 16 1

#define STDC_UTF 32 1

#define _ STDC_HOSTED _ 1

#define __GNUC__ 4

#define _ GNUC_MINOR__ 9

#define _ GNUC_PATCHLEVEL__ 3

#define _ VERSION _ "4.9.3 208150413 (prerelease)”

#define _ LINARO RELEASE__ 281585

#define _ LINARO_SPIN__ @

#define _ ATOMIC_RELAXED @

#define _ ATOMIC_SEQ CST 5

#define _ ATOMIC_ACQUIRE 2 -

”4'| = we »
Problems) Tasks & Console 32 Properties B2 2~ ~ =0

Disassembler

Disassembling 'main.c'... -
"C:\Freescale\CWANET_v2017.12\CW_ARMv8\Cross_Tools\gcc-linaro-aarch64-none-elf-4.9.3\bin\aar/=
“C:\Freescale\CWANET v2017.12\CW_ARMv8\Cross_Tools\gcc-linaro-aarché4d-none-elf-4.9.3\bin\aar
src\main.o: file format elfed4-littleaarch64d
srcimain.o

architecture: aarched, flags 8x00000011:
HAS_RELOC, HAS SYMS

start address 9xPP0ERARORERERERO

private flags = 0:

Sections:

Idx Name Size VMA LMA File off Alen Flags
@ .group PPERERES 000POPDRERERARAD 0VODONORNEPARRRRY 0RERER4AD 2¥*2 CONTENTS, RE
1 .group 000PREES 0PEOEONRRRE000RE 000PERDERRRE00RR 000VER48 2**2 (CONTENTS, RE
2 .group 0000ERRS QPORPEEPREREEPEE 0DPEDPORORPORERE 00LeReS5e 2**2 CONTENTS, RE
3 .group PPEEEEES 000P0000000RE0A0 0000N0RDEVANRRRD 0PRSS 2¥*2 CONTENTS, RE
4 _group 000PRREES 0OE000NRRRER0ERE 0BRRE0ERRRERORRE 0008EREA 2**2 COMTENTS, RET
g fedatallla) AAAAARAD AAAAARAAARARARARRA AARAARARAAAAARARARAR AARARRARAD it] CNNMTERTS RE

{1

Figure 7. Console view

The user can define or modify preprocessor/disassembler options in the Project Properties dialog > Settings > Tool Settings page.

2.5 Debugging projects

When you use the ARMv8 Project wizard to create a new project, the wizard sets the debugger settings of the project's launch
configurations to default values. You can change these default values based on your requirements.

To debug a project:

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide 16 /162

NXP Semiconductors

Working with Projects

1. From the CodeWarrior IDE menu bar, select Run > Debug Configurations.

The Debug Configurations dialog appears. The left side of this dialog box has a list of debug configurations that apply to
the current application.

The ARMv8 Project wizard adds a default launch configuration in all application sample projects. The debugger settings are
mapped to the default values but you can change these values based on your requirements.

2.5.1 Debugging Bareboard project
This topic describes how to debug a bareboard project.

Ensure that the project contains the default launch configuration file of type GDB Hardware Debugging, named as
<projectName>.launch. To start debugging a project:

1. In the Debug Configuration dialog, select the available launch configuration.

2. Select a Target Connection Configurator. For details on this, refer Target Connection configurator overview and Configure
the target configuration using Target Connection Configurator.

3. Click Apply in the Debug Configurations dialog. The IDE saves your settings.
4. Click Debug.

The IDE switches to the Debug perspective. The debugger downloads your program to the target board and halts execution
at the first statement of main().

ﬁi Debug - BareBoard_Project/src/main.c - CodeWarrior Development Studic for QorlQ LS series - ARM V8 ISA | B e
File Edit Source Refactor MNavigate Search Project Run ProcessorExpert Window Help
ﬁ' |m@‘@\ﬂb [C's T i #'0'@'%'@@ {)""; - - = -
Quick Access s | %CJ’C++
% Debug &2 | i'=€>| @ ¥ = B (0=Variables 9 Breakpoints | !i){ Registers 52 & Peripherals =), Modules = 8
4 [£] BareBoard_Project [GDB Hardware Debugging] = | [l =_9| f%‘.) =
4 (1 BareBoard_Project.eff [1] [cores: 0] . Name Value Description "
4 % Thread [1]1 [core: 0] (Suspended : Breakpoint) s | Regist G P o FPU Regist i
E maino atmam.c:44 O)cSOOUOQdc A i AE“I']ETE EgIsters Enera urpose an EgIsLE...
= adb 18 X0 2
w9 108 %1 2147602384
i X2 2 i
4 '
[main.c &2 = O g= Outline &2 CE = 0
b * cEIERY o % ¥
—int main(void) 4 Std'_n'h
{ @ rec(int) : int
int counter = 8; @ fbiint, int) : int
. — @ falint): int
printf("Hello World!n"); 5 ® main(void) : int

counter = rec(counter);

& Console 52] |:Ex'_ﬁ|="E'i=j'='E|

BareBoard_Project [GDB Hardware Debugging] BareBoard_Project.elf

%

Figure 8. Debugging bareboard project

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide 177162

NXP Semiconductors

Working with Projects

NOTE
To end the debug session, use the Terminate or Disconnect buttons in the Debug view (or from the Run menu).
When using Terminate to end a debug session, debugger detaches from the cores that were debugged and keeps
them in debug mode.

On the other hand, the Disconnect button resumes in-debug cores before the debugger detaches from the target.

2.5.2 Debugging Linux Application project
This topic describes how to debug a Linux application project.

Ensure that the project contains the default launch configuration file of type C/C++ Remote Application, named as
<projectName>.launch.

The CodeWarrior software creates a default remote ssh connection, named Remote Host, once Linux application debug support
is initialized. This connection is available in the Connections view. The default launch configuration file used in a Linux Application
debug project points to this connection. The user can change the default settings, for example the IP of the Linux target.

* Problems <) Tasks © Console T Properties ‘2 Connections &

2 Local
™ Remote Host

Figure 9. Remote Connections

To start debugging a project:

NOTE
If target is accessible on a port different than the default 22, like in the case of the ssh tunnelling to other port, the
tunnelling port should be specified instead.
1. In the Debug Configuration dialog, select the available launch configuration.
2. Click Debug.

NOTE
For further details, refer Linux application debug.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 187162

NXP Semiconductors

Working with Projects

Debug - app_debug/src/main.c - CodeWarrior Development Studio for QorlQ LS series - ARM VB ISA

File Edit Source Refactor Mavigate Search Project Run Window Help

e | @8 e e [T B S N P = < S A IR N * SR A I = I A = R A =T = ¢ X
Quick Access B | B c/c++ |35 Debug
;#Debug% # | i+ | & Y = B | ®-Variabl % Breakp ! Registe %3 & Periphe ®\ Module = O
:vI'Elapp_debug[C,fc++RemoteApplication] B e & v
v i app_debug.elf [919] [cores: 0] Name value o
| v o Thread [1] 919 [core: 0] (Suspended : Breakpoint) v 4% General Registers :
| »d Remote Shell i x1 | 549755813000
Ba gdb 1010 ,, FARTCCO43ndes
| @ main.c = B 5= outline & =g
For example, for toolchains derived from GNU Tools for Embedded, DA WY o ¥ ¥
to enable semi-hosting, the following should be added to the linker:
U stdio.h
--specs=rdimon.specs -WL,--start-group -lgcc -lc -lc -1lm -lrdimon -WL,--end-group e main(void):int
*/
= int
main(void)
printf("Hello ARM World!" "\n");
return 0;
E & console &2 Tasks Problems Executables @ Memory B kB | &H s = -2y =0

| app_debug [C/C++ Remote Application] gdb

| warning: Unable to find dynamic linker breakpoint function.

GDB will be unable to debug shared library initializers

and track explicitly loaded dynamic code.

$1 = oxff

The target endianness is set automatically (currently little endian)

Figure 10. Debugging Linux Application project

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 19/162

NXP Semiconductors

Chapter 3
ARMv8 Build Properties

A build configuration is a named collection of build tools options.

The set of options in a given build configuration causes the build tools to generate a final binary with specific characteristics. For
example, the binary produced by a "Debug" build configuration might contain symbolic debugging information and have no
optimizations, while the binary product by a "Release" build configuration might contain no symbolics and be highly optimized.

For details about how ARMv8 projects are managed and all the available toolchains, refer Arm GNU Eclipse documentation
available at: https://community.arm.com/tools/b/blog/posts/gnu-arm-eclipse-open-source-tools-with-experimental-cmsis-pack-
support

NOTE
NXP does not own Arm GNU Eclipse documentation. The documents are mentioned solely for the reference
purpose.

3.1 Changing Build Properties

The New Bareboard Project wizard creates a set of build properties for the project. You can modify these build properties to
better suit your needs.

Perform these steps to change build properties:
1. Start the IDE.
2. In the CodeWarrior Projects view, select the project for which you want to modify the build properties.
3. Select Project > Properties.

The Properties window appears. The left side of this window has a properties list. This list shows the build properties that
apply to the current project.

4. Expand the C/C++ Build property.
5. Select Settings.
The Properties window shows the corresponding build properties.

6. Use the Configuration drop-down list to specify the launch configuration for which you want to modify the build
properties.

7. Click the Tool Settings tab.
The corresponding page appears.
8. From the list of tools on the Tool Settings page, select the tool for which you want to modify properties.
9. Change the settings that appear in the page.
10. Click Apply.
The IDE saves your new settings.

You can select other tool pages and modify their settings. When you finish, click OK to save your changes and close the Properties
window.

3.2 ARMyVS build settings

The Properties for <project>window shows the corresponding Settings page for a project.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 20/162

https://community.arm.com/tools/b/blog/posts/gnu-arm-eclipse-open-source-tools-with-experimental-cmsis-pack-support
https://community.arm.com/tools/b/blog/posts/gnu-arm-eclipse-open-source-tools-with-experimental-cmsis-pack-support

NXP Semiconductors

ARMVv8 Build Properties

¥ Properties for myfirstproj
type filter text

» Resource
Builders
4 C/C++ Build
Build Yariables
Environment
Logging
Settings
Teool Chain Editor
> C/C++ General
Project References
Run/Debug Settings
» Task Repository
WikiText

Settings

o [E =]

- v v

Configuration: ’ Debug [Active]

"] [Manage Configurations...l

i Tool Settings | ¥ Toolchains | 4 Build Steps

Build Artifact | Binary Parsers | @ Error Parsersl

@ Target Processor
@ Optimization
@ Warnings
@ Debugging
4 1%y Cross ARM GNU Assembler
@ Preprocessor
@ Includes
@ Warnings
@ Miscellanecus
4 %3 Cross ARM C Compiler
@ Preprocessor
@ Includes
@ Optimization
@ Warnings
@ Miscellanecus
4 %3 Cross ARM C Linker
@ General
@ Libraries
(# Miscellaneous
4 %3 Cross ARM GNU Create Flash Image
General
4 %3 Cross ARM GNU Create Listing
General
a4 %3 Cross ARM GNU Print Size
General

] 1 | »

AR farnily
Architecture

Instruction set

Endianness
Float 28]

FPU Type
Unaligned access
Ablrchid family
Feature cro
Feature crypto
Feature fp
Feature sirnd

Code model
[Strict align (-mstrict-align)
Other target flags

cortex-m3
Toolchain default

Thumb (-mthumb)
Thumb interwork (-mthumb-interwork)

Toolchain default
Toolchain default
Toolchain default

Toolchain default

Teoolchain Default -

Toolchain default
Toolchain default
Toolchain default

Enabled (+simd)

Toolchain default -

lRestore Qefaults] [Apply]

@

Lo]|

Cancel]

Figure 11. Settings page

The following table lists the build properties specific to developing software for Arm Embedded Processors.

The properties that you specify in the Tool Settings panels apply to the selected build tool on the Tool Settings page of the
Properties for <project> dialog box.

Table 3. Build Properties for Bare Metal project

Tool Settings

Sub Tool Settings

Target Processor

Target Processor

Optimization Optimization
Table continues on the next page...
CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 217162

NXP Semiconductors

Table 3. Build Properties for Bare Metal project (continued)

ARMVv8 Build Properties

Tool Settings Sub Tool Settings

Warnings Warnings

Debugging Debugging

Cross ARM GNU Assembler Preprocessor
Includes
Warnings

Miscellaneous

Cross ARM C Compiler

Preprocessor

Includes

Optimization

Warnings

Miscellaneous

Cross ARM C Linker

General

Libraries

Miscellaneous

Cross ARM GNU Create Flash Image General
Cross ARM GNU Create Listing General
Cross ARM GNU Print Size General

3.2.1 Target Processor

Use this panel to configure the target processor options.

The following table lists the options in the Target Processor panel.

Table 4. Target Processor options

Option

Description

ARM family

Use to specify the Arm family name.

Default: cortex-m3

Architecture

Use to specify the target hardware architecture or processor name. The compiler can
take advantage of the extra instructions that the selected architecture provides and
optimize the code to run on a specific processor. The inline assembler might display
error messages or warnings if it assembles some processor-specific instructions for the
wrong target architecture.

Default: Toolchain default

Instruction set

Use to generate suitable interworking veneers when it links the assembler output. You
must enable this option if you write Arm code that you want to interwork with Thumb
code or vice versa. The only functions that need to be compiled for interworking are the
functions that are called from the other state. You must ensure that your code uses the
correct interworking return instructions.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

22/162

NXP Semiconductors

ARMVv8 Build Properties

Table 4. Target Processor options (continued)

Option

Description

Default: Thumb (-mthumb)

Thumb interwork (-mthumb-
interwork)

Check to have the processor generate Thumb code instructions. Clear to prevent the
processor from generating Thumb code instructions. The IDE enables this setting only
for architectures and processors that support the Thumb instruction set.

Default: Clear

Endianness Use to specify the byte order of the target hardware architecture:
« Little-little endian; right-most bytes (those with a higher address) are most significant
Float ABI Use to specify the float Application Binary Interface (ABI).
Default: Toolchain default
FPU Type Use to specify the type of floating-point unit (FPU) for the target hardware architecture:

The assembler might display error messages or warnings if the selected FPU
architecture is not compatible with the target architecture.

Default: Toolchain default

Unaligned access

Use to specify unaligned access.

Default: Toolchain default

AArch64 family

Use to specify the architecture family:
» Generic (-mcpu=generic)
» Large (-mcpu=large)
+ Toolchain default

Default: Toolchain default

Feature crc

Use to specify Feature crc.

Feature crypto

Use to specify Feature crypts.

Feature fp

Use to specify Feature fp.

Feature simd

Use to specify Feature simd.

Code model

Specifies the addressing mode that the linker uses when resolving references. This
setting is equivalent to specifying the -mcmodel keyword command-line option.

» Tiny (-mcmdel=tiny)
* Small (-mcmodel=small)
» Large (-mcmodel=large)

* Toolchain default

Strict align (-mstrict-align)

Controls the use of non-standard ISO/IEC 9899-1990 ("C90") language features.

Other target flags

Specify additional command line options; type in custom flags that are not otherwise
available in the UI.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

23/162

NXP Semiconductors

3.2.2 Optimization

ARMVv8 Build Properties

Use this panel to configure the optimization options.

The following table lists the options in the Optimization panel.

Table 5. Optimization options

Option

Description

Optimization level

Specify the optimizations that you want the compiler to apply to the generated object
code:

» None (-00)-Disable optimizations. This setting is equivalent to specifying the -O0
command-line option. The compiler generates unoptimized, linear assembly-
language code.

* Optimize (-O1)-The compiler performs all target-independent (that is, non-
parallelized) optimizations, such as function inlining. This setting is equivalent to
specifying the -O1 command-line option. The compiler omits all target-specific
optimizations and generates linear assembly-language code.

» Optimize more (-O2)-The compiler performs all optimizations (both target-
independent and target-specific). This setting is equivalent to specifying the -O2
command-line option. The compiler outputs optimized, non-linear, parallelized
assembly-language code.

* Optimize most (-O3)-The compiler performs all the level 2 optimizations, then the
low-level optimizer performs global-algorithm register allocation. This setting is
equivalent to specifying the that is usually faster than the code generated from level
2 optimizations.

» Optimize size (-Os)-The compiler optimizes object code at the specified
Optimization Level such that the resulting binary file has a smaller executable code
size, as opposed to a faster execution speed. This setting is equivalent to specifying
the -Os command-line option.

» Optimize for debugging (-Og)-The compiler optimizes object code at the specified
Optimization Level such that the resulting binary file has a faster execution speed,
as opposed to a smaller executable code size.

Message length (-fmessage-
length=0)

Check if you want to specify the maximum length in bytes for the message.

'char' is signed (-fsigned-char)

Check to treat char declarations as signed char declarations.

Function sections (-ffunction-
sections)

Check to enable function sections.

Data sections (-fdata-sections)

Check to enable data sections.

No common unitialized (-fno-
common)

Controls the placement of uninitialized global variables.

Do not inline functions (-fno-inline-
functions)

Suppresses automatic inlining of subprograms.

Assume freestanding environment (-
ffeestanding)

Asserts that compilation takes place in a freestanding environment. This implies -fno-
builtin.

Disable builtin (-fno-builtin)

Switches off builtin functions.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

247162

NXP Semiconductors

ARMVv8 Build Properties

Table 5. Optimization options (continued)

Option

Description

Single precision constants (-fsingle-
precision-constant)

Check to enable single precision constants.

Position independent code (-fPIC)

Select to instruct the build tools to generate position independent-code.

Link-time optimizer (-flto)

Runs the standard link-time optimizer. When invoked with source code, it generates
GIMPLE (one of GCC's internal representations) and writes it to special ELF sections in
the object file. When the object files are linked together, all the functions bodies are read
from these ELF sections and instantiated as if they had been part of the same translation
unit.

Disable loop invariant move (-fno-
move-loop-invariants)

Disables the loop invariant motion pass in the RTL loop optimizer. Enabled at level -O1'.

Other optimization flags

Specify additional command line options; type in custom optimization flags that are not
otherwise available in the Ul.

3.2.3 Warnings

Use this panel to configure the warning options.

The following table lists the options in the Warnings panel.

Table 6. Warnings options

Option

Description

Check syntax only (-fsyntax-only)

Check this option if you want to check the syntax of commands and throw a syntax error.

Pedantic (-pedantic)

Check if you want warnings like -pedantic, except that errors are produced rather than
warnings.

Pedantic warnings as errors (-
pedantic-errors)

Check this option if you want to inhibit the display of warning messages.

Inhibit all warnings (-w)

Check this option if you want to enable all the warnings about constructions that some
users consider questionable, and that are easy to avoid (or modify to prevent the warning),
even in conjunction with macros.

Warn on various unused elements (-
Wunused)

Warn whenever some element (label, parameter, function, etc.) is unused.

Warn on uninitialized variables (-
Wouninitialised)

Warn whenever an automatic variable is used without first being initialized.

Enable all common warnings (-Wall)

Check this option if you want to enable all the warnings about constructions that some
users consider questionable, and that are easy to avoid (or modify to prevent the warning),
even in conjunction with macros.

Enable extra warnings (-Wextra)

Check this option to enable any extra warnings.

Warn on undeclared global function
(-Wmissing-declaration)

Check to warn if an undeclared global function is encountered.

Warn on implicit conversions (-
Wconversion)

Check to warn of implicit conversions.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

25/162

NXP Semiconductors

ARMVv8 Build Properties

Table 6. Warnings options (continued)

Option

Description

Warn if pointer arithmetic (-
Whpointer-arith)

Check to warn if pointer arithmetic are used.

Warn if padding is not included (-
Whpadded)

Check to warn if padding is included in a structure either to align an element of the
structure or the whole structure.

Warn if shadowed variable (-
Wshadow)

Check to warn if shadowed variable are used.

Warn if suspicious logical ops (-
Wilogical-op)

Check to warn in case of suspicious logical operation.

Warn in struct is returned (-
Wagreggrate-return)

Check to warn if struct is returned.

Warn if floats are compared as equal
(-Wfloat-equal)

Check to warn if floats are compared as equal.

Generate errors instead of warnings
(-Werror)

Check to generate errors instead of warnings.

Other warning flags

Specify additional command line options; type in custom warning flags that are not
otherwise available in the UL.

3.2.4 Debugging

Use this panel to configure the debugging options.

The following table lists the options in the Debugging panel.

Table 7. Debugging options

Option

Description

Debug level

Specify the debug levels:
* None - No Debug level.
» Minimal (-g1) - The compiler provides minimal debugging support.

» Default (-g) - The compiler generates DWARF 1.xconforming debugging
information.

* Maximum (-g3) - The compiler provides maximum debugging support.

Debug format

Specify the debug formats for the compiler.

Generate prof information (-p)

Generates extra code to write profile information suitable for the analysis program prof.
You must use this option when compiling the source files you want data about, and you
must also use it when linking.

Generate gprof information (-pg)

Generates extra code to write profile information suitable for the analysis program gprof.
You must use this option when compiling the source files you want data about, and you
must also use it when linking.

Other debugging flags

Specify additional command line options; type in custom debugging flags that are not
otherwise available in the UL.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

26/162

NXP Semiconductors

ARMVv8 Build Properties

3.2.5 Cross ARM GNU Assembler
Use this panel to configure the Arm GNU assembler options.

The following table lists the options in the Cross ARM GNU Assembler panel.
Table 8. Cross ARM GNU Assembler options

Option Description

Command Shows the location of the assembler executable file. Default: ${cross prefix}${cross _c}s$

{cross_suffix}

All Options Shows the actual command line the assembler will be called with. Default: -x assembler-with-
cpp -Xassembler -g

Expert settings

Command line pattern Shows the expert settings command line parameters. Default: $ {coMManD} $
{cross_toolchain flags} S${FLAGS} -c ${OUTPUT FLAG} ${OUTPUT PREFIX}${OUTPUT} $
{INPUTS}

3.2.5.1 Preprocessor
Use this panel to configure the Arm GNU assembler preprocessor options.

The following table lists the options in the Cross Arm GNU Assembler Preprocessor panel.

Table 9. Cross Arm GNU Assembler Preprocessor options

Option Description

Use preprocessor Check this option to use the preprocessor for the assembler.

Do not search system directories | Check this option if you do not want the assembler to search the system directories. By

(-nostdinc) default, this checkbox is clear. The assembler performs a full search that includes the system
directories.
Preprocess only (-E) Check this option if you want the assembler to preprocess source files and not to run the

compiler. By default, this checkbox is clear and the source files are not preprocessed.

Defined symbols (-D) Use this option to specify the substitution strings that the assembler applies to all the
assembly-language modules in the build target. Enter just the string portion of a substitution
string. The IDE prepends the -D token to each string that you enter. For example, entering
opt1 x produces this result on the command line: -Dopt1 x. Note: This option is similar to the
DEFINE directive, but applies to all assembly-language modules in a build target.

Undefined symbols (-U) Undefines the substitution strings you specify in this panel.

3.2.5.2 Includes
Use this panel to configure the Arm GNU assembler includes options.

The following table lists the options in the Cross Arm GNU Assembler Includes panel.

Table 10. Cross Arm GNU Assembler Includes options

Option Description

Include paths (-I) This option changes the build target's search order of access paths to start with the system paths list. The
compiler can search #include files in several different ways. You can also set the search order as follows:
For include statements of the form #include"xyz", the compiler first searches user paths, then the system

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 277162

NXP Semiconductors

ARMVv8 Build Properties

Table 10. Cross Arm GNU Assembler Includes options (continued)

Option Description
paths For include statements of the form #include<xyz>, the compiler searches only system paths This
option is global.

Include files (- Use this option to specify the include file search path.

include)

3.2.5.3 Warnings

Use this panel to configure the Arm GNU assembler warning options.

The following table lists the options in the Cross Arm GNU Assembler Warnings panel.

Table 11. Warnings options

Option

Description

Other warning flags

Specify additional command line options; type in custom warning flags that are not
otherwise available in the Ul.

3.2.5.4 Miscellaneous

Use this panel to configure the Arm GNU assembler miscellaneous options.

The following table lists the options in the Cross Arm GNU Assembler Miscellaneous panel.

Table 12. Cross Arm GNU Assembler Miscellaneous options

Option

Description

Assembler flags

Specify the flags that need to be passed with the assembler.

Generates
assembler listing (-
Wa, -
adhins="$@.Ist")

Enables the assembiler to create a listing file as it compiles assembly language into object code.

Save temporary files
(--save-temps Use
with caution!)

Store the usual “temporary” intermediate files permanently.

Verbose (-v)

Check this option if you want the IDE to show each command-line that it passes to the shell, along with
all progress, error, warning, and informational messages that the tools emit. This setting is equivalent
to specifying the -v command-line option. By default this checkbox is clear. The IDE displays just error
messages that the compiler emits. The IDE suppresses warning and informational messages.

Other assembler
flags

Specify additional command line options; type in custom flags that are not otherwise available in the Ul.

3.2.6 Cross ARM C Compiler

Use this panel to configure the Arm C compiler options.

The following table lists the options in the Cross ARM C Compiler panel.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

28/162

NXP Semiconductors

ARMVv8 Build Properties

Table 13. Cross ARM C Compiler options

Option Description

Command Shows the location of the compiler executable file. Default: ${cross prefix}${cross c}$

{cross_suffix}

All Options Shows the actual command line the compiler will be called with.

Expert settings

Command line patterns | Shows the expert settings command line parameters. Default: $ {coMMaND} $
{cross_toolchain flags} ${FLAGS} -c ${OUTPUT FLAG} ${OUTPUT PREFIX}${OUTPUT} $
{ INPUTS }

3.2.6.1 Preprocessor

Use this panel to configure the Arm C compiler preprocessor options.

The following table lists the options in the Cross Arm C Compiler Preprocessor panel.

Table 14. Cross Arm GNU compiler Preprocessor options

Option

Description

Do not search system directories
(-nostdinc)

Check this option if you do not want the compiler to search the system directories. By default,
this checkbox is clear. The compiler performs a full search that includes the system
directories.

Preprocess only (-E)

Check this option if you want the compiler to preprocess source files and not to run the
compiler. By default, this checkbox is clear and the source files are not preprocessed.

Defined symbols (-D)

Use this option to specify the substitution strings that the compiler applies modules in the
build target. Enter just the string portion of a substitution string. The IDE prepends the -D
token to each string that you enter. For example, entering opt1 x produces this result on the
command line: -Dopt1 x. Note: This option is similar to the DEFINE directive, but applies to
all assembly-language modules in a build target.

Undefined symbols (-U)

Undefines the substitution strings you specify in this panel.

3.2.6.2 Includes

Use this panel to configure the Arm C compiler includes options.

The following table lists the options in the Cross Arm C Compiler Includes panel.

Table 15. Cross Arm C Compiler Includes options

Option Description

Include paths (-I) This option changes the build target's search order of access paths to start with the system paths list. The
compiler can search #include files in several different ways. You can also set the search order as follows:
For include statements of the form #include"xyz", the compiler first searches user paths, then the system
paths For include statements of the form #include<xyz>, the compiler searches only system paths This
option is global.

include)

Include files (- Use this option to specify the include file search path.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

29/162

NXP Semiconductors

3.2.6.3 Optimization

ARMVv8 Build Properties

Use this panel to configure the Arm C compiler optimization options.

The following table lists the options in the Optimization panel.

Table 16. Optimization options

Option

Description

Language standard

Select the programming language or standard to which the compiler should conform.

» 1SO C90 (-ansi) - Select this option to compile code written in ANSI standard C. The
compiler does not enforce strict standards. For example, your code can contain
some minor extensions, such as C++ style comments (//), and $ characters in
identifiers.

* 1SO C99 (-std=c99) - Select this option to instruct the compiler to enforce stricter
adherence to the ANSI/ISO standard.

» Compiler Default (ISO C90 with GNU extensions) - Select this option to enforce
adherence to ISO C90 with GNU extensions.

* 1SO C99 with GNU Extensions (-std=gnu99)

Other optimization flags

Specify additional command line options; type in custom optimization flags that are not
otherwise available in the Ul.

3.2.6.4 Warnings

Use this panel to configure the Arm C compiler warnings options.

The following table lists the options in the Warnings panel.

Table 17. Warnings options

Option

Description

Warn if a global function has no
prototype (-Wmissing-prototype)

Warn if a global function has no prototype.

Warn if a function has no arg type (-
Wstrict-prototypes)

Warn if a function is declared or defined without specifying the argument types.

Warn if a wrong cast (-Wbad-
function-cast)

Warn whenever a function call is cast to a non-matching type.

Other warning flags

Specify additional command line options; type in custom warning flags that are not
otherwise available in the UL.

3.2.6.5 Miscellaneous

Use this panel to configure the Arm C compiler miscellaneous options.

The following table lists the options in the Miscellaneous panel.

Table 18. Miscellaneous options

Option Description

assembler listing (-

Generates Enables the assembler to create a listing file as it compiles assembly language into object code.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

30/162

NXP Semiconductors

ARMVv8 Build Properties

Table 18. Miscellaneous options (continued)

Option Description

Wa, -
adhins="$@.Ist")

Save temporary files | Store the usual “temporary” intermediate files permanently.
(--save-temps Use
with caution!)

Verbose (-v) Check this option if you want the IDE to show each command-line that it passes to the shell, along with
all progress, error, warning, and informational messages that the tools emit. This setting is equivalent
to specifying the -v command-line option. By default this checkbox is clear. The IDE displays just error
messages that the compiler emits. The IDE suppresses warning and informational messages.

Other compiler flags | Specify additional command line options; type in custom flags that are not otherwise available in the Ul.

3.2.7 Cross ARM C Linker
Use this panel to configure the ARM C linker options.
The following table lists the options in the Cross ARM C Linker panel.

Table 19. Cross ARM C Linker options

Option Description

Command Shows the location of the linker executable file. Default: ${cross prefix}${cross c}$

{cross_suffix}

All Options Shows the actual command line the assembler will be called with. Default: -7 "${ProjbirPath}"/
Linker Files/aarché64elf.x -nostartfiles -nodefaultlibs -L"C:\Users

\bl4174\workspace-15\FirstProjectTest" -Wl,-Map,"FirstProjectTest.map"

Expert settings

Command line patterns | Shows the expert settings command line parameters. Default: $ {coMMAND} $
{cross_toolchain flags} ${FLAGS} ${OUTPUT FLAG} ${OUTPUT PREFIX}${OUTPUT} $
{INPUTS}

3.2.7.1 General
Use this panel to configure the Arm C linker general options.

The following table lists the options in the General panel.

Table 20. General options

Option Description

Script files (-T) This option passes the -T argument to the linker file

Do not use standard start files (- | This option passes the -nostartfiles argument to the linker file. It does not allow the use of the
nostartfiles) standard start files.

Do not use default libraries (- | This option passes the -nodefaultlibs argument to the linker file. It does not allow the use of
nodefaultlibs) the default libraries.

No startup or default libs (- This option passes the -nostdlib argument to the linker file. It does not allow the use of startup
nostdlib) or default libs.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 31/162

NXP Semiconductors

ARMVv8 Build Properties

Table 20. General options (continued)

Option Description

Remove unused sections (- This option passes the -Xlinker --gc-sections argument to the linker file. It removes the unused
Xlinker --gc-sections) sections.

Print removed sections (- This option passes the -Xlinker --print-gc-sections argument to the linker file. It prints the
Xlinker --print-gc-sections) removed sections.

Omit all symbol information (-s) | This option passes the -s argument to the linker file. This option omits all symbol information.

3.2.7.2 Libraries
Use this panel to configure the Arm C linker libraries options.

The following table lists the options in the Libraries panel.

Table 21. Libraries options

Option Description

Libraries (-I) This option changes the build target's search order of access paths to start with the system paths list. The
compiler can search #include files in several different ways. You can also set the search order as follows:
For include statements of the form #include"xyz", the compiler first searches user paths, then the system
paths. For include statements of the form #include<xyz>, the compiler searches only system paths. This
option is global.

Library search path | Use this option to specify the include library search path.
(-L)

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 32/162

NXP Semiconductors

ARMVv8 Build Properties

¥ Properties for Projectl EI
type filter text Settings A i
[» Resource
Builders S
a4 C/C++ Build Cenfiguration: [Debug [Active] '] ’Manage Configurations...l

Build Variables
Environment

Legging B Tool Settings | 53] Toolchainsl 4 Build Stepsl Build Artifactl Binary Parsersl @ Error Parsers|
Settings
Tool Chain Editor (¥ Target Processor Libraries (-1) 28 85 E
i C/C++ General (% Optimization ’—|
Project References 3 Wamings
Run/Debug Settings (2 Debugging m
i Task Repository 4 B8 Cross ARM GMNU Assembler c
WikiText (28 Preprocessor gece
(22 Includes =

(2 Warnings
@ Miscellanecus
4 13 Cross ARM C Compiler
@ Preprocessor
@ Includes
(# Optimization
(# Warnings
(# Miscellansous
4 B8 Cross ARM C++ Compiler
(2 Preprocessor

m

05 Includes Library search path (-L) & s 3§52
(2 Optimization "§{ProjDirPath}"

(2 Warnings
@ Miscellanecus

a4 %) Cross ARM C++ Linker
@ General
|f% Libraries |
@ Miscellanecus

a4) Cross ARM GMU Create Flash Image
(# General

4 B3 Cross ARM GMU Create Listing -
(# General

4 B8 Cross ARM GMU Print Size
(2 General

@ ok |[Cancel

Figure 12. Libraries panel

3.2.7.3 Miscellaneous
Use this panel to configure the Arm C linker miscellaneous options.

The following table lists the options in the Miscellaneous panel.

Table 22. Miscellaneous options

Option Description

Linker flags This option specifies the flags to be passed with the linker file.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 33/162

NXP Semiconductors

ARMVv8 Build Properties

Table 22. Miscellaneous options (continued)

Option Description

Other objects This option lists paths that the VSPA linker searches for objects. The linker searches
the paths in the order shown in this list.

Generate Map This option specifies the map filename. Default: $ {BuildArtifactFileBaseName}.map

Cross Reference | Check this option to instruct the linker to list cross-reference information on symbols.
(-Xlinker --cref) This includes where the symbols were defined and where they were used, both inside
and outside macros.

Print link map (- | Check this option to instruct the linker to print the map file.
Xlinker --printf-
map)

Use newlib-nano | Check this option to select a version of Newlib focused on code size. Newlib-Nano can

(- help to reduce the size of your application compared to using the standard version of
specs=nano.spe |Newlib for both C and C++ projects.

cs)

Use float with Check this option to handle floating-point value using nano Newlib-Nano printf. By
nano printf (- default, Newlib-Nano uses non-floating point variants of the printf and scanf family of
u_printf_float) functions, to reduce the size if only integer values are used by such functions.

Use float with Check this option to handle floating-point value using nano Newlib-Nano scanf. By
nano scanf (- default, Newlib-Nano uses non-floating point variants of the printf and scanf family of
u_scanf_float) functions, to reduce the size if only integer values are used by such functions.
Verbose (-v) Check this option to show verbose information, including hex dump of program

segments in applications; default setting

Other linker flags | Specify additional command line options for the linker; type in custom flags that are not
otherwise available in the UL.

3.2.8 Cross ARM GNU Create Flash Image
Use this panel to configure the Cross Arm GNU create flash image options.

The following table lists the options in the Cross ARM GNU Create Flash Image panel.
Table 23. Cross ARM GNU Create Flash Image options

Option Description

Command Shows the location of the executable file. Default: ${cross prefix}${cross_objcopy}$

{cross_suffix}

All Options Shows the actual command line the assembler will be called with. Default:
"FirstProjectTest.elf" -0 ihex

Expert settings

Command line patterns | Shows the expert settings command line parameters. Default: $ {coMMAND} ${FLAGS} $
{OUTPUT FLAG} ${OUTPUT PREFIX}${OUTPUT} ${INPUTS}

3.2.8.1 General
Use this panel to configure the Cross Arm GNU create flash image general options.

The following table lists the options in the General panel.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 34/162

NXP Semiconductors

Table 24. General options

ARMVv8 Build Properties

Option

Description

Output file format

Defines the object file format.

Section: -j .text

Select to define section: -j .text.

Section: -j .data

Select to define section: -j .data.

Other sections (-))

Add other sections.

Other flags

Specify additional command line options; type in custom flags that are not otherwise available
in the Ul

3.2.9 Cross ARM GNU Create Listing

Use this panel to configure the Cross Arm GNU create listing options.

The following table lists the options in the Cross ARM GNU Create Listing panel.

Table 25. Cross ARM GNU Create Listing options

Option Description

Command Shows the location of the executable file. Default: ${cross prefix}${cross_objdump}$
{cross_suffix}}

All Options Shows the actual command line the assembler will be called with. Default:
"FirstProjectTest.elf" --source --all-headers --demangle --line-numbers --wide

Expert settings

Command line patterns

Shows the expert settings command line parameters. Default: $ {COMMAND} ${FLAGS} $
{OUTPUT FLAG} ${OUTPUT PREFIX}${OUTPUT} ${INPUTS}

3.2.9.1 General

Use this panel to configure the Cross Arm GNU create listing general options.

The following table lists the options in the General panel.

Table 26. General options

Option

Description

Display source

Check to display source.

Display all headers

Check to display headers in the listing file; disassembler writes listing headers, titles, and
subtitles to the listing file

Demangle names

Check to demangle names.

Display debugging info

Check to display debugging information.

Disassemble

Check to disassembles all section content and sends the output to a file. This command is
global and case-sensitive.

Display file headers

Check to display the contents of the overall file header.

Display line numbers

Check to display the line numbers.

Display relocation info

Check to displays the relocation entries in the file.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

35/162

NXP Semiconductors

Table 26. General options (continued)

ARMVv8 Build Properties

Option Description

Display symbols Check to display the symbols.

Wide lines Check to display wide lines.

Other flags Specify additional command line options for the linker; type in custom flags that are not
otherwise available in the Ul.

3.2.10 Cross ARM GNU Print Size
Use this panel to configure the Cross Arm GNU print size options.

The following table lists the options in the Cross ARM GNU Print Size panel.

Table 27. Cross ARM GNU Print Size options

Option Description

{cross_suffix}

Command Shows the location of the executable file. Default: $${cross prefix}${cross size}$

"FirstProjectTest.elf"

All Options Shows the actual command line the assembler will be called with. Default: --format=berkeley

Expert settings

Command line patterns | Shows the expert settings command line parameters. Default: $ {COMMAND} ${INPUTS} ${FLAGS}}

3.2.10.1 General
Use this panel to configure the Cross Arm GNU print size options.

The following table lists the options in the General panel.

Table 28. General options

Option Description

Size format Select size format: Berkeley or SysV

Hex Select to choose Hex.

Show totals Select to show totals.

Other flags Specify additional command line options for the linker; type in custom flags that are not
otherwise available in the Ul.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

36/162

NXP Semiconductors

Chapter 4
Preparing Target

This chapter describes how to prepare for debugging various target types:

» Preparing hardware targets

4.1 Preparing hardware targets

Please refer to the Hardware Board Getting Started Guide for a description on how to prepare the supported hardware targets.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 37/162

NXP Semiconductors

Chapter 5
Configuring Target

The Target Connection Configuration (TCC) feature lets you configure the probe and the target hardware.

TCC eases out the configuration process due to the auto- discovery capabilities and live validation of the configuration. TCC lets
you use one configuration for multiple projects by setting it as the active configuration (configure once debug all projects), but if
more than one configuration is required, you can add as many configuration as necessary. TCC can be used as an RCP
application for eclipse allowing the user to benefit from the full capabilities either way.

This chapter lists:
» Target Connection configurator overview
» Configuration types
» Operations with configurations
» Configure the target configuration using Target Connection Configurator
» Target Connection editor
» Generating GDB script from a configuration
» Debugger server connection

» Logging Configuration

5.1 Target Connection configurator overview

You can view all existing configuration, manage configurations, and set the active configuration using the Target Connection
View.

To access the Target Connections view, select Window > Show View > Other > Target Connections.

The view lists a brief information about the current connection.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 38/162

NXP Semiconductors

Configuring Target

fype filter text

li Project Explorer Bl Target Connections 52

N FE

List of available target configurations, only one can be active at a certain moment

Board

m

i 520884

< | n

Device Connectior

%LS?I]BB.H._RDB (1] LS2088A
|2 LA15T5_RDE LAa1575
|5 L51012A, FRDM Ls10124
|2 L51012 A FRMY L510124,
2 510124, QDS Ls10124
|7 L51012A_RDE L510124,
2 L510234, QDS L510234
|2 L51023A_RDE L510234
2 L510264,_QDS L510264
|7 L51026A_RDE L510264,
52 L510434, QDS L510434
|7 L51043A_RDE L510434
2 L510440,_ QDS L510444
|71 L510445_RDE L510444,
2 L510464,_ QDS L510464
|7 L51046A_RDE L5104564,
2 L510484,_QDS Ls10484
|7 L51048A_RDE L510484,
2 L510848,_ QDS L510844
|7 L510844_RDE L510844,
|52 L510884,_QDS Ls108aa
|7 L51088A_RDE L510884,
2 L520440, QDS L520444
|7 L520445 _RDE L520444,
2 L520484, QDS Ls20484
|7 L52048A_RDE L520484,
2 L520840, QDS L520844
|2 L520844_RDE L520844,
Esinna oS

Canfiguration details:

Processor Mame: LS20884,

Timeout:10
ITAG Speed:16000

Figure 13. Target Connection view

Target Canfiguration Marme: L520884_RDEB (1)

Probe: CodeMarriar TAP (USE)

4

= O

=
i
al
Il
=
=
=
=3
w

Add
Edit
Duplicate
Rermowe
Export

Irnport

Target Connections view has the capability to filter the existing configurations. You can filter the list of existing configuration based

on board name, device name, or connection details.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

39/162

NXP Semiconductors

Configuring Target

i Project Explorer JE§ Target Connections 52

bt F B

il

'I

]

= O

List of available target configurations, only one can be active at a certain morment

L=20

|5 L520884_RDE

I

Configuration details:

Target Configuration Marme: L320332_RDE (1)

Processor Marmes L52083.48

Probe: CodeMarrior TAP (USE)

Tirmeaut:10

ITAG Speed:16000

Figure 14. Filter existing target configurations

Dewice Caonnection De Add |
IL52088A _
(So0dsa
5 L520448 _RDE L520444,
[L520488_QD3 L320452
5 520488 _ROB L520484
2 L520848 QD3 L5205 42, Ex
port
[L520548 _ROE L320848,
[L52088A_QDs Ls20884
L520882

5.2 Configuration types

There are two type of target connection configuration: user-defined and pre-defined.

The pre-defined configurations are marked with orange icons. Unlike, user-defined configuration, pre-defined configurations
cannot be removed. Also, the user doesn’t have access to the pre-defined configuration file; therefore the pre-defined

configurations cannot be imported or exported.

However, the pre-defined configuration can be duplicated and saved under a different name.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

40/162

NXP Semiconductors

Configuring Target

li Project Explorer Bl Target Connections 52

b F B

4

= O

List of available target configurations, only one can be active at a certain moment

fype filter text

< | n

Board Device Connectior
|| 1520884 RDB (1) LS20884

[LA15T5_RDE LA1575

[L510125 FROM L510124

[Ls10128_FRAY L5012 gj::i:ﬁ::::?:ns

[Ls10128_GDS L510124

[7{L510125 RDE L5012

[Ls10238 QDS L510234

|71 510234 _RDE L510234

[Ls10265_ QDS L510264

|71 510264 _RDE L510264

[ELs10438_ QDS L510434

{71 510435 _RDE L510434 E
(1510445 _QDS LS10444,

{71 510445 _RDE L5044

[Ls10465_ QDS LS10464

|71 510465 _RDE L5046

[Ls10485_QDS L510484,

{71 510485 _RDE L5048

(1510845 QDS L510844,

{71 510845 _RDE L5084

[Ls10885_QDS L510884,

{71 510985 _RDE L510884

[Ls20445 QDS LS20444 1
[Z{L 520445 _RDE LS20448

[Ls20485_QDS L520484

[Z{L 520485 _RDE LS20484

[1520845 QDS L520844

|71 520945 _RDE LS20844

Esinna oS R RIILLTY -

Canfiguration details:

Target Canfiguration Marme: L520884_RDEB (1)

Processor Mame: LS20884,

Probe: CodeMarriar TAP (USE)

Timeout:10
ITAG Speed:16000

Figure 15. Configuration types

=
i
al
Il
=
=
=
=3
w

Add
Edit
Duplicate
Rermowe
Export

Irnport

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

41/162

NXP Semiconductors

Configuring Target

5.3 Operations with configurations
This topic explains the target connection configuration options.

The table below lists the target connection configuration options that you can use to manage configurations, view all existing
configuration, and set the active configuration.

Table 29. Target Connections Configurations options

Option Description

Inspect Inspect a board without an elf to debug. It attaches to a board without reset, image, or
symbols and doesn’t run the target initialization file. Inspect command is enabled when
a selection exists.

Connect Connect to a board without an elf to debug. The connect operation is done with reset
and running the target initialization file. The connect command is enabled when a
selection exists.

Flash Programmer Start the Flash Programmer Ul. Using this button, a new debug session similar to a
Connect will be started in the background in order to allow programming of the available
flash devices on a board. An existing connection can also be reused.

Diagnose Connection Use it to perform diagnostics on a selected target connection. When a connection is
being diagnosed, a new Connection Diagnostics view will appear, depicting all the tests
that are being executed.

Add Use to create a new configuration.

Edit Use to edit the selected configuration.

Duplicate Use to duplicate an existing configuration. You can edit the duplicated configuration.
Remove Use to remove an existing configuration. Select the configuration you want to delete,

and click Remove.

Export Use to export a configuration to the workspace. Select the configuration you want to
export. Click Export. Select the location in the workspace where you want to export the
configuration and click OK to finish.

Import Use to import a configuration from the workspace. Select the configuration you want to
import to the internal configuration folder. Click Import.

Set Active configuration Check the checkbox next to the configuration to set it as Active Configuration.

View details about a configuration TCC panel lets you determine whether a configuration is pre-defined or user-defined by
using different color icons; Orange for pre-defined and Green for user-defined. Also, if
a configuration is not complete and cannot be used for debug, TCC panel marks it as
(Incomplete).

5.4 Configure the target configuration using Target Connection Configurator

To configure the target configuration in Target Connection Configurator, you need to select the debugged processor and the
probe.

1. Choose the debugged core from the launch configuration file.

2. In order to connect to the target, select a connection type, such as hardware. And configure the probe options, such as
IP, serial number for USB connection.

You may also choose to apply a reset delay; the value of the delay is specified in milliseconds and it may be needed when
the PBL activity takes longer than the default allocated time to complete (2 seconds).

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 42/162

NXP Semiconductors
Configuring Target

The available probes depend on the selected processor. For example, since there is CMSIS DAP support for LS1012RDB,
CMSIS DAP probe is supported additional to CWTAP. In case you select CWTAP, you could use probe discovery capability.

NOTE
In this release, the list of detected CWTAPs also includes the probes connected to other processors in addition to
the one selected.

a. Click the Search for HW probes button to automatically discover the probes connected to the local machine or
network for SoCs that support CWTAP .

NOTE
CMSIS is a vendor-independent hardware abstraction layer provided by Arm. CMSIS Debug Access Port (CMSIS-
DAP) is a standardized firmware for a debug unit that connects to the CoreSight Debug Access port.

[Ls10124_RDB 52

Overview

Target Connection Configuration

Dewvice

@ CodeWarrior TAP () CMSISDAP 4

CodeMarrior TAP Connection
Ethernet* E

UsE* @

Hostharme/IP* 127.0.0.1 Serial number Serial number

Advanced

Timeaout (seconds* 10 JTAG Speed (kHz)* 16000

Preserve Probe Configuration® [}

Reset Options
[T Reset delay (rmsh | 2000

Secure Debug
[Secure debug key: | 0:0000000000000000

Target Configuration | Target Initialization File | README

Figure 16. Target Connection Configurator

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
43/162

User's Guide

NXP Semiconductors

Configuring Target

¥ Search for Probes = @

Search the network for configured probes

Use ‘Search for Probes...' to discover the configured probes.
Select a probe you wish to use and hit QK.

Connection Details

fowtap:10.171.72.222

o
(? 0
® o

Figure 17. Search for probes

b. When the user selects one of the discovered probes, the target configuration will use the selected CWTAP and the
selected probe attributes will be updated accordingly.

3. Select Preserve Probe Configuration to make all CWTAP configurations disappear. In this case, you will have to specify
only CCS server used to access the CWTAP.

4. Check the Use Target Init checkbox to load/edit the gdb file and launch the target init GDB script.
5. You can load/save and edit the gdb script in the Target Init File tab page.

The script is loaded by GDB and it is run automatically before launching a debug session. Initialization script is embedded
in the TCC configuration.

6. Click Apply to save and set the new target connection as an active configuration. To set an active configuration, select
the check box corresponding to the target connection to be set as active configuration. The active configuration acts as
source for the target connection data necessary to start a debug session.

NOTE
In the Target Connection view, the active configuration name is displayed in bold.

5.5 Target Connection editor

To open the Target Connection editor, double-click on a target configuration in the Target Connections view or on a . tcc file in
a project.

The Target Connection editor consists of three tabs.
» Target Configuration — contains the data about the device and the probe

« Target Initialization File — the initialization file (it's read only for predefined configurations and writeable for user-defined
configurations)

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 44 /162

NXP Semiconductors

Configuring Target

JEE Ls20895_RDE 32 = g

| »

]

Copyright (C) 2815, 2016, Freescale Semiconductor, Inc.
Copyright (C) 2016-2817 NXP.

A1l Rights Reserved

|.m

import gdb
import time
import ctypes

from cw.dbg import ta
from cw.dbg.rcw import SPRewvalidation

In order to connect to a board with a broken RCW, set the following wariable to True
Override RCW using a safe hard-coded RCW option
USE_SAFE_RCW = False

CORE_CONTEXKT = “:ccs:L52@884:CortexA72He™
SAP_CORE_CONTEXT = ™:ccs:LS2@88ASAPHD"

CPLD_ADDR = @xZ0222008

Because the Q5FI controller cannot work at the same time with the

IFC controller, this variable will enable QSPI boot and initialize
only the Q5PI and disable the IFC; wou must alsoc make some changes
on the board - for this please see the section QSPI_BOOT from readme
file.

QSPI_BOOT = @

Base address for DCFG and Reset registers;

they will be used to test if RCW and PBI phases were successful or not
DCFG_BASE_ADDRESS = @x1EQ@aad

RESET_BASE_ADDRESS = @x1E62208

DCSR_BASE_ADDRESS = @x7o@eeeooa

Utility functions

#This function should be used instead of gdb.execute in all cases when the value returned is used in the script
def gdb_exec({command, from tty, to string):

"""Execute a gdb command, remove the echo If it appears
4 3

Target Configuration | Target Initialization File README|

Figure 18. Target Initialization File

+ README - readme information (it's read only for predefined configurations and writeable for user-defined configurations)

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 45/162

NXP Semiconductors

Configuring Target

JER LS20884 _RDB 532 = B
B = = = e e e e e e # i
#% Default ROW (plegse refer to the latest SO¥ for ROW binaries):
B = = = o e e e e e e #

202e20ea: 55 aa 35 aa 2@ @@ 11 5@ 3@ 3@ 3@ 42 49 20 4@ 48
202228La: 00 22 QP 02 29 90 00 OP Q2 Q@ 22 QP o9 20 Q92 0@
20222029 00 22 2@ 09 20 92 0P @@ 5@ 11 BQ @2 Bl 25 Q@ 0@
22220833: 29 @0 22 92 00 22 @2 @2 Bb Gc O 22 @2 92 08 a2
20202242: 02 @2 @2 22 20 02 92 a2 22 20 0Q 22 o2 22 22 02
20202852: 02 @2 @2 22 20 02 92 a2 22 20 0Q 22 o2 22 22 02
20202252: 02 22 @2 22 20 0° 92 a2 22 20 oQ 22 o2 22 22 02
20002273: 02 72 @2 22 20 22 02 @2 22 22 2a 41 22 20 22 02
20202232: 00 @2 22 22 22 22 22 22 22 02 22 22 22 22 =2 31
20222223: 75 56 34 12 & M =0 31 22 02 22 22 22 &4 =2 31
o2308028: 280 @3 12 S0 ad 08 ff 52 02 02 8@ 88 B3a ff ff ff

m

B o o . #
JTAE configuraltion and selup
B o o . #

TBSCAN_EN_B needs to be configured as below:
SWF[7] = 1 - TBSCAN EN B is high

B o o . #
#% 6IC version
B o o . #

Generic Interrupt Controller Architecture version 3 (GICw3)
Implementation: GIC-S2@

e e #
#¢ Menory map and initialization
e e #

0x0000_0000_000@ - 0:x0@Q0_DOGF_FFFF 1ME CCSR - Boot ROM

0x0000_0100_000@ - 0x0000_OFFF_FFFF 248ME CCSR

0x0000_1500_0008 - 0x0000_LSLF_FFFF 128KE OCRAM

0x0000_5000_000@ - 0x0000_FFFF_FFFF 2848ME GPP DRAM Region #1 (2GE)

@x0085_2000_000@ - 0x0005_2008 FFFF S4KE CPLD

@x0085_s000_000@ - 0x0005_s7FF_FFFF 128ME IFC NOR =

Target Configuration | Target Initialization File | READKE

Figure 19. README

5.6 Generating GDB script from a configuration
TCC configures the target by sending a set of commands to the GDB server.

TCC configures the target by sending a set of commands to the GDB server. These commands can be exported and viewed as
a .gdb script. To export the . gdb script:

1. Configure the target configuration using Target Connection Configurator.
2. Click the toolbar command Generate GDB script.
3. Select the path where you want to export the . gdb script.

GDB script can be used as it is when starting a debug session from the (GDB) console mode.

5.7 Debugger server connection

Each target connection configuration allows the user to select the type of connection to use with GTA: a local server or a
remote connection to an already set up GTA server.

» Debug Server Connection

— Start local server: Automatically starts the GTA first time when a certain command is issued to GTA. The GTA will be
stopped when the user chooses to use a remote GTA or the CodeWarrior software is closed.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 46/ 162

NXP Semiconductors

— Connect to: User can specify the server address and IP of an already running debug server.

Configuring Target

In the CodeWarrior Connection Server section the user can specify the connection server parameters.

» CodeWarrior Connection Server

— Start Local Server: GTA starts and configures the connection server.

— Connect to: The connection server is already started/configured and the GTA can use it.

¥ Preferences

» General
s O+
Changelog

Debug Server Connection
Help

Install/Update

Library Hower

kllyn

MXP Licenses

Qaomph

Processor Expert

Rermote Development
Rermote Systermns

» RPM

Run/Debug

Softurare Bnalysis
Tearn

Terminal

Tracing
Yalidation
- XML

Y =
Iu?/l ./

= (5]fmS]

Debug Server Connection " "

* Debuqg Connection Server
Specify the Debug Connection Serser pararmeters

(@ Start Local Server

v

) Connect to 127.000.1 45000
= Code¥arrior Connection Server
Specify the Codedarrior Connection Server pararmeters
@ Start Local Server
) Connect to 127.000.1 41475
[Restore Qefaults] [Apply
[Apply and Closel [Cancel l

Figure 20. Debug Server Connection

5.8 Logging Configuration

The Logging Configuration preference panel can be used to enable the protocol logging (ccs).

Using this panel, the user can configure the logging level and choose the destination for the collected info:

+ an Eclipse console, PROTOCOL Logging Console. The console is visible only when Enable logging to Eclipse console is

selected

« afile

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

477162

NXP Semiconductors

Configuring Target

Figure 21. Logging Configuration panel

¥ Preferences

type filter text

General
C/C++
Changelog

Debug Server Connection
Logging Caonfiguration

Help
Install/Update
Library Hower
kllyn

MXP Licenses
Qaomph
Processor Expert
Rermote Development
Rermote Systermns
RPRA

Run/Debug
Softurare Bnalysis
Tearn

Terminal
Tracing
Validation

XhAL

@ @®

Lo []

Logging Configuration (=l E
PROTOCOL Logging |
Logging Lewel: |INFO -
[] Enable logging ta Eclipse consale
[IFile Browrse...
Lpply
Apply and Closel [Cancel

The INFO level for logging adds more information to the output, for example register IDs, memory addresses, memory spaces.
But it does not output the contents for register values, memory, and JTAG chain expansion (for get_config_chain() command).

For details about monitor log commands, refer Logging.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

48/162

NXP Semiconductors

Chapter 6
FSL Debugger References

This chapter explains how to customize debug configurations.

This chapter lists:

Customizing debug configuration

Registers features

OS awareness

Launch a hardware GDB debug session where no configuration is available
Memory tools GDB extensions

Connection tools GDB extensions

Miscellaneous tools GDB extensions

Monitor commands

1/0O support

6.1 Customizing debug configuration

You can use the Debug Configurations dialog to customize various aspects of a debug configuration.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

49/162

* Main

User's Guide

NXP Semiconductors

¥ Debug Configurations

Create, manage, and run configurations

2R B2
type filter text

Mame:
[£] C/C++ Application

BareBoard-Project
Main
[©] C/C++ Attach to Application

[t] C/C++ Postmortem Debugger

Project:
[€] C/C++ Remote Application

a [C] GDB Hardware Debugging

FSL Debugger References

[] BareBoard-Project

PareBoard-Project
= Launch Group

C/C++ Application:

Debug\BareBoard-Project.elf

Build (if required) before launching
Build configuration: | Use Active

@ Enable auto build

:itﬁiDebugger = Startup | B Source| 05 Awareness| Other Symbols| = Trace and Profile| (] Common

() Use workspace settings

Browse...

Variables...] ’Searcﬂ Project...] ’ Browse... l

Filter matched 7 of 7 items

@

() Disable auto build

Using CodeWarrier Hardware Debugging Launcher - Select other...

Figure 22. Debug Configurations dialog

l

Apply

Configure Workspace Settings..

J

[

To modify a debug configuration:

Revert

Debug
NOTE
in these pages also apply to the selected debugger.

J |

Close

1. Click Run > Debug Configurations in the CodeWarrior IDE.
The Debug Configurations dialog appears.

)

The CodeWarrior debugger shares some pages, such as Connection and Download. The settings that you specify

2. Make the required changes, and click the Apply button to save the pending changes.
3. To undo the pending changes, click the Revert button.

disabled until you make new pending changes.
file.

The tabs in the Debug Configurations dialog are:

The IDE restores the last set of saved settings to all pages of the Debug Configurations dialog. The Revert button appears

4. A debug configuration can be saved within the project by setting its location relative to the project loaded in the current

workspace. For this, click the Common tab, and in the Shared file option, select a project directory where you want to save
5. Click the Close button to close the Debug Configurations dialog.

the debug configuration. Now, you can import the project into another workspace without loosing the debug configuration

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

50/162

NXP Semiconductors

» Debugger

» Startup

» Source

* OS Awareness

Other Symbols

Common

Trace and Profile

6.1.1 Main

Use this page to specify the project and the application you want to run or debug.

FSL Debugger References

-
ﬁl Debug Configurations

Create, manage, and run configurations

= —tl

EREE] xl = Mame: BareBoard-Project

type filter text Main

I Debugger} B Startup} B Source| 05 Awareness | Other Symbolq = Traceand Profile) =] Qommon}

[©] C/C++ Application i
C/C++ Attach to Application || | ETOJeCt
ppl

[©] C/C++ Postmortem Debugger BareBoard-Project
[t] C/C++ Remote Application

C/C++ Application:
a [£] GDB Hardware Debugging L

Browse...

[€] BareBoard-Project Debug'\BareBoard-Project.elf

= Launch Group

Build (if required) before launching

Variables...] ’Searcﬂ Project...] ’ Browse... l

Build configuration: | Use Active

)

(@ Enable auto build

() Use workspace settings

(") Disable auto build
Configure Waorkspace Settings...

Using CodeWarrior Hardware Debugging Launcher - Select other...

Filter matched 7 of 7 items

| Apply || Rever |

®

Figure 23. Main tab

I Debug I ’ Close]

The Main tab options are explained in the following table.

Table 30. Main tab options

Option Description

C/C++ Application Specifies the name of the C or C++ application.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

51/162

NXP Semiconductors

FSL Debugger References

Table 30. Main tab options (continued)

Option

Description

Variables

Click to open the Select build variable dialog box and select the build variables to be associated
with the program. Note: The dialog box displays an aggregation of multiple variable databases
and not all these variables are suitable to be used from a build environment.

Search Project

Click to open the Program Selection dialog box and select a binary.

Browse

Click Browse to select a different C/C++ application.

Project

Specifies the project to associate with the selected debug launch configuration. Click Browse to
select a different project.

Build (if required) before
launching

Controls how auto build is configured for the launch configuration. Changing this setting
overrides the global workspace setting and can provide some speed improvements. NOTE:
These options are set to default and collapsed when Connect debug session type is selected.

Build configuration

Specifies the build configuration either explicitly or use the current active configuration.

Select configuration using
‘C/C++ Application’

Select/clear to enable/disable automatic selection of the configuration to be built, based on the
path to the program.

Enable auto build

Enables auto build for the debug configuration which can slow down launch performance.

Disable auto build

Disables auto build for the debug configuration which may improve launch performance. No build
action will be performed before starting the debug session. You have to rebuild the project
manually.

Use Active (default)

Uses the global auto build settings.

Configure Workspace
Settings

Opens the Launching preference panel where you can change the workspace settings. It will
affect all projects that do not have project specific settings.

6.1.2 Debugger

Use this page to select a debugger to use when debugging an application.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

52/162

NXP Semiconductors

FSL Debugger References

¥ Debug Configurations @
Create, , and run confi ions .
X I=E Name: BareBoard-Froject
type filter text 2 Main %31 Debugger . = Startup E + Source | OS Awareness ﬁ Other Symbals | 7] Common| = Trace and Profile
[T] C/C++ Application GDE Setup
% Eig++§ttatchtliAp;I:j\ic;tmn 0B Command:
++ Pastrortern Debugger
[C/C++ Remate Application "$leclipse_homel ARMyE gdbhbin\aarcht -fsl-gdb.exe”
4 [T] GOB Hardware Debugaing
BareBoard-Project Target Connection Configuration
£ Launch Group Execute target initialization file
= Launch Group (Deprecated)
[l Werify mermory after download
[T Use launch specific connection
Configuration: | LE20284_RDE (1)
Core: |CortexdT28#0 = | [] Use all cores
[7] Synchronize with breakpoints setin GDE console
[Force thread list update on suspend
Filter ratched B of B items Using CodeMyarrior Hardware Debugging Launcher - Select other... Rewvert Apply
'i?;' Debug] [Close
Figure 24. Debugger tab

The Debugger tab options are explained in the following table.

Table 31. Debugger tab options

Option Description
GDB Setup
GDB Command Specifies the GDB command. For example: ${eclipse_home}..\ARMv8\gdb\bin\aarch64-fsl-gdb.exe.
Browse Click to navigate.
Variables Click to select variables.

Target Connection Configuration

Verify memory
download

User's Guide

If selected, download validation is performed after binary is downloaded to target. The console
displays the validation result in an output similar to the one presented below.

Section .note.gnu.build-id, range 0x400000 -- 0x400024: matched.

Section .text,

range 0x400040 -- 0x400568: matched.

Section .rodata,

range 0x400568 -- 0x400578: matched.

Section .data,

range 0x410578 -- 0x410cd0: matched.

If checkbox is deselected, validation is not performed and the above output is not displayed.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

53/162

NXP Semiconductors

FSL Debugger References

Table 31. Debugger tab options (continued)

Option

Description

In GDB command line, a user can execute the compare-sections command after the executable
is loaded to target (using the 10ad command), and same output will be displayed. A typical GDB
session with download validation is presented in the example below.

target extended-remote host:port
mon ctx set current :ccs:LS2080A:A57#0
attach 1

load elf file

file elf file

compare-sections

Use launch specific

Select to specify the target connection configuration in this launch. This will override the configuration

connection specified globally in Window->Preferences dialog.
Configuration Enabled when Use launch specific connection is checked. Use to select the required configuration.
Core Select the core to debug.

Use all cores

Select if your application uses all cores (SMP).

Synchronize with
breakpoints set in
GDB console

When activated, all breakpoints set from the GDB console are synchronized with the CodeWarrior Ul.

Breakpoints created in the GDB console appear in the Breakpoints view and preserved from the
current Debug session to the next.

Force thread list
update on suspend

Click if you want to force thread list update on suspend.

NOTE

When trying read 1/O operations (scanf, fget etc.) using semihosting, you have to check Use separate console for
target output and input, otherwise, if you check the other option from Application Console, Use GDB console for
target output, the read I/O operations will be unreliable.

6.1.3 Startup

Use this page to specify the startup options and values to use when an application runs.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

54 /162

NXP Semiconductors

FSL Debugger References

-
¥ Debug Configurations

Create, manage, and run configurations

=

CEX| B3~

type filter text

[£] C/C++ Application
[©] C/C++ Attach to Application
[t] C/C++ Postmortem Debugger
[€] C/C++ Remote Application
a [C] GDB Hardware Debugging
[] BareBoard-Project
= Launch Group

Filter matched 7 of 7 items

Mame: BareBoard-Project

Main :t@: Debugger | B+ Startup E./ Source | 05 Awareness | Other Symbolq = Traceand Profile} iS| gommorq

Initialization Commands
[¥]Reset and Delay (seconds): 0
Halt

Load Image and Symbels
[¥] Load image

@ Use project binary: BareBoard-Project.elf
) Use file:

Image offset (hex):

Load symbols

@ Use project binary: BareBoard-Project.elf

(©) Use file:

Workspace...

Workspace...

File System...

File System...

»

m

Using CodeWarrier Hardware Debugging Launcher - Select other...

l

Apply] [Revert

)

)

Figure 25. Startup tab

i

Debug] ’ Close]

The following table list the Startup tab options.

Table 32. Startup tab options

Option Description

Reset and Delay Select to reset the target at startup and delay the initialization for the specified amount of seconds
(seconds)

Halt Select to halt the target at startup

Load image Select to specify that an image should be loaded to the target

Use project binary

Select to load the binary of the current project

Use file Select to load a different file

Workspace

Click to select a file to load from the workspace

File System

Click to select a file to load from the file system

Image offset (hex)

Specify the offset on the target from where to load the image

Load symbols

Select to specify that symbols should be loaded in the debugger

Use project binary

Select to load symbols from the binary of the current project

Use file Select to load symbols from a different file

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

55/162

NXP Semiconductors

Table 32. Startup tab options (continued)

FSL Debugger References

Option Description

Workspace Click to select a file with symbols to load from the workspace
File System Click to select a file with symbols to load from the file system
Symbol offset (hex) Specify an offset for the symbols

Set program counter at | Select to set the PC at startup to a specified value
(hex)

Set breakpoint at Select to set a breakpoint at a specified location

Resume Select to indicate the execution should resume

Run commands Specify commands to be run in the debugger after loading image / symbols
6.1.4 Source

Use this page to specify the location of source files used when debugging a C or C++ application.

By default, this information is taken from the build path of your project.

-
ﬁl Debug Configurations

Create, manage, and run configurations

S 1
OB X | B3~ Mame: BareBoard-Project
type filter text Main ﬁt@: Debugger (b Startup rl'a/ Source 05 Awareness | Other Symbolq = Traceand Profilew =] Qommon}
[c] C/C++ Application Source Lockup Path:
[E] C/C++ Attach to Application = Defatt
[©] C/C++ Postmortemn Debugger b [Default e
[©] C/C++ Remote Application Edit
a [£] GDB Hardware Debugging =
[] BareBoard-Project
= Launch Group
Up
Down

Restore Default

[Search for duplicate source files on the path

Filter matched 7 of 7 items

Using CodeWarrior Hardware Debugging Launcher - Select other... ’ Apply] [Revert]

@ [b

ebug] ’ Close]

Figure 26. Source tab

The Source tab options are explained in the following table.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

56 /162

NXP Semiconductors

Table 33. Source tab options

FSL Debugger References

Option

Description

Source Lookup Path

Lists the source paths used to load an image after connecting
the debugger to the target.

Add Click to add new source containers to the Source Lookup Path
search list.

Edit Click to modify the content of the selected source container.

Remove Click to remove selected items from the Source Lookup Path
list.

Up Click to move selected items up the Source Lookup Path list.

Down Click to move selected items down the Source Lookup Path list.

Restore Default

Click to restore the default source search list.

Search for duplicate source files on the path

Select to search for files with the same name on a selected
path.

6.1.5 OS Awareness

Use this page to specify whether the OS Awareness should be enabled.

¥ Debug Configurations

. i - - - - oy a -
Create, , and run configurati
BRER | = :=:° M Name: Mew_cenfiguration
type filter test Main ﬁ? Debugger | B Startup | B Source [OSAwareness\'\i'C& Other Symbols] i=| (ommonl
(] C/C++ Application - 0S Awareness Enablement =
[€] C/C++ Attach to Application [F] Enable OS Awareness
[€] C/C++ Postmortem Debugger
[€] C/C++ Remote Application @ Linux Kernel
£ Eclipse Application U-boot A
4 [T] GDB Hardware Debugging UEEL T
[€] New_configuration Other
Java Applet
Java Application R
Ju JUnit
.ﬂ’. JUnit Plug-in Test
= Launch Group
“ 0SGi Framewark
E Remote Java Application
& SWTBot Test
A 1 |
Bitsr st b e e Using CodeWarrior Hardware Debugging Launcher - Select other... [Apply] [Revert I
® [Debug] [Close I

Figure 27. OS Awareness tab

The following table list the OS Awareness tab options.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

571162

NXP Semiconductors

Table 34. OS Awareness tab options

FSL Debugger References

Option

Description

Enable OS Awareness

Select to enable OS Awareness (and activate the other tab
options).

Linux Kernel Select to enable OS awareness for Linux Kernel.
U-boot Select to enable OS awareness for U-Boot.

UEFI Select to enable OS Awareness for UEFI.

Other Select to enable user-defined types of OS awareness.

Use CodeWarrior script for Linux Kernel Awareness

Select to enable OS Awareness for Linux Kernel using
CodeWarrior specific script.

Use CodeWarrior script for U-boot Awareness

Select to enable OS Awareness for U-boot using CodeWarrior
specific script.

Use CodeWarrior script for UEFI Awareness

Select to enable OS Awareness for UEFI using CodeWarrior
specific script.

Use script

Select to specify a custom script to enable OS Awareness.

Add SPL U-Boot ELF

Select to specify an SPL U-Boot ELF in order to debug an SPL-
based U-Boot (e.g. NAND/SD type). By using this option,
debugger automatically activates all the required processing
needed to debug the SPL part followed by the main/DDR U-Boot
elf debug.

Workspace

Click to select a custom script from the workspace.

File System

Click to select a custom script from the file system.

Suspend target when module insert or removal is detected

Select to suspend target when module insert or removal is
detected.

Automatically load configured symbolic file at module init
detection

Select to automatically load symbolic files.

Auto-load module symbolics files list

Lists automatically loaded symbolic files.

UEFI root layout

Select the Build folder inside the local path to the UEFI root
layout

Add symbols for EFl images loaded at runtime

Select to automatically add symbols at attach for EFIl images
loaded at runtime

6.1.6 Other Symbols

Use this page to specify other symbols settings.

The Other Symbols tab allows reading additional symbol table information from one or more e1£ files given by the user.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

58/162

NXP Semiconductors

¥ Debug Configurations

Create, manage, and run configurations

= =
type filter text

Mame:
[£] C/C++ Application

BareBoard-Project
[©] C/C++ Attach to Application

[t] C/C++ Postmortem Debugger

FSL Debugger References

=

[€] C/C++ Remote Application
a [C] GDB Hardware Debugging

[| BareBoard-Project
= Launch Group

Load symbols:

[Main ﬁDebugger I Startup | B Source | 0S Awareness | Other Symbols
@ Use addresses from file

() Use load address (hex):

= Trace and Profile| [] Common
(7 Use custom sections load address:

Workspace... ” File System...]

Filter matched 7 of 7 items

~
(?/.

Using CodeWarrier Hardware Debugging Launcher - Select other...
Figure 28. Other Symbols tab

l

Apply
this address is not given as a parameter.

J

Debug

J{

If an address is given as a parameter, then the add-symbols command loads symbols for all loadable sections based on the
specified memory load address. Similar to the GDB command add-symbol-file, the add-symbols may load symbols for only
corresponding to the Load Symbols group you want to eliminate.

Option

Revert
The symbol table information is read by using the add-symbols command; this command is similar to the GDB add-symbol-file

Close
command. However, unlike the add-symbol-file command, the add-symbols doesn't require the user to provide the load
address for the file. The symbols from the e1f file are loaded using the compile-time addresses for all loadable sections in case

Use addresses from file

specific sections at the given load addresses. In order to add symbols from more than one e1f file, you only need to add a new
Description

Load Symbols group specifying the new e1 £ file and the load options. To remove an e1r file, press the Remove button
Load Symbols

Use load address (hex)

workspace.

for all loadable sections.

Choose the <1t ffile you want to use from either the file system or the

User's Guide

Select to load the symbols from the e1 £ file using compile-time addresses

memory load address. The input from the user is a hex address, without
of first loadable section).

Table continues on the next page...

Select to load symbols for all loadable sections based on the specified
the 0x prefix and it represents the load address in target memory (address

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

59/162

NXP Semiconductors

FSL Debugger References

Table continued from the previous page...

Use custom sections load address Select to load symbols for explicitly provided sections at the specified load
addresses. Here the user must specify the section and the load address.
Example: -s .text 0x80000000

6.1.7 Common

Use this page to specify the location to store your run configuration, standard input and output, and background launch
options.

r - 3
Iﬁ Debug Configurations " u

Create, manage, and run configurations ﬁ\

B EIEE

MName: BareBoard-Project

type filter text
[E] C/C++ Application
[E] C/C++ Attach to Application © Local file
[E]1 C/C++ Postmortem Debugger

o (@) Shared file: \BareBoard-Project Browse..
[E] C/C++ Remote Application)

4 GDB Hardware Debugging

Main ﬁﬁ Debugger fb Startup ﬁ?ﬁ/ Source (OS Awareness ﬁ& Other Symbols (f:— Trace and Profile fﬁ Common

Save as

= Display in favorites menu Encoding
BareBoard-Project = B .
@ Default - inherited (Cp1252)
[€] Project 2 [## Debug - P
7 Launch Group (©) Other | ISO-8859-1 -

B Launch Group (Deprecated)

Standard Input and Output
Allocate console (necessary for input)

[l Input File:
Workspace... File System... Variables...
["] Output File:
Workspace... File System... Variables...
I Append
Launch in background
|
Filter matched 9 of 9 items Using CodeWarrior Hardware Debugging Launcher - Select other... Revert Apply
a
@ Debug I [Close
Figure 29. Common tab
The following table lists and explains the Common tab options.
Table 35. Common tab options
Option Description
Save as
Local file Select to save the launch configuration locally.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 60/ 162

NXP Semiconductors

Table 35. Common tab options (continued)

FSL Debugger References

Option

Description

Shared file

Select to specifies the path of, or browse to, a workspace to
store the launch configuration file, and be able to commit it to
a repository.

Display in favorites menu

Check to add the configuration name to Run or Debug menus
for easy selection.

Encoding

Standard Input and Output

Select an encoding scheme to use for console output.

Allocate Console (necessary for input)

Select to assign a console view to receive the output.

Input File

Specify the file name to save input.

Output File

Specify the file name to save output.

Browse Workspace

Specifies the path of, or browse to, a workspace to store the
output file.

Browse File System

Specifies the path of, or browse to, a file system directory to
store the output file.

Variables Select variables by name to include in the output file.
Append Check to append output. Uncheck to recreate file each time.
Port Check to redirect standard output (stdout, stderr) of a

process being debugged to a user specified socket. Note: You
can also use the redirect command in debugger shell to
redirect standard output streams to a socket.

Act as Server

Select to redirect the output from the current process to a local
server socket bound to the specified port.

Hostname/IP Address

Select to redirect the output from the current process to a server
socket located on the specified host and bound to the specified
port. The debugger will connect and write to this server socket
via a client socket created on an ephemeral port

Launch in background

Check to launch configuration in background mode.

6.1.8 Trace and Profile

Use this page to specify trace and profile settings.

For any new project, go to Debug configuration, select a launch configuration from GDB Hardware Debugging from the left panel

and select the Trace and Profile tab from the right panel.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

61/162

NXP Semiconductors

FSL Debugger References

-
¥ Debug Configurations ﬁ

Create, manage, and run configurations

£ —+l,
L1 ES x| H 3~ Mame: BareBoard-Project
type filter text

[£] C/C++ Application
[©] C/C++ Attach to Application

Main :t@: Debugger | B Startup | B Source | 05 Awareness | Other Symbols | = Trace and Profile “._[C] Common

»

COverview | Basic —

[t] C/C++ Postmortem Debugger Platform Configuration Settings
[€] C/C++ Remote Application
4 [T] GDB Hardware Debugging ’BareBoard-Project.xml v]

[] BareBoard-Project

= Launch Group Delete

Target 05

m

Linuzx

Target agent

@ Mone b
IP Address

127001
Port

45000 S
| (1 | [

Filter matched 7 of 7 items Using CodeWarrier Hardware Debugging Launcher - Select other... ’ Apply] [Revert]

@ [Debug] ’ Close]

Figure 30. Trace and Profile tab

6.2 Registers features
This topic explains Peripherals view and GDB customer register commands.
This section lists:

» Peripherals view

» GDB custom register commands

6.2.1 Peripherals view

The Peripherals view lists information about the processor system and platform ip-blocks organized in the form of register
groups and memory mapped register groups.

The registers are displayed in a tree view with three columns:
» Name - the name of the register or group
» Value - the value from of the register read from target
» Location —the address of the register or the address of the first register for groups (applicable only for platform groups - MMR).
» Access - the access mode: R=read-only, RW=read-write, W=write-only
* Reset - the register reset value
» Description — the register description

Register and bit field values can be modified on target by clicking in the value cell and entering a new value.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 62/162

NXP Semiconductors

FSL Debugger References

The view is automatically opened when a debug session is started and it is populated with registers when the target is first
suspended at program entry point. The view can also be opened manually from the menu: Window > ShowView> Other >
Peripherals or by using the shortcut: Alt+Shift+Q, R.

B% peripherals &3 e = O
MNarne | Yalue | Resek ACccess | Locakion | Descripkion | A|
= Cortex-AS7 Subsystem Registers
= = L520354 Platform Registers
= f cEval 0x3200000
ai8t PCTRL 0x2c000098 0x0 R 0x3200000 PCTRL - Pork SERDES Control Register,
= Y PoFS 0x2c000095 Ox3e864002 W 0x3200004 Port Config Register
& TP3S Dx2cl Dx2ed Rty [31:20] TP55; Milisecond Timer Posk Scaler
% TPRS 00 OwEd Rt [19:12] TPRS: Millisecond Timer Per Scaler
& Reserved 0w %0 - [11:9] Reserved
@ CISE 0x0 0x0 Rty [&] ZISE: Chained Interrupk Separation Enabled
¥ Reserved 0%z 0x0 - [7:8] Reserved
& PaD 0x13 2 iyt [5:0] PACy Pork Address
0 PPCFG 0x2c000095 Ox8001FFF R 0x3200008 PPCFG - Pork PhylCRg Register,
el PR2C 0x2c000095 Ox5030461c RW 0x320000c PPZ2C - Port Phy2CFg Redgister,
el PR3C 0x2c000093 Ox1c0F1907 RWw 0x3200010 PP3C - Port Phy3CFgRegister,
il PPaC 0x2c000098 Ox6480F15 R 0x3200014 PP4iC - Port Phy4CFg Register,
dini PPSIC 0x2c000098 0x800c964a | RW 0x3200018 PPSC - Port PhySCFg Register, hd

6.2.2 GDB custom register commands

There are several GDB commands for manipulating system and platform registers. The commands are querying into an
SQLite DB associated with the target that is currently debugged in order to fetch register information based on its name.

6.2.2.1 reg_write command
Write register value.

Usage

reg write [context] REG GROUP.REG NAME VALUE

Table 36. Mandatory arguments

Name Address

REG_GROUP.REG_NAME REG_GROUP is the name of the register group or IP block.
REG_NAME is the name of the register from REG_GROUP.

VALUE Value to be written

Table 37. Optional arguments

Name Address

context GTA (GDB server) debug context :ccs:<soc>[:core]
e.g. :ccs:LS2088A or :ccs:LS2088A:CortexA72#0. If present, the
context can be a core context; if not, the current context is used.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 63/162

NXP Semiconductors

FSL Debugger References

Bl CAWINDOWS\system32iemd.exe — O %

Figure 31. Writing a register using reg_write command

6.2.2.2 reg_read command
Read register value.

Usage

reg read [context] REG GROUP.REG NAME

Table 38. Mandatory arguments

Name Address

REG_GROUP.REG_NAME REG_GROUP is the name of the register group or IP block.
REG_NAME is the name of the register from REG_GROUP.

Table 39. Optional arguments

Name Address

context GTA (GDB server) debug context :ccs:<soc>[:core]
e.g. :ccs:LS2088A or :ccs:LS2088A:CortexA72#0. If present, the
context can be a core context; if not, the current context is used.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 64 /162

NXP Semiconductors

FSL Debugger References

Bl CAWINDOWS\system32iemd.exe — O %

Figure 32. Reading a register using reg_read command

6.2.2.3 reg_print command
Print a list with all group registers registers / bifields details.

Usage

reg print [-h] [context] name [-s SELECT]

Table 40. Mandatory arguments

Name Address

name REG_GROUP[.REG_NAME[.BIT_FIELD]]
REG_GROUP - name of the register group (IP block)
REG_NAME - name of a register from REG_GROUP

BIT_FIELD - name of a bit field from the REG_NAME.

Table 41. Optional arguments

Name Address

context GTA (GDB server) debug context :ccs:<soc>[:core]
e.g. :ccs:LS2088A or :ccs:LS2088A:CortexA72#0. If present, the
context can be a core context; if not, the current context is used.

-s SELECT, --select SELECT specify what information will be printed; possible values: a - access,
b - bit range, d - description, | - location, r - reset value, v - value

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 65/162

NXP Semiconductors

FSL Debugger References

BN C\WINDOWS\system32icmd.exe — m| %

Description

DR
D
D
D
D
DR
D
D
DRA
D
DR
D

I LA LA LA LA LA LA LA LA LA LA LA

Figure 33. Reading an entire registers group using reg_print command

6.2.2.4 reg_export command
Export register groups to a file.

Usage

reg export FILE <ALL | GROUP NAME1l, GROUP NAME2...> [FORMAT=regs]

Table 42. Mandatory arguments

Name Address
FILE Path for the exported result.
<ALL | GROUP_NAME1,GROUP_NAME2...> What to export. All register groups (IP blocks) or a subset of them.

Table 43. Optional arguments

Name Address

FORMAT Format of the exported file. Supported option: regs

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 66 /162

NXP Semiconductors

FSL Debugger References

Bl CAWINDOWS\system32iemd.exe — O %

_export C:/Temp/r

Figure 34. Exporting a registers group using reg_export command

6.3 OS awareness

OS awareness support in the CodeWarrior software is a group of features that simplify and improve the user experience while
debugging the OS-specific projects.

The OS awareness features are enabled from the OS Awareness tab in the Debug Configurations dialog.

Currently, predefined support exists for the following types of OS Awareness: Linux Kernel, U-boot, and UEFI. When importing
an executable image for a Linux kernel, U-Boot, or UEFI project using the CodeWarrior Executable Importer wizard, the image
type is auto-detected and the configuration of the options in the OS Awareness tab is done automatically. The user can manually
change the options in the OS Awareness tab at any time. Advanced users can also use custom scripts to add the OS awareness
support for their specific projects.

6.3.1 Linux kernel awareness

This topic explains how to enable Linux kernel awareness.

To enable Linux kernel awareness, select the checkboxes Enable OS Awareness, Linux Kernel , and Use CodeWarrior script for
Linux Kernel Awareness in the OS Awareness tab.

For details on how to create a Linux kernel project and start a debug session, see Linux kernel debug.

6.3.1.1 List Linux kernel information

Linux kernel awareness allow users to see relevant Linux kernel operating system information.
* Build time and kernel version
» Kernel module list
» Kernel thread list

The Linux kernel information is available in the command line and in the Eclipse view.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 67 /162

NXP Semiconductors

FSL Debugger References

6.3.1.1.1 GDB commands
Once a debug session is started and debug is suspended, go to the gdb console and run <gdb command>.
The following GDB commands are available:
* - ka-show-info: Prints Linux kernel general information
(gdb) ka-show-info
Build Time = #7 Mon Mar 31 11:44:09 EEST 2014
Linux Version = 3.12.0+

e - ka-show-thread-1list: Prints the kernel threads

(gdb) ka-show-thread-list

Name Pid State Address Core
Swapper 0 running 0xffffffc0004de430 0
init 1 interruptible 0xffffffic079¢c50000 0
kthreadd 2 interruptible Oxffffffc079c50880 0

* - ka-reset: Resets the board when an OS Awareness is enabled (Linux Kernel, U-Boot, or UEFI)

(gdb) ka-reset

6.3.1.1.2 Eclipse view

When Linux kernel awareness is enabled from the tab, the OS Resources view displays information about:
* Linux system information
* modules list

« kernel thread information

6.3.1.2 Linux kernel debug
Linux kernel module debugging is enabled by default when kernel awareness extensions are enabled.

The following gdb commands are implemented for Linux kernel module debug.

6.3.1.2.1 GDB commands
This topic explains the GDB commands.
GDB commands:
* - ka-show-module-list :
Description: Prints Linux kernel modules

(gdb) ka-show-module-list

Name Address
krng 0xffffffbffc010000
rng Oxffffffbffc00c000

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 68/162

NXP Semiconductors

FSL Debugger References

» ka-module-load:
Description: Loads symbolics file for a kernel module.
The commands has the following parameters:
— (required) the kernel module symbolics file
— (optional) the module name, necessary when the symbolics file name and the kernel module name are different

Example:

(gdb) ka-module-load /data/ARM DEVEL/linux/ls2-linux/crypto/krng.o
Symbol file /data/ARM DEVEL/linux/ls2-linux/crypto/krng.o loaded successfully
» ka-module-unload:
Description: Unloads symbolics file for a kernel module.
The commands has one required parameter: the module name

Example:

(gdb) ka-module-unload rng
Symbol file /data/ARM DEVEL/linux/ls2-linux/crypto/rng.o unloaded successfully
» ka-module-files:
Description: Shows the loaded symbolics file for a kernel modules.
The command has an optional argument (integer > 0) representing the maximum number of files

Example:

(gdb) ka-module-files

Name Loaded file
rng /data/ARM DEVEL/linux/ls2-linux/crypto/rng.o
krng /data/ARM DEVEL/linux/ls2-linux/crypto/krng.o

» ka-module-config-suspend:
Description: Configures module detect suspend action:
The command has one optional argument (boolean):
— True: suspend target when module insert/removal is detected
— False: do not suspend target when module insert/removal is detected
If no parameter is passed, the command returns the configuration value

Example:

(gdb) ka-module-config-suspend True
(gdb) ka-module-config-suspend True

» ka-module-config-auto-load:
Description: Configures module detect auto-load action:
The command has one optional argument (boolean):
— True: automatically load configured symbolic files at module init detection

— False: no not automatically load module symbolics at module init detection

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 69/162

NXP Semiconductors

FSL Debugger References

If no parameter is passed, the command returns the configuration value.

Example:

(gdb) ka-module-config-auto-load True
(gdb) ka-module-config-auto-load True
» ka-module-config-map-load:
Description: Adds the module symbolics file in the module configuration map.
If the auto-load is enabled, this symbolics file is automatically loaded when the corresponding module is inserted.
The commands has the following parameters:
— (required) the kernel module symbolics file
— (optional) the module name, necessary when the symbolics file name and the kernel module name are different

Example:
(gdb) ka-module-config-map-load /data/linux/crypto/krng.o

» ka-module-config-map-unload:
Unloads symbolics file from the module configuration map. The commands has one required parameter: - the module name

Example:
(gdb) ka-module-config-map-unload krng

» ka-module-config-show:

Description: Shows the module configuration parameters. The command has an optional argument (integer > 0) representing
the maximum number of files shown from the configuration map

Example:

(gdb) ka-module-config-show

Name Loaded file
rng /data/linux/crypto/rng.o
krng /data/linux/crypto/krng.o

6.3.1.3 Linux kernel image version verification

When Kernel awareness is enabled, CodeWarrior performs a Linux Kernel image version verification to validate that the binary
image on the target (ulmage) matches the ELF symbolics file (vmlinux) in the debugger.

When access to target version is available (after the u-boot copies the Linux kernel image into DDRAM), the debugger performs
the version verification. In case of mismatch, the debugger prints the following message in the gdb console: warning: Kernel

image running on the target is different than the vmlinux image in debugger.
In addition, the user can trigger at any time the version verification in the following way:
* From CLI using the kxa-show-info commands. For example:
(gdb) ka-show-info
Build Time = #2 SMP PREEMPT Thu Nov 13 10:09:26 EET 2014

Linux Version = 3.16.0-Layerscape2-SDK+gec37efe
Target version check : ELF image version matches target image version

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 70/162

NXP Semiconductors

FSL Debugger References

In case of version mismatch, the Target version check message is Warning: Kernel image running on the target is
different than the vmlinux image in debugger. If the access to target version is not available yet, the Target version
check message is not available yet. The user should check again after the u-boot copies the Linux kernel image into the
DDRAM.

» From Eclipse, OS Resources window, select System Info. The same information as for the CLI command is shown here.

6.3.2 U-Boot awareness
This topic explains how to enable U-Boot awareness.

The U-Boot awareness features enhance and improve the usability for U-Boot debugging by simplifying the debugging interface.
The U-Boot awareness feature provides:

» asingle debug session for all U-Boot booting phases that allows user to debug from the first instruction after reset to relocation
in DDRAM

 possibility to debug an SPL-based U-Boot (e.g. for NAND/SD) by specifying the SPL U-Boot and covering all booting stages
» U-Boot command line prompt for booting the Linux kernel

With U-Boot awareness, the debugger automatically detects each U-Boot stage using debugger eventpoints and performs specific
actions, such as setting the relocation offset for DDRAM.

To enable the U-Boot awareness features, select the checkboxes Enable OS Awareness, U-boot, and Use CodeWarrior script
for U-boot Awareness in the OS Awareness tab. For details on how to create a U-Boot project and how to start a debug session,
see U-Boot debug.
6.3.2.1 List U-Boot information
When U-Boot awareness is enabled from the OS Awareness tab, the OS Resources view displays information about:

» U-Boot version, configuration, and build time

» Memory, that is RAM size, RAM top, relocation address, and relocation offset. However, this information is displayed only
when the data is available after relocation.

6.3.2.2 U-Boot image version verification
For U-Boot, CodeWarrior performs the same kind of checking as for Linux kernel image.

In the same way, the mismatch warning is shown in the gdb console when the U-Boot version is available and the user can check
the version at any time from Eclipse, OS Resource window, selecting “Version”.

NOTE
Note that versions verification when doing SPL U-Boot debug will be available once the main/DDR U-Boot gets
loaded in DDR. Until this happens, target version check will be reported as being unavailable.

6.3.3 UEFI awareness

This topic explains how to enable UEFI awareness.

To enable UEFI awareness, select the checkboxes Enable OS Awareness, UEFI, and Use CodeWarrior script for UEFI
Awareness in the OS Awareness tab.

6.3.3.1 Load debug data for all loaded EFI images

The UEF| awareness support in the CodeWarrior software allows users to load the debug data for all the EFl images loaded in
memory (that are instances of the Loaded Image protocol).

When UEFI awareness is enabled, a GDB command is available in the CLI for this capability. The feature provides meaningful
results only after the EFI core has created the EFI Debug Support table. The command has no effect if it is invoked for example
during the Platform Initialization phase.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 717162

NXP Semiconductors

FSL Debugger References

6.3.3.1.1 GDB command

The following GDB command loads symbols for all the EFI images loaded in memory.
uefi-add-symbols

The command has the following parameters:
» (optional) --mstart: The base of the physical memory (RAM) used by UEFI
* (optional) --msize: The size of the physical memory (RAM) used by UEFI

» (optional) -s SAVE_COMMANDS_TO_FILE, --save_commands_to_file SAVE_COMMANDS_TO_FILE: A file where to store
all the GDB commands that load the debug data

* (optional) -r UEFI_LAYOUT_ROOT, --root_uefi_layout UEFI_LAYOUT_ROOT: The directory path to the root of the UEFI
layout used for debug information

» (optional) -v, --verbose: Increase output verbosity

The command provides meaningful results only after the EFI core has created the EFI Debug support table. It will display an error
message if it is invoked, for example during the SEC phase. The command will display "Done", after it finishes the execution
successfully.

Example:

(gdb) uefi-add-symbols

6.3.3.2 Show information for all loaded EFI images

UEFI awareness allows users to view information about all the EFIl images loaded in memory (that are instances of the Loaded
Image protocol).

The feature provides meaningful results only after the EFI core has created the EFI Debug Support table. It has no effect if it is
invoked, for example during the SEC phase.

6.3.3.2.1 GDB command

When UEFI awareness is enabled, the following GDB command displays information about all the EFIl images loaded in
memory.

uefi-show-images

The command has the following parameters:
 (optional) --mstart: The base of the physical memory (RAM) used by UEFI
 (optional) --msize: The size of the physical memory (RAM) used by UEFI
» (optional) -n: Display the name of the EFI image (the file name of the symbol file, without extension)
» (optional) -b: Display the EFl image base address
» (optional) -c: Display the EFl image BaseOfCode address
» (optional) -e: Display the EFI image EntryPoint address
» (optional) -a: Display whether the symbol file for the EFIl image was added to the debug information (yes / no)
» (optional) -s: Display the compile time file path of the symbol file for the EFI image

The order of the information displayed for each image will correspond to the order of the options given as parameters. When
invoked with no parameters, the command will display by default the image name and base address.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 72/162

NXP Semiconductors

FSL Debugger References

Example:

(gdb) uefi-show-images

6.3.3.2.2 Eclipse view

When UEFI awareness is enabled from the OS Awareness tab, the OS Resources view displays information about Loaded
EFI Images.

By default the following columns are displayed:
* Image name
* Image base address
* Image BaseOfCode address
» Image EntryPoint address
» Whether the symbol file for the EFI image was added to the debug information (yes / no)

The user can customize the columns that are displayed.

6.4 Launch a hardware GDB debug session where no configuration is available
This topic explains how to launch a hardware GDB debug session.

Before you proceed, ensure that you have an ARMv8 project in your workspace, which is compiled, and the binary elf file is
available.

To launch the debug session, you need to:
1. Create a debug configuration

2. Configure the target configuration using Target Connection Configurator

6.4.1 Create a debug configuration
This topics explains how to create a debug configuration.
To create a debug configuration:
1. Select the ARMv8 project in the Project Explorer view.
2. Select Debug > Debug Configurations. The Debug Configurations dialog appears.
3. Right-click GDB Hardware Debugging and select New.
4. Select the Main tab.
5

. Make sure that the text box under the C/C++ Application option specifies the elf file path of the project you want to use.
For example, Debug/<project name>.elf

o

Select the Debugger tab.

7. In the text box under the GDB Command option set the path to gdb. For example, $ {eclipse home}..\ARMv8\gdb\bin
\aarch64-fsl-gdb.exe

8. Click the Debug button.
NOTE

For details about configuring target connection, refer Configure the target configuration using Target Connection
Configurator

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 737162

NXP Semiconductors

FSL Debugger References

6.5 Memory tools GDB extensions
This topic explains memory tools GDB extensions.

For details about other GDB debug commands that can be run in GDB console from console view, refer the GDB documentation
available at: https://sourceware.org/gdb/current/onlinedocs/gdb/

NOTE
Note that NXP does not own GDB documentation, and is mentioned solely for reference purpose.

6.5.1 mem_spaces command
List the available memory spaces.

Usage

mem_spaces

BN CAWINDOWS\system32\cmd.exe — O >

) mem_5sp

_s_noncocherent', 'physical

Figure 35. Displaying the available memory spaces using mem_spaces command

6.5.2 mem_read command

Read memory from an address using the provided access size, memory space and count. The result is displayed as a
hexadecimal encoded byte stream.

Usage

mem_read [context] <address> <access_size> <space> <count>

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 74162

https://sourceware.org/gdb/current/onlinedocs/gdb/

NXP Semiconductors

Table 44. Mandatory arguments

FSL Debugger References

Name Address
<address> Start address.
<access_size> Access size.

<space>

Memory space.

<count>

Number of elements, each element having access_size bytes.

Table 45. Optional arguments

Name

Address

context

GTA (GDB server) debug context :ccs:<soc>[:core]

e.g. :ccs:LS2088A or :ccs:LS2088A:CortexA72#0. If present, the
context can be a core context; otherwise, the current context is
used.

BN CAWINDOWS\system32icmd.exe

Figure 36. Reading memory using mem_read command

34 4 virtual 1

6.5.3 mem_write command

Write memory to address using the provided access size and memory space.

Usage

mem write [context] <address> <access size> <space> <data>

CodeWarrior Development Studio for QorlQ LS

series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

75/162

NXP Semiconductors

Table 46. Mandatory arguments

FSL Debugger References

Name Address
<address> Start address.
<access_size> Access size.

<space>

Memory space.

<data>

Data to be written as a sequence of hexadecimal byte values.

Table 47. Optional arguments

Name

Address

context

GTA (GDB server) debug context :ccs:<soc>[:core]
e.g. :ccs:LS2088A or :ccs:LS2088A:CortexA72#0. If present, the
context can be a core context; if not, the current context is used.

BN CAWINDOWS\system32\cmd.exe

Figure 37. Writing memory using mem_write command

6.5.4 mem_fill command

Fill a memory range with the specified byte value.

Usage

mem fill <start address> <finish address> <value>

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

76/162

NXP Semiconductors

Table 48. Mandatory arguments

FSL Debugger References

Name

Address

<start_address>

Range start address.

<finish_address>

Range end address.

<value>

Value used to fill the memory range.

EE CAWINDOWS\system32iemd.exe
 fill
was modifie
FF FF
FF FF
FF FF
FF FF

FF FF

Figure 38. Filling an entire memory area with a given value using mem _£i11 command

6.5.5 mem_compare command

Compare contents of two memory ranges.

Usage

mem compare <addressl> <address2> <count>

Table 49. Mandatory arguments

Name Address
<address1> Start address of the first range.
<address2> Start address of the second range.
<count> Number of bytes to be compared.
CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 771162

NXP Semiconductors

FSL Debugger References

mem_compare @

EF BE AD

Bl C:\WINDOWS\system32cmd.exe

DE EF BE AD DE EF BE

Figure 39. Comparing two memory areas using mem _compare command

6.5.6 mmu command

Display MMU (Memory Management Unit) state in a user readable format.

Usage

mmu [-h] [<arch-specific-options>]

Table 50. Optional arguments

Name

Address

-h, --help

Show this help message and exit

<arch-specific-opts>

Architecture specific options.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

78/162

NXP Semiconductors

FSL Debugger References

BN C\WINDOWS\system32icmd.exe — m| %

mmu

Permissions:

Permissions:

Figure 40. Obtaining current MMU entries

* Issuing mmu command without any parameters will list all the MMU valid entries for the current exception level.
* Issuing mmu -el1 3 command will list all the valid MMU entries for the EL3 exception level.

e Issuing mmu -t 0x2000000 Will translate the virtual address 0x2000000 to the corresponding physical address using MMU
state for the current exception level.

6.6 Connection tools GDB extensions

This topic explains connection tools GDB extensions. They provide support for connecting to a target and diagnosing an
existing connection.

For details about other GDB debug commands that can be run in GDB console from console view, refer the GDB documentation
available at: https://sourceware.org/gdb/current/onlinedocs/gdb/

NOTE
Note that NXP does not own GDB documentation, and is mentioned solely for reference purpose.

6.6.1 cw-launch command

Usage:

cw-launch --config CONFIG [--probe PROBE] [--serial-number SERIAL NUMBER] [--init-script [INIT SCRIPT]]
[--ccs-address CCS_ADDRESS] [--secure-debug-key SECURE_DEBUG KEY] [--gta-address GTA_ADDRESS] [--gta-
context GTA CONTEXT] [--reset] [--elf-file FILE] [--other-symbols SYMBOLS FILE] [--download] [--os-

awareness [0S _TYPE]]

Table 51. Mandatory arguments

Name Address

-c CONFIG [CONFIG ...], --config CONFIG [CONFIG ...] | Specify the path to a valid tcc file; template tcc files from (cw Folder}/
CW_ARMv8/Config/boards folder can be used.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 79/162

https://sourceware.org/gdb/current/onlinedocs/gdb/

NXP Semiconductors

Table 52. Optional arguments

FSL Debugger References

Name

Address

-h, --help

Show this help message and exit

-p PROBE, --probe PROBE

Probe details; it overrides what is set in tcc file.

For example: cwtap:192.168.0.1 - CodeWarrior TAP ethernet
connection using 192.168.0.1 as IP address

-s SERIAL_NUMBER, --serial-number
SERIAL_NUMBER

USB serial number of the probe.

-i [INIT_SCRIPT], ~-init-script [INIT_SCRIPT]

A full path to a .py file that is a valid target initialization script; if no path
specified, no initialization file will be executed; if parameter not
present, initialization file from tcc will be used.

-ca CCS_ADDRESS, --ccs-address CCS_ADDRESS

CCS address; "<host>:<port>" For example, 127.0.0.1:41475 or
"auto"; default is auto.

-sk SECURE_DEBUG_KEY, --secure-debug-key
SECURE_DEBUG_KEY

Secure debug key used to unlock debug support.

-ga GTA_ADDRESS, --gta-address GTA_ADDRESS

GTA (GDB server) address; "<host>:<port>" e.g. 127.0.0.1:45000 or
"auto". Default is 127.0.0.1:45000.

-gc GTA_CONTEXT, --gta-context GTA_CONTEXT

GTA (GDB server) debug context :ccs:<soc>[:core] e.g. :ccs:LS2088A
or :ccs:LS2088A:CortexA72#0.

-r, --reset

Execute reset; no reset is performed if this parameter is not provided.

-ng, --dont-start-gta

Do not start the GTA (GDB server) process.

-ps, --preserve

Preserve existing CCS connection details.

-elf ELF_FILE, --elf-file ELF_FILE

ELF file containing debug symbols. File will also be loaded into target
memory if --download is specified.

-sym OTHER_SYMBOLS, --other-symbols
OTHER_SYMBOLS

Load additional debug symbols from the specified file. When
performing U-Boot debug with an SPL file involved, first ELF file
specified via --other-symbols is the actual SPL ELF.

-d, --download

Load the specified ELF file into target memory.

-0s [OS_AWARENESS], --os-awareness
[OS_AWARENESS]

Control OS awareness enablement. By default, OS awareness is auto-
detected based on the specified ELF file.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

80/162

NXP Semiconductors
FSL Debugger References

E¥ CAWINDOWS\system32icmd.exe
r c A fi Al f c lean_prj/Debug an_prj.elf -d -r -p cwtap:16.17

.[r-leu Th
[New T
[New Tk

Figure 41. Launching a debug session using cw-launch command

B CAWINDOWS\system32iemd.exe
rsion 3 or later
u are free to

rpl . html>
Type "show copying”

Fsl-linux

mands related to "word”.
-p cwtap:18.

o be little endian
Uboot/1s1843A RDB/u_boot

on

Program received signal SIGINT, Interrupt.
[Swi ing to Thread 1]
x0000600000000000 in 2?2
b)
Figure 42. Example with launching a debug session with OS awareness support

NOTE
In order to start a debug session from command line, launch GDB from the following folder: {CW Folder}
\CW_ARMv8\ARMv8\gdb\bin\ and use cw-launch command from the GDB console to connect to the target.

cw-launch requires a corresponding . tcc file from the folder {CWw folder}/CW ARMv8/Config/boards.

6.6.2 cw-diag command

This command is used to diagnose a connection.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
81/162

User's Guide

NXP Semiconductors

Usage

cw-diag -p <probe> -gc <GTA context>

ga <gta address>] [-J <Jjtag speed>]

Table 53. Mandatory arguments

[-1 <init script>]
[-ct <ccs timeout>]

FSL Debugger References

[-ca <ccs address>]
[-ps]

[-sk <secure debug key>] [-
[-sc]

Name

Address

-p PROBE, --probe PROBE

Probe details; For example: cwtap:192.168.0.1 - CodeWarrior TAP
ethernet connection using 192.168.0.1 as IP address

-gc GTA_CONTEXT, --gta-context GTA_CONTEXT

GTA (GDB server) debug context :ccs:<soc>[:core]
e.g. :ccs:LS2088A or :ccs:LS2088A:CortexA72#0

Table 54. Optional arguments

Name

Address

-h, --help

Show this help message and exit

-s SERIAL_NUMBER, --serial-number
SERIAL_NUMBER

USB serial number of the probe

-i [INIT_SCRIPT], ~-init-script [INIT_SCRIPT]

Full path to a .py file that is a valid target initialization script; if no path
specified, no initialization file will be executed

-ca CCS_ADDRESS, --ccs-address CCS_ADDRESS

CCS address; "<host>:<port>" e.g. 127.0.0.1:41475 or "auto";
default is auto

-sk SECURE_DEBUG_KEY, --secure-debug-key
SECURE_DEBUG_KEY

Secure debug key used to unlock debug support

-ga GTA_ADDRESS, --gta-address GTA_ADDRESS

GTA (GDB server) address; "<host>:<port>" e.g. 127.0.0.1:45000 or
"auto". Default is 127.0.0.1:45000

-sg, --start-gta

Do not start the GTA process

-j JTAG_SPEED, --jtag-speed JTAG_SPEED

JTAG speed (kHz)

-ct CCS_TIMEOUT, --ccs-timeout CCS_TIMEOUT

CCS timeout (seconds)

-sc, --start-ccs

Start CCS process; by default it starts CCS

-ps, --preserve-settings

Preserve settings already configured in the running CCS instance

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

82/162

NXP Semiconductors

FSL Debugger References

Bl CAWINDOWS\system32iemd.exe — O %

Connect to Debug Ser
Version: 1.8.2.

P D
Connect (telnet) to TAP probe

(arrior TAP (probe tip: Cort
D

Attach to CodeWarrior Connection Server
S ase Build 477.6.8.

Connect to probe

Figure 43. Running diagnostics on a given target board using cw-diag command

NOTE
In order to start a debug session from command line, launch GDB from the following folder: {CWW Folder}
\CW_ARMv8\ARMv8\gdb\bin\ and use cw-diag command from the GDB console to diagnose the connection.

6.7 Miscellaneous tools GDB extensions
This topic presents other GDB extensions such as the ones for: SPD support, RCW override support, etc..

For details about other GDB debug commands that can be run in GDB console from console view, refer the GDB documentation
available at: https://sourceware.org/gdb/current/onlinedocs/gdb/

NOTE
Note that NXP does not own GDB documentation, and is mentioned solely for reference purpose.

6.7.1 template command

This command is used to configure a CCS template specific option. Each template may provide a custom set of configuration
options. Examples include configuring endian-ness of data for memory read/write or turning on or off memory write verification.
This function provides a generic interface for those options.

Usage

template [-h] [-c CONTEXT] register [datal

Table 55. Mandatory arguments

Name Description

register Index of the register (template) to configure.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 83/162

https://sourceware.org/gdb/current/onlinedocs/gdb/

NXP Semiconductors

FSL Debugger References

Table 56. Optional arguments

Name Description
-h, --help Show this help message and exit
-¢c [CONTEXT], --context [CONTEXT] GTA (GDB server) debug context :ccs:soc[:core]

e.g. :ccs:LS2088A:CortexA72#0 or :ccs:LS2088A:SoC#0

data If no value is specified, it lists the available template for the provided
config_reg. If a value is specified, it configures config_reg with
provided config_data value.

B C\WINDOWS\system32icmd.exe — m| %

Figure 44. Configuring the CCS option 0x1003 using template command

NOTE
In order to execute this command, GDB has to be connected to the target board.

6.7.2 spd command
This command is used to read SPD (Serial Presence Detect) from the target and display it in a human-readable format.

Usage

spd [-h] [-d DEVICE] [-a ADDRESS] [-wa WORKSPACE ADDRESS]

Table 57. Optional arguments

Name Description

-h, --help Show this help message and exit

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 847162

NXP Semiconductors

FSL Debugger References

Table 57. Optional arguments (continued)

Name Description
-d DEVICE, --device DEVICE SPD eeprom address
-a ADDRESS, --address ADDRESS Address of the 12C controller

-wa WORKSPACE_ADDRESS, --workspace-address | Address of the workspace
WORKSPACE_ADDRESS

B C\WINDOWS\system32icmd.exe — m| %

PD from: eeprom { I2C1 controller

imum
imum

® o

)ptions

{ MmN

Figure 45. Detected parameters after running spd command on a board with DDR4 DIMMs

NOTE
In order to execute this command, GDB has to be connected to the target board.

6.7.3 rcw command
This command is used to read/override the RCW (Reset Configuration Word).

Usage

rcw [-h] [-r] [-s [SOURCE]] [-d DATA [DATA ...]]

Table 58. Optional arguments

Name Description
-h, --help Show this help message and exit
-r, --reset Discard any previously configured RCW source and register values

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 85/162

NXP Semiconductors

FSL Debugger References

Table 58. Optional arguments (continued)

Name Description

-s [SOURCE], --source [SOURCE] If no value is specified, it lists the available RCW sources defined for
currently used processor. If a value is specified, it configures the
RCW source to be used for RCW override functionality.

-d DATA [DATA ...], --data DATA [DATA ...] Configure the values (hexadecimal) for ranges of RCW register(s) to
be used for RCW override functionality; e.g.: rcw -d 1:0x12345678
10:0xabcdef12

B C\WINDOWS\system32icmd.exe — O %

Figure 46. Displaying current RCW configuration using the rew command

NOTE
In order to execute this command, GDB has to be connected to the target board.

6.7.4 discover command
Discover available debug probes and connected devices.

Usage

discover [-h] <type> [-p PROBE]

Table 59. Mandatory arguments

Name Address

<type> Can be one of the following options: probes, idcode, soc. "probes" -
discover available debug probes. "idcode" - list IDCODE of devices

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 86/162

NXP Semiconductors

FSL Debugger References

Table 59. Mandatory arguments

Name Address

connected to the specified probe. "soc" - detect SoC connected to
the specified probe

Table 60. Optional arguments

Name Address
-p PROBE, --probe PROBE Probe specification (eg. cwtap:<ip/name>)
-h, --help Show this help message and exit
BN CAWINDOWS\system32iemd.exe — O =

soc -p cwtap:16.171.94.53

de -p cwtap:10.171

Figure 47. Discovering probes and devices using discover command

6.7.5 log command

Configure logging of protocol-level communication.

Usage
log file [-h] [-1 {CRITICAL,ERROR,WARNING, INFO,DEBUG}] filepath
log console [-h] [-1 {CRITICAL,ERROR,WARNING, INFO,DEBUG}] {out,err,log}
log socket [-h] [-1 {CRITICAL,ERROR,WARNING, INFO,DEBUG}] hostname:port

log list [-h]

log remove [-h] [name]

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 8717162

NXP Semiconductors

FSL Debugger References

Table 61. Positional arguments

Name Address

filepath Specify logging to a file identified by filepath

{out,err,log} Specify console output using cerr, cout or clog respectively
hostname:port Specify logging to a socket identified by hostname (default:

localhost) and port

name Remove the logging configuration identified by name or all
configurations if no name is provided

Table 62. Optional arguments

Name Address

-h, --help Show this help message and exit

-l, --level Logging level (default: INFO). Possible values:
CRITICAL,ERROR,WARNING,INFO,DEBUG

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 88/162

NXP Semiconductors

FSL Debugger References

BN CAWINDOWS\systemn32\cmd.exe - O x

(gdb) log -h

usage: [- h]
Configure logging of p

ogging to a socke
'I:'lgg'ing to a fil
; ng to a con:
a logginc -:::nruﬁg.
ogging configurations

show this help me and exit

roto.log -1 DEBUG

) -|:||.__] C
l._.]l..“_l) log 1
L:igg'mg :

1_Ec1i ps eConsole

1_Ec1i ps eConsole

Figure 48. Usage example for 1og command

Figure 49. Output example for 10g command

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide 89/162

NXP Semiconductors

FSL Debugger References

B Ch\Freescale\ CWANET_w2018.01_180126\CW_ARMvE\ARMv B\ gta'\gta.exe — a >

6.8 Monitor commands
This topic explains monitor commands.

The following table lists the available monitor commands.

Command Syntax Description

Display contexts tree mon ctx id <ctx-id> list Displays the debug contexts tree having
as root the specified context. The context
has the format: <connection>:<soc>:
<core#no>

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 90/ 162

NXP Semiconductors

FSL Debugger References

Table continued from the previous page...

Set current context mon ctx set current ctx_id Set the context for the debug session.
This should be set after target extended-
remote and before attach. For a single
core application the context should look
like: <connection>:<soc>:<core#no>.
For a multicore application (SMP) the
context should be: <connection>:<soc>

mon ctx get current Show the current context
mon ctx id <ctx-id> info List all properties of the specified context
mon ctx id <ctx-id> set <prop-name> Set a property for the specified context
<value>
Reset monitor reset debug Performs reset and keeps cores in debug
mode.

6.9 1/0 support
Librarian /O model is divided into 2 modes.
Librarian /O model is divided into 2 modes:
* UART_C_Static_Lib_Bare: print £ support through UART port.

 simrdimon: 1/O operations through debugger console.
NOTE
These libraries are compiled by using the highest optimize level for speed (-O3) and no debug data (no DWARF

information). The user can recompile these libraries to change the compiler options and use the new libraries in
their projects. Projects for these library are located at {CW ARMvS}ARMvEICodeWarrior Examples

There are two examples in ARMv8 Stationery wizard:
* C (HelloWorld_C_Base)
* C++ (HelloWorld_CPP_Bare)

The default I/O mode is debugger console; in other words the simrdimon library is used. The user can verify the status by looking
at the Other linker flag text box, which contains --specs="${ProjDirPath}/1ib/simrdimon.specs". Navigate to Cross ARM C
(or C++) Linker > Miscellaneous from the left pane under Tool Settings tab, to see Other linker flag text box.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 91/162

NXP Semiconductors

FSL Debugger References

r A
ﬁl Properties for BareBoard-Project —— — - E@Iﬂ
type filter text Settings - - -
> Resource
Builders
4 C/C++ Build Configuration: [Debug [Active] '] [Manage Configurations...
Build Variables
Environment
Legging & Tool Settings | B3 Toolchains | .ﬁ' Build Steps Build Ar‘tn‘actl Binary Parsers | € Error Parsers
Settings
Tool Chain Editor @ Target Processor Linker flags (-Xlinker [option]) [ZE AR 'ﬁ| I&|
» C/C++ General @ Optimization
Linux Teels Path (& Warnings
Project References @ Debugging
Run/Debug Settings 4 B Cross ARM GNU Assembler
» Task Repository @ Preprocessor
WikiText (22 Includes
&2 Wamnings
(# Miscellaneous
4 8} Cross ARM C Compiler
@ Preprocessor
(22 Includes
(% Optimization Other obiect: R ARCRAR
-] er objects | H v
(22 Warnings
@ Miscellaneous
a4 B Cross ARM C Linker
(2 General
(2 Libraries
@ Miscellaneous
a4 83 Cross ARM GNU Create Flash Image
£ General
a4 B Cross ARM GNU Create Listing
2 General
4 B Cross ARM GNU Print Size
H
(& Genenal Generate map "§{BuildArtifactFileBaseName}.map"”
[7] Cross reference (-Klinker --cref)
|| Print link map (-Xlinker --print-map)
[Verbose (-v)
Other linker flags I --specs="${ProjDirPath}/lib/simrdimon.specs” I
[Restore Qefaults] [Apply]
@ [QK] l Cancel]
\

Figure 50. Properties dialog - simrdimon.specs

The user can switch to the I/O UART model by changing the file spec for UART model. The user should replace the
simrdimon.specs with uart.specs in the Other linker flags text box from Cross ARM C (or C++) Linker-- > Miscellaneous.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

92/162

NXP Semiconductors

FSL Debugger References

Build Variables
Envircnment
Logging
Settings
Tool Chain Editor
[C/C++ General
Git
Linux Teols Path
Project References
Run/Debug Settings
[» Task Repository
WikiText

¥ Properties for HelloWorld_C_Bare (= O S
type filter text Settings =
|+ Resource

Builders
4 C/C++ Build Cenfiguration: [Debug [Active] '] [Manage Cenfigurations...

& Tool Settings | i3 Toolchains | #* Build Steps |

Build Artifact | Binary Parsers | @ Error Parsersl

(22 Target Processor
(2 Optimization
(2 Warnings
@ Debugging
4 %) Cross ARM GNU Assembler
(2 Preprocessor
2 Includes
@ Warnings
& Miscellaneous
a4 83 Cross ARM C Compiler
(2 Preprocessor
@ Includes
& Optimization
Warnings
(# Miscellaneous
a4 %) Cross ARM C Linker
2 General
(2 Libraries
(# Miscellaneous

2 General
@ General

4 %) Cross ARM GNU Print Size
2 General

a4 %) Cross ARM GNU Create Flash Image

a4 3 Cross ARM GNU Create Listing

Linker flags (-Xlinker [option])

88 38 §l &

Other objects

84 3§l &

Generate map

[Verbose {-v)

Other linker flags|

"&{BuildArtifactFileBaseMName}.map”
[7] Cross reference (-Xlinker --cref)
[Print link map (-Xlinker --print-map)

--specs="5{ProjDirPath}/lib/uart.specs”

l Restore Defaults l ’ Apply]

®

ok || canca |

Figure 51. Properties dialog - uart.specs

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

93/162

NXP Semiconductors

Chapter 7

F

lash Programmer

Flash programming is done using python script.

{CW Install Dir}\CW_ARMv8\ARMv8\gdb extensions\flash\cwflash.py

7.1 Configuring flash programmer

To

configure the flash programmer, open the cwflash.py script in an editor and modify the connection parameters in

accordance to your setup.

.

BOARD_TYPE - supported options are “QDS” and “RDB” for the corresponding board types.

FLASH_TYPE - supported options are “nor” and “nand”. Please take into account that some device types may not be
supported for the selected board.

First two options should be sufficient for most of the use cases (CodeWarrior TAP connected through USB to GDB host
machine). However, if additional configuration is required, please update the next parameters too.

PROBE_CONNECTION - If empty, it assumes that probe used is CWTAP connected through USB. For Ethernet connection,
use an IP address or a hostname, for example PROBE_CONNECTION = “192.168.0.1”. For CMSIS-DAP connection, set to
cmsisdap, for example PROBE _CONNECTION = “cmsisdap”.

SOC_NAME - name of the SoC. For example: LS2080A.
JTAG_SPEED - JTAG frequency used by debugger to communicate with the target.

CCS_CONNECTION - IP and port of the CCS instance. If empty and no connection IP and port is available, debugger will
automatically start a CCS instance on default connection IP and port, that is 127.0.0.1:41475.

If some connection is explicitly specified, for example 127.0.0.1:41476, debugger will use that already running ccs session.

GTA_CONNECTION - IP and port of the GTA (GDB server) instance. If empty, debugger will automatically start a GTA
instance. If some connection is explicitly specified, for example 127.0.0.1:45000, flash programmer will use that already
running GTA instance.

GDB_TIMEOUT - Number of seconds to wait for the remote target responses.

7.2 Starting flash programmer

This topic explains steps to start the flash programmer.

To

start the flash programmer, perform the following steps:

1. Open a terminal and switch to the following location:

{CW Install Dir}\CW_ARMv8\ARMv8\gdb\bin

2. Start GDB from this location:
* Windows: Run aarch64-fsl-gdb.exe
* Linux: Run ./aarch64-fsl-gdb

3. Execute cwflash.py script.
source ../../gdb _extensions/flash/cwflash.py

If the connection is successful, the output is shown as follows:

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide 94 /162

NXP Semiconductors

Flash Programmer

CAWINDOWS\system32\cmd.exe — O X

source . ex wflash.py

Figure 52. Output

7.3 Using flash programmer
This section explains the operations supported by flash programmer.
» Erase flash memory
» Write binary file in flash memory
* Dump flash memory content
* Protect memory content
* Unprotect memory content
* List supported flash devices
» Associate flash device with board
» Read manufacturer and device ID

 Verify flash memory content

7.3.1 Erase flash memory
This topic explains command to erase an area of flash device.

To erase an area of the flash device, use the following command:
fl erase offset size

where:
» <offset>: Specifies the offset inside the device.

» <size>: Specifies the size of the area that will be erased.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 95/ 162

NXP Semiconductors

Flash Programmer

For example:

fl erase 0x40000 0x100

Type £1_erase -h for command help.

7.3.2 Write binary file in flash memory
This topic explains command to write binary file in the flash memory.

To write binary file in the flash memory, use the following command:
fl write offset data [size] [-—erase] [--verify [-n NUMBER] / [-a]]

where:
» <verify>: Performs a verify of the content written in flash.
» <n>: Specifies the number of mismatches shown if verify option is used.
» <a>: Shows all the mismatches if verify option is used.

For example:

fl write 0x40000 u-boot.bin --erase --verify -n 4

Type f1_write -h for command help.

NOTE
The path to binary file must not contain spaces.

7.3.3 Dump flash memory content
This topic explains command to dump the contents of the flash memory.

To dump the contents of the flash memory, use the following command:
fl dump offset size [-f FILE] [-c {1, 2, 4, 8, 16}]

where:
» <offset>: Specifies the offset inside the device.
» <size>: Specifies the size of data to be read.

» <-f>: Specifies the path to the file where the data will be saved.

« <-c>: Specifies the number of bytes per cell. It is incompatible with —f options since it applies only when the output is shown
directly in the console.

For example to dump the content in a binary file:

f1 dump 0x40000 0x20000 -f dump.bin
To dump the content in the console:
£1 dump 0x40000 0x20000

If [-f FILE] file option is not present the content will be displayed in the console.

NOTE
The path to binary file must not contain spaces.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 96/ 162

NXP Semiconductors

7.3.4 Protect memory content
This topic explains command to protect an area of flash device.

To protect an area of the flash device, use the following command:
fl protect offset size

where:
» <offset>: Specifies the offset inside the device
» <size>: Specifies the size of the area that will be protected

For example:
f1 protect 0x100000 0x100

Type £1_protect -h for command help.

7.3.5 Unprotect memory content

This topic explains command to unprotect an area of flash device.

To unprotect an area of the flash device, use the following command:

fl unprotect offset size

where:
» <offset>: Specifies the offset inside the device
» <size>: Specifies the size of the area that will be unprotected.

For example:

f1l unprotect 0x100000 0x100
Type £1_unprotect -h for command help.
7.3.6 List supported flash devices

This topic explains command to list all supported flash devices.

To list the devices, use the following command:

£1 list

7.3.7 Associate flash device with board

This topic explains command to specify that a device is available on current board.

To specify that a device is available on the current board, use the following command:

Flash Programmer

fl device [-h] [-al ALIAS] -n NAME -a ADDRESS -wa WADDRESS -ws WSIZE -g GEOMETRY -c CONTROLLER [-d DIE]

positional arguments:

* -n, --name - name of the device; must match one of the supported devices (see "fl_list" command)

e -a, --address - address of the device

» -wa, --waddress - address where the workspace will be located; the workspace is the area where the flash programmer

algorithm will be downloaded

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

97 /162

NXP Semiconductors

Flash Programmer

* -ws, --wsize - size of the workspace
* -g, --geometry - number of words per row
 -c, --controller - controller used to interact with the device
» -d, --die - index of the die in case the device has multiple stacked dies
optional arguments:
« -al, --alias - alias that will be used as context name; if an alias is not specified, the name will be used instead

» -h, --help - show this help message and exit

7.3.8 Read manufacturer and device ID
This topic explains command to read the manufacturer and device ID for the current device.

To read the manufacturer and device ID for the current device, use the following command:

£1 id

7.3.9 Verify flash memory content
This topic explains command to compare flash memory content against a file on the disk or data provided by the user.

To compare flash memory content with a file on the disk or data provided by the user.

fl verify [-h] [-s [SIZE]] [-n NUMBER] [-a] offset data [data ...]

positional arguments:

« offset - offset in device address range

+ data - data to be verified in flash; can be a hex sequence or a binary file
optional arguments:

» -h, --help - show this help message and exit

* -s [SIZE], --size - [SIZE] how much to verify

* -n [NUMBER], --number [NUMBER] - number of mismatches shown

¢ -3, --all - show all the mismatches

7.4 Switch current device used for flash programming
This topic explains command to switch current device used for flash programming.

To switch the current device used for flash programming, use the following command:
fl current flash type
For example:

fl current nor

NOTE
If the command succeeds, the output appears as shown in Figure. Output.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 98/ 162

NXP Semiconductors

Flash Programmer

7.5 SD/eMMC flash programmer
The SD/eMMC card uses the notion of blocks, not addresses.

One block has 512 bits. When you want to write something, for example, from block 4, you need to compute the address by
multiplying the number of the block with 512 and converting the result into hexadecimal (for example, sector 4 x 512 = 2048 =
0x00000800).

By default, the algorithm is set to run from DDR, because it uses direct memory access (DMA) for data transfer. If the DDR
memory is not functional:

» Infunction config Flash Devices in the initialization file, change the value for ws_address in the gdb command, which
adds your SD/eMMC device, with the address of the OCRAM.

« Also, comment the call of the DDR initialization function.

This will enable the use of the internal buffer of the eSDHC controller, which will reduce the performance, as DMA is not used in
this mode.

7.6 Viewing details about flash device
This topic explains command to view details about currently selected flash memory device.

To view details about currently selected flash memory device, use the following command:

fl info

7.7 Using flash programmer from eclipse IDE
You can also use the Flash Programmer features from the CodeWarrior IDE.

The Flash Programmer GUI provides the option to view all devices that can be used for flash programming and select such a
device. Information about the devices are also available and can be displayed via a tooltip.

The flash programmer commands, such as erase, write binary, dump memory content, protect memory content, unprotect
memory content, can be defined and added into a sequence.

Any command in the sequence or the command order may be later modified as needed, and these command sequences can be
executed. The sequence can also be imported and exported thus allowing sharing between users.

For viewing the output of the flash programmer commands, an output console area exists at the bottom of the dialog window.

7.7.1 How to open CodeWarrior flash Programmer window
Flash Programmer can be started from the Target Connection Configuration view or from the Debug view.

The following figure shows the Flash Programmer icons in the Debug view and the Target Connection Configuration view.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 99/ 162

NXP Semiconductors

Flash Programmer

B Console 32 » Frob ecutables
LS1088A RDE (1)_Connect [GDB Hardware Debugging]

Figure 53. Open Flash Programmer window

B e build_o ~ CodeWar i e - ARM VI ISA =
File Edit Mavigste Search Project Run ProcessorBspert Window Help
(mha RIO@-Bin|>nmde i #-0~8-%-5 4 QuickAceess | 58 | BRER
4 Debug 2 » e Varisbles 5] 1: | 8 Modules @ % v=n
+ [E] L5106, RDB (1)_Connect [GDB Hardware Debugging] Narme Tyt Valie
o B Process [1)[cores: 123.45,6.7]
4 ® Thread #1 1 [core: 0] (Suspended : Signal : SIGINT:Interrupty
=
£ Thread 622 [core: 1) (Suspended : Container)
£ Thread #3 3 [core: 2] (Suspended : Container)
£ Thread 84 4 core: 3 (Suspended | Container]
o Thesad 05 5 [cors: 4 (Suspended : Container)
P Theesd 8 § [core: 5| (Suspended : Container)
@ Thread #7 7 [core: 6] (Suspended : Container)
o Thread #8 1§ [core: 7) (Suspended ; Container)
W] *Coffreescale/ CWANET 201801 HOST_OS/CW_ARMUB/ARMuE/gdbfbinaarcht - fl-gab.exe* (T1LLAY
Elo 52 7 S Outline BN Torget Connections 51 |27 Disassembly. =n
Break at address "0 wath no debug infarmation available, ar outside of program code.
Listof wuailable only ane can
View Disassemibly.
Canfig is editor is thown | Prefersnces... Deactivate |
Bowrd Device Connectio * Add |
SHISI0BGARDB(L) LSLOS8A o —
) LS20488 RDB (1) L5208 M|
5 LA1ST5 ADD LAISTS [Duplicate |
[Lst0128 FROM Lsa0ma =
[L1018 FRWY et |_Rermave |
[Ls101z2 QDS L5 =
[impor |
likepsit)

Configuration details:

Target Configuration Name: L5108, RDB (1)

Processor Name: LS1088A

The “Flash Programmer” icon in the Debug view toolbar is enabled only when a debug session is active and selected. In this
case, the debug session connection is used by Flash Programmer.

On clicking the Flash Programmer icon, a pop-up appears asking if you wish to continue. Click OK if you want the selected debug
session to be used by Flash Programmer. The debug sessions terminates when the Flash Programmer is closed.

You can also open the Flash Programmer by clicking the Flash Programmer icon from the Target Connection Configuration view
toolbar. This option has the advantage that it doesn’t require to have an existing debug session and the connection to the target

is handled automatically.

This toolbar option is always enabled and uses the selected target configuration (or active target configuration if none is selected)
to establish a connection to the target for using Flash Programmer. In most of the cases, a new debug session is started with the
settings from the used target configuration. However, if a debug session using that target configuration already exists, the existing

debug session is re-used for the Flash Programmer.

7.7.2 Device selection and information

The following figure shows the CodeWarrior Flash Programmer dialog.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

100/ 162

NXP Semiconductors

Flash Programmer

¥ eclipse-workspace _build_time - Source not found., - CadeWarrior Development Studio for QorQ LS series - ARM V8 ISA
File Edit Movigate Search Project Run Processor Expert Window Help

= |&iOi@-iBin|mnmda i R R R R R R R 1 .-
45 Debug 52 | ® F|i» ¥ = B =Variables 53 O Breakpoints il Registers {7 Peripherals =, Modules
4 [E] LSI0084_RDB (1) Connect[6DB Hardware Debugging] Name Type Value
4 @ Process [1{corest 112.3,85,67) 7
4 Thread #11 [core: 0] (Suspended : Signal : SIGINTntermupt) _cuild Ll = o]k

=00
» f® Thread #22 [core: 1] (Suspended : Container)
» if? Thread #3 3 [core: 2] (Suspended : Container)
o f® Thread ¥4 4 [core: 3] (Suspended : Cor
» i Thread #5°5 [core: 4] (Suspended : Cor
» i Thread #5 6 [core: 5] (Suspended : Cor
> if? Thread #7 7 [core: 6] (Suspended : Container)
ad #9 8 [core: 7] (Suspended : Container)
scale/CWANET_2018.01_HOST_OS/CW_ARNVE/ARIYS/gdb/bin/sarchtd-fal-gdb.exe’ (1.1L10.3)

Perform actions on the flash device

[prsusesn -]O

d tor LS1088A, cwtap: 10.17177.2

20000000
0000 (64.00MB)

040000 (256.00K8)

Add Action | [Madify Action

List of available target confi

Configure when this editor s shown

type Fiter taxt
5]

Board Device Connecti
Action Dese
SJLS1088A RDB(1) LS1088A 1017177
£)L520884_RDB €1) 1520888,
[ALALSTS RDB La1sTs
[ZALSI02A FRDM Lswza
[Lstnnza FRWY Lsioza
[ZLsinza_qDs Lswza
« i ’
Configuration detail:
®
B Console 52 2 Tasks [2] Problems (3 Executables G} DebuggerConsole [) Memory - “HEEEee---o
L510384 ROB (1) Connect [GDB Hardware Debugging]

Figure 54. Flash programmer dialog

The Devices drop-down list in the Flash Programmer dialog lists all the available flash programmer devices. The used device

can be changed by selecting a different option from the list.

For more information about the device, place the mouse over the icon at the right side of the Devices list. Additional information

about the connection to the target is displayed at the right side of the list.

7.7.3 Manage a flash programmer sequence
A sequence is formed of one or more actions (flash programmer commands).
To create such a sequence, you must define correct actions and add them by clicking Add Action.

The Add Action button is enabled when the action is valid — that is all the mandatory fields are correctly set.

To modify an action from the sequence, select it. Its values are populated in the Action area, modify the values, and press Modify

Action to save the changes. Now the action selected from the sequence is modified.

To change the order of the actions in the sequence, use the up and down toolbar items in the sequence table. In the same toolbar,
there are also buttons for deleting the selected action in the entire sequence. Also, an action may be enabled or disabled by

double clicking it.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

101/162

NXP Semiconductors

Flash Programmer

[GA-external-2018 - Source not found. - CodeWarrior Development Studio for QorlQ LS s

7 c

Flash

File Edit Navigate Search Project Run Processor Expert Window Help
O~ | @ ®~viBiw|m 2igits v O~
4 Debug 2

4 [£]152088A_RDB (1)_Connect [GDB Hardware Debugging]

CROE -

4 {® Process [1] [cores: 0,1,2,34,56,7]
4 o Thread #11 [core: 0] (Suspended
= 0
» o Thread #2 2 [core: 1] (Suspended
» P Thread #3 3 [core: 2] (Suspended
> o Thread #4 4 [core: 3] (Suspended
> P Thread #5 5 [core: 4] (Suspended
» & Thread #6 6 [core: 5] (Suspended
> o Thread #7 7 [core: 6] (Suspended
» o Thread #8 8 [core: 7] (Suspended

B 1S2088A RDB (1 [E]0x0 2

View Disassembly.

<«

:Signal : SIGINTnterrupt)

Container)
Container)
Container)
Container)
Container)
Container)
Container)

Configure when this editor is shown

+ "C/Freescale/CW4NET v2017.12/CW_ARMv8/ARMvE/gdb/bin/aarch64-fsl-gdb.ex

Break at address "0x0" with no debug information available, or outside of program code.

© Console & ¥ Tasks [£] Problems (Executables & Debugger Console = Progress
LS2088A_RDB (1)_Connect [GDB Hardware Debugging]

Perform actions on the flash device

Devices: | S29GLO1GP (NOR) v | ®
Sequence

Connected to: LS2088A, cwtap: 10.171.77.9

File: Ci\filebin

~ |Browse

Blank Check 0x200 bytes at 0x210000

fl_current nor

Offset. 0x210000 Unprotect [¥] Erase [] Verify [¥] Protect
Add Action| | Modify Action
0= XK Leued
Action Description
Program ___from file.bin’ at 0x210000 with Unprotect Erase Protect
Dump 0x200 bytes from 0x210000 to ‘outbin’

®

— X
1
1
Quick Access || & | B B8
- @elce w0
3 Value
)
[‘pent
Path
Mfrrior TP
Mfirior TAP
Wprrior TAP
Mfirior Tap
[\irior TAP
firior TAP [Remove |
|[aBeEEE 2e-5-=0

LD

®

—

L — L

Figure 55. Flash programmer sequence

w— _m—

7.7.4 Launch a flash programmer command sequence

After a sequence has been created it can be executed by clicking the Execute sequence comand in the toolbar at top of the

sequence table.

Information or errors from the flash programmer execution are displayed in the output console in the Flash Programmer dialog.
Actions that are executed successfully are marked with green checkmarks after the execution is completed.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

102/ 162

NXP Semiconductors

Flash Programmer

[GA-external-2018 - Source not found. - CodeWarrior Development Studio for QorlQ LS s

Figure 56. Executing command sequence

¥ c Flash B =& X]
File Edit Navigate Search Project Run Processor Expert Window Help ¥
— Perform actions on the flash device F
[| @ @viBin|m o m | S iaitsy O~ o Quick Access || B | B B8
45 Debug 5 Modules =llal. B4 =0
4+ [£1152088A RDB (1)_Connect [GDB Hardware Debugging] Value
4§ Process [1] [cores: 01,2,3,45,6,7])
4 o Thread #11 [core: 0] (Suspended : Signal : SIGINT:nterrupt) CEviceS © Comeele s T, e T
=00
» o Thread #2 2 [core: 1] (Suspended : Container) Sequence
» 4P Thread #3 3 [core: 2] (Suspended : Container)
» P Thread #4 4 [core: 3] (Suspended : Container) :
» &P Thread #5 5 [core: 4] (Suspended : Container) Action: File: Cfile.bin -
b Thread #6 6 2 5] (St ded : Contz -
o Thea lcore: 5] (Suspended : Container) Offset: 0x210000 Unprotect V] Erase [Verify [¥] Protect
> 4P Thread #7 7 [core: 6] (Suspended : Container)
» o Thread #8 8 [core: 7] (Suspended : Container) Modify A k2
18 "C:/Freescale/CWANET_v2017.12/CW_ARMv8/ARMy8/adb/bin/aarch64-fsl-db.exs odiip.chon r
L] 8 1) [E]0x0 2 wNFB v=0O
x 2 4
Break at address "0x0" with no debug information available, or outside of program code, ° RO G | ffene
Action Description
{@Program __from file.bin at 0x210000 with Unprotect Erase Protect Bathy
Configure when this editor is shown @ Dump 0x200 bytes from 0x210000 to ‘outbin’ frior TAP
@ Blank Chec 0x200 bytes at 0x210000 rrior TAP
ior TAP
Mfirior Tap
[frrior TAP
firior TAP
Be | ofirior AP
0xff but found 0x65 at offset 0x210007 - | IF
Expecting Oxff but found 0x73 at offset 0x210008
Expecting Oxff but found 0x74 at offset 0x210009
Blank checked 5128 in 3765 :
© Console % | Tasks [£] Problems @ Executables 3 Debugger Console =3 Progress ||| | ¢ b | B
L52088A RDB (1) Connect [GDB Hardware Debugging] ®
< »
- = e o e — == -~ —— T T

If an action fails, the execution of the sequence stops, the failed actions is marked and error details are displayed in the output

% 6A-external-2018 - Source not found. - CodeWarrior Development Studio for QorlQ LS s 7 ¢ — = Py
File Edit Navigate Search Project Run Processor Expert Window Help
_ Perform actions on the flash device
o~ |[B@®vidinm N e|BE 0%y 0 8 Quick Access | & | B B
45 Debug fipherals =\ Modules Blrie v =8
4 [1152088A RDE (1)_Connect [GDB Hardware Debugging] Value
“ 8 Process [1] [cores: 01.2.3456.7] -
= B Thread 11 core: 0] (Suspendied +Signal : SIGINTnterrupt) Devices: [29GL01GP (NOR) -j® Connected to; LS2088A, cwtap: 10.17177.9
00
v o Thread #2 2 [core: 1] (Suspended : Container) Sequence
> 4P Thread #3 3 [core: 2] (Suspended : Container) -
» o Thread #44 [core: 3] (Suspended : Container) i
- o Thread #5 5 [core: 4] (Suspended : Container) Action:
> & Thread #6 6 [core: 5] (Suspended : Container) N
» o Thread #7 7 [core: 6] (Suspended : Container) il 0210000 e 0200
» 4P Thread #8 8 [core: 7] (Suspended : Container) e -
1 "C:/Freescale/CWANET_v2017.12/CW_ARMv8/ARMy&/adb/bin/aarch64-fsl-qdb.exs AT »
E0x0 3 wNFA V=08
x -
Break at address "0x0" with no debug information available, or outside of program code, e ®T Cwd | hent
Action Description
@Protect 0x200 bytes at 0x210000 athy
Mfirior TAP
Configure when this editor is shown DErase 0x200 bytes at 0x210000 Wrior ap
ior TAP
rior TAP
Mfirior TP
Mfirior TAP
B | ifrior Tap
/" N |]
Additional error details:
[FP: sector is protected]
© Console % | Tasks [£] Problems @ Executables G Debugger Console =5 Progress ||| | ¢ b |
LS2088A_RDB (1)_Connect [GDB Hardware Debugging]l @
‘ »
-— = e o —— e — — T — T — ==

Figure 57. Errors in command sequence

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

103/162

NXP Semiconductors

Flash Programmer

7.7.5 Import export sequence
Users can share a flash programming sequence by using the Import and Export options in the toolbar.
On clicking Export, the sequence and the selected device name is exported in an .xml file.

Importing a sequence restores the sequence in the Flash Programmer GUI. If the device from the imported file exists, that device
becomes the selected device, otherwise a warning is displayed to the user. If the user chooses to proceed, then the attempt to
launch the imported sequence may result in flash programmer execution errors.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 104 /162

NXP Semiconductors

Chapter 8
Use Cases

This chapter explains U-Boot debug, Linux application debug, Linux kernel debug, UEFI debug, and AMP example projects.
This chapter lists:

* U-Boot debug

« Linux application debug

» Linux kernel debug

» UEFI debug

» Import and configure AMP example projects

8.1 U-Boot debug

This topic describes the steps required to perform a U-Boot debug using CodeWarrior Development Studio for QorlQ LS
series - ARM V8 ISA.

This topic lists the steps to:
» Build the U-Boot sources and the auxiliary tools.

» Perform U-Boot debug in CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA.

NOTE
For details on how to prepare the target, see Preparing Target.

8.1.1 U-Boot setup
This topic explains U-Boot build.

For details on U-Boot build, refer to the SDK documentation or the LSDK documentation as per the build system used. Yocto-
based SDK uses bitbake commands to build various packages, whereas Dash/LSDK is based on flex-builder and flex-installer
toolset.

8.1.2 Create an ARMv8 project for U-Boot debug
This topic explains steps to create an ARMv8 bare metal project for U-Boot debug.
To create an ARMv8 bare metal project for U-Boot debug, perform these steps:

1. Open CodeWarrior for ARMv8.

2. Import a U-Boot image as described in CodeWarrior Executable Importer wizard. In case an SPL-based U-Boot is being
debugged, make sure the main/DDR U-Boot elf file is imported at this step.

3. Select Run > Debug Configurations to open the Debug Configurations dialog.
4. Click on the Startup tab.
a. Set breakpoint at: _start.

b. Select the Resume checkbox.

NOTE
Step (b) should be done only if nothing is running yet on the target board, or in case you have just started the
target board, but have not started U-Boot. However, in case you simply attach it to a running U-Boot session the
above step should be skipped. PC will reflect the current PC while U-Boot is running.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 105/162

https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_SDK&lang=en-US
https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_LSDK&lang=en-US#eventType=lcContent.loadHome

NXP Semiconductors

Use Cases

-
¥3 Debug Configurations _—

=)

Create, manage, and run configurations

FEEIEE

type filter text
[E] C/C++ Application
[E] C/C++ Attach to Application
C/C++ Postrnortem Debugger
[€] C/C++ Remote Application
4 [£] GDEB Hardware Debugging
[E] BareBoard-Project
[] Debug_u-boot
- Launch Group

Filter matched & of 8 items

Name: Debug_u-boot

Main [%5 Debugger| B Startup % Seurce| 05 Awareness | Other Symbols| I Commen| S Trace and Profile|

Initialization Commands
Reset and Delay (seconds): 0
[¥] Halt

Load Image and Symbels
[¥] Load image

@) Use project binary: Debug_u-boot.elf
@) Use file:
Image offset (hex):

[7] Load symbols

® Use project binary: Debug_u-boot.clf
() Use file:

Symbols offset (hex):

Runtime Options

[] Set program counter at (hex):

Set breakpoint at: _start|
Resume

Run Commands

Workspace...

Workspace...

File System...

File System...

m

Using CodeWarrior Hardware Debugging Launcher - Select other..

)

L

Figure 58. Startup tab

5. If a NAND/SD U-Boot is debugged, the SPL U-Boot ELF file should be specified in the OS Awareness tab, as shown in
the following figure.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

106 /162

NXP Semiconductors

Use Cases
P Debug Configurations H
Create, and run confic ﬁ\
= = =Y
L] X\ B3 Name: Debug_u-boot
type filter text Main ﬁ;‘ Debugger fb Startup (T‘-f/ Source fOS Awareness % Other Symbolsw = Trace and Profile} B Common}
[E] C/C++ Application 0S Awareness Enablement m
[5] C/C++ Attach to Application Enable OS Awareness
C/C++ Postmortem Debugger .
[E] C/C++ Remote Application © Linux Kermnel
4 [c] GDB Hardware Debugging 9 U-Boot
[€] Debug_u-boot) UEFI
b= Launch Group) Other

Settings for U-Boot Debug Awareness

(@ Use CodeWarrior script for U-Boot Awareness

[

C:\data\ProductLayouts\CW4ANET\CW4NET_v2017.03_170322\CW_ARMv8\ARMv8\gdb_extensions\kernel_awareness\scripts\uboot_init.py
() Use script:

File System...

Workspace...
[¥] Add SPL U-Boot ELF: sl-linux\u-boot-qorig\2016. 01+fslgit-rD\git\I51MSardb,nand,config\spl\u-boot-sp‘ l Workspace.] [File System.

Filter matched 7 of 7 items Using CodeWarrior Hardware Debugging Launcher - Select other... Revert Apply
® Debug i l Close
Figure 59. Add SPL U-Boot ELF
6. Set up the target connection configuration, as explained in Configuring Target.

7. Click the Debug button to initiate the debug session. The debugger should stop at _start symbol.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide

107/ 162

NXP Semiconductors

Use Cases

%5 Debug 23
= -c:, Debug_u-boot [GDB Hardware Debugging]
B2 u-boot [1] [cores: 0]
= JS} Thread [1] 1 [core: 0] (Suspended : Breakpoint)
= _start() at start.S:23 0x30001000

38 b

[c] _startQ at /home /b32331/L52/sdk/phase-3.0_tmp/sdk-develfu-boot/arch/arm/cpufarmva fstart.5: 23 0x30001000 53

Can't find a source file at “/home /b32331/L52/sdk /phase-3.0_tmp/sdk-develfu-boot/archfarm/cpufarmv8/start.S”
Locate the file or edit the source lookup path to indude its location.

wewDrsamenblyl
Locate File... | [:k

Edit Source Lookup Path... |

% #|i»|& Y= O

Figure 60. Debugger stops at _start symbol

8.1.3 U-Boot debug support

This section explains steps to perform U-Boot debug in CodeWarrior Development Studio for QorlQ LS series - ARM V8 [SA.

8.1.3.1 Setting the source path mapping
This topic explains steps to load symbols and set source path mapping.
To load symbols and set source path mapping, perform these steps:

1. Locate the file suggested by the debugger.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

108/162

NXP Semiconductors

Use Cases

| e N -0-Q 0 s O TR

T | @iinim |

%5 Debug 52
=1-[€] Debug_u-boot [GDB Hardware Debugging]
=1 u-boot [1]
= Thread [1] (Suspended : User Request)
= _start() at start.5:23 0x30001000

“pd gdb

[] _start() at /fhome/b32331/Desktop/LS2_setup/SDK_phase 1.5/SDK_installed/Layerscape2-SDK-2014... 22 = 0O

Can't find a source file at “/home/b32331/Desktop/LS2_setup/SDK_phase_1.5/SDK _installed/Layerscape2-SDK-20 1407 18-yocto /build_|s2085a-simu_release /tmpfworkls2085a_simu-fel-

linuxfu-boot/2014.07rc3+gitr0/git/archfarmfopufarmv/start.5”
Locate the file or edit the source lookup path to indude its location.

View Disassembly. .. I

Locate File...

Edit Source Lookup Path. .,

Figure 61. Locate source

2. The stack and the source views appears as in the following figure.

NOTE
You can add a static map entry using the Edit Source Lookup Path button to avoid locating file using the Locate

File button, whenever a new file is requested.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
109/ 162

User's Guide

NXP Semiconductors

Use Cases
- Olmiwinig | [®]3w NigiH-0-Q-i0 -0l -gl-1 G-]
%5 Debug 32 #|liz|e T =18
=[] Debug_u-boot [GDB Hardware Debugging]
kif?uﬁom[ﬂ
=l-of® Thread [1] (Suspended : User Request)
= _start() at start.5:23 0x30001000
il gdb
[£] main.c |8 start.5 [8] exception.S [S) start.S 52 = g
o] b reset 2|
.align 3

.globl _TEXT_BASE
_TEXT_BASE:
.quad CONFIG_SYS_TEXT_BASE

* These are defined in the linker script.
.globl _end_ofs
_end_ofs:
.quad _end - _start
.globl _bss_start_ofs

_bss_start_ofs:
.auad bss start - start

Figure 62. Stack and sources

ol

3. Click the Resume button. Alternatively, press the F8 key.

4. If a new U-Boot debug session is required, close/terminate the actual connection or use the Reset button in the Debug

view to reset the target.

NOTE
If you want to attach to the same U-Boot session, disconnect the CodeWarrior software and reconnect again. You
will not need to set the PC and the path mapping is correct.

8.1.3.2 Debug capabilities
This topic explains steps to bring-up the U-Boot.
1. The multicore debug is also supported if you want to inspect the secondary cores after release in the last stage.

a. Select the Use all cores checkbox in the Debugger tab.

Figure 63. Debugger tab

[Use launch spedific connection Configure target connection.. .

Configuration; ILS 20854 _uboot j

Core: IAE?#D "I ¥ Usze all cores

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

110/ 162

NXP Semiconductors

Use Cases

b. When the debugging starts, you can see stack/registers for every core. Note that the run control is per SoC and not
per core.

Figure 64. Debug view

15 Debug &2 = =

4 [t | Debug_u-boot [GDB Hardware Debugging]
4 7% u-boot [1] [cores: 0]
4 # Thread #1 1 [core: 0] (Suspended : Breakpoint)
= _start() at start.5:22 (,30100000
g "CifFreescale/ CWANET v2015.12Beta_b151105/CW_ARME/ARMYE/gdb/ bin/aa

2. If an SPL U-Boot is debugged, make sure the SPL U-Boot ELF is specified in the OS Awareness tab, as shown in the
following figure.

05 Awareness Enablement
Enable OS Awareness

() Linux Kernel
@ U-Boot

© UEFR

©) Other

Settings for U-Boot Debug Awareness

(@) Use CodeWarrior script for U-Boot Awareness
Chdata\ProductLayouts\CWAMNET\CW4NET _v2017.03_170322\CW_ARMvE\ARMvE\gdb_extensions\kernel_awareness\scripts\uboot_init.py

(©) Use script: Workspace... File System...

| ¥ Add SPLU-Boot ELF: si-linux\u-boot-qorig\2016.01 +fslgit-r0\git\Is1043ardb_nand_config\spl\u-boot-sp] || Workspace.. || File System.. |

Figure 65. Add SPL U-Boot ELF

3. Double-click a line to inspect breakpoints. You can inspect these using:
* Breakpoints view
* info breakpoints command from the GDB shell.

4. You can perform the step operations until the U-Boot starts.

8.2 Linux application debug

This document describes the steps required to perform Linux Application Debug using CodeWarrior Development Studio for
QorlQ LS series - ARM V8 ISA.

This document lists the steps to:
« Build the Linux sources and auxiliary tools
» Networking support
» Perform Linux application debug in CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA
 Attach to a Linux application in CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 111/162

NXP Semiconductors

Use Cases

8.2.1 Linux setup
This topic explains Linux setup.

For details on Linux setup, refer to the SDK documentation or the LSDK documentation as per the build system used. Yocto-
based SDK and Dash/LSDK use different build systems and different approaches for deploying images on target.

8.2.2 Debugging simple Linux application

This topic explains how to create a simple Linux application project, update remote connection, enable full debug support, and
debug the Linux application project.

» Creating simple Linux application project
» Updating remote connection
* Using sysroot

» Debugging Linux application project

8.2.2.1 Creating simple Linux application project

This topic explains steps to create a ARMv8 Linux application project.

To create a new ARMv8 Linux application project:
1. Open CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA.
2. Select File > New > ARMv8 Stationery > Linux Application Debug > Hello World C Project.
3. Specify a project name.
4. Click Finish.
5. Select the newly created Linux application project in the Project Explorer view.
6. Select Project > Build project.

To create a ARMv8 Linux application project using an existing Linux application image, see CodeWarrior Executable Importer
wizard.

8.2.2.2 Updating remote connection
This topic explains how to change the settings in a default remote connection.
The IP/hostname and the SSH port of the Linux target must be set to the correct values.
To change the default values perform the following steps:
1. Click Run > Debug Configurations.
The Debug Configurations dialog appears.

2. Select the Linux application project in the left-hand panel, under C/C++ Remote Application.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 112/162

https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_SDK&lang=en-US
https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_LSDK&lang=en-US#eventType=lcContent.loadHome

NXP Semiconductors

Use Cases

%5 Debug Configurations

Create, manage, and

SRR E S

type filter text

€] project 1

% Launch Group
@ Launch Group (De

@

[€] GDB Hardware Debugging

Filter matched 12 of 12 items

run configurations

Name: LAD

5 Main 00 Arguments- i Debugger. | Source :Iﬂommon-
[E1 ¢/C++ Application

4 [€] C/C++ Attach to Application Eroject
[£] RemoteLinuxApp LAD
[©] C/C++ Postmortem Debugger C/C++ Application:
4 [€] (/C++ Remote Application Debug\LAD.elf
] Fork
] LAD
] LAD_SLib

Build (if required) before launching

e

3

Variables.. | | Search Project...] | Browse...

Build Configuration; Use Active

Q) Enable auto build
precated) () Use workspace settings

! Disable auto build
Configure Workspace Settings...

Connection: |Remote Host

&l | New.. | Edit... | Properties...

Remote Absolute File Path for C/C++ Application:

/home/root/LAD.elf

Commands to execute before application

chmod +x /home/root/LAD.elf

| Skip download to target path.

Figure 66. Select Linux application project

Using GDB (DSF) Automatic Remote Debugging Launcher - Select other... levert

l Browse...

[Debug] | Close

3. Click the Edit button right next to the default Remote Host connection. The Edit Connection dialog appears.

Figure 67. Edit

&

Edit Connection

Edit properties of an existing connection

Connection name: | Remote Host

Host information
Host: 10171171.10
User: root

Public key based authentication
Passphrase;
@ Password based authentication

Password: esss

+ Advanced

default remote host connection

P <

Keys are set at Network Connections, SSH2

Finsh | | Cancel

4. Specify the IP of the Linux target in the Host text box, specify the user name in the User text box and specify the password

in the Password

text box.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

1137162

NXP Semiconductors

5. Expand the Advanced section and configure the SSH port and other connection settings, as needed.

Use Cases

o o e

Edit Connection

Edit properties of an existing connection

Connection name: | Remote Host

Host information

Host: 10.171.171.10

User: root

) Public key based authentication Keys are set at Network Connections, SSH2
Passphrase:

@ Password based authentication
Password: eess
~ Advanced
Connection Settings
Port; 22
Timeout: 0
[¥] Use login shell
Login shell command /bin/bash -1 -c {0}
SSH Proxy Settings
Select 'Remote’ for an ssh gateway or a remote proxy command.
@ Local (©) Remote |Please select a connection v || New..

Enter a local or remote command such as 'nc %h %p’. Can be empty for an ssh gateway.

If 'Local’ is selected and proxy command is empty, no proxy is used.
See Network Connections for SOCKS and HTTP proxy options.

@J Finish J ‘ Cancel

Figure 68. Edit advanced connection settings

6. Click Finish.

8.2.2.3 Using sysroot

This section is required only if you want to enable full debug support (inside target system libraries) for the Linux application

project.

NOTE
Before you proceed, ensure that you have completed all the steps in Updating remote connection.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

114/ 162

NXP Semiconductors

Use Cases

To enable full debug support for a Linux application project, perform these steps:
1. GDB should be configured to use the target system libraries.
a. On the host PC, create a folder rootfs and a sub-directory 1ib.

b. Copy the following libraries: 1ibc, 1d, 1ibpthread into tothe rootfs/1ib/ folder. Use the full library name as you
see it on the target, for example 1ibpthread.so.0, 1d-1linux-aarché4.so.1, libc.so. 6.

c. Create a *.gdbinit file on the file system. For example, test.gdbinit

d. Add following content in the .gdbinit file:
set sysroot <host path to rootfs>

For example, set sysroot C:\Users\ul2345\Desktop\rootfs

NOTE
If you are running the CodeWarrior software on the same Linux machine where you have compiled the SDK
package, you can directly set up the sysroot from that location in the gdbinit file. For example, the path to sysroot
on a yocto-based sdk would be:

set sysroot /home/ul2345/Desktop/SDK Setup/QorIQ-SDK-V2.0-20160527-yocto/
build 1s2088ardb/tmp/sysroots/1s2088ardb/

2. Add missing settings in launch configuration file.
a. Right-click the project and select Debug As > Debug Configurations.
The Debug Configurations dialog appears.

b. Expand C/C++ Remote Application, select the launch configuration for the Linux application project you want to
debug.

c. Click the Main sub tab in the Debugger tab.

d. Browse to *.gdbinit path in GDB command file field.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 115/162

NXP Semiconductors

Use Cases

MR
type filter text
[E C/C++ Application
[T C/C++ Attach to Application
[E] C/C++ Postmortem Debugger
[t C/C+» Remate Application
[LAD
| LAD SLibv
Project 1
[E GDB Hardware Debugging
Launch Group
¥ Launch Group (Deprecated)

" F@#

Create, manage, and run configurations

Name: LAD
[Main| = Arguments| % Debugger . % Source] Common
1 Stop on startup at main
Debugaer Options
Main Shared Libraries | Gdbserver Settings

¥

GDB debugger. “${eclipse_home].\ARMvE\gdb\bin\aarchid-fsl-gdb.exe”
GDB command file: ${eclipse_home].\ARMvE\gdb\bir, gdbinit

(Warmning: Some commands in this file may interfere with the startup operation of the debugger, for example “run”)
Nom-stop mode (Note: Requires non-stop GD8)

Enable Reverse Debugging at startup using: _Solnm'e Reverse Debugging (detailed but slower)
Force thread kst update on suspend
_ Automatically debug forked processes (Note: Requires Multi Process GDE)

Tracepoint mode: | Normal hal

Filter matched 10 of 10 items Using GDB (DSF) Automatic Remote Debugging Launcher - Select other,

@ [oeows]|

Browse..

Browse..

Close

Figure 69. Debugger tab - Main

e. Click Apply.

8.2.2.4 Debugging Linux application project
This topic explains steps to debug a Linux application project.
To debug a Linux application project:

1. From the CodeWarrior IDE menu bar, select Run > Debug Configurations.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

116/ 162

NXP Semiconductors

Use Cases
In the Debug Configuration dialog, expand C/C++ Remote Application and select the launch configuration for the Linux
application project you want to debug.
5 Debug Configurations E
Create, manage, and run configurations @
O
x & Mame: LAD
J Main . Arguments | % Debugger| 5 Source| = Common
[T CfC++ Application o
(£ C/iCe + Attach 1o Application Broject
€] C/iC+ + Postmortem Debugger LAD Browse.
[C/C++ Remote Application C/C++ Application:
_r: LA Debug\LAD.elf
£ LAD_SLib
& Project_1 Vanables.. Search) Project- Browse_
£ GD8 Hardware Debugging Build (if required) before launching
& Launch Group SRS e L
= Launch Group (Deprecated) Baild Sonhoulauon |Use Acte !
@ Enable auto build Disable auto build
Usa workspace settings onfigure Workspace Settings.
Connection: _Remo:e Host - Mew.. Edit... Properiies..
Remote Absolute File Path for C/C++ Application:
/homejroot/LAD.elf Browse-.
Commands to exscute before application
chmod +x /homey/root/LAD.2if
Skip download 1o target path.
Filter matchad 1061 10 itefns Using GDB (DSF) Automatic Remote Debugging Launcher - Select othe
7 [Debug _| Close
Click Debug.

8.2.3 Debugging a Linux application using a shared library

This topic explains how to debug a Linux application using a shared library.

This topic explains:

» Creating Linux shared library project

» Updating remote connection

» Updating launch configuration for Linux application using shared library

» Debugging Linux shared library project

8.2.3.1 Creating Linux shared library project

This topic explains steps to create an ARMv8 Linux application project using a shared library.

To create an ARMvS8 Linux application project using a shared library, perform these steps:

1.

Open CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA.

. Select File > New > ARMv8 Stationery > Linux Application Debug > Hello World C Shared Library Project.
. Provide a project name.

2
3
4.
5

Click Finish.

. Select the project node in the Project Explorer view.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide 117 /162

NXP Semiconductors

6. Build all configurations:

The project has two build configurations:

» LibExample - Builds the shared library

» SharedLibTest (the active configuration) - Uses the shared library

Use Cases

a. Right-click the project and select Build Configurations > Set Active > LibExample.

b. Build project. The 1ib<project name>.so library is created.

SR
-3

Mew
Go Into

-4 Open in Mew Window

Remoye fram Contesxt
Source

[Mave...
Rename...

Ctrl+C
(g
Delete
ZErl-AlE4-ShifE+Down

F2

2 Import...
7 Export...

Build Project

Clean Project

Refresh

Close Project

Close Unrelated Projects

|‘39

Build Configurations
Make Targets
Index

ret

temp(a,b);

ret

myadd(a,b);//Step

return ret;

1 LibExample

Show in Remote Systems view

Profiling Tools

Convert Ta...

Profile As

Debug As

Run As

Compare With

Restore from Local History...
%“}' Run CfC++ Code Analysis

Team

Manage... v 2 SharedlibTest
1,1n

Build Al S

Clean all urn i+3;

Build Selected. ..

Properties

Alt-+Enter

Figure 70. Build configurations

T
H

[%/ Problems &2

0 items
Description =

c. Select the project, right-click and select Build Configurations > Set Active > SharedLibTest.

d. Build project. The <project name>.elf library is created.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

118/ 162

NXP Semiconductors

Use Cases

8.2.3.2 Updating remote connection
This topic explains how to change the settings in a default remote connection.

Refer to the steps in Updating remote connection.

8.2.3.3 Updating launch configuration for Linux application using shared library

This topic explains steps to set the launch configuration for a Linux application project that uses a shared library

To set the launch configuration for a Linux application project that uses a shared library, perform the following steps:
1. Perform all the steps in Using sysroot.
2. Manually download the .so shared library to the Linux target (to the/1ib path).

3. Copy the .so shared library to the sysroot location. (Refer Using sysroot, step 1d)

The location can be:
a. The rootfs/1ib/ folder you created on your host PC (Refer Using sysroot, step 1a)
b. The 1ib from the sysroot location from SDK, if you are using the CodeWarrior software on the same Linux machine

where you have compiled the SDK package and you are using the sysroot from SDK.

Example for yocto-based sdk:

/home/ul2345/Desktop/SDK_Setup/QorIQ-SDK-V2.0-20160527-yocto/build 1s2088ardb/tmp/
sysroots/1s2088ardb/1lib
4. Add missing settings in launch configuration file.
a. Right-click the project and select Debug As > Debug Configurations. The Debug Configurations dialog appears.
b. Expand C/C++ Remote Application, select the Linux shared library project you want to debug.
c. Click the Shared Libraries sub tab and click Add to add the path to the *.so library you created in Creating Linux
shared library project. The path is

${ProjDirPath}/LibExample

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 119/162

NXP Semiconductors

Use Cases

ﬁl Debug Configurations TAE p.

Create, manage, and run configurations

= Y
EIEEN Mame: LAD_SLib
type filter text
[T] C/C++ Application
[E] C/C++ Attach to Application Stop on startup at: - main

[c] C/C++ Postmortem Debugge
a [E] C/C++ Remote Application

E Main &) Arguments ﬁ:Debugger 'ES Source| [] Comman

Debugger Options

[5] LaD Shared Libraries | Gdbserver Settings
[c] LAD_SLib Directories:
[c] Project 1 C:\ARMWE-111-1VLAD_SLib\LibExample Add...

[t] GDB Hardware Debugging
= Launch Group

Up
Down

Remove

Select From List

Load shared library symbaols automatically

« | 1l 3

Using GDB (DSF) Automatic Remote Debugging Launcher - Select other... [Apply] [Revert]

Filter matched 9 of 9 iterns

':?)' [Debug] [Close]

Figure 71. Debugger tab - Shared Libraries

d. Click Apply.

8.2.3.4 Debugging Linux shared library project
This topic explains steps to debug Linux shared library project.

To debug Linux shared library project, refer to the steps in Debugging Linux application project

8.2.4 Attaching to a Linux application

This topic explains how to attach to a Linux user space application running on a Linux target and how to debug it using the
CodeWarrior software.

This topic also explains how to create a Linux application project, how to update the debug configuration, and how to attach to
the Linux application.

NOTE
This topic only applies for attaching to an application that is already running on the target. To debug an application
from its entry point, see Debugging simple Linux application.

To attach and perform debug operations on the Linux application, an elf file with debug symbols of the application is required on
the machine running the CodeWarrior software. To create an ARMv8 project for attach to a Linux application:

1. Launch CodeWarrior for ARMv8.

2. Import the binary image for the application as described in CodeWarrior Executable Importer wizard.

3. The Debug Configurations dialog appears after you perform the last step in the ELF importer wizard. The dialog will have
a launch configuration of type C/C++ Remote Application selected, with the same name as the newly created project.

4. Select the type C/C++ Attach to Application and press the New launch configuration button.

5. Name the new launch configuration.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 120/162

NXP Semiconductors

6
7
8
9

. In the Debugger Options section, select the Connection tab.

Use Cases

. In the Main tab, click Browse and select the newly created project.

. In the Debugger tab, select gdbserver from the Debugger drop-down list.

. Specify Type as TCP, specify the host IP of the Linux target and a port number for the gdbserver.

10. Start the gdbserver on the Linux target with the port number specified: gdbserver --multi :<port number>

11. Click Debug. The gdb client connects to the gdbserver, and can now attach to any application from Linux target by right-

clicking the debug configuration name and selecting Connect.

15 Debug
4[] RemotelLinuxApp [C/C++ Attarh ta Annlicatinnl
wi "Ci/data/Temp/Oxyge

5| Copy Stack

iv

CE%ZeE

o

o)

Find...
Drop To Frame

Reset Board
Step Into
Step Over
Step Return

Instruction Stepping Mode

5. Use Step Filters

Resume Without Signal
Resume

Suspend

Terminate

Terminate and Relaunch
Disconnect

Connect...

Debug New Executable...

Remove All Terminated
Relaunch

Edit RemoteLinuxApp...
Edit Source Lookup...

Figure 72. Attach to Linux application

Ctri+C
Ctrl+F

Zlw|é v =01

64-fsl-gdb.exe” (7.11.1.0.41)

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

121/162

NXP Semiconductors

Use Cases

%3 Select Processes

Select one or more processes to attach to:

| D'@ﬂ |

kworker (root) - 30609 [core: 2]

& kworker (root) - 33 [core: 3]

& kworker (root) - 3718 [core: 2]

¥ kworker (root) - 5 [core: 0]

libvirtd (root) - 1624 [cores: 0, 2]

lightdm (root) - 2853 [cores:. 0, 3]

lightdm (root) - 2890 [cores: 2, 3]

¥ LinuxApp (b36300) - 31571 [core: 3]
lockd (root) - 19154 [core: 1]

md (root) - 44 [core: 2]

metacity (b36300) - 19315 [cores. 0, 1, 2]

[R, GRS (R S T, AT Fmmama MY

« | i

./LinuxApp

@ OK

Cancel

12. Click OK to attach to the running application. At this moment, all debug capabilities will be enabled.

13. For setting up breakpoints in global symbols (for example, main), you should load the application debug symbols using
the file <path to application> command in the GDB console in the CodeWarrior software.

8.2.5 Debugging multi-process remote applications

To debug a multi-process application:

1. From the CodeWarrior IDE menu bar, select Run > Debug Configurations.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

122/ 162

NXP Semiconductors

Use Cases
2. In the Debug Configuration dialog, expand C/C++ Remote Application and select the launch configuration for the multi-
process application project you want to debug.
3. Click the Debugger > Main tab.
4. Check the Automatically debug forked processes (Note: Requires Multi Process GDB) checkbox.

Name: Fork
[] Main | ©- Arguments | % Debugger %~ Source'] Common

7| Stop on startup at: main

Debugger Options

| Main | Shared Libraries | Gdbserver Settings
GDB debugger: “${eclipse_home}.\ARMv8\gdb\bin\aarch64-fsl-gdb.exe” | Browse.. \
GDB command file: ${eclipse_home}.\ARMv8\gdb\bin\.gdbinit ' Browse... \

(Warning: Some commands in this file may interfere with the startup operation of the debugger, for example "run™.)
| Non-stop mode (Note: Requires non-stop GDB)

Enable Reverse Debugging at startup using: |Software Reverse Debugging (detailed but slower) ~
Force thread list update on suspend
¥| Automatically debug forked processes (Note: Requires Multi Process GDB)

Tracepoint mode: {Normal 'J

Using GDB (DSF) Automatic Remote Debugging Launcher - Select other...

Figure 73. Debug a multi-process application

5. Click Debug.

8.3 Linux kernel debug
This document describes the steps required to perform Linux kernel debug.

This document describes the steps required to perform Linux kernel debug using CodeWarrior Development Studio for QorlQ
LS series - ARM V8 ISA. This document explains:

» Building the U-Boot, Linux sources, and the auxiliary tools.

» Performing Linux Kernel debug in CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA.

8.3.1 Linux Kernel setup
This topic explains Linux kernel build.

For details on Linux kernel build, refer to the SDK documentation or the LSDK documentation as per the build system used.
Yocto-based SDK uses bitbake commands to build various packages, whereas Dash/LSDK is based on flex-builder and flex-
installer toolset.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 123/162

https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_SDK&lang=en-US
https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_LSDK&lang=en-US#eventType=lcContent.loadHome

NXP Semiconductors

NOTE
In order to perform Linux kernel debug, please ensure that the kernel image is build with debug symbols. For
enabling the debug symbols:

1. Start menuconfig, the menu-driven configuration step for the Linux kernel.

2. Go to General Setup, disable the option Compile also drivers which will not load. Note that without performing
this step the option below will not appear in menuconfig.

3. Select Kernel Hacking -> Compile-time checks and compiler options, enable option “Compile the kernel with
debug info”.

8.3.2 Create an ARMv8 project for Linux kernel debug

This topic explains steps to create an ARMv8 bare metal project for U-Boot debug.

To create an ARMv8 bare metal project for U-Boot debug, perform these steps:

Use Cases

1. Open CodeWarrior for ARMv8.
2. Import a Linux Kernel image as described in CodeWarrior Executable Importer wizard.
3. Select Run > Debug Configurations to open the Debug Configurations dialog.
4. Click the Startup tab.
a. Set breakpoint at: 0x80080000.
b. Check the Resume button.
NOTE
Step (b) should be done only if nothing is running yet on the target board, or in case you have just started the
target board but have not started the Linux Kernel. However, in case you simply attach it to a running the Linux
Kernel session the above step should be skipped. PC will reflect the current PC while the Linux Kernel is running.
CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 124 /162

NXP Semiconductors

Use Cases

type filter text

[€] C/C++ Application
[€] C/C++ Attach to Application

a [E] C/C++ Remote Application
[E] LAD_SLib
a [T] GDB Hardware Debugging
[c] BareBoard-Project
[£] Debug_u-boot
[] Debug_vmlinux
= Launch Group

< 1

Filter matched 10 of 10 items

[€] €/C++ Postmortem Debugger

- u
¥4 Debug Configurations - - -
Create, , and run config
% = T -
O E X | = & Name: Debug_vmlinux

Main fﬁ* Debugger | = Startup E_/ Source | OS5 Awareness | Other Symbolq = Trace and Profilew S| Qommon}

Initialization Commands
Reset and Delay (seconds): 0
Halt

»

Load Image and Symbols
Leoad image

@) Use project binary: Debug_vmlinux.elf
0 Usefile: Workspace... File System...

m

Image offset (hex):

Load symbols

@) Use project binary: Debug_vmlinux.elf

Workspace... File System...

() Usefile:

Symbeols offset (hex):

Runtime Opticns
[Set program counter at (hex):

Set breakpoint at: 0xB0080000|
Resume

Run Commands

Select other... [Apply] [Revert]

Using CodeWarrior Hardware Debugging Launcher -

)

Close

J |

i Debug

]

h

Figure 74. Startup tab

5. Set up the target connection configuration, as explained in Configuring Target.
6. Click the Debug button to initiate the debug session. The debugger should stop at 0x80080000 - kernel entry point

address.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

125/ 162

User's Guide

NXP Semiconductors

Use Cases

%5 Debug 52 #liv|& Y= 8
= @ Debug_vmlinux [GDB Hardware Debugging]
=58 vmlinux [1]
=-of® Thread [1] (Suspended : Breakpoint)
=8 () at head.5: 111 0x80080000
0x0

- gdb

€] 0 at/home/b32331/D.. 2 = B

Can't find a source file at “fhome/b32331/Desktop/LS2_setup/SDK_0.2. 1ls2-inux/arch/arm64/kernelfhead.S"
Locate the file or edit the source lookup path to indude its location.

View Disassembly... |

Locate File...

Edit Source Lookup Path... |

Figure 75. Debug Session Window

8.3.3 Linux Kernel debug support

This section explains the steps required to perform Linux kernel debug in CodeWarrior Development Studio for QorlQ LS
series - ARM V8 ISA.

This section includes:
» Setting the source path mapping

» Debug and Kernel Awareness capabilities

8.3.3.1 Setting the source path mapping
This section explains the steps required to load symbols and set source path mapping.
Perform the following steps:
1. Click the Refresh Debug Views button to refresh the debug views updated with the new stack and the registers view.
2. Close the Source not found window.
3. Double- click the stack for triggering the source-level mapping request.
4

. Locate the file suggested by the debugger.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 126/ 162

NXP Semiconductors

Can't find a source file at “fhome/b32331/Desktop/L52_setup/SDK_0. 2. 1/ls2-inux /arch/arma4/kernel head.5”
Locate the file or edit the source lookup path to indude its location.

View Disassembly... |
Locate File... |

Edit Source Lookup Path... |

Figure 76. Locate source window

Use Cases
%5 Debug 32 ,,.¢W|i'=5>|@<:3 ¥ = H
EE Debug_vmlinux [GDE Hardware Debugging]
Eﬁﬁ wmlinux [1]
. E-g® Thread [1] (Suspended : Breakpoint)
5] head.5 os_gpp.c dprc_test.c main.c main.c E () at /home/b32331/D.. 32 = O

The following figure shows stack and the source views added.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

127/ 162

NXP Semiconductors

Use Cases

.

A = =
N s

- =
:ﬁ? Debug 3

ng:? wmlinux [1]
L B

() at head.5:111 0x30080000

=l

Figure 77. Stack and sources added

(IS A T

=[] Debug_vmlinux [GDB Hardware Debugging]

IR0 -G iB 9
lis e T =8

Thread [1] (Suspended : Breakpoint)

[5] head.5 22 | [g os_gpp.c €] dpre_test.c [£] main.c [main.c = 8
186 _ HEAD =]
187
188 /*

189 * DO NOT MODIFY. Image header expected by Linux boot-loaders. ==
118 */

111 b stext // branch to kernel start, magic
112 dlong @ /f reserved
113 .quad TEXT_OFFSET // Image load offset from start of RAM
114 .quad @ /f reserved
115 .quad @ // reserved
116 .quad @ /f reserved
117 .quad @ // reserved
118 .quad @ /f reserved
119 .byte Bx41 // Magic number, “ARM\x64"

128 .byte Bx52

o

A

NOTE

You can add a static map entry using the Edit Source Lookup Path button to avoid locating file using the Locate

File button, whenever a new file is requested

5. To go ahead with next important step in Linux kernel debug (start_kernel), you need to set up a breakpoint there using
this command: break start_kernelin the same gdb console.

. Click the Resume button. Alternatively, press the F8 key. The breakpoint will be hit.

. Click the Refresh Debug Views button to refresh the debug views updated with the new stack and the registers view.

6
7
8. Close the Source not found window.
9

. Double-click the stack for triggering the source-level mapping request.

10. Locate the file suggested by the debugger.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

128/ 162

NXP Semiconductors

Can't find a source file at “/fhome/b32331/Desktop/L52_setup/SDK_0. 2. 1/1s2-inux finit/main. .

View Disassembly. .. |
Locate File... |

Edit Source Lookup Path... |

Figure 78. Debug console

Use Cases
%5 Debug &2 W|i=9|@<};}v='ﬁ|
EE Debug_vmlinux [GDE Hardware Debugaing]
EJ_’[-:? vmlinux [1]
¢ B Thread [1] (Suspended : Breakpaint)
= start_kernel() at main.c:480 0xfFAc0005c2498
0x80080220
[c] start_kernel() at /hom... 22 = B

11. For details about debug and kernel awareness capabilities, see Debug and Kernel Awareness capabilities.

12. Click the Resume button to run the vmlinux. Alternatively, press the F8 key.

13. To start the Linux Kernel debug again, close/terminate the actual connection.

8.3.3.2 Debug and Kernel Awareness capabilities
This section explains various Debug and Kernel Awareness capabilities.
Perform the following steps:
1. Select Window > Show view > Disassembly to enable the Disassembly view.
2. Double-click a line to inspect breakpoints. You can inspect them using:
* Breakpoints view
* info breakpoints command from GDB shell
3. Set up hardware breakpoints using hbreak command from GDB console.

4. You can also perform step in, step over, and step return functions from the GUI.

5. Add watchpoints (data breakpoints) using the Toogle Watchpoint option from the context menu.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

129/ 162

NXP Semiconductors

Use Cases
NOTE
A watchpoint only makes sense for a global variable (or to a global memory address).
The watchpoint is then listed in the Breakpoints view.
()= Variables ®g Breakpoints 53 4 Registers & Peripherals = Modules
,.5 [address: 0x00000000&0030000]
O.c [function: start_kernel]
main.c [r-.-:{r* sion: 'initcall_debug']
Figure 79. Breakpoints view
You can also add watchpoints using the drop-down menu in the Breakpoint view.
)= Variables ©g Breakpoints 32 4} Registers 53 Peripherals =i Modules ® % o W | H B S Y= O
M .& [address: 0x0000000080080000] Layout L4
-+ .
Cl.c [functon: startkerl] &’ Add Function Breakpoint (C/C++)...
cpression: 'initcall_debug']

€U Add Event Breakpaint (C/C++)...

3 Add Watchpoint (C/C++)...

. Show Full Paths
Group By »

& Select Default Working Set...
Deselect Default Working Set
Working Sets...

Use CodeWarrior software to see some important information about the Linux kernel, for example general information, build time,
modules list, threads list and so on. To see the full Kernel Awareness capabilities, refer Linux kernel awareness.

8.3.4 Module debugging

This topic explains module debugging use cases and module debugging from Eclipse GUI.

This topic explains:

* Module debugging use cases

* Module debugging from Eclipse GUI

8.3.4.1 Module debugging use cases

This topic explains module debugging use cases.

1.

Loading and unloading module’s symbols file

The runtime address when the kernel relocates the kernel module it is known only at runtime after the module is loaded
while the module’s symbols file contains only the compile time address information. Therefore module symbols file can be
loaded only when the module is loaded into the kernel (e.g. using insmod or modprobe command).

Two symbols files are generated after a module compilation: <module_name>.ko and <module_name>.o. The .ko file
should be copied to the target and loaded using insmod/modprobe Linux command. The .o file it is the symbols file to be

loaded into the debugger.
The kernel module’s symbols file can be loaded in two ways:

a. Manually, using the ka-module-load command. The command should be executed after the module is loaded. The
typical use cases are:

» Configure debugger to suspend when the module insert is detected. When the debugger suspend, load the
corresponding module’s symbols file.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

130/162

NXP Semiconductors

Use Cases

» The module being inserted, suspend the target execution and load the corresponding symbols file.

b. Automatically (ka-module-config-auto-load=True.), using ka-module-config-map-loadWhen automatic loading
mode is enabled, the debugger detects when a module is inserted (insmod or modprobe) and automatically searches
the configured symbols file mapping and loads the symbols file. Before inserting the module, the user should add
the corresponding symbols file into the symbols file mapping using ka-module-config-map-load command. This
command can be run at any time (before and after module loading), but the symbols file is loaded only when the
debugger detects that the corresponding module has been inserted.

The user can unload the module’s symbol file if the symbols file is already loaded. When the module is removed (rmmod),
the debugger automatically unloads the module symbols file, independent of the value of ka-module-config-auto-load. This
is done because the module relocation addresses are not valid anymore and even on a new module insertion there will
be different relocation addresses.

2. Setting breakpoints in module

Breakpoints in module’s source code or at a specific module function can be set at any time, even the module symbols
file is not loaded into the debugger.If the module’s symbols file is loaded, the breakpoint is set/enabled and the module
relocation address is displayed in the breakpoint properties.

(gdb) break krng mod initBreakpoint 3
at Oxffffffbffc03a000: file crypto/krng.c, line 50. (gdb) info
breakpoints Num Type Disp Enb Address What3 breakpoint
keep y
Oxffffffbffc03a000 in krng mod init at crypto/krng.c:50

If the module’s symbols file is not loaded, the debugger could not resolve the corresponding breakpoint relocation address,
but will set the breakpoint as “pending”. When the module is inserted and the module’s symbols file is loaded, the debugger
will refresh the “pending” breakpoints resolving the relocation address.

The debugger behavior for “pending” breakpoint is configurable using “set breakpoint pending” command with the following
values:

« “auto”: this is the default value. When the breakpoint is set from command line interface, the debugger asks the user
to select one of the following values. From Eclipse/gdb-MlI, the “auto” value will make the breakpoint pending “on”

» “on” breakpoint “pending” is enabled

« “off’ breakpoint “pending” is disabled. With this setting, the breakpoint can not be set when the module’s symbols file
is not loaded

3. Debug Linux kernel module from the module_init function
There are several ways of doing kernel module debug from the module_init function:

a. Without suspend at module insertion
+ Add the symbols file to the configured map using the command ka-module-config-map-load.
» Enable module auto-load
+ Set a breakpoint to the module’s init function. The breakpoint will be “pending”, as the module is not loaded yet.
* Insert the module (insmod). The debugger will stop at the module’s init function

b. With suspend at module insertion
» Enable suspend at module insertion
* Insert the module. The debugger will suspend the target
» Load the symbols file using ka-module-load command

+ Set a breakpoint to the module’s init function. The breakpoint will be resolved as the module and the symbols
file are loaded

* Run. The debugger will stop at the module’s init function

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 131/162

NXP Semiconductors

Use Cases

4. Module insertion and removal detection

Module insertion and removal detection is implemented by setting a special breakpoint (named eventpoint) in Linux Kernel
code (not module code).

* When the module is prepared to be executed, but before running the module’s init function
» And when the module is prepared to be remove, after running the module’s delete function

These debugger specific breakpoints are not visible to the user. The command “ info breakpoints ” displays no information
about these breakpoints.

The eventpoints information can be displayed using the command “ maintenance info breakpoints ”:

(gdb)

maintenance info breakpoints Num Type Disp Enb Address What-1
breakpoint keep vy Oxffffffc0000ef8fc in

load module at kernel/module.c:3020 inf 1-2 breakpoint keep y Oxfffff£c0000eddd4

in
free module at kernel/module.c:1840 inf 1 (gdb)

The eventpoints have negative breakpoint numbers and the user can not modify the breakpoint properties (e.g. delete
breakpoint).

8.3.4.2 Module debugging from Eclipse GUI

Before launching the module debugging session, set the following options in the OS Awareness tab.
» Check Suspend target when module insert or removal is detected.
» Check Automatically load configured symbolic files at module init detection.

If the option, Automatically load configured symbolic files at module init detection is enabled, the debugger loads the user defined
list of module symbolics files, used to configure the gdb, in the Aufo-load module symbolics files listsection . The module symbolics
file name signifies the module name, for example the symbolics file rng.o will refer to module rng.

To load a different symbolics file, the Module Management dialog, which is available at runtime from OS resources View, should

be used.

1. Inthe OS resources View , click

The Module Management dialog appears with the currently available modules. The dialog will also show if the symbolics
files for a module is loaded.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide 132/162

NXP Semiconductors

Use Cases
85 0S Resources % Kernel modules 2| Y= 0O
Name - Address
mg Ouffffffbffc008000

¥ Module Management o 2=

Loaded modules operations

This dialog allows loading or unloading symbols files for modules

Module Symbols path fLoad symboalics... |
mg Mo symbolics file loaded e

Refresh modules
Finish |

2. Click Load symbolics to load a symbolics file for a module.

The Select module symbolics file dialog appears.

¥ Select module symbolics file = @!@

Choose module symbolics file
@ Add simbolics file for "mg” medule?

Di\work\DebugEnvs\ARMv8\rng.o

Werkspace... J [File Sy;tem...]

OK J Cancel]

3. The user can choose a different symbolics file for a module if before opening the Select module symbolics file dialog the
module was selected from the list. In this case, the dialog will ask to confirm the mapping between the current symbolics
file and the module.

4. Click OK.

8.4 UEFI debug

This topic describes the steps required to perform a UEFI debug using CodeWarrior Development Studio for QorlQ LS series -
ARM V8 ISA.

This topic lists the steps to:
» Build the UEFI sources and the auxiliary tools.

» Perform UEFI debug in CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA.

NOTE
For details on how to prepare the target, see Preparing Target.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 1337162

NXP Semiconductors

Use Cases

8.4.1 UEFI setup
This topic explains UEFI build.

For details on UEFI build, refer to the SDK documentation or the LSDK documentation as per the build system used. Yocto-based
SDK uses bitbake commands to build various packages, whereas Dash/LSDK is based on flex-builder and flex-installer toolset.

8.4.2 Create an ARMv8 project for UEFI debug

This topic explains steps to create an ARMv8 bare metal project for UEFI debug.

NOTE
If you are located on a different machine than where UEFI was built, you need to do one of the following:

» copy the UEFI build layout to a local path

* map the network address where the UEFI build layout is located to a local drive

To create an ARMv8 bare metal project for UEFI debug, perform these steps:
1. Open CodeWarrior for ARMv8.
2. Import a UEFI image as described in CodeWarrior Executable Importer wizard.

3. A Debug Configurations dialog is opened automatically, with the debug configuration for the newly created UEFI debug
project already selected.

4. Set up the target connection configuration, as explained in Configuring Target.
5. If you want the debugger to automatically load symbols at attach for EFl images loaded during the DXE phase:
a. Open the OS Awareness tab page

b. Select the Add symbols for EFl images loaded at runtime checkbox.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 134 /162

https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_SDK&lang=en-US
https://freescale.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_LSDK&lang=en-US#eventType=lcContent.loadHome

NXP Semiconductors

6. Click the Debug button to initiate the debug session. The debugger should show source information for the current PC:

() Use script: Workspa
[¥] Add symbels for EFl images loaded at runtime
€| il | 3
[4 | I 2
) . Using CodeWarrior Hardware Debugging Launcher - Select other... Revert Apply

Filter matched 7 of 7 items =

® [Debug J I Close
[

Use Cases

-
ﬁi Debug Configurations
g g

ty v

Create, manage, and run configurations

C
(i
x
1
+

+

| C/C++ Application

| C/C++ Attach to Application
| C/C++ Postmortem Debugger
| C/C++ Remote Application
| GDB Hardware Debugging
[Debug_LS1043ARDE_EFLfd
Launch Group

Mame: Debug L51043ARDB_EFLfd

Main ﬁﬁ Debugger (P Startup (E/ Source (DS Awareness

05 Awareness Enablement
Enable OS5 Awareness

) Linux Kernel

7 U-boot

@ UEFI

) Other
Settings for UEFI Debug Awareness
UEFI root layout: C:\ubh\Build

@ Use CodeWarrior script for UEFI Awareness

:ﬁiﬁ Other Symbols} i

C:h\Freescale\CWANET _v2015.12Beta_23oct) CW_ARMVEARMVEY gdb_extensions\kernel_awareness\sci

»

m

Figure 80. Add symbols for EFl images

« If the current PC is after UEFI entry point, but before DXE phase

is selected

« if the current PC is in a EFl image loaded at runtime, and the Add symbols for EFl images loaded at runtime checkbox

User's Guide

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

135/162

NXP Semiconductors

Use Cases

4 [c| Debug_L51043ARDE_EFLfd [GDB Hardware Debugging]
4 2 LS1043ARDB_EFLfd [1] [cores: 0]
4 f# Thread #1 1 [core: 0] (Suspended : Breakpoint)
CEntryPoint() at L51043aPrePiMor.c:37 (60400220
_ModuleEntryPoint() at 0:5604001dc

1| 1]

6 L51043aPrePi.. 52 [c] 0x0 | MorFlashLib.c e

UINTN UefiMemorysSize,
UINTN DramInitaddr

)

VOID (*PrePiStart)(VOID);

ArmDisableDataCache ();

/f Invalidate Data cache
//ArmInvalidateDataCache ();

// Invalidate instruction cache
ArmInvalidateInstructionCache ();

/{ Enable Instruction Caches aon all cores.

4

Figure 81. UEFI debug session

e |

// Data Cache enabled on Primary core when MMU is enabled.

A5 Debug &2 | |i={>|'5>q;;- = = 8

gl "Ci/Freescale/CWAMET v2015.12Beta_230ct/CW_ARME/ARMVE/ gdb/bin/aarchad

m

8.4.3 UEFI debug support
This section explains steps to perform UEFI debug in CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA.

8.4.3.1 Starting from the Reset Point
This topic explains steps how to start UEFI debug from the Reset Point (0x0).

1.

Go to the Startup tab.

. Select Reset and Delay (seconds) and enter 0 in the associated text field.

2
3.
4

Click the Debug button to initiate the debug session. The debugger should stop at address 0xO0.

but before starting the DXE phase.

8.4.3.2 Adding debug information for EFl images loaded at runtime

. The user can now set breakpoints at symbols in code either before relocation to DDRAM, or after relocation to DDRAM,

When execution is suspended during DXE or BDS phases and no symbols are displayed, the user can run the uefi-add-
symbols command at the GDB command line in order to add the symbol files for all the EFIl images loaded at the runtime.

The command will display Done after it finishes the execution successfully.

See section Load debug data for all loaded EFI images for details.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

136/162

NXP Semiconductors

Use Cases
@; Debug - Source not found. - CodeWarricr Development Studio for QordQ LS series - ARM VB ISA E@u
File Edit Mavigate Search Project Run Window Help
i i -0~ QP I ENIDRRPI LGP~y v v oD
Quick Access E” 0 C/C++
% Debug 22 & | =€) | i | @@ = = B8 w=Varia.. 2 % Break. Regis.. g Perip... Modul.. = O
4 [E] Debug_LS1043ARDE._EFIfd [GDB Hardware Debugging] EE| e Xk e
4 52 LS1043ARDE_EFLfd [1] [cores: 0] Nome Type Value
4 o Thread #1 1 [core: 0] (Suspended : Signal : SIGINT:Interrupt)
= Ouffb0f27c I
= 0xffae3728
g "Ci/Freescale/CWANET_v2015.12Beta_230ct/ CW_ARMVE/ARMMVE/gdb) « | T P
4 | I I #i 3
] Dxffb0f2Te 52 = B8 - Outline 2% Disassembly 52 [Target Connections = O
Mo source available for "0xffb0f27¢" Enter location here hd | &1 | it ~
— » opReoBRefTbef27c: | str x@, [x19] .
View Disassembly.. epoaReReffbaT288: b exffbef3ss L
PRBABERATTbBT284 bl Bxffbaf3be |= |
papapapaffbef23s: b Bxffbef27c B
eeepaeReffbef28c: bl exffbefice
PREABERATTbBT296 b Bxffb@f27c
papapapaffbef294: bl exffbefide
aaeaeERATTbeT298: b exffbef27c
PREABERATTbBT29c: bl Bxffbaf3ed
papapepetfbef2ad: b Bxffbef27c -
T <« L S | b
Bl Console 52 =) Tasks [2] Problems i3 Executables [J Memaory Sk BA :—i| CH | | ME-f-= 08
Debug_L51043ARDE_EFLfd [GDE Hardware Debugging] "C:/Freescale/CWANET_v2015.12Beta_23oct/CW_ARMVE/ARMvE/gdb/bin/aarchid-fsl-gdb.exe” 7.8.21.)
(gdb) hefi-add-symbals -
Done.
4 P

Figure 82. Add debug information for EFl images

The user needs to press the Refresh button in the Debug view in order for the call stack to be updated with the debug information,
and then double-click a stack frame to display the source file.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 137 /162

NXP Semiconductors

Use Cases

-
ﬁ Debug - Chub\ArmPkg\Library\ArmLib\&Arch64\AArchbdArchTimer.c - CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA E@ﬂ

File Edit Source Refactor MNavigate Search Project Run Window Help
= IR Q- AN B I E NSRS @O s R e e e
Quick Access | %"| BE C/C++
% Debug 52 & | =) | i= | @@ = O = Variaa, 8 Break... Regisa. mhar Peripu. Modul.,. = O
4 [t | Debug_LS1043ARDE_EFLfd [GDB Hardware Debugging] = = | 6@ o 3 e | s
a 12 L51043ARDB_EFLfd [1] [cores: 0] Al Name Type Value
4 ® Thread #1 1 [core: 0] (Suspended : Signal : SIGINT:Interrupt) 3
= ArmarchTimerReadReg() at Afrch64ArchTimer.c:43 0xffb0fl—
= ArmGenericTimerGetSystemCount() at ArmGenericTimerPF
= MicroSecondDelay() at ArmArchTimerLib.c:132 0xffb0ab80] m b
= DspiWaitReady() at DspiFlashOps.c:675 Ouffb0bddec "
= NeniCommonWritel) at NeniFlashOns. o737 OxffRORN i ¥
< [Tl | 3 1 3
Tffb0f2Te T AdrchidfrchTimer: 52 = B8 Cutline 220 Disassembly 22 JB8 Target Connections = B8
» *b((ulltmm *)DstBuf) = ArmReadCntPct (); . Enter location here ~lamERE] e
reats » opoEOREETbOf27c: | str x@, [x19] p
case CntkCtl: |:| eeppeepaftfbeft2ee: b axffbef3ss :
*((UINTN *)DstBuf) = ArmReadCntkCtl(); eopppeseffbef2sa: bl exffbef3be |:|
break: epeppapeffbef2as: b axffbafarc
’ eaaepepeffbaf2sc: bl axffbefice
epeppapeffbaf2oe: b axffbafarc
case CntpTval:
*((UINTN *)DstBuf) = ArmReadCntpTval (); paaepepeffbef2o4: bl exffbefide
break: apeppapeffbaf29s: b axffbafarc
’ eapepepeffbaf2oc: bl axffbefiea
case CntpCtl: % 99989999{‘{@3‘{239: .b_ Bxf‘fbafﬂic i
4 b < | m | +
Bl Console 52 Tasks Prahblerms Executahles Mernony | 5 BB E | #mE~-C-= 8
Debug_L51043ARDE_EFLfd [GDB Hardware Debugging] L51043ARDE_EFLfd
uefi-add-symbols -
4 k

[

Figure 83. Display source file

8.4.3.3 Viewing information about EFI image loaded at runtime

When execution is suspended during DXE or BDS phases, the user can view details about all the EFI images that have been

loaded at runtime in the OS Resources view.

See Show information for all loaded EFIl images for details.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

138/162

NXP Semiconductors

Use Cases
¥ Debug - Cub\ArmPkg\Library\ArmLib\AArch64\AArch64ArchTimer.c - CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA [= | E i_hj
File Edit Source Refactor MNavigate Search Project Run Window Help
=i IO - Qi BN RS @O P IR
Quick Access @fl fg c/ce+
#5 Debug 2 | = | i | @ T = B (®=Varia. 2 Break... Regis.. i1 Perip... Madul.. = O
a g E{:bug_LSlOABARDB_EFI.fd [GDE Hardware Debugging] - = | e £ | e T
4 f7 LS1043ARDE_EFLfd [1] [cores: 0] [Name e Value
a ® Thread #1 1 [core: 0] (Suspended : Signal : SIGINT:Interrupt)
= ArmArchTimerReadReg() at AArchB4ArchTimer.c:43 OuffbOf 4 m b
= ArmGenericTimerGetSystemCount() at ArmGenericTimerPF ™
4 | 1 | 2 4 b
Iaffbif27e e AdrchEddrchTirmere 51 = B8 Outline 2= Disassembly 53 |8 Target Connections = 8
» *((UINT64 *)DstBuf) = ArmReadCntPct (); - Enter location here e wER|re <
break;
rea (7 ® eeeoveseffbefazc: |[Istn x8, [x19] A
s aoaoaeaeffbef2se: b Bxffbaf3iss b
case CntkCtl: L4
*((UINTN *)DstBuf) = ArmReadCntkCtl(); poopoepaffbef284: bl exffbefabe
break: eaeapeaaffbef2ss: b axffbefaic
? eooeeeRafTbeT28c: bl exffbef3ce
co<e ErinTunl - ~ popppoooeffbef208: b exffbefarc -
« i) 1 m | v
El Console 2| Tasks (% Problers €3 Executables [] Memaory (85 05 Resources 53 Loaded EFl Images &= Y= O
Name . ImageBase BaseOfCode EntryPoint Symbols? |~
ArmCpuDxe 0xffb54000 0:ffb54800 Oxffb54848 yes =
ArmGicDxe Oxffacb000 Oxffac6260 Oxffach2al yes
ArmPlatformBds (ffacc000 Oxffacc260 Oxffacc2al yes
ArmTimerDxe Oxffacl000 Oxffacl260 Oxffacl2al yes
CapsuleRuntimeDxe (ffbbc000 Ouffbbc260 (hffbbc2al yes
ConPlatformDxe Oxffabal00 Oxffaba260 OxffabaZa8 yes
DevicePathDxe (hffaed000 Oxffaeb260 (xffaed2al yes
Dspi Oxffb0al00 Oxffb0az260 Oxffb0aZza8 yes
DxeCore Ouffbfb000 Oxffbfb260 Oxffbfb260 yes 7
e

Figure 84. View EFI image information

8.5 Import and configure AMP example projects
This section explains steps to import and configure an AMP configuration.

1. Import the AMP example project available at the following location in the product layout, to your workspace:

<CWInstallDir>\CW_ARMv8\ARMv8\CodeWarrior Examples\HelloWorld C_AMP Bare

2. Build the project.
3. Open the Debug Configurations dialog.

4. Select Helloworld aMP Core0 and select a Target Connection Configurator. For details on this, refer Target Connection
configurator overview and Configure the target configuration using Target Connection Configurator.

5. In the Debugger tab, select the core you want to debug from the Core drop-down list.

6. Repeat steps 3 and 4 for Helloworld aMP Corel and make sure that at you have selected another core than the one
selected at step 4.

7. Click Debug.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 139/162

NXP Semiconductors

Use Cases

8.6 Board Recovery

This topic describes the steps required to perform board recovery using CodeWarrior Development Studio for QorlQ LS series
— ARM V8 ISA, when the flash is blank or the image is corrupted.

This topic lists the steps to:
» Use the RCW override feature in the initialization file to connect to a board when RCW is missing or corrupted
» Use the Flash Programmer to load a valid RCW in the flash device

» Use the Flash Programmer to load the U-Boot in the flash device
8.6.1 RCW Override

When RCW is missing or corrupted and switches for setting the board in the hard-coded RCW mode are not available, you can
use the RCW override feature available with the CodeWarrior software for board recovery. For using this feature, perform these
steps:

1. Open CodeWarrior for ARMv8 and define a Target connection configuration for the board using a pre-defined

configuration.
[=)[e =]
v il R=Rs Quick Access | 5 | (@4
= B 5= Outline 5% [Task List (® Build Targets ® =08
Board - Device
[Ls10238_QDS 1510238
[Ls10268_QDS Ls10268
[4L510264, RDB 510264
[Ls10438_QDS Ls10438
[Ls10448 QDS Ls10448,
L — o
[Ls10468_QDS LS10468.
1510484, QDS L510484
[Ls10844_QDS 1510848
41510844 RDB 510844
[iLswan oS Lswgn ¥ Duplicate target canfiguration =
[Ls20448_QDS L2044
e
[Ls20488_QDS Ls20488.
141520842, QDS 1520848
e
1520884 QDS 520884
4 D@1204_ QDS L1208
[DQ160A_ QDS [REiTiry
[Lx21604 RDB Lx21604
5
Problems) Tasks B Console 53 [Properties g Progress X% LEEE®re-c-=0
<terminat ted> LS10884 RDB (1)_Connect [GDB Hardware Debugging]
Figure 85. Target Connections

2. Select the newly created configuration and click the Edit button.
3. In Target Configuration tab, select the probe type.

4. Click the Target Init File tab and search for use_sare_rcw. To connect to the board with a missing or corrupted RCW,
set the usg_sareE_Rcw variable to True.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 140/ 162

NXP Semiconductors

Use Cases

B8 L520884_RDE Board Recovery 23

Copyright (C) 2815, 2816, Freescale Semiconductor, Inc.
Copyright (C) 2016-2017 NXP.
&ll Rights Reserved

import gdb
import time
import ctypes

from cw.dbg import ta
from cu.dbg.rcw import SPRowvalidation

In order to connect to a board with a breken RCW, set the following wariable to True
Override RCW using & safe hard-coded RCW option
USE_SAFE_RCU = Tr'ueF

CORE_CONTEKT = ":ccs:LSZ@88A:CortexA 2™
SAP_CORE_CONTEXT = ":ccs:LS20B8A:SAPRE™

CPLD_ADDR = 2x20020223

Because the Q3PI controller cannot work at the same time with the

IFC controller, this variable will enable Q:PI boot and initialize
only the Q5PI and disable the IFC; wou must also make some changes
on the board - for this please see the section QSPI_BCOT from readms
file.

Q5PI_BOOT = @

Base address for DCFG and Reset registers;

they will be used to test if RCW and PEL phases were successful or not
DCFa_BASE_ADDRESS = @xlE2@22@

RESET_EASE_ADDRESS = @x1E&2208

DCSRBASE_ADDRESS = @x720022082

Utility functions

#This functien should be used instead of gdb.execute in all cases when the wvalue returned is used in the script
def gdb_exec(command, from_tty, to string):
"""Execute a gdb command, remove the echo if it appears

4

Target Configuration | Target Initialization File | README

Figure 86. Target Init File

| »

l.m

5. Click OK to save the configuration.

NOTE
Select one of the available hard-coded RCW options based on the board reset settings,(such as SYSCLK,
DDRCLK). For the hard-coded RCW options, see QorlQ LS1012A Reference Manual. In the Target Init File tab,
go to def Reset() procedure and set the values of the hard-coded RCW in gdb . execute ("monitor rcw

source set <hard-coded RCW>").

NOTE
In case the CodeWarrior software does not support the RCW override for a specific board or SoC, you can
configurie the board for the hard-coded boot source from the DIP switches.

8.6.2 Program valid RCW in flash device using Flash Programmer

To program valid RCW in the flash device using Flash Programmer:

1. Click the Flash Programmer button to connect to the board.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

141 /162

NXP Semiconductors

Use Cases

type filter text

l7 Project Explorer [El Target Connections 52

b |7

List of available target configurations, only one can be active at a certain moment

i

Board
L52088A_RDE Board Recovery

Device

]

= O

Deactivate

Add

iL520884

2 LA15T5_RDB
2 LS1012A FRDM
|5 L51012A, FRMAY
| Ls101zA, QDS
5 L510124, RDB
2 Ls1023A, QDS
|52 L510234 _RDB
| Ls10z2eh, QDS
| L510264,_RDB
2 Ls10434, QDS
5 L510434 _RDB
2 Ls10448, QDS
|2 L510444, RDB
2 Ls10464, QDS
|2 L510464,_RDB
2 Ls1048h, QDS
|2 L510484,_RDB
2 Ls1084h, QDS
|2 L510844,_RDB
| Ls10seh, QDS
|5 L510884,_RDB
2 Ls20448, QDS
[L520444 RDB
| Ls048h, QDS
| L520484,_RDB
2 Ls2084h, QDS
| L520848_RDB

|z Ls08eh, QDS
4 [m

L&1575

LE10124,
Ls10124,
LE10124,
Ls10124,
LE10234,
L510234,
LE10264,
Ls10264,
LE10434,
Ls10434,
LE10444,
Ls10444,
LE10464,
Ls10464,
LE10434,
Ls10484,
LE108 44,
L5108 44,
LE108ga,
Ls108ga,
LE20444,
Ls20444,
LE20484,
Ls20484,
LE20844,
L0844,
Ls20884

m

Configuration details:

Processor Mame: LE20884,
Probe; Codevifarrior TAP (LIZE)
Timeout:10
JTAG Speed: 16000

Figure 87. Flash Programmer button

Target Configuration Mame: L520884_RDE Board Recowvery

Edit
Duplicate
Rernowe
Export

Irmport

2. When the CodeWarrior software connects to the board, the CodeWarrior Flash Programmer window appears.

3. Select the appropriate flash device, the Program action, the RCW file to be programmed and the Offset.

4. Click Add Action and execute the flash programmer sequence.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

142/ 162

NXP Semiconductors
Use Cases

NOTE
When using the CMSIS-DAP probe, it is recommended to verify operation parameters and RCW correctness
before continuing. Failure to program a compatible RCW may result in board being unable to boot. Recovery is

not possible using CSMSIS-DAP and will require use of the external CodeWarrior TAP unit
=ae X

;.7 CodeWarrior Flash Programmer

Perform actions on the flash device

Devices: | 529GLO1GP (NOR) \dl [Connected to: LS2088A, cwtap: 10.171.77.9
Sequence
Action:| Program = | File: |CA\PBL 2000 800 2133 1600 0x2a_Ox41.bin - lBrDWSE]
Offset: | 0x0 []Unprotect [¥]Erase [_|Verify [|Protect

Add Action | | Modify Action

[O]= x % 2 i3

Action Description |

'@Program from 'PBL 2000 _800 2133 1600 _Ox2a_Ox41.bin’ at Ox0 with Erase

=R

Erased 213B in 4.14s
fl_write Ox0 "CA\PBL_2000_800_2133_1600_0x2a_0x41.bin"

Writing...
Wrote "C:/PBL_2000_800_2133_1600_0x2a_0x41.bin" in 4725

m

I

|

@

e

Figure 88. Program RCW file

5. Close the CodeWarrior Flash Programmer window and reset the board to load the new RCW.

6. For the next step, programming U-Boot, the changes done in step 4 from RCW Override need to be undone.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
143 /162

User's Guide

NXP Semiconductors

NOTE
If the flash device is QSPI, make sure the swapped image of RCW is used.

8.6.3 Program U-Boot in flash device using Flash Programmer
To program valid RCW in the flash device using Flash Programmer:

1. Click the Flash Programmer button to connect to the board.

Use Cases

4

li Project Explorer Bl Target Connections 52 ot ot £J= = 0

List of available target configurations, only one can be active at a certain moment

fype filter text
Board] Dewice i Add
LS2088A_RDB Board Recovery ILS2088A .

|2 LA15T5_RDE L1575 I
[L5012 FRDM LE10124,
|2 L51012 A FRMY L510124,

2 L0124 QDs LE10124,
|7 L51012A_RDE L510124,

|2 L510234_QDs LE10234,
|2 L51023A_RDE L510234,
|2 Ls10264,_QDs LE10264,

|7 L51026A_RDE L510264,

2 L510434_QDs L510434,

|7 L51043A_RDE L510434, E

|2 L510444 QDS LE10444,

|71 L510445_RDE L510444,

[Ls10464 QDS LE10464,

|7 L51046A_RDE L510464,

|2 Ls1048A_QDs L510484,

|7 L51048A_RDE L510484,

|2 L1084 QDS LE10844,

|7 L510844_RDE L510344,

|2 Ls1088A_QDs LE10884,

|7 L51088A_RDE L510884,

|2 1520444 QDS L520444,

|7 L520445 _RDE L520444,

|2 Ls2048A_QDs L520484,

|7 L52048A_RDE L520484,

|2 Ls20844 QDS LE20844,

|2 L520844_RDE L520844,

|2 Ls2088A_QDs L5208824, -

‘ [¢

Canfiguration details:

Target Canfiguration Marme: L520884_RDB Board Recowvery
Processor Mame: LS20884,
Probe: CodeMarriar TAP (USE)

Timeout:10

ITAG Speed:16000

Figure 89. Flash Programmer button

2. When the CodeWarrior software connects to the board, the CodeWarrior Flash Programmer window appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

144 /162

NXP Semiconductors
Use Cases

3. Select the appropriate flash device, the Program action, the U-Boot file to be programmed, and the Offset.

4. Click Add Action and execute the flash programmer sequence.

['l:l@

;;" CodeWarrior Flash Programmer

Perform actions on the flash device

Devices: |S2QGLDIGP (NOR) '|® Connected to: LS2088A, cwtap: 10.171.77.9
Sequence
- HBrowse]

File: |C:\u—boot—nor.bin

Action: [Program VI

[]Unprotect [¥]Erase [_|Verify [|Protect

‘ Maodify Action

Offset: 0x100000

E/
C.

[O]= x %
Action Description |

@Program from 'u-boot-nor.bin’ at 0x100000 with Erase

=R

Erased 606.65KEB in 6.30s

fl_write Ox100000 "Ch\u-boot-nor.bin”
Writing...

Wrote "C:/u-boot-nor.bin” in 35.01s

I

|

@

b

Figure 90. Program U-Boot file

5. Close the CodeWarrior Flash Programmer window and power-cycle the board.

6. Open a serial console to check the U-Boot prompt.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
145/ 162

User's Guide

NXP Semiconductors

Use Cases

8.7 Secure Debug

The QorlQ LS parts can be secured with keys for debugging. This means that users will need a secure debug key that matches
a challenge key associated with a given target in order to unlock it and perform regular debugging. Secure debug key can be
specified in the Target Connection view by enabling the Secure debug key field and providing the needed key, as shown below.

JE§ LS20884 RDE Conn 02 = O

Overview

Target Connection Configuration

Dewvice

) Simulator @ CodeMarrior TAP (D) Ernulator Codearrior TAP

CodeWfarrior TAP Connection

Ethernet* @ se*

Huostnarme/IP* 127.0.0.1 Serial number

Advanced

Timeout {seconds)* 10 ITAG Speed (kHz)™ 16000

Preserve Probe Configuration®]

Reset Options
[Reset delay (ms) | 2000

Secure Debug
Secure debug key: xaSa5aSaSfIfIfifL

Target Configuration | Target Initialization File | README

Figure 91.

If Secure debug key is not specified/enabled or an incorrect key is used, a "secure debug violation" error message appears when
a debug session is attempted and unlocking fails. A challenge key providing a hint with respect to what secure debug key is
required is mentioned in the error message, as shown below.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
146/ 162

User's Guide

NXP Semiconductors

Use Cases

3 Failed to launch debug session for myLS2088A_RDB! e

€ "‘:I Target reset failed.
-
Additional error details:
[CCS: secure debug violation. Please specify the unlock key matching the challenge key
0x1122334455667788.]

Diagnose ‘ | OK

Figure 92.

After several failed attempts to unlock the target with a incorrect secure debug key, target is locked until a reset occurs. Note that
debugger will attempt to perform the reset behind the scene but if the operation fails, a manual reset is required before being
able to unlock the target with the provided secure debug key.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 147 /162

NXP Semiconductors

Chapter 9
Troubleshooting

This chapter provide troubleshooting details.
This section lists:
» Diagnostic Information Export
» Prevent core from entering non-recoverable state due to unmapped memory access
» Board recovery in case of missing/corrupt RCW in IFC memory
» Logging
* Recording
» NXP Licensing

» Connection diagnostics

9.1 Diagnostic Information Export

The Diagnostic Information Wizard feature allows you to export error log information to NXP support group to diagnose the
issue you have encountered while working on the CodeWarrior product.

You can export diagnostic information in the following two ways:

» Whenever an error dialog invokes to inform some exception has occurred, the dialog displays an option to open the Export
wizard. You can then choose the files you want to send to NXP support.

* You can manually open the Export wizard to generate an archive of logs and files to report any issue that you have
encountered.
9.1.1 General settings for Diagnostic Information
You can specify general settings for diagnostic information using the Preferences dialog.
To set general settings for diagnostic information, follow the steps given below:
1. Choose Windows > Preferences from the IDE menu bar.

The Preferences dialog appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 148/ 162

NXP Semiconductors

Troubleshooting

]

4

fx Preferences

type filter text

General -
Appearance
Compare/Patch
Content Types
Diagnostic Information
Editors
Error Reporting
Globalization
Keys =
Network Connections
Notifications
Perspectives
Search

> Security
Startup and Shutdown
Tracing
UI Responsiveness Manitc
Web Browser
Workspace

» CfC++

Changelog

» Help
» Install/Update

Library Hover

Adurluon
11 13

Y
@ @

Diagnostic Information

Display in the diagnostic information wizard only details for the last 3 = days
[¥] Open file system browser after diagnostic information archive is generated

Privacy option

Low
- Files are sent as-is

[
Customize...

Contact Information (NXP will not share this with anyone)
Contact Email:

Contact Name:

[Resmre Defaultsl

Apply

oK [

Cancel

Figure 93. Preferences dialog - Diagnostic Information

2. Expand the General group and choose Diagnostic Information .

The Diagnostic Information page appears.

3. Enter the number of days for which you want to display the diagnostic information details in the export wizard.

4. Select the Privacy option by dragging the bar to low, medium and high.

Privacy level setting is used to filter the content of the logs.

* Low: The file is sent as is.

» Medium: The personal information is obfuscated. You can click on the customize option to view or modify filter.

» High: The personal information is removed. Filters are used in the rest of the content.

5. Click Customize to set privacy filters.

The Customize Filters dialog appears. You can add, remove, and modify filters.

6. Click

OK.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

149/ 162

NXP Semiconductors

Troubleshooting

¥ Customize Filters @
Press buttons to add/remove filters or click on text to activate in-place modification.
Filter Replacement Type Add
CAFreescale\CW4MNET v2016.01\CW_ARMvE @CWinstallPath@ String Remove
1\ I | 'I'\"

CA\Users\b17009 @UserPath@ String
C\Workspaces\Netapps17 @WorkspacePath@ String Restore Defaults
[0-9]+\.[0-9]+\.[0-9] +\.[D-9]+ @IP@ Regular Expression
< M b

0K l [Cancel

Figure 94. Diagnostic Information - Customize Filters

7. Enter Contact Name and Contact Email in the contact information textbox. This information is optional though NXP will
not share this information with anyone.

8. Click Restore Defaults to apply default factory settings.
9. Click OK.

9.1.2 Export Diagnostic Information

You can export diagnostic information into an archive file in workspace.

Follow the steps given below to export diagnostic information into an archive.
1. Open Diagnostic Information wizard, either by:

+ Selecting Help > Report CodeWarrior Bug, or

@ Welcome
() Help Contents

% Search
Dynamic Help

Key Assist.. Ctrle ShiftsL
Tips and Tricks...
Report Bug or Enhancement...

Cheat Sheets...

8

Check for Updates
Tnstall New Software.
Installation Details

EdS

Eclipse Marketplace...

Documentation

Report CodeWarrior Bug...

¥5 About CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA

» Through an error reporting dialog such as below. Click the Diagnostic Information link in the error dialog.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 150/162

NXP Semiconductors

Troubleshooting

' 15 problem Occurred =N |

@ Launching Debug_u-boot’ has encountered a problem. Open Diagnostic Information page and send

Program file does not exist report to NXP for diagnostics purposes.

oK [Details »>

The Diagnostic Information Wizard appears.

Export Details

Information that will be exported into the archive file. At least one file has to be selected for export.

Source Description Location Date/Time Select All
4 || General Informat Basic information o... Dectactill
V| i Configuration Details of the Code.. 04.12.2017 16:35
V| I Workspace Lo Log file stored in th., C\Users\b36300\workspac... 04.12.2017 16:33
Archive File: C\Users\b363000,201704121635_Diagnosticinfo.zip Browse...

Exported archive can be posted on Code'W it Community Forums from a registered email account. To register an email address, please visit NXP reg

Privacy option

Low
- Files are sent as-is

=

| Customize..| | Preview

(2 Back MNext > | Finis i Cancei

85 Diagnostic Information Wizard [[]

lion website.

Figure 95. Export - Diagnostic Information Wizard

2. Select the checkbox under the Source column to select the information that will be exported into the archive file.

NOTE
You must select at least one file for export.

w

. Click Browse to select a different archive file location.

N

. Select the Privacy option or click Customize to set your privacy level. The Customize Filters dialog appears.

NOTE
You can open the Customize Filters dialog through Customize button in the Diagnostic Information Export Wizard
(General settings for Diagnostic Information)or in the Preferences dialog (General settings for Diagnostic
Information).

(8}

. Click Preview to view the text that will be sent to NXP from the wizard.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide 151/162

NXP Semiconductors

The Preview details dialog appears.

Troubleshooting

¥ Preview details

Select an entry from the tree to view details

4 General Information
i Configuration Details
i Waorkspace Log

Original File Location: no physical file created yet

*** Date: Monday, September 22, 2014 at 12:47:10 PM India Standard Time -
*** Platform Details:

*** System properties:

applicatiocnXMI=crg.eclipse.ui.workbench/LegacyIDE.edxmi
awt.toolkit=sun.awt.windows.WToolkit

eclipse.application=crg.eclipse.ui.ide.workbench

eclipse.buildld=4.4.0120140606-1215

eclipse.commands=-os

win32

-Ws

win32

-arch

86

-showsplash

C:\Freescale\CW_ARME_v11.0.8\eclipse\\plugins\com freescale.coreide.nll_1.1.0.20140904130
-launcher

C:\Freescale\CW_ARMvE _v11.0.8\eclipse\eclipse.exe

-name

Eclipse

--launcher.library
C\Freescale\CW_ARME_v11.0.8\eclipse\\plugins/org.eclipse.equinoxlauncherwin32.win32.xB
-startup

C\Freescale\ CW_ARMwE_v11.0.8\eclipse\\plugins/org.eclipse.equinox.launcher_1.3.0.v2014041!
--launcher.appendVrmargs

-product

com.freescale.coreide.product

-vm

C\Freescale\ CW_ARMvE_v11.0.8\eclipse\jre\bin'client\jvm.dll
eclipse.home.location=file:/C:/Freescale/CW_ARMvE_v11.0.8/eclipse/
eclipse.launcher=C\Freescale\CW_ARMvE_v11.0.8\eclipseheclipse.exe
eclipse.launcher.name=Eclipse

eclipse.p2.data.area= @config.dir/../p2/

eclipse.p2.profile=epp.package.cpp

eclipse.pluginCustomization=cwarm.properties
eclipse.product=com.freescale.core.ide.product

eclipse.startTime=1411363194147

eclipse.stateSaveDelaylnterval=30000
eclipse.wvm=C\Freescale\CW_ARMvE_v11.0.8\eclipseljre\bin’clientjvrn.dll =
4 [m 3

Figure 96. Preview details dialog

You can also check if more filters are needed to protect any sensitive information from leakage.

6. Click OK.

7. Click Next in the Diagnostic Information Export Wizard.

The Reproducible Details page appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

152/ 162

NXP Semiconductors

Troubleshooting

¥ Diagnostic Information Wizard = I@

Reproducible Details

Detailed steps that can be used to recreate the issue being reported.

Target Board (required):

Details to recreate the issue (required)

4 ¥

Add additional files

Add

Remaove

Figure 97. Reproducible Details page

8. Enter the reproducible steps and any other relevant information in the Details to recreate the issue textbox.
9. Click Add to add additional files to the archive file for diagnosis.
10. Click Finish.

9.2 Connection diagnostics
This topic explains how to use connection diagnostic and define custom diagnostic tests.
» Using connection diagnostics

» User-defined connection diagnostics tests

9.2.1 Using connection diagnostics
This feature is used to diagnose the selected connection. It can be launched in two ways:

« From the Target Connections view, using the Diagnose Connection button

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 153/162

NXP Semiconductors

Troubleshooting

7 Project Explorer | B8 Target Connections &3 Pk },? e

List of awailable target configurations, only one can be active at a certain moment

type filker text
Board : Device Conne *
L52088A RDE Conn L52088A 1270
ELAISTS_RDB LA15TS
[1510124 FRDM Ls10128
|52 L510124 FRWY L510124,
|5 L5101e2a, QDS Ls1012A,
|52 L510124 _RDB L510124,
|5 L51023a_QDs L510234,
|52 L510234_RDB L510234,
|5 Ls10zes,_QDs Ls10264,
|52 510264 _RDB L510264,
|5 L510438 QDS LS10424,
|52 L510434_RDB L510434, E
|5 L510448, 003 L510442,
|52 L510444_RDB L510444,
|5 L510408 QDS LS10462,
|52 L510464_RDB L510464,
|5 L510488 QDS L510484,
|2 L510484_RDB L510484,
|5 L510848,_0Ds LS10244,
|52 L510844_RDB L510844,
|5 L510gaa,_QDs Ls1naea,
|52 L510884_RDB L510884,
| L520448,_0Ds LS20444, i
|52 L520444_RDB L520444,
|5 Ls204aa QDS LS20484,
|2 L520484_RDB L520484,
| L52084a, QDS LS20344,
|52 L520844_RDB L520844,
|5 Ls2ngaa_QDs Ls20asa, -
1| 1l | 3

Configuration details:

Target Configuration Mame: L520884,_RDE Cann
Processor Mame: L520884,
Probe: CodeMWarrior TAP

IP127.0.0.1

Tirmeout: 10

ITAG Speed: 16000

Figure 98. Diagnose connection from Target Connections view

« Directly from the error message shown by the CodeWarrior software when the connection to the target fails, using the
Diagnose button.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 154 /162

NXP Semiconductors

Troubleshooting

ﬁi Failed to launch debug session for L5S1088A_RDE_Conn! @

Target connection failed, Please re-check the settings.

Processor: L5S1088A

Probe: CodeWarnior TAP (1.2.3.4)
fr

Additional error details:

[CC% server network timeout]

Diagnose] | oK

b,

Figure 99. Diagnose connection from the error message

When a connection is diagnosed, the Connection Diagnostics view appears showing all the tests that are executed.

If the diagnostic is successful, all the tests in the list are preceded with a green icon.

E Connection Diagnostics &4 b4 = 8
g
Test Name Info More info
¢ Connect to Debug Server Version: 1.0.2170711-261c7e6 (buitt on Jul 11 2017 20:52:5) Version: 10.2.170711-261c7e5 (built on Jul 11 2017 20:52:39)
ti] Connect (telnet) to TAP probe CodeWarrior TAP (probe tip: Cortex-10)

£ Connect to CodeWarrior Connection Server
£ Start built-in low-level JTAG tests

£ Attach to CodeWarrior Connection Server CCS Release Build 461.0.0.170720-p0
£ Connect to probe

£/ Power at probe tip

/IR Scan IR length: 4

£ Bypass Scan Bypass length: 35

£ TAP state moves

£ Bit error stress patterns Testing all zeros for 500 ms
££]Scan IDCODE Detected IDCODE

. Test name Use INFO to display information
] End built-in low-level JTAG tests

£ Connect to target

£/ Start post-config_chain user defined low-level JTAG tests

i Test name Use INFO to display information

£ End post-config_chain user defined low-level JTAG tests
o Run target initialization script

{| Test OCRAM memory access Successfully tested address (18000000
y y
£ Test DDR memory access Successfully tested address (80000000
£ Disconnect from target

Figure 100. Successful connection

If one of the test fails, its entry appears with a red icon, as shown in the fiure below. When you select the entry, the right pane
displays additional information and also some steps the you can try to address the problem.

L]_ Connection Diagnostics 23 % Qa = g
Test Name Info Mn.mre info
£-]Connect to Debug Server Version: 1.0,2170711-261c7¢6 (built on Jul 11 2017 20:52:59) Failed to telnet to probe cwtap:1.2.34
£/ Connect (telnet) to TAP probe Failed to telnet to probe cwtap:1.2.3.4 Help

Make sure the probe address provided in Target Connection Configuration is correct and accessible.

Figure 101. Unsuccessful connection

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 155/162

NXP Semiconductors

Troubleshooting

9.2.2 User-defined connection diagnostics tests
Connection Diagnostics allows the user to define custom tests.

Existing tests are defined in {cw Folder}/CW ARMv8/ARMv8/gdb extensions/diagnostics/diag.py. To add a new test, user
has to add a new class derived from Test in this file. As example template of such a test is shown below:

class CustomTests (Test) :

name = "Test name"
optional = False

def _ init (self):
Test. dinit (self, CustomTests.name)

def body(self):
self.fail msg = "Message displayed in case test failed"
self.help msg = """
Displayed only in case the test failed. Meant to inform the user about the steps necessary to address
the issue.
It can be multiline.

[IRIRT]

try:

INFO ("Information message")
except CWException as e:

raise TestError ()

After defining the test, you need to add the test to the list of tests to be executed. The lists are suites_hw for hardware tests and
they can be found in the same diag.py file. The position of the test in the list of tests is important because the test will execute
using the connection state from the previous test.

After the tests are added and executed, the Connections Diagnostics window shows the new tests in the list.

B Connection Diagnostics &7 XQ =0
Test Name Info e mE
=] Connect to Debug Server Version: 1.0,2170711-261c7¢6 (built on Jul 11 2017 20:52:59) InffemwET e AEERE
| Connect (telnet) to TAP probe CodeWarrior TAP (probe tip: Cortex-10)

I | Test name Information message I

T2 Start built-in low-level JTAG tests
E| Attach to CodeWarrior Connection Server CC5 Release Build 461.0.0.170720-p0
| Connect to probe Please wait: sending code to TAP...
2| Power at probe tip
£E/IR Scan IR length: 4
5| Bypass Scan Bypass length: 35
2| TAP state moves
Ef:'jBit error stress patterns Testing all zeros for 500 ms
=/Scan IDCODE Detected IDCODE
2| End built-in low-level JTAG tests
=/ Connect to target
2| Start post-config_chain user defined low-level JT, Skipped - no user-defined tests found
£/ Run target initialization script
| Test OCRAM memery access Successfully tested address 0:18000000
=/ Test DDR memory access Successfully tested address 0x80000000
2| Disconnect from target

Figure 102. User-defined connection diagnostic

9.3 Prevent core from entering non-recoverable state due to unmapped memory access
The Arm core can enter in a non-recoverable state when a speculative access to an unmapped memory happens.

Also this can happen for accesses to memory regions that are marked as valid in the MMU, but the underlying memory interface
is either misconfigured or absent. For example, access to a memory range dedicated to PCle without a proper initialization for

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 156 /162

NXP Semiconductors

Troubleshooting

the PCle controller or access to memory holes as defined in the SoC memory map can cause core to enter in a non-recoverable
state.

If the debugger detects a failed attempt to stop the core in such situation, it samples the value of the External PC Debug register
(EDPCSR) in order to provide the program location where the program has hanged. An error message is displayed informing the
user that the stop attempt has failed and listing the collected PC sample value.

Although the debug session is not reliable from this point onwards and must be terminated, the PC value allows the user to identify
and fix the application problem that has caused the core to enter into the non-recoverable state. The user needs to make sure
that the MMU is configured from the application in such a way that all valid translations point to the actual memory.

9.4 Board recovery in case of missing/corrupt RCW in IFC memory
Describes the process for recovering board when SoC fails to complete the reset sequence.

The principal mechanism for configuring the SoC during reset is the Reset Configuration Word (RCW). The RCW data can be
pulled in from an external memory interface, such as flash memory, SD/MMC, 12C or from a set of hard-coded RCW options
defined by the SoC. The most common setup for a board is using flash memory as the source for RCW data. If the flash memory
is initially empty, or if the sector containing the RCW data is erased or corrupted due to flash programming operations, the SoC
won’t be able to complete the reset sequence.

The following subsections describe the procedure for recovering a board in this situation, depending on the available configuration
options.

9.4.1 Board recovery using a hard-coded RCW option

This is the recommended procedure for recovery, if the board offers the possibility to select the RCW source.

All NXP evaluation boards include the necessary DIP switches that allow RCW source selection.

A hard-coded RCW option allows the reset sequence to bypass its RCW loading phase (the loading of RCW data from a non-
volatile memory device). Instead the device is automatically configured according to the specific RCW field encodings pre-
assigned for the given hard-coded RCW option.

1. Select one of the available hard-coded RCW options based on the rest of the board configuration (like SYSCLK,
DDRCLK) such that the multipliers used by the hard-coded RCW option result in a valid PLL configuration.

NOTE
See the SoC Reference Manual for the list of available hard-coded RCW options.

2. Change the onboard DIP switches to select the above hard-coded RCW option as RCW_SRC.

NOTE
See the board User’s Guide for the switch configuration information.

3. Use CodeWarrior Flash Programmer to burn a valid RCW configuration in the flash memory.

NOTE
See Flash Programmer for Flash Programming instructions.

4. Revert the on board DIP switches to select the flash rcw_src again and reset the board.

9.4.2 Board recovery by overriding RCW through JTAG

It may not be possible to use the above recommended procedure under all circumstances, for example in cases when a
custom board design does not include switches to select rcw_src, or when physical access to the board is not possible.

In this situation, an alternative procedure involving overriding RCW though JTAG can be used.

1. Select one of the available hard-coded RCW options based on the rest of the board configuration (like SYSCLK,
DDRCLK) such that the multipliers used by the hard-coded RCW option result in a valid PLL configuration

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 157 /162

NXP Semiconductors

Troubleshooting

NOTE
See the SoC Reference Manual for the list of available hard-coded RCW options.
2. Edit the target initialization script corresponding to the board, for example:
* {CW Install Dir}\CW_ARMv8\Config\boards\<board name> init.gdb
» Specify that a safe RCW should be used by changing usesafercw from False to True
* useSafeRCW = True

+ Also, in the Reset function make sure the desired RCW source is set (according to step 1).

NOTE
The initialization script already contains the value for the hard-coded RCW option that is appropriate for the default
board configuration, but it may need to be changed if the board has been configured for different SYSCLK,
DDRCLK frequencies.

3. Use CodeWarrior Flash Programmer to burn a valid RCW configuration in the flash memory.

NOTE
See Flash Programmer for Flash Programming instructions.

4. Revert the changes performed in the target initialization script in Step 2 and reset the board.

9.5 Logging
GDB logs are used to save output of the GDB commands to a file. There are two types of logs: GDB and GDB RSP server.
» GDB logs - Configured with standard GDB log control commands.
For details about GDB log control commands, refer https://sourceware.org/gdb/onlinedocs/gdb/Logging-Output.html

» GDB RSP server log - Configured with GDB monitor commands. For details about GDB monitor commands, run the
command monitor help log.

The log messages from the GDB RSP server are grouped in different categories, and each category can be associated with
one or more log destinations, such as console, file, and socket.

9.6 Recording
GDB provides the possibility to record all commands typed during a command-line debug session and save these to a file.
To enable this feature from command line GDB:

* (gdb) set history size unlimited — command history size defaults to 256; “unlimited” recommended

* (gdb) set history filename <filename> - the file where to save the recording (default: “.gdb_history”, located in the GDB
executable home directory)

» (gdb) set history save on - all following commands will be recorded;

NOTE
The recorded command history is written to a file only upon exiting GDB.

After ending a debug session and exiting GDB, the “.gdb_history” file can be inspected and eventually edited. Optionally,
when restarting the debug session, all commands from the recording may be replayed as a gdb script:

(gdb) source .gdb history

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 158 /162

https://sourceware.org/gdb/onlinedocs/gdb/Logging-Output.html

NXP Semiconductors

9.7 NXP Licensing

The NXP Eclipse licensing feature lets the user see and manage the available licenses for the installed NXP products.

The NXP Eclipse Licensing feature appears to the user in two different ways:

Troubleshooting

* A warning dialog box appears after each time the CodeWarrior starts if a licensed product is going to expire soon, hasn’t

been activated yet, or is disabled because of license expiration.

= Licenzed Products

[V] Ablways show this dialog

-

=]

Some product licenses had errors. Do you want to see the list of installed product
licenses?

v I

Mo

Figure 103. NXP Licensing warning dialog

» The NXP Licenses window displays all installed licensed products and their status (“licensed”, “expiring in X days”,

“expired”). It can be opened from Help > NXP Licenses.

%5 product Licenses
NXP Licenses

Product

Trace Commander
HierarchicalProfiler
CallTreeProfiler

Traceviewer

Results

Trace Commander
DebugPrint
CodeWarrior Debugger

CodeWarrior Software Timeline Vie...

CodeWarrior Software Code Covera...

View and manage licenses for the installed products.

Version
3.0.0171003-201703101431
3.00.171003-201703101423
3.0.0.171003-201703101423
3.0.0.171003-201703101422
3.0.0.171003-201703101420
3.00.171003-201703101423
3.0.0.171003-201703101421
3.0.0.171003-201703101431
3.0.0.171003-201703101424
12.0.0.201704120645

Details

L e b o et}

Status

License expiring in 368 day(s).
License expiring in 368 day(s).
License expiring in 368 day(s).
License expiring in 368 day(s).
License expiring in 368 day(s).
License expiring in 368 day(s).
License expiring in 368 day(s).
License expiring in 368 day(s).
License expiring in 368 day(s).
License expiring in 368 day(s).

Close

Figure 104. Product Licenses dialog

There is also a NXP Licenses preference panel which allows the user to customize specific aspects of the license plugins:

» whether the license expiration warning window should be displayed or not

« after how much delay, the expiration warning window should appear

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

User's Guide

1597162

NXP Semiconductors

Troubleshooting

E3 preferences o [& (e

type filter text NXP Licenses -1, v w
General
C/C++
Changelog
Help @ Use custom wamning delay: 5 days
Install/Update
Library Hover
Mylyn
NXP Licenses
Oomph

+ Remote Development
+ Remote Systems
RPM
Run/Debug
+ Software Analysis
» Target Connection Configuratio
» Team
» Tracing

|¥ Display license expiration warning window
Use default license warning delay

[Resmre Defaults‘ Apply

@@ I OK | Cancel |

Figure 105. NXP Licensing preference page

NOTE
The NXP License plugin is not responsible for enabling or disabling a feature based on its license status, but only
to monitor that status, and display it to the user. The plugin itself is responsible to enable or disable itself.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020
User's Guide 160/ 162

Index

B

Bareboard Build Properties 20
Build 20
Build Properties 20

D

Diagnostic Information Wizard 148

E

Export Diagnostic Information 150

G

General settings for Diagnostic Information 148

I
1/0O support 91

L
Logs 158

F)
Properties 20

S
S08 20

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Targeting Manual, Rev. 11.5.0, 06/2020

Index

NXP Semiconductors

161

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, Freescale, the Freescale logo, and QorlQ are trademarks of are trademarks
of NXP B.V. All other product or service names are the property of their respective owners. Arm,
Cortex are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US
and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 06/2020
Document identifier: CWARMv8TM

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Release notes
	1.2 About this Manual
	1.3 Accompanying Documentation

	2 Working with Projects
	2.1 ARMv8 New Project wizard
	2.2 CodeWarrior Executable Importer wizard
	2.3 Creating projects
	2.3.1 Creating CodeWarrior Bareboard project
	2.3.2 Creating CodeWarrior Linux Application project

	2.4 Preprocess/Disassemble files
	2.5 Debugging projects
	2.5.1 Debugging Bareboard project
	2.5.2 Debugging Linux Application project

	3 ARMv8 Build Properties
	3.1 Changing Build Properties
	3.2 ARMv8 build settings
	3.2.1 Target Processor
	3.2.2 Optimization
	3.2.3 Warnings
	3.2.4 Debugging
	3.2.5 Cross ARM GNU Assembler
	3.2.5.1 Preprocessor
	3.2.5.2 Includes
	3.2.5.3 Warnings
	3.2.5.4 Miscellaneous

	3.2.6 Cross ARM C Compiler
	3.2.6.1 Preprocessor
	3.2.6.2 Includes
	3.2.6.3 Optimization
	3.2.6.4 Warnings
	3.2.6.5 Miscellaneous

	3.2.7 Cross ARM C Linker
	3.2.7.1 General
	3.2.7.2 Libraries
	3.2.7.3 Miscellaneous

	3.2.8 Cross ARM GNU Create Flash Image
	3.2.8.1 General

	3.2.9 Cross ARM GNU Create Listing
	3.2.9.1 General

	3.2.10 Cross ARM GNU Print Size
	3.2.10.1 General

	4 Preparing Target
	4.1 Preparing hardware targets

	5 Configuring Target
	5.1 Target Connection configurator overview
	5.2 Configuration types
	5.3 Operations with configurations
	5.4 Configure the target configuration using Target Connection Configurator
	5.5 Target Connection editor
	5.6 Generating GDB script from a configuration
	5.7 Debugger server connection
	5.8 Logging Configuration

	6 FSL Debugger References
	6.1 Customizing debug configuration
	6.1.1 Main
	6.1.2 Debugger
	6.1.3 Startup
	6.1.4 Source
	6.1.5 OS Awareness
	6.1.6 Other Symbols
	6.1.7 Common
	6.1.8 Trace and Profile

	6.2 Registers features
	6.2.1 Peripherals view
	6.2.2 GDB custom register commands
	6.2.2.1 reg_write command
	6.2.2.2 reg_read command
	6.2.2.3 reg_print command
	6.2.2.4 reg_export command

	6.3 OS awareness
	6.3.1 Linux kernel awareness
	6.3.1.1 List Linux kernel information
	6.3.1.1.1 GDB commands
	6.3.1.1.2 Eclipse view

	6.3.1.2 Linux kernel debug
	6.3.1.2.1 GDB commands

	6.3.1.3 Linux kernel image version verification

	6.3.2 U-Boot awareness
	6.3.2.1 List U-Boot information
	6.3.2.2 U-Boot image version verification

	6.3.3 UEFI awareness
	6.3.3.1 Load debug data for all loaded EFI images
	6.3.3.1.1 GDB command

	6.3.3.2 Show information for all loaded EFI images
	6.3.3.2.1 GDB command
	6.3.3.2.2 Eclipse view

	6.4 Launch a hardware GDB debug session where no configuration is available
	6.4.1 Create a debug configuration

	6.5 Memory tools GDB extensions
	6.5.1 mem_spaces command
	6.5.2 mem_read command
	6.5.3 mem_write command
	6.5.4 mem_fill command
	6.5.5 mem_compare command
	6.5.6 mmu command

	6.6 Connection tools GDB extensions
	6.6.1 cw-launch command
	6.6.2 cw-diag command

	6.7 Miscellaneous tools GDB extensions
	6.7.1 template command
	6.7.2 spd command
	6.7.3 rcw command
	6.7.4 discover command
	6.7.5 log command

	6.8 Monitor commands
	6.9 I/O support

	7 Flash Programmer
	7.1 Configuring flash programmer
	7.2 Starting flash programmer
	7.3 Using flash programmer
	7.3.1 Erase flash memory
	7.3.2 Write binary file in flash memory
	7.3.3 Dump flash memory content
	7.3.4 Protect memory content
	7.3.5 Unprotect memory content
	7.3.6 List supported flash devices
	7.3.7 Associate flash device with board
	7.3.8 Read manufacturer and device ID
	7.3.9 Verify flash memory content

	7.4 Switch current device used for flash programming
	7.5 SD/eMMC flash programmer
	7.6 Viewing details about flash device
	7.7 Using flash programmer from eclipse IDE
	7.7.1 How to open CodeWarrior flash Programmer window
	7.7.2 Device selection and information
	7.7.3 Manage a flash programmer sequence
	7.7.4 Launch a flash programmer command sequence
	7.7.5 Import export sequence

	8 Use Cases
	8.1 U-Boot debug
	8.1.1 U-Boot setup
	8.1.2 Create an ARMv8 project for U-Boot debug
	8.1.3 U-Boot debug support
	8.1.3.1 Setting the source path mapping
	8.1.3.2 Debug capabilities

	8.2 Linux application debug
	8.2.1 Linux setup
	8.2.2 Debugging simple Linux application
	8.2.2.1 Creating simple Linux application project
	8.2.2.2 Updating remote connection
	8.2.2.3 Using sysroot
	8.2.2.4 Debugging Linux application project

	8.2.3 Debugging a Linux application using a shared library
	8.2.3.1 Creating Linux shared library project
	8.2.3.2 Updating remote connection
	8.2.3.3 Updating launch configuration for Linux application using shared library
	8.2.3.4 Debugging Linux shared library project

	8.2.4 Attaching to a Linux application
	8.2.5 Debugging multi-process remote applications

	8.3 Linux kernel debug
	8.3.1 Linux Kernel setup
	8.3.2 Create an ARMv8 project for Linux kernel debug
	8.3.3 Linux Kernel debug support
	8.3.3.1 Setting the source path mapping
	8.3.3.2 Debug and Kernel Awareness capabilities

	8.3.4 Module debugging
	8.3.4.1 Module debugging use cases
	8.3.4.2 Module debugging from Eclipse GUI

	8.4 UEFI debug
	8.4.1 UEFI setup
	8.4.2 Create an ARMv8 project for UEFI debug
	8.4.3 UEFI debug support
	8.4.3.1 Starting from the Reset Point
	8.4.3.2 Adding debug information for EFI images loaded at runtime
	8.4.3.3 Viewing information about EFI image loaded at runtime

	8.5 Import and configure AMP example projects
	8.6 Board Recovery
	8.6.1 RCW Override
	8.6.2 Program valid RCW in flash device using Flash Programmer
	8.6.3 Program U-Boot in flash device using Flash Programmer

	8.7 Secure Debug

	9 Troubleshooting
	9.1 Diagnostic Information Export
	9.1.1 General settings for Diagnostic Information
	9.1.2 Export Diagnostic Information

	9.2 Connection diagnostics
	9.2.1 Using connection diagnostics
	9.2.2 User-defined connection diagnostics tests

	9.3 Prevent core from entering non-recoverable state due to unmapped memory access
	9.4 Board recovery in case of missing/corrupt RCW in IFC memory
	9.4.1 Board recovery using a hard-coded RCW option
	9.4.2 Board recovery by overriding RCW through JTAG

	9.5 Logging
	9.6 Recording
	9.7 NXP Licensing

	Index

