NXP Semiconductors
Reference Manual

Document Number: CWPADBGUG
10.5.1, 01/2016

CodeWarrior Development Studio for Power
Architecture Processors Targeting Manual

h
P

Contents

Contents

(@7 F=T o7 (=1 ol I 1 1 7o T [F o2 1 o o S 11
1.1 REIEASE NOLES.... ettt ettt e e et e e e s sttt e e s et b e e e e s nneeee e s 11
1.2 Contents Of thiS MaANUAL..........ooiiii e 11
1.3 Accompanying doCUMENTALION.coiiiiiii e e 12
1.4 PowerPC Embedded Application Binary Interface...........cccoooiiiiiiii e 12
1.5 CodeWarrior Development Studio tOOIS.ooo i 13

(R Tt I T 1o T 1 | USSR 14
1.5.2 C/CH+ COMPIIET ...ttt e e e e e e e e e et e e e e e e e e e e e e e e nnnnanneeeeaaaaeens 14
1.5.3 ASSEIMDIET. ...ttt e e 14
ST I] (= PP PP PP PPRO 15
(SIS T B LY oTU o o T PP PPP TP PPRP 15
1.5.6 Main standard IDraries.uuiiii i 15
1.5.7 CodeWarrior Profiling and Analysis t00IS...........cuuiiiiiiiiiii e 16
1.6 COAEWAITION IDE.......co ittt e ettt e e et e e e e bt e e e e e nbbe e e e e anreeas 16
1.6.1 ProJECE flES.....eeeeeiie e 17
(Y A O oo (=R =To [1] o TP PPPPPPPPPPN 17
(RG] 1 o1 o] 1o T PRSP 17
IR I 4 T OSSR 17
(L RS R BT=Y o TU e o1 o TP UP PR 17
Chapter 2 Working with Projects..........cccooo e 19
2.1 CodeWarrior Bareboard ProjeCt WiIzZard..............eoiiiiiiiiiie et e et e e e sneeee e 19
2.1.1 Create a CodeWarrior Bareboard Project Page............ccoccuvviieiiiiiiiee i 20
2.1.2 PrOCESSOI PAQE.... oottt ettt et e e e e e e e e e e eeeaaaaeeeaaan 21
2.1.3 Debug Target Settings Page........coccuuuiiiiiiiiiee et 22
2.1.4 BUild SEttNGS PAgE.......eeiiiiiiiiiiiie ittt e e e e e e e e e e e nnnees 24
2.1.5 ConfIgUuratioNS Page.......cciuuiiiieiiiiiie ettt e et e e e st e e s snaaee e e s ennnaeee s 26
2.1.6 Trace Configuration Page...........oocuuiiiiiiiiiiiee et a e s 28
2.2 CodeWarrior LiNUX ProjeCt WIZard.............ccuuiiiiiiiiiiie ettt eee et e e e aee e e st e e e s eneaeeas 29
2.2.1 Create a CodeWarrior Linux Project Page.........cc..uviiiiiiiie it 29
2.2.2 PrOCESSOI PAQE.....coiiiiiiiiiii ittt oottt e an 31
2.2.3 BUild SEttiNGS PAgE.......ceiiiiiiiiiiiie ittt e e e e e e nees 32
2.2.4 Linux APPlICation Page.o e e e 33
Dl 011 Y 14 Lo o o] 1= Yox £SO URSUUSPR 34
2.3.1 Creating CodeWarrior Bareboard Application Project..........ccccoccveieeiiiiiiini e, 35
2.3.2 Creating CodeWarrior Bareboard Library Project..........cccocuviiiiiiiiiiie e 37
2.3.3 Creating CodeWarrior Linux Application Project..........cccccveveiiiiiiiiiiiiine e 39
P =0 o [T o o] o] 1Yo £ O UUPRPRPRT 40
2.4.1 ManUal-BUild MOGE.........cooiiiiiiiii et 41
2.4.2 AULO-BUIIA MOGE.........eeiiiiiiiiie et 41
2.5 Importing Classic CodeWarrior PrOJECES.iiiiiiiie et e e stee e e e e nneaeeaeen 42
B S LY = i o o {0 =T o SR PUPEPRPR 43

Chapter 3 Build Properties............cccoumimrieiin e 45
3.1 Changing BUild PropeIiES.coie ittt e e et e e e e e e e e e e s aaeeeeaaaaeeeeaaaanns 45
3.2 Restoring BUild Properti©s. oo e e e e e e e e et 46
3.3 Build Properties for POwer Archit€CIUre..............uuviiiiiiiiie e 46

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 3

Contents

3.3.1 CodeWarrior Build TOOI SEtNGS.couiiiiiiiiiiiiiiee e 48
3.3.1.1 POWEIPC CPU. ...ttt et e e e ente e e nnae e e eneeeeeneeas 49

K IR 2 02 B 1= o 10T oL oo T PSP R 50

3.3.1.3 MIBSSAGES. ... eeeeeeee ettt e e e s e e e nneeeas 50

3.3.1.4 POWEIPC LINKET......eeiiiiiiiiiie ettt e et e e eee s 51

3.3.1.5 POWEIPC COMPIIET.......oeiiiiiiiieiie e 57

3.3.1.6 POWEIPC ASSEMDIET.....cciiiiiiiiei e e 68

3.3.1.7 POWErPC DiSasSemMDIET.......ccoiuiiiiieiiiiiie e 70

3.3.1.8 POWEIPC PreprOCESSOr. ...cccouiiiiieiiitiiee ettt ettt e et e e e sbeeeeeeaaes 72

3.3.2 GCC BUIld TOOI SELNGS.eeeieiitiiieee ettt e st e e e s snreeeeeeas 73
3.3.2.1 ArCIItECIUIE. ... e e 76

3.3.2.2 POWEIPC LINKET......eeiiiiiiiiiee ettt e e e e s nneeeeeas 76

3.3.2.3 POWEIPC COMPIIE.......eeeiiiiiiieiie e 80

3.3.2.4 POWEIPC ASSEMDIET.....coiiiiiiiiee e 86

3.3.2.5 POWEIPC PreprOCESSOr.ccouviiiieiiitiiee ettt ettt et e e e ebeeeeeeeaes 87

3.3.2.6 PowerPC Disassembler...............ocooiiiiiiiiic 88

Chapter 4 Debug Configurations ... 91
4.1 Using Debug Configurations Dialog BOX..........cccuiuuiiiiiiiiiiie ittt 91
g g Y =1 o SRRSO 92

g B N (o 1] 1 =T o £ PRSP EP TP PPP 97

R IR R B 1= o TU o o T PP PPPR 98
g T I T o T T USSP RSUSRRURIN 99

g G T o e O b o= o [1 SRR 101

4.1.3.3 DOWNIOAM.eeiiiiiiiiee et 102

g T] [P U R 104

4.1.3.5 System Call SEIVICES.cueiiiiiiiie e e 105

4.1.3.6 Other EXECULADIES........ooueiiiiiii e 107

4.1.3.7 SYMDOIICS. ...t 108

4.1.3.8 OS AWAIENESS. ... iiiiieee ittt e e e et e e e e b e e e e eaabeeas 110

4.1.4Trace and Profile.......oieiii e 113

g ISR o U o = T PP PP PPN 114

4.1.6 ENVIFONMENT.....oiiiiiiiii ettt e et e e e e bt e e e e e ab b e e e e e aanbeeeaeeaa 116

g B A 7] 1 411 1 o o TP PRPT 117

4.2 Customizing Debug ConfigUurations.............coiiiiiiiii et 118
4.3 Reverting Debug Configuration Settings..........ccooiiiiiiiii e 120
Chapter 5 Working with Debugger..............coooeriiii e 121
5.1 Debugging @ CodeWarrior PrOJECE.........cc.uiiii ettt e et e e e s steee e e e anntaeeeaeans 121
5.2 Consistent debUG CONIOL........c.ueiiiiiiiiiee et e e e s et e e e e s e e e e e nnaeeaeeennnees 122
TR 0o o aT=Tex 1o] 1R Y/ o =Y TSP 122
B.3.1 CCSSIM2 ISS....cc ittt ettt bt e st e e e s bt e e sabe e e s ebbeeebeeeeanneeens 122

5.3 2 EtherNEt TAP ... ettt st e e eb e nneeas 124

5.3.3 Gigabit TAP & TraCE.....ciii i ettt et e e sttt e e s et e e e s nna e e e e ennsaeeesannaeeas 128

5.3.4 GIgabit TAP.....eeeeeeee et bbb e e e abeeeaa 133

TR TSI 11 4o O PRSI 138

ST TG O PP 140

B.3.7 USB TAP ...ttt h et e ettt e b bt e b et e e ea b et et e e anbe e e abeeeaa 141

5.3.8 COARWAITION TAP ...ttt ettt ettt s e be e e bt e s bt e e e sab e e e snbeeesbeeeaas 145

5.4 JTAG diagnOStiCS 1SS .. uuiiiiiiiiiiii ittt e e e e e e e s et te e e e e snnbe e e e e ennaeeaeeennees 150
5.4.1 POWeEr at Probe teSt..... .. —————— 151

5.4.2 IR SCAN ST, .ottt 151

5.4.3 BYPass SCaN tEST... ... a e e 151

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
4 NXP Semiconductors

Contents

5.4.4 Arbitrary TAP state move test.... ... 152

5.4.5 Reading JTAG IDCODES tESt......cciiuiiiiiiiiiiiie e 152

5.5 Editing remote system CONfiguration...............ooii i 152
5.5.1 INitIAliZation tD......cooo i 153

5.5.2 MEMOIY 18D ... a e s 154

5.5.3 AAVANCEA taD.....coiiiiiee e 155

5.6 MemOry tranSIations.........oooiiiiiiii et as 155
5.7 CodeWarrior Command-Line DebUGQET..........cooiiiiiiii e 156
5.8 WOrking wWith BreakpoOintsS.ooeiiiii ettt e et e e e s b e e e e eaes 158
5.8.1 Setting BreaKpOints..........ooi i 159

5.8.2 Setting Hardware Breakpoints.cooo i 161
5.8.2.1 Using IDE to Set Hardware Breakpoints.............cccooiiiiiiiiiiiiiiiiiee e 161

5.8.2.2 Using Debugger Shell to Set Hardware Breakpoints...........cccccccveeeieiiiiiciinneen. 161

5.8.3 RemMoving Breakpoints.o i 161
5.8.3.1 Remove Breakpoints using Marker Bar............cccoooiiiiiiiiiiee e 161

5.8.3.2 Remove Breakpoints using Breakpoints View............cccoviiiiiiiinii e 162

5.8.4 Removing Hardware Breakpoints............ceeiiiiiiiiiie e 162
5.8.4.1 Remove Hardware Breakpoints using the IDE...............ccccooiiiiiiiiiiineeieen 162

5.8.4.2 Remove Hardware Breakpoints using Debugger Shell..............ccccccoiininnnne. 162

5.9 Working with WatChpOINtS.........ooiiiiiie e 163
5.9.1 Setting WatChpOINES..........oueiiii e 163

5.9.2 Removing WatChpOINtS.........ooi e 165

5.10 Working With REGISTEIS.....ccei i 165
5.10.1 Changing Bit Value of @ REGISIEr.........cooiiiiiiii e 166
5.10.2 Viewing Register DetailS.ouuiiiiiiiiiee et 167
B5.10.2.1 Bit FI@IAS. ..ottt e 168

5.10.2.2 Changing Bit Fields..........oouiiiiiiiie e 168

O I Yo 1o 1 TSP PPR 169

5.10.2.4 DESCIIPLION. ...ceiiiitiiiie ettt e e e e e e e bt e e e e e b e e e e enneeas 170

5.10.3 Registers View Context MENU..........cooiiiiiiiii e 170
5.10.4 Working with RegiSter GroUPS.........coui i 172
5.10.4.1 Adding @ RegiSter GrouUP.........ccooiiiiiiiiiiiiiie e 172

5.10.4.2 Editing @ Register GroUP.........cuuiiieiiiiiiie e 173

5.10.4.3 Removing @ Register GroUpP.........ccuueiiiiiiiiiiie et 173

5.10.5 Working with TLB REGISLErS.........uiiiiiiiieee e 173
5.10.5.1 Viewing TLB Registers in Registers View..........cccooiiiiiiiiiiiiie e 174

5.10.5.2 Reading TLB Registers from Debugger Shell...........cccccoiiiiiiiiiiiiiniiiiee e 175

5.10.5.3 Initializing TLB ReQISIErS........coiiiiiiiiieiiieee e 177

5.10.5.4 TLB Register Details.........ccooiiiiiiiiiii e 177

5.10.6 Working With IMIMR........ooiiie ettt e et e e e e e s nee e e enneeens 193

5,11 VIEWING IMEBIMOTY ...ttt ettt ettt e e ettt e e e aab et e e e s bttt e e e e ambeeeeeeaanbeeeeeeanteeeeeeane 193
5.11.1 Adding MemoOry MONILOTiiiiiiiiie et e e 194

5.12 VIEWING CACNE......ci ittt e e ettt e e e s bttt e e e e anbe e e e e e enbeeeeeeanbbeeeaean 196
5.12.1 CACNE VWi ittt ettt e e et e e e e et e e e e e ranee e e e e enneee 196
5.12.2 Cache View TooIDar MENU.........uuiiiiiiiiei et 197
5.12.3 Components of CaChe VIEW.........cooiiiiiiiiiie e 199
5.12.4 Using Debugger Shell to View Caches............cooiiiiiiiiiiiii e 199
5.12.5 Debugger Shell Global Cache COmMMaNdS...........ccuuiiiiiiiiiiiieiiee e 200
5.12.6 Debugger Shell Cache Line ComMmMands............coooiiiiiiiiiiiiiee e 201
5.12.7 Processor-Specific Cache Features............oiiiiiiiiiii e 201

5.13 Changing Program Counter VAlUE..........cooiuiiiiiiiiiiiie et 204
5.14 Hard RESEING.co ittt e e ettt e e e e eab e e e e anbe e e e e s anbeeeeaeaa 204
5.15 Setting StaCk DEPIN..... ..o 204
5.16 Import a CodeWarrior Executable file Wizard.............oceiiiiiiiii e 204
5.16.1 Import a CodeWarrior Executable file Page.........cocoueeiiiiiiiiii e, 205

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 5

Contents

5.16.2 Import C/C++/Assembler Executable Files Page...........cocoeviiiiiiiiiie e, 205
5.16.3 PrOCESSOr PAQE.eeiiiiiiiiiiie ettt e e s sb e e e e 206
5.16.4 Linux Application Launch Configurations Page............cceeiiiiiiiiiiiii e 206
5.16.5 Debug Target Settings Page...........coouiiiiiiii e 207
5.16.6 Configurations Page...........cooiiiiiiiiiiiiie e 208

5.17 Debugging Externally Built Executable Files..............cooiiii e 209
5.17.1 Import an Executable File..........ooui 209
5.17.2 Edit the Launch Configuration............ooueiiiiii e 211
5.17.3 Specify the Source LOOKUP Path..............oooiiiiiiiii e 212
5.17.4 Debug the Executable File..........ooo e 214
Chapter 6 Multi-Core Debugging...........cooioriiiiiii e 215
6.1 Debugging MUlti-Core ProjJECtS..........ooi it ee e 215
6.1.1 Setting Launch Configurations.............ccooiiiiiiiii e 215

6.1.2 Debugging MUIIPIE COTES.......coiiiiiiiiieiee e 218

6.2 Multi-Core Debugging COmMMEANGS.oiiuiiiiiiiiiiiiee ettt e e e e neeeees 221
6.2.1 Multi-Core Commands in CodeWarrior IDE...........ccccoooiiiiiiiiiie e 221

6.2.2 Multi-Core Commands in Debugger Shell............cooiiiiiiii e 222
Chapter 7 Debugging Embedded Linux Software...........cccccceneiiiiiiiice e, 227
7.1 Debugging @ LiNUX APPlICALION.coi it e e e e e e 227
7.1.1 Install CodeWarrior TRK on Target System.........ccoooiiiiiiiiie e 228

7.1.2 Start CodeWarrior TRK on Target System..........ccceiiiiiiiiiiiiiiiee e 228
7.1.2.1 TCP/IP CONNECHONS.eieiitieeiieeetiie ettt sttt e e sabe e e sneeas 228

7.1.2.2 Serial CONNECHONS.eiiiiiei ittt st e e snbe e sbee e 229

7.1.3 Create a CodeWarrior Download Launch Configuration for the Linux Application........... 230

7.1.4 Specify Console 1/0 Redirections for the Linux Application............cccccceevviiieiiiiien e, 233

7.1.5 Configure Linux Process Signal POIICY..........coociiiiiiiiiiiie et 234
7.1.5.1 Signal INNEMTANCE.coii i e 234

7.1.5.2 Default Signal POJICY.........uiiiiiiiiiie ettt 234

7.1.5.3 Modifying Signal POICY.......c.coicuiiiieiiiii et 234

7.1.6 Debug the Linux AppliCation. ... 236

7.2 Viewing multiple processes and threads. ... 236
7.3 Debugging applications that use fork() and exec() system calls...........cccccoecieieeiiiiii e, 237
7.4 Debugging @ Shared lIDrary..... ...t e e e e e e e e e e e e e e s 247
7.4.1 Create an example PrOJECE.........oiii et e e et a e e et e e e e ennees 247

7.4.2 Configure the shared library build configuration.............cccccoiiiiiiii i 250

7.4.3 Configure the executable build configuration...............ccccieiiiiiii i 250

7.4.4 Build the shared lIDrary...........ooo e 251

7.4.5 BUild the eXeCutable.oiiiiii e 251

7.4.6 Configure the launch configuration.............cc.ooiiiiiiii i 251

7.4.7 Debug the shared liDrary...... ... 253

7.5 Preparing U-Boot for debUGQING.........uueiiiiiiiiiiie ettt s e e et e e e e ennee e e e e nnees 255
7.5 1 INSTAII BSP.... .ottt bbb 256

7.5.2 Configure U-Boot and build U-Boot images with CodeWarrior debugger support............ 257

7.5.3 Configure hardware to use U-Boot image...........coviiiiiiiiiiii e 257

7.5.4 Create a CodeWarrior project to debug U-BOOt...........cccoieiiiiiiiiiiiiiiee e 257

7.5.5 Specify launch configuration settings............cooooiiiiiiiiii e 258

7.5.6 Create launch configurations for U-Boot debug stages..........cccccoecevieiiiiene e, 260

7.6 Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices.............ccceeeuneen. 262
7.6.1 Configuring and Building U-BOOt...........ccuuiiiiiiiie e 262
7.6.1.1 Writing configuration words in U-Boot COde...........ccocoiiiiiiiiiiiiie e 264

7.6.2 Creating a CodeWarrior Project to Debug U-BOOt...........ccceeviiiiiiiiiiiieee e 264

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
6 NXP Semiconductors

Contents

7.6.3 Specifying the Launch Configuration Settings..........ccccccvvveeiiiiiicci e 265
7.6.4 Debugging U-Boot using FIash DeVICeS...........ccuuiiiiiiiiiiiiiiiie e 267
7.6.4.1 POINtS 10 reMEMDET ... 267
7.6.4.2 Debugging U-Boot using NOR flash..........ccoooiiiiiii e 268
7.6.4.3 Debugging U-Boot using SPI and SD/MMC flash..........cccccceeviiiiiiiiiiiiiiiieeeeeee 273
7.6.4.4 Debugging U-Boot using NAND flash............coooiiiiiie e, 278
7.7 Debugging the LiNUX KEINEL.......cooo it 283
7.7.1 Setting Up the Target Hardware............occueiiiiiiiiiie e 284
T.7.1.1.CoNNECEUSB TAP ... e 285
7.7.1.2 Establish a Console CONNECHION............ciiiiiiiiie e 285
7.7.2 Installing the Board Support Package (BSP)........coouiiiiiiiiiiiiiee e 286
7.7.3 Configuring the Build TOOL..........ooouiiii e 287
7.7.4 Configuring the LiNUX KerNel............eiiiiii e e 287
7.7.5 Creating a CodeWarrior Project using the Linux Kernel Image..........ccccoocooiiiiiiineennee 289
7.7.5.1 Updating the Linux Kernel Image............coooiiiiiiiiiee e 290
7.7.6 Configuring the kernel project for debugging.........occueeiiiiiiiiiiiii e, 290
7.7.6.1 Configuring a download kernel debug scenario............cccoooiieeiiiiiiiiii e 291
7.7.6.2 Configure an attach kernel debug Scenario.............cccceeeiiiiiiee i 291
7.7.6.3 Setting UP RAM diSK.......oiiiiiieie et 294
7.7.6.4 Using Open Firmware Device Tree Initialization method.............ccccccooins 297
7.7.7 Debugging the kernel to download the kernel, RAM disk, and device tree...................... 301
7.7.8 Debugging the kernel based on MMU initialization............ccccciiiiiiini e 302
7.7.8.1 Debugging the Kernel before the MMU is Enabled..............cccoooiiiiiiine, 302
7.7.8.2 Debugging the Kernel while the MMU is being Enabled...............cccccoeiiiiiennnnns 304
7.7.8.3 Debugging the Kernel after the MMU is Enabled.............ccocceiiiiiiiiie e 304
7.7.9 Debugging the kernel by attaching to a running U-Boot............ccccoooiiiiiiiiie 305
7.8 Debugging Loadable Kernel MOAUIES..............oiiiiiiiiiieeiiee et 307
7.8.1 Loadable Kernel Modules - An INtroduction..............cooiiiiiiiiiiiie e 307
7.8.2 Creating a CodeWarrior Project from the Linux Kernel Image...........ccoccooiiiiiiene e, 308
7.8.3 Configuring Symbolics Mappings of ModUIES.............cooiiiiiiiiiie e 310
7.9 Debugging Hypervisor Guest AppliCationS...........coiiiiiiiiiiiiiiei e 312
7.9.1 Hypervisor - An INtrodUCHION.........ooiiiiiiiiii e 312
7.9.2 Prerequisites for Debugging a Guest Application..........ccccoooiiiiiiii e, 313
7.9.3 Adding CodeWarrior HyperTRK Debug Stub Support in Hypervisor for Linux Kernel
D=1 o1 0T e o1 o AR SRS 313
7.9.3.1 Enabling HyperTRK Debug Support Directly in Build Tool...........ccccoovieeeennnne. 314
7.9.3.2 Applying New HyperTRK Patches from CodeWarrior Install Layout.................. 314
7.9.3.3 Modifying and Building HyperTRK Manually..............cccooiiiiiiiiie e 314
7.9.4 Preparing Connection to P4080DS Target..........cccoooiiiiiiiie e 314
7.9.5 Debugging AMP/SMP Guest Linux Kernels Running Under Hypervisor...............cc......... 315
7.9.5.1 Prerequisites for Debugging AMP/SMP Guest Linux Kernels............ccccovuieee. 315
7.9.5.2 Creating an Attach Launch Configuration to Debug a Linux Partition after
KEINEI BOOL..... .t 315
7.9.5.3 Creating a Download Launch Configuration to Debug a Linux Partition from an
Entry Point or a User-Defined FUNCHON............coooiiiiiii e 318
7.10 Debugging the P4080 Embedded HypPerviSOr.ccuuiiiiiiiiiiiie i 320
7.10.1 Debugging Hypervisor During the Boot and Initialization Process...........cccccoccoceernnnen. 322
7.10.1.1 Debugging Hypervisor from the Entry Point.............cccoooiiiiiii 323
7.10.1.2 Debugging Hypervisor from Relocation till Release of Secondary Cores......... 325
7.10.1.3 Debugging Hypervisor after Release of Secondary Cores..........ccccocceveeennnne. 326
7.10.1.4 Debugging the Hypervisor Partitions Initialization Process..............ccccceeennne. 327
7.10.1.5 Debugging the Hypervisor Partitions Image Loading Process...........c.cccceeueee. 328
7.10.1.6 Debugging All Cores when Starting the Guest Applications..............ccccevvnneee. 328
7.10.1.7 Debugging the Hypervisor Partition Manager...........c..ccccciiiiiiiniiee e, 328
7.11 User Space Debugging with On-Chip Debug...........ueiiiiiiiiiiiiiiiie e 329

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 7

Contents

7.11.1 Attaching Core to Debug ApPpPliCatioN...........cuueiiiiiiiii e 330
7.11.2 Debugging Application from main() FUNCHON............ocoiiiiiii e 330
Chapter 8 JTAG Configuration Files...............ooumiimiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee 333
8.1 JTAG configuration file SYNTAX..........cuuiiiiiiiii e 333
8.2 Using a JTAG configuration file to override RCW.........occuiiiiiiiiii e 334
8.3 Using a JTAG configuration file to specify multiple linked devices on a JTAG chain..................... 335
8.4 Setting up a remote system to use a JTAG configuration file............ccooiiiiiiii e 337
Chapter 9 Target Initialization Files..............couuiiieeeiiicccc e, 341
9.1 Using target initialization fileS..........c.ueiiiiiic e 341
9.2 Target initialization COMMEANGAS.........ooi i e e e e e s 343
9.2.1 .cfg target initialization COMMANAS...........ccoiiiiiii e 343
9.2.1.1 AIEMNALEPC ... e 344

9.2.1.2 ANDIMEM L.ttt b et b e s be e e be e e e nneas 344

9.2.1.3 ANDIMIMII ...ttt b ettt e ea et e ab e e eab et e sab e e e sabe e e ebee e sabe e e e neeeennee 345

9.2.1.4 INCOMMMR ...ttt et bb e e e sabe e e sneeas 345

9.2.1.5 ORMEIMLL ..ottt et s be e e e rnbe e e sabeeeas 346

S L (= T= | S S PP PP PO PPPPPPR PP 346

S B A ¥ | o TP U PP PP P PP POPPPPP 347

9.2.1.8 SEICOIEID. ...ttt sbe e 347

9.2.1.9 rESEICOTEID. ...ttt 347

0.2, 10 SIEEP ettt ettt a e e e e e et —————— 347

S0t T B B (o] o T PP 348

9.2.1. 12 WIEMEIMLD ..o 348

9.2.1. 13 WITEIMEIMLW. ..ottt e e e e e aa e e e s senreeeeeeaane 348

9.2.1. 14 WIEMEIMLL ..o 349

9.2.1. 18 WIEIMIMI. .. e e e e e e e 349

S IO B G Y41 (=T ¢ =T RSO PPPRRPRTT 350

S IO B I AT Y41 (=T =T SO PPPPRPRT 350

9.2 118 WIItEIrEgT28. ...t e e e e e e e e e e e e e e e e e e 351

S IO B L VY41 (=T 4 =To e PO PPPRRPRT 352

S B B2 O Y4 (=] o] P OP PO 352

9.2.2 .tcl target initialization COMMAaNAS.........ooiiii e 353
Chapter 10 Memory Configuration Files...........cccciiiiiiiiiiinnieee e e 355
10.1 Using memory configuration fil€S...........cccuuiiiiiiiiiie e 355
10.2 Memory configuration COMMANAS...........cccuiiiiiiiiiie e e e e e e e e e e e e e e s aaeeees 356
10.2.1 aUtOENaDbIeTransIations............cooiiiiiiiie e 357

O T2 - 1 o = TP 357

10.2.3 FESEIVEA. ..ottt e et e e e e e e e e e e e e e e e e e e e 358

10.2.4 r€SEIVEACNANcoi i e s 358

10.2.5 TrANSIATE. ... e e e e e e 359
Chapter 11 Working with Hardware Tools............ccvueiceeiiiieeee, 361
(I = T T o] e T =T o 4= ST 361
11.1.1 Create a flash programmer target task.............ccoiiiiiii 361

11.1.2 Configure flash programmer target task.............coooiiiiii e, 363
11.1.2.1 Add flash deVICE........eeieeeie e 364

11.1.2.2 Specify target RAM Settings.........cooiiiiiiiiiii e 364

11.1.2.3 Add flash programmer aCtiONS...........c.uueiiiiiiiiiie e 364

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
8 NXP Semiconductors

Contents

11.1.3 Execute flash programmer target task...........ccceiiiiiii e 369

11.2 FIash File 10 Target........ooo ot st e e e e e e e nneeee s 370
11.2.1 Erasing flash deVICE..........oii i 371
11.2.2 Programming @ fil€.......ouuiiiii e 372

11.3 Hardware diagnOStICS.o uueiiieiiiiiie ettt ettt e e sttt e e e s sttt e e e s nnn e e e e s anneeeae s 372
11.3.1 Creating hardware diagnostiCs task...........cueeiiiiiiiiiiii e 372
11.3.2 Working with Hardware Diagnostic Action editor..............cccciiiiiiiiiiini e, 373
I B B i (o o T N o PP 374

11.3.2.2 MEIMOTY ACCESS.eeiiiiiiiiiee ettt ettt e e e et e e e e e b e e e e e anbee e e e e anneeas 374

11.3.2.3 LOOP SPEEA.ceiiiiiiiiiie ettt 375

11.3.2.4 MEMOTY TESES....eiiiiiiiiiii et e e e e b e e e 376

11.3.3 MeMOTY tEST USE CASES......ueeiiiiiiiiiie e 379
11.3.3.1 Use Case 1: Execute host-based Scope Loop on target...........cccceeviiierennnnn 379

11.3.3.2 Use Case 2: Execute target-based Memory Tests on target........cccccceeeeeennnn. 379

11.4 IMPOrt/EXPOrt/Fill MEMOTY....ooi ittt e et e e e s b e e e e e anbeeeeeeaaes 380
11.4.1 Creating task for import/export/fill MemOry............coooiiiiii e 380

11.4.2 Importing data infO MEMIOIY.......cooiiiiiii e e e 382
11.4.3 EXporting Memory 0 fil.......uuiiiiiie e 384
(I 3 1 g g =T g To Y PP 386
Chapter 12 Making a Custom MSL C Library...........ccccoooiiieieeeieeeeee 389
12.1 Source library modifiCations...........ccooiiiiii e 389
2 T 1= g To T 1= SR 390

12.2 Modifications to avoid errors from GCC LD t00L..........coiiiiiiiiiiiiiie e 391
12.2.1 Files MOIfI@d.......oeiieeie ettt et e e e et e e e e e e eneeeeeneeas 391

12.3 Software floating point emulation SUPPOIT.........oooii e 392
12.4 Building @ custom MSL C lIDrary.........c.ueeeiiiiiie e 392
Chapter 13 Debugger Limitations and Workarounds..............ccccceeiiiiiiinnnnees 395
13.1 POWEIQUICC [PrOCESSOIS.ueiieeiieeiiieeiiteteeeaettteee e s esteeaesannaaeeaeaanbeeeeeaanstaeaesaansteeaeeannseeeeeeannees 395
13.2 POWErQUICC [] PrO PrOCESSOIS. .. .uviiiieiieiiiieeeaiieeeeesanieeeeesasaeeeaesanssaeeassassseeeesanssseeaeaannseeeesannnseeens 395
13.3 POWEIQUICC [l PrOCESSOIS.eeiiiiiieiiieiiitiieeeeeiteeeeesetteeeeseateeeesanbeeeeeaanntaeeesennsteeaeeannsaeeeeeannees 396
13.4 QOrlQ COMMUNICAtIONS PrOCESSOIS.ceieiiiiiiteeiitiiiteesaiteeeeseetteeaeaasteeeesaasteeaesaanseeeaeaannreeeesennnees 398
13,5 T-SEIIES PrOCESSOIS.ccieeeeieeeeeeeeeeeet et e e e e e e e e e eeeeaeaaaaeeee et e e easaesstsssaaasa e e s e seeeaaaaaaaeaaeaseeeeenens 399
13.6 QOrlQ QONVEIGE PrOCESSOIS.cciureeeiuteeeiuteeeateeeateeesbaeeateeeaabeeeeasseeaabbeessabeeeanbeeesabeeesabeeesbeeeannes 401
13,7 GENEIIC PrOCESSOIS. ... i iittteeeee et e e e e e e e e e ettt e e e eeeee e e e ettt e b aeereeeaaeeeesaaeasssbsaaseeeaaaeeeaeaaaansssssnnnees 402
] o = PR 403

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 9

Contents

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
10 NXP Semiconductors

Introduction
Release notes

Chapter 1
Introduction

This manual explains how to use CodeWarrior Development Studio tools to develop software for bareboard
applications and embedded Linux® operating system running on Freescale Power Architecture® processors.

This chapter provides an overview of this manual and introduces you to the CodeWarrior development tools and
development process.

The topics covered here are as follows:

* Release notes on page 11

» Contents of this manual on page 11

* Accompanying documentation on page 12

» PowerPC Embedded Application Binary Interface on page 12
» CodeWarrior Development Studio tools on page 13

» CodeWarrior IDE on page 16

1.1 Release notes

Release notes include information about new features, last-minute changes, bug fixes, incompatible
elements, or other sections that may not be included in this manual.

You should read release notes before using the CodeWarrior IDE.

NOTE
The release notes for specific components of the CodeWarrior IDE are located in the
Release Notes folder in the CodeWarrior installation directory.

1.2 Contents of this manual

Each chapter of this manual describes a different area of software development.

The table below lists each chapter in the manual.

Table 1: Organization of this manual

Chapter Description

Introduction on page 11 This chapter.

Working with Projects on page 19 Describes the different types of projects you can create, provides
an overview of CodeWarrior project wizards.

Build Properties on page 45 Explains build properties for Power Architecture projects.

Debug Configurations on page 91 Describes the different types of launch configurations you can

create, provides an overview of the debugger.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 11

Introduction
Accompanying documentation

Table 1: Organization of this manual (continued)

Chapter Description

Working with Debugger on page 121 Explains various aspects of CodeWarrior debugging, such as
debugging a project, connection types, setting breakpoints and
watchpoints, working with registers, viewing memory, viewing
cache, and debugging externally built executable files.

Multi-Core Debugging on page 215 Explains multi-core debugging capabilities of CodeWarrior
debugger.

Debugging Embedded Linux Software on | Explains debugging activities related to embedded Linux
page 227 software.

JTAG Configuration Files on page 333 Explains JTAG configuration files that pass specific configuration
settings to the debugger and support chaining of multiple devices.

Target Initialization Files on page 341 Discusses how to use a target initialization file and describes . cfg
and .tc1 target initialization commands.

Memory Configuration Files on page 355 | Discusses how to use a memory configuration file and describes
memory configuration commands.

Working with Hardware Tools on page Explains CodeWarrior hardware tools used for board bring-up,
361 test, and analysis.

Making a Custom MSL C Library on page | Discusses how to port an MSL C library to the GNU Compiler
389 Collection (GCC) tool to support bareboard applications that
execute on the Power Architecture-based boards.

Debugger Limitations and Workarounds on | Describes processor-specific CodeWarrior debugger limitations
page 395 and workarounds.

1.3 Accompanying documentation

The Documentation page describes the documentation included in this version of CodeWarrior Development
Studio for Power Architecture.

You can access the Documentation page by:
» Using a shortcut link that the CodeWarrior installer creates by default on the Desktop.

* Opening the sTART HERE.html file available in the <cwInstallpirs\Pa\Help folder.

1.4 PowerPC Embedded Application Binary Interface

The Power Architecture Embedded Application Binary Interface (PowerPC EABI) specifies data structure
alignment, calling conventions, and other information about how high-level languages can be implemented on
a Power Architecture processor.

The code generated by CodeWarrior for Power Architecture conforms to the PowerPC EABI.
To learn more about the PowerPC EABI:

* Information and documentation about all supported Power Architecture hardware is available here:

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
12 NXP Semiconductors

Introduction
CodeWarrior Development Studio tools

http://www.freescale.com/powerarchitecture

* PowerPC Embedded Binary Interface, 32-Bit Implementation., published by Freescale Semiconductor, Inc.,
and available here:

http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf
« System V Application Binary Interface, available here:
http://www.freescale.com/files/archives/doc/app_note/PPCABI.pdf

The PowerPC EABI also specifies the object and symbol file format. It specifies Executable and Linkable Format
(ELF) as the output file format and Debug With Arbitrary Record Formats (DWARF) as the debugging information
format. For more information about those formats, see:

» Executable and Linkable Format, Version 1.1, published by UNIX System Laboratories.
+« DWARF Debugging Standard website available at:
www.dwarfstd.org

 DWARF Debugging Information Format, Revision: Version 1.1.0, published by UNIX International,
Programming Languages SIG, October 6, 1992 and available here:

www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf

 DWARF Debugging Information Format, Revision: Version 2.0.0, Industry Review Draft, published by UNIX
International, Programming Languages SIG, July 27, 1993.

1.5 CodeWarrior Development Studio tools

This section talks about some important tools of CodeWarrior Development Studio.

Programming for Power Architecture processors is much like programming for any other CodeWarrior platform
target. If you have not used CodeWarrior tools before, start by studying the Eclipse IDE, which is used to host
the tools.

Note that CodeWarrior Development Studio for Power Architecture uses the Eclipse IDE, whose user interface
is substantially different from the "classic" CodeWarrior IDE. For more details on these interface differences,
see CodeWarrior Development Studio Common Features Guide available in the <cwInstallDpir>\PA\Help
\pDF\ folder.

The following are some important tools of CodeWarrior Development Studio:
* Eclipse IDE on page 14

» C/C++ compiler on page 14

» Assembler on page 14

* Linker on page 15

» Debugger on page 15

Main standard libraries on page 15

» CodeWarrior Profiling and Analysis tools on page 16

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 13

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=PCPPCP&tid=vanpowerarchitecture
http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf
http://www.freescale.com/files/archives/doc/app_note/PPCABI.pdf
http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf
http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf

|
y

'
A

Introduction
CodeWarrior Development Studio tools

1.5.1 Eclipse IDE

The Eclipse Integrated Development Environment (IDE) is an open-source development environment that lets
you develop and debug your software.

It controls the project manager, the source code editor, the class browser, the compilers and linkers, and the
debugger. The Eclipse workspace organizes all files related to your project. This allows you to see your project
at a glance and navigate easily through the source code files.

The Eclipse IDE has an extensible architecture that uses plug-in compilers and linkers to target various operating
systems and microprocessors. The IDE can be hosted on Microsoft Windows, Linux, and other platforms. There
are many development tools available for the IDE, including C, C++, and Java compilers for desktop and
embedded processors

For more information about the Eclipse IDE, read the Eclipse documentation at:

http://www.eclipse.org/documentation/

1.6.2 C/C++ compiler

A C/C++ compiler compiles C and C++ statements and assembles inline assembly language statements.

The CodeWarrior Eclipse IDE for Power Architecture processors supports the following two types of C/C++
compilers:

» CodeWarrior C/C++ compiler
+ GCC C/C++ compiler

Each supported compiler is ANSI-compliant. You can generate Power Architecture applications and libraries
that conform to the PowerPC EABI by using the CodeWarrior/GCC compiler in conjunction with the CodeWarrior/
GCC linker for Power Architecture processors.

The IDE manages the execution of the compiler. The IDE invokes the compiler if you:
» Change a source file and issue the make command.
+ Select a source file in your project and issue the compile, preprocess, or precompile command.

For more information about the CodeWarrior Power Architecture C/C++ compiler and its inline assembler, see
the Power Architecture Build Tools Reference Manualfrom the <cwInstallDir>\PA\Help\PDF\ folder.

For more information about the GCC Power Architecture C/C++ compiler, see the gcc.pdf manual from the
<CWInstallDir>\Cross Tools\gcc-<version>-<targets>\powerpc-<[eabi] /[eabispel] /[aeabi]/
[linux/libc] >\share\docs\pdf\gcc folder.

1.56.3 Assembler

The assembler translates assembly-language source code to machine-language object files or executable
programs.

The CodeWarrior Eclipse IDE for Power Architecture processors supports two types of standalone assemblers:
» CodeWarrior assembler
+ GCC assembler

Either you can provide the assembly-language source code to the assembler, or the assembler can take the
assembly-language source code generated by the compiler.

For more information about the CodeWarrior Power Architecture assembler, see the Power Architecture Build
Tools Reference manual from the <cwInstallDpir>\PA\Help\PDF\ folder.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
14 NXP Semiconductors

http://www.eclipse.org/documentation/

Introduction
CodeWarrior Development Studio tools

For more information about the GCC Power Architecture assembler, see the as.pdf manual from the
<CWInstallDir>\Cross Tools\gcc-<version>-<targets>\powerpc-<[eabi]/[eabispel]/[aeabi]/
[linux/libc] >\share\docs\pdf folder.

1.5.4 Linker

The linker generates binaries that conform to the PowerPC Embedded Application Binary Interface (EABI).

The linker combines object modules created by the compiler and/or assembler with modules in static libraries
to produce a binary file in executable and linkable (ELF) format.

CodeWarrior Eclipse IDE for Power Architecture processors supports two types of linkers:
» CodeWarrior linker

* GCC linker

Among many powerful features, the linker lets you:

» Use absolute addressing

» Create multiple user-defined sections

» Generate S-Record files

* Generate PIC/PID binaries

The IDE runs the linker each time you build your project.

For more information about the CodeWarrior Power Architecture linker, see the Power Architecture Build Tools
Reference manualfrom the <cwInstallDpir>\PA\Help\PDF\ folder.

For more information about the GCC Power Architecture linker, see the 1d.pdf manual from the
<CWInstallDir>\Cross_Tools\gcc-<version>-<targets>\powerpc-<[eabi] /[eabispe]/[aeabi]/
[linux/libc] >\share\docs\pdf folder.

1.5.5 Debugger

The CodeWarrior Power Architecture debugger controls the execution of your program and allows you to see
what is happening internally as the program runs.

You can use the debugger to find problems in your program. The debugger can execute your program one
statement at a time and suspend execution when control reaches a specified point. When the debugger stops
a program, you can view the chain of function calls, examine and change the values of variables, and inspect
the contents of registers.

The debugger allows you to debug your CodeWarrior project using either a simulator or target hardware.

The Power Architecture debugger communicates with the board through a monitor program (such as
CodeWarrior TRK) or through a hardware probe (such as CodeWarrior TAP (over USB)).

For more information, see CodeWarrior Development Studio Common Features Guide and the Working with
Debugger on page 121 chapter of this manual.

1.5.6 Main standard libraries

The main standard libraries (MSL) are ANSI-compliant C and C++ standard libraries that help you create
applications for Power Architecture processors.

The Power Architecture versions of the MSL libraries have been customized and the runtime has been adapted
for Power Architecture processor development.

For more information about MSL, see MSL C Reference and MSL C++ Reference.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 15

|
y

'
A

Introduction
CodeWarrior IDE

1.56.7 CodeWarrior Profiling and Analysis tools

The CodeWarrior Profiling and Analysis tools allow you to monitor an application as it runs on the simulator
and hardware.

This helps you understand how your application runs, as well as identify operational problems. The tools also
provide the following user-friendly data viewing features:

» Simultaneously step through trace data and the corresponding source and assembly code of that trace data
» Export source line information of the performance data generated by the simulator into an Excel file

» Export the trace and function data generated by simulator and target hardware into an Excel file

* Apply multi-level filters to isolate data

» Apply multi-level searches to find specific data

« Display results in an intuitive, user friendly manner in the trace, critical code, and performance views

+ Show or hide columns and also reorder the columns

» Copy and paste a cell or a line of the trace, alu-agu and performance data generated by simulator and
target hardware

» Control trace collection by using start and stop tracepoints to reduce the amount of unwanted trace events
in the trace buffer making the trace data easier to read

» View the value of the DPU counters in form of graphs (pie charts and bar charts) while the application is in
debug mode

« Display real time cycle count for simulated targets to allow quick monitoring of evolution of application in
time

For more information, see Tracing and Analysis Tools User Guide available in the <cwInstallDir>\PA\Help
\pDF\ folder.

1.6 CodeWarrior IDE

This section explains the CodeWarrior IDE and tells how to perform basic IDE operations.

While working with the CodeWarrior IDE, you will proceed through the development stages familiar to all
programmers, such as writing code, compiling and linking, and debugging. See CodeWarrior Development
Studio Common Features Guide for:

» Complete information on tasks, such as editing, compiling, and linking
+ Basic information on debugging

The difference between the CodeWarrior development environment and traditional command-line environments
is how the software, in this case the CodeWarrior IDE, helps you manage your work more effectively.

The following sections explain the CodeWarrior IDE and describe how to perform basic CodeWarrior IDE
operations:

* Project files on page 17
* Code editing on page 17
» Compiling on page 17

* Linking on page 17

+ Debugging on page 17

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
16 NXP Semiconductors

Introduction
CodeWarrior IDE

1.6.1 Project files

A CodeWarrior projectis analogous to a set of make files, because a project can have multiple settings that
are applied when building the program.

For example, you can have one project that has both a debug version and a release version of your program.
You can build one or the other, or both as you wish. The different settings used to launch your program within
a single project are called /aunch configurations.

The CodeWarrior IDE uses the CodeWarrior Projects view to list all the files in a project. A project includes files,
such as source code files and libraries. You can add or remove files easily. You can assign files to one or more
different build configurations within the project, so files common to multiple build configurations can be managed
simply.

The CodeWarrior IDE itself manages all the interdependencies between files and tracks which files have
changed since the last build.

The CodeWarrior IDE also stores the settings for the compiler and linker options for each build configuration.
You can modify these settings using the IDE, or with the #pragma statements in your code.

1.6.2 Code editing

CodeWarrior IDE has an integral text editor designed for programmers. It handles text files in ASCII,
Microsoft® Windows®, and UNIX® formats.

To edit a file in a project, double-click the file name in the CodeWarrior Projects view. CodeWarrior IDE opens
the file in the editor associated with the file type.

The editor view has excellent navigational features that allow you to switch between related files, locate any
particular function, mark any location within a file, or go to a specific line of code.

1.6.3 Compiling

A source code file is compiled if it is part of the current launch configuration.

If the file is in the configuration, select it in the CodeWarrior Projects view and choose Project > Build Project
from the CodeWarrior IDE menu bar.

To automatically compile all the files in the current launch configuration after you modify them, select Project >
Build Automatically from the CodeWarrior IDE menu bar.

1.6.4 Linking

Choose Project > Build Project from the CodeWarrior IDE menu bar to link object code into a final binary file.

The Build Project command makes the active project up-to-date and links the resulting object code into a final
output file.

You can control the linker through the IDE. There is no need to specify a list of object files. The workspace tracks
all the object files automatically.

You can also modify the build configuration settings to specify the name of the final output file.

1.6.5 Debugging

Choose Run > Debug from the CodeWarrior IDE menu bar to debug your project.

This command downloads the current project's executable to the target board and starts a debug session.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 17

Introduction
CodeWarrior IDE

NOTE
The CodeWarrior IDE uses the settings in the launch configuration to generate
debugging information and initiate communications with the target board.

You can now use the debugger to step through the program code, view and change the value of variables, set
breakpoints, and much more. For more information, see CodeWarrior Development Studio Common Features
Guide and the Working with Debugger on page 121 chapter of this manual.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
18 NXP Semiconductors

Working with Projects
CodeWarrior Bareboard Project Wizard

Chapter 2
Working with Projects

This chapter explains how to create and build projects for Power Architecture processors using the CodeWarrior
tools.

This chapter explains:

» CodeWarrior Bareboard Project Wizard on page 19
» CodeWarrior Linux Project Wizard on page 29

+ Creating projects on page 34

+ Building projects on page 40

* Importing Classic CodeWarrior Projects on page 42

Deleting Projects on page 43

2.1 CodeWarrior Bareboard Project Wizard

The term bareboard refers to hardware systems that do not need an operating system to operate. The
CodeWarrior Bareboard Project Wizard presents a series of pages that prompt you for the features and
settings to be used when making your program.

This wizard also helps you specify other settings, such as whether the program executes on a simulator rather
than actual hardware.

This section describes the various pages that the CodeWarrior Bareboard Project Wizard displays as it assists
you in creating a bareboard project.

NOTE
The pages that the wizard presents can differ, based upon the choice of project type or
execution target.
The pages of the CodeWarrior Bareboard Project Wizard are:
» Create a CodeWarrior Bareboard Project Page on page 20

* Processor Page on page 21

» Debug Target Settings Page on page 22

Build Settings Page on page 24

» Configurations Page on page 26

Trace Configuration Page on page 28

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 19

working with Projects
CodeWarrior Bareboard Project Wizard

2.1.1 Create a CodeWarrior Bareboard Project Page

Use this page to specify the project name and the directory where the project files are located.

Figure 1: Create a CodeWarrior Bareboard Project page

-

¥4 CodeWarrior Bareboard Project Wizard = @

Create a CodeWarrior Bareboard Project

Choose the location for the new project

Project name: Hello_World

V| Use default location

ChUsers\b34823 workspace\Hello_World-corell

(us)
Q

m
=1

Net> || Finsh || Cancel

The table below describes the various options available on the Create a CodeWarrior Bareboard Project page.

Table 2: Create a CodeWarrior Bareboard Project page settings

Option

Description

Project name

Use default location

Location

Enter the name for the project in this text box.

Select to choose the directory to store the files required to build the program.
Use the Location option to select the desired directory.

Specifies the directory that contains the project files. Use Browse to navigate
to the desired directory. This option is only available when Use default
location is cleared.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

20

NXP Semiconductors

Working with Projects
CodeWarrior Bareboard Project Wizard

2.1.2 Processor Page

This page displays the target devices supported by the current installation. Use this page to specify the type
of processor and the output for the new project.

Figure 2: Processor Page

o o)

¥4 CodeWarrior Bareboard Project Wizard = @

Processor

Choose the processor for this project

Processor

type filter text

4 Power Architecture Farnily

- Blwx

- B3

- Bhex

- C2%

» Qonverge

- QorlQ_P1

. QorlQ_P2

» QorlQ_P3

4 Qorl)_P4
P4040
P4080

» QorlQ_P5

» QorlQ_T1

» QorlQ T2

- QorlQ_T4

Project Cutput
@ Application
) Static Library

Ii?jl < Back “ Mext = l ’ Finish] ’ Cancel

The table below describes the various options available on the Processor page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 21

|
y

'
A

working with Projects
CodeWarrior Bareboard Project Wizard

Table 3: Processor Page Settings

Option Description

Processor Expand the processor family tree and select a supported target. The toolchain
uses this choice to generate code that makes use of processor-specific
features, such as multiple cores.

Project Output Select any one of the following supported project output:

+ Application: Select to create an application with ".e1£" extension, that
includes information related to the debug over a board.

« Static Library: Select to create a library with ".a" extension, that can be
included in other projects. Library files created using this option do not
include board specific details.

2.1.3 Debug Target Settings Page

Use this page to select debugger connection type, board type, launch configuration type, and connection type
for your project.

This page also lets you configure the connection settings for your project.

NOTE
This wizard page will prompt you to either create a new remote system configuration or
select an existing one. A remote system is a system configuration that defines
connection, initialization, and target parameters. The remote system explorer provides
data models and frameworks to configure and manage remote systems, their
connections, and their services. For more information, see CodeWarrior Development
Studio Common Features Guide available in the <CWInstallDir>\PA\Help\PDF\
folder, where <CWInstallDirs> is the installation directory of your CodeWarrior
software.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
22 NXP Semiconductors

Working with Projects
CodeWarrior Bareboard Project Wizard

Figure 3: Debug Target Settings Page

i =

¥ CodeWarrior Bareboard Project Wizard = @

Debug Target Settings
Target Settings

Debugger Connection Types:

@ Hardware

Simulator
Board P40E0ComE -
Launch Connection
V| Download -t~ Default S
Attach i -
Connect i i 1

Cache Download i i

ROM Attach

P

Download SREAM

P

Connect SRAM i -

Connection Type | CodeWarrior TAP (over USE] =

|§:| < Back H Mext = l | Finish | | Cancel

The table below describes the various options available on the Debug Target Settings page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 23

working with Projects
CodeWarrior Bareboard Project Wizard

Table 4: Debug Target Settings page settings

Option

Description

Debugger Connection Types

Board

Launch

Connection Type

TAP address

Specifies the available target types:
» Hardware - Select to execute the program on the target hardware available.
» Simulator - Select to execute the program on a software simulator.

« Emulator - Select to execute the program on a hardware emulator.

Specifies the hardware supported by the selected processor.

Specifies the launch configurations and corresponding connection,
supported by the selected processor.

Specifies the interface to communicate with the hardware.

» CodeWarrior TAP (over USB) - Select to use the CodeWarrior TAP
interface (over USB) to communicate with the hardware device.

» CodeWarrior TAP (over Ethernet) - Select to use the CodeWarrior TAP
interface (over Ethernet) to communicate with the hardware device.

» USB TAP - Select to use the USB interface to communicate with the
hardware device.

« Ethernet TAP - Select to use the Ethernet interface to communicate with
the target hardware.

For more details on CodeWarrior TAP, see CodeWarrior TAP User Guide
available in the <cwInstallpirs>\Pa\Help\PDF\ folder, where
<CWInstallDirs is the installation directory of your Codewarrior software.

+ Gigabit TAP - Corresponds to a Gigabit TAP that includes an Aurora
daughter card, which allows you to collect Nexus trace in a real-time non-
intrusive fashion from the high speed serial trace port (the Aurora interface).

+ Gigabit TAP + Trace (JTAG over JTAG cable) - Select to use the Gigabit
TAP and Trace probe to send JTAG commands over the JTAG cable.

» Gigabit TAP + Trace (JTAG over Aurora cable) - Select to use the Gigabit
TAP and Trace probe to send JTAG commands over the Aurora cable.

For more details on Gigabit TAP, see Gigabit TAP Users Guide available in
the <cwInstallDir>\PA\Help\PDF\ folder, where <cwinstallDirs> is the
installation directory of your Codewarrior software.

Enter the IP address of the selected TAP device.

2.1.4 Build Settings Page

Use this page to select a programming language, toolchain, and the output project type for your project.

NOTE

The current release does not include toolchains for Linux applications by default. To add
the required build tools support, you should install the corresponding service pack for
the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

24

NXP Semiconductors

Working with Projects
CodeWarrior Bareboard Project Wizard

Figure 4: Build Settings Page

e

Language
@ C
C++

Mote:

Toolchain

|($H'I
b

¥4 CodeWarrior Bareboard Project Wizard = @

Build Settings
Choose the build settings for the project

If the toclchain you want to use is disabled, please install the corresponding
package for adding the build tools support.

@ GCC EABI e500mc

m

Floating Point: | Hardware -

<Back | Net> || Finsh || Cance

The table below describes the various options available on the Build Settings page.

Table 5: Build Settings Page

Floating Point

Option Description
Language Specifies the programming language used by the new project. The current
installation supports the following languages:
» C - Select to generate ANSI C-compliant startup code, and initializes global
variables.
» C++ - Select to generate ANSI C++ startup code, and performs global class
object initialization.
Toolchain Specifies the toolchains supported by the current installation. Selected

toolchain sets up the default compiler, linker, and libraries used to build the
new project. Each toolchain generates code targeted for a specific platform.

Specifies how the compiler handles floating-point operations, encountered in
the source code.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

25

b -

vwvorking with Projects

CodeWarrior Bareboard Project Wizard

2.1.5 Configurations Page

Use this page to specify the processing model and the processor core that executes the project.

Figure 5: Configurations Page

i

Configurations

Choose the configurations you want to create

¥4 CodeWarrior Bareboard Project Wizard = @

Processing Model
SMP
@ AMP [One project per core)
() AMP (One build cenfiguration per core]

Core index

Corel
Core 2
Core 3
Core 4
Core s
Coref
Core7

@ | <Back |[Net> |[Finish || Cancel

The table below describes the various options available on the Configurations page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

26

NXP Semiconductors

Working with Projects
CodeWarrior Bareboard Project Wizard

Table 6: Configurations Page Setting

Option Description

Processing Model The current installation supports the following processing models:

* SMP - Select this option to generate a single project for the selected cores.
The cores share the same interrupt vector, text, data sections and heap
memory. Each core has its own, dedicated stack. A single initialization file
should be executed for each core.

NOTE
The SMP option is available for selection only
while creating projects for some e500mc, €5500,
and e6500 core targets.

+ AMP (one project per core) - Select this option to generate a separate
project for each selected core. The option will also set the core index for
each project based on the core selection.

« AMP (one build configuration per core) - Select this option to generate one
project with multiple targets, each containing an Icf file for the specified
core.

NOTE
Selecting the AMP (One build configuration per
core) option displays a checkbox, Set up build
references for build configurations of all cores, just
below this option. If you select the Set up build
references for build configurations of all cores
checkbox, then building the project for one core
will automatically build the project for other cores
as well. If you do not select this checkbox, then
you would need to manually build the project for
each core.

Core Index Select the processor core that executes the project.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 27

working with Projects
CodeWarrior Bareboard Project Wizard

2.1.6 Trace Configuration Page

Use this page to enable collection of trace and profiling data.

Figure 6: The Trace Configuration Page

E

¥4 CodeWarrior Bareboard Project Wizard = @

Trace Configuration

You can start a trace session automatically on debug launch:

Start a trace session on debug launch

Generate trace configurations:
| DDR Buffer
| MPC Buffer
Gigabit TAP + Trace

Enable circular cellection (DDR and MPC only):

Enable circular collection

c
'\E,-' et = Finish | | Cancel

The table below describes the various options available on the Trace Configuration page.

Table 7: Trace Configuration Page Settings

Option

Description

Start a trace session on debug
launch

Generate trace configurations

Enable circular collection (DDR
and NPC only)

Allows you to enable trace and profile for your project.

Specifies the source used for collecting trace data. The current installation
supports the following options:

+ DDR Buffer - Select to send trace to a DDR memory buffer.
« NPC Buffer - Select to send trace data to a small dedicated trace buffer.

+ Gigabit TAP + Trace - Select to collect trace data on a GigabitTAP+Trace
probe.

Specifies circular collection of trace data in the generated trace
configurations. If selected, the trace buffer is treated as a "circular buffer', and
tracing continues even after the buffer is full by replacing the oldest entries.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

28

NXP Semiconductors

Working with Projects
CodeWarrior Linux Project Wizard

2.2 CodeWarrior Linux Project Wizard

The CodeWarrior Linux Project Wizard helps you create a Linux project by displaying various pages that allow
you to specify settings for your project.

The pages that the wizard presents can Zli(f?;-rl,zbased upon the choice of project type or
execution target.

The pages of the CodeWarrior Linux Project Wizard are:

» Create a CodeWarrior Linux Project Page on page 29

* Processor Page on page 31

+ Build Settings Page on page 32

* Linux Application Page on page 33

2.2.1 Create a CodeWarrior Linux Project Page

Use this page to specify the project name and the directory where the project files are located.

Figure 7: Create a CodeWarrior Linux Project Page

P)

¥ CodeWarrior Linux Project Wizard = @

Create a CodeWarrior Linux Project

Choose the location for the new project

Project name: | Hello_World

| Use default location

ChUsers\b34823 workspace\Hello_World

= —_—
'\Z,.' < Bac Mext = Finish Cancel

The table below describes the various options available on the Create a CodeWarrior Linux Project page.

Table 8: Create a CodeWarrior Linux Project Page Settings

Option Description

Project name Enter the name for the project in this text box.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 29

working with Projects
CodeWarrior Linux Project Wizard

Table 8: Create a CodeWarrior Linux Project Page Settings (continued)

Option Description

Use default location Select to choose the directory to store the files required to build the program.
Use the Location option to select the desired directory.

Location Specifies the directory that contains the project files. Use Browse to navigate
to the desired directory. This option is only available when Use default
location is cleared. Ensure that you append the name of the project to the
path to create a new location for your project.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
30 NXP Semiconductors

Working with Projects
CodeWarrior Linux Project Wizard

2.2.2 Processor Page

This page displays the processors supported by the current installation. Use this page to specify the type of
processor and the output for the new project.

Figure 8: Processor Page

i "

¥ CodeWarrior Linux Project Wizard = @

Processor

Choose the processor for this project

Processarn

type filter text

85
C29%
Qonverge
Qorl]_P1
Qorl) P2
Qorl)_P3
Qorl) P4
P4040
P4080
Qorl)_P5
Qorl T1
Qorl(_T2
Qorl(_T4

Project Qutput:
@ Application
I Library

=

The table below describes the various options available on the Processor page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 31

working with Projects
CodeWarrior Linux Project Wizard

Table 9: Processor Page Settings

+ Application -Select to create an application with ".e1£" extension, that
includes information related to the debug over a board.

« Library -Select to create a library with ". a" extension, that can be included
in other projects. Library files created using this option do not include board

specific details.

Option Description

Processor Expand the processor family tree and select a supported target. The toolchain
uses this choice to generate code that makes use of processor-specific
features, such as multiple cores.

Project Output Select any one of the following supported project output:

2.2.3 Build Settings Page

This page displays the toolchains supported by the current installation. Use this page to specify the toolchain

for the new project.

NOTE

The current release does not include toolchains for Linux applications by default. To add

the required build tools support, you should install the corresponding service pack for
the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

The table below describes the various options available on the Build Settings page.

Figure 9: Build Settings Page

CodeWarrior Linux Project Wizard

Build Settings
Choose the build settings For this project

Mote:

If the toolchain you want to use is disabled, please install the corresponding
ServicePack for adding the build tools support.

Toolchain:
G}Linux: GCC LIMUE eS00mc

Language:

®c
Oc++
Build Taols Architecture:
(32 bit
'@:‘ [< Back “ Mext = | [Finish] [Cancel

J

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

32

NXP Semiconductors

Working with Projects
CodeWarrior Linux Project Wizard

Table 10: Build Settings Page Setting

Option Description

Toolchain Specifies the toolchains supported by the current installation. Selected
toolchain sets up the default compiler, linker, and libraries used to build the
new project. Each toolchain generates code targeted for a specific platform.

Language Specifies the programming language used by the new project. The current

Build Tools Architecture

installation supports the following languages:

» C - Select to generate ANSI C-compliant startup code, and initializes global
variables.

+ C++ - Select to generate ANSI C++ startup code, and performs global class
object initialization.

Specifies the processor used by the new project. The current installation
supports the following architectures:

+ 32 bit - 32 bit option is available by default for QorlQ_P4 processors.
» 64 bit - 64 bit option is only available for QorlQ_P5 processors

NOTE
For QorlQ_P4 processors, 32 bit option is
selected by default and 64 bit is unavailable. But
if you are using QorlQ_P5 processors, both the
options are enabled.

2.2.4 Linux Application Page

Use this page to specify how the debugger communicates with the host Linux system and controls your Linux

application.

NOTE

The Linux Application page appears, in the CodeWarrior Linux Project Wizard, only
when you add the Linux build tools support, by installing the corresponding service pack
for the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

33

working with Projects
Creating projects

When debugging a Linux application, you must use the CodeWarrior TRK to manage

Figure 10: Linux Application Page

&

CodeWarrior. Linux Project Wizard

Linux Application

Linux Application Settings

Connection Type: Remote System Configuration
4= Default hd
IP Address: 127.0.0.1
Part: 12345

Remote Download Path: | fust/localibin

':?:' I Finish H Canicel

NOTE

the communications interface between the debugger and Linux system. For details, see
Install CodeWarrior TRK on Target System on page 228.

The table below describes the various options available on the Linux Application page.

Table 11: Linux Application Page Setting

Remote Download Path

Option Description

CodeWarrior TRK Select to use the CodeWarrior Target Resident Kernel (TRK) protocol, to
download and control application on the Linux host system.

IP Address Specifies the IP address of the Linux host system, the project executes on.

Port Specifies the port number that the debugger will use to communicate to the

Linux host.

Specifies the host directory into which the debugger downloads the

application.

2.3 Creating projects

You can use a project creation wizard provided by CodeWarrior Development Studio to create a CodeWarrior
project according to your requirements.

This section explains:

» Creating CodeWarrior Bareboard Application Project on page 35

 Creating CodeWarrior Bareboard Library Project on page 37

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

34

NXP Semiconductors

Working with Projects
Creating projects

» Creating CodeWarrior Linux Application Project on page 39

2.3.1 Creating CodeWarrior Bareboard Application Project

You can create a CodeWarrior bareboard application project using the CodeWarrior Bareboard Project
Wizard.

To create a CodeWarrior bareboard application project, perform these steps:

1.

Select Start > All Programs > Freescale CodeWarrior > CW for Power Architecture vnumber >
CodeWarrior IDE, where number is the version number of your product.

The Workspace Launcher dialog appears, prompting you to select a workspace to use.

NOTE
Click Browse to change the default location for workspace folder. You can also select
the Use this as the default and do not ask again checkbox to set default or selected path
as the default location for storing all your projects.

Click OK.
The default workspace is accepted. The CodeWarrior IDE launches and the Welcome page appears.
NOTE

The Welcome page appears only if the CodeWarrior IDE or the selected workspace is
started for the first time. Otherwise, the Workbench window appears.

. Click Go to Workbench from the Welcome page.

The workbench window appears.

. Select File > New > CodeWarrior Bareboard Project Wizard, from the CodeWarrior IDE menu bar.

The CodeWarrior Bareboard Project Wizard launches and the Create a CodeWarrior Bareboard Project page
appears.

Specify a name for the new project in the Project name text box.

For example, enter the project name as Hello World.

If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project. In the Location text box, append the location with the name of the directory in which you
want to create your project.

NOTE
An existing directory cannot be specified for the project location. If created, the
CodeWarrior will prompt an error message.

. Click Next.

The Processor page appears.
Select the target processor for the new project, from the Processor list.

Select Application from the Project Output group, to create an application with .e1f extension, that
includes information required to debug the project.

10.Click Next.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 35

working with Projects
Creating projects

The Debug Target Settings page appears.

11.Select a supported connection type (hardware, simulator, or emulator), from the Debugger Connection
Types group. Your selection determines the launch configurations that you can include in your project.

12.Select the board you are targeting, from the Board drop-down list.
NOTE
Hardware or Simulators that supports the target processor selected on the Processors

page are only available for selection. If you are using the Simics simulator, see https://
www.simics.net/ for latest version and installation instructions for Simics.

13.Select the launch configurations that you want to include in your project and the corresponding connection,
from the Launch group.
14.Select the interface to communicate with the hardware, from the Connection Type drop-down list.

15.Enter the IP address of the TAP device in the TAP address text box. This option is disabled and cannot be
edited, if you select USB TAP from the Connection Type drop-down list.

16.Click Next.
The Build Settings page appears.
17 Select the programming language, you want to use, from the Language group.

The language you select determines the libraries that are linked with your program and the contents of the
main source file that the wizard generates.

18.Select the architecture type used by the new project, from the Build Tools Architecture group.

NOTE
For projects created for QorlQ_P5 processors, both the 32 bit and 64 bit options are
enabled and can be selected. This option may not be available for some target
processors selected on the Processors page.

19.Select a toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

NOTE
The current release does not include toolchains for Linux applications by default. To add
the required Linux build tools support, you should install the corresponding service pack
for the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

20.Select an option from the Floating Point drop-down list, to prompt the compiler to handle the floating-point
operations by generating instructions for the selected floating-point unit.
21.Click Next.
The Configurations page appears.
22 Select a processing model option from the Processing Model group.
NOTE

The SMP option is available for selection only while creating projects for some e500mc
and e5500 core targets.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
36 NXP Semiconductors

https://www.simics.net/
https://www.simics.net/

Working with Projects
Creating projects

» Select SMP (One build configuration for all the cores) to generate a single project for the selected cores.
The cores share the same interrupt vector, text, data sections and heap memory. Each core has its own,
dedicated stack. A single initialization file should be executed for each core.

» Select AMP (One project per core) to generate a separate project for each selected core. The option will
also set the core index for each project based on the core selection.

+ Select AMP (One build configuration per core) to generate one project with multiple targets, each
containing an .1cf file for the specified core.

23.Select the processor core that executes the project, from the Core index list.
24 Click Next.

The Trace Configuration page appears.
25.If you plan to collect the trace details:

a. Select the Start a trace session on debug launch checkbox, to start a trace session automatically on
debug launch.

b. Select the source used for collecting trace data, from the Generate trace configurations group.
« Select the DDR Buffer checkbox, to send the trace data to a DDR memory buffer.
+ Select the NPC Buffer checkbox, to send the trace data to a small dedicated trace buffer.
+ Select the Gigabit TAP + Trace checkbox, to collect trace data on a Gigabit TAP+Trace probe.

c. Select the Enable circular collection checkbox, from the Enable circular collection (DDR and NPC only)
group, to treat the trace buffer as a “circular buffer'. Selection of this checkbox, ensures continuation of
trace collection, even after the buffer is full, by replacing the oldest entries.

26.Click Finish.

The wizard creates an application project according to your specifications. You can access the project from
the CodeWarrior Projects view on the Workbench.

The new project is ready for use. You can now customize the project by adding your own source code files,
changing debugger settings and adding libraries.

2.3.2 Creating CodeWarrior Bareboard Library Project

You can create a CodeWarrior bareboard library project using the CodeWarrior Bareboard Project Wizard.
To create a CodeWarrior bareboard library project, perform these steps:

1. Select Start > All Programs > Freescale CodeWarrior > CW for Power Architecture vnumber >
CodeWarrior IDE, where numberis the version number of your product.

The Workspace Launcher dialog appears, prompting you to select a workspace to use.

NOTE
Click Browse to change the default location for workspace folder. You can also select
the Use this as the default and do not ask again checkbox to set default or selected path
as the default location for storing all your projects.

2. Click OK.
The default workspace is accepted. The CodeWarrior IDE launches and the Welcome page appears.
NOTE

The Welcome page appears only if the CodeWarrior IDE or the selected workspace is
started for the first time. Otherwise, the Workbench window appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 37

|
y

'
A

working with Projects
Creating projects
3. Click Go to Workbench, on the Welcome page.
The workbench window appears.
4. Select File > New > CodeWarrior Bareboard Project Wizard, from the CodeWarrior IDE menu bar.

The CodeWarrior Bareboard Project Wizard launches and the Create a CodeWarrior Bareboard Project page
appears.

5. Specify a name for the new project in the Project name text box.
For example, enter the project name as library project.
6. If you do not want to create your project in the default workspace:
a. Clear the Use default location checkbox.
b. Click Browse and select the desired location from the Browse For Folder dialog.
c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

NOTE
An existing directory cannot be specified for the project location.
7. Click Next.
The Processor page appears.
8. Select the target processor for the new project, from the Processor list.

9. Select Static Library from the Project Output group, to create a library with .a extension, that can be
included in other projects. Library files created using this option do not include board specific details.

10.Click Next.
The Build Settings page appears.
11.Select the programming language, you want to use, from the Language group.

The language you select determines the libraries that are linked with your program and the contents of the
main source file that the wizard generates.

12.Select a toolchain from the Toolchain group.
Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

NOTE
The current release does not include toolchains for Linux applications by default. To add
the required build tools support, you should install the corresponding service pack for
the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

13.Select an option from the Floating Point drop-down list, to prompt the compiler to handle the floating-point
operations by generating instructions for the selected floating-point unit.
14 Click Finish.

The wizard creates a library project according to your specifications. You can access the project from the
CodeWarrior Projects view on the Workbench.

The new library project is ready for use. You can now customize the project to match your requirements.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
38 NXP Semiconductors

Working with Projects
Creating projects

2.3.3 Creating CodeWarrior Linux Application Project

You can create a CodeWarrior Linux application project using the CodeWarrior Linux Project Wizard.
To create a CodeWarrior Linux application project, perform these steps:

1. Select Start > All Programs > Freescale CodeWarrior > CW for Power Architecture vnumber >
CodeWarrior IDE, where number is the version number of your product.

The Workspace Launcher dialog appears, prompting you to select a workspace to use.

NOTE
Click Browse to change the default location for workspace folder. You can also select
the Use this as the default and do not ask again checkbox to set default or selected path
as the default location for storing all your projects.

2. Click OK.

The default workspace is accepted. The CodeWarrior IDE launches and the Welcome page appears.

The Welcome page appears only if the Cr)\lcgiZSVarrior IDE or the selected workspace is
started for the first time. Otherwise, the Workbench window appears.
3. Click Go to Workbench, on the Welcome page.
The workbench window appears.
4. Select File > New > CodeWarrior Linux Project Wizard, from the CodeWarrior IDE menu bar.
The CodeWarrior Linux Project Wizard launches and the Create a CodeWarrior Linux Project page appears.
5. Specify a name for the new project in the Project name text box.
For example, enter the project name as 1inux project.
6. If you do not want to create your project in the default workspace:
a. Clear the Use default location checkbox.
b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

NOTE
An existing directory cannot be specified for the project location.

7. Click Next.
The Processor page appears.
8. Select the target processor for the new project, from the Processor list.

9. Select Application from the Project Output group, to create an application with .e1f extension, that
includes information required to debug the project.

10.Click Next.
The Build Settings page appears.
11.Select a toolchain for Linux applications from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 39

|
y

'
A

working with Projects
Building projects

NOTE
The current release does not include toolchains for Linux applications by default. To add
the required Linux build tools support, you should install the corresponding service pack
for the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.
12.Select the programming language, you want to use, from the Language group.

The language you select determines the libraries that are linked with your program and the contents of the
main source file that the wizard generates.

13.Select the architecture type used by the new project, from the Build Tools Architecture group.

NOTE
For projects created for QorlQ_P5 processors, both the 32 bit and 64 bit options are
enabled and can be selected. For all other processors, 32 bit option is selected by default
and 64 bit is disabled and cannot be selected.
14 Click Next.
The Linux Application page appears.

15.Select CodeWarrior TRK to use the CodeWarrior Target Resident Kernel (TRK) protocol, to download and
control application on the Linux host system.

NOTE
When debugging a Linux application, you must use the CodeWarrior TRK to manage
the communications interface between the debugger and Linux system. For details, see
Install CodeWarrior TRK on Target System on page 228.
16.Specify a Remote System Configuration option.
17.In the IP Address text box, enter the IP Address of the Linux host system, the project executes on.

18.In the Port text box, enter the port number that the debugger will use to communicate to the Linux host
system.

19.In the Remote Download Path text box, enter the absolute path for the host directory, into which the
debugger downloads the application.

20 Click Finish.

The wizard creates a CodeWarrior Linux application project according to your specifications. You can access
the project from the CodeWarrior Projects view on the Workbench.

The new CodeWarrior Linux application project is ready for use. You can now customize the project to match
your requirements.

2.4 Building projects

CodeWarrior IDE supports two modes of building projects.
These modes are:

* Manual-Build mode on page 41

 Auto-Build mode on page 41

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
40 NXP Semiconductors

Working with Projects
Building projects

2.4.1 Manual-Build mode

This section explains the manual mode of building projects.

In large workspaces, building the entire workspace can take a long time if users make changes with a significant
impact on dependent projects. Often there are only a few projects that really matter to a user at a given time.

To build only the selected projects, and any prerequisite projects that need to be built to correctly build the
selected projects, select Project > Build Project from the CodeWarrior IDE menu bar.

Figure 11: Project Menu- Build Project

Project

Close Project

g Build Al Chri+B
Build Configurations r
Build Project
Build Working Set r
Clean. ..

Build Automatically

Make Target r
Generate Makefiles Chrl+6

Properties

Alternatively, right-click on the selected project in the CodeWarrior Projects view and select Build Project from
the context menu.
To build all projects available in the CodeWarrior Projects view, select Project > Build All.

Figure 12: Project Menu-Build All

Project

Close Project

£ Build Al Chrl+B
Build Configurations r
Build Project
Build Waorking Set r
Clean. ..

Build Automatically

Make Target r
Generate Makefiles Chrl+6

Properties

2.4.2 Auto-Build mode

This section explains the automatic mode of building projects.

CodeWarrior IDE takes care of compiling source files automatically. When auto-build is enabled, project build
occurs automatically in the background every time you change files in the workspace (for example saving an
editor).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 41

A 4
4\

working with Projects

Importing Classic CodeWarrior Projects

To automatically build all the projects in a workspace, select Project > Build Automatically from the CodeWarrior
IDE menu bar.

Figure 13: Project Menu-Build Automatically

Projeck

Close Project

g Build Al Chri+B
Build Configurations r
Build Project
Build Working Set r
Clean. ..

Build Aukarmatically

Make Target r
Generate Makefiles Chrl+6

Properties

If auto-build is taking too long and is interfering with ongoing development, it can be turned off. Select Project >
Build Automatically from the CodeWarrior IDE menu bar to disable auto-build mode.

NOTE
It is advised that you do not use the Build Automatically option for C/C++ development.
Using this option will result in building the entire project whenever you save a change
to the makefile or source files. This can take a significant amount of time for very large
projects.

2.5 Importing Classic CodeWarrior Projects

The CodeWarrior Project Importer feature in Eclipse IDE helps automate the conversion of a legacy C/C++
CodeWarrior IDE project to a project supported by the latest versions of the CodeWarrior IDE.

This feature lets you:

Select the classic CodeWarrior project

Set targets to import

Configure source trees and shielded folders

Edit access paths for each target

List files that are not found in the previous settings
Specify the new project name and location

List warnings or errors in the conversion process

Open the newly created Eclipse project.
NOTE
For more information on importing classic CodeWarrior projects to the latest versions

of the CodeWarrior IDE, see the CodeWarrior Common Features Guide from the
<CWInstallDir>\PA\Help\PDF\ folder.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

42

NXP Semiconductors

Working with Projects
Deleting Projects

2.6 Deleting Projects

Using the options available in CodeWarrior IDE, you can delete a project and optionally the resources linked
to the project.

To delete a project, follow these steps:
1. Select the project you want to delete in the CodeWarrior Projects view.
2. Select Edit > Delete.

The Delete Resources dialog appears.

NOTE
Alternatively, you can also select Delete from the context menu that appears when you
right-click the project.

3. Select the Delete project contents on disk (cannot be undone) option to delete the project contents
permanently.

NOTE
You will not be able to restore your project using Undo, if you select the Delete project
contents on disk (cannot be undone) option.

4. Click OK.

NOTE
In case, the Unreferenced Remote Systems dialog appears displaying a list of remote
systems used by the deleted project, click Remove to delete the unreferenced remote
systems. Alternatively, click Cancel to reuse the remote systems.

The selected project is deleted and relevant details of the project are removed from the CodeWarrior Projects
view.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 43

V¥ ¢
i

working with Projects
Deleting Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
44 NXP Semiconductors

Build Properties
Changing Build Properties

Chapter 3
Build Properties

This chapter explains build properties for CodeWarrior for Power Architecture projects.

A build configurationis a named collection of build tools options. The set of options in a given build configuration
causes the build tools to generate a final binary with specific characteristics. For example, the binary produced
by a "Debug" build configuration might contain symbolic debugging information and have no optimizations, while
the binary product by a "Release" build configuration might contain no symbolics and be highly optimized.

NOTE
The settings of the CodeWarrior IDE's build and launch configurations correspond to an
object called a target made by the classic CodeWarrior IDE.
This chapter explains:
» Changing Build Properties on page 45
» Restoring Build Properties on page 46

« Build Properties for Power Architecture on page 46

3.1 Changing Build Properties

You can modify the build properties of a project to better suit your needs.

To change build properties of a project, perform the steps given below:

1. Start the CodeWarrior IDE.

2. In the CodeWarrior Projects view, select the project for which you want to modify the build properties.
3. Select Project > Properties from the menu bar.

The Properties for <project>window appears. The left pane of this window shows the build properties that
apply to the current project.

4. Expand the C/C++ Build property.
5. Select Settings.

6. Use the Configuration drop-down list in the right pane to specify the launch configuration for which you
want to modify the build properties.

7. Click the Tool Settings tab. The corresponding page appears.
8. From the list of tools on the Tool Settings page, select the tool for which you want to modify properties.
9. Change the settings that appear in the page.
10.Click Apply.
The IDE saves your new settings.

You can select other tool pages and modify their settings. When you finish, click OK to save your changes and
close the Properties for <project>window.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 45

|
y

'
A

Build Properties
Restoring Build Properties

3.2 Restoring Build Properties

If you had modified a build configuration of a project in the past, you can restore the build properties to have a
factory-default configuration, or to revert to a last-known working build configuration.

To undo your modifications to build properties, click Restore Defaults at the bottom of the Properties window.

This changes the values of the options to the absolute default of the toolchain. By default, the toolchain options
are blank.

For example, when a Power Architecture project is created the Power ELF Linker panel has some values set,
which are specific to the project. By selecting Restore Defaults the default values of settings will return to blank
state of the toolchain.

3.3 Build Properties for Power Architecture

Based on different processor families, CodeWarrior for Power Architecture supports both CodeWarrior and
GCC builds tools.

The build tools used in a project depend upon the processor and the build toolchain that is selected while creating
a project.

The table below lists the build tools supported by different processors.

Table 12: Build Tools for Power Architecture Processor Families

Family Processor Build Tool
82xx 8250 CodeWarrior tools
83xx 8306 CodeWarrior tools
8309 CodeWarrior tools
8323 CodeWarrior tools
8377 CodeWarrior tools
85xx 8536 CodeWarrior tools
8548 CodeWarrior tools
8560 CodeWarrior tools
8568 CodeWarrior tools
8569 CodeWarrior tools
8572 CodeWarrior tools
C29x C29x CodeWarrior tools
Qonverge B4420 GCC tools
B4460 GCC tools
B4860 GCC tools
Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
46 NXP Semiconductors

Table 12: Build Tools for Power Architecture Processor Families (continued)

Build Properties

Build Properties for Power Architecture

Family Processor Build Tool
BSC9131 CodeWarrior/GCC tools
BSC9132 CodeWarrior/GCC tools
G1110 CodeWarrior/GCC tools
G4860 GCC tools

QorlQ_P1 P1010 CodeWarrior tools
P1011 CodeWarrior tools
P1012 CodeWarrior tools
P1013 CodeWarrior tools
P1014 CodeWarrior tools
P1015 CodeWarrior tools
P1016 CodeWarrior tools
P1017 CodeWarrior tools
P1020 CodeWarrior tools
P1021 CodeWarrior/GCC tools
P1022 CodeWarrior tools
P1023 CodeWarrior tools
P1024 CodeWarrior tools
P1025 CodeWarrior tools

QorlQ_P2 P2010 CodeWarrior tools
P2020 CodeWarrior tools
P2040 GCC tools
P2041 GCC tools

QorlQ_P3 P3041 GCC tools

QorlQ_P4 P4040 GCC tools
P4080 GCC tools

QorlQ_P5 P5010 GCC tools
P5020 GCC tools
P5021 GCC tools
P5040 GCC tools

QorlQ_T1 T1013 GCC tools
T1014 GCC tools

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

47

Build Properties

Build Properties for Power Architecture

Table 12: Build Tools for Power Architecture Processor Families (continued)

Family Processor Build Tool
T1020 GCC tools
T1022 GCC tools
T1023 GCC tools
T1024 GCC tools
T1040 GCC tools
T1042 GCC tools
QorlQ_T2 T2080 GCC tools
T2081 GCC tools
QorlQ_T4 T4160 GCC tools
T4240 GCC tools

The following sections will help you with more details on the build tools supported by the current installation:

+ CodeWarrior Build Tool Settings on page 48
+ GCC Build Tool Settings on page 73

3.3.1 CodeWarrior Build Tool Settings

CodeWarrior build tools are build tools developed by Freescale.

The table below lists the CodeWarrior build tool settings specific to developing software for Power Architecture.

NOTE
For more details on CodeWarrior build tools, see the Power Architecture Build Tools

Reference Manual available in the <CWInstallDir>\PA\Help\PDF\ folder.

Table 13: CodeWarrior Build Tool Settings for Power Architecture

Build Tool

Build Properties Panels

PowerPC CPU on page 49
Debugging on page 50
Messages on page 50

PowerPC Linker on page 51

PowerPC Compiler on page 57

Input on page 51

Link Order on page 53
General on page 53
Output on page 54
Preprocessor on page 58
Input on page 58
Warnings on page 59

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

48

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 13: CodeWarrior Build Tool Settings for Power Architecture (continued)

Build Tool

Build Properties Panels

PowerPC Assembler on page 68

PowerPC Disassembler on page

PowerPC Preprocessor on page

Optimization on page 62
Processor on page 62
C/C++ Language on page 66
Input on page 69
General on page 70

70 Disassembler Settings on page 71

72 Preprocessor Settings on page 72

3.3.1.1 PowerPC CPU

Use the PowerPC CPU panel to specify the Power Architecture processor family for the project.

The properties specified on this page are also used by the build tools (compiler, linker, and assembler).

The table below lists and describes the various options available on the PowerPC CPU panel.

Table 14: CodeWarrior Build Tool Settings - PowerPC CPU Options

Option

Explanation

Processor

Floating Point

Byte Ordering

Code Model

ABI

Tune Relocations

Generates and links object code for a specific processor. This setting is
equivalent to specifying the -proc [essor] keyword command-line option.

Controls floating-point code generation. This setting is equivalent to
specifying the -fp keyword command-line option.

Generates object code and links an executable image to use the specified
data format. This setting is equivalent to specifying the -bigor -little
command-line options.

Specifies the addressing mode that the linker uses when resolving
references. This setting is equivalent to specifying the -model keyword
command-line option.

Chooses which ABI (Application Binary Interface) to conform to. This setting
is equivalent to specifying the -abi keyword command-line option.

Ensures that references made by the linker conform to the PowerPC EABI
(Embedded Application Binary Interface) or position-independent ABI
(Application Binary Interface). Use this option only when you select EABI or
SDA PIC/PID from the ABI drop-down list, to ensure that references in the
executable image conform to these ABIs. To conform to both of these ABls,
the linker will modify relocations that do not reach the desired executable
code. The linker first converts near branch instructions to far branch
instructions. Then it will convert absolute branches to PC-relative branches.
For branches that cannot be converted to far or PC-relative addressing, the
linker will generate branch islands. To conform to the SDA PIC/PID ABI, the
linker will generate the appropriate style of addressing. This setting is
equivalent to specifying the -tune relocations command-line option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

49

Build Properties
Build Properties for Power Architecture

Table 14: CodeWarrior Build Tool Settings - PowerPC CPU Options (continued)

Option

Explanation

Compress for PowerPC VLE
(Zen)

Small Data

Small Data2

Specifies compression of the VLE (Variable Length Encoding) code by
shortening the gaps between the functions.

NOTE
For Power Architecture processors that do not
have the VLE capability, this option is disabled
and cannot be selected.

Limits the size of the largest objects in the small data section. This setting is
equivalent to specifying the -sdata [threshold] size command-line option.
The sizevalue specifies the maximum size, in bytes, of all objects in the small
data section (.sdata). The default value for sizeis 8. The linker places
objects that are greater than this size in the data section (.data) instead.

Limits the size of the largest objects in the small constant data section. This
setting is equivalent to specifying the -sdata2 [threshold] Size command-
line option. The size value specifies the maximum size, in bytes, of all objects
in the small constant data section (. sdata2). The default value for sizeis s.
The linker places constant objects that are greater than this size in the
constant data section (. rodata) instead.

3.3.1.2 Debugging

Use the Debugging panel to specify the global debugging options for the project.

The table below lists and describes the various options available on the Debugging panel.

Table 15: CodeWarrior Build Tool Settings - Debugging Options

Option

Explanation

Generate DWARF Information

Store Full Paths To Source
Files

Generates DWARF 2.x conforming debugging information. This setting is
equivalent to specifying the -sym dwarf-2 command-line option.

Stores absolute paths of the source files instead of relative paths. This setting
is equivalent to specifying the -sym fullfpath] command-line option.

3.3.1.3 Messages

Use the Messages panel to specify the error and warning message options for the project.

The table below lists and describes the various options available on the Messages panel.

Table 16:

CodeWarrior Build Tool Settings - Messages Options

Option

Explanation

Message Style

Maximum Number of Errors

Maximum Number of Warnings

Controls the style used to show error and warning messages. This setting is
equivalent to specifying the -msgstyle keyword command-line option.

Specifies the maximum number of errors messages to show. This setting is
equivalent to specifying the -maxerrors numbercommand-line option.

Specifies the maximum number of warning messages to show. This setting
is equivalent to specifying the -maxwarnings numbercommand-line option.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

50

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

3.3.1.4 PowerPC Linker

Use the PowerPC Linker panel to specify the CodeWarrior linker options that are specific to Power
Architecture software development.

NOTE
The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.
The table below lists and describes the various options available on the PowerPC Linker panel.

Table 17: CodeWarrior Build Tool Settings - PowerPC Linker Options

Option Explanation

Command Specifies the location of the linker executable file

All Options Specifies the actual command line, the linker will be called with
Expert settings: Specifies the expert settings command line parameters

Command line pattern

This section contains the following subsections:
* Input on page 51

 Link Order on page 53

» General on page 53

* Output on page 54
3.3.1.4.1 Input

Use the Input panel to specify the path to the linker command file and libraries.

The table below lists and describes the various options available on the Input panel.

Table 18: CodeWarrior Build Tool Settings - Input Options

Option Explanation

No Standard Library Uses standard system library access paths as specified by the environment
variable sMwLibraries% to add system libraries as specified by the
environment variable sMwLibraryFiles% at the end of link order. This setting
is equivalent to specifying the -nostdlib command-line option.

Link Command File (.Icf) Specifies the path of the linker-command file that the linker reads to
determine how to build the output file. Alternatively, click Browse, then use
the resulting dialog to specify the linker command file. This setting is
equivalent to specifying the -1cf filename command-line option.

Code Address Sets the run-time address of the executable code. This setting is equivalent
to specifying the -codeaddr addr command-line option. The addr value is
an address, in decimal or hexadecimal format. Hexadecimal values must
begin with ox. The default is 65536. This option is disabled and cannot be
selected if you have specified the . 1cf file in the Link Command File (.Icf)
text box.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 51

Build Properties

Build Properties for Power Architecture

Table 18: CodeWarrior Build Tool Settings - Input Options (continued)

Option

Explanation

Data Address

Small Data Address

Small Data 2 Address

Entry Point

Library Search Paths

Library Files

Sets the loading address of the data. This setting is equivalent to specifying
the -dataaddr addrcommand-line option. The addrvalue is an address, in
decimal or hexadecimal format. Hexadecimal values must begin with 0x. The
default is the address after the code and large constant sections. This option
is disabled and cannot be selected if you have specified the .1cf file in the
Link Command File (.Icf) text box.

Sets the loading address of small data. This setting is equivalent to specifying
the -sdataaddr addrcommand-line option. The addrvalue is an address,
in decimal or hexadecimal format. Hexadecimal values must begin with ox.
The default is the address after the large data section. This option is disabled
and cannot be selected if you have specified the . 1cf file in the Link
Command File (.Icf) text box.

Sets the loading address of small constant data. This setting is equivalent to
specifying the -sdata2addr addrcommand-line option. The addrvalue is
an address, in decimal or hexadecimal format. Hexadecimal values must
begin with ox. The default is the address after the small data section. This
option is disabled and cannot be selected if you have specified the . 1cf file
in the Link Command File (.Icf) text box.

Specifies the main entry point for the executable image. This setting is
equivalent to specifying the -m[ain] symbo/command-line option. The
maximum length of symbol is 63 characters. The defaultis _start.

Use this panel to specify multiple paths that the Power Architecture linker
searches for libraries. The linker searches the paths in the order shown in
this list. The table that follows lists and describes the toolbar buttons that help
work with the library search paths.

Lists paths to libraries that the Power Architecture linker uses. The linker uses
the libraries in the order shown in this list. The table that follows lists and
describes the toolbar buttons that help work with the library file search paths.

The table below lists and describes the toolbar buttons that help work with the library search paths.

Table 19: CodeWarrior Build Tool Settings - Input Toolbar Buttons

Button Tooltip Description

& Add Click to open the Add file path or the Add directory path dialog and
create a file or directory path.

2 Delete Click to delete the selected file or directory. To confirm deletion,
click Yes in the Confirm Delete dialog.

2 Edit Click to open the Edit file path or Edit directory path dialog and
update the selected file or directory.

& Move up Click to move the selected file search path one position higher in
the list.

Iyt Move down Click to move the selected file search path one position lower in

i the list.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

52

NXP Semiconductors

3.3.1.4.2 Link Order

Build Properties
Build Properties for Power Architecture

Use the Link Order panel to control the link input order.

The table below lists and describes the various options available on the Link Order panel.

Table 20: CodeWarrior Build Tool Settings - Link Order Options

Option

Explanation

Customize linker input order

Link Order

Allows to change the default link input order. Selecting this option enables
the Link Order panel, allowing you to change the default link input order by
using the Move Up and Move Down buttons on the Link Order panel toolbar.

Shows the default link input order that you can change by selecting a link
input and clicking the Move Up or Move Down button on the Link Order panel
toolbar.

3.3.1.4.3 General

Use the General panel to specify the linker performance and optimization parameters.

The table below lists and describes the various options available on the General panel.

Table 21: CodeWarrior Build Tool Settings - General Options

Option

Explanation

Link Mode

Code Merging

Aggresive Merging

Controls the performance of the linker. The default options are:
* Normal - Uses little memory but may take more processing time.

* Use Less RAM - Uses medium amount of memory for medium processing
time.

* Use More RAM - Uses lots of memory to improve processing time.

This setting is equivalent to specifying the -1linkmode keyword command-
line option.

Code merging reduces the size of object code by removing identical
functions. This option takes the following values:

+ Off - Disables code merging optimization. This is the default value.
« All Functions - Controls code merging for all identical functions.
+ Safe Functions - Controls code merging for weak functions.

This setting is equivalent to specifying the -code merging off | all |
safe command-line option.

The code merging optimization will not remove an identical copy of a function
if your program refers to its address. In this case, the compiler keeps this
copied function but replaces its executable code with a branch instruction to
the original function. To ignore references to function addresses, use
aggressive code merging. This setting is equivalent to specifying the -
code_merging all,aggressive OF -code merging safe,aggressive
command-line options.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

53

Build Properties
Build Properties for Power Architecture

Table 21: CodeWarrior Build Tool Settings - General Options (continued)

Option

Explanation

Merges FP Constants

Other Flags

Compiler pools strings of a file, when the option is checked. Deselect this
option to keep individual the strings of each file. (This permits deadstripping
of unused strings.) This setting is equivalent to specifying the #pragma
fp_constants merge pragma.

Specify linker flags.

3.3.1.4.4 Output

Use the Output panel to specify the configuration of your final output file.

The table below lists and describes the various options available on the Output panel.

Table 22: CodeWarrior Build Tool Settings - Output Options

Option

Explanation

Output Type

Optimize Partial Link

Deadstrip Unused Symbols

Specifies the generated output type. The default options are:
+ Application

« Static Library

+ Partial Link

This setting is equivalent to specifying the -application, -library, -
partial command-line options.

Specifies the use of a linker command file, create tables for C++ static
constructors, C++ static destructors, and C++ exceptions. This option also
configures the linker to build an executable image, even if some symbols
cannot be resolved.

NOTE
Select Partial Link from the Output Type list box to
enable this option.

This setting is equivalent to specifying the -opt partial command-line
option.

Removes unreferenced objects on a partially linked image.
NOTE

Select Partial Link from the Output Type list box to
enable this option.

This setting is equivalent to specifying the -strip partial command-line
option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

54

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 22: CodeWarrior Build Tool Settings - Output Options (continued)

Option

Explanation

Require Resolved Symbols

Heap Size (k)

Stack Size (k)

Interpreter

Generate Link Map

List Closure

List Unused Objects

List DWARF Objects

Generate Binary File

Generate S-Record File

Sort S-Record

Finishes a partial link operation and issues error messages for unresolved
symbols.

NOTE
Select Partial Link from the Output Type list box to
enable this option.

This setting is equivalent to specifying the -resolved partial command-
line option.

Sets the run-time size of the heap, in kilobytes. This setting is equivalent to
specifying the -heapsize Size command-line option.

Sets the run-time size of the stack, in kilobytes. This setting is equivalent to
specifying the -stacksize size command-line option.

Specifies the interpreter file used by the linker.

Generates a text file that describes the contents of the linker's output file. This
setting is equivalent to specifying the -map [filename/command-line option.

Controls the appearance of symbol closures in the linker map file. This setting
is equivalent to specifying the -listclosure command-line option.

Controls the appearance of a list of unused symbols in the linker map file.
This setting is equivalent to specifying the -mapunused command-line
option.

Controls the appearance of DWARF debugging information in the linker map
file. This setting is equivalent to specifying the -1istdwarf command-line
option.

Controls generation of the binary files. The default options are:

* None - Generates no binary file even if S-record generation is on. This is
the default option.

* One - Generates a single binary file with all the loadable code and data,
even if S-record generation is off.

+ Multiple - Generates separate binary files for each MEMORY directive,
even if S-record generation is off.

This setting is equivalent to specifying the -genbinary keyword command-
line option.

Generates an S-record file. This setting is equivalent to specifying the -srec
command-line option.

Sorts the records, in ascending order, in an S-record file.

NOTE
Select Generate S-Record File to enable this
option.

This setting is equivalent to specifying the -sortsrec command-line option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

55

Build Properties

Build Properties for Power Architecture

Table 22: CodeWarrior Build Tool Settings - Output Options (continued)

Option

Explanation

Max S-Record Length

EOL Character

Generate Warning Messages

Heap Address

Stack Address

Generate ROM Image

ROM Image Address

Specifies the length of S-records. You can select a value from 8 to 255. The
default is 26.

NOTE
Select Generate S-Record File to enable this
option.

This setting is equivalent to specifying the -sreclength command-line
option.

Specifies the end-of-line style to use in an S-record file. The default options
are:

+ Mac - Use Mac OS®-style end-of-line format.

+ DOS - Use Microsoft® Windows®-style end-of-line format. This is the
default choice.

* UNIX - Use a UNIX-style end-of-line format.

NOTE
Select Generate S-Record File to enable this
option.

This setting is equivalent to specifying the -sreceol keyword command-
line option.

Turns on most warning messages issued by the build tools. This setting is
equivalent to specifying the -w on command-line option.

Sets the run-time address of the heap. The specified address must be in
decimal or hexadecimal format. Hexadecimal values must begin with ox. The
default is stack_address - (heap size + stack size) wWhere
stack_address is the address of the stack, heap size is the size of the
heap, and stack_size is the size of the stack. This setting is equivalent to
specifying the -heapaddr address command-line option.

Sets the run-time address of the stack. The specified address must be in
decimal or hexadecimal format. Hexadecimal values must begin with ox. This
setting is equivalent to specifying the -stackaddr address command-line
option.

Enables generation of a program image that may be stored in and started
from ROM.

Generates a ROM image and specifies the image's starting address at run
time.

NOTE
Select Generate ROM Image to enable this
option.

This setting is equivalent to specifying the -romaddr addresscommand-line
option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

56

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 22: CodeWarrior Build Tool Settings - Output Options (continued)

Option

Explanation

RAM Buffer Address of ROM
Image

Specifies a run-time address in which to store the executable image in RAM
so that it may be transferred to flash memory.

NOTE
Select Generate ROM Image to enable this
option.

This option specifies information for a legacy flashing tool (some
development boards that used the Power Architecture 821 processor). This
tool required that the executable image must first be loaded to an area in
RAM before being transferred to ROM.

NOTE
Do not use this option if your flash memory tool
does not follow this behavior.

This setting is equivalent to specifying the -rombuffer addresscommand-
line option.

3.3.1.5 PowerPC Compiler

Use the PowerPC Compiler panel to specify the compiler options that are specific to Power Architecture
software development.

The table below lists and describes the various options available on the PowerPC Compiler panel.

Table 23: CodeWarrior Build Tool Settings - PowerPC Compiler Options

Option Explanation

Command Specifies the location of the PowerPC ELF compiler executable file that will
be used to build the project.

All Options The actual command line the compiler will be called with.

Expert settings: Shows the expert settings command line parameters.

Command line pattern

This section contains the following subsections:

Preprocessor on page 58
Input on page 58
Warnings on page 59
Optimization on page 62
Processor on page 62

C/C++ Language on page 66

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

57

Build Properties
Build Properties for Power Architecture

3.3.1.5.1 Preprocessor

Use the Preprocessor panel to specify the preprocessor behavior by providing details of the file, whose

contents can be used as prefix to

all source files.

The table below lists and describes the various options available on the Preprocessor panel.

Table 24: CodeWarrior Build Tool Settings - Preprocessor Options

Option

Explanation

Prefix Files

Source encoding

Defined Macros (-D)

Undefined Macros (-U)

Adds contents of a text file or precompiled header as a prefix to all source
files. This setting is equivalent to specifying the -prefix file command-line
option.

Specifies the default source encoding used by the compiler. The compiler
automatically detects uTF-8 (Unicode Transformation Format) header or
ucs-2/ucs-4 (Uniform Communications Standard) encodings regardless of
setting. The default setting is ascii. This setting is equivalent to specifying the
-enc [oding] keyword command-line option.

Defines a specified symbol name. This setting is equivalent to specifying the
-D name command-line option, where name is the symbol name to define.

Undefines the specified symbol name. This setting is equivalent to specifying
the -U name command-line option, where name is the symbol nhame to
undefine.

3.3.1.56.2 Input

Use the Input panel to specify the path and search order of the #include files.

The table below lists and describes the various options available on the Input panel.

Table 25: CodeWarrior Build Tool Settings - Input Options

Option

Explanation

Compile Only, Do Not Link

Do not use MWClncludes
variable

Always Search User Paths

User Path (-i)

User Recursive Path (-ir)

Instructs the compiler to compile but not invoke the linker to link the object
code. This setting is equivalent to specifying the -¢ command-line option.

Restricts usage of standard system include paths as specified by the
environment variable sMwcIncludess. This setting is equivalent to specifying
the -nostdinc command-line option.

Performs a search of both the user and system paths, treating #include
statements of the form #include <xyz>the same as the form #include
nxyz". This setting is equivalent to specifying the -nosyspath command-line
option.

Use this panel to specify multiple user paths and the order in which to search
those paths. The table that follows lists and describes the toolbar buttons that
help work with the file search paths. This setting is equivalent to specifying
the -i command-line option.

Appends a recursive access path to the current User Path list. The table that
follows lists and describes the toolbar buttons that help work with the file
search paths. This setting is equivalent to specifying the -ir pathcommand-
line option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

58

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 25: CodeWarrior Build Tool Settings - Input Options (continued)

Option Explanation

System Path (-I- -I) Changes the build target's search order of access paths to start with the
system paths list. The table that follows lists and describes the toolbar buttons
that help work with the file search paths.

» The compiler can search #include files in several different ways. Use this
panel to set the search order as follows:

 Forinclude statements of the form #include "xyz", the compiler first
searches user paths, then the system paths

+ Forinclude statements of the form #include <xyz>,the compiler searches
only system paths

This setting is equivalent to specifyingthe -1- -1 pathcommand-line option.

System Recursive Path (-I- -ir) | Appends a recursive access path to the current System Path list. The table
that follows lists and describes the toolbar buttons that help work with the file
search paths. This setting is equivalent to specifying the -1- -ir command-
line option.

Disable CW Extensions Controls deadstripping files. Not all third-party linkers require checking this
option.

The table below lists and describes the toolbar buttons that help work with the Input panel.

Table 26: CodeWarrior Build Tool Settings - Input Toolbar Buttons

Button Tooltip Description

& Add Click to open the Add file path or the Add directory path dialog and
create a file or directory path.

2 Delete Click to delete the selected file or directory. To confirm deletion,
click Yes in the Confirm Delete dialog.

2 Edit Click to open the Edit file path or Edit directory path dialog and
update the selected file or directory.

5 Move up Click to move the selected file search path one position higher in
the list.

Iy Move down Click to move the selected file search path one position lower in

; the list.

3.3.1.6.3 Warnings

Use the Warnings panel to control how the compiler reports the error and warning messages.

The table below lists and describes the various options available on the Warnings panel.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 59

Build Properties
Build Properties for Power Architecture

Table 27: CodeWarrior Build Tool Settings - Warnings

Option

Explanation

Treat All Warnings As Errors

lllegal Pragmas

Possible Errors

Extended Error Checking

Hidden virtual functions

Implicit Arithmetic Conversions

Implicit Integer To Float
Conversions

Implicit Float To Integer
Conversions

Implicit Signed/Unsigned
Conversions

Select to make all warnings into hard errors. Source code which triggers
warnings will be rejected.

Select to issue a warning message if the compiler encounters an
unrecognized pragma. This setting is equivalent to specifying the pragma
warn_illpragma pragma and the -warnings /#ljpragmas command-line
option.

Select to issue warning messages for common, usually-unintended logical
errors: in conditional statements, using the assignment (=) operator instead
of the equality comparison (==) operator, in expression statements, using the
== operator instead of the = operator, placing a semicolon (;) immediately
afterado, while, if, or for statement. This setting is equivalent to specifying
the warn possunwant pragma and the -warnings possible command-line
option.

Select to issue warning messages for common programming errors: mis-
matched return type in a function's definition and the return statement in the
function's body, mismatched assignments to variables of enumerated types.
This setting is equivalent to specifying the extended errorcheck pragma
and the -warnings extended command-line option.

Select to issue warning messages if you declare a non-virtual member
function that prevents a virtual function, that was defined in a superclass,
from being called. This setting is equivalent to specifying the
warn_hidevirtual pragma and the -warnings hidevirtual command-
line option.

Select to issue warning messages when the compiler applies implicit
conversions that may not give results you intend: assignments where the
destination is not large enough to hold the result of the conversion, a signed
value converted to an unsigned value, an integer or floating-point value is
converted to a floating-point or integer value, respectively. This setting is
equivalent to specifying the warn implicitconv pragma and the -warnings
implicitconv command-line option.

Select to issue warning messages for implicit conversions from integer to
floating-point values. This setting is equivalent to specifying the
warn_impl i2f conv pragma and the -warnings impl int2float
command-line option.

Select to issue warning messages for implicit conversions from floating point
values to integer values. This setting is equivalent to specifying the
warn_impl f£2i conv pragma and the -warnings impl float2int
command-line option.

Select to issue warning messages for implicit conversions from a signed or
unsigned integer value to an unsigned or signed value, respectively. This
setting is equivalent to specifying the warn_impl s2u conv pragma and the
-warnings signedunsigned command-line option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

60

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 27: CodeWarrior Build Tool Settings - Warnings (continued)

Option

Explanation

Pointer/Integral Conversions

Unused Arguments

Unused Variables

Missing ‘return' Statement

Expression Has No Side Effect

Extra Commas

Empty Declarations

Inconsistent “class' / 'struct’

Usage

Include File Capitalization

Check System Includes

Pad Bytes Added

Select to issue warning messages for implicit conversions from pointer values
to integer values and from integer values to pointer values. This setting is
equivalent to specifying the warn_any ptr int conv and

warn ptr_int conv pragmas and the -warnings ptrintconv,
anyptrinvconv command-line option.

Select to issue warning messages for function arguments that are not
referred to in a function. This setting is equivalent to specifying the
warn_unusedarg pragma and the -warnings unusedarg command-line
option.

Select to issue warning messages for local variables that are not referred to
in a function. This setting is equivalent to specifying the warn_unusedvar
pragma and the -warnings unusedvar command-line option.

Select to issue warning messages, if a function that is defined to return a
value has no return statement. This setting is equivalent to specifying the
warn missingreturn pragma and the -warnings missingreturn
command-line option.

Select to issue warning messages if a statement does not change the
program's state. This setting is equivalent to specifying the

warn no_side effect pragma and the -warnings unusedexpr command-
line option.

Select to issue a warning messages if a list in an enumeration terminates
with a comma. The compiler ignores terminating commas in enumerations
when compiling source code that conforms to the ISO/IEC 9899-1999 ("C99")
standard. This setting is equivalent to specifying the warn extracomma
pragma and the -warnings extracomma command-line option.

Select to issue warning messages if a declaration has no variable name. This
setting is equivalent to specifying the warn_emptydecl pragma and the -
warnings emptydecl command-line option.

Select to issue warning messages if the class and struct keywords are used
interchangeably in the definition and declaration of the same identifier in C+
+ source code. This setting is equivalent to specifying the warn_structclass
pragma and the -warnings structclass command-line option.

Select to issue warning messages if the name of the file specified in a
#include file directive uses different letter case from a file on disk. This
setting is equivalent to specifying the warn filenamecaps pragma and the
-warnings filecaps command-line option.

Select to issue warning messages if the name of the file specified in a
#include file directive uses different letter case from a file on disk. This
setting is equivalent to specifying the warn filenamecaps system pragma
and the -warnings sysfilecaps command-line option.

Select to issue warning messages when the compiler adjusts the alignment
of components in a data structure. This setting is equivalent to specifying the
warn padding pragma and the -warnings padding command-line option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

61

Build Properties
Build Properties for Power Architecture

Table 27: CodeWarrior Build Tool Settings - Warnings (continued)

Option

Explanation

Undefined Macro in #if

Non-Inlined Functions

Select to issue warning messages if an undefined macro appears in #if and
#elif directives. This setting is equivalent to specifying the
warn_undefmacro pragma and the -warnings undefmacro command-line
option.

Select to issue warning messages if a call to a function defined with the
inline, inline , Or inline keywords could not be replaced with the
function body. This setting is equivalent to specifying the warn notinlined
pragma and the -warnings notinlined command-line option.

3.3.1.5.4 Optimization

Use the Optimization panel to control the code optimization settings.

The table below lists and describes the various options available on the Optimization panel.

Table 28: CodeWarrior Build Tool Settings - Optimization Options

Option

Explanation

Optimization Level

Speed vs. Size

Inlining

Bottom-up Inlining

Specifies code optimization options to apply to object code. This setting is
equivalent to specifying the -opt keyword command-line option.

Specifies code optimization for speed or size. This setting is equivalent to
specifying the optimize for size on Of optimize for size off
pragmas and -opt speed Or -opt size command-line option.

Specifies inline options. Default settings are:
» Smart - The compiler considers the functions declared with inline.

+ Auto Inline - Inlines small functions even if they are not declared with the
inline qualifier.

 Off - Turns off inlining.

This setting is equivalent to specifying the -inline, -inline auto, or -
inline off command-line option.

Select to instruct the compiler to inline functions from the last function called
to the first function in a chain of function calls. This setting is equivalent to
specifying the inline bottom up pragma and -inline boftomup
command-line option.

3.3.1.5.5 Processor

Use the Processor panel to control the processor-dependent code-generation settings.

The table below lists and describes the various options available on the Processor panel.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

62

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 29: CodeWarrior Build Tool Settings - Processor Options

Option

Explanation

Struct Alignment

Function Alignment

Relax HW IEEE

Use Fused Mult-Add/Sub

Generate FSEL Instructions

Table continues on the next page...

Specifies structure and array alignment. The default options are:

» PowerPC - Use conventional Power Architecture alignment.
This choice is the default.

+ 68K - Use conventional Mac OS® 68K alignment.
* 68K 4-Byte - Use Mac OS® 68K 4-byte alignment.

This setting is equivalent to specifying the -align keyword
command-line option.

Specifies alignment of functions in executable code. The default
alignment is 4. However, at an optimization level 4, the alignment
changes to 16. If you are using -func_align 4 (or none) and if
you are compiling for VLE, then the linker will compress gaps
between VLE functions:

« If those functions are not called by a Classic PPC function

» The function has an alignment greater than 4.

NOTE
Compression of the gaps will only
happen on files compiled by the
CodeWarrior compiler.

This setting is equivalent to specifying the -func_align
command-line option.

Controls the use of relaxed IEEE floating point operations. This
setting is equivalent to specifying the -relax ieee command-line
option.

Controls the use of fused multiply-addition instructions. This
setting is equivalent to specifying the -maf on | off command-
line option.

Controls the use of FSEL instructions.

NOTE
Do not turn on this option, if the Power
Architecture processor of your target
platform does not have hardware
floating-point capabilities, that
includes fsel. This option only has an
effect if Relax HW IEEE option or -
relax ieee command-line optionis
also specified. The default is of £.

This setting is equivalent to specifying the -gen_fsel command-
line option.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

63

Build Properties
Build Properties for Power Architecture

Table 29: CodeWarrior Build Tool Settings - Processor Options (continued)

Option

Explanation

Assume Ordered Compares

Vector Support

Generate VRSAVE Instructions

AltiVec Structure Moves

Make Strings ReadOnly

Merges String Constants

Table continues on the next page...

Controls the assumption of no unordered values in comparisons.
This setting is equivalent to specifying the -ordered-fp-
compares, -no-ordered-fp-compares command-line Options.

Specifies supported vector options. Default settings are:
* None - Turns off vectorization.

» SPE - Enables the SPE vector support. This option needs to be
enabled when the floating point is set to SPFP or DPFP as both
SPFP and DPFP require support from the SPE vector unit. If the
option is not turned on, the compiler generates a warning and
automatically enables the SPE vector generation.

+ AltiVec - Enables the Altivec vector support and generate
AltiVec vectors and related instructions.

This setting is equivalent to specifying the -spe vector and -
vector keyword command-line options.

Specifies generation of AltiVec vectors and instructions that use
VRSAVE prologue and epilogue code. This setting is equivalent
to specifying the -vector nowrsave, -vector vrsavecommand-
line options.

Controls the use of Altivec instructions to optimize block moves.
This setting is equivalent to specifying the -
noaltivec move block, -altivec _move block command-
line options.

Places string constants in a read-only section. This setting is
equivalent to specifying the -readonlystrings command-line
options.

Specifies how the compiler will place strings of a file. If this option
is selected, the strings of a file will be kept as a pool; otherwise,
they will be placed separately.

NOTE
This option is enabled only when the
Make Strings ReadOnly option is
selected.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

64

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 29: CodeWarrior Build Tool Settings - Processor Options (continued)

Option

Explanation

Pool Data

Use Common Section

Use LMW STMW

Inlined Assembler is Volatile

Instruction Scheduling

Peephole Optimization

Profiler Information

Table continues on the next page...

Controls the grouping of similar-sized data objects. Use this option
to reduce the size of executable object code in functions that refer
to many objects of the same size. These similar-sized objects do
not need to be of the same type. The compiler only applies this
option to a function if the function refers to at least 3 similar-sized
objects. The objects must be global or static. At the beginning of
the function, the compiler generates instructions to load the
address of the first similar-sized object. The compiler then uses
this address to generate 1 instruction for each subsequent
reference to other similar-sized objects instead of the usual 2
instructions for loading an object using absolute addressing. This
setting is equivalent to specifying the pool data pragma and -
pool [data] command-line option.

Moves uninitialized data into a common section. The default is off.
This setting is equivalent to specifying the - common command-line
option.

Controls the use of multiple load and store instructions for function
prologues and epilogues. The default is off.

NOTE
This option is only available for big-
endian processors. This option is not
available for big-endian e500v1 and
e500v2 architectures when vector
and double-precision floating-point
instructions are used.

This setting is equivalent to specifying the -use 1mw_stmw
command-line option.

Controls whether or not inline assembly statements will be
optimized. This setting is equivalent to specifying the -
volatileasm, -novolatileasm command-line options.

Controls the rearrangement of instructions to reduce the effects
of instruction latency. The default is off. This setting is equivalent
to specifying the -schedule command-line option.

Specifies peephole optimization. This setting is equivalent to
specifying the peephole pragma and the -opt peep [hole]
command-line option.

Controls the appearance of calls to a profiler library at the entry
and exit points of each function. The default is off. This setting is
equivalent to specifying the -profile command-line option.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

65

Build Properties
Build Properties for Power Architecture

Table 29: CodeWarrior Build Tool Settings - Processor Options (continued)

Option Explanation
Generate ISEL Instructions (€500/Zen) Controls the use of isel instructions. The default is off.
NOTE
If the Power Architecture processor of
your target platform does not
implement the Freescale ISEL APU,
this option appears disabled and
cannot be selected.
This setting is equivalent to specifying the -use-isel command-
line option.
Translate PPC Asm to VLE Asm (Zen) Controls VLE code generation for inline assembly statements.

NOTE
If the Power Architecture processor of
your target platform does not have
the VLE capability, this option
appears disabled and cannot be
selected.

This setting is equivalent to specifying the -ppc_asm_to_vle
command-line option.

3.3.1.56.6 C/C++ Language

Use the C/C++ Language panel to control the compiler language features and some object code storage
features for the current build target.

The table below lists and describes the various options available on the C/C++ Language panel.

Table 30: CodeWarrior Build Tool Settings - C/C++ Language Options

Option

Explanation

Force C++ Compilation

ISO C++ Template Parser

Use Instance Manager

Enable C++ Exceptions

Translates all C source files as C++ source code. This setting is equivalent
to specifying the cplusplus pragma and -1lang c++ command-line option.

Enforces the use of ISO/IEC 14882-1998 standard for C++ to translate
templates, and more careful use of the typename and template keywords.
The compiler also follows stricter rules for resolving names during declaration
and instantiation. This setting is equivalent to specifying the

parse func_templ pragma and -iso_templates command-line option.

Reduces compile time by generating any instance of a C++ template (or non-
inlined inline) function only once. This setting is equivalent to specifying the
-instmgr command-line option.

Generates executable code for C++ exceptions. Enable this option, if you use
the try, throw, and catch statements specified in the ISO/IEC 14882-1998
C++ standard. Otherwise, disable this setting to generate smaller and faster
code. This setting is equivalent to specifying the -cpp exceptions
command-line option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

66

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 30: CodeWarrior Build Tool Settings - C/C++ Language Options (continued)

Option

Explanation

Enable RTTI
Enable C++ “bool' type, “true'
and “false' Constants

Enable wchar_t Support

EC++ Compatibility Mode

ANSI Strict

ANSI Keywords Only

Expand Trigraphs

Legacy for-scoping

Require Prototypes

Allows the use of the C++ run-time type information (RTTI) capabilities,
including the dynamic_cast and typeid operators. This setting is equivalent
to specifying the -rTTI command-line option.

Instructs the C++ compiler to recognize the bool type and its true and false
values specified in the ISO/IEC 14882-1998 C++ standard. This setting is
equivalent to specifying the -bool command-line option.

Instructs the C++ compiler to recognize the wchar_t data type specified in the
ISO/IEC 14882-1998 C++ standard. This setting is equivalent to specifying
the -wchar t command-line option.

Verifies C++ source code files for Embedded C++ source code. This setting
is equivalent to specifying the -dialect ec++command-line option.

Recognizes source code that conforms to the ISO/IEC 9899-1990 standard
for C. This setting is equivalent to specifying the -ansi strict command-line
option.

Generates an error message for all non-standard keywords.

NOTE
Enable this setting only if the source code strictly
adheres to the ISO standard.

This setting is equivalent to specifying the -stdkeywords command-line
option.

Specifies compiler to recognize trigraph sequences. clear this option to use
many common characters, that look like trigraph sequences, without
including escape characters. This setting is equivalent to specifying the -
trigraphs command-line option.

Generates an error message when the compiler encounters a variable scope
usage that the ISO/IEC 14882-1998 C++ standard disallows, but is allowed
in the C++ language specified in The Annotated C++ Reference Manual
("ARM"). This setting is equivalent to specifying the -for scoping
command-line option.

Specifies compiler to enforce the requirement of function prototypes.

NOTE
The compiler generates an error message if you
define a previously referenced function that does
not have a prototype. The compiler generates a
warning message, if you define the function before
it is referenced but do not give it a prototype.

This setting is equivalent to specifying the -requireprotos command-line
option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

67

Build Properties
Build Properties for Power Architecture

Table 30: CodeWarrior Build Tool Settings - C/C++ Language Options (continued)

Option

Explanation

Enable C99 Extensions

Enable GCC Extensions

Enum Always Int

Use Unsigned Chars

Pool Strings

Reuse

IPA

Other flags

Specifies compiler to recognize ISO/IEC 9899-1999 ("C99") language
features. This setting is equivalent to specifying the -dialect c99
command-line option.

Specifies compiler to recognize language features of the GNU Compiler
Collection (GCC) C compiler that are supported by CodeWarrior compilers.
This setting is equivalent to specifying the -gcc_extensions command-line
option.

Specifies compiler to use signed integers to represent enumerated
constants. This setting is equivalent to specifying the -enum command-line
option.

Specifies compiler to treat char declarations as unsigned char declarations.
This setting is equivalent to specifying the -char unsigned command-line
option.

Specifies compiler to collect all string constants into a single data section in
the object code, it generates. This setting is equivalent to specifying the -
strings pool command-line option.

Specifies compiler to store only one copy of identical string literals. This
setting is equivalent to specifying the -string reuse command-line option.

Specifies the Interprocedural Analysis (IPA) policy. The default values are:

» Off - No interprocedural analysis, but still performs function-level
optimization. Equivalent to the "no deferred inlining" compilation policy of
older compilers.

* File - Completely parse each translation unit before generating any code
or data. Equivalent to the "deferred inlining" option of older compilers. Also
performs an early dead code and dead data analysis in this mode. Objects
with unreferenced internal linkages will be dead-stripped in the compiler
rather than in the linker.

This setting is equivalent to specifying the -ipa command-line option.

Specify compiler flags.

3.3.1.6 PowerPC Assembler

Use the PowerPC Assembler panel to determine the format used for the assembly source files and the code
generated by the PowerPC assembler.

The table below lists and describes the various options available on the PowerPC Assembler panel.

Table 31: CodeWarrior Build Tool Settings - PowerPC Assembler Options

Option Explanation
Command Shows the location of the assembler executable file.
All Options Shows the actual command line the assembler will be called with.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

68

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 31: CodeWarrior Build Tool Settings - PowerPC Assembler Options (continued)

Option Explanation

Expert settings: Shows the expert settings command line parameters.

Command line pattern

This section contains the following subsections:
* Input on page 69

» General on page 70

3.3.1.6.1 Input

Use the Input panel to specify the path and search order of the #include files.

The table below lists and describes the various options available on the Input panel.

Table 32: CodeWarrior Build Tool Settings - Input Options

Option Explanation

Always Search user Paths Performs a search of both the user and system paths, treating #include
statements of the form #include <xyz>, the same as the form #include
nxyz". This setting is equivalent to specifying the -nosyspath command-line
option.

User Path (-i) Use this panel to specify multiple user paths and the order in which to search
those paths. The table that follows lists and describes the toolbar buttons that
help work with the file search paths. This setting is equivalent to specifying
the -i command-line option.

User Recursive Path (-ir) Appends a recursive access path to the current User Path list. The table that
follows lists and describes the toolbar buttons that help work with the file
search paths. This setting is equivalent to specifying the -ir pathcommand-
line option.

System Path (-I- -I) Changes the build target's search order of access paths to start with the
system paths list. The table that follows lists and describes the toolbar buttons
that help work with the file search paths. This setting is equivalent to
specifying the -1- -1 path command-line option.

System Recursive Path (-I- -ir) | Appends a recursive access path to the current System Path list. The table
that follows lists and describes the toolbar buttons that help work with the file
search paths. This setting is equivalent to specifying the -1- -ir command-
line option.

The table below lists and describes the toolbar buttons that help work with the Input panel.

Table 33: CodeWarrior Build Tool Settings - Input Toolbar Buttons

Button Tooltip Description

Add Click to open the Add file path or the Add directory path dialog and
create a file or directory path.

5]

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 69

Build Properties
Build Properties for Power Architecture

Table 33: CodeWarrior Build Tool Settings - Input Toolbar Buttons (continued)

Button Tooltip Description

= Delete Click to delete the selected file or directory. To confirm deletion,
click Yes in the Confirm Delete dialog.

2 Edit Click to open the Edit file path or Edit directory path dialog and
update the selected file or directory.

5 Move up Click to move the selected file search path one position higher in
the list.

Iy Move down Click to move the selected file search path one position lower in

. the list.

3.3.1.6.2 General

Use the General panel to specify the PowerPC assembler options that are specific to the Power Architecture
software development.

The table below lists and describes the various options available on the General panel.

Table 34: CodeWarrior Build Tool Settings - General Options

Option Explanation

Labels Must End With "' Specifies whether labels must end with a colon (:). Deselect this option to
omit the ending colon from label names that start in the first column. This
setting is equivalent to specifying the .option colon off | on | reset
assembler control option.

Directives Begin With "' Controls period usage for directives. Select this option to ensure that each
directive must start with a period. This setting is equivalent to specifying
the .option period off | on | reset assembler control option.

Case Sensitive |dentifier Specifies case sensitivity for identifiers. This setting is equivalent to
specifying the .option case off | on | reset assembler control option.

Allow Space In Operand Field | Controls spaces in operand fields. Deselect this option, if a space in an
operand field starts with a comment. This setting is equivalent to specifying
the .option space off | on | reset assembler control option.

GNU Compatible Syntax CodeWarrior Assembler supports several GNU-format assembly language
extensions. Select this option to control GNU's assembler format conflicts
with that of the CodeWarrior assembler.

Generate Listing File Controls generation of a listing file that includes files source, line numbers,
relocation information, and macro expansions. Deselect this option, if no
listing file is specified.

Other Flags Specify assembler flags.

3.3.1.7 PowerPC Disassembler

Use the PowerPC Disassembler panel to specify the command, options, and expert settings related to the
PowerPC disassembler.

The table below lists and describes the various options available on the PowerPC Disassembler panel.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
70 NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 35: CodeWarrior Build Tool Settings - PowerPC Disassembler Options

Command line pattern

Option Explanation

Command Shows the location of the disassembler executable file.

All options Shows the actual command line the disassembler will be called with.
Expert settings: Shows the expert settings command line parameters .

This section contains the following subsection:

» Disassembler Settings on page 71

3.3.1.7.1 Disassembler Settings

Use the Disassembler Settings panel to specify the PowerPC disassembler options that are specific to the

Power Architecture software development.

The table below lists and describes the various options available on the Disassembler panel.

Table 36: CodeWarrior Build Tool Settings - Disassembler Options

Option

Explanation

Show Headers

Show Symbol and String Tables

Show Core Modules

Show Extended Mnemonics

Show Source Code

Only Show Operands and mnemonics

Show Data Modules

Disassemble Exception Tables

Table continues on the next page...

Controls display of object header information This setting is
equivalent to specifying the -show headers | noheaders
command-line option.

Controls display of character string and symbol tables. This
setting is equivalent to specifying the -show tables | notables
command-line option.

Controls display of executable code sections. This setting is
equivalent to specifying the -show code | nocode command-line
option.

Controls display of extended mnemonics. This setting is
equivalent to specifying the -show extended | noextended
command-line option.

Interleaves the code disassembly with C or C++ source code. This
setting is equivalent to specifying the -show source | nosource
command-line option.

Controls display of address and op-code values. This setting is
equivalent to specifying the -show binary | nobinary
command-line option.

Controls display of data sections. This setting is equivalent to
specifying the -show data | nodata command-line option.

Controls display of C++ exception tables. This setting is
equivalent to specifying the -show xtab[les] | noxtabl[les]
Or -show exceptions | noexceptions command-line option.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

71

V¥ ¢
i

Build Properties
Build Properties for Power Architecture

Table 36: CodeWarrior Build Tool Settings - Disassembler Options (continued)

Option Explanation

Show DWARF Info Controls display of debugging information. This setting is
equivalent to specifying the -show debug | nodebug Or -show
dwarf | nodwarf command-line option.

Verbose Controls display of extra information. This settingis
equivalent to specifying the -show detail | nodetail
command-line option.

3.3.1.8 PowerPC Preprocessor

Use the PowerPC Preprocessor panel to specify the command, options, and expert settings related to the
PowerPC preprocessor.

The table below lists and describes the various options available on the PowerPC Preprocessor panel.

Table 37: CodeWarrior Build Tool Settings - PowerPC Preprocessor Options

Option Explanation

Command Shows the location of the preprocessor executable file

All options Shows the actual command line the preprocessor will be called with
Expert settings: Shows the expert settings command line parameters

Command line pattern

This section contains the following subsection:

* Preprocessor Settings on page 72

3.3.1.8.1 Preprocessor Settings
Use the Preprocessor Settings panel to specify the PowerPC preprocessor options that are specific to the
Power Architecture software development.

The table below lists and describes the various options available on the Preprocessor panel.

Table 38: CodeWarrior Build Tool Settings - Preprocessor Options

Option Explanation

Mode Specifies the tool to preprocess source files. This setting is equivalent to
specifying the -E command-line option.

Emit file change Controls generation of file and line breaks. This setting is equivalent to
specifying the -ppopt [nojbreak command-line option.

Emit #pragmas Controls generation of #pragma directives. This setting is equivalent to
specifying the -ppopt [nojpragma command-line option.

Show full path Controls generation of full paths or just the base file name. This setting is
equivalent to specifying the -ppopt [nojfullfpath]j command-line option.

Keep comment Controls generation of comments. This setting is equivalent to specifying the
-ppopt [noJjcomment command-line option.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
72 NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 38: CodeWarrior Build Tool Settings - Preprocessor Options (continued)

Option Explanation

Use #line Controls generation of #1ine directives. This setting is equivalent to
specifying the -ppopt [nojline command-line option.

Keep whitespace Controls generation of white spaces. This setting is equivalent to specifying
the -ppopt [nojspace command-line option.

3.3.2 GCC Build Tool Settings

GNU compiler collection (GCC) build tools are open source tools that you can use in your CodeWarrior
projects.

In the current installation, every core or target has a separate GCC build tool attached to it. For example, projects
created for es00mc bareboard use powerpc-eabi toolchain; whereas, projects created for e5500 or e6500
(32/64) bareboard use powerpc-aeabi 5500 Or powerpc-aeabi e6500 toolchain.

NOTE
For more information about the GCC build tools, see documents available in the
<CWInstallDir>\Cross_ Tools\gcc-<version>-<target>\powerpc-
<[eabi] /[eabispe] /[aeabi] /[linux/libc] >\share\docs\pdf folder.

For this version of CodeWarrior Development Studio for Power Architecture, the default version of GCC
PowerPC toolchain (bareboard and Linux) is GCC v4.9.2 (rev1267).

NOTE
By default, GCC v4.9.x generates DWARF4. To generate an older DWAREF version
(DWARF2/DWARF3), use -g with -gdwarf-2 or -gdwarf-3.

For older versions of GCC PowerPC toolchain, such as GCC v4.8.2 (rev963), or for toolchains not available in
the current release by default, install the corresponding service pack by performing these steps:
1. Select Help > Install New Software from the CodeWarrior IDE menu bar.
The Install wizard launches and the Available Software page appears.
2. Select FSL PA Build Tools from the Work with drop-down list.
A list of PA GCC service packs is displayed in the pane below the Work with drop-down list.

3. Select the appropriate service pack, as shown in the figure below.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 73

y
A

Build Properties
Build Properties for Power Architecture

Figure 14. Selecting a service pack

2 sl > o=
Available Software
Check the items that you wish to install.)-___
Work with: FSL PA Build Tools - http://freescale.com/Igfiles/updates/Eclipse/PAL0_5_0/com.freescale.pa.buildtools_win =~ Add...

Find more software by working with the "Available Software Sites” preferences.
type filter text

Name Version
4 (000 PA GCC 4.8.2-r963 Build Tools Service Packs
7] K% Service Pack for Windows GeeE500mcEabi Build Tool version 4.8.2-1963 482
kgt Service Pack for Windows GecE500mcLinux Build Tool version 4.8.2-1963 4.8.2
kgt Service Pack for Windows GecE500v1 Linux Build Tool version 4.8.2-1363 43.2
lg Service Pack for Windows GecE500v2Eabi Build Tool version 4.8.2-1363 482
I Service Pack for Windows GecE500v2Linux Build Tool version 4.8.2-1363 482
L+ Service Pack for Windows GecE5500Aeabi Build Tool version 4.8.2-1963 432
L+ Service Pack for Windows GecES500Linux Build Tool version 4.8.2-1963 432
L+ Service Pack for Windows GeocEG500Aeabi Build Tool version 4.8.2-1963 4.8.2
L+ Service Pack for Windows GeocEB500Linux Build Tool version 4.8.2-1963 482
(000 PA GCC 4.9.2-r1182 Build Tools Service Packs
(000 PA GCC ELF Build Tools Service Packs
000 PA GCC LinuxGMNU Build Tools Service Packs

Select All | | Deselect All 1 item selected
Details
| Show only the latest versions of available software Hide items that are already installed
| Group items by category What is already installed?

Show only software applicable to target environment

| Contact all update sites during install te find required software

P ————
\g£) < Bac Mext > Finish Cancel

4. Click Next and complete the remaining wizard steps.

The service pack, along with the new toolchain, will be installed on your computer.

NOTE
For more information on service packs, see the Service Pack Updater Quickstart
available in the <cWInstallDir>\PA\ folder.

After installing the service pack, you need to set the new toolchain as the default toolchain to build your project
with the new toolchain. To set the new toolchain as the default toolchain and to build the project, use these steps:
1. Select Project > Properties from the CodeWarrior IDE menu bar.

The Properties dialog appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
74 NXP Semiconductors

Build Properties
Build Properties for Power Architecture
2. In the left pane, select C/C++ Build > Settings.
3. In the right pane, select the Build Tool Versions tab.
4. Select the required toolchain version and click Set As Default, as shown in the figure below.

Figure 15: Setting a toolchain as default toolchain

¥ Properties for Test_project-corel0 = @
type filter text Settings - Test_project-core00 M i
Resource
Builders =
C/C++ Build Configuration: IRAM [Active] 'I lManage Configurations...

Build Variables
Discovery Options

Environment ‘ 5 Tool Settings | Build Steps | Build Artifact | [cth Binary Parsers | @ Error Parsers | Build Tool Versions |
Legging — |l=
Settings Available versions for current build tools, Default version is in bold letters, Add... =
Tool Chain Editor Version Path ————————
| Edit...
C/Cr+ General 182 ${CROSS_TOOLS_HOME}/gcc-4.8.2-EeS00mc-eabi/bin
Run/Debug Settings . -
472 §{CROSS_TOOLS_HOME} gec-4.7.2-Ee500me-eabi/bin Delete
4.9.2 [CROSS_TOOLS_HOME -4.9.2-Ee500mc- eabi/bi .]
s R _HOME}/gcc e300mc-eabi/bin Set As Default
If?:\ oK] I Cancel

5. Click OK.
6. Select Project > Build Project from the CodeWarrior IDE menu bar.
The project is built using the new toolchain.

The table below lists the GCC build tool settings specific to developing software for Power Architecture.

Table 39: GCC Build Tool Settings for Power Architecture

Build Tool Build Properties Panels

Architecture on page 76
PowerPC Linker on page 76 General on page 77
Libraries on page 77
Miscellaneous on page 78
Shared Library Settings on page 79
PowerPC Environment on page 79
PowerPC Compiler on page 80 Preprocessor on page 80
Symbols on page 81
Includes on page 82

Optimization on page 83

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 75

V¥ ¢
i

Build Properties
Build Properties for Power Architecture

Table 39: GCC Build Tool Settings for Power Architecture (continued)

Build Tool Build Properties Panels

Debugging on page 84
Warnings on page 85

Miscellaneous on page 86

PowerPC Assembler on page 86 General on page 87
PowerPC Preprocessor on page 87 Preprocessor Settings on page 88
PowerPC Disassembler on page 88 Disassembler Settings on page 89

The CodeWarrior build tools listed in the above table share some properties panels, such as Include Search
Paths. Properties specified in these panels apply to the selected build tool on the Tool Settings page of the
Properties for <project> window.

3.3.2.1 Architecture

Use the Architecture panel to specify the Power Architecture processor family for the build.
The properties specified on this page are also used by the build tools (compiler, linker, and assembler).

The table below lists and describes the options available on the Architecture panel.

Table 40: Tool Settings - Architecture Options

Option Explanation
Architecture Specifies which architecture variant is used by the target.
Target Mode Specifies the target environment (32-bit/64-bit mode) on which your

generated code will run. This option takes the following values:
+ 32-bit: Enables 32-bit code generation
+ 64-bit: Enables 64-bit code generation

3.3.2.2 PowerPC Linker

Use the PowerPC Linker panel to specify the GCC linker options that are specific to Power Architecture
software development.

NOTE
The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.

The table below lists and describes the various options available on the PowerPC Linker panel.

Table 41: Tool Settings - PowerPC Linker Options

Option Description

Command Specifies the PowerPC GCC command line driver or linker required to build
the project

All options Shows the actual command line the linker will be called with

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
76 NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 41: Tool Settings - PowerPC Linker Options (continued)

Option Description

Command line pattern

Expert settings: Shows the expert settings command line parameters

This section contains the following subsections:

» General on page 77
* Libraries on page 77

» Miscellaneous on page 78

» PowerPC Environment on page 79

3.3.2.2.1 General

Shared Library Settings on page 79

Use the General panel to specify the general linker behavior.

The following table lists and describes the various options available on the General panel.

Table 42: Tool Settings - General Options

Option

Description

Do not use standard start files (-
nostartfiles)

Do not use default libraries (-
nodefaultlibraries)

No startup or default libs (-nostdlib)

Omit all symbol information (-s)

No shared libraries (-static)

Specifies linker to not to use the standard system startup files
when linking. The standard system libraries are used normally,
unless -nostdlib Or -nodefaultlibs command-line options are
used. This setting is equivalent to specifying the -nostartfiles
command-line option.

Specifies linker to not to use the standard system libraries when
linking. Only the libraries you specify will be passed to the linker.
Options specifying linkage of the system libraries, such as -
static-libgcc Or -shared-1libgcc, Will be ignored. This setting
is equivalent to specifying the -nodefaultlibraries command-
line option.

Specifies linker to not to use the standard system startup files or
libraries when linking. This setting is equivalent to specifying the
-nostdlib command-line option.

Specifies linker to remove all symbol table and relocation
information from the executable. This setting is equivalent to
specifying the -s command-line option.

Specifies linker to prevent linking with the shared libraries. This
setting is equivalent to specifying the -static command-line
option.

3.3.2.2.2 Libraries

Use the Libraries panel to specify the libraries and their search paths if the libraries are available in non-

standard location.

You can specify multiple additional libraries and library search paths. The following table lists and describes the
various options available on the Libraries panel.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

77

Build Properties
Build Properties for Power Architecture

Table 43: Tool Settings - Libraries Options

Option Explanation

Libraries Lists the libraries that are to be passed to the linker while building the project.
The Linker uses the libraries in the same order as shown in this list. The table
that follows lists and describes the toolbar buttons that help work with the
library file.

Library search path Use this panel to specify multiple paths that the Power Architecture linker
searches for libraries. The linker searches the paths in the order shown in
this list. The table that follows lists and describes the toolbar buttons that help
work with the library search paths.

The table below lists and describes the toolbar buttons that help work with the libraries.

Table 44: Tool Settings - Libraries Toolbar Buttons

Button Tooltip Description

£ Add Click to open the Add file path or the Add directory path dialog and
add a file or directory path.

= Delete Click to delete the selected file or directory. To confirm deletion,
click Yesin the Confirm Delete dialog.

2 Edit Click to open the Edit file name or Edit directory path dialog and
update the selected file or directory.

5 Move up Click to re-order the selected file or search path one position
higher in the list.

Iy Move down Click to re-order the selected file or search path one position lower

B in the list.

3.3.2.2.3 Miscellaneous

Use the Miscellaneous panel to specify linker behavior.

The following table lists and describes the various options available on the Miscellaneous panel.

Table 45: Tool Settings - MiscellaneousOptions

Option Explanation
Linker flags Specify flags to be passed to the linker.
Other options Enter additional linker command-line options. The IDE passes these options

to the linker shell during the link phase.

NOTE
The IDE passes command-line options to the shell
exactly as you enter them in this text box.

Other objects Add other objects or libraries that needs to be passed tothe linker. These
objects or libraries will be linked at the end.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
78 NXP Semiconductors

Build Properties
Build Properties for Power Architecture

3.3.2.2.4 Shared Library Settings
Use the Shared Library Settings panel to specify the path to the shared libraries.

You can specify multiple additional shared libraries and library search paths.

NOTE
The options provided on the Shared Library Settings panel are only applicable to Linux
projects.

The table below lists and defines the various options available on the Shared Libraries Settings panel.

Table 46: Tool Settings - Shared Libraries Settings Options

Option Explanation

Shared (-shared) Controls generation of a shared object which can be linked with
other objects to form an executable.

This setting is equivalent to specifying the -shared command-line
option.

Shared object name (-WI, -soname=) Specifies the internal bT_sonaMe field to the specified name, when
creating a shared object.

When an executable is linked with a shared object which has a
DT_soNaAME field and the executable is run, the dynamic linker will
attempt to load the shared object specified by the pT_sonavE field,
rather than the using the file name given to the linker.

Import Library name (-WI,--out-implib=) Creates a file containing an import library corresponding to the
shared object generated by the linker.

DEF file name (-WI, --output-def=) Creates a file containing a DEF file corresponding to the shared
object generated by the linker.

3.3.2.2.5 PowerPC Environment

Use the PowerPC Environment panel to specify the configuration files used by the linker.

The following table lists and describes the various options available on the PowerPC Environment panel.

Table 47: Tool Settings - PowerPC Environment Options

Option Explanation

Map File (-Xlinker -Map) Prints a link map to the map specified map file. The specified file name must
have a .map extension.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 79

3
4

'
A

Build Properties
Build Properties for Power Architecture

Table 47: Tool Settings - PowerPC Environment Options (continued)

Option Explanation

LCF File Specifies the path of the linker-command file that the linker reads to
determine how to build the output file. Alternatively, click Browse, then use
the resulting dialog to specify the linker command file.

NOTE
The specified linker script replaces the default
linker script, so it must specify everything
necessary to describe the output file.

This setting is equivalent to specifying the -1cf filename command-line
option.

3.3.2.3 PowerPC Compiler

Use the PowerPC Compiler panel to specify the compiler options that are specific to Power Architecture
software development.

NOTE
The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.

The table below lists and describes the various options available on the PowerPC Compiler panel.

Table 48: Tool Settings - PowerPC Compiler Options

Option Description

Command Specifies the PowerPC GCC command line driver or compiler required to
build the source files in the project.

All options Specifies the actual command line the compiler will be called with.

Expert settings: Specifies the expert settings command line parameters.

Command line pattern

This section contains the following subsections:
* Preprocessor on page 80

» Symbols on page 81

* Includes on page 82

» Optimization on page 83

» Debugging on page 84

* Warnings on page 85

» Miscellaneous on page 86

3.3.2.3.1 Preprocessor

Use the Preprocessor panel to specify preprocessor behavior.

You can specify whether to search system directories or preprocess only based on the options available in this
panel.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
80 NXP Semiconductors

Build Properties
Build Properties for Power Architecture

The table below lists and describes the various options available on the Preprocessor panel.

Table 49: Tool Settings - Preprocessor Options

Preprocess only (-E)

Options Explanation
Do not search system directories (-- Specifies compiler to not to search the standard system
nostdinc) directories for header files. Only the directories specified by the

user with -1 option (and the directory of the current file, if
appropriate) are searched. This setting is equivalent to specifying
the -nostdinc command-line option.

Specifies command-line tool to preprocess the source files and
not to run the compiler. This setting is equivalent to specifying the
-E command-line option.

3.3.2.3.2 Symbols

Use the Symbols panel to control how the compiler structures the generated object code.

The table below lists and describes the various options available on the Symbols options.

Table 50: Tool Settings - Symbols Options

Option

Explanation

Defined symbols (-D)

Specifies substitution strings that the assembler applies to all the assembly-
language modules in the build target.

NOTE
Enter just the string portion of a substitution string.
The IDE prepends the -d token to each string that
you enter. For example, entering opt1 x
produces this result on the command line: -dopt1
X

NOTE
This option is similar to the DEFINE directive, but
applies to all assembly-language modules in a
build target.

Use these toolbar buttons to work with the panel:

» Add - Click to specify the undefined symbols string.

* Delete - Click to remove the selected string.

+ Edit - Click to edit an existing string.

* Move up - Click to move the selected string one position higher in the list.

* Move down - Click to move the selected string one position lower in the list.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

81

Build Properties
Build Properties for Power Architecture

Table 50: Tool Settings - Symbols Options (continued)

Option

Explanation

Undefined symbols (-U)

Undefines the substitution strings you specify in this panel. Use these toolbar
buttons to work with the panel:

* Add - Click to specify the undefined symbols string.
* Delete - Click to remove the selected string.
+ Edit - Click to edit an existing string.

* Move up - Click to move the selected string one position higher in the list.

* Move down - Click to move the selected string one position lower in the list.

3.3.2.3.3 Includes

Use the Includes panel to specify paths to search for the #include files.

NOTE

The IDE displays an error message, if a header file is in a different directory from the
referencing source file. In some instances, the IDE also displays an error message, if a
header file is in the same directory as the referencing source file. For example, if you
see the message Could not open source file myfile.h, you must add the
path for myfile.h to this panel.

The table below lists and describes the various options available on the Includes panel.

Table 51: Tool Settings - Includes Options

Option

Explanation

Include paths (-1)

Adds the directory to the list of directories to be searched for header files.
Directories named by -1 are searched before the standard system include
directories. If the directory is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and
the special treatment of system headers are not defeated . If the directory
name begins with =, then the = will be replaced by the sysroot prefix. Use
these toolbar buttons to work with the Include paths (-) panel:

» Add - Click to open the Add directory path dialog and specify the directory
search path.

* Delete - Click to delete the selected directory search path. To confirm
deletion, click Yes in the Confirm Delete dialog.

« Edit - Click to open the Edit directory path dialog and update the selected
directory search path.

» Move up - Click to re-order the selected directory search path one position
higher in the list.

» Move down - Click to re-order the selected directory search path one
position lower in the list.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

82

NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 51: Tool Settings - Includes Options (continued)

Option Explanation

Include files (-include) Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor's
working directory instead of the directory containing the main source file. If
not found, the preprocessor's working directory is searched for in the
remainder of the #include "..." search chain as normal. If multiple -
include options are specified, the files are included in the order they appear
on the command line. Use these toolbar buttons to work with the Include files
(-include) panel:

* Add - Click to open the Add file path dialog and specify the file.

» Delete - Click to delete the selected file. To confirm deletion, click Yes in
the Confirm Delete dialog.

+ Edit - Click to open the Edit directory path dialog and update the selected
file.

* Move up - Click to re-order the selected file one position higher in the list.

* Move down - Click to re-order the selected file one position lower in the list.

3.3.2.3.4 Optimization

Use the Optimization panel to control compiler optimizations.

Compiler optimization can be applied in either global or non-global optimization mode. You can apply global
optimization at the end of the development cycle, after compiling and optimizing all source files individually or
in groups.

The table below lists and describes the various options available on the Optimization panel.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 83

Build Properties
Build Properties for Power Architecture

Table 52: Tool Settings - Optimization Options

Option Explanation

Optimization Level Specifies the optimization that you want the compiler to apply to the
generated object code. The default options are:

* None(-O0) - Disable optimizations. Reduce compilation time and make
debugging produce the expected results. This is the default.This setting is
equivalent to specifying the -oo command-line option.

+ Optimize (-O1) - Optimizing compilation takes more time, and a lot more
memory for a large function. With -o/-01, the compiler tries to reduce code
size and execution time, without performing any optimizations that take a
great deal of compilation time. This setting is equivalent to specifying the
-01 command-line option.

* Optimize more(-O2) - Optimize even more. GCC performs nearly all
supported optimizations that do not involve a space-speed tradeoff. As
compared to -0/01, this option increases both compilation time and the
performance of the generated code. This setting is equivalent to specifying
the -02 command-line option.

* Optimize most(-O3) - Turns on all optimizations specified by -02 and also
turns on the -finline-functions, -funswitch-loops, -fpredictive-
commoning, -fgcse-after-reload and -ftree-vectorize options. At
this optimization level, the compiler generates code that is usually faster
than the code generated from level 2 optimizations.This setting is
equivalent to specifying the -03 command-line option.

+ Optimize for size(-Os) - Optimize for size. -0s enables all -02 optimizations
that do not typically increase code size. It also performs further
optimizations designed to reduce code size.This setting is equivalent to
specifying the -os command-line option.

Other optimization flags Specifies individual optimization flag that can be turned ON/OFF based on
the user requirements.

3.3.2.3.5 Debugging

Use the Debugging panel to set the debugging information.

The following table lists and describes the various options available on the Debugging panel.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
84 NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 53: Tool Settings - Debugging Options

Option Explanation

Debug Level Specify the debug levels for the compiler. the default options are:
* None - No Debug level.

* Minimal (-g1) - Produces minimal information, enough for making
backtraces in parts of the program that you don't plan to debug. This
includes descriptions of functions and external variables, but no information
about local variables and no line numbers.

+ Default (-g2) same as (-g) - The compiler generates DWARF 2.0
conforming debugging information.

+ Maximum (-g3) - The compiler provides maximum debugging support. Also
includes extra information, such as all the macro definitions present in the
program.

Other debugging flags Specify the other debugging flags that need to be passed with the compiler

Generate prof information (-p) | Generate extra code to write profile information suitable for the analysis
program prof. You must use this option while compiling and linking the
source files.

Generate gprof information (- | Generate extra code to write profile information suitable for the analysis
pg) program gprof. You must use this option while compiling and linking the
source files.

3.3.2.3.6 Warnings

Use the Warnings panel to control how the compiler reports the error and warning messages.

The following table lists and describes the various options available on the Warnings panel.

Table 54: Tool settings - Warnings Options

Option Explanation

Check syntax only (-fsyntax-only) Check the code for syntax errors, but do not do anything beyond
that.

Pedantic (-pedantic) Select to issue all the mandatory diagnostics listed in the C

standard. Some of them are left out by default, since they trigger
frequently on harmless code.

Pedantic warnings as errors (-pedantic- Select to issue all the mandatory diagnostics, and make all

errors) mandatory diagnostics into errors. This includes mandatory
diagnostics that GCC issues without -pedantic but treats as
warnings.

Inhibit all warnings (-w) Select to suppress all warnings, including those which GNU CPP

issues by default.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 85

Build Properties
Build Properties for Power Architecture

Table 54: Tool settings - Warnings Options (continued)

Option Explanation

All warnings (-Wall) Select to turn on all optional warnings which are desirable for
normal code. At present this is -Wwcomment, -Wtrigraphs, -
wmultichar and a warning about integer promotion causing a
change of sign in #if expressions.

NOTE
Many of the preprocessor's warnings
are on by default and have no options
to control them.

Warnings as errors (-Werror) Select to make all warnings into hard errors. Source code which
triggers warnings will be rejected.

3.3.2.3.7 Miscellaneous
Use the Miscellaneous panel to specify compiler options.

The following table lists and describes the various options available on the Miscellaneous panel.

Table 55: Tool Settings - Miscellaneous Options

Option Explanation
Other flags Specify the compiler flags.
Verbose (-v) Select to print on console the commands executed to run the

stages of compilation. Also print the version number of the
compiler driver program, the preprocessor and the compiler

proper.
Support ANSI programs (-ansi) Compiler strictly conforms to ANSI standard. In C mode, this is
equivalent to -std=c89. In C++ mode, it is equivalent to -std=c+
+98.
Position Independent Code (-fPIC) If supported for the target machine, emits position-independent

code, which is suitable for dynamic linking and avoids any limit on
the size of the global offset table.

Other Assembler options (-Xassembler Allows you to make GCC pass an option to the assembler. It is

[option]) generally used to supply system-specific assembler options that
are not recognized by GCC. To supply an option that takes an
argument, use -xassembler twice, first for the option and then for
the argument.

3.3.2.4 PowerPC Assembler

Use PowerPC Assembler panel to specify the command, options, and expert settings for the build tool
assembler.

The table below lists and describes the various options available on the PowerPC Assembler panel.
NOTE

The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
86 NXP Semiconductors

Build Properties
Build Properties for Power Architecture

Table 56: Tool Settings - PowerPC Assembler Options

Option Description

Command Specifies the PowerPC GCC command line Assembler required to build the
assembly files in the project.

All options Shows the actual command line the assembler will be called with.

Expert settings: Shows the expert settings command line parameters.

Command line pattern

This section contains the following subsection:

* General on page 87

3.3.2.4.1 General

Use the General panel to specify the assembler behavior.

The following table lists and describes the various options available on the General panel.

Table 57: Tool Settings - General

Option Explanation
Assembiler flags Specify the flags that need to be passed with the assembler.
Include paths (-I) Add a path to the list of directories, assembler searches for files specified

in .include directives. -1 can be used multiple times as required to include
a variety of paths. The current working directory is always searched first;
followed by any -1 directories, in the order they were specified (left to right)
on the command line. Use these toolbar buttons to work with the Include
paths (-I) panel:

+ Add - Click to open the Add directory path dialog and specify the file search
path.

* Delete - Click to delete the selected file search path. To confirm deletion,
click Yes in the Confirm Delete dialog.

« Edit - Click to open the Edit directory path dialog and update the selected
object file search path.

+ Move up - Click to re-order the selected file search path one position higher
in the list.

» Move down - Click to re-order the selected file search path one position
lower in the list.

Supress warnings (-W) Supresses warning messages.

Announce version (-v) Prints the assembler version.

3.3.2.5 PowerPC Preprocessor
Use the PowerPC Preprocessor panel to specify specify the command, options, and expert settings for the
preprocessor.

The table below lists and describes the various options available on the PowerPC Preprocessor panel.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 87

Build Properties
Build Properties for Power Architecture

NOTE

The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.

Table 58: Tool Settings - PowerPC Preprocessor Options

Option Explanation

Command Specifies the PowerPC GCC command line Pre-processor required to pre-
process the source files.

All options Shows the actual command line the preprocessor will be called with.

Expert settings: Shows the expert settings command line parameters.

Command line pattern

This section contains the following subsection:

* Preprocessor Settings on page 88

3.3.2.56.1 Preprocessor Settings

Use the Preprocessor Settings panel to specify preprocessor behavior.

The following table lists and describes the various options available on the Preprocessor Settings panel.

Table 59: Tool Settings - Preprocessor Settings Options

Option Explanation

Handle Directives Only When preprocessing, handle directives, but do not expand macros. This
setting is equivalent to specifying the -fdirectives-only command-line
option.

Print Header File Names Select to print the name of each header file used. This setting is equivalent

to specifying the -# command-line option.

3.3.2.6 PowerPC Disassembler

Use the PowerPC Disassembler panel to specify the command, options, and expert settings for the Power
ELF disassembler.

The table below lists and describes the various options available on the PowerPC Disassembler panel.

Table 60: Tool Settings - PowerPC Disassembler Options

Option Explanation

Command Specifies the PowerPC GCC command line disassembler required to
disassemble the generated object code.

All options Shows the actual command line the disassembler will be called with.

Expert settings: Shows the expert settings command line parameters.

Command line pattern

This section contains the following subsection:

» Disassembler Settings on page 89

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
88 NXP Semiconductors

3.3.2.6.1 Disassembler Settings

Build Properties
Build Properties for Power Architecture

Use the Disassembler Settings panel to specify or modify the existing settings for the disassembler.

The following table lists and describes the various options available on the Disassembler Settings panel.

Table 61: Tool Settings - Disassembler Settings Options

Option

Explanation

Disassemble All Section Content (including debug
information)

Disassemble Executable Section Content

Intermix Source Code With Disassembly

Display All Header Content

Display Archive Header Information

Display Overall File Header Content

Display Object Format Specific File Header Contents
Display Section Header Content

Display Full Section Content

Display Debug Information

Display Debug Information Using ctag Style

Display STABS Information

Display DWARF Information

Display Symbol Table Content

Display Dynamic Symbol Table Content
Display Relocation Entries

Display Dynamic Relocation Entries

Disassembles the content of all sections, not just those
expected to contain instructions.

Disassembles all executable content and send output
to a file.

Intermixes source code with disassembly.

Displays the contents of all headers.

Displays archive header information.

Displays the contents of the overall file header.
Displays the file header contents and object format
Displays the section header of the file.

Displays the full section of the file.

Displays debug information in the object file.
Displays debug information using the ctags style.

Displays any STABS information in the file, in raw
form.

Displays any DWAREF information in the file.
Displays the contents of the symbol tables.
Displays the contents of the dynamic symbol table.
Displays the relocation entries in the file.

Displays the dynamic relocation entries in the file.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

89

V¥ ¢
i

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
90 NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

Chapter 4
Debug Configurations

A CodeWarrior project can have multiple associated debug configurations. A debug configuration is a named
collection of settings that the CodeWarrior tools use.

Debug configurations let you specify settings, such as:

» The files that belong to the debug configuration

» Behavior of the debugger and the related debugging tools
This chapter explains:

» Using Debug Configurations Dialog Box on page 91

» Customizing Debug Configurations on page 118

» Reverting Debug Configuration Settings on page 120

4.1 Using Debug Configurations Dialog Box

The Debug Configurations dialog allows you to specify debugger-related settings for your CodeWarrior
project.

NOTE
As you modify a launch configuration's debugger settings, you create pending, or
unsaved, changes to that launch configuration. To save the pending changes, you must
click the Apply button of the Debug Configurations dialog, or click the Close button and
then the Yes button.

Table 62: Debug Configuration Tabs

Main on page 92
Arguments on page 97
Debugger on page 98 Debug on page 99
EPPC Exceptions on page 101
Download on page 102
PIC on page 104
System Call Services on page 105
Other Executables on page 107
Symbolics on page 108
OS Awareness on page 110
Trace and Profile on page 113
Source on page 114
Environment on page 116

Common on page 117

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 91

Debug Configurations
Using Debug Configurations Dialog Box

This section contains the following subsections:

4.1.1 Main

Use this tab to specify the project and the application you want to run or debug.
You can also specify a remote system configuration on this tab.

The remote system configuration is separated into connection and system configurations allowing you to define
a single system configuration that can be referred to by multiple connection configurations. The launch
configurations refer to a connection configuration, which in turn refers to a system configuration.

NOTE
The options displayed on the Main tab vary depending on the selected debug session

type.

The following figure shows the Main tab.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
92 NXP Semiconductors

Figure 16: Debug Configurations-Main Tab
5] Main 9= Arguments | % Debugger | = Trace and Profile E Source | P Environment | =] Common
Debug session type
Zhoose a predefined debug session bype or custom kype For maximum Flesxibilicy
() Dowinload () Connect
) akkach () Cuskam
w C/C++ application
Project: Derno-carel
Application:

RaM{Demo-cored, elf
+ Build (if required) before launching

Search Project. ..] [Browse, .,] [‘Variables. .,]
Build {if required) before launching
Build configuration: FLamM w
[select configuration using 'C/C++ Application’
{3 Enable auto build (" Disable auto build
G} IJse workspace settings

+ Target settings
Conneckion:

Confiqure \Workspace Sethings. .

Execute resel sequence

== Demo-cored_RAM_P4080_Download
Execute initialization script(s)

W

Edit...
Targek

] [Mew, ..
The connection is for a mulkicore target, Please select a core, or mulkiple cores in the case of SMP:
= [#] P4cE0

e500mc-0
[] es00me-1
[]es00me-2
[] es00me-3
[] es00mc-4
[] e500me-5
[] es00me-6
[]e500me-7

The table below describes the various options available on the Main page.

NXP Semiconductors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

93

Debug Configurations

Using Debug Configurations Dialog Box

V¥ ¢
i

Debug Configurations
Using Debug Configurations Dialog Box

Table 63: Main Tab Options

Option Description

Debug session type Specifies the options to initiate a debug session using pre-configured debug
configurations. The options include:

» Download - Resets the target if the debug configuration specifies the action.
Further, the command stops the target, (optionally) runs an initialization
script, downloads the specified ELF file, and modifies the program
counter(PC).

 Attach - Assumes that code is already running on the board and therefore
does not run a target initialization file. The state of the running program is
undisturbed. The debugger loads symbolic debugging information for the
current build target's executable. The result is that you have the same
source-level debugging facilities you have in a normal debug session (the
ability to view source code and variables, and so on). The function does
not reset the target, even if the launch configuration specifies this action.
Further, the command loads symbolics, does not stop the target, run an
initialization script, download an ELF file, or modify the program counter
(PC).

NOTE
The debugger does not support restarting
debugging sessions that you start by attaching the
debugger to a process.

« Connect - Runs the target initialization file specified in the RSE
configuration to set up the board before connecting to it. The Connect
debug session type does not load any symbolic debugging information for
the current build target's executable thereby, denying access to source-
level debugging and variable display. The Connect command resets the
target if the launch configuration specifies this action. Further, the
command stops the target, (optionally) runs an initialization script, does not
load symbolics, download an ELF file, or modify the program counter(PC).

NOTE
The default debugger configuration causes the
debugger to cache symbolics between sessions.
However, selecting the Connect option invalidates
this cache. If you must preserve the contents of
the symbolics cache, and you plan to use the
Connect option, clear the Cache Symbolics
Between Sessions checkbox in the Symbolics

page.

» Custom - Provides user an advantage to create a custom debug
configuration.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
94 NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

Table 63: Main Tab Options (continued)

Option Description

C/C++ application Specifies the settings for the C/C++ application. The options include:

* Project - Specifies the name of the project associated with the selected
debug launch configuration. Click Browse to select a different project.

» Application - Specifies the name of the C or C++ application executable.
NOTE

This option is disabled when Connect debug
session type is selected.

+ Search Project - Click to open the Program Selection dialog and select a
binary.

NOTE
This option is disabled when Connect debug
session type is selected.

 Variables - Click to open the Select build variable dialog and select the build
variables to be associated with the program.

The dialog displays an aggregation of multiple variable databases and not
all these variables are suitable to be used from a build environment. Given
below are the variables that should be used:

ProjDirPath - returns the absolute path of the current project location in
the file system

${ProjbDirPath}/Source/main.c"

workspace_loc - returns the absolute path of a workspace resource in the
file system, or the location of the workspace if no argument is specified

${workspace loc:/ProjectName/Source main.c"${workspace loc}

Gnu_Make Install Dir - returns the absolute path of the GNU make.exe
tool

${Gnu_Make Install Dir}\make.exe
NOTE

This option is disabled when Connect debug
session type is selected.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 95

Debug Configurations
Using Debug Configurations Dialog Box

Table 63: Main Tab Options (continued)

Option

Description

Build (if required) before
launching

Target settings

Controls how auto build is configured for the launch configuration. Changing
this setting overrides the global workspace setting and can provide some
speed improvements.

NOTE
These options are set to default and collapsed
when Connect debug session type is selected.

The options include:

+ Build configuration - Specifies the build configuration either explicitly or use
the current active configuration.

+ Select configuration using *C/C++ Application' - Select/clear to enable/
disable automatic selection of the configuration to be built, based on the
path to the program.

» Enable auto build - Enables auto build for the debug configuration which
can slow down launch performance.

+ Disable auto build - Disables auto build for the debug configuration which
may improve launch performance. No build action will be performed before
starting the debug session. You have to rebuild the project manually.

» Use workspace settings (default) - Uses the global auto build settings.

+ Configure Workspace Settings - Opens the Launching preference panel
where you can change the workspace settings. It will affect all projects that
do not have project specific settings.

Specifies the connection and other settings for the target. The options
include:

+ Connection - Specifies the applicable Remote System configuration.
« Edit - Click to edit the selected Remote System configuration.

* New - Click to create a new Remote System configuration for the selected
project and application.

» Execute reset sequence - Select to apply reset settings, specified in the
target configuration, when attaching to a target. Alternatively, clear the
option to ignore reset settings.

NOTE
This option is not available when Attach debug
session type is selected.

» Execute initialization script(s) - Select to execute the initialization script(s),
specified in the target configuration, when attaching to a target.
Alternatively, clear the option to ignore the initialization script(s).

» Target (multicore only) - Select the core to be debugged. For SMP
debugging, select all cores in the SMP group.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

96

NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

4.1.2 Arguments

Use this tab to specify the program arguments that an application uses and the working directory for a run or
debug configuration.

Figure 17: Debug Configurations-Arguments Tab

2] Main | 9= Arguments % Debugger | = Trace and Profile . Source | B Environment | =] Comman

Program argurments:

Working directory

IJse default

The table below lists the various options available on the Arguments page.

Table 64: Arguments Tab options

Option Description

Program arguments Specifies the arguments passed on the command line.

Variables Click to select variables by name to include in the program arguments list.
Working Directory Specifies the run/debug configuration working directory.

Use default Select to specify the default run/debug configuration working directory, which

is a directory within the current project directory, or clear to specify a different
workspace, a file system location, or a variable. For Linux applications, the
default working directory is the current directory on the process that started
CodeWarrior TRK on the target. This should not be confused with the
directory where the CodeWarrior TRK binary resides.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors

97

Debug Configurations

Using Debug Configurations Dialog Box

Table 64: Arguments Tab options (continued)
Option Description
Workspace Click to specify the path of, or browse to, a workspace relative working
directory.
File System
Variables
4.1.3 Debugger

Click to specify the path of, or browse to, a file system directory.

Click to specify variables by name to include in the working directory.
Use this tab to configure debugger settings.

The Debugger tab presents different pages for specifying different settings.

NOTE
The content in the Debugger Options panel changes, depending on the Debug session
type selected on the Main page.

Figure 18: Debug Configurations-Debugger Tab
|=] Main | BD= Arguments ﬁ Debugger
Debugger options

= Trace and Profile E,y Source | g Environment | =] Common
Debug | EPPC Exceptions | Download | PIC Syskem Call Services | Other Executables | Swmbolics
Program execution
Initialize program counter at;
{?' Pragram entry poink
(1 User specified:

05 Awareness
Resurme program

Stop on starkbup at:

C' Program entry poink
(%) User specified:

mair
|:| Skop on exit

Breakpoints and wakchpoints

[J1install regular breakpaints as
Restore watchpoints

[ata access

[] Disable display of variable values by deFault
[] pisable display of register values by defaulk
Refresh while running period (seconds):

2.0
The table below lists the various options available on the Arguments page.

98

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

Debug Configurations

Using Debug Configurations Dialog Box

Table 65: Debugger tab options

Option Description

Debugger Options Displays configuration options specific to the selected debugger type. See
the following sections for more details:

Debug on page 99

EPPC Exceptions on page 101
Download on page 102

PIC on page 104

System Call Services on page 105
Other Executables on page 107
Symbolics on page 108

OS Awareness on page 110

This section contains the following subsections:

4.1.3.1 Debug

Use this page to specify the program execution options, Breakpoint and watchpoint options, and target

access behavior.

Figure 19: Debugger Options-Debug Page

Debugger options

Debug |EPPC Exceptions | Download | PIC System Call Services | Other Executables | Symbolics || OF fwareness

Program execution
Initialize program counker at;

{?} Pragrarn entry paink
) User specified:
Resume pragran
Skop on startup at:
C} Prograrn entry poink
(%) User specified: rmain

[]3top on exit

Breakpaoints and wakchpaoinks

[]1install reqular breakpaoints as

Restore watchpoinks

Daka access

[bisable display of wariable values by default

[Disable display of register values by defaul:

Refresh while running period (seconds): | 2.0

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

99

Debug Configurations
Using Debug Configurations Dialog Box

NOTE

The options displayed on the Debug tab varies depending on the selected launch

configuration.

The table below lists the various options available on the Debug page.

Table 66: Debugger Options - Debug

Option

Description

Initialize program counter at

Resume program

Stop on startup at

Stop on exit

Install regular breakpoints as

Restore watchpoints

Disable display of variable values by
default

Table continues on the next page...

Controls the initialization of program counter.

» Program entry point - Select to initialize the program counter at
a specified program entry pont.

+ User specified - Select to initialize the program counter at a
user-specified function. The default location is main.

NOTE
Disabling this option will also disable
the Resume program and Stop on
startup at options.

Select to resume the execution after the program counter is
initialized.

NOTE
Disabling this option will also disable
the Stop on startup at option.

Stops program at specified location. When cleared, the program
runs until you interrupt it manually, or until it hits a breakpoint.

» Program entry point - Select to stop the debugger at a specified
program entry point.

+ User specified - Select to stop the debugger at a user-specified
function. The default location is main.

Select this option to have the debugger set a breakpoint at the
code's exit point. For multicore projects, when you set this option
for one project on one core, it is set for projects on the other cores.
Deselect this option to prevent the debugger from setting a
breakpoint at the code's exit point.

Select this option to install breakpoints as either:

* Regular

* Hardware

+ Software

Deselect this option to install breakpoints as Regular breakpoints.
Select this option to restore previous watchpoints.

Select this option to disable the display of variable values.
Deselect this option to enable the display of variable values

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

100

NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

Table 66: Debugger Options - Debug (continued)

Option Description

Disable display of register values by default | Select this option to disable the display of register values.
Deselect this option to enable the display of register values

Refresh while running period (seconds) Specifies the refresh period used when a view is configured to
refresh, while the application is running. By default, the refresh
period is set to two seconds.

4.1.3.2 EPPC Exceptions

The EPPC Exceptions page lists each of the EPPC exceptions that the CodeWarrior debugger can catch.

Use this page to specify which processor exceptions you want the debugger to catch. The EPPC Exceptions
page is shown in the figure below.

NOTE
The EPPC Exceptions page currently provides options to configure projects created for
PowerQUICC Il and QorlQ processors based on the e500v2 core.

NOTE
The features of this page are currently not supported by this implementation.

Figure 20: Debugger Options - EPPC Exceptions page

Debugger options
Debug | EPPC Exceptions | Download | PIC Systemn Call Services | Other Executables | Symbolics | O35 Awareness

Exception handling {check the exceptions ta always catch)

[critical input [CJFixed Interval Timer
[(IMachine check [Iwatchdag Timer

|:| Daka Storage |:| Data TLE error

|:| Instruction Storage |:| Instruction TLE Errar
[CJExternal

[] alignment [IPetformance Manitar
|:| Frogram

[=ystem Call

|:| Decrementer

* Option pre-selected by default to allow debugger to control the arget, Users cannot change this option,

Selecting any of the checkboxes, available on the EPPC Exceptions page, configures the core to automatically
halt when the corresponding exception is taken. The debugger stops at the entry point of the interrupt handler
for the selected exception, allowing you to inspect the processor state and continue debugging from there.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 101

Debug Configurations
Using Debug Configurations Dialog Box

NOTE
Catching the selected exceptions works only if the target is debugged. To ensure that
the CodeWarrior debugger works properly, the debug exception is set and cannot be
selected.

The table below lists the various options available on the EPPC Exceptions page.

Table 67: EPPC Exceptions Page Options

Option Description

Exception handling Select the checkboxes in this panel if you want the debugger to catch the
required exceptions. By default, catching all exceptions is disabled. Only the
Debug exception is caught, as the debugger uses this exception for setting
breakpoints. Catching the debug exception cannot be unset.

4.1.3.3 Download

Use this page to specify which executable code sections the debugger downloads to the target, and whether
the debugger should read back those sections and verify them.

NOTE
Selecting all options in the Program Download Options group significantly increases
download time.

Initial Launch options apply to the first debugging session. Successive Runs options apply to subsequent
debugging sessions.

The Download options control whether the debugger downloads the specified Program Section Data type to the
target hardware. The Verify options control whether the debugger reads the specified Program Section Data
type from the target hardware and compares the read data against the data written to the device.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
102 NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

Figure 21: Debugger Options-Download page

Debugaer opkions
Debug | EPPC Exceptions | Download | prc System Call Services || QOther Executables || Symbolics | OS5 fwareness

Select download options; subsequent options are used For restart and when symbolics are cached:

Perfarm standard download

Firsk Subseguent
Program Seckion Download — Merify Download — Merify
Executable ¥ O
Constant Daka |:| |:|
Initislized Data]]
Uninitialized Data O]]]

Mote: Standard download availability depends on conneckion bvpe

[]Execute Tasks

Mame Task Tvpe Firsk Subsequ...

The table below lists the various options available on the Download page.

Table 68: Debugger Options - Download

Section Data Type Explanation
Perform standard download Controls download of the target application using memory write command.
First Represents a group of settings that are used when an application is

debugged for the first time.

Subsequent Represents a group of settings that are used when the application is
debugged subsequent times. To make these settings be used during
debugging, you need to select the Cache Symbolics Between Sessions
option on the Symbolics page.

Executable Controls downloading and verification for executable sections. Select
appropriate checkboxes to specify downloading and verifications, for initial
launch and for successive runs.

Constant Data Controls downloading and verification for constant-data sections. Select
appropriate checkboxes to specify downloading and verifications, for initial
launch and for successive runs.

Initialized Data Controls downloading and verification for initialized-data sections. Select
appropriate checkboxes to specify downloading and verifications, for initial
launch and for successive runs.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 103

Debug Configurations
Using Debug Configurations Dialog Box

Table 68: Debugger Options - Download (continued)

Section Data Type Explanation
Uninitialized Data Controls downloading and verification for uninitialized-data sections. Select
appropriate checkboxes to specify downloading and verifications, for initial
launch and for successive runs.
Execute Tasks Enables the execution of target tasks.
Name For target tasks, this is the name of the target task as seen in the Target Task
view. For Debugger Shell scripts, this is the path to the CLDE script.
Task Type Contains either Debugger Shell scripts or target tasks (such as Flash
Programmer).
Add Adds a download task that can be either a target task or Debugger shell script.
Remove Removes the selected target task or debugger shell script.
Up Moves the selected task up the list.
Down Moves the selected task down the list.
4.1.34 PIC
Use this page to specify an alternate address at which the debugger loads the PIC module onto target
memory.
Usually, Position Independent Code (PIC) is linked in such a way that the entire image starts at address
0x00000000.
Figure 22: Debugger Options-PIC page
Debugger options

Debug | EPPC Exceptions | Download | PIC
[Jalternate Load Address

Systern Call Services | COther Executables | Symbolics | O3S Awareness

The table below lists the various options available on the PIC page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

104

NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

Table 69: PIC Page Options

Option Description

Alternate Load Address Specify the starting address at which the debugger loads your program. You
can also use this setting when you have an application which is built with
ROM addresses and then relocates itself to RAM (such as U-Boot).
Specifying a relocation address lets the debugger map the symbolic
debugging information contained in the original ELF file (built for ROM
addresses) to the relocated application image in RAM. Clear the checkbox
to have the debugger load your program at a default starting address.

NOTE
The debugger does not verify whether your code can execute at the specified address.
As aresult, the PIC generation settings of the compiler, linker and your program's startup
routines must correctly set any base registers and perform any required relocations.

4.1.3.5 System Call Services

Use this page to activate the debugger's support for system calls and to select options that define how the
debugger handles system calls.

The CodeWarrior debugger provides system call support over JTAG. System call support lets bareboard
applications use the functions of host OS service routines. This feature is useful if you do not have a board
support package (BSP) for your target board.

The host debugger implements these services. Therefore, the host OS service routines are available only when
you are debugging a program on a target board or simulator.

NOTE
The OS service routines provided must comply with an industry-accepted standard. The
definitions of the system service functions provided are a subset of Single UNIX
Specification (SUS).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 105

Debug Configurations
Using Debug Configurations Dialog Box

Figure 23: Debugger Options-System Call Services page

Debugger options

Debug | EPPC Exceptions | Download || PIC System Call Services | Other Executables | Symbolics | 05 Awareness

|:| Activate Suppart For System Services

The table below lists the various options available on the System Call Services page.

Table 70: System Call Services Page Options

Option

Description

Activate Supportfor System Services

stdout/stderr

Use shared console window

Trace level

Table continues on the next page...

Select this option to enable support for system services. All the
other options on the System Call Services panel are enabled only
if you check this checkbox.

By default, the output written to stdout and stderr appears in a
CodeWarrior IDE "console" window. To redirect console output to
a file, select the stdout/stderr checkbox. Click Browse to display
a dialog and specify the path and name of this file.

Select this option if you wish to share the same console window
between different debug targets. This setting is useful in multi-
core or multi-target debugging.

Use this drop-down list to specify the system call trace level. The
place where the debugger displays the traced system service
requests is determined by the Trace checkbox.The system call
trace level options available are:

» No Trace - system calls are not traced
» Summary - the requests for system services are displayed

+ Detailed - the requests for system services are displayed along
with the arguments/parameters of the request

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

106

NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

Table 70: System Call Services Page Options (continued)

Option Description

Trace By default, traced system service requests appear in a
CodeWarrior IDE "console" window. To log traced system service
requests to a file, select the Trace checkbox. Click Browse to
display a dialog and define the path and name of this file. In a
Power Architecture project created using the CodeWarrior
Bareboard Project Wizard, use the library syscall.a rather than
a UART library for handling the output.

Root folder The directory on the host system which contains the OS routines
that the bareboard program uses for system calls.

4.1.3.6 Other Executables

Use this page to specify additional ELF files to download or debug in addition to the main executable file
associated with the launch configuration.

Figure 24: Debugger Options-Other Executables Page

Debugger options
Debug | EPPC Exceptions | Download || PIC System Call Services | Cther Executables | symbolics | 05 Awareness
Specify other executable files to debug while debugging this target

File: :#.5'« ¥

[add. .. H Change... H Rermove

The table below lists the various options available on the Other Executables page.

Table 71: Debugger Options - Other Executables

Option Description
File list Shows files and projects that the debugger uses during each debug
session.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 107

Debug Configurations
Using Debug Configurations Dialog Box

Table 71: Debugger Options - Other Executables (continued)

Option Description

tﬁ Debug column:

» Checked-The debugger loads
symbolics for the file.

* Cleared-The debugger does not
load symbolics for the file.

Download column:

» Checked-The debugger
downloads the file to the Target
Device.

* Cleared-The debugger does not
download the file to the Target
Device.

Add Click to open the Debug Other Executable dialog, and add other
executable file to debug while debugging this target.

Use this dialog to specify the following settings:

» Specify the location of the additional executable - Enter the path to the
executable file that the debugger controls in addition to the current
project's executable file. Alternatively, click Workspace, File System, or
Variables to specify the file path.

» Load symbols - Check to have the debugger load symbols for the
specified file. Clear to prevent the debugger from loading the symbols.
The Debug column of the File list corresponds this setting.

» Download to device - Check to have the debugger download the
specified file to the target device. Specify the path of the file in the
Specify the remote download path text box. Clear the Download to
device checkbox to prevent the debugger from downloading the file to
the device. The Download column of the File list corresponds to the
Download to device setting.

* OK - Click to add the information that you specify in the Debug Other
Executable dialog to the File list.

Change Click to change the settings for the entry currently selected in the File list
column. Change this information as needed, then click the OK button to
update the entry in the File list.

Remove Click to remove the entry currently selected in the File list.

4.1.3.7 Symbolics

Use this page to specify whether the IDE keeps symbolics in memory.

Symbolics represent an application's debugging and symbolic information. Keeping symbolics in memory, known
as caching symbolics, is beneficial when you debug a large-size application.

Consider a situation in which the debugger loads symbolics for a large application, but does not download content
to a hardware device and the project uses custom makefiles with several build steps to generate this application.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
108 NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

In such a situation, caching symbolics helps speed up the debugging process. The debugger uses the readily
available cached symbolics during subsequent debugging sessions. Otherwise, the debugger spends significant
time creating an in-memory representation of symbolics during subsequent debugging sessions.

NOTE
Caching symbolics provides the most benefit for large applications, where doing so
speeds up application-launch time. If you debug a small application, caching symbolics
does not significantly improve the launch times.

Figure 25: Debugger Options-Symbolics page

Debugger options
Debug || EPPC Exceptions | Download | PIC System Call Services | Other Executables | Symbolics | 05 awareness
[cache Symbolics Between Sessions

[J¢reate and Use Copy of Executable

Make: Caching without copying the executable will keep the File lacked.,
Rebuilding the project or using Purge Symbaolics Cache in the context menu of the Debug View unlocks the File.

The table below lists the various options available on the Symbolics page.

Table 72: Debugger Options - Symbolics

Option Description

Cache Symbolics Between Sessions Select this option to have the debugger cache symbolics between
debugging sessions. If you check this checkbox and clear the
Create and Use Copy of Executable checkbox, the executable file
remains locked after the debugging session ends. In the Debug
view, right-click the locked file and select Un-target Executables
to have the debugger delete its symbolics cache and release the
file lock. The IDE enables this menu command when there are
currently unused cached symbolics that it can purge.

Deselect this option so that the debugger does not cache
symbolics between debugging sessions.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 109

Debug Configurations
Using Debug Configurations Dialog Box

Table 72: Debugger Options - Symbolics (continued)

Option Description

Create and Use Copy of Executable Select this option to have the debugger create and use a copy of
the executable file. Using the copy helps avoid file-locking issues
with the build system. If you check this checkbox, the IDE can
build the executable file in the background during a debugging
session.

Deselect this option so that the debugger does not create and use
a copy of the executable file.

4.1.3.8 OS Awareness

Use this page to specify the operating system (OS) that resides on the target device.

Figure 26: Debugger Options-OS Awareness page

Debugger options
Debug || EPPC Exceptions | Download | PIC Systern Call Services | Other Executables | Symbalics | ©5 Awareness

Target ©5: ||HplfESN

Book Parameters | Debug || Modules

[CIEnable Command Line Settings

[CJEnable Initial RAM Disk Settings

Open Firmware Device Tree Settings

File Path:

Address: | 0=x00000000

The table below lists the options available on the OS Awareness page.

Table 73: OS Awareness Page Options

Option Description

Target OS Use the Target OS list box to specify the OS that runs
on the target device, or specify None to have the
debugger use the bareboard.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
110 NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

Table 73: OS Awareness Page Options (continued)

Option

Description

Boot Parameters tab

Table continues on the next page...

Enable Command Line Settings: Select this option to
specify settings for regular initialization. Enter the
specific command line parameters in the Command
Line and Base Address text boxes.

Enable Initial RAM Disk Settings: Select this option to
specify settings for flattened device tree initialization
that downloads parameters to the kernel during its
initialization. You can specify a . dts file that contains
initialization information.

* File Path: Specifies the path of the RAM disk that you
transferred from the Linux machine

» Address: Specifies the address specified in Linux,
initrd-start from the dts file

« Size: Specifies the size of the dts file

» Download to target: Downloads the initial RAM disk
settings to the target

Open Firmware Device Tree Settings: Select this
option to load parameters to the kernel from a
bootloader on Power Architecture processors

« File Path: Specifies the path to the dtb file for kernel
debug

» Address: Specifies the address specified in Linux,
initrd-start from the dts file

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

111

Debug Configurations
Using Debug Configurations Dialog Box

Table 73: OS Awareness Page Options (continued)

Option Description
Debug tab Specifies the parameters required for Linux kernel
debug.

+ Enable Memory Translation: Select this option to
translate memory by specifying the following values:

* Physical Base Address: This is the
CONFIG_PHYSICAL_START option of the kernel
configuration

* Virtual Base Address: This is the
CONFIG_KERNEL_START option of the kernel
configuration

* Memory Size: This is the
CONFIG_LOWMEM_SIZE option of the kernel
configuration

Note: The virtual memory space should not overflow
the 32-bit memory space. This indicates that the
Virtual Base Address + Memory Size should not be
greater than OxFFFFFFFF. CodeWarrior displays an
error when this happens.

» Enable Threaded Debugging Support: Select this
option to enable support for Linux kernel threaded
debugging

» Update Background Threads on Stop: Select this
option only if you want to update the background
threads on stop. Keep this option unchecked as it
may increase debug speed.

» Enable Delayed Software Breakpoint Support:
Select this option to enable support for delayed
software breakpoints during kernel debug

Modules tab This tab allows you to add modules to the Linux kernel
project and configure the module's symbolics
mapping. For more information on the Modules tab,
see Configuring Symbolics Mappings of Modules on
page 310.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
112 NXP Semiconductors

Debug Configurations
Using Debug Configurations Dialog Box

4.1.4 Trace and Profile

Use this tab to configure the selected launch configuration for simulator and hardware profiling.

Figure 27: Debug Configurations-Trace and Profile Tab

|=| Main | &= Arguments ﬁ Debugger | = Trace and Frafile 'E%/ source | B Environment | £ Comman

Trace session control settings, For multicore syskems, when a trace session is started from the toolbar, please note that the debug conkest selecked in the
Debug Wiew is used to dekermine which trace session control settings are used,

on debug launch

|:| Statt a brace session

Default krace configuration

Select the default trace configuration used by the Start Trace Session toolbar button and the 'On debug launch' setting abowve,
MPC Buffer (Demo-cored)

v (e

(#) Show all configurations {3 only show configurations For the associated project

Trace collection
(%) Codetwarrior configures the target and enables trace collection
If the target is running and must be suspended to configure trace hardware:
Suspend and resume the target automatically A
After configuring trace hardware, start trace collection:
Autormatically A

Skop trace collection when the core is suspended

Mote: The trace collection can also be stopped From the koolbar, by an Analysis Point, or when the trace buffer is Full (and circular collection is nok
selected),

When trace collection stops, upload trace resulks:

Autormatically W

() The application configures the target and enables trace collection
Trace display

Display new trace data automatically

Open trace at offset: 0% {approximate)

The table below lists the various options available on the Trace and Profile page.

Table 74: Trace and Profile Tab Options

Option Description

Start a trace session Select to start the trace session immediately on launch.

Default trace Configuration Select the default trace configuration. The Show all configurations

option will display all the trace configurations available in the
Default trace Configuration drop-down list and the Only show
configurations for the associated project option will display those
configurations which are related to the selected project.

Edit Click to modify the selected configuration.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors

113

Debug Configurations
Using Debug Configurations Dialog Box

Table 74: Trace and Profile Tab Options (continued)

Option

Description

Trace Collection

CodeWarrior configures the target and
enables trace collection

The application configures the target and
enables trace collection

Trace display

Select the trace collection mode.

Select to configure and control trace collection. If the target is
running and must be suspended to configure trace hardware -
Click to suspend the target to configure trace hardware.

» Suspend and resume the target automatically - Select to
suspend the target automatically for trace configuration. If this
option is enabled and you choose to configure trace while the
target is running, the target suspends immediately while trace
configuration is applied, and then resumes automatically.

» Wait until the target is resumed manually - Select to suspend
and resume the target for trace configuration manually. If this
option is enabled and you choose to configure trace while the
target is running, the configuration is changed, but not applied
to the target until the target is suspended and resumed.

After configuring trace hardware, start trace collection - Select the
option to start trace collection after configuring the trace hardware.

+ Automatically - Select to start trace collection immediately after
configuring trace hardware.

» Manually from the toolbar or by an Analysis Point - Click to start
your trace session and configure trace hardware with trace
collection disabled. Trace collection will be enabled later by
clicking Start Collection or by executing code at an Analysis
Point

Stop trace collection when the core is suspended - Select to stop
trace collection. When the trace collection stops, upload trace
results - Select to upload trace results after the trace collection is
stopped.

+ Automatically - Click to save data to the Trace.dat file
automatically after collection completes or is stopped.

» Manually from the toolbar - Click to save the trace data manually
to the Trace.dat file.

Click to start collecting new trace data for the trace session using
your application.

Display new trace data automatically

NOTE

For more information on Trace, see the Tracing and Analysis Tools User Guide available
in the <CWInstallDir>\PA\Help\PDF folder, where CWInstallDir is the
installation directory of your CodeWarrior software.

4.1.5 Source

Use this tab to specify the location of source files used when debugging a C application.

By default, this information is taken from the build path of your project.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

114

NXP Semiconductors

Source Lookup Path;

[Z] Main | 9= Arguments | %5 Debugger | = Trace and Profile . Source
+-1= Path Mapping: cygdrive
+-1=F Default

Figure 28: Debug Configurations-Source tab

Debug Configurations
Using Debug Configurations Dialog Box
E Enviranment | =] Common

Restore Default

[]5earch For duplicate source Files on the path
The table below lists the various options available on the Source page.
Option

Source Lookup Path
Add

Table 75: Source Tab Options
Edit

Description

Remove

Up

connecting the debugger to the target.

Lists the source paths used to load an image after

Click to add new source containers to the Source
Lookup Path search list.
Down

container.

Restore Default

Click to modify the content of the selected source
Click to remove selected items from the Source
Lookup Path list.

Path list.

Path list.
Search for duplicate source files on the path

Click to move selected items up the Source Lookup
Click to move selected items down the Source Lookup

selected path.

Select to search for files with the same name on a

Click to restore the default source search list.
NXP Semiconductors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

115

Debug Configurations
Using Debug Configurations Dialog Box

4.1.6 Environment

Use this tab to specify the environment variables and values to use when an application runs.

Figure 29: Debug Configuration-Environment tab

[Z] Main | 9= Arguments | %5 Debugger | = Trace and Profile B Source | Fg, Environment = Comman

Environment variables to sek:

‘ariable

Walue

Mew, ..

The table below lists the various options available on the Environment page.

Table 76: Environment Tab Options

Option

Description

Environment Variables to set
New
Select

Edit

Remove

Append environment to native environment

Replace native environment with specified
environment

Lists the environment variable name and its value.
Click to create a new environment variable.
Click to select an existing environment variable.

Click to modify the name and value of a selected
environment variable.

Click to remove selected environment variables from
the list.

Select to append the listed environment variables to
the current native environment.

Select to replace the current native environment with
the specified environment set.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

116

NXP Semiconductors

4.1.7 Common

launch options.

Save as

Debug Configurations
Using Debug Configurations Dialog Box
(#) shared file: | \hello_world-coreliDebug_Settings
Display in Favorites menu
F ﬁﬁiDehug
|:| 'ij Rur

Use this tab to specify the location to store your run configuration, standard input and output, and background
) Local file

Figure 30: Debug Configuration-Common tab
[Z] Main | 9= Arguments | %5 Debugger | = Trace and Profils B Source | g Environment | =] Comman

Standard Input and Output

[IFile:

Encoding
[#] Allocate Console {necessary for input)

(%) Default - inherited {Cp1252)
) other

|:| Pork:

Launch in background

The table below lists the various options available on the Common page.
Table 77: Common Tab Options
Option Description
Local file Select to save the launch configuration locally.
Shared file Select to specify the path of, or browse to, a workspace to store the launch
configuration file, and be able to commit it to a repository.
Display in favorites menu
selection.
Encoding
input)
File

Select to add the configuration name to Run or Debug menus for easy

Select an encoding scheme to use for console output.
debugged application.

Allocate Console (necessary for | Select to assign a console view to receive the output. You must select this

Workspace

option if you want to use the host CodeWarrior to view the output of the

Specify the file name to save output. For Linux applications, this option
using target-side files).

provides a way to select a host-side file to redirect the output forwarded by
CodeWarrior TRK to host CodeWarrior (if redirections are specified in the
NXP Semiconductors

Arguments tab, then this feature makes no sense because redirections are

Specifies the path of, or browse to, a workspace to store the output file.
Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

117

Debug Configurations

Customizing Debug Configurations

Table 77: Common Tab Options (continued)

Act as Server

Hostname/IP Address

Launch in background

Option Description

File System Specifies the path of, or browse to, a file system directory to store the output
file.

Variables Select variables by name to include in the output file.

Append Select to append output. Clear to recreate file each time. Selecting this option
means that the file (host-side file, in case of Linux applications) mentioned in
the File text box will not be overwritten for new content. Instead, the new
content will be appended to the file.

Port Select to redirect standard output (stdout, stderr) of a process being

debugged to a user specified socket.

NOTE
You can also use the redirect command in
debugger shell to redirect standard output
streams to a socket.

Select to redirect the output from the current process to a local server socket
bound to the specified port.

Select to redirect the output from the current process to a server socket
located on the specified host and bound to the specified port. The debugger
will connect and write to this server socket via a client socket created on an
ephemeral port

Select to launch configuration in background mode.

4.2 Customizing Debug Configurations

When you use the CodeWarrior wizard to create a new project, the wizard sets the project's launch
configurations to default values. You can change the default values of your project's launch configurations,
according to your program's requirements.

To modify the launch configurations:

1. Start the CodeWarrior IDE.

2. From the main menu bar of the IDE, select Run > Debug Configurations.

The Debug Configurations dialog appears. The left side of this dialog has a list of debug configurations that
apply to the current application.

3. Expand the CodeWarrior configuration.

4. From the expanded list, select the debug configuration that you want to modify.

The follwoing figure shows the Debug Configurations dialog with the settings for the debug configuration you

selected.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

118

NXP Semiconductors

Debug Configurations
Customizing Debug Configurations

Figure 31: CodeWarrior Debug Configuration-Main tab

=] Main .)= Arguments ﬁ Debugger | = Trace and Profile Fi? Source | B Environment. | = Cammon
Debug session type
hoase a predefined debug session bype or custom type For masximum Flexibility

) Download (" Connect
) Aktach (®) Custom

w C/C++ application

Project: Demo-cored

[+] Application: RAM/Demo-cored, elf Search F‘ru:ujeu:t...l [Browse, ..] [Wariables. ..]

w Build {if required) before launching
Build {if required) before launching
Build configuration: RAM w

[select configuration using 'CjC++ Application’

{JEnable auto build " Disable auto build
{(#) Use worksparce settings Configure Workspace Setkings. ..

+ Target settings

Conneckion: = Demo-cored_RAM_P4080_Download v Edit...] [=

Execute reset sequence
Execute initialization scripk(s)
The connection is For a mulkicore target. Please select a core, or multiple cores in the case of SMP;

Target

=[] P4030
e500me-0
[] e500me-1
[] es00me-2
[] es00me-3
[] es00mc-4
[] e500me-5
[] es00me-6
[] eso0me-7

5. In the group of tabs in the upper-right side of the dialog, click a tab.

6. Change the settings on the debug configuration page as per your requirements. See Using Debug
Configurations Dialog Box on page 91 for details on the various settings of this page.

7. Click Apply to save the new settings.

When you finish, you can click Debug to start a new debugging session, or click Close to save your changes
and close the Debug Configurations dialog.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 119

wr
PRt

Debug Configurations
Reverting Debug Configuration Settings

4.3 Reverting Debug Configuration Settings

After making some modifications in a debug configuration's settings, you can either save the pending
(unsaved) changes or revert to last saved settings.

To save the pending changes, click the Apply button of the Debug Configurations dialog, or click the Close button
and then the Yes button.

To undo pending changes and restore the last saved settings, click the Revert button at the bottom of the Debug
Configurations dialog.

The IDE restores the last set of saved settings to all pages of the Debug Configurations dialog. Also, the IDE
disables the Revert button until you make new pending changes.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
120 NXP Semiconductors

Working with Debugger
Debugging a CodeWarrior project

Chapter 5
Working with Debugger

This chapter explains various aspects of CodeWarrior debugging, such as debugging a project, connection
types, setting breakpoints and watchpoints, working with registers, viewing memory, viewing cache, and
debugging externally built executable files.

This chapter documents debugger featurr\le(z-[:at are specific to CodeWarrior
Development Studio for Power Architecture. For more information on debugger features
that are common in all CodeWarrior products, see CodeWarrior Development Studio
Common Features Guide.

This chapter explains:

» Debugging a CodeWarrior project on page 121

+ Consistent debug control on page 122

« Connection types on page 122

» JTAG diagnostics tests on page 150

+ Editing remote system configuration on page 152

* Memory translations on page 155

* CodeWarrior Command-Line Debugger on page 156

» Working with Breakpoints on page 158

» Working with Watchpoints on page 163

» Working with Registers on page 165

* Viewing memory on page 193

» Viewing Cache on page 196

» Changing Program Counter Value on page 204

» Hard resetting on page 204

+ Setting Stack Depth on page 204

* Import a CodeWarrior Executable file Wizard on page 204

» Debugging Externally Built Executable Files on page 209

5.1 Debugging a CodeWarrior project
This section explains how to change the debugger settings and how to debug a CodeWarrior project.

The CodeWarrior Bareboard Project Wizard or the CodeWarrior Linux Project Wizard sets the debugger settings
of a project's launch configurations to default values. You can change these default values as per your
requirements.

To change the debugger settings and start debugging a CodeWarrior project, perform these steps:

1. From the CodeWarrior IDE menu bar, select Run > Debug Configurations. The CodeWarrior IDE uses the
settings in the launch configuration to generate debugging information and initiate communications with the
target board.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 121

|
y

'
A

working with Debugger
Consistent debug control

The Debug Configurations dialog appears. The left side of this dialog has a list of debug configurations that
apply to the current application.

2. Expand the CodeWarrior configuration.

3. From the expanded list, select the debug configuration that you want to modify.

4. Click Apply to save the new settings.

TIP
You can click Revert to undo any of the unsaved changes. The CodeWarrior IDE
restores the last set of saved settings to all pages of the Debug Configurations dialog.
Also, the IDE disables Revert until you make new pending changes.

5. Click Debug to start the debugging session.

You just modified the debugger settings and initialized a debugging session.

5.2 Consistent debug control

This section describes the consistent debug control feature of the CodeWarrior debugger.

When you attempt to stop the target during a debugging session, the consistent debug contro/feature enables
the debugger to report core's Doze and Nap low power management states.

In addition, the debugger at the same time grants you access to the system states, such as core registers, TLB
registers, caches, and so on.

When you attempt to resume the debugging session, the debugger displays a warning message and puts the
respective core in the same power management state (Doze or Nap, whichever is the previous one). The
debugger waits for the core to exit out of Doze or Nap state to continue with the attempted operation.

5.3 Connection types

This section describes the different connection types provided by CodeWarrior debugger for connecting the
target board to a computer.

The connection types supported by CodeWarrior debugger are:
+ CCSSIM2 ISS on page 122

+ Ethernet TAP on page 124

+ Gigabit TAP + Trace on page 128

+ Gigabit TAP on page 133

« Simics on page 138

* TCF on page 140

* USB TAP on page 141

» CodeWarrior TAP on page 145

5.3.1 CCSSIM2 ISS

Select this connection type to connect to simulators based on the CCSSIM2 ISS interface.

To configure the settings of the CCSSIM2 ISS connection type, perform the following steps:

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
122 NXP Semiconductors

Working with Debugger
Connection types

1. Select Run > Debug Configurations.
The Debug Configurations dialog appears.
2. In the Connection group, click Edit next to the Connection drop-down list.
The Properties for <connection launch configuration> window appears.
3. Select CCSSIM2 ISS from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of the selected connection
type.

The table below describes various options available on the Connection page.

Table 78: CCSSIM2 ISS - Connection Tab Options

Option Description

CCS server Automatic launch Select to automatically launch the
specified CCS server on the specified
port.

Server port number Specifies the port number to launch the
CCS server on.

CCS executable Select to specify the path of, or browse to,
the executable file of the CCS server.

Manual launch Select to manually launch the specified
CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of
the CCS server.

Server port number Specifies the port number to launch the
CCS server on.

Connect server to TAP Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 79: CCSSIM2 ISS - Advanced Tab Options

Option Description

Target connection lost settings | Try to reconnect If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

Terminate the debug session | If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 123

|
y

'
A

working with Debugger
Connection types

Table 79: CCSSIM2 ISS - Advanced Tab Options (continued)

Option

Description

Ask me

Advanced CCS settings CCS timeout

Enable logging

This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Select to display protocol logging in
console.

5.3.2 Ethernet TAP

Select this connection type when Ethernet network is used as interface to communicate with the hardware

device.

To configure the settings of an Ethernet TAP connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select the Ethernet TAP from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of the selected connection

type.

The table below describes various options available on the Connection page.

Table 80: Ethernet TAP - Connection Tab Options

Server port number

CCS executable

Option Description

Ethernet TAP Hostname/IP Specifies hostname or the IP address of
the TAP.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed. By
default, set to 10230 kHz.

CCS server Automatic launch Select to automatically launch the

Table continues on the next page...

specified CCS server on the specified
port.

Specifies the port number to launch the
CCS server on.

Click to specify the path of, or browse to,
the executable file of the CCS server.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

124

NXP Semiconductors

Working with Debugger
Connection types

Table 80: Ethernet TAP - Connection Tab Options (continued)

Option

Description

Manual launch

Server hostname/IP

Server port number

Connect server to TAP

Select to manually launch the specified
CCS server on the specified port.

Specifies hostname or the IP address of
the CCS server.

Specifies the port number to launch the
CCS server on.

Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 81: Ethernet TAP - Advanced Tab Options

Option

Description

Ask me

JTAG config file

Target connection lost settings | Try to reconnect

Terminate the debug session

Advanced CCS settings CCS timeout

Enable logging

Table continues on the next page...

If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Select to display protocol logging in
console.

This panel displays the JTAG
configuration file being used. This panel is
populated only if you have selected a
JTAG configuration file for your project. If
a JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

125

working with Debugger
Connection types

Table 81: Ethernet TAP - Advanced Tab Options (continued)

Option

Description

Advanced TAP settings

Force shell download

Disable fast download

Enable JTAG diagnostics

Table continues on the next page...

Select to force a reload of the TAP shell
software.

Select to disable fast download.

NOTE
This option is not
available for
e500mc, e5500,
and e6500 core
based targets.

When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

126

NXP Semiconductors

Working with Debugger
Connection types

Table 81: Ethernet TAP - Advanced Tab Options (continued)

Option

Description

Secure debug key

Table continues on the next page...

Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

NOTE
If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

127

working with Debugger
Connection types

Table 81: Ethernet TAP - Advanced Tab Options (continued)

Option

Description

Reset Delay (ms)

Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the pre-boot loader (PBL) is used to
perform boot image manipulation (for
example, copying U-Boot from SPI flash
to internal cache/SRAM during reset) that
does not complete within the default reset
timeout window. A good start value to test
out board-specific requirements in such
cases is 1000 ms; however, this value
may need to be increased for very large
PBL transfers.

NOTE
Reset delay is
supported for
processors based
on the e500mc,
e5500, and e6500
cores.

5.3.3 Gigabit TAP + Trace

Select this connection type when Gigabit TAP and Trace is used as interface to communicate with the

hardware device.

To configure the settings of a Gigabit TAP + Trace connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select the Gigabit TAP + Trace from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection

type.

The table below describes various options available on the Connection page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

128

NXP Semiconductors

Working with Debugger
Connection types

Table 82: Gigabit TAP + Trace - Connection Tab Options

Option

Description

Gigabit TAP + Trace

JTAG settings

Aurora settings

CCS server

Hostname/IP

Debug connection

JTAG clock speed (kHz)

Aurora data rate

Automatic launch

Server port number

CCS executable

Manual launch

Server hostname/IP

Server port number

Connect server to TAP

Specifies hostname or the IP address of
the TAP.

Specifies the type of debug connection to
use. The options available are JTAG over
JTAG cable connection, JTAG over
Aurora cable connection, and Aurora
connection.

Specifies the JTAG clock speed. By
default, set to 10230 kHz.

Specifies the Aurora data rate, which
refers to the frequency with which the raw
data bits are transferred on the wire. The
Aurora connection is used only for trace
analysis.

Select to automatically launch the
specified CCS server on the specified
port.

Specifies the port number to launch the
CCS server on.

Select to specify the path of, or browse to,
the executable file of the CCS server.

Select to manually launch the specified
CCS server on the specified port.

Specifies hostname or the IP address of
the CCS server.

Specifies the port number to launch the
CCS server on.

Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 83: Gigabit TAP + Trace - Advanced Tab Options

Option

Description

Target connection lost settings | Try to reconnect

Table continues on the next page...

If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

129

working with Debugger
Connection types

Table 83: Gigabit TAP + Trace - Advanced Tab Options (continued)

Option

Description

Terminate the debug session

Ask me

Advanced CCS settings CCS timeout

Enable logging

JTAG config file

Advanced TAP settings Force shell download

Disable fast download

Table continues on the next page...

If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Select to display protocol logging in
console.

This panel displays the JTAG
configuration file being used. This panel is
populated only if you have selected a
JTAG configuration file for your project. If
a JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

Select to force a reload of the TAP shell
software.

Select to disable fast download.

NOTE
This option is not
available for
processors based
on e500mc,
e5500, and e6500
cores.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

130

NXP Semiconductors

Working with Debugger
Connection types

Table 83: Gigabit TAP + Trace - Advanced Tab Options (continued)

Option

Description

Enable JTAG diagnostics

Table continues on the next page...

When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

131

working with Debugger
Connection types

Table 83: Gigabit TAP + Trace - Advanced Tab Options (continued)

Option

Description

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

Secure debug key

Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

Table continues on the next page...

NOTE
If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

132

NXP Semiconductors

Working with Debugger
Connection types

Table 83: Gigabit TAP + Trace - Advanced Tab Options (continued)

Option

Description

Reset Delay (ms)

Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the PBL is used to perform boot image
manipulation (for example, copying U-
Boot from SPI flash to internal cache/
SRAM during reset) that does not
complete within the default reset timeout
window. A good start value to test out
board-specific requirements in such cases
is 1000 ms; however, this value may need
to be increased for very large PBL
transfers.

NOTE
Reset delay is
supported for
processors based
on the e500mc,
e5500, and 6500
cores.

5.3.4 Gigabit TAP

Select this connection type when Gigabit TAP is used as interface to communicate with the hardware device.

To configure the settings of a Gigabit TAP connection type, perform the following steps:

1.

Select Run > Debug Configurations.

The Debug Configurations dialog appears.

In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

Select the Gigabit TAP from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of the selected connection

type.

The table below describes various options available on the Connection page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

133

working with Debugger
Connection types

Table 84: Gigabit TAP - Connection Tab Options

Option Description

Gigabit TAP Hostname/IP Specifies hostname or the IP address of
the TAP.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed. By
default, set to 10230 kHz.

CCS server Automatic launch Select to automatically launch the

Server port number

CCS executable

Manual launch

Server hostname/IP

Server port number

Connect server to TAP

specified CCS server on the specified
port.

Specifies the port number to launch the
CCS server on.

Click to specify the path of, or browse to,
the executable file of the CCS server.

Select to manually launch the specified
CCS server on the specified port.

Specifies hostname or the IP address of
the CCS server.

Specifies the port number to launch the
CCS server on.

Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 85: Gigabit TAP - Advanced Tab Options

Option

Description

Ask me

Target connection lost settings | Try to reconnect

Terminate the debug session

Advanced CCS settings CCS timeout

Table continues on the next page...

If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

134

NXP Semiconductors

Working with Debugger
Connection types

Table 85: Gigabit TAP - Advanced Tab Options (continued)

Option

Description

Enable logging

JTAG config file

Advanced TAP settings Force shell download

Disable fast download

Table continues on the next page...

Select to display protocol logging in
console.

This panel displays the JTAG
configuration file being used. This panel is
populated only if you have selected a
JTAG configuration file for your project. If
a JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

Select to force a reload of the TAP shell
software.

Select to disable fast download.

NOTE
This option is not
available for
processors based
on e500muc,
e5500, and e6500
cores.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

135

working with Debugger
Connection types

Table 85: Gigabit TAP - Advanced Tab Options (continued)

Option

Description

Enable JTAG diagnostics

Table continues on the next page...

When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

136

NXP Semiconductors

Working with Debugger
Connection types

Table 85: Gigabit TAP - Advanced Tab Options (continued)

Option

Description

Secure debug key

Table continues on the next page...

Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

NOTE
If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

137

working with Debugger
Connection types

Table 85: Gigabit TAP - Advanced Tab Options (continued)

Option

Description

Reset Delay (ms)

Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the PBL is used to perform boot image
manipulation (for example, copying U-
Boot from SPI flash to internal cache/
SRAM during reset) that does not
complete within the default reset timeout
window. A good start value to test out
board-specific requirements in such cases
is 1000 ms; however, this value may need
to be increased for very large PBL
transfers.

NOTE
Reset delay is
supported for
processors based
on the e500mc,
e5500, and e6500
cores.

5.3.5 Simics

Select this connection type when Simics simulator is used.

To configure the settings of a Simics connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select Simics from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection

type.

The table below describes various options available on the Connection page.

Table 86: Simics - Connection Tab Options

Option

Description

Simics settings

Model startup script

Table continues on the next page...

Specifies the Simics startup script.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

138

NXP Semiconductors

Working with Debugger
Connection types

Table 86: Simics - Connection Tab Options (continued)

Server port number

CCS executable

Manual launch

Server hostname/IP

Server port number

Option Description
Simics executable Specifies the Simics executable file.
CodeWarrior add-on Specifies the Simics add-on for
CodeWarrior IDE.
Show Simics Control window | Select to allow control of the Simics
environment.
CCS server Automatic launch Select to automatically launch the

specified CCS server on the specified
port.

Specifies the port number to launch the
CCS server on.

Click to specify the path of, or browse to,
the executable file of the CCS server.

Select to manually launch the specified
CCS server on the specified port.

Specifies hostname or the IP address of
the CCS server.

Specifies the port number to launch the
CCS server on.

The table below describes the various options available on the Advanced page.

Table 87: Simics - Advanced Tab Options

Option

Description

Target connection lost settings | Try to reconnect

Terminate the debug session

Ask me

Advanced CCS settings CCS timeout (seconds)

Enable logging

If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Select to display protocol logging in
console.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

139

working with Debugger

Connection types

5.3.6 TCF

Select this connection type when Simics simulator is used.

To configure the settings of a TCF connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select TCF from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection

type.

The table below describes various options available on the Connection page.

Table 88: TCF - Connection Tab Options

Option Description
Connection Hostname/IP Specifies hostname or IP address of the
host, TCF agentruns on. 127.0.0.1 is
used if the agent runs locally.
Port Specifies the TCP port the agent is
listening on.
Enable Logging Select to enable logging of all ongoing
TCF traffic in the Console view.
Connection timeout Specifies connection timeout in seconds.
Agent Start Agent Select to start the agent and specify the

Path to executable

Arguments to pass

Redirect stdout

run-time properties.

Specifies the path to the TCF agent
executable file.

Specifies all the command line arguments
to be passed to the TCF agent while
starting up.

Select to have the standard output and
standard error output redirected to the
Console view in CodeWarrior IDE.

The table below describes the various options available on the Advanced page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

140

NXP Semiconductors

Table 89: TCF - Advanced Tab Options

Working with Debugger
Connection types

Option

Description

Target connection lost settings | Try to reconnect

Terminate the debug session | If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Ask me This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

5.3.7 USB TAP

Select this connection type when USB TAP is used as interface to communicate with the hardware device.

To configure the settings of a USB TAP connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.
3. Select USB TAP from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection

type.
4. n

The table below describes various options available on the Connection page.

Table 90: USB TAP - Connection Tab Options

Option

Description

USB TAP

JTAG settings

CCS server

USB serial number Select and specify the USB serial number
of the USB TAP, required only if using
multiple USB TAPs.

JTAG clock speed (kHz) Specifies the JTAG clock speed. By
default, set to 10230 kHz.

Automatic launch Select to automatically launch the
specified CCS server on the specified
port.

Server port number Specifies the port number to launch the

CCS server on.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

141

working with Debugger
Connection types

Table 90: USB TAP - Connection Tab Options (continued)

Option

Description

CCS executable

Manual launch

Server hostname/IP

Server port number

Connect server to TAP

Click to specify the path of, or browse to,
the executable file of the CCS server.

Select to manually launch the specified
CCS server on the specified port.

Specifies hostname or the IP address of
the CCS server.

Specifies the port number to launch the
CCS server on.

Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 91: USB TAP - Advanced Tab Options

Option

Description

Ask me

Target connection lost settings | Try to reconnect

Terminate the debug session

Advanced CCS settings CCS timeout

Enable logging

Table continues on the next page...

If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Select to display protocol logging in
console.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

142

NXP Semiconductors

Working with Debugger
Connection types

Table 91: USB TAP - Advanced Tab Options (continued)

Option

Description

JTAG config file

Advanced TAP settings

Force shell download

Disable fast download

Enable JTAG diagnostics

Table continues on the next page...

This panel displays the JTAG
configuration file being used. This panel is
populated only if you have select a JTAG
configuration file for your project. If a
JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

Select to force a reload of the TAP shell
software.

Select to disable fast download.

NOTE
This option is not
available for
processors based
on e500mc,
e5500, and e6500
cores.

When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

143

working with Debugger
Connection types

Table 91: USB TAP - Advanced Tab Options (continued)

Option

Description

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

Secure debug key

Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

Table continues on the next page...

NOTE
If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

144

NXP Semiconductors

Working with Debugger
Connection types

Table 91: USB TAP - Advanced Tab Options (continued)

Option

Description

Reset Delay (ms)

Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the PBL is used to perform boot image
manipulation (for example, copying U-
Boot from SPI flash to internal cache/
SRAM during reset) that does not
complete within the default reset timeout
window. A good start value to test out
board-specific requirements in such cases
is 1000 ms; however, this value may need
to be increased for very large PBL
transfers.

NOTE
Reset delay is
supported for
processors based
on the e500mc,
e5500, and 6500
cores.

5.3.8 CodeWarrior TAP

Select this connection type when either the CodeWarrior TAP is used as interface to communicate with the
hardware device.

To configure the settings of a CodeWarrior TAP connection type, perform the following steps:

1.

Select Run > Debug Configurations.

The Debug Configurations dialog appears.

In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

Select CodeWarrior TAP from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection

type.

The table below describes various options available on the Connection page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

145

working with Debugger
Connection types

Table 92: CodeWarrior TAP - Connection Tab Options

Option

Description

CodeWarrior TAP

JTAG settings

CCS server

Hardware Connection

Hostname/IP

Serial Number

JTAG clock speed (kHz)

Automatic launch

Server port number

CCS executable

Manual launch

Server hostname/IP

Server port number

Connect server to TAP

Specifies CodeWarrior TAP interface to
communicate with the hardware device.
CodeWarrior TAP supports both USB and
Ethernet network interfaces.

Specifies hostname or the IP address of
the TAP.

NOTE
Enabled only if
Hardware
Connection is set
to Ethernet.

Select and specify the USB serial number
of the USB TAP; required only if using
multiple CodeWarror TAPs (over USB).

Specifies the JTAG clock speed. By
default, set to 10230 kHz.

Select to automatically launch the
specified CCS server on the specified
port.

Specifies the port number to launch the
CCS server on.

Click to specify the path of, or browse to,
the executable file of the CCS server.

Select to manually launch the specified
CCS server on the specified port.

Specifies hostname or the IP address of
the CCS server.

Specifies the port number to launch the
CCS server on.

Select to enable the CCS server to
connect to the CodeWarrior TAP.

The table below describes the various options available on the Advanced page.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

146

NXP Semiconductors

Working with Debugger
Connection types

Table 93: CodeWarrior TAP - Advanced Tab Options

Option

Description

Target connection lost settings | Try to reconnect

Terminate the debug session

Ask me

Advanced CCS settings CCS timeout

Enable logging

JTAG config file

Advanced TAP settings Force shell download

Disable fast download

Table continues on the next page...

If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Select to display protocol logging in
console.

This panel displays the JTAG
configuration file being used. This panel is
populated only if you have select a JTAG
configuration file for your project. If a
JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

Select to force a reload of the TAP shell
software.

Select to disable fast download.

NOTE
This option is not
available for
e500mc, e5500,
and e6500 core
based targets.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

147

working with Debugger
Connection types

Table 93: CodeWarrior TAP - Advanced Tab Options (continued)

Option

Description

Enable JTAG diagnostics

Table continues on the next page...

When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

148

NXP Semiconductors

Working with Debugger
Connection types

Table 93: CodeWarrior TAP - Advanced Tab Options (continued)

Option

Description

Secure debug key

Table continues on the next page...

Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

NOTE
If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

149

working with Debugger
JTAG diagnostics tests

Table 93: CodeWarrior TAP - Advanced Tab Options (continued)

Option Description

Reset Delay (ms) Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the PBL is used to perform boot image
manipulation (for example, copying U-
Boot from SPI flash to internal cache/
SRAM during reset) that does not
complete within the default reset timeout
window. A good start value to test out
board-specific requirements in such cases
is 1000 ms; however, this value may need
to be increased for very large PBL
transfers.

NOTE
Reset delay is
supported for
processors based
on the e500mc,
e5500, and e6500
cores.

5.4 JTAG diagnostics tests

JTAG diagnostics tests are advanced diagnostics tests performed on the JTAG connection to be used during
custom board bring-up.

After connection to the probe has been established, the debugger performs JTAG diagnostics tests and prints
the test results to the console log.

Five JTAG header pins (TDI, TDO, TMS, TCK, and TRST) are used in JTAG diagnostics tests. Failing of any of
these pins can generate errors. Other JTAG header pins, such as HRESET are architecture-specific and not
directly related to JTAG.

JTAG diagnostics tests available in CodeWarrior are:
* Power at probe test on page 151

* IR scan test on page 151

* Bypass scan test on page 151

» Arbitrary TAP state move test on page 152

* Reading JTAG IDCODEs test on page 152

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
150 NXP Semiconductors

Working with Debugger
JTAG diagnostics tests

5.4.1 Power at probe test

This test checks if the PWR pin is correctly connected. If not, an error message, Error: No target power
defected, is displayed.

5.4.2 IR scan test

The IR scan test uses the TCK and TMS pins to move the target into the Shift-IR state, and then sends a long
test pattern through the IR by holding TMS=0, clocking TCK, and feeding the test pattern bits in the TDI pin.

It captures the bits coming out on the TDO pin. If the connection is working correctly, the TDI bits pass through
the IR shift register (instruction register) and eventually show up on the TDO pin. The test compares the TDO
data it captures against the TDI test pattern it sent to see if TDO contains the test pattern. It expects to find the
test pattern in the TDO, but bit-shifted to the left by some number of bits (corresponding to the IR length).

If it fails to find the test pattern, then the test reports an error, Error festing IR scan.

If the test fails to measure the length of the instruction register, then an error, Error measuring IR length, is
thrown.

The error might be due to one or more of the following reasons:

» TRST stuck low: This may hold the target JTAG logic in reset, preventing any shifts to occur.

» TMS disconnected or stuck: This may prevent the target from making any JTAG state changes.
» TCK disconnected or stuck: This may prevent any state changes or clocking of data.

» TDI disconnected or stuck: This may prevent the test pattern data from getting into the target.

» TDO disconnected or stuck: This may prevent the test pattern data from getting out of the target.

If the test fails, then it is possible that there is a physical connection problem with the JTAG pins, or the JTAG
frequency is too high.

5.4.3 Bypass scan test

The bypass scan test uses the TCK and TMS pins to move the target into the Shift-Bypass state, and then
sends a long test pattern through the data register (DR) by holding TMS=0, clocking TCK, and feeding the
test pattern bits in the TDI pin.

It captures the bits coming out on the TDO pin. If the connection is working correctly, the TDI bits pass through
the DR shift register and eventually show up on TDO. The test compares the TDO data it captures against the
TDI test pattern it sent to see if TDO contains the test pattern. It expects to find the test pattern in the TDO, but
bit-shifted to the left by some number of bits (corresponding to the bypass length).

If the test fails to find the test pattern, then it reports an error, Error testing bypass scan.

If the test fails to measure the length of the data register, then an error, Error measuring bypass length, is thrown.
The error might be due to one or more of the following reasons:

» TRST stuck low: This would hold the target JTAG logic in reset, preventing any shifts to occur.

« TMS disconnected or stuck: This would prevent the target from making any JTAG state changes.

» TCK disconnected or stuck: This would prevent any state changes or clocking of data.

» TDI disconnected or stuck: This would prevent the test pattern data from getting into the target.

» TDO disconnected or stuck: This would prevent the test pattern data from getting out of the target.

If the test fails, then it is possible that there is a physical connection problem with the JTAG pins, or the JTAG
frequency is too high.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 151

working with Debugger
Editing remote system configuration

5.4.4 Arbitrary TAP state move test

The arbitrary TAP state move test tries to exercise the TMS pin more rigorously than the other tests.

Usually, there is a little bit of TMS activity at the beginning and end of every test, but this test keeps it toggling
frequently during the entire test. If other tests are passing and this test is failing, then it might be due to a signal
integrity problem on the TMS pin.

Errors may occur at the first TAP state move operation (Error performing first TAP stafe move) or at the second
TAP state move operation (Error performing second TAP state move), or the IR scan operation may fail after
performing the state move operations (Error on IR scan after state moves).

5.4.5 Reading JTAG IDCODEs test

This test scans all JTAG IDCODEs on the JTAG chain and displays the detected JTAG IDCODEs.
If the test fails, then an error, Failed fo scan the JTAG IDCODESs on the chain, is displayed.

The method used to scan the IDCODEs depends on a feature that is recommended by the JTAG standard, but
is not mandatory. It works on most parts, but not on all parts. If the JTAG chain has a part (provided by Freescale
or third party) that does not implement the recommended behavior, then the test results might be wrong and
misleading, and confirming the successful completion of the test will be difficult.

5.5 Editing remote system configuration

The remote system configuration model defines the connection and system configurations where you can
define a single system configuration that can be referred to by multiple connection configurations.

To edit the system configuration, perform these steps:
1. Select Run > Debug Configurations.
The Debug Configurations dialog appears.
2. In the Connection panel, click Edit next to the Connection drop-down list.
The Properties for <connection launch configuration> window appears.
3. Click Edit next to the Target drop-down list.
The Properties for <system launch configuratior> window appears.
4. Select the appropriate system type from the Target type drop-down list.

5. Make the respective settings in Initialization tab on page 153, Memory tab on page 154 and Advanced
tab on page 155.

6. Click OK to save the settings.

7. Click OK to close the Properties window.
In this section:

* |nitialization tab on page 153

* Memory tab on page 154

» Advanced tab on page 155

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
152 NXP Semiconductors

Working with Debugger

Editing remote system configura

5.5.1 Initialization tab

Use the Initialization tab to specify target initialization file for various cores.

Figure 32: USB TAP connection type - Initialization tab

Initialization | Memaory | Advanced

Execute target reset {applies to initial launch anly)

Target Core reset Fun auk af reset Initialize target Initialize target scripk

= P4030] F
eS00me-0 [F ${PrajDirPath} /CFGIP408. ..
e500rmc-1 [l F ${ProiDirPath} /CFG/P408. ..
eS00me-2] Fi ${PrajDirPath} /CFGIP408, ..
e500rme-3 [l F ${ProjDirPath} /CFG/P408, ..
eS00me-4] FI ${ProjCirPath}/CFG/P408, .,
e500rmc-5 [l F ${ProjDirPath} /CFG/P408. ..
e500rmc-6 [l F ${ProjDirPath} /CFG/P408. ..
eS00me-7 [F ${PrajDirPath} /CFGIP408. ..

Mote: Target initialization Files and core reset only apply to cores being launched.

The table below lists the various options available on the Initialization page.

Table 94: Initialization tab options

tion

Option Description

Execute Target reset Select to execute target system reset.

Core reset Select to include the respective core for core reset operation.

Run out of reset Select to include the respective core for run out of reset operation.
Initialize target Click to specify a target initialization file for the respective core.
Initialize target script Lists the path to a Debugger Shell Tcl script that runs when launching a

debug session for the respective core. To edit, select a cell, then click the
ellipsis (...) button to open the Target InitializationFile dialog. The settings
for a group of cores can be changed all at once by editing the cell of a
common ancestor node in the Target hierarchy.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

153

wr
PRt

working with Debugger
Editing remote system configuration

5.5.2 Memory tab

Use the Memory tab to specify memory configuration file for various cores.

Figure 33: USB TAP connection type - Memory tab

Target Mernory configuration Mermory configuration file
=l P4050

eS00mc-0

eS00mc-1

e500mc-2

es00mc-3

e500mc-4

eS00mc-5

e500mc-6

eS00mc-7

${ProjbirPath}/CFG/P4DE0DS. ...
${ProjDirPath}/CFG/P40E0DS. ...
${ProjDirPath}/CRG/P40500S. ...
${ProjDirPath}/CFG/P40800S. ...
${ProjDirPath}/CFG/P4050DS. ...
${ProjDirPath}/CFGP40E00S, ...
${ProjDirPath}/CFG/P4050DS. ...
${ProjbirPath}/CFG/P4DE0DS. ...

FEFEEEEE

Figure 34: Memory tab

Initialization /O Model | Advanced
Target Memeory configuration Memery configuration file
4 B4880

e6500-0

e6500-1

ef500-2

e6500-3

e6500-4

e6500-5

e6500-6

e6500-7

53900-0

SC3900-1

S3900-2

SC3900-3

SC3900-4

SC3900-5

The table below lists the various options available on the Memory page.

Table 95: Memory tab options

Option Description

Target Lists the targets and the supported cores.

Memory configuration Select to specify a memory configuration file for the respective core.
Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
154 NXP Semiconductors

Working with Debugger
Memory translations

Table 95: Memory tab options (continued)

Option Description

Memory configuration file Lists the path to the memory configuration file for the respective core. To edit,
select a cell, then click the ellipsis button to open the Memory Configuration
File dialog. The settings for a group of cores can be changed all at once by
editing the cell of a common ancestor node in the Target hierarchy.

5.5.3 Advanced tab

Use the Advanced tab to specify that Palladium is used to emulate the target.
Figure 35: USB TAP connection type - Advanced tab

[]Target is emulated by Palladium

5.6 Memory translations

This section tells how to inform the CodeWarrior debugger about the Memory Management Unit (MMU)
translations.

When debugging a Linux kernel, the debugger is automatically aware of the memory translations.

When debugging a bareboard system, there are two mutually exclusive ways of informing the debugger about
memory translations:

* A memory configuration file containing translate directives can be used to instruct the debugger about
memory translations. These translations are considered to be static for the duration of the debug session.

» The debugger can actively monitor the target MMU and read the currently active translations. This MMU
awareness feature is activated only if there are no translate directives defined in the memory
configuration file (or no such file is specified).

NOTE
The MMU awareness for bareboard is supported only for processors based on e500v2,
e500mc, 5500, and 6500 cores.

Choose one of the two alternatives based on processor support (see Note above), the type of application being
debugged (whether the translations are static or can change dynamically at runtime), and performance (note
that constantly reading the MMU from the target can have a certain performance penalty on the debugger
operation).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 155

|
y

'
A

working with Debugger
CodeWarrior Command-Line Debugger

NOTE
Stationary projects in CodeWarrior are pre-configured to use a memory configuration
file. To enable the debugger MMU awareness, you need to remove the translate
directives from the memory configuration file for processors that support this feature
(e500v2, e500mc, €5500, and e6500 cores).
36-Bit Physical Address Support

In general, a 32-bit processor core (including e500v2 and e500mc) has virtual memory support for 232 bytes of
effective address space and real memory support for 236 bytes of physical address space. Therefore, only the
physical address space is 36-bit wide; whereas the effective address space remains 32-bit wide.

The processor executes in the effective address space. Therefore, to have the processor use the entire 36-bit
physical address space, you need to configure the MMU to translate 32-bit effective addresses to 36-bit real
addresses.

When debugging a bareboard system, you can either use a memory configuration file to instruct the debugger
about non 1:1 MMU translations, or let the debugger read the MMU translations automatically from the target.

TIP
A memory configuration file must not be related directly/only to the 36-bit addressing
features.

For more information on memory configuration files, see the Memory Configuration Files on page 355 chapter.

5.7 CodeWarrior Command-Line Debugger

CodeWarrior supports a command-line interface that you can use to interact with CodeWarrior debugger, by
issuing commands.

You can use the command-line interface together with various scripting engines, such as the Microsoft® Visual
Basic® script engine, the Java™ script engine, TCL, Python, and Perl. You can even issue a command that
saves your command-line activity to a log file.

You use the Debugger Shell view to issue command lines to the IDE. For example, you enter the command
debug in this window to start a debugging session. The window displays the standard output and standard error
streams of command-line activity.

To open the Debugger Shell view, follow these steps:
1. Switch the IDE to the Debug perspective and start a debugging session.
2. Select Window > Show View > Other.
The Show View dialog appears.
3. Expand the Debug group.
4. Select Debugger Shell.
5. Click OK.
The Debugger Shell view appears in the view stack at the bottom of the IDE.

To issue a command-line command, type the desired command at the command prompt (¢>) in the Debugger
Shell view, then press Enter or Return. The command-line debugger executes the specified command.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
156 NXP Semiconductors

Working with Debugger
CodeWarrior Command-Line Debugger

NOTE
To display a list of the commands the command-line debugger supports, type help at
the command prompt and press Enter. The help command lists each supported
command along with a brief description of each command.

Figure 36: Debugger Shell View

I3 pebugger shell 52 [== O
=== Command List e A
about about display wversion information
alias al create, remove or list a comman
alias
bp b set, remowve or list
breakpoint (3)
cd cd change directory
change [+ changes memory, registers, or
variable
cls cls clear screen
cndregistry cmdr display defined custom commands
cndwin: :eppc::e300cl adjust _pc e300cl_adj e300cl auto

adjust PC

cmdwin: teppc: :e300cl cache coherence e300cl cache

Configure e300cl cache coherence mechanism. b
< >
page 1 of 8 (press Space, End, or Esc)

If you work with hardware as part of your project, you can use the command-line debugger to issue commands
to the debugger while the hardware is running.

TIP
To view page-wise listing of the debugger shell commands, right-click in the Debugger
Shell view and select Paging from the context menu. Alternatively, click the Enable

Paging icon = from the view toolbar.
The table below lists the instructions for common command-line debugging tasks.

Table 96: Common Command-Line Debugging Tasks

Task Instruction Comments
Open the Debugger Shell view Select Windows > Show View > The Debugger Shell view appears.
Other > Debugger Shell
Use the help command 1. On the Debugger shell The command list for CodeWarrior
command prompt (%>), type appears.
help.

2. Press Enter key.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 157

working with Debugger
Working with Breakpoints

Table 96: Common Command-Line Debugging Tasks (continued)

Task Instruction Comments

Enter a command. 1. On the Debugger shell, type a | YOu can use shortcuts instead of

command followed by a space. complete command names, such
i] as k for ki1l.
2. Type any valid command-line

options, separating each with a
space.

3. Press Enter key.

View debug command hints. Type alias followed by a space. The syntax for the rest of the
command appears.
Review previous commands. Press Up Arrow and Down Arrow
keys.
Clear command from the Press the Esc key.
command line.
Stop an executing script. Press the Esc key.
Toggle between insert/overwrite Press the Insert key.
mode.
Scroll up/ down a page. Press Page Up or Page Down key.
Scroll left/right one column. Press Ctrl+Left Arrow or Ctrl+Right
Arrow keys.
Scroll to beginning or end of Press Ctrl+Home or Ctrl+End
buffer. keys.

5.8 Working with Breakpoints

A breakpoint is set on an executable line of a program; if the breakpoint is enabled when you debug, the
execution suspends before that line of code executes.

The different breakpoint types that you can set are listed below:

» Software breakpoints: The debugger sets a software breakpoint into target memory. When program
execution reaches the breakpoint, the processor stops and activates the debugger. The breakpoint remains
in the target memory until the user removes it.

The breakpoint can only be set in writable memory, such as SRAM or DDR. You cannot use this type of
breakpoints in ROM.

» Hardware breakpoints: Selecting the Hardware menu option causes the debugger to use the internal
processor breakpoints. These breakpoints are usually very few and can be used with all types of memories
(ROM/RAM) because they are implemented by using processor registers.

TIP
You can also set breakpoint types by issuing the bp command in the Debugger Shell
view.

In this section:

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
158 NXP Semiconductors

Working with Debugger
Working with Breakpoints

Setting Breakpoints on page 159
+ Setting Hardware Breakpoints on page 161
* Removing Breakpoints on page 161

* Removing Hardware Breakpoints on page 162

5.8.1 Setting Breakpoints

This section explains how to set breakpoints within a program in CodeWarrior IDE.

To set a breakpoint, perform the following steps:

1. Switch to the Debug perspective in CodeWarrior IDE.

2. Open the Debug view if it is not already open by selecting Window > Show View > Debug.
The Debug view appears, shown in the figure below.

Figure 37: Debug View

ﬁﬁ'- Debug 3 =+ L] 1= ¥ =0
= E test - Debug Version - Simics 8578 [CodeWarrior Download]
= CodeWarrior Debugger for EPPC (4/7/08 2:08 PM) (Suspended)
=g Thread [ID: 0x0] (Suspended: Signal 'Halt' received. Description: User halted thread.)
= 2 main{) D:Profilesip 14446 \WKS \test\Source \main. corel. c:8 0x00100248
= 1 (AsmSection){) D:Profiles'b 14446 \WKS \test\Runtime \ortd_e500.5:68 0x00100078
w| Di'\Profilesib 14446 \WES\test\Debug Version\test.elf (4/7/08 2:08 PM)

3. Expand the Thread group.
4. Under the Thread group, select the thread that has the main () function.

The source code appears in the Editor view (shown in the figure below). The small blue arrow to the left of
the source code indicates which code statement the processor's program counter is set to execute next.

Figure 38: Editor View

|| main.core0.c &7 =08
-
#inclnde <stdio.h>
wvolid main()
int i=0;
printf ("Welcome to CodeWarrior!\r\n"):
asm("sc"):; // generate a system call exception to demonstrate the ISR 3

5. In the Editor view, place the cursor on the line that has this statement; printf ("Welcome to
CodeWarrior!\r\n") ;

6. Select Run > Toggle Line Breakpoint.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 159

y
A

working with Debugger
Working with Breakpoints

A blue dot appears in the marker bar to the left of the line (shown in the figure below). This dot indicates an
enabled breakpoint. After the debugger installs the breakpoint, a blue checkmark appears beside the dot.
The debugger installs a breakpoint by loading into the Java™ virtual machine the code in which you set that

breakpoint.
TIP
An alternate way to set a breakpoint is to double-click the marker bar to the left of any
source-code line. If you set the breakpoint on a line that does not have an executable
statement, the debugger moves the breakpoint to the closest subsequent line that has
an executable statement. The marker bar shows the installed breakpoint location. If you
want to set a hardware breakpoint instead of a software breakpoint, use the bp
command in the Debugger Shell view. You can also right-click on the marker bar to the
left of any source-code line, and select Set Special Breakpoint from the context menu
that appears.
Figure 39: Editor View - After Setting Breakpoints
.| main.core0.c &3 =B
Y
finclnde <stdio.hs>
void main()
{
int i=0;
brintf("ﬁelcomﬁ to CodeWarrior!\r\n"):
asm("sc"); // generate a system call exception to demonstrate the ISR 3

7. From the menu bar, select Run > Resume.

The debugger executes all lines up to, but not including, the line at which you set the breakpoint. The editor
view highlights the line at which the debugger suspended execution (shown in the figure below). Note also
that the program counter (blue arrow) is positioned here.

Figure 40: Editor Vie w - After Reaching a Breakpoint

=8
o
f#inclode <stdio.h>
wvold main()
int i=0:
printf ("Welcome to CodeWarrior!\r\n"):
asm({"=c"); // generate a system call exception to demonstrate the ISR s

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors

160

Working with Debugger
Working with Breakpoints

5.8.2 Setting Hardware Breakpoints

This section explains how to set hardware breakpoints within a program in CodeWarrior IDE.
There are two ways to set hardware breakpoints:

» Using IDE to Set Hardware Breakpoints on page 161

» Using Debugger Shell to Set Hardware Breakpoints on page 161

5.8.2.1 Using IDE to Set Hardware Breakpoints

This section provides the steps to set a hardware breakpoint using the CodeWarrior IDE.
Follow these steps:

1. In the CodeWarrior IDE, select Run > Breakpoint Types > C/C++ Hardware Breakpoints.
2. In the Editor view, click in the source line where you want to place the breakpoint.

3. Select Run > Toggle Breakpoint.

A hardware breakpoint appears in the marker bar on the left side of the source line.

5.8.2.2 Using Debugger Shell to Set Hardware Breakpoints

This section provides the steps to set a hardware breakpoint using the Debugger Shell view.
Follow these steps:
1. Open the Debugger Shell view.

2. Begin the command line with the text:
bp -hw
3. Complete the command line by specifying the function, address, or file at which you want to set the
hardware breakpoint.

For example, to set a breakpoint for line 6 in your program, type:
bp -hw 6

4. Press the Enter key.

The debugger shell executes the command and sets the hardware breakpoint.

TIP
Enter help bp at the command-line prompt to see examples of the bp command syntax
and usage.

5.8.3 Removing Breakpoints

This section explains how to remove breakpoints from a program in CodeWarrior IDE.
To remove a breakpoint from your program, you have two options:
* Remove Breakpoints using Marker Bar on page 161

» Remove Breakpoints using Breakpoints View on page 162

5.8.3.1 Remove Breakpoints using Marker Bar
This section provides the steps to remove an existing breakpoint using the marker bar.

Follow these steps:

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 161

working with Debugger
Working with Breakpoints
1. Right-click the breakpoint in the marker bar.

2. Select Toggle Breakpoint from the menu that appears.

5.8.3.2 Remove Breakpoints using Breakpoints View

This section provides the steps to remove an existing breakpoint using the Breakpoints view.

Follow these steps:

1. Open the Breakpoints view if it is not already open by selecting Window > Show View > Breakpoints.
The Breakpoints view appears, displaying a list of breakpoints.

2. Right-click on the breakpoint you wish to remove and select Remove from the menu that appears.

The selected breakpoint is removed, and it disappears from the both the marker bar and the list in the view.

NOTE
To remove all of the breakpoints from the program at once, select Remove All from the
menu.

5.8.4 Removing Hardware Breakpoints

This section explains how to remove hardware breakpoints from a program in CodeWarrior IDE.
There are two ways to remove existing hardware breakpoints:
* Remove Hardware Breakpoints using the IDE on page 162

* Remove Hardware Breakpoints using Debugger Shell on page 162

5.8.4.1 Remove Hardware Breakpoints using the IDE

This section explains how to remove a hardware breakpoint using the CodeWarrior IDE.

To remove a hardware breakpoint, follow these steps:

1. Right-click on the existing breakpoint in the marker bar.

2. Select Toggle Breakpoint from the menu that appears.

Alternatively, you can remove the breakpoint from the Breakpoints view, using the following steps:

1. Open the Breakpoints view if it is not already open by choosing Window > Show View > Breakpoints.
The Breakpoints view appears, displaying a list of breakpoints.

2. Right-click on the hardware breakpoint you wish to remove and select Remove from the menu that
appears.

The selected breakpoint is removed, and it disappears from the both the marker bar and the list in the view.

5.8.4.2 Remove Hardware Breakpoints using Debugger Shell

This section explains how to remove a hardware breakpoint using the Debugger Shell view.
Follow these steps:
1. Open the debugger shell.

2. Begin the command line with the text:

bp -hw

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
162 NXP Semiconductors

Working with Debugger
Working with Watchpoints

3. Complete the command line by specifying the function, address, or file at which you want to remove the
hardware breakpoint.

For example, to remove a breakpoint at line 6 in your program, type:
bp -hw 6 off

4. Press the Enter key.

The debugger shell executes the command and removes the hardware breakpoint.

5.9 Working with Watchpoints

A watchpoint is another name for a data breakpoint that you can set on an address or a range of addresses in
the memory.

The debugger halts execution each time the watchpoint location is read, written, or accessed (read or written).
You can set a watchpoint using the Add Watchpoint dialog. To open the Add Watchpoint dialog, use one of the
following views:

» Breakpoints view
* Memory view
+ Variables view

The debugger handles both watchpoints and breakpoints in similar manners. You can use the Breakpoints view
to manage both watchpoints and breakpoints. It means, you can use the Breakpoints view to add, remove,
enable, and disable both watchpoints and breakpoints. The debugger attempts to set the watchpoint if a session
is in progress based on the active debugging context (the active context is the selected project in the Debug
view).

If the debugger sets the watchpoint when no debugging session is in progress, or when re-starting a debugging
session, the debugger attempts to set the watchpoint at startup as it does for breakpoints. The Problems view
displays error messages when the debugger fails to set a watchpoint. For example, if you set watchpoints on
overlapping memory ranges, or if a watchpoint falls out of execution scope, an error message appears in the
Problems view. You can use this view to see additional information about the error.

The following sections explain how to set or remove watchpoints:
+ Setting Watchpoints on page 163
* Removing Watchpoints on page 165

5.9.1 Setting Watchpoints

This section provides the steps to set a watchpoint for a memory range.

You can create a watchpoint for a memory range using the Add Watchpoint dialog. You can specify these
parameters for a watchpoint:

* An address (including memory space)

* An expression that evaluates to an address

* A memory range

» An access type on which to trigger

To open the Add Watchpoint dialog, follow these steps:
1. Open the Debug perspective.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 163

working with Debugger
Working with Watchpoints
2. Click one of these tabs:
» Breakpoints
* Memory
» Variables
The corresponding view appears.

3. Right-click the appropriate content inside the view as mentioned in the table below.

Table 97: Opening the Add Watchpoint dialog

In the View... Right-Click...
Breakpoints An empty area inside the view.
Memory The cell or range of cells on which you want to set the watchpoint.
Variables A global variable.
NOTE
The debugger does not support setting a watchpoint on a stack variable or a register
variable.

4. Select Add Watchpoint (C/C++) from the context menu that appears.

The Add Watchpoint dialog appears (shown in the figure below). The debugger sets the watchpoint according
to the settings that you specify in the Add Watchpoint dialog. The Breakpoints view shows information about
the newly set watchpoint. The Problems view shows error messages when the debugger fails to set the
watchpoint.

Figure 41: Add Watchpoint Dialog Box

(e x|

Expression to watch:

[] Memory space:

[] unite:
Arccess
Write
[]Read

Cancel

The table below describes the options available in the Add Watchpoint dialog.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
164 NXP Semiconductors

Working with Debugger
Working with Registers

Table 98: Add Watchpoint dialog options

Option Description

Expression to watch Enter an expression that evaluates to an address on the target device.
When the specified expression evaluates to an invalid address, the
debugger halts execution and displays an error message. You can enter
these types of expressions:

e An r-value, such as svariable

 Aregister-based expression. Use the $ character to denote register names.
For example, enter $sp-12 to have the debugger set a watchpoint on the
stack pointer address minus 12 bytes.

The Add Watchpoint dialog does not support entering expressions that
evaluate to registers.

Memory space Select this option to specify an address, including memory space, at which
to set the watchpoint. Use the text box to specify the address or address
range on which to set the watchpoint. If a debugging session is not active,
the text/list box is empty, but you can still type an address or address

range.
Units Enter the number of addressable units that the watchpoint monitors.
Write Select this option to enable the watchpoint to monitor write activity on the

specified memory space and address range. Deselect this option if you do
not want the watchpoint to monitor write activity.

Read Select this option to enable the watchpoint to monitor read activity on the
specified memory space and address range. Deselect this option if you do
not want the watchpoint to monitor read activity.

5.9.2 Removing Watchpoints

This seciton provides the steps to remove a watchpoint.

Perform these steps:

1. Open the Breakpoints view if it is not already open by selecting Window > Show View > Breakpoints.
The Breakpoints view appears, displaying a list of watchpoints.

2. Right-click on the watchpoint you wish to remove and select Remove from the menu that appears.

The selected watchpoint is removed, and it disappears from the list in the Breakpoints view.

5.10 Working with Registers

Use the Registers view to display and modify the contents of the registers of the processor on your target
board.

To display the Registers view, select Window > Show View > Other > Debug > Registers. The Registers view
appears (shown in the figure below). The default state of the Registers view provides details on the processor's
registers.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 165

working with Debugger
Working with Registers

The Registers view displays categories of registers in a tree format. To display the contents of a particular
category of registers, expand the tree element of the register category of interest. The figure below shows the
Registers view with the General Purpose Registers tree element expanded.

TIP
You can also view and update registers by issuing the reg, change, and display
commands in the Debugger Shell view.

Figure 42: Registers View

(%)= yariables | ©a Breakpaints | [Cache | 84 Registers 23 B Modules | £ 2k = E’j @ | 0 T) ¥ =0
Marme Lacation Yalue s
= u'*‘.k&*.‘ General Purpose Fegisters

WM GPRO $GPRO 100004
i =P $5P Ox3dffen
il aPR2 $GPR2 Ox338dds0
i GPR3 $GPR3 0

W GPR4 $GPR4 0

i GPRS $GPRS 0

i GPRE $GPRA 100180
WM GPRT $GPRT 1

N GPRE tGPRS Ox3dfFagc
afit EPRA

$EPRD Oxlaclfa b

In this section:

» Changing Bit Value of a Register on page 166
» Viewing Register Details on page 167

* Registers View Context Menu on page 170

» Working with Register Groups on page 172

» Working with TLB Registers on page 173

* Working with IMMR on page 193

5.10.1 Changing Bit Value of a Register

You can change the bit value of a register in the Registers view.

To change a bit value in a register, first switch the IDE to the Debug perspective and start a debugging session.
Then proceed as follows:

1. Open the Registers view by selecting Window > Show View > Other > Debug > Registers.

2. In the Registers view, expand the register group that contains the register with the bit value that you want
to change.

3. Click the register's current bit value in the view's Value column.
The value becomes editable.

4. Type in the new value.

5. Press the Enter key.

The debugger updates the bit value. The bit value in the Value column changes to reflect your modification.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
166 NXP Semiconductors

Working with Debugger
Working with Registers

5.10.2 Viewing Register Details

This section explains how to use the Registers view to show the details of a register.

To open the Registers view, you must first start a debugging session.

To see the registers and their descriptions, follow these steps:

1.

In the Debug perspective, click the Registers view tab.
The Registers view appears.
Click the View Menu button (the inverted triangle) on the Registers view toolbar.

Select Layout > Vertical or Layout > Horizontal to show register details.

NOTE
Selecting Layout > Registers View Only hides the register details.

The details of the register, selected by default in the Registers view, are displayed, as shown in the figure
below.

Figure 43: Registers View - Register Details
Eit Ficlds
(00000000000 100000000000010110100 |
Field |-[0:31] + (= 1000b4
Bckions
Fomsthux @
Descripkion

GPRO = 1000b4

General Purpose Begister 0 - This register serwes as the data source or destination for all integer
instructions. Integer data i=s manipulated using these registers which are cleared by hard reset.

Bit Field Walues:
= bits[0:31] = 1000b4

4. Expand a register group to see individual registers.

5. Select a specific register by clicking it.

The details of the selected register get displayed.

NOTE
Use the Format list box to change the format of data displayed for the selected register.

6. Examine register details. For example,

» Use the Bit Fields group to see a graphical representation of the selected register's bit fields. You can
use this graphical representation to select specific bits or bit fields.

» Use the Actions group to perform operations, such as update bit field values and format the displayed
register data.

» Use the Description group to see an explanation of the selected register, bit field, or bit value.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 167

|
y

'
A

working with Debugger
Working with Registers

TIP
To enlarge the Registers view, click Maximize on the view's toolbar. After you finish
looking at the register details, click Restore on the view's toolbar to return the view to
its previous size. Alternatively, right-click the Registers tab and select Detached. The
Registers view becomes a floating window that you can resize. After you finish looking
at the register details, right-click the Registers tab of the floating window and select
Detached again. You can rearrange the re-attached view by dragging its tab to a
different collection of view tabs.

In this section:

+ Bit Fields on page 168

+ Changing Bit Fields on page 168
+ Actions on page 169

» Description on page 170

5.10.2.1 Bit Fields

The Bit Fields group of the Registers view shows a graphical representation of the selected register's bit
values.

The figure below shows the Bit Fields group of the Registers view. This graphical representation shows how the
register organizes bits. You can use this representation to select and change the register's bit values. Hover the
cursor over each part of the graphical representation to see additional information.

Figure 44: Register Details - Bit Fields Group

Bit: Fields

(00000000001111011111101010001100 |

Field |-[0:31] «|= JclfaBe
TIP
You can also view register details by issuing the reg command in the Debugger Shell
view.

A bit field is either a single bit or a collection of bits within a register. Each bit field has a mnemonic name that
identifies it. You can use the Field list box to view and select a particular bit field of the selected register. The
list box shows the mnemonic name and bit-value range of each bit field. In the Bit Fields graphical representation,
a box surrounds each bit field. A red box surrounds the bit field shown in the Field list box.

After you use the Field list box to select a particular bit field, you see its current value in the = text box. If you
change the value shown in the text box, the Registers view shows the new bit field value.

5.10.2.2 Changing Bit Fields

To change a bit field in a register, you must first start a debugging session, and then open the Registers view.
To change a bit field, perform these steps:

1. In the Registers view, view register details.

2. Expand the register group that contains the bit field you want to change.

Register details appear in the Registers view (shown in the figure below).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
168 NXP Semiconductors

Working with Debugger
Working with Registers

Figure 45: Registers View - Register Details

Bit Fields

[0 [0 [[0000000000000000000000 [0000000 |

Field | SO[0:0] ¥ = 0

Actions

Fomat pox

Descripkion
KER = 20000000

Integer Exception Register(XER) - Bits in the integer exception register (HER] are set based on the
operation of an instruction considered as a whole, not on intermediate results (for example, the Subtract
from Carrying instruction (subfe), the result of which is specified as the sum of three walues, sets bits
in the XEPR based on the entire operation, not on an intermediste sum) .

Eit Field Values:

&0 bhit=s[0:0] =0
oW bits[1l:1] =0
Ch bits[Z:2] =1
= hits[32:24] =0

1] =

No. of hyteshits[25:3

3. From the expanded register group above the register details, select the name of the register that contains
the bit field that you want to change.

The Bit Fields group displays a graphical representation of the selected bit field. The Description group
displays explanatory information about the selected bit field and parent register.

4. In the Bit Fields group, click the bit field that you want to change. Alternatively, use the Field list box to
specify the bit field that you want to change.

5. In the = text box, type the new value that you want to assign to the bit field.
6. In the Action group, click Write.

The debugger updates the bit field value. The bit values in the Value column and the Bit Fields group change
to reflect your modification.

NOTE
Click Revert to discard your changes and restore the original bit field value.

5.10.2.3 Actions

Use the Actions group of the Registers view to perform various operations on the selected register's bit field
values.

The figure below shows the Actions group of the Registers view.

Figure 46: Register View - Actions Group

Actions

[Reset] [Summary] Format oy w

The table below lists each item in the Actions group and explains the purpose of each.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 169

V¥ ¢
i

working with Debugger
Working with Registers

Table 99: Actions Group Items

ltem Description

Revert Discard your changes to the current bit field value and restore the original
value. The debugger disables this button if you have not made any
changes to the bit field value.

Write Save your changes to the current bit field value and write those changes
into the register's bit field. The debugger disables this button after writing
the new bit field value, or if you have not made any changes to that value.

Reset Change each bit of the bit field value to its register-reset value. The register
takes on this value after a target-device reset occurs. To confirm the bit
field change, click Write. To cancel the change, click Revert.

Summary Display Description group content in a pop-up window. Press the Esc key
to close the pop-up window.

Format Specify the data format of the displayed bit field values.

5.10.2.4 Description

The Description group of the Registers view shows explanatory information for the selected register.

The Description group of the Registers view is shown in the figure below.

Description
GPRE = 3dfadc

Figure 47: Register View - Description Group

General Purpose Register 8 -This register is either 32 bits wide in 3Z-bit PowerPC microprocessors or &4 bits
wide in 64-bit PowerPC microprocessors. It serves as the data source or destination for integer instructions

and provide data for generating addresses.

Bic Field Values:
= bits(

The register information covers:

« Current value

» Description

0:31] = 3Jdfasc

« Bit field explanations and values

Some registers have multiple modes (meaning that the register's bits can have multiple meanings, depending
on the current mode). If the register you examine has multiple modes, you must select the appropriate mode.

5.10.3 Registers View Context Menu

The Registers view context menu provides you various options for working with registers.

To display the Registers view context menu, right-click a register in the Registers view.

The table below lists the options of the Registers view context menu.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

170

NXP Semiconductors

Working with Debugger
Working with Registers

Table 100: Registers View Context Menu Options

Option

Description

Select All

Copy Registers
Enable

Disable

View Memory

Format

Cast to Type

Restore Original Type
Find

Change Value

Show Details As

Add Register Group
Restore Default Register

Groups

Add Watchpoint (C/C++)

Watch

Selects the entire contents of the current register.

Copies to the system clipboard the contents of the selected register.
Allows the debugger to access the selected register.

Prevents the debugger from accessing the selected register.
Displays the corresponding memory for the selected register.

Use to specify the displayed data format for the selected register:

* Natural: Default data format

» Decimal: Decimal data format

* Hexadecimal: Hexadecimal data format

* Binary: Binary data format

 Fractional: Fractional data formats, Q0-Q31

Opens a dialog that you can use to cast the selected register value to a
different data type.

Reverts the selected register value to its default data type.
Opens a dialog that you can use to select a particular register.
Opens a dialog that you can use to change the current register value.

Allows you to specify how the debugger displays the register's contents.
The options are:

+ Default Viewer: The register's contents are displayed as a hexadecimal
value.

* Register Details Panel: The register's values are display in a bit format,
along with a description of their purpose.

Opens a dialog that you can use to create a new collection of registers to
display in the Registers view.

Resets the custom groups of registers created using the Add Register
Group option, and restores the default groups provided by the debugger as
they were when CodeWarrior was installed. Note that if you select this
option, all custom groupings of registers done by you are lost.

Opens the Add Watchpoint dialog, proposing to set a watchpoint on an
expression representing the register. The debugger sets the watchpoint
according to the settings that you specify in the Add Watchpoint dialog.
The Breakpoints view shows information about the newly set watchpoint.
The Problems view shows error messages when the debugger fails to set
the watchpoint.

Adds a new watch-expression entry to the Expressions view.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

171

g |

working with Debugger
Working with Registers

5.10.4 Working with Register Groups

This section describes different operations that can be performed on register groups.
You can perform the following operations on the register groups:

» Adding a Register Group on page 172

+ Editing a Register Group on page 173

* Removing a Register Group on page 173

5.10.4.1 Adding a Register Group

You can add a custom group of registers to the default register tree structure. The default display of the
Registers view groups the related registers into a tree structure.

To add a new register group, perform these steps:
1. Right-click in the Registers view.
A context menu appears.
2. Select Add Register Group from the context menu.
The Register Group dialog appears, as shown in the figure below.

Figure 48: Register Group Dialog Box

E]

.= Register Group

Select the group registers

Group Mame:

Choose From The List:

GPRO - General Purpose Registers R
SP - General Purpose Reqisters

PR.2 - General Purpose Registers
PR3 - General Purpose Reqisters
FR4 - General Purpose Reqisters
FR.S - General Purpose Reqisters
PRE - General Purpose Reqisters
PRY - General Purpose Reaqisters
PRE - General Purpose Reaqisters
PRY - General Purpose Reaisters

O D= D= D= S O S S S S
D T mE D —D = O —D = =
O= O D= D= D= O S S S S
D T =D =D = =D = = = =

G
G
G
G
G
G
G
G

K Cancel

3. Enter in the Group Name text box a descriptive name for the new group.

4. Select the checkbox next to each register you want to appear in the new group.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

172 NXP Semiconductors

Working with Debugger
Working with Registers

TIP
Click Select All to check all of the checkboxes. Click Deselect All to clear all of the
checkboxes.
5. Click OK.

The Register Group dialog closes. The new group name appears in the Registers view.

5.10.4.2 Editing a Register Group

In the Registers view, you can edit both the default register groups and the groups that you add.
To do so, use the following steps:
1. In the Registers view, right-click the name of the register group you want to edit.
A context menu appears.
2. Select Edit Register Group from the context menu.
The Register Group dialog appears.
3. If you wish, enter in the Group Name text box a new name for the group.

4. Check the checkbox next to each register you want to appear in the group.

TIP
Click Select All to check all of the checkboxes. Click Deselect All to clear all of the
checkboxes.
5. Click OK.

The Register Group dialog closes. The new group name appears in the Registers view.

5.10.4.3 Removing a Register Group

In the Registers view, you can remove register groups.

To remove a register group, follow these steps:

1. In the Registers view, right-click the name of register group that you wish to remove.
A context menu appears.

2. Select Remove Register Group from the context menu.

The selected register group disappears from the Registers view.

5.10.5 Working with TLB Registers

This section explains how to work with translation look-aside buffer (TLB) registers.
TLB registers can be classified into the following three categories:

« TLBO: A 256-entry, 2-way (€500v1) or 512-entry, 4-way (€500v2, e500mc, €5500) or 1024-entry, 8-way
(e6500) set-associative unified (for instruction and data accesses) array supporting only 4 KB pages.

« TLB1: A 16-entry (€500v1, e500v2) or 64-entry (€500mc, €5500, e6500) fully-associative unified (for
instruction and data accesses) array supporting a range of variable-sized pages (VSP) page sizes.

* Real Address Translation (LRAT): An 8-element, fully associative array. LRAT registers are available only
for e6500 core.

In this section:

+ Viewing TLB Registers in Registers View on page 174

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 173

working with Debugger
Working with Registers

» Reading TLB Registers from Debugger Shell on page 175

« Initializing TLB Registers on page 177

» TLB Register Details on page 177

5.10.5.1 Viewing TLB Registers in Registers View

This section explains how to find TLB registers using the Registers view.

To view TLB registers in the Registers view, follow these steps:
1. Start the CodeWarrior IDE.

2. Open (or create) a project that targets the Power Architecture system you want to debug.

3. From the CodeWarrior IDE menu bar, select Run > Debug.

The IDE starts a debug session, connects to the target system, and halts the system at the program entry

point.

4. Select Window > Show View > Registers.

The Registers view appears, as shown in the figure below.

Figure 49:

Registers View - TLB Register Groups Displayed

Mame

10
1

[
[
[
[
o
10
1
[
[
[
[
[

34 Registers &2

S Genersl Purpose Registers

+ f‘uzﬂ' e500me Special Purpose Regiskers
+ f‘uzﬂ' Performance Monikor Fegisters

H Floating Paoint Reqgisters
=

W regPPCTLED

38 L2MMU_TLED
2MMU_TLEL
2MMU_TLEZ
! LEMMU_TLES

1010
a1l
1010
a1l
10
(11
W LZMMU_TLE4
W LZMMU_TLES
il L2MMU_TLES
1010
ot
10
ol
10
ol
L]
(A1)
0
(A1)
0
(A1)
0
(A1)
10
LA

L
L
L
L
L
L
L
Sal L2MMU_TLES
L
iL
L
L
L
L.

ZMMU_TLE7

1 L2MMU_TLES

ZMMU_TLELD

§a8 LZMMU_TLEL1
Sa8 LZMMU_TLELZ
S8 LZMMU_TLELS
Sa0 LZMMU_TLE14

. =
4| [E @v LCICARELT

Walue

0:x4d4000050442cd99f51000034900000
0x44200000e3a0edd1e14cc00092081000
Ox4426000020d424f531207b00024902000
Ox44e0000e1c44db357 1870009703000
0x44dc0000f 87 Felce 33431 0005584000
0x4df00002550: 1F52 244 700000505000
0:x45b00002224c8b7955 100007 27 56000
0:x4bd0000F 131 0e027b15c000d4 107000
04409000009 1544 590234 200003905000
0:x441 1000062252 3295034b00015F09000
0x4770000c9966dbal e52a000F5a0a000
0:x43200008903055a586:a0004 1 beb000
Ox442 70000C945a35093e5b4000e9F3C000
0:x41500006360657531 4600095704000
0:x4de00000477899bc0384000501 02000

s

The Registers view shows all registers supported by the target system. The Registers view groups all
regPPCTLBRO registers and regPpCTLB1 registers in the separate groups (see the figure above).

To view all of the elements of a TLB register group, double-click the group you want to view. A window appears

that displays all of the elements of the selected TLB.

This window shows all of the TLB registers, and their contents. To modify TLB registers during a CodeWarrior
debug session, select the TLB register you want to modify from the Registers view, as shown in the figure below.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

174

NXP Semiconductors

Working with Debugger
Working with Registers

Figure 50: Registers View

0= Yariables | ®g Breakpoints U Cache | B Modules | 4147 Registers 53 +kE [@ @ | Loy ¥ Eg

ame Yalue L
= S regPPCTLED

I LzMmMu_TLEOD (x4d400005044=20d99F5 1000034900000

i Lzmmu_TLBL Dx4e00000e3a0edd 1 £14cc00092081000

i Lzmmu_TLe2 Dx4.26000020d24F53 1 20700002d902000

i1 L2MMU_TLES Dx4e0000e 1 c44db357 1 570009703000

188 L2MmMU_TLE4 Ox44dc0000FE7 7e00e93d3 1 000Sc554000

0fl‘I]0 L

141 LZMMU_TLES Dee4df0000a850e1F52 244 70000505000
MMU_TLEE 45b0001 100 1]
ZMMU_TLE? 0:x4bd0000F1310e027b18c000d4107000

L
1 LZMMU_TLES Ox44c90000b315448902a4300003205000
14 LzZMMU_TLES =441 1000062a523295034b00015F09000
I L2mMmMu_TLELD 0=4770000c9966dbal £52a000FSa0a000
I L2mmMu_TLELL 0%4320000890305525862a0004 1630000
MM _TLELZ 4427000094550 93e5h4000e2f8c000 -
1000 v Aarm s TR A Pa T N als Ta ta T Vot a s Talate Lale T QP o Yot ol PO PPNy
Bit Fields &5
[0 00001 0000000000000
[oJoJ1Jo]oJo1JoJooteJo1JoJoJ1[1JoJoJ1]oJoo1011]
[011110010101010100010000 |
000000000000 [01111010011110000110 |
000000000000
Field | G[35:35] v|=[%]]o
Actions
Formutfiex B
Description
LZMMO TLEE = 4E5b0000zZZZ4c8b72EE100007a786000
TLEO array entry hd

< ?

This window allows you to view register contents in different formats, and change portions of the selected
register.

5.10.5.2 Reading TLB Registers from Debugger Shell

This section explains how to read TLB registers from the Debugger Shell view.

TLB registers are very complex, so to easily understand TLB register information, the information should be
provided in a format that is easy to read and understand. The Debugger Shell command, displayt1lb, extracts
the meaningful information about a TLB register set and presents it in an easy to understand format. This
command outputs only valid entries from the TLB register set. The displaytlb command is very useful when
debugging a Linux kernel.

The syntax of the displayt1lb command is as follows:
displaytlb [TLBSetNumber] ? [printInvalid]?

The command arguments are explained below:

« TLBSetNumber: Indicates a number representing the TLB register set that the user wants to print. Each
value for this argument corresponds to one TLB register set displayed in the Registers view. The table
below shows all the values taken by the TL.BSetNumber argument.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 175

V¥ ¢
i

working with Debugger
Working with Registers

Table 101: TLBSetNumber Values

TLBSetNumber Value TLB Register Set Name

0 regPPCTLBO

1 regPPCTLB1

2 LRAT (available only for e6500 core)

« printlnvalid: Determines whether only valid TLB register set entries will get displayed or all entries will get
displayed. It is an optional argument. If no value is given to this argument, it takes the value, 0, which
means only valid TLB register set entries will be displayed in the output. If a non-zero value is given to this
argument, then all the TLB register set entries will get displayed in the output.

To use the displaytlb command, perform the following steps:

1. From the CodeWarrior IDE menu bar, select Window > Show View > Other.
The Show View dialog appears.

2. Expand the Debug group.

3. Select Debugger Shell.

4. Click OK.
The Debugger Shell view appears in the view stack at the bottom of the IDE.

5. In the Debugger Shell view, run the following command:
displaytlb 1

The command output is shown in the figure below.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
176 NXP Semiconductors

h

Figure 51:

CodeWarrior Debugger Shell
¥rdisplaytlb 1

vl.d

Working with Debugger
Working with Registers

Output of Running the displaytlb 1 Command for P2040DS

ID Effective address Real address SIZE WIMGE SRWX URWX TS TID TLPID GS VF IPROT
[} @xFFFFFB@@-0xFFFFFFFF Bx@FFFFFBO0-BxBFFFFFFFF 4K 91680 111 080 8 exe oexe @ @ 1
1 @xFE@22008-0xFEFFFFFF BxOFEQ2028Q-8x@FEFFFFFF 16M 2l0l2 111 o922 @ oexd exe @ @ 1
2 axEQRORBRe -BxEFFFFFFF BxPEQ@OO000-BxBEFFFFFFF 256M 91010 111 920 8 ex@ exd @ 8 1
3 ex20000008-8xBFFFFFFF 8xB32000080-2x8BFFFFFFF 16 @lele 111 e © oexP exe @ @ 1
4 BxCeeeeee0 -8xCFFFFFFF @x@C2000000-0xBCFFFFFFF 256M 01012 111 @228 © @xe exe @ @ 1
5 exDeBepeee -exDFFFFFFF BxBD0eesooe-8xeDFFFFFFF 256M 81010 111 920 @ exe exd @ 8 1
& exFE000008-0xFE@3FFFF @xBF3000080-2x@FBR3FFFF 256K 21012 111 2@ © oexb exe @ @ 1
7 8xPeeaaeee-ex3FFFFFFF 8xeoeee00ee-oxe3FFFFFFF 160 @leed 111 e2e © exe exe @ 8 1
3 ex422000008 -8x7FFFFFFF @xB4200008Q-8x@7FFFFFFF 16 elead 111 o2 © oexb exe @ @ 1
9 BxF4200000 -OxF4BFFFFF QxOFJE00000-BXEFIBFFFFF 1M @lee@ 111 22 @ exe exe @ @ 1
10 8xF4190000-8xFALFFFFF Bx@r4180000-8x@F41FFFFF 1M @1010 111 @88 © exe exk @ 8 1
11 exF42000008 -8xF42FFFFF @xBF4280080-8x8F42FFFFF 1M eleed 111 oo © exe oexe @ @ 1
12 @xF4300080-8xF43FFFFF @x@F4320000-8x0F43FFFFF 1M @l@l@ 111 @82 © exe exe @ @ 1
13 exFoRao008 -0xFE3FFFFF @xOFRooooee-exaeF@3FFFFF 4M 21012 111 o820 © exb oexe @ @ 1

5.10.5.3 Initializing TLB Registers

This section describes how to initialize TLB registers using commands.

You can use reg, writeregl2g/writeregl92 commands in the debugger initialization files to set up TLB
registers at target system startup. For more details, see writereg128 on page 351.

5.10.5.4 TLB Register Details

This section provides detailed information on TLB registers, categorizing the registers based on the processor

core used.

This section explains the following registers:

+ €500 Registers on page 178

+ e500v2 Registers on page 181

+ e500mc Registers on page 184

+ 5500 Registers on page 187

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

177

working with Debugger

Working with Registers

+ 6500 Registers on page 189

5.10.56.4.1 e500 Registers

This section provides information about €500 TLBO registers, starting from L2ZMMU_TLBO through
L2MMU_TLB255.

Table 102: €500 TLBO Registers (L2ZMMU_TLBO through L2MMU_TLB255)

Offset Range | Field

Description

0:0
1:1
2:5

6:7
8:1
16 :
18:
32:

37:
38:
39:
40 :

44 .
45 :
46 :
47 .
48 :

5

17
31
36

37
38
39
43

44
45
46
47
48

\Y
TS
TSIZE

TID
NV

WIMGE

X0
X1
uo - U3

SR
SW
SX
UR

Valid bit for entry

Translation address space (compared with AS bit of the current access)

Encoded Page size
0000 Reserved
0001 4 Kbyte
0010 16 Kbyte
0011 64 Kbyte
0100 256 Kbyte
0101 1 Mbyte
0110 4 Mbyte
0111 16 Mbyte
1000 64 Mbyte
1001 256 Mbyte
RESERVED

Translation ID (compared with PIDO, PID1, PID2 or TIDZ (all zeros))
Next Victim bits used for LRU replacement algorithm.
RESERVED

Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

RESERVED
Extra system attribute bits (for definition by system software)
Extra system attribute bits (for definition by system software)

User attribute bits, used only by software. These bits exist in the L2 MMU
TLBs only (TLB1 and TLBO)

RESERVED

Supervisor read permission bit
Supervisor write permission bit
Supervisor execute permission bit

User read permission bit

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

178

NXP Semiconductors

Working with Debugger
Working with Registers

Table 102: 500 TLBO Registers (L2MMU_TLBO through L2MMU_TLB255) (continued)

Offset Range | Field

Description

49: 49 uw

50:50 UXx

51:59 -

60 : 63 Extended
RPN

64 : 83 RPN

84: 95 -

96: 115 EPN

116 : 127 -

User write permission bit

User execute permission bit

RESERVED

Real page number

RESERVED

Effective page number

RESERVED

The table below shows €500 TLB1 registers, starting from L2ZMMU_CAMO through L2ZMMU_CAM15.

Table 103: €500 TLB1 Registers (LZMMU_CAMO through LZMMU_CAM15)

Offset Range | Field Description
0:3 TSIZE Encoded Page size
0000 Reserved
0001 4 Kbyte
0010 16 Kbyte
0011 64 Kbyte
0100 256 Kbyte
0101 1 Mbyte
0110 4 Mbyte
0111 16 Mbyte
1000 64 Mbyte
1001 256 Mbyte
4:4 TS Translation address space (compared with AS bit of the current access)
5:7 - RESERVED
8:15 TID Translation ID (compared with PIDO, PID1, PID2 or TIDZ (all zeros))

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

179

working with Debugger

Working with Registers

Table 103: 500 TLB1 Registers (L2MMU_CAMO through L2ZMMU_CAM15) (continued)

Offset Range | Field Description

16: 23 MASK SIZE MASK
4 KB 0x0000000000
16 KB 0x0000000001
64 KB 0x0000000011
256 KB 0x0000000111
1 MB 0x0000001111
4 MB 0x0000011111
16 MB 0x0000111111
64 MB 0x0001111111
256 MB 0x0011111111

24 :26 - RESERVED

27 : 31 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

32:32 UR User read permission bit

33:33 uw User write permission bit

34:34 UXx User execute permission bit

35:35 SR Supervisor read permission bit

36 : 36 SW Supervisor write permission bit

37:37 SX Supervisor execute permission bit

38:38 X0 Extra system attribute bits (for definition by system software)

39:39 X1 Extra system attribute bits (for definition by system software)

40 : 43 uo - U3 User attribute bits, used only by software. These bits exist in the L2 MMU
TLBs only (TLB1 and TLBO)

44 : 44 IPROT Invalidation protection (exists in TLB1 only)

45:63 - RESERVED

64 :83 RPN Real page number

84:95 - RESERVED

96 : 115 EPN Effective page number

116 : 126 - RESERVED

127 : 127 Y Valid bit for entry

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
180 NXP Semiconductors

Working with Debugger
Working with Registers

5.10.56.4.2 e500v2 Registers

This section provides information about e500v2 TLBO registers, starting from L2ZMMU_TLBO through
L2MMU_TLBS11.

Table 104: e500v2 TLBO Registers (L2ZMMU_TLBO through L2MMU_TLB511)

Offset Range | Field Description
0:0 \Y Valid bit for entry
1:1 TS Translation address space (compared with AS bit of the current access)
2:5 TSIZE Encoded Page size
0000 Reserved
0001 4 Kbyte
0010 16 Kbyte
0011 64 Kbyte
0100 256 Kbyte
0101 1 Mbyte
0110 4 Mbyte
0111 16 Mbyte
1000 64 Mbyte
1001 256 Mbyte
1010 1 Gbyte
1011 4 Gbyte
6:7 - RESERVED
8:15 TID Translation ID (compared with PIDO, PID1, PID2, or TIDZ (all zeros))
16 : 17 NV Next Victim bits used for LRU replacement algorithm.
18 : 31 - RESERVED
32:36 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)
37:37 - RESERVED
38:38 X0 Extra system attribute bits (for definition by system software)
39:39 X1 Extra system attribute bits (for definition by system software)
40:43 uo - U3 User attribute bits, used only by software. These bits exist in the L2 MMU
TLBs only (TLB1 andTLBO)
44 : 44 - RESERVED
45 : 45 SR Supervisor read permission bit
46 : 46 SW Supervisor write permission bit
47 : 47 SX Supervisor execute permission bit

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 181

working with Debugger
Working with Registers

Table 104: e500v2 TLBO Registers (L2MMU_TLBO through L2ZMMU_TLB511) (continued)

Offset Range | Field Description
48 : 48 UR User read permission bit
49 :49 uw User write permission bit
50:50 uXx User execute permission bit
51:59 - RESERVED
60 : 63 Extended

RPN
64 : 83 RPN Real page number
84: 95 - RESERVED
96 : 115 EPN Effective page number
116 : 127 - RESERVED

The table below shows e500v2 TLB1 registers, starting from L2ZMMU_CAMO through L2ZMMU_CAM15.

Table 105: €500v2 TLB1 Registers (L2ZMMU_CAMO through L2ZMMU_CAM15)

Offset Range | Field Description
0:3 TSIZE Encoded Page size
0000 Reserved
0001 4 Kbyte
0010 16 Kbyte
0011 64 Kbyte
0100 256 Kbyte
0101 1 Mbyte
0110 4 Mbyte
0111 16 Mbyte
1000 64 Mbyte
1001 256 Mbyte
1010 1 Gbyte
1011 4 Gbyte
4:4 TS Translation address space (compared with AS bit of the current access)
5:7 - RESERVED
8:15 TID Translation ID (compared with PIDO, PID1, PID2 or TIDZ (all zeros))
Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

182

NXP Semiconductors

Working with Debugger
Working with Registers

Table 105: e500v2 TLB1 Registers (L2MMU_CAMO through L2ZMMU_CAM15) (continued)

Offset Range | Field Description
16:25 MASK SIZE MASK
4 KB 0x0000000000
16 KB 0x0000000001
64 KB 0x0000000011
256 KB 0x0000000111
1 MB 0x0000001111
4 MB 0x0000011111
16 MB 0x0000111111
64 MB 0x0001111111
256 MB 0x0011111111
1GB 0x0111111111
4 GB 0x1111111111
26: 26 - RESERVED
27 : 31 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)
32:32 UR User read permission bit
33:33 uw User write permission bit
34 :34 UXx User execute permission bit
35:35 SR Supervisor read permission bit
36 : 36 SW Supervisor write permission bit
37:37 SX Supervisor execute permission bit
38:38 X0 Extra system attribute bits (for definition by system software)
39:39 X1 Extra system attribute bits (for definition by system software)
40: 43 uo-Uus3 User attribute bits, used only by software. These bits exist in the L2 MMU
TLBs only (TLB1 and TLBO)
44 : 44 IPROT Invalidation protection (exists in TLB1 only)
45:59 - RESERVED
60 : 63 Extended
RPN
64 : 83 RPN Real page number
84:95 - RESERVED
96 : 115 EPN Effective page number
116 : 126 - RESERVED

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

183

working with Debugger

Working with Registers

Table 105: e500v2 TLB1 Registers (L2MMU_CAMO through L2ZMMU_CAM15) (continued)

Offset Range

Field

Description

127 : 127

\

Valid bit for entry

5.10.5.4.3 e500mc Registers

This section provides information about e500mc TLBO registers, starting from L2ZMMU_TLBO through
L2MMU_TLB511.

Table 106: e500mc TLBO Registers (L2ZMMU_TLBO through L2MMU_TLB511)

Offset Range | Field Description

0:0 \Y Valid bit for entry.

1:1 TS Translation space. Compared with MSR][IS] (instruction fetch) or MSR[DS]
(memory reference) to determine if this TLB entry may be used for
translation.

2:5 TSIZE Defines the page size of the TLB entry.

6:7 Reserved -

8:15 TID Translation identity. Defines the process ID for this TLB entry.

16:17 NV Next victim. Can be used to identify the next victim to be targeted for a TLB
miss replacement operation for those TLBs that support the NV field.

18:31 Reserved -

32:32 w Write-through

33:33 I Caching-inhibited

34:34 M Memory coherency required

35:35 G Guarded

36:36 E Endianness. Determines endianness for the corresponding page.

37:37 Reserved -

38:38 X0 Implementation-dependent page attribute. Implemented as storage.

39:39 X1 Implementation-dependent page attribute. Implemented as storage.

40:43 uo-uU3 User attribute bits. These bits are associated with a TLB entry and can be
used by system software.

44:44 Reserved -

45:45 SR Supervisor read permission bit.

46:46 SW Supervisor write permission bit.

47:47 SX Supervisor execute permission bit.

48:48 UR User read permission bit.

49:49 uw User write permission bit.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

184

NXP Semiconductors

Working with Debugger
Working with Registers

Table 106: e500mc TLBO Registers (L2MMU_TLBO through L2ZMMU_TLB511) (continued)

Offset Range | Field Description

50:50 UXx User execute permission bit.

51:51 Reserved -

52:52 GS Translation guest space.

53:53 VF Virtualization fault. Controls whether a DSI occurs on data accesses to the
page, regardless of permission bit settings.

54:59 LPIDR Translation logical partition ID.

60:83 RPN Real page number

84:95 Reserved -

96:115 EPN Effective page number

116:127 Reserved -

The table below shows e500mc TLB1 registers, starting from L2ZMMU_CAMO through L2ZMMU_CAM®63.

Table 107: e500mc TLB1 Registers (L2MMU_CAMO through L2ZMMU_CAM63)

Offset Range | Field Description

0:3 TSIZE Defines the page size of the TLB entry.

4:4 TS Translation space. Compared with MSR][IS] (instruction fetch) or MSR[DS]
(memory reference) to determine if this TLB entry may be used for
translation.

5.7 Reserved -

8:15 TID Translation identity. Defines the process ID for this TLB entry.

16:25 MASK SIZE MASK
4 KB 0x0000000000
16 KB 0x0000000001
64 KB 0x0000000011
256 KB 0x0000000111
1 MB 0x0000001111
4 MB 0x0000011111
16 MB 0x0000111111
64 MB 0x0001111111
256 MB 0x0011111111
1GB 0x0111111111
4 GB 0x1111111111

26:26 Reserved -

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

185

working with Debugger
Working with Registers

Table 107: e500mc TLB1 Registers (L2MMU_CAMO through L2ZMMU_CAMG63) (continued)

Offset Range | Field Description

27:27 w Write-through

28:28 I Caching-inhibited

29:29 M Memory coherency required

30:30 G Guarded

31:31 E Endianness. Determines endianness for the corresponding page.

32:32 UR User read permission bit.

33:33 uw User write permission bit.

34:34 UXx User execute permission bit.

35:35 SR Supervisor read permission bit.

36:36 SW Supervisor write permission bit.

37:37 SX Supervisor execute permission bit.

38:38 X0 Implementation-dependent page attribute. Implemented as storage.

39:39 X1 Implementation-dependent page attribute. Implemented as storage.

40:43 uo-uU3 User attribute bits. These bits are associated with a TLB entry and can be
used by system software.

44:44 IPROT Invalidate protect. Set to protect this TLB entry from invalidate operations
from tlbivax, tlbilx, or MMUCSRO TLB flash invalidates.

45:51 Reserved -

52:52 GS Translation guest space.

53:53 VF Virtualization fault. Controls whether a DSI occurs on data accesses to the
page, regardless of permission bit settings.

54:59 LPIDR Translation logical partition ID.

60:83 RPN Real page number

84:95 Reserved -

96:115 EPN Effective page number

116:126 Reserved -

127:127 V Valid bit for entry.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
186 NXP Semiconductors

Working with Debugger
Working with Registers

5.10.5.4.4 e5500 Registers

This section provides information about €5500 TLBO registers, starting from L2ZMMU_TLBO through
L2MMU_TLBS11.

Table 108: €5500 TLBO Registers (L2ZMMU_TLBO through L2ZMMU_TLB511)

Offset Range | Field Description

0:0 \Y Valid bit for entry.

1:1 TS Translation space. Compared with MSR][IS] (instruction fetch) or MSR[DS]
(memory reference) to determine if this TLB entry may be used for
translation.

2:5 TSIZE Defines the page size of the TLB entry.

6:7 Reserved -

8:15 TID Translation identity. Defines the process ID for this TLB entry.

16:17 NV Next victim. Can be used to identify the next victim to be targeted for a TLB
miss replacement operation for those TLBs that support the NV field.

18:31 Reserved -

32:32 w Write-through

33:33 I Caching-inhibited

34:34 M Memory coherency required

35:35 G Guarded

36:36 E Endianness. Determines endianness for the corresponding page.

37:37 Reserved -

38:38 X0 Implementation-dependent page attribute. Implemented as storage.

39:39 X1 Implementation-dependent page attribute. Implemented as storage.

40:43 U0-U3 User attribute bits. These bits are associated with a TLB entry and can be
used by system software.

44:44 Reserved -

45:45 SR Supervisor read permission bit.

46:46 SW Supervisor write permission bit.

47:47 SX Supervisor execute permission bit.

48:48 UR User read permission bit.

49:49 uw User write permission bit.

50:50 UXx User execute permission bit.

51:51 Reserved -

52:52 GS Translation guest space.

53:53 VF Virtualization fault. Controls whether a DSI occurs on data accesses to the

page, regardless of permission bit settings.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

187

working with Debugger

Working with Registers

Table 108: 5500 TLBO Registers (L2MMU_TLBO through L2ZMMU_TLB511) (continued)

Offset Range | Field Description

54:59 LPIDR Translation logical partition ID.
60:91 Reserved -

92:115 RPN Real page number

116:127 Reserved -

128:179 EPN Effective page number
180:191 Reserved -

The table below shows €5500 TLB1 registers, starting from L2ZMMU_CAMO through L2ZMMU_CAMG3.

Table 109: €5500 TLB1 Registers (L2MMU_CAMO through LZMMU_CAMG63)

Table continues on the next page...

Offset Range | Field Description

0:3 TSIZE Defines the page size of the TLB entry.

4:4 TS Translation space. Compared with MSR][IS] (instruction fetch) or MSR[DS]
(memory reference) to determine if this TLB entry may be used for
translation.

5.7 Reserved -

8:15 TID Translation identity. Defines the process ID for this TLB entry.

16:25 MASK SIZE MASK
4 KB 0x0000000000
16 KB 0x0000000001
64 KB 0x0000000011
256 KB 0x0000000111
1 MB 0x0000001111
4 MB 0x0000011111
16 MB 0x0000111111
64 MB 0x0001111111
256 MB 0x0011111111
1GB 0x0111111111
4 GB 0x1111111111

26:26 Reserved -

2727 W Write-through

28:28 I Caching-inhibited

29:29 M Memory coherency required

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

188

NXP Semiconductors

Working with Debugger
Working with Registers

Table 109: 5500 TLB1 Registers (L2MMU_CAMO through L2MMU_CAMG63) (continued)

Offset Range | Field Description

30:30 G Guarded

31:31 E Endianness. Determines endianness for the corresponding page.

32:32 UR User read permission bit.

33:33 uw User write permission bit.

34:34 UXx User execute permission bit.

35:35 SR Supervisor read permission bit.

36:36 SW Supervisor write permission bit.

37:37 SX Supervisor execute permission bit.

38:38 X0 Implementation-dependent page attribute. Implemented as storage.

39:39 X1 Implementation-dependent page attribute. Implemented as storage.

40:43 U0-U3 User attribute bits. These bits are associated with a TLB entry and can be
used by system software.

44:44 IPROT Invalidate protect. Set to protect this TLB entry from invalidate operations
from tlbivax, tlbilx, or MMUCSRO TLB flash invalidates.

45:51 Reserved -

52:52 GS Translation guest space.

53:53 VF Virtualization fault. Controls whether a DSI occurs on data accesses to the
page, regardless of permission bit settings.

54:59 LPIDR Translation logical partition ID.

60:91 Reserved -

92:115 RPN Real page number

116:127 Reserved -

128:179 EPN Effective page number

180:190 Reserved -

191:191 Vv Valid bit for entry.

5.10.5.4.5 e6500 Registers

This section provides information about e6500 TLBO registers, starting from L2ZMMU_TLBO through
L2MMU_TLB1023.

Table 110: 6500 TLBO Registers (L2MMU_TLBO through L2MMU_TLB1023)

Offset Range |Field Description
0:0 \% Valid bit for entry.
1:1 TS Translation address space (compared with AS bit of the current access.)

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 189

working with Debugger
Working with Registers

Table 110: e6500 TLBO Registers (L2MMU_TLBO through L2MMU_TLB1023) (continued)

Offset Range | Field Description

2:6 TSIZE Encoded page size. Only present in TLB1, however software should
always set page sizes for TLBO for future compatibility.

79 - Reserved

10:23 TID Translation ID (compared with PID)

24:26 NV

27:31 - Reserved

32:36 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

37:37 - Reserved

38:38 X0 Extra system attribute bit

39:39 X1 Extra system attribute bit

40:43 Uo-U3 User attribute bits, used only by software.

44:44 - Reserved

45:45 SR Supervisor read permission bit

46:46 SW Supervisor write permission bit

47:47 SX Supervisor execute permission bit

48:48 UR User read permission bit

49:49 uw User write permission bit

50:50 UXx User execute permission bit

51:51 - Reserved

52:52 GS Translation guest space

53:53 VF Virtualization fault

54:59 LPIDR Translation logical partition 1D

60:87 - Reserved

88:115 RPN Real page number

116:127 - Reserved

128:179 EPN Effective page number

180:191 - Reserved

The table below shows 6500 TLB1 registers, starting from L2MMU_CAMO through L2MMU_CAM®63.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
190 NXP Semiconductors

Working with Debugger
Working with Registers

Table 111: e6500 TLB1 Registers (L2MMU_CAMO through L2ZMMU_CAM63)

Offset Range | Field Description

0:4 TSIZE Encoded Page size
0b00010 4 KB
0b00011 8 KB
0b00100 16 KB
0b00101 32 KB
0b00110 64 KB
0b00111 128 KB
0b01000 256 KB
0b01001 512 KB
0b01010 1 MB
0b01011 2 MB
0b01100 4 MB
0b01101 8 MB
0b01110 16 MB
0b01111 32 MB
0b10000 64 MB
0b10001 128 MB
0b10010 256 MB
0b10011 512 MB
0b10100 1GB
0b10101 2GB
0b10110 4 GB
0b10111 8 GB
0b11000 16 GB
0b11001 32 GB
0b11010 64 GB
0b11011 128 GB
0b11100 256 GB
0b11101 512 GB

5:5 Reserved

6:6 IND Indirect bit. When set, this TLB entry is an indirect entry used to locate a
page table.

77 TS Translation address space (compared with AS bit of the current access.)

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

191

working with Debugger

Working with Registers

Table 111: e6500 TLB1 Registers (L2MMU_CAMO through L2MMU_CAM®63) (continued)

Offset Range | Field

Description

8:9

10:23
24:26
27:31

32:32
33:33
34:34
35:35
36:36
37:37
38:38
39:39
40:43
44:44
45:51
52:52
53:53
54:59
60:87
88:115

116:127
128:179

180:190
191:191

Reserved
TID
Reserved

WIMGE

UR

uw

UX

SR

SW

SX

X0

X1

U0-U3
IPROT
Reserved
GS

VF
LPIDR
Reserved

RPN

Reserved

EPN

Reserved
V

Translation ID (compared with PID)

Memory/cache attributes (write-through, cache-inhibit, memory coherence

required, guarded, endian)

User read permission bit

User write permission bit

User execute permission bit
Supervisor read permission bit
Supervisor write permission bit
Supervisor execute permission bit
Extra system attribute bit

Extra system attribute bit

User attribute bits, used only by software.

Invalidation protection

Translation guest space
Virtualization fault

Translation logical partition ID

Real page number (depending on page size, only the bits associated with a
page boundary are valid. Bits that represent offsets within a page are

ignored and should be zero)

Effective page number (Depending on page size, only the bits associated
with a page boundary are valid. Bits that represent offsets within a page

are ignored and should be zero.)

Valid bit for entry.

The table below shows €6500 LRAT registers, starting from L2ZMMU_LRATO through LZMMU_LRAT?7.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

192

NXP Semiconductors

Working with Debugger
Viewing memory

Table 112: 6500 LRAT Registers (L2MMU_LRATO through L2ZMMU_LRAT7)

Offset Range | Field Description

0:4 LSIZE Logical page size. Describes the size of the logical page of the LRAT entry.
The possible values are the same as for TSIZE field from TLBO and TLB1.

5:25 Reserved

26:31 LPID Logical partition ID value. Is compared with LPIDR during translation to
help select an LRAT entry.

32:55 Reserved

56:83 LRPN Real page number

84:119 Reserved

120:147 LPN Logical page number. Describes the logical address of the start of the
page.

148:158 Reserved

159:159 \Y LRAT valid bit

5.10.6 Working with IMMR

This section describes internal memory map register (IMMR).

Use the Debugger Shell: eppc: : setMMRBaseaddr command to define the memory location of the IMMR. This
information lets the CodeWarrior debugger find the IMMR register during a debug session.

NOTE
The Change IMMR command is applicable to 825x or 826x processors.

5.11 Viewing memory

This section explains how to view memory of a target processor.

The debugger allocates multiple memory spaces in the IDE for flexible control over the memory access. The
number of supported memory spaces and their properties depends upon the debugged processor.

You can display and access the supported memory spaces for a target in the Memory and Memory Browser
views, in the Import/Export/Fill Memory Action Task View or in the Debugger Shell view using the designated
memory space prefix. Use the mem -ms command to list the supported memory spaces for a processor.

To display the Memory view, select Window > Show View > Other > Debug > Memory. The figure below shows
a Memory view displaying physical memory address space.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 193

3
4

y
A

working with Debugger
Viewing memory

Figure 52: Memory View

s | (3 Executables | [Memary Brawser | [1 Memory 53

Phrysical:0x1000024258 <Hexz 2

g2 Mew Renderings. ..

@v

Address o - 3 4 - 7 g - B c - F

o10000z420 450032E1 4EFFFFED 3EDEOOO1 4BFFFFFC
o10000z430 S421FFEO TCOS0ZAe Q0010024 S3E1001cC
0100002440 93c1l001s TCTELE7TS TFEOOOLG g7FFOZ00
0100002450 0100002430 2C1EQCOO 40520020 45000051
0100002460 TCA41ETE 3Cae0000o0 38636ELD 4CCa3lg2
0100002470 43003291 43000020 43000035 TCB41E7S
o10000z430 3Ce00000 38636ECC TFCSF378 ACCa31582
0100002420 45003271 S3E1001C §3C10013 S00100zZ4
0100002440 TCOS03 46 382100zZ0 4ES00020 TCTE4Z L6
010000z4E0 4ES00020 S4z1FFFO 38210010 4E300020
o10000Z4co S4Z1FFFO TCOS0ZAG 20010014 43000015

NOTE

The Memory view seamlessly displays 32-bit, 36-bit, 40-bit, and 64-bit addresses
depending upon the selected memory space and the target processor currently under
debug process.

In this section:

+ Adding Memory Monitor on page 194

5.11.1 Adding Memory Monitor

This section describes how to add memory monitor in the Memory view.
To display the supported memory spaces for a target in the Memory view, perform the following steps:

1.

In the Memory view, click the Add Memory Monitor icon |

The Monitor Memory dialog appears (shown in the figure below).

2. Specify the address in the Enter address or expression to monitor drop-down list.

Himane (B B2 1|22 Disassembly | GE Outine | [Memory Browser &3
Import /Export /Fill Memory Action = A
Wirtwal v 0x100230 MNew Tab
T C)
Select the bype of action you wank to perform LT —— Wirtual:0x100230 <Tradtional> 5
(@ Import memory) Export memory 0x0000000000100230 00000000 ... A
Enker address or expression to mondor: 0x0000000000100234 00000000
e £6005000 0x0000000000100238 00010001
Provide memory location or memery space and addrass o b x e
Address | Expression Aecess See - I chrca 2 0x000000000010023C DBEIFFFE Uaye
@ Memory space and address: | Physical v 0x [110011 ©®1byte 0x0000000000100240 38000000 8.
N a5 0x0000000000100244 SO01FFDO .. §8
Otxpression: Oztites @ Concel o
4 bytes 0x0000000000100248 60000000 e
0x000000000010024C 7DZ0O4BTE) Ex
~ Input / Output 0x0000000000100250 7CO90378 |..x
Provide source or destination for the operation 0x0000000000100254 C3E26000 KA. .
Pl setection 0x0000000000100258 60000000 ...
Select file: « | 0x000D0D00001002SC 7DZO4B78) Kx
Impart Export/Fil Memory Action 0x0000000000100260 7COS0378 |..x v
[Console | 2] Tasks | 4 Remote Systems | 8] Target Tasks | (2 Problems | () Executables | () X " O || 5 pebugger shel 2 "
| - = T 8§-
ors % 3 g Physical cache - inhibited;0xFEQ08000 ; DxFEDOB000 <Hex> [. <> Mew Renderings...
% Fhysical cache - inhibked (:FE00S000 | Address 0-3 4 -7 8 -F c-F ~
ooreoosooo [IEEEEEGGEE oococo0o 0ODOOOOD 0OOOOOOO CodeVarrior Debugger Shell vi1.0
DOFEOOS010 00000000 OOODOODO 00000000 00O0O000
QOFEQO8020 Q0000000 00000000 00000000 Q0000000 S or v: Vircual
OOFEOOB030 00000000 00000000 00000000 00000000 6 or p: Physical
QO0FEDO8040 00000000 00000000 00000000 Q0000000 7 or 1i: Physical cache - inhibiced
OOFEOOS0S0 00000000 000000OO 00000000 0OOOAOOO t>mem i:0xFEO0BO00
OO0FE008060 00000000 00000000 00000000 00000000 % fe008000 Ox00000FFF
< >

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors

194

Working with Debugger
Viewing memory

3. Select one of the supported memory spaces from the Memory space drop-down list.

* Virtual (v)

Indicates that the specified address space is same as the address space in which the processor executes.
When you select the Virfual option, the debugger performs virtual to physical translations based on the
MMU translations read from the target or based on the translate directives specified in the memory
configuration file (for bareboard debugging) or the kernel awareness plug-in (for Linux debugging). In
addition, the Virfua/ memory space is the one that is relevant for the Program Counter (PC) and the Stack
Pointer (SP) registers. The width of the Virfua/ memory space is determined by the target processor's
effective address size. For e500v2 and e500mc processors the width of the Virfua/ memory space is 32-
bit. For €5500 and 6500 processors, the width of the Virfua/memory is 64-bit. Note that the Virfua/memory
space is the default memory space in the Disassembly view.

Physical (p)

Indicates that the specified address is interpreted as a physical address. The debugger does not attempt
to perform virtual to physical translations, therefore it simply accesses the specified address as a physical
address. When you select the Physical option, any translations read from the target MMU or defined in the
memory configuration file or the kernel awareness plug-in are disregarded. In addition, the behavior is
cache-coherent. If the data is in cache, the debugger gets it from there, otherwise the access goes to the
memory. Note that a Physical cacheable read access can cause modified cache lines to be flushed to the
memory before being accessed.

For processors based on e500v2, e500mc, €5500 cores, the width of the physical memory address space
is 36-bit. The e6500 core has a 40-bit physical memory space. Older cores like €300 and €500 only support
32-bit physical addresses.

Physical Cache Inhibited

The Physical Cache Inhibited option disregards the cache and accesses whatever is in the memory. This
option allows you to access the data directly from the main memory, even if the data or address is available
in one of the caches. The Physical Cache Inhibifed memory space is only available on processors based
on e500mc/e5500/e6500 cores.

CAUTION
The e500mc/e5500/e6500 core architecture specifies that it is a programming error to
inter-mix cache-inhibited with cacheable accesses to the same memory range. If this
error is encountered, it can lead to a number of problems like stale data, and un-intended
corruption of neighboring locations.

Also, you should not perform a cacheable access to a memory range which is defined
as cache-inhibited in the MMU.

When using the Virtual memory space, the debugger performs virtual to physical translations, and based on the
MMU setup it requires the correct cacheable/cache-inhibited attribute for the particular memory range.

For Linux debugging, CodeWarrior uses the Kernel Awareness plug-in to automatically extract the
cacheable/cache-inhibited attribute from the CAM/TLB registers (I bit of the WIMGE) or the PTE kernel
structure.

For bareboard debugging, when CodeWarrior is not configured for reading the MMU, it relies on the
information available in the memory configuration file. The translate directives are used to inform the
debugger of MMU translations and cacheable/cache-inhibited attribute (even for 1:1 translations), using the
appropriate memory space, for example:

translate v:<v_addr> p:<p_addr> - for cacheable ranges
translate v:<v_addr> i:<p_addr> - for cache-inhibited ranges

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 195

|
y

'
A

working with Debugger
Viewing Cache

» CodeWarrior can also automatically read the translations from the target while debugging bareboard
applications for most processors based on e500v2, e500mc, €5500, and €6500 cores, relieving the user
from specifying the translations in the memory configuration file. For more information, see Memory
translations on page 155.

5.12 Viewing Cache

This section provides detailed information on working with caches.

The CodeWarrior debugger allows you to view and modify the instruction cache and data cache of the target
system during a debug session.

In this section:

» Cache View on page 196

» Cache View Toolbar Menu on page 197

» Components of Cache View on page 199

» Using Debugger Shell to View Caches on page 199

» Debugger Shell Global Cache Commands on page 200
» Debugger Shell Cache Line Commands on page 201

* Processor-Specific Cache Features on page 201

5.12.1 Cache View

This section describes how to use the Cache view.

Use the Cache view to examine L1 cache (such as instruction cache or data cache). Also, you can use the
viewer to display L2 and L3 cache for targets that support it.

To open the Cache view, use the following steps:

1. Start a debugging session.

2. From the CodeWarrior IDE menu bar, select Window > Show View > Other.
The Show View dialog appears.

3. Expand the Debug group.

4. Select Cache.

5. Click OK.

The Cache view appears, as shown in the figure below.

TIP
You can use the type filter text box as a shortcut to specify the Cache view. Start typing
cache into the text box. The Show View dialog shortens the list of views to those whose
names match the characters you type. The list continues to shorten as you type each
additional character. When the list shows just the Cache view, select it and click OK to

open that view. You can click Clear (“*) to empty the text box and restore the full list
of views.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
196 NXP Semiconductors

Working with Debugger
Viewing Cache

Figure 54: Cache View

()= Variables | ®g Breakpoints | (] Cache - L1 Data Cache i3 ifai Registers | = Modules =8
[BataCache " v)/[Rawdata ~| 2 & g O O G & 2 A AT
Set Way Address Dirty Lock Valid Share LRU Castout “ || Word0: 00 - 03 Word1:0m4 - 07 Word 2:0x8 - 0xB Word3:0xC -0xF Word 4: 010 -
63 0 0:00003DFFC0 Mo Mo Yes Yes 11.. VYes DEADBEEF DEADBEEF 003DFFED DEADBEEF 0010C9B4
40 0 0:000010CAD0 Yes Mo Yes No 11.. VYes oo 0 00000000 DEADBEEF
3?0 0 0 Yes Mo Yes No 11.. Ves 00000000 00 0 00000000 00000000
38 0 0:000010C980 Ves Mo Yes No 11... Ves 00114998 0010C998 0010C9Da 0011403E 0010C03E
- || 4 1 3 T
6. Use the Choose a Cache list box to specify the cache that you want to examine.
NOTE
If the Choose a Cache list box is grayed out, the current target does not support viewing
cache. If a cache line appears in red, it indicates that the line has been changed by the
processor in the cache but has not been updated in the storage. This is also suggested
by the Dirty flag that reads Yes in this case.
5.12.2 Cache View Toolbar Menu
Use the Cache view toolbar menu is to configure the cache information.
To display this menu, click the Menu button (inverted triangle) in the Cache view toolbar.
TIP
The Cache view toolbar buttons are alternative ways to implement the control actions
defined in the toolbar menu.
NOTE
Certain toolbar buttons are unavailable (grayed out) if the target hardware does not
support their corresponding functions, or if a specific operation can be performed in
assembly language and is not supported by the Cache view.
The table below describes the Cache view toolbar menu options.
Table 113: Cache View Toolbar Menu Options
Option Description
Write Commits content changes from the Cache view to the

cache registers on the target hardware (if the target
hardware supports doing so).

Refresh Reads data from the target hardware and updates the
Cache view display.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 197

working with Debugger
Viewing Cache

Table 113: Cache View Toolbar Menu Options (continued)

Enable/Disable Parity

Inverse LRU

Copy Cache
Export Cache
Search
Search Again

Preserve Sorting

View Memory

Lock Line
Invalidate Line
Flush Line
Synchronize Line

Lock Way

Option Description

Invalidate Discards the cache.

Flush Flushes the entire contents of the cache. This option
commits uncommitted data to the next level of the
memory hierarchy, then invalidates the data within the
cache.

Lock Locks the cache and prevent the debugger from
fetching new lines or discarding current valid lines.

Enable/Disable Turns on/off the cache.

Disable LRU Removes the Least Recently Used (LRU) attribute

Table continues on the next page...

from the existing display for each cache line. This
option is never activated because the function does
not apply to Power Architecture processors.

Turns on/off the line data parity checksum calculation.

Displays the inverse of the Least Recently Used
attribute for each cache line. This option is never
activated because the function does not apply to
Power Architecture processors.

Copies the cache contents to the system clipboard.
Exports the cache contents to a file.

Finds an occurrence of a string in the cache lines.
Finds the next occurrence of a string in the cache lines.

Preserves sorting of the cache when the cache data is
updated and the cache is refreshing. This option is
disabled by default. If enabled, every operation that
triggers cache refresh (such as step, run to breakpoint)
will have to wait for cache data loading and sorting.

Allows you to view the corresponding memory for the
selected cache lines.

Locks the selected cache lines.

Invalidates the selected cache lines.

Flushes the entire contents of the selected cache lines.
Synchronizes selected cache data with memory data.

Locks the cache ways specified with the Lock Ways
menu option. Locking a cache way means that the data
contained in that way must not change. If the cache
needs to discard a line, it will not discard locked lines
(such as lines explicitly locked, or lines belonging to
locked ways).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

198

NXP Semiconductors

Working with Debugger
Viewing Cache

Table 113: Cache View Toolbar Menu Options (continued)

Option Description

Unlock Way Unlocks the cache ways specified with the Lock Ways
menu option.

Lock Ways Specifies the cache ways on which the Lock Way and

Unlock Way menu options operate.

5.12.3 Components of Cache View

This section describes the components of the Cache view.

Below the toolbar, there are two panes in the window, separated by another vertical divider line. The pane to
the left of the divider line displays the attributes for each displayed cache line. The pane to the right of the divider
line displays the actual contents of each displayed cache line. You can modify information in this pane and click
Write to apply those changes to the cache on the target board.

Above the cache line display panes are Refresh and Write and the View As drop-down menu. Click Refresh to
clear the entire contents of the cache, re-read status information from the target hardware, and update the cache
lines display panes. Click Write to commit cache content changes from this window to the cache memory on the
target hardware (if the target hardware supports doing so). Select Raw Data or Disassembly from the View As
drop-down menu to change the way the IDE displays the data in the cache line contents pane on the right side
of the window.

You can perform all cache operations from assembly code in your programs. For details about assembly code,
see the core documentation for the target processor.You can also perform cache operations by clicking Menu,
shown as an inverted triangle, which opens a pull-down menu that contain actions for the Cache view.

5.12.4 Using Debugger Shell to View Caches

Another way to manipulate the processor's caches is by using the Debugger Shell view.
To display the Debugger Shell view, follow these steps:
1. Start a debugging session.
2. Select Window > Show View > Other.
The Show View dialog appears.
3. Expand the Debug group.
4. Select Debugger Shell.
5. Click OK.
The Debugger Shell view appears.

To display a list of the commands supported by the Debugger Shell view, enter this at the command prompt:
help -tree

For more information about the Debugger Shell support of cache commands, enter these commands at the
command prompt:

help cmdwin::ca

help cmdwin::caln

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 199

|
y

'
A

working with Debugger
Viewing Cache

The next sections describe these commands in detail.

5.12.5 Debugger Shell Global Cache Commands

The cmdwin: : ca cache commands manage global cache operations, that is, they affect the operation of the
entire cache.

For multi-core processors, these commands operate on a specific cache if an optional ID number is provided.
If the ID number is absent, the command operates on the cache that was assigned as the default by the last
cmdwin: :ca: :default command.

The table below lists the cache commands.

Table 114: Debugger Shell Global Cache Commands

Command Description

cmdwin: :ca::default Set specified cache as default
cmdwin: :ca: :enable Enable/disable cache

cmdwin: :ca::flush Flushes cache

cmdwin: :ca::inval Invalidates cache

cmdwin: :ca::lock Lock/Unlock cache

cmdwin: :ca: : show Show the architecture of the cache

The basic format of a shell global cache command is:
command [<cache ID>] [on | off]

The optional cache ID number argument selects the cache that the command affects.
The optional on or off argument changes a cache's state.

For example, to display a particular cache's characteristics:
%> cmdwin: :ca:show 1

displays the characteristics of the second processor cache.

You use the cmd: : ca: :default to assign a default cache that becomes the target of global cache commands.
For example:

%> cmdwin: :ca:default 0

makes the first processor cache the default cache. Subsequent global cache commands that do not specify a
cache ID will affect this cache.

Other cache commands require the off or on state argument. When specifying a particular cache, the state
argument follows the ID argument. For example:

%> cmdwin::ca:lock 2 on
locks the contents of the third processor cache, while:
%> cmdwin: :ca:enable 1 off

disables the second processor cache.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
200 NXP Semiconductors

Working with Debugger
Viewing Cache

5.12.6 Debugger Shell Cache Line Commands

The cmdwin: : caln commands manage cache line operations, that is, they affect memory elements within a
designated cache.

The table below lists these commands.

Table 115: Debugger Shell Cache Line Commands

Command Description

cmdwin: :caln: :get Display cache line

cmdwin: :caln: :flush Flush cache line

cmdwin: :caln: :inval Invalidate cache line

cmdwin: :caln: :lock Locks/unlocks cache line

cmdwin: :caln::set Writes specified data to cache line

The basic format for a shell cache line command is:
command [<cache ID>] <line> [<counts>]
The optional cache ID argument specifies the cache that the command affects, otherwise it affects the default
cache, as set by the cmdwin: :ca: :default command.
The required line argument specifies the cache line to affect.

The optional count argument specifies the number of cache lines the command affects. The default is one line.
For example:

%> cmdwin: :caln:flush 2

flushes line 2 of the default cache.
The cmdwin: :caln:set command varies from the other commands in that you must specify data words that fill
the cache line. For example:

%> cmdwin::caln:set 2 = 0 1 1 2 3 5 8 13

Sets the contents of cache line two, where the first word has a value of 0, the second word has a value of 1, the
third word has a value of 1, the fourth word has a value of 2, and so on.

NOTE
If the command specifies a list of data values that are less than one line's worth of words,
then the values are repeated from the beginning of the list to complete the filling the
cache line. If too many data words are specified for the cache line to hold, the extra
values are discarded.

5.12.7 Processor-Specific Cache Features

This section lists the cache features and status flags supported by this product.

The table below lists cache features supported by P4080 QorlQ processors.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 201

working with Debugger
Viewing Cache

Table 116: P4080 QorlQ - Supported Cache Operations

* 16 words/line

« invalidate line
* read/modify data
« flush cache

* flush line

Cache Features Supported Operations Supported Status Flags
L1 data cache + 32 KB size « enable/disable cache |+ valid
* 64 sets * lock/unlock cache * lock
+ 8 ways * invalidate cache shared
* 16 words / line * lock/unlock line « dirty
* invalidate line « castout
+ read/modify data * plru
« flush cache
« flush line
L1 instruction cache « 32 KB size « enable/disable cache |+ valid
* 64 sets * lock/unlock cache * lock
+ 8 ways * invalidate cache * plru
* 16 words / line * lock/unlock line
* invalidate line
* read/modify data
L2 cache « 128 KB size + enable/disable cache |+ valid
+ 256 sets * lock/unlock cache * lock
+ 8 ways * invalidate cache * shared
* 16 words / line * lock/unlock line * dirty
* invalidate line * non-coherent
* read/modify data * plru
« flush cache
« flush line
L3 cache * 2 banks « enable/disable cache |+ valid
» 512KB/bank * lock/unlock cache * locked
* 512 sets + invalidate cache * modified
+ 32 ways * lock/unlock line * plru

The table below lists cache features supported by PowerQUICC |l processors.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

202

NXP Semiconductors

Working with Debugger

Viewing Cache

Table 117: PowerQUICC Il Family - Supported Cache Operations

L1l L1 instruction cache

» 8 words / line

16 KB size
128 sets

* 4 ways

8 words / line

Cache Features Supported Operations
L1D L1 data cache + 16 KB size * enable/disable cache
+ 128 sets * lock/unlock cache
* 4 ways * invalidate cache

* read/modify data

* enable/disable cache
* lock/unlock cache
* invalidate cache

» read/modify data

The table below lists cache features supported by PowerQUICC Ill processors.

Table 118: PowerQUICC Il Family - Supported Cache Operations

only, unified)

L1l L1 instruction cache

L2 L2 cache (data only, instruction

» 8 words / line

32 KB size
128 sets

* 8 ways

8 words / line

+ 256 KB/512 KB size
1024/2048 sets

* 8 ways

» 8 words / line

Cache Features Supported Operations
L1D L1 data cache + 32 KB size « enable/disable cache
» 128 sets * lock/unlock cache
* 8 ways * invalidate cache

¢ lock/unlock line
* invalidate line

» read/modify data

» enable/disable cache
* lock/unlock cache

* invalidate cache

* lock/unlock line

* invalidate line

 read/modify data

* enable/disable cache
* lock/unlock cache
* invalidate cache

* read/modify data

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

203

|
y

'
A

working with Debugger
Changing Program Counter Value

5.13 Changing Program Counter Value

This section explains how to change the program counter value in the CodeWarrior IDE to make the
debugger execute a specific line of code.

To change the program counter value, follow these steps:
1. Start a debugging session.
2. In the Editor view, place the cursor on the line that you want the debugger to execute next.
3. Right-click in the Editor view.
A context menu appears.
4. From the context menu, select Move To Line.

The CodeWarrior IDE modifies the program counter according to the specified location. The Editor view shows
the new location.

5.14 Hard resetting

Use the reset hard command in the Debugger Shell view to send a hard reset signal to the target processor.

NOTE
The Hard Reset command is enabled only if the debug hardware you are using supports
it.

TIP

You can also perform a hard reset by clicking Reset (e) on the Debug perspective
toolbar.

5.15 Setting Stack Depth

This section describes how to control the depth of the call stack displayed by the debugger.

Select Window > Preferences > C/C++ > Debug > Maximum stack crawl depth option to set the depth of the
stack to read and display. Showing all levels of calls when you are examining function calls several levels deep
can sometimes make stepping through code more time consuming. Therefore, you can use this menu option to
reduce the depth of calls that the debugger displays.

5.16 Import a CodeWarrior Executable file Wizard

The Import a CodeWarrior Executable file wizard helps you to import a CodeWarrior executable file and
create a new project.

To use the Import a CodeWarrior Executable file wizard, perform these steps:

1. From the CodeWarrior IDE menu bar, select File > Import.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
204 NXP Semiconductors

Working with Debugger
Import a CodeWarrior Executable file Wizard

The Import wizard launches and the Select page appears.
2. Expand the CodeWarrior group.
3. Select the CodeWarrior Executable Importer to import a Power Architecture .e1f file.
4. Click Next.

The wizard name changes to Import a CodeWarrior Executable file and the Import a CodeWarrior Executable
file page appears.

The following sections describe the various pages that the wizard displays as it assists you in importing an
executable (.elf) file:

* Import a CodeWarrior Executable file Page on page 205

Import C/C++/Assembler Executable Files Page on page 205
* Processor Page on page 206

* Linux Application Launch Configurations Page on page 206

» Debug Target Settings Page on page 207

» Configurations Page on page 208

5.16.1 Import a CodeWarrior Executable file Page

Use the Import a CodeWarrior Executable file page to specify the name and location for your project.

The table below describes the options available on this page.

Table 119: Import a CodeWarrior Executable file page settings

Option Description

Project name Specify the name of the project. The specified name identifies the project
created for debugging (but not building) the executable file.

Use default location If you select this option, the project files required to build the program are
stored in the current workspace directory of the workbench. If you clear this
option, the project files are stored in the directory that you specify in the
Location option.

Location Specifies the directory that contains the project files. Use the Browse
button to navigate to the desired directory. This option is only available
when the Use default location option is cleared.

5.16.2 Import C/C++/Assembler Executable Files Page

Use the Import C/C++/Assembler Executable Files page to select an executable file or a folder to search for
C/C++/assembler executable files.

The table below explains the options available on the page.

Table 120: Import C/C++/Assembler Executable Files page settings

Option Description

File to import Specifies the C/C++/assembler executable file. Click
Browse to choose an executable file.

Copy the selected file to current project folder Select this option to copy the executable file in the
project folder.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 205

working with Debugger

Import a CodeWarrior Executable file Wizard

5.16.3 Processor Page

Use the Processor page to specify the processor family for the imported executable file and also specify the

toolchain to be used.

The table below describes the options available on the page.

Table 121: Processor page settings

Option

Description

Processor

Toolchain

Target OS

Expand the processor family and select the appropriate target processor
for the execution of the specified executable file. The toolchain uses this
choice to generate code that makes use of processor-specific features,
such as multiple cores.

TIP
You can also type the processor name in the text
box.

Chooses the compiler, linker, and libraries used to build the program. Each
toolchain generates code targeted for a specific platform. These are:

» Bareboard Application: Targets a hardware board without an operating
system.

« Linux Application: Targets a board running the Linux operating system.
Select if the board runs no operation system or imports a Linux kernel

project to be executed on the board. The option is applicable only for
bareboard application projects.

5.16.4 Linux Application Launch Configurations Page

Use the Linux Application Launch Configurations page to specify how the debugger communicates with the

host Linux system and controls your Linux application.

NOTE
The Linux Application page appears, only when select the Linux Application toolchain
option on the Processor page in the Import a CodeWarrior Executable file wizard.

NOTE
When debugging a Linux application, you must use the CodeWarrior TRK to manage
the communications interface between the debugger and Linux system. For details, see
Install CodeWarrior TRK on Target System on page 228.

The table below lists the options available on the page.

Table 122: Linux Application Launch Configurations Page Setting

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

Option Description

CodeWarrior TRK Select to use the CodeWarrior Target Resident Kernel (TRK) protocol, to
download and control application on the Linux host system.

TAP Address Specifies the IP address of the Linux host system, the project executes on.

Table continues on the next page...

206

NXP Semiconductors

Working with Debugger
Import a CodeWarrior Executable file Wizard

Table 122: Linux Application Launch Configurations Page Setting (continued)

Option Description

Port Specifies the port number that the debugger will use to communicate to the
Linux host.

Remote Download Path Specifies the host directory into which the debugger downloads the
application.

5.16.5 Debug Target Settings Page

Use the Debug Target Settings page to specify debugger connection type, board type, launch configuration
type, and connection type for your project.

This page also allows you to configure connection settings for your project.

The table below describes the options available on the page.

Table 123: Debug Target Settings page settings

Option Description

Debugger Connection Types Specifies what target the program executes on.

» Hardware: Select to execute the program on the hardware available for the
product.

 Simulator: Select to execute the program on a software simulator.

« Emulator: Select to execute the program on a hardware emulator.

Board Specifies the hardware (board) supported by the selected processor.

Launch Specifies the launch configurations and corresponding connection
configurations, supported by the selected processor.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 207

working with Debugger

Import a CodeWarrior Executable file Wizard

Table 123: Debug Target Settings page settings (continued)

Option

Description

Connection Type

TAP address

Specifies the interface to communicate with the hardware.

« USB TAP: Select to use the USB interface to communicate with the
hardware device.

« Ethernet TAP: Select to use the Ethernet interface to communicate with
the target hardware.

» CodeWarrior TAP (over USB): Select to use the CodeWarrior TAP
interface (over USB) to communicate with the hardware device.

» CodeWarrior TAP (over Ethernet): Select to use the CodeWarrior TAP
interface (over Ethernet) to communicate with the hardware device.

For more details on CodeWarrior TAP, see the CodeWarrior TAP User Guide
available in the <cwInstallpirs\\Help\PDF\ folder.

» Gigabit TAP: Corresponds to a Gigabit TAP that includes an Aurora
daughter card, which allows you to collect Nexus trace in a real-time non-
intrusive fashion from the high speed serial trace port (the Aurora
interface).

+ Gigabit TAP + Trace (JTAG over JTAG cable): Select to use the Gigabit
TAP and Trace probe to send JTAG commands over the JTAG cable.

+ Gigabit TAP + Trace (JTAG over Aurora cable): Select to use the Gigabit
TAP and Trace probe to send JTAG commands over the Aurora cable.

For more details on Gigabit TAP, see Gigabit TAP Users Guide available in
the <cwInstallDir>\PA\Help\PDF\ folder.

Enter the IP address of the selected TAP device.

NOTE

The Debug Target Settings page may prompt you to either create a new remote system
configuration or select an existing one.

A remote system is a system configuration that defines connection, initialization, and
target parameters. The remote system explorer provides data models and frameworks
to configure and manage remote systems, their connections, and their services. For
more information, see the CodeWarrior Development Studio Common Features Guide
available in the <CWInstallDir>\PA\Help\PDF\ folder.

5.16.6 Configurations Page

Use the Configurations page to select the processor core that executes the project.

The table below lists the options available on the page.

Table 124: Configurations Page

Options

Description

Core Index

Select the processor core that executes the project.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

208

NXP Semiconductors

Working with Debugger
Debugging Externally Built Executable Files

5.17 Debugging Externally Built Executable Files

You can use the Import a CodeWarrior Executable file wizard to debug an externally built executable file, that
is, an executable (.e1f) file that has no associated CodeWarrior project.

For example, you can debug a .e1f file that was generated using a different IDE.

The process of debugging an externally built executable file can be divided into the following tasks:
» Import an Executable File on page 209

 Edit the Launch Configuration on page 211

» Specify the Source Lookup Path on page 212

» Debug Executable File on page 214

5.17.1 Import an Executable File

First of all, you need to import the executable file that you want the CodeWarrior IDE to debug.
The IDE imports the executable file into a new project.
To import an externally built executable file, follow these steps:
1. From the CodeWarrior IDE menu bar, select File > Import.
The Import wizard appears.
2. Expand the CodeWarrior group.
3. Select CodeWarrior Executable Importer to import a Power Architecture .e1f file.
4. Click Next.

The wizard name changes to Import a CodeWarrior Executable file and the Import a CodeWarrior Executable
file page appears.

5. In the Project name text box, enter the name of the project. This name identifies the project that the IDE
creates for debugging (but not building) the executable file.

6. Clear the Use default location checkbox and click Browse to specify a different location for the new project.
By default, the Use default location checkbox is selected.

7. Click Next.

The Import C/C++/Assembler Executable Files page appears.
8. Click Browse.

The Select file dialog appears. Use the dialog to navigate to the executable file that you want to debug.
9. Select the required file and click Open.

The Select file dialog closes. The path to the executable file appears in the File to import text box.

TIP
You can also drag and drop a . e1f file in the CodeWarrior Eclipse IDE. When you drop
the .elf file in the IDE, the Import a CodeWarrior Executable file wizard appears with
the . elf file already specified in the Project Name and File to Import text box.

10.Check the Copy the selected file to current project folder checkbox to copy the executable file in the
current workspace.

11.Click Next.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 209

|
y

'
A

working with Debugger
Debugging Externally Built Executable Files

The Processor page appears.
12 Select the processor family for the executable file.
13.Select a toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

14 Select if the board runs no operation system or imports a Linux kernel project to be executed on the board.
The Target OS options are applicable only for bareboard application projects.

15.Click Next.
The Debug Target Settings page appears.

16.Select a supported connection type, from the Debugger Connection Types group. Your selection
determines the launch configurations that you can include in your project.

17 Select the hardware or simulator, you plan to use, from the Board drop-down list.

NOTE
Hardware or Simulators that supports the target processor selected on the Processors
page are only available for selection.
18.Select the launch configurations that you want to include in your project and the corresponding connection.

19.Select the interface to communicate with the hardware, from the Connection Type drop-down list.

20.Enter the IP address of the TAP device in the TAP address text box. This option is disabled and cannot be
edited, if you select USB TAP from the Connection Type drop-down list.

21.Click Next.

The Configurations page appears.
22 Select the processor core that executes the project, from the Core index list.
23.Click Finish.

The Import a CodeWarrior Executable file wizard ends. The project for the imported . e1f file appears in the
CodeWarrior Projects view. You can now open the Debug Configurations dialog box by selecting Run > Debug
Configurations. The Debug Configurations dialog shows the current settings for the launch configuration that
you just created. A remote system is created with details of all the connection, initialization, and target
parameters you had set while importing the .e1f file.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
210 NXP Semiconductors

Working with Debugger
Debugging Externally Built Executable Files

Figure 55: Debug Configurations Dialog Box - Launch Configuration for Executable File

Name: Test_import_Debug_P4080_Download

[£] Main . 3= Arguments| %5 Debugger| = Trace and Profile Eip Source| P Environment| = Commeon

Debug session type
Choose a predefined debug session type or custom type for maximum flexibility
@ Download Connect

Attach Custom

¥ (/C++ application

Project: Test_import Browse...

Application: Debug/Test_impoert-corel0.elf Search Project...| | Browse... | ‘ Variables... |
 Build (if required) before launching

Build (if required) before launching

Build configuration: Use Active v|

Select configuration using 'C/C++ Application’
Enable auto build Disable auto build

@ Use workspace settings Configure Workspace Settings...
~+ Target settings
Connection: =&- Test_import_Debug_P4080_Download 57 Edit... | | MNew.

Execute reset sequence
Execute initialization script(s
The connection is for a multicore target. Please select a core, or multiple cores in the case of SMP:

Target
| P4080
| €500mc-0
e500me-1
e500mc-2
€500mc-3
e500mc-4

5.17.2 Edit the Launch Configuration

Using the tabs of the Debug Configurations dialog, you can change the launch configuration settings that you
specified while importing the .e1f file.

| Apply | | Revert |

[Debug] | Close |

To edit the launch configuration for your executable file, follow these steps:

1.

On the Main tab, click Edit in the Connection panel.

The corresponding Connection page appears.

. Use the Connection type list box to modify the current connection type.

3. Configure the various connection options as appropriate for your executable file by using the various tabs

available on the Connection page.

Click OK to close the Connection page.

NOTE

For example, specify the appropriate target processor, any initialization files, and connection protocol.

For more information on how to modify settings using the remote system explorer, see
CodeWarrior Common Features Guide from the <CWInstallDir>\PA\Help\PDF\

folder.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

211

working with Debugger
Debugging Externally Built Executable Files

5.17.3 Specify the Source Lookup Path

Source lookup path is specified in terms of the compilation path and the local file system path.
The CodeWarrior debugger uses both these paths to debug the executable file.

The compilation path is the path to the original project that built the executable file. If the original project is from
an IDE on a different computer, you need to specify the compilation path in terms of the file system on that
computer.

The local file system path is the path to the project that the CodeWarrior IDE creates to debug the executable
file.

To specify a source lookup path for your executable file, perform the following steps:
1. Click the Source tab of the Debug Configurations dialog.
The corresponding page appears.

Figure 56: Debug Configurations Dialog Box - Source Page

Name: Test_import_Debug_P4080_Download

=] Main | &)= Argurnents ‘;;S‘« Debugger | S Trace and Profile | B Source . F§ Environment|] Common
Source Lookup Path:

| Path Mapping: cygdrive Add...
1= Default

Restore Default

Search for duplicate source files on the path

| Apply | | Revert |

[Debug l | Close |

2. Click Add.
The Add Source dialog appears.

3. Select Path Mapping from the available list of sources.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
212 NXP Semiconductors

Working with Debugger
Debugging Externally Built Executable Files

Figure 57: Add Source Dialog Box

% Add Source

Add a container to the source lookup path

& path mapping. %E

i Absolute File Path
[=File System Directory
i s
T=FProject
="Workspace

= Woarkspace Faolder

'@,‘ [o]4] [Cancel

. Click OK.

The Add Source dialog closes. The Path Mappings dialog appears.
. In the Name text box, enter the name of the new path mapping.

. Click Add.

The cursor blinks in the Compilation path column.

. In the Compilation path column, enter the path to the parent project of the executable file, relative to the
computer that generated the file.

Suppose the computer on which you debug the executable file is not the same computer that generated that
executable file. On the computer that generated the executable file, the path to the parent project is D:
\workspace\originalproject. Enter this path in the Compilation path text box.

TIP
You can use the IDE to discover the path to the parent project of the executable file,
relative to the computer that generated the file. In the C/C++ Projects view of the C/C+
+ perspective, expand the project that contains the executable file that you want to
debug. Next, expand the group that has the name of the executable file itself. A list of
paths appears, relative to the computer that generated the file. Search this list for the
names of source files used to build the executable file. The path to the parent project of
one of these source files is the path you should enter in the Compilation path column.

. In the Local file system path text box, enter the path to the parent project of the executable file, relative to
your computer. Click the ellipsis button to specify the parent project.

Suppose the computer on which you debug the executable file is not the same computer that generated that
executable file. On your current computer, the path to the parent project of the executable file is ¢: \projects
\thisproject. Enter this path in the Local file system path text box.

. Click OK.

The Path Mapping dialog closes. The mapping information now appears under the path mapping shown in
the Source Lookup Path list of the Source page.

10.If needed, change the order in which the IDE searches the paths.

The IDE searches the paths in the order shown in the Source Lookup Path list, stopping at the first match.
To change this order, select a path, then click Up or Down to change its position in the list.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 213

V¥ ¢
i

working with Debugger
Debugging Externally Built Executable Files
11.Click Apply.

The IDE saves your changes.

5.17.4 Debug Executable File

You can use the CodeWarrior debugger to debug the externally built executable file.
To debug the executable file:

1. Select the project in the CodeWarrior Projects view.

2. Click the Debug button from the IDE toolbar.

The IDE switches to Debug perspective listing the debugging output.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
214 NXP Semiconductors

Multi-Core Debugging
Debugging Multi-Core Projects

Chapter 6
Multi-Core Debugging

This chapter explains how to use the multi-core debugging capability of the CodeWarrior debugger.
In this chapter:

» Debugging Multi-Core Projects on page 215

» Multi-Core Debugging Commands on page 221

6.1 Debugging Multi-Core Projects

This section explains how to set launch configurations and how to debug multiple cores in a multi-core
project.

The CodeWarrior debugger provides the facility to debug multiple Power Architecture processors using a single
debug environment. The run control operations can be operated independently or synchronously. A common
debug kernel facilitates multi-core, run control debug operations for examining and debugging the interaction of
the software running on the different cores on the system.

NOTE
This procedure assumes that you have already created a multi-core project, named
board project.
To debug a multi-core project, perform the steps given in the following sections:
+ Setting Launch Configurations on page 215

» Debugging Multiple Cores on page 218

6.1.1 Setting Launch Configurations

Setting a launch configuration allows you to specify all core-specific initializations.
To set up the launch configurations, follow these steps:

1. Open the CodeWarrior project you want to debug.

2. Switch to the Debug perspective.

3. Select Run > Debug Configurations.

The Debug Configurations dialog appears (shown in the figure below) with a list of debug configurations that
apply to the current application.

4. Expand the CodeWarrior tree control.

5. From the expanded list, select the debug configuration for which you want to modify the debugger settings.
For example, board project-core00 RAM B4860 Download .

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 215

Multi-Core Debugging
Debugging Multi-Core Projects

Figure 58:

Debug Configurations Dialog Box

¥ Debug Configurations

Create, manage, and run configurations

Debug or run an application to a target.

TBX| B~

type filter text

4 [t CodeWarrior
board_project-corel0)_RAM_B4860_Download
board_project-coredl_RAM_B4860_Download
board_project-core)2_RAM_B4860_Download
board_project-core)3_RAM_B4860_Download
board_project-corel)d_RAM_B4860_Download
board_project-core)5_RAM_B4860_Download

= Launch Group
[ﬁ Target Communication Framework

Name: beard_project-corel0_RAM_B4860_Download
[£] Main . &= Arguments | %3 Debugger| = Trace and Profile % Source| B§ Environment | = Common
Debug session type

Choose a predefined debug session type or custom type for maximum flexibility
@ Download) Connect
) Attach) Custom
+ C/C++ application

Project: board_project-corel

Browse...

Application: RAM/board_project-corel0.elf

SEarcﬂProjectH.” Browse... ” Variables...]

} Build (if required) before launching

~ Target settings

Connection: -b- board_project-core00_RAM_B4860_Download - Edit. [New. |
Execute reset sequence
Execute initialization script(s)
The connection is for a multicore target. Please select a core, or multiple cores in the case of SMP:
Target
BA4B6D
. 6500-0
Filter matched 9 of 9 items 7] e6500-1
Filter by Project: [C] e6500-2
[] e6500-3
= board_project-cored0 o [] eA500-4 L
= board_project-core0l
board_project-corel2
= boar: 7prUJ.E con Apply Revert
= board_project-core03 2
o
'\?J' Debug l I Close

6. On the Main tab, select a connection from the Connection drop-down list.
7. Select a core from the Target list.

8. Click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

216

NXP Semiconductors

Figure 59: Properties for <connection> Dialog Box

Multi-Core Debugging
Debugging Multi-Core Projects

35' Properties for board_project-cored0_RAM_B4860_Download
Hardware or Simulater Connection Hardware or Simulator Connection

Parent profile: B34823-02

Description:

Template: Meone

MName: board_project-core00_RAM_B4380_Download

Target: E board_project-core00_RAM_B4860_Download Target

Edit.. | [Mew. |

Connection type: | USB TAP

Connection | Advanced

USE TAP
USE serial number:
JTAG settings
ITAG clock speed (kHz): 10230

CCS server

@ Automatic launch

m

Server port number: | 41475
LS executable

Manual launch

41475

Connect server to TAP

OK] | Cancel

9. Select a target from the Target drop-down list.

10.Select the required TAP connection from the Connection type drop-down list. For example, CodeWarrior

TAP .

11.0n the Connection tab, specify the hostname/IP of the target board in the Hosthame/IP text box.

12 Enter the JTAG clock speed in the JTAG clock speed text box.

13.Specify the port number of the CCS server in the Server port number text box.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

217

Multi-Core Debugging
Debugging Multi-Core Projects

Figure 60: Properties for <connection> Dialog Box - Connection Settings

31 Properties for board_project-core00_RAM_B4860_Download = @

Hardware or Simulator Connection Hardware or Simulator Connection - v -
Parent profile: B34323-02 -
MName: board_project-core00_RAM_B4860_Download
Description:
Template: MNone ~ | | Apply Defaults
Target: E board_project-coredd_RAM_B4860_Download Target - Edit... ‘ ‘ Mewy... |
Connecticn type: ‘ CodeWarrior TAP - |

Cennection | Advanced

CodeWarrior TAP

Hardware connection: | Ethernet -
Hostname/IP: 10.82.136.144 2
Serial number:

JTAG cettings
JTAG clock speed (kHz): 10230 -
CCS server
@ Automatic launch
Server port number: 41475
CC5 executable:

Manual launch

41475

Connect server to TAP

@ OK] | Cancel

14.Click OK.
15.Click the Debugger tab in the Debug Configurations dialog.
The Debugger page appears.

16.Ensure that the Stop on startup at checkbox is selected and main is specified in the User specified text
box.

17 Click Apply to save the changes.
You have successfully configured a debug configuration.

18.Similarly, configure remaining debug configurations.

NOTE
To successfully debug multiple cores, the connection settings must be identical for all
debug configurations.

6.1.2 Debugging Multiple Cores

The CodeWarrior debugger enables system developers to simultaneously develop and debug applications on
a system with multiple processors, within the same debug environment.

NOTE
Ensure that you have attached a debug probe to the target board and to the computer
hosting the CodeWarrior IDE before performing the steps listed in this section.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
218 NXP Semiconductors

Multi-Core Debugging
Debugging Multi-Core Projects

To debug multiple cores, follow these steps:
1. Select a multi-core project in the CodeWarrior Projects view.
2. Select Run > Debug.

The debugger downloads core 0 and switches to the Debug perspective. The debugger halts execution at
the first statement of main (). The Debug view displays all the threads associated with the core.

Figure 61: Multi-Core Debugging - Debug Core 0

%% Debug &1 = 5

N N R e S S Il IR =

a El beoard_project-corel0_RAM_B4850_Download [CodeWarrior]
4 EPPC, board_project-coreld.elf, core 0 (Suspended)
a o Thread [ID: 0:0] (Suspended: Signal 'Halt' received. Description: User halted thread.}
= 2 main(} main.c:14 0:0000000000100194
= 1 _start() _start_e5500_32bit_crt0.c:254 0:000000000010000
Users\b3482 3 workspace\board_project-cored0NRAN board_project-corel.elf (8/8/13 4:19 PI)

-

&

3. Download all other cores associated with the project.

4. Select a thread from core 0 in the Debug view.

All the views in the Debug perspective will be updated to display the debug session for the selected core.
The figure below displays the debug session for a selected thread in core 0.

Figure 62: Viewing Debug Information for Core 0

¥ Debug - board_project-core00/Sources/main.c - CodeWarrior Development Studio =2 Fcn ==
File Edit Source Refactor Mavigate Search Project Run Window Help
il |[% & & Q@ F-H-RW-8 $-0-Q%- &5~ THe oD (35 Debug ”
35 Debug 2 = B)[69= varisbles £ "% Breakpoints| O Cache | ! Registers | = Modules s B H| & |3~ =8
| Name Value Location
Pl EfS eI | BB SFEN T | = » s 0:002b4000 SGPRIL
. w0 -550038737 0,00000000003F58 Virtual
=53 9= proc_id 3735928550 0,00000000003dfbe Virtual
4[] board_project-cored0_RAM_B4560_Download [CodeWarrior] B
4 @ EPPC, boerd_preject-cored0.elf, core 0 (Suspended)
4 P Thread [ID: 0:0] (Suspendeck: Signal *Halt' received. Description: User halted thread.) |
= 2 main() main.c114 0x0000000000100194 3
= 1 _start() _start_e6500_32bit_crt0.c:264 0:x00000000001000¢0
o Ci\Users\b34823\workspace\board_project-corel0\RAM \board_project-corel0.elf (8/8/13 419 PM)
4 [] board_project-corel_RAM_B4860_Downiced [CodeWarrior]
4 &% EPRC, board_project-corelL.elf, core 1 (Suspended) ‘ m ,
4 o Thread [ID: 0:0] (Suspendeck: Signal *Halt' received. Description: User halted thread.) -
= 2 main0 main.c14 (x0000000008100194
= 1_start() _stert_e6500_32bit_crtd.c:264 0x0000000008100040
o CA\Users\b34823\workspace\board_project-corel1\RAM\board_project-corelL.elf (8/8/13 430 PM)
4[] board_project-cored2_RAM_B4860_Download [CodeWarrior] -
4 &% EPPC, board_project-cored2.lf, core 2 (Suspended) MK [
[main.c 52 = O |z Disassembly 22 “._E= Outline Enter lacation here -l uEBE Y =8
sendif N 12 R L
% 20000000PE100194: | stwu rsp,-48(rsp)
int main() 00600R0DGR1AQ198: mflr r@ S
{ 3 2OBEe8BERE18819:
~ 3 2002008000188120:
Because the interrupt vector code is shared, each three 19
its own InterruptHandeler utine in SPRG@ (SPR 272) 200E00B00B100154:
2082082082188138:
register IntHndlr* isr = InterruptHandler; 28
asm("mizer 272, ®e" i oo "rt (isr))s il 22DERRERRE1RELAC: o
« M 3 b
#3 Commander 51 T = 5B Console 3 & Tasks| [Memory| 48 Remote Systems| 18] Target Tasks| [Problems| (3 Executables| B | B GE[E[E) = B~r5~ =8
~ Project Creation ~ Build/iDebug + Settings || Do3rd_project-corell e, core0
gug Import project (Al
¥ CodeWariior Bareboard Project (Al
‘ m v)
e

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors

219

Multi-Core Debugging
Debugging Multi-Core Projects
5. Select and expand the General Purpose Registers group.
6. Select Run > Step Over.
The following actions occur:

» Debugger executes the current statement and halts at the

next statement.

» The program counter (PC) indicator moves to the next executable source line in the Source view.

* In the Debug view, the status of the program changes to (suspended).

» Modified register values are highlighted in yellow.

7. Select Window > New Window.

Another instance of the Debug perspective opens in a new window. The figure below displays multiple

instances of an active debug session.

Figure 63:

Viewing Multiple Instances of Active Debug Session

¥ CodeWarrior Bareboard Project
« m

i

» K «

[€] main.c &2

- =

&3 Commander 2%

~ Project Creation

ey Import project
¥ CodeWarrior Bareboard Project

« I b

_ ~ |[EPPC, board project-corelS.elf, core 5

¥ Debug - board_project-cored0/Seurces/main.c - CodeWarrior Development Studio = ==
File Edit Source Refactor Navigate Search Project Run Window Help
o] | K S B Q F RN B0 ™ 5 (35 Debug | B /c-+
o S
35 Debug 3 = O |[09= Variables | ® Breakpoints | O Cache |3 Registers 22 . = Modules =8
N EEe| | g lrs 7
DTS RT i R | Neme Value + | BitFields -
— an
o = .= 3% General Purpose Registers
& o m~ - = -3 10
FW O - |2 -S| | Moo
it 5P Fieki [GPR0:63]1 ~| =~ | 100000
= poan g AM_BAB60_Dow Wars it GPRZ
‘i‘ggangppcmf:;Siifif‘!i:gg{;:(;cgtu‘f::;d;‘ = it oPRS 2 Debug - board_praject-coredS/Sources/main.c - CodeWarrior Development Studio = =R ==
- o Thresd [lb‘oxﬂllis‘i:pendﬂ'” o b 1080 GPRY. File Edit Source Refactor MNovigste Search Project Run Window Help
= 0 26 i GPRS " o o
= 2 main() main.c:26 0x00000000001001 68 fitl GPS] % & SR A -HM -0~ G @ i [F5 Debug
= 1 _start(_start_e6500_32bit_crtd.c:264 000¢ i GPRS = oo
C\Users\b34823\workspace\board_project-coreQ0\F it GPRY
[£] bosrd_project-coredl_RAM_B4850_Download [Codelia oo GPRE 35 Debug 12 = O ||®= Variabl [®g Breakp | [Cache [§f}l Registe 52 » =k Module | — O
- P 1%t GPRI
EPPC, board_project-coredL.elf, core 1 (Suspended| i
& P oard_project-corell.elf, corel (Suspended) e - = ‘ 5] ,‘ e o ‘ v
q i < i _
[|7 Dokl WS 2SR Name ~ | BitFields =
[8) main.c 53 = O |[22 Disassembly 82 “._BE Outline - = .= 4 General Purpose Regists
e £ St my| = |[=2~-% = UL L Ll R 0000000000000000000000000000
g asm (“mfpic %8" : " ~ |[|» 26 wfspr r3l,spr2s6 ~ 1 GPRO =
- o] C\Users\b34823\workspace\ board_project-coredd\RAM\board_pr ~ I <p
<[Cm v [E] board_project-coredS_RAM_B4860_Download [CodeWarrior] i 5PR) Flelel [GPR[0:63] ~|= | [2810(
b " i
29 Commander ~ 7 OB Console 2 . ¥ Tasks| @ Memory @ EPPC, boerd project-corelS.elf, core 5 (Suspended) GPR3
| £9PC. board_project-corellef cored P Thread [ID: 0x0] (Suspendeck Signal 'Halt' received. Description I GpRa Actions
~ Project Creation ~ Build/D) i = 2 main(mein.c:14 0x0000000028100194 T coR
E = 2 GPRS o i
x5 Import project = 1_start() __start_e5500_32bit_crtd.c:264 0-00000000281000¢ B e Havel l%/ \M \M
- o C\Users\b34823\workspace! board._project-corelS\RAM\board_pr = i - | Description

v < [b

= Disassembly 22

Fnter Incation here
8B console 2
=

) Tasks| [Memory| 48 Remote 5| 6] Target Ta | (2 Problems| (3 Executabl

|GEEE = 2~

=0

-

5= Outline

=8

8. Select a thread from core 1 in the Debug view of the newly opened Debug - <project>window.

All the views in the Debug perspective will be updated to display the debug session for the selected core.

9. Select and expand the External Debug Registers group.
10.Select Run > Step Over.

The following actions occur:

» Debugger executes the current statement and halts at the next statement.

» The program counter (PC) indicator moves to the next executable source line in the Source view.

11.Issue several more Step Over commands and watch the register values change.

12.Select main () thread from core 0 again.

Notice that the register values remain unchanged. This is because the CodeWarrior debugger controls each

core's execution individually.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

220

NXP Semiconductors

Multi-Core Debugging
Multi-Core Debugging Commands

13.
With core 0 still selected, click the Step Over j button several times until you reach the printf ()

statement.
Debugger executes the current statement, the following statements, and halts at the printf () statement.
14 Switch to the other debug window.

15.Select the main () thread for core 1 by clicking it. Notice that the program counter icon in the Source view
did not move. The debugger controls the execution of each core individually.

16

In the Debug view, click the Resume O

button.
Core 1 enters an infinite loop. The status of the program changes to (Running).

17.

In the Debug view, click the main () thread for core 0 and click the Resume L g

button.
Core 0 enters an infinite loop and core 1 continues to execute in its loop.

18.
Select main () thread from core 1 and click the Suspend

button.

The debugger halts core 1 at the current statement and the status of the program changes to (Halted). Core
0 continues to execute.

19.Select Run > Multicore Terminate.

The debugger terminates the active debug session. The threads associated with each core in the Debug view
disappear.

6.2 Multi-Core Debugging Commands

This section describes the multi-core commands available in the Run menu of CodeWarrior IDE and in the
Debugger Shell.

If you are debugging a multi-core project, you can use single and multi-core debugging commands to debug
parts of each core project.

This section contains the following subsections:
* Multi-Core Commands in CodeWarrior IDE on page 221
* Multi-Core Commands in Debugger Shell on page 222

6.2.1 Multi-Core Commands in CodeWarrior IDE

This section describes the multi-core commands in the CodeWarrior IDE.

When you start a multi-core debug session, multi-core commands are enabled on the CodeWarrior IDE Run
menu. These commands, when issued, affect all cores simultaneously. The table below describes each menu
choice. For detailed information on these commands, see CodeWarrior Development Studio Common Features
Guide.

Table 125: Multi-Core Debugging Commands

Command Icon Description

Multicore Resume) Starts all cores of a multi-core system running simultaneously.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 221

Multi-Core Debugging
Multi-Core Debugging Commands

Table 125: Multi-Core Debugging Commands (continued)

Command Icon Description

Multicore Suspend] Stops execution of all cores of a multi-core system
simultaneously.

Multicore Restart _m Restarts all the debug sessions for all cores of a multi-core
. system simultaneously.

Multicore Terminate ﬂ' Kills all the debug sessions for all cores of a multi-core system
simultaneously.

Multicore Groups m - Use All Cores: If the selected debug context is a multi-core
system, then all cores are used for multi-core operations.

Disable Halt Groups: Disables breakpoint halt groups. For more
information on halt groups, see "Multicore Breakpoint Halt
Groups" in CodeWarrior Development Studio Common Features
Guide.

Limit new breakpoints to current group: If selected, all new
breakpoints set during a debug session are reproduced only on
cores belonging to the group of the core on which the breakpoint
is set.

Edit Target Types: Opens Target Types dialog that lets you add
and remove system types.

Edit Multicore Groups: Opens the Multicore Groups dialog to
create multi-core groups. You can also use this option to modify
the existing multi-core groups.

NOTE
For more information about creating/modifying multi-core groups, or editing target type,
see "Multicore Groups" in CodeWarrior Development Studio Common Features Guide.
To use the multi-core commands from the Debug perspective, follow these steps:
1. Start a debugging session by selecting the appropriately configured launch configuration.

2. If necessary, expand the desired core's list of active threads by clicking on the tree control in the Debug
view.

3. Click the thread you want to use with multi-core operations.

4. From the Run menu, specify the multi-core operation to perform on the thread.

NOTE
The keyboard shortcut for the Multicore Resume operation is Alt+Shift+F8.

6.2.2 Multi-Core Commands in Debugger Shell

This section describes the multi-core commands in debugger shell.

In addition to the multicore-specific toolbar buttons and menu commands available in the Debug view, the
Debugger Shell has multi-core specific commands that can control the operation of one or more processor cores
at the same time. Like the menu commands, the multi-core debugger shell commands allow you to select, start,
and stop a specific core. You can also restart or kill sessions executing on a particular core. The table below
lists and defines the affect of each multi-core debugging command.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
222 NXP Semiconductors

Multi-Core Debugging
Multi-Core Debugging Commands

Table 126: Multi-Core Debugging Commands

Command

Shortcut

Description

mc::config

mc::go

mc::group

mc::.C

mc::g

mc::gr

List or edit multicore group options.
Syntax

mc: :config

Resume multiple cores

Syntax

mc: :go

Examples

mc: :go

Resumes the selected cores associated with the current thread
context.

Display or edit multicore groups

Syntax

group group new <type-name> [<name>] group rename
<name> | <group-index> <new-name->group remove <names |

<group-index> ... group removeall group enable|
disable <index> ...J|all
Examples

mc: :group

Shows the defined groups, including indices for use in the
mc: :group rename|enable|remove Set of commands.

mc: :group new 8572

Creates a new group for system type 8572. The group name will
be based on the system name and will be unique. The enablement
of the group elements will be all non-cores enabled, all cores
disabled.

mc: :group rename 0 "My Group Name"
Renames the group at index 0 to "My Group Name".
mc::group enable 0 0.0

Enables the group at index 0 and the element at index 0.0 of the
mc : :group command.

mc: :group remove "My Group Name"
Removes the group named "My Group Name".
mc::group removeall

Removes all groups.

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

223

Multi-Core Debugging

Multi-Core Debugging Commands

Table 126: Multi-Core Debugging Commands (continued)

Command

Shortcut

Description

mc::kill

mc::reset

mc::restart

mc::stop

mc::kill

mc::reset

mc::restart

mc::stop

Table continues on the next page...

Terminates the debug session for selected cores associated with
the current thread context.

Syntax

mc::kill
Examples
mc::kill

Terminates multiple cores.

Resets multiple cores.

Syntax

mc: :reset

Restarts the debug session for selected cores associated with the
current thread context.

Syntax

mc: :restart

Examples

mc: :restart

Restarts multiple cores.

Stops the selected cores associated with the current thread
context.

Syntax

mc: :stop

Examples

mc: :stop

Suspends multiple cores.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

224

NXP Semiconductors

Multi-Core Debugging
Multi-Core Debugging Commands

Table 126: Multi-Core Debugging Commands (continued)

Command

Shortcut

Description

mc::type

mc::t

Shows the system types available for multicore debugging as well
as type indices for use by the mc: : type remove and mc: :group
new commands.

Syntax

type type import <filenames> type remove <filenames
<type-index> ... type removeall

Examples

mc: :type

Display or edit system types.

mc::type import 8572 jtag.txt

Creates a new type from the JTAG configuration file.
mc: :type remove 8572 jtag.txt

Removes the type imported from the specified file.
mc: :type removeall

Removes all imported types.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

225

V¥ ¢
i

Multi-Core Debugging
Multi-Core Debugging Commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
226 NXP Semiconductors

Debugging Embedded Linux Software
Debugging a Linux Application

Chapter 7
Debugging Embedded Linux Software

This chapter explains how to use the CodeWarrior Development Studio tools to debug embedded Linux®
software for Power Architecture® processors.

This chapter documents debugger featurr\le(z-[:at are specific to the CodeWarrior for
Power Architecture Processors product. For more information on debugger features that
are in all CodeWarrior products, see CodeWarrior Development Studio Common
Features Guide from the <CWInstallDir>\PA\Help\PDF\ folder.

This chapter includes the following sections:

» Debugging a Linux Application on page 227

* Viewing multiple processes and threads on page 236

» Debugging applications that use fork() and exec() system calls on page 237

» Debugging a shared library on page 247

» Preparing U-Boot for debugging on page 255

» Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices on page 262

» Debugging the Linux Kernel on page 283

» Debugging Loadable Kernel Modules on page 307

» Debugging Hypervisor Guest Applications on page 312

* Debugging the P4080 Embedded Hypervisor on page 320

» User Space Debugging with On-Chip Debug on page 329

7.1 Debugging a Linux Application

This section describes CodeWarrior Target-Resident Kernel (TRK) and provides information related to using it
with CodeWarrior projects.

Forembedded Linux development, CodeWarrior TRK is a user-level application that resides on target embedded
Linux systems and accepts connections from the CodeWarrior debugger. You use the CodeWarrior remote
connections feature to download and debug applications built with CodeWarrior projects. The CodeWarrior
debugger connects to CodeWarrior TRK on the remote target system through a serial or ethernet connection.

On embedded Linux systems, CodeWarrior TRK is packaged as a regular Linux application, named apptrk.
This application runs on the remote target system along side the program you are debugging to provide
application-level debug services to the CodeWarrior debugger.

To debug a Linux application using CodeWarrior TRK:
* Install CodeWarrior TRK on Target System on page 228

Start CodeWarrior TRK on Target System on page 228

Create a CodeWarrior Download Launch Configuration for the Linux Application on page 230

Specify Console 1/0 Redirections for the Linux Application on page 233

Debug the Linux Application on page 236

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 227

Debugging Embedded Linux Software
Debugging a Linux Application

7.1.1 Install CodeWarrior TRK on Target System

This section talks about installation of CodeWarrior TRK on target system.

To connect the CodeWarrior debugger to CodeWarrior TRK, the CodeWarrior TRK binary executable file must
be installed and running on the remote target system. When CodeWarrior TRK starts running on the target
system, the debugger can upload your application and debug the application on the target system.

NOTE
If CodeWarrior TRK is not present on a given target system, you need to use a file
transfer facility, such as Secure Copy (SCP) or File Transfer Protocol (FTP) to download
the CodeWarrior TRK binary executable file, AppTRK . el £, to a suitable location on the
file system of the target system. You also need to place the unstripped versions of the
1d.so, libpthread.so, and libthread db.so files in the /1ib directory of the
target system to debug shared library code or multi-threaded code with CodeWarrior
TRK.

7.1.2 Start CodeWarrior TRK on Target System

This section explains how to start CodeWarrior TRK on target system.

How you start CodeWarrior TRK on the target hardware depends on the type of connection between the host
computer and that target hardware:

» Transmission Control Protocol / Internet Protocol (TCP/IP): The host computer communicates with the
target hardware over a TCP/IP connection

« Serial cable: A serial cable connecting the host computer to the target hardware

CodeWarrior TRK can be started as either a root user or a normal user; however, if the application to be
debugged requires root permission, then you need to start CodeWarrior TRK as a root user. In other words,
CodeWarrior TRK must have all the privileges required by the application that it will debug. You also need to
ensure that the download directory specified in the Remote tab of the launch configuration matches the user
privileges of the CodeWarrior TRK running on the target system.

This section contains the following subsections:
» TCP/IP Connections on page 228

« Serial Connections on page 229

7.1.2.1 TCP/IP Connections

This section explains how to start CodeWarrior TRK using a TCP/IP connection.
To start CodeWarrior TRK through a TCP/IP connection:
1. Connect to the remote target system.
a. On the host computer, open a new terminal window.
b. At the command prompt in the terminal window, enter the following command, where IPAddress
represents the target system's IP address:

telnet IPAddress

The telnet client connects to the telnet daemon on the target system.
2. Navigate to the directory that contains the appTRK. el f binary executable file.

The system changes the current working directory.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
228 NXP Semiconductors

Debugging Embedded Linux Software
Debugging a Linux Application

3. Type the following command (where Portis the listening port number optionally specified in the
Connections panel of Debug window- typically 1000):

./BppTRK.elf :Port

CodeWarrior TRK starts on the target system, and listens to the specified TCP/IP port for connections from
the CodeWarrior IDE.

TIP
To continue use of the terminal session after launching CodeWarrior TRK, start
CodeWarrior TRK as a background process by appending the ampersand symbol (&)
to the launch command. For example, to start CodeWarrior TRK as a background
process listening to TCP/IP port number 6969, you would enter the following command:

./BppTRK.elf :6969 &

7.1.2.2 Serial Connections

This section explains how to launch CodeWarrior TRK using a serial connection.

To launch CodeWarrior TRK through a serial connection:

TIP
To improve your debugging experience, we recommend the host computer running the
IDE have two serial ports. In an ideal scenario, you would connect one serial port of the
host computer to the first serial port of the target board to monitor startup and console
log messages. You would then connect another serial port of the host computer to the
second serial port of the target board; the debugger would use this connection to
communicate with CodeWarrior TRK on the target system.

1. Connect a serial cable between the host computer's serial port and the second serial port of the target
system.
2. On the host computer, start a terminal emulation program (such as minicom).

3. Configure the terminal emulation program with baud rate, stop bit, parity, and handshake settings
appropriate for the target system.

4. Connect the terminal emulator to the target system.
A command prompt appears in the terminal emulation program.
5. Boot the system. Log in as the root user.

6. Use the cd command at the command prompt to navigate to the directory where the CodeWarrior TRK
binary executable file, 2ppTRK. elf, resides on the target system.

The system changes the current working directory.
7. Configure the serial port on which CodeWarrior TRK is going to connect.
a. Enter this command: stty -F /dev/ttySl raw

This command configures the serial port for raw mode of operation. If you do not use raw mode, special
characters sent as part of packets may be interpreted (dropped), causing the connection to break.

b. Enter this command: stty -F /dev/ttySl ispeed 115200
The serial input speed is set to 115200 baud.

c. Enter this command: stty -F /dev/ttyS1l ospeed 115200

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 229

|
y

'
A

Debugging Embedded Linux Software

Debugging a Linux Application

8.

7.

The serial output speed is set to 115200 baud.
d. Enter this command: stty -F /dev/ttySl crtscts

The terminal emulation program enables handshake mode
e. Enter this command: stty -a -F /dev/ttySs1

The system displays the current device settings.
Enter the command: . /appTRK.elf /dev/ttySil

CodeWarrior TRK launches on the remote target system.

1.3 Create a CodeWarrior Download Launch Configuration for the
Linux Application

This section explains how to create a CodeWarrior download launch configuration for debugging a Linux
application on target system.

To
1.

create a CodeWarrior download launch configuration, perform the following steps:

In the CodeWarrior Projects view of the C/C++ perspective, select the name of the project that builds the
Linux application.

Select Run > Debug Configurations.

The Debug Configurations dialog appears.

3. Select CodeWarrior on the left-hand side of the Debug Configurations dialog.

Click the New launch configuration toolbar button of the Debug Configurations dialog.

The IDE creates a new launch configuration under the CodeWarrior group. The settings pages for this new
launch configuration appear on the right-hand side of the Debug Configurations dialog.

In the Main tab of the Debug Configuration dialog:
a. Select Download from the Debug session type group.
b. Click New next to the Connection drop-down list.

The New Connection wizard appears.

Expand the CodeWarrior Application Debugging group and select Linux AppTRK, as shown in the figure
below.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

230

NXP Semiconductors

g |

7. Click Next.

Debugging Embedded Linux Software
Debugging a Linux Application

Figure 64: Remote System - New Connection Wizard

£
.

Mew Connection
Select Remote System Type
Connection configuration For a Linux Earget running the AppTRE debug agent., :H:

System bype:

| type filter text |

=1 [= Codevwarriar Application Debugging
S. 8 | inux AppTRE
[CodeWarrior Barebnard Debuaging

:
@

The Linux AppTRK page appears.

below).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

. Specify the connection name, description, template and connection type on this page.

. When you select the connection type, the corresponding Connection tab appears (shown in the figure

NXP Semiconductors

231

Debugging Embedded Linux Software
Debugging a Linux Application

Figure 65: Remote Linux AppTRK System Connection Page

&3]
a

Mew Connection

Linux AppTRK

Connection configuration For a Linuw target running the AppTRE debug agent.

Parent profile: B34930-01 w
Marne: Lirw:x AppTRE

Description:

Template: Maone v

Connection type: | Ethernet w

Connection | advanced
Ethernet settings
Hostname/IP: | 10.62.176.1

Part number: | 12345

[JEnable logging

':?:' I Firiish H Cancel]

10.Specify the settings as appropriate for the connection between the host computer and the target hardware
on this page.

11.Click Finish.

The new remote system that you just created appears in the Connection drop-down list.
12.Click the Debugger tab.

The Debugger options panel appears with the respective tabs.

13.0n the Debug tab, if required, specify a function or address in the application where you want the program
control to stop first in the debug session:

a. Select the Stop on startup at checkbox.
The IDE enables the corresponding text box.
b. Enter in the text box an address or a function inside the application.
14.Click the Remote tab.
The corresponding sub-page comes forward.

15.Enter in the Remote download path text box the path of a target-computer directory to which the Linux
application, running on the target hardware, can read and write files.

NOTE
The specified directory must exist on the target system.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
232 NXP Semiconductors

Debugging Embedded Linux Software
Debugging a Linux Application

16.If required, specify information about other executable files to debug in addition to the Linux application:
a. Click the Other Executables tab.
The corresponding sub-page appears.
b. Use the sub-page settings to specify information about each executable file.
17 Click Apply.
The IDE saves the pending changes you made to the launch configuration.

You just finished creating a CodeWarrior download launch configuration that you can use to debug the Linux
application.

7.1.4 Specify Console I/O Redirections for the Linux Application

CodeWarrior TRK allows you to specify 1/O redirections as arguments for applications to be debugged.

This feature allows users to use a file on the target or even the target console for file descriptors, including stdin,
stdout, and stderr. By default, the CodeWarrior TRK running on the target forwards the output of the
application to the host CodeWarrior. The host CodeWarrior will be able to print the received output only if the
Allocate Console (necessary for input) checkbox is selected in the Common tab of the Debug Configurations
dialog.

NOTE
The CodeWarrior console, allocated for the debugged application, can only be used to
view the output of the application running on the target; forwarding the input from a
CodeWarrior console to the debugged application is not supported currently for Linux
applications.

The listing below displays the syntax to specify I/O redirections for the stdin, stdout, and stderr file
descriptors.

Figure 66: Specifying I/0O Redirections

- '< <filename>' - stdin redirection from <filename>
- '> <filename>' - stdout redirection to <filename>
- '2> <filename>' - stderr redirection to <filename>

To specify I/O redirections for a Linux application:

1. In the CodeWarrior Projects view of the C/C++ perspective, select the name of the project that builds the
Linux application.

2. Select Run > Debug Configurations.
The Debug Configurations dialog appears.
3. Expand CodeWarrior group and select the launch configuration associated with the project.

The settings pages for the selected launch configuration appears on the right-hand side of the Debug
Configurations dialog.

4. Click the Arguments tab.
5. Specify the 1/O redirections in the Program arguments text box.
6. Click Apply to save the changes.

The listing below displays an example of redirections, added to the list of arguments, to forward the output to
the console where CodeWarrior TRK was started.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 233

|
y

'
A

Debugging Embedded Linux Software
Debugging a Linux Application

Figure 67: Sample I/O Redirections

- '< /proc/self/fd/0' -> use target console for stdin (this way, stdin
is functional and can be used - using a CW console it isn't)

- '> /proc/self/fd/1' -> use target console for stdout

- '2> /proc/self/fd/2' -> use target console for stderr

7.1.5 Configure Linux Process Signal Policy

This section explains how to control applications being debugged using signals and how to manage signals,
using CodeWarrior IDE.

AppTRK and CodeWarrior can be configured to stop the application being debugged, whenever the application
receives a signal. A user can send signals to the application directly from CodeWarrior, when the application
resumes execution. To send a signal to an application, right-click the signal name in the Signals view and select
Resume With Signal from the context menu that appears.

This section contains the following subsections:

« Signal Inheritance on page 234

+ Default Signal Policy on page 234

» Modifying Signal Policy on page 234

7.1.5.1 Signal Inheritance

When a new process is forked, it inherits the signal settings from the parent process.

For example, if a process has a setting that if the SIGUSR1 signal is received, the application being debugged
will be stopped, then a child process forked by this process will also inherit this setting. It will stop the application
being debugged if the SIGUSR1 signal is received.

All the threads created by a process share the signal settings of that process. Signal settings cannot be
configured at thread level.

7.1.5.2 Default Signal Policy
By default, the SIGINT, SIGILL, SIGTRAP, SIGSTOP, and SIGSEGYV signals are caught by the debugger.The
debugger stops the application being debugged if any of these signals is received.

7.1.5.3 Modifying Signal Policy

CodeWarrior IDE provides a view, Signals, which can be used to view signals and change the debugger's
policy for a signal.

To open the Signals view, perform the following steps:

1. Select Window > Show View > Other in the CodeWarrior IDE.
The Show View dialog appears.

2. Select Debug > Signals.

The Signals view appears, as shown in the figure below.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
234 NXP Semiconductors

Debugging Embedded Linux Software
Debugging a Linux Application

Figure 68: Signals View

9= Variables | ®g Breakpoints | [J Cache | ¥ Registers | 2k Medules | 5 Signals &2

5+ SIGHUP
5% SIGINT
e SIGQUIT
e SIGILL
5% SIGTRAP
5+ SIGABRT
5+ SIGBUS
5% SIGFPE
5o SIGKILL
5+ SIGUSR1
5+ SIGSEGY

To send a signal to a stopped process or thread, right-click the signal in the Signals view and select Resume
With Signal, as shown in the figure below.

Figure 69: Sending a Signal to a Process or Thread

5+ SIGUSR1
=, SIGSEGV Signal Properties..,
5% SIGUSR2 | 5. Resume With Signal

To catch a signal, perform the following steps:
1. Right-click the signal in the Signals view and select Signal Properties.
The Properties for window appears (shown in the figure below).
2. Select the Suspend the program when this signal happens checkbox, as shown in the figure below.
Figure 70: Catching a Signal

¥ 5
Sﬁi Properties for l =] e
t}"FEf”tEI'tEXt Common hd - w

Common
Process Information Description: User-defined signal 1.

Pass this signal to the program.

¥|Suspend the program when this signal happens.

The figure below shows a child process stopped on receiving the SIGUSR1 signal.
Figure 71: A Stopped Child Process

4 E Faork_Linux_Debug_Download [CodeWarrior]

Fi EPPC Linux Applications, Fork.elf, PID 2653

2 Thread [ID: 0] (Running)
Fi EPPC Linux Applications, Fork.elf, PID 2654 (Suspended)
4 g Thread [ID: 0] (Suspended: Signal 'Exception 10 received. Description: PowerPC Exception:

4 main() Fork.c:54 0:10000710
3 0:0FESE36C ((DFESESEC)]) Oxdfefelbe
2 (0FEQE4FE (Dx0FEQE4FE)() Dxdfededfs

Some signals cannot be caught, but they can be passed to the debugged application. These signals have read-
only properties. One such signal is SIGKILL.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 235

Debugging Embedded Linux Software
Viewing multiple processes and threads

7.1.6 Debug the Linux Application

You can use the CodeWarrior download launch configuration created earlier to debug the Linux application on
the target system.

To debug the Linux application, perform the following steps:

1. On the left-hand side of the Debug Configurations dialog, ensure to select the CodeWarrior download
launch configuration that you created to debug the Linux application.

2. Click Debug in the Debug Configurations dialog.

The IDE uses the selected CodeWarrior download launch configuration to start a debug session and opens
the Debug view, as shown in the figure below.

Figure 72: Debug View - A Sample Linux Application

%% Debug 53 G5]2 = L I s i= ¥ =08

= E AppDbg - Application Debug - Debug [CodeWarrior Download]
= CodeWarrior Debugaer for EPPC Linux Applications (4/17/08 2:43 PM) (Suspended)
=7 Thread [ID: 0x0] (Suspended: Signal 'Halt' received. Description: User halted thread.)

= 4main() D:\Profilesib 14446 \WiKS \AppDba\Source Ymain. c:6 0x 10000554

3 Ox0FEBO1CS (OxOFEBO1CE)() Ox0febO1c4

2 Ox0FEB0343 (0x0FEBO348)() 0x0febl348

1 0x00000000 {Dx00000000)() 0x00000000

gl D:'Profiles\b 14446 \WKS\AppOba\Application Release\AppDbyg (4/17/08 2:43 PM)

You just finished using the CodeWarrior download launch configuration to debug a Linux application.

7.2 Viewing multiple processes and threads

This section explains how to view all processes and threads on a target.

When you debug an application, the CodeWarrior debugger opens the Debug view. In this view, you can see
only processes and threads/tasks on which debugger is attached, as shown in the figure below.

Figure 73: Debug view - processes and threads

%5 Debug &7 G5 9 Ok = R i= ¥ =0
= EPPC Linux Applications, SharedLib_IM.elf, PID 1000 (Suspended) -~

=)o Thread [ID: 0] (Suspended)
=6 add_example_local() D:\Profiles\b 14446 \Uboot\SharedLibrary\Source \LibExample. c: 28 Dx0ffdf!
5 add_example() D:\Profilesib 14446\ Uboot\SharedLibrary\Source\LibExample. c: 20 0x0ffdf4f
4 main() D:Profiles'b 14446 Uboot\SharedLibrary\Source\SharedLib_IM.c:30 0x 10001514
3 0x0FESEL1CS (0n0FESELC)(]) OxOfedelcd
2 Ox0FEBE348 (Ox0FEBE348)() Ox0fede34d
1 0x00000000 {(0x00000000)() 0x00000000
»| D:\Profiles\b14446\Uboot\SharedLibrary'\SharedLib_IM\SharedLib_IM.elf (8/6/08 10:48 AM) w
< >

For Linux debugging, you can view all processes on a target in the System Browser view.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
236 NXP Semiconductors

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

To view processes and threads in System Browser view:

1. Open a Linux application in the CodeWarrior IDE.

2. Select Run > Debug.

The Debug perspective appears.

3. While the application is running, select Window > Show View > Other.

The Show View dialog appears.

4. From the Debug group, select System Browser.

5. Click OK.

The System Browser view appears with the process and thread information (shown in the figure below).

BIF|

Liru

Process & Threads

Figure 74: System Browser view

L
CodeWarrior Debugger for EPPC Linux Applications (4/18/08 10:49 AM)

MName D Status
AppDbg 927> 927
appirk 926> R 926
appirk £922=5 922
sh <921> Sleep 921
telnetd <920= £ 920
sh <853 = Sleep 853
portmap <849= 849
inetd <846 Sle 846
Kogd <824 Sle 824
syslogd <822> 822
init <1 Sleepin 1

TR EEEEEEEE

7.3 Debugging applications that use fork() and exec() system

calls

This section describes how to use the CodeWarrior debugger to debug programs that contain fork () and
exec () system calls.

The table below describes the fork () and exec () system calls.

Table 127: fork() and exec() Description

System Call Description

fork () This generic Linux system call creates a new process that is the exact replica
of the process that creates it. This call returns 0 to the child process and
returns the PID (Process ID) of the newly-created child process to the parent
process.

exec () This Linux system call launches a new executable in an already running

process. The debugger destroys the instance of the previous executable
loaded into that address space and a new instance is created.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

237

|
y

'
A

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

NOTE
You can also pick up sample Linux applications from the following folder:

<CWInstallDir>\PA\CodeWarrior Examples\Linux Examples

For CodeWarrior debugging purposes, when applications call the fork () system call, the debugger instead calls
the clone () system call with the flag cLoNE_pPTRACE. This causes:

» The operating system to attach CodeWarrior TRK to the child process
» The child process to stop with a sTGTrRAP on return from the clone () system call

To make this happen, you must add a static library to your CodeWarrior project. The source code for building
the static library is described later in this section.

Before you start following the steps given in this section, ensure that you have:

* Installed the BSP on Linux

+ Created a TCP/IP connection between the host computer and the remote target
* Launched CodeWarrior TRK on the target system

These steps demonstrate how to use the CodeWarrior IDE to debug programs that contain fork () and exec ()
system calls:

1. Create a CodeWarrior project with the settings listed in the table below.

Table 128: Static Library Project Settings

Option Name Value

Project name Fork

Location <workspace-dirs\Fork
Project type Linux application
Language C

The IDE creates a project with a debug launch configuration.

2. Create a new build configuration. Right-click on the project folder and select Build Configurations >
Manage.

The Fork: Manage Configurations dialog appears.
3. Rename the default debug configuration to Fork.
4. Click New to create a new build configuration.
The Create New Configuration dialog appears.
5. In the Name field, enter the configuration name, Fork2clone.
6. From the Copy settings from options, select Existing configuration.

7. Click OK. The Fork: Manage Configurations dialog appears (shown in the figure below).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
238 NXP Semiconductors

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

Figure 75: Fork: Manage Configurations Dialog Box

= 5|
Configuration Description Status
Fork Fork functionality Active
Fork2done ForkZdaone impleme. ..
Set Active] [New...] [Remave] [Rename]
I 0K l [Cancel]

8. Activate the Fork2clone build configuration.

9. Build the Fork2clone build configuration by right-clicking it in the CodeWarrior Projects view and selecting
Build Project from the context menu. The CodeWarrior IDE builds the project and stores the support
library, 1ibfork2clone.a, in the Oulput directory within the project directory.

NOTE
Remember to build the Fork2clone build configuration before the Fork build
configuration to avoid getting a library file missing error as the 1ibfork2clone.a is
used in the Fork project.
10.To specify the linker settings and add the support library to the project.
a. Right-click the Fork build configuration in the CodeWarrior Projects view.
. Select Properties from the context menu. The Properties window for the shared library project appears.
. From the C/C++ Build group, select Settings.

b
c
d. On the Tool Settings page, from the Power ELF Linker container, select Libraries.
e

" In the Libraries (-I) panel, click Add (=]). The Enter Value dialog appears.

f. Enter the library file name in the Libraries field.

In the Libraries search path (-L) panel, click Add (€l). The Add directory path dialog appears.

h. Enter the library path in the Directory field, as shown in the figure below.

NOTE
These settings enable the CodeWarrior IDE linker to locate the shared library
libfork2clone.a. For detailed information on other linker command line arguments,
see GNU linker manuals. You can find GNU documentation here: http://www.gnu.org.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 239

http://www.gnu.org

b

Debugging Embedded Linux Software

Debugging applications that use fork() and exec() system calls

Figure 76: Libraries Linker Settings - Fork Project

2 Properties for, Fork-core0

| | Settings

P v
Resource
Builders
[=h CfC++ Build Euild configuration: |FUrk V| [Manage Configurations. ..
Euild Yariables
Discovery COptions
Enviranment WA 1 oo
Logging B Taal Settings |.ﬁ‘ Bulld Steps Build Artifack Einary Parsers | € Error Parsers | Bulld Tool versions
Settings . -
Toal Chain Editor @ Architecture Librartes (1) € & & i
(=84 Power ELF Linker
CiC++ General Farkzdone
(22 General
Froject References 4
B3 | ibrati
Run/Debug Settings (25 Libraries

(£ Miscellaneaus

@ Shared Library Settings

@ Power Environment
(=58 Power ELF Compiler

@ Preprocessor

@ Symbols

@ Includes

@ Optirnization

@ Debugging

@ Warnings

(£ Miscellaneaus

s

=% %wz;::fa?ssembler Library search path {-L) {!a |D @ I@ |
= Q\S Power ELF Preprocessor
@ Preprocessar Settings
= Power ELF Disassembler
@ Disassermbler Settings

"${workspace_loc:/ForkfFork2clone} "

[Restnre Defaults] [Apply]

@

11.Remove the default main. c file from the project.
12.Add a new db_fork.c file to the project.

13.Enter the below code in the editor window of db_fork. c file.

Figure 77: Source Code for db_fork.c

*/
#include "db_ fork.h"
/*

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
240

NXP Semiconductors

Debugging Embedded Linux Software

Debugging applications that use fork() and exec() system calls

int libc_ fork(void)

{

return(_ db fork());

}

extern typeof (libc fork) fork attribute ((weak, alias
(" _libc_ fork")));

extern typeof (1libc fork) fork attribute ((weak, alias
(" libc_fork"))) ;

14 Create a header file db_fork.h in your project directory and add the below code in the header file.

Figure 78: Source Code for db_fork.h

#include <asm/unistd.h>

#include <sys/syscall.h>

#include <errno.h>

#include <signal.h>

#include <sched.h>

#define @ NR db clone NR clone

#define db fork()

syscall(_ NR db clone, SIGCHLD | CLONE PTRACE, 0);

15.Enter the below code in the editor window of fork. c file.

Figure 79: Source Code for fork.c
/*
/ *

* fork.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#include <sys/ptrace.h>

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

241

V¥ ¢
i

Debugging Embedded Linux Software

Debugging applications that use fork() and exec() system calls

#include <sys/errno.h>
#include <sys/types.h>
#include <signal.h>
#include <sched.h>
#include <fcntl.h>

#include <dlfcn.h>

int fnl (int j);

int fn2(int 1);

K o el */
int gint;
/* __ *

int main(void)
{
int pid,x;
int shared local;
printf ("Fork Testing!\r\n");
fflush(stdout);
gint = 5;
shared local =5;
pid = fork() ;

if (pid == 0)

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

242

NXP Semiconductors

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

gint = 10;

shared local = fnl(9);

printf ("\nForked : Child");

printf ("\nChild:Global=%d, Shared Local=%d",gint, shared local) ;
printf ("\nChild pid = %d, parent pid =%d \n", getpid(),getppid()) ;

fflush(stdout) ;

else

x=0;

gint = 12;

shared local = fn2(11);

printf ("\nForked : Parent");

printf ("\nParent:Global=%d, Shared Local=%d",gint,shared local) ;

printf ("\nParent pid = %d, Parent's parent pid =%d \n",
getpid() ,getppid()) ;

fflush(stdout) ;

return O;
}
int fnl (int j)
{

J++;

return j;
}
int fn2 (int 1)
{

i++;

return 1i;

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 243

V¥ ¢
i

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

}

The code of the parent process creates a forked process (child process) when the db fork function
executes. The debugger opens a separate thread window for the child process. When the child process
finishes executing, the debugger closes the thread window. To debug the code of the child process, you need
to set a breakpoint in the child process code. You can debug the code of the child process the same way you
debug code of any other process.

16.Create another project, Exec, and create two new build configurations with the following settings:

Table 129: Exec Example Project Settings

Option Name Value
Project name Exec
Location <workspace-dir>\Exec
Project type Linux application
Language C
Build configurations . Exec

* Exec-1

17 Add the source files exec.c and exec-1.c tothe Exec project.
* exec.c: The code demonstrating exec () functionality
* exec-1.c: Generates the executable file exec-1.elf

As you step through the code of the exec . e1f file, the exec () function call executes and a separate debugger
window for the exec-1.elf appears. You can perform normal debug operations in this window. The debugger
destroys the instance of the previous file (exec.elf) and creates a new instance for the exec-1.e1f file.

18.Enter the below code in the editor window of Exec. c file.

Figure 80: Source Code for Exec.c

/** Exec.c
*

* Demonstrates Exec system call functionality
2/
/* __ *
System Include files
K o o e e e e e e e e e e = = */

#include <stdio.h>
#include <unistd.h>

/* __ *
Constant Defintions

K o e e e */

#define EXEC 1 "/tmp/Exec-1.elf"

/* __ *
Main Program

K o el mmm o */

int main (void)

{

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
244 NXP Semiconductors

Debugging Embedded Linux Software

Debugging applications that use fork() and exec() system calls

char *argv[2];

printf ("Exec Testing!\r\n");

printf ("Before exec my ID is %d\n",getpid());
printf ("My parent process's ID is %d\n",getppid()) ;
fflush(stdout);

/*Calling another program exec-1.elf*/
argv[0] = EXEC 1;

argv[1] NULL;

printf ("exec starts\n") ;

execv (argv [0] ,argv) ;

printf ("This will not print\n");
fflush(stdout) ;

return O;

}

19.Enter the below code in the editor window of Exec-1. c file.

Figure 81: Source Code for Exec-1.c

/** Exec-1l.c *
Demonstrates Exec system call functionality */

/* ___ *
System Include files
K o e e — */

#include <stdio.h>
#include <unistd.h>

K m e e e *
Main Program
Bococoomccco oo e oo oo mEE oo E O oo o o o D0 o o 0 0 0 0 3 0 0 1) (o 6 (£) £ £ £ 0 2 £ £ £ £ e e */

int main(void) {
printf ("After exec my process ID is %d\n",getpid()) ;
printf ("My parent process's ID is %d\n",getppid()) ;
printf ("exec ends\n") ;
fflush(stdout);

return 0;

}

20.Create the build configurations for building Exec.elf and Exec-1.elf£ (similar to creating the build

configurations for the Fork project).
21.Build Exec project.
a. Select the Exec build configuration, if not selected.

b. Select Project > Build Project.

The CodeWarrior IDE generates the exec.elf, and exec-1.elf executable files and places them in the

project folder.

22 Specify the remote download path of the executable files to be launched by the exec () system call.

a. Select Run > Debug Configurations to open the Debug Configurations dialog.
. In the left panel from the CodeWarrior group, select the Exec launch configuration.

b
c. On the Debugger page, click the Remote tab.
d

. Type /tmp in the Remote Download Path field, as shown in the figure below. This specifies that the final

executable file will be downloaded to this location on the target platform for debugging.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

245

'
4\

Debugging Embedded Linux Software

Debugging applications that use fork() and exec() system calls

NOTE
Figure 82:

may specify an alternate remote download path for the executable file.
] Main | 9= Arguments | %5 Debugger
Debugger options

ftmp

a. Click the Other Executables tab.
b.

o

—h

Click Add. The Debug Other Executable dialog appears.
Click File System. The Open dialog appears.

Select the exec-1.elf file name.

7 @

23.Specify the host-side location of the executable files to be launched by the exec () system call.
c
d.

Navigate to the location of the exec-1.e1f file in your project directory.

Select the Load Symbols checkbox.

j-

Click Open. The host-side location of exec-1.elf appears in the Additional Executable File text box.
NOTE

a

Select the Download to Device checkbox. The Specify the remote download path field is activated.
Download to Device checkbox.
Click OK. The settings are saved.

b

If you do not want to download the selected file on the target platform, do not select the
when you debug or run the executable file.
25.Set breakpoints in the child and parent processes.

Cc

. Double-click the fork. c file name in the CodeWarrior Projects view.
. Set a breakpoint in the code of the child process at this line: x=0;
d. Close the fork.c file.

Type /tmp in the Remote download path text box. The shared library will be downloaded to this location
24 Click Apply to save the settings made to the launch configuration.

. Set a breakpoint in the code of the parent process.
26.Select Run > Debug.

libfork2clone.a files are downloaded on the target system.
246

The debugger window appears and the Fork project starts debugging. As a result, the Fork.elf and

27 .Step over the code until you reach the line of code that calls the fork () system call: pid
normal debugging operations in this window.

fork

0;
When the fork () system call is called, the child process debugger window appears. You can now perform

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

In the current example, the remote download path is specified as /tmp. If you wish, you

Remote Download Path - Shared Library Project
Debug | Remote | Other Executables | Symbolics
Remote download path

= Trace and Profile| & Source | B Environment| E Commeon

Debugging Embedded Linux Software
Debugging a shared library
28.Step over the code in the child process debugger window a couple of times.

29.Next, step over the code in the parent process debugger window a couple of times.

The console window of the parentr\::)?o-l;:Eess is shared by the child process.
30.Terminate the debug session.
31.Clear previously set breakpoints.
32.Select Run > Debug for Exec project.
33.Set a breakpoint in the Exec. c file on the line containing the execv () function call.
34.Click Resume. The target stops at the line where you set the breakpoint.

35.Click Resume. The exec () call is executed and the debugger stops in the main () function of the
Exec-1.elf file.

36.Execute some steps in Exec-1.c file.

37 Terminate the debug session and remove all breakpoints.

7.4 Debugging a shared library

CodeWarrior allows you to perform source-level debugging of shared libraries.

When you debug an executable file using a shared library, you can step into the shared library code. This section
demonstrates how to debug a shared library that is implicitly linked to an application.

In this section:

» Create an example project on page 247

» Configure the shared library build configuration on page 250
+ Configure the executable build configuration on page 250

+ Build the shared library on page 251

+ Build the executable on page 251

+ Configure the launch configuration on page 251

» Debug the shared library on page 253
7.4.1 Create an example project

First of all, you need to create an example Linux project that uses a shared library.
To create an example Linux project, perform the following steps:

1. In the CodeWarrior IDE, use File > New > CodeWarrior Linux Project Wizard to create a new Linux project
with the settings given in the table below.

NOTE
Instead of creating a new Linux project, you can import an example Linux project,
SharedLibrary, available in the <CWInstallDir>\PA\CodeWarrior Examples
\Linux_Examples\ folder as a reference. The example project can be imported as a
CodeWarrior Example Project using the File > Import menu bar option.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 247

Debugging Embedded Linux Software
Debugging a shared library

Table 130: Example Project Settings

Option Name

Value

Project name
Location
Project type
Language

Build configurations

Launch configurations

SharedLibraryExample
<workspace-dir>\SharedLibraryExample
Linux application

C

* LibExample (generates the dynamic library needed by the launch
configurations)

* SharedLib_ IM (used to demonstrate implicit linking with the library
generated by LibExample build configuration)

SharedLib IM (launches the application that demonstrates implicit linking
with a shared library)

NOTE

In the current example, only implicit library linking is mentioned; however, in the example
project shipped with CodeWarrior, SharedLibrary, we have also demonstrated
explicit library loading. For explicit library loading, we have used another build/launch
configuration, SharedLib EX.

2. Remove the default main.c file and add the source files (SharedLib IM.c and LibExample.c) to your

project.

3. In the CodeWarrior IDE, create a header file, LibExample.h, as depicted in the listing below.

/* LibExample.h */

Figure 83: Source Code for LibExample.h

int add example (int x,int y);
int add example local (int x,int y);

4. Save the LibExample.h file in the project directory.

5. Enter the below code into the editor window of the sharedLib 1IM.c file.

/*
Sharedlib IM.c

Figure 84: Source Code for SharedLib_IM.c

Demonstrates implicit linking.

=y

// User Include files

#include "LibExample.h"

// function prototype declaration

int temp (int, int);

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

248

NXP Semiconductors

// main program
int main ()
int ret;

int a, b;

b = 20;

ret temp (a, b);

ret = add_example (a, b); // step in here

return ret;

}

int temp (int i, int j)

{

return i + j;

}

6. Enter the below code into the editor window of the LibExample.c file.

Debugging Embedded Linux Software
Debugging a shared library

Figure 85: Source Code for LibExample.c

/*
LibExample.c

=y

// user include files#include "LibExample.h"// functions definitions

int add example(int x, int y)
{
int p,q;
p=100;
g=p+200;
add_example local (2, 3); // step in here

return x+y+d;

int add example local (int x, int y)

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

249

wr
PRt

Debugging Embedded Linux Software
Debugging a shared library

int p,q;
p = 100;
g =p + 200;

return x + y + J;

7.4.2 Configure the shared library build configuration

The next action is to configure the LibExample build configuration, which generates 1ibexample. so.
The steps are given below:
1. Select the sharedLibraryExample project in the CodeWarrior Projects view.

2. Select the LibExample build configuration by selecting Project > Build Configurations > Set Active > <Build
Configuration Name>.

3. Check LibExample.c and LibExample.h in the Build column.

TIP
Use the CodeWarrior example project, SharedLibrary, as a reference to set up the
build configuration settings of the LibExample build configuration.

7.4.3 Configure the executable build configuration

Now, you need to set up the sharedrLib 1M build configuration.
The steps are given below:
1. Select the sharedLibraryExample project in the CodeWarrior Projects view.

2. Select the sharedrib_1M build configuration by selecting Project > Build Configurations > Set Active >
<Build Configuration Name>.

3. Specify the linker settings.
a. Select the sharedrLib 1M build configuration in the CodeWarrior Projects view.
. Select Project > Properties. The Properties window for the shared library project appears.

b
c. In the Tool settings page, from the Power ELF Linker container, select Libraries.
d

" In the Libraries (-) panel, click Add (=l). The Enter Value dialog appears.

o

Enter the library file name, example, in the Libraries field.

In the Libraries (-L) panel, click Add (H). The Add directory path dialog appears.

g. Enter the library path in the Directory field. The library path is the path of the Output directory that is
used by LibExample build configuration.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
250 NXP Semiconductors

Debugging Embedded Linux Software
Debugging a shared library

NOTE
These settings enable the CodeWarrior IDE linker to locate the shared library,
libexample. so. For detailed information on other linker command line arguments,
see GNU linker manuals. You can find GNU documentation here: http://www.gnu.org.

7.4.4 Build the shared library

The next action is to build the shared library.
To build the shared library, perform the following steps:
1. Select the sharedLibraryExample project in the CodeWarrior Projects view.

2. Select the LibExample build configuration by selecting Project > Build Configurations > Set Active > <Build
Configuration Name>.

3. Select Project > Build Project. The CodeWarrior IDE builds the project and stores the output file
libexample.so in the Output directory within the project directory.

7.4.5 Build the executable

Now, you need to build the executable that uses the shared library.
To build the executable, perform the following steps:
1. Select the sharedLibraryExample project in the CodeWarrior Projects view.

2. Select the sharedrib 1M build configuration by selecting Project > Build Configurations > Set Active >
<Build Configuration Name>.

TIP
You can also select a build configuration from the drop-down list that appears when you
click the down arrow next to the project name in the CodeWarrior Projects view.

3. Select Project > Build Project. The CodeWarrior IDE builds the project and stores the output file
SharedLib IM.elf in the Oulput directory within the project directory.

7.4.6 Configure the launch configuration

The next action is to configure the sharedrLib 1M launch configuration.

You can configure the sharedLib 1M launch configuration by:

1. Specifying the remote download path of the final executable file.

2. Specifying the host-side location of the executable file to be used for debugging the shared library.

3. Specifying the environment variable that enables the shared object loader to locate the shared library on
the remote target at run time.

Following are complete steps of configuring a launch configuration:
1. Activate the sharedrLib_ 1M launch configuration in the project.
2. Specify the remote download path of the final executable file.
. Select Run > Debug Configurations to open the Debug Configurations dialog.

a
b. In the left pane from the CodeWarrior group, select the sharedrib 1M launch configuration.

o

On the Debugger page, click the Remote tab.

d. Type /tmp in the Remote Download Path field, as shown in the figure below. This specifies that the final
executable file will be downloaded to this location on the target platform for debugging.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 251

http://www.gnu.org

Debugging Embedded Linux Software
Debugging a shared library

NOTE
access permissions.

In the current example, the remote download path is specified as /tmp. You can
Figure 86:

replace /tmp with any other directory for which CodeWarrior TRK has the necessary
[E Main | 9= Arguments | %5 Debugger
Debugger options

ftmp

Remote Download Path - Shared Library Project
Debug | Remote |O‘ther Executables | Symbolics
Remote download path

= Trace and Profile 'E‘f;y Source E Envirenment| = Common

b

3. Specify the host-side location of the executable file to be used for debugging the shared library.
a. Click the Other Executables tab in the Debugger page.
. Click Add. The Debug Other Executable dialog appears.
c. Click Workspace. The Open dialog appears.
d.
e
f

Select the 1ibexample. so file name.

Navigate to the location where you have stored the 1ibexample. so file in your project directory.
executable field.

Click Open. The host-side location of the shared library appears in the Specify the location of the other
j-

when you debug or run the executable file.

Select the Load Symbols checkbox, so that the debugger has visibility of symbols within the library.
Select the Download to Device checkbox. The Specify the remote download path field is activated.

Type /tmp in the Remote download path text box. The shared library will be downloaded to this location
The default location of shared libraries on the embedded Linux operating system is /usr/1ib. In the
current example, the remote download location of 1ibexample.so iS /tmp.
Click OK. The settings (shown in the figure below) are saved.
Figure 87:

2 Debug Other Executable

Specify the location of the additional executable

Debug Other Executable Dialog Box

Additianal Executable File | 0\ profilesib34930yworkspacetSharedLibr ary|LibExample!libexample, sa
Load Symhols

Download bo Device

Specify the remate download path
ftmp|

[Wnrkspace...] [File Systen.. ., l [Variables. ..

252

OF,

] [Cancel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

Debugging Embedded Linux Software
Debugging a shared library

4. Specify the environment variable that enables the shared object loader to locate the shared library on the
remote target at run time.

At run time, the shared object loader first searches for a shared library in the path specified by the

LD LIBRARY PATH environment variable's value. In this case, the value of this environment variable will be /
tmp, which is the remote download path for the shared library you specified in the Debug Other Executable
dialog. If you have not specified the environment variable or have assigned an incorrect value, the shared
object loader searches for the shared library in the default location /usr/1ib.

a. In the Debug window, click Environment to open the Environment page.
b. Click New to open the New Environment Variable dialog.

c. Inthe Name field, type LD LIBRARY PATH.
d

. In the Value field, type /tmp.

NOTE
Ensure that you type the same remote download path in the Value field that you specified
in the Debug Other Executable dialog.

e. Click OK. The environment variable is added to the launch configuration.
f. Add another environment variable with name, avoID sysTEM PATH and value YES.
NOTE
The AVOID_ SYSTEM PATH variable sets the launch configuration to use the library path

settings you specify. By specifying the value YES you avoid the launch configuration
from picking up any other system path.

g. Click Apply to save the launch configuration settings. The target settings are saved (shown in the figure
below).

Figure 88: Environment Variables - Shared Library Project

[Z] main | ¢)= Arguments | g Environment fﬁ Debugger E’_// Source | =] Common

Environment variables to set:

Variable Value New...
¥ AVOID_SYSTEM_PATH YES —ren
% |D_LIBRARY_PATH Jtmp -_E ect...

@' Append environment to native environment

() Replace native environment with spedfied environment

h. Click OK to close the Debug view.

7.4.7 Debug the shared library

Finally, you need to debug the shared library.

In the steps that follow, you will launch the debugger. Next, you will step through the code of the executable file,
SharedLib_ IM.elf, until you reach the code that makes a call to the add_example function implemented in the
shared library. At this point, you will step into the code of the add_examp1le function to debug it.

1. Activate the sharedrib_ 1M launch configuration in the project.

2. Select Run > Debug.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 253

Debugging Embedded Linux Software
Debugging a shared library

The debugger starts and downloads the sharedrib IM.elf and libexample.so files to the specified
location on the remote target, one after another. The Debug perspective appears.

3. Click Step Over in the debugger window until you reach the following line of code (shown in the figure
below):

ret=add example (a,b)

TIP
Before you set breakpoints in the code of an imported shared library to step into the
code, you can use the Executables view to navigate and check the source files of the
library. For more information on the Executables view, open CodeWarrior Eclipse Help
by selecting Help > Help Contents in the CodeWarrior IDE, and then select Third Party
References > C/C++ Development User Guide > Reference > C/C++ Views and Editors
> Executables view in the Contents pane.

Figure 89: SharedLib_IM.c - Step In Location

1 sharedlib_IM.c &2 = B8

201int main()

22 int ret:;
23 int a,b;

[
[
H
m
of
I

temp (a,b);

¥ 30 ret = add example(a,b)://Step In here

v
< 3

4. In the Debug view, click Step Into to step into the code of the add_examp1le function.

The debugger steps into the source code of the add_example function in the LibExample.c file (shown in
the figure below).

Figure 90: LibExample.c - add_example Function

|| LibExample.c 3 = d EE Outline | |m} Disassembly @)= Variables &3
:' _ p=100: ad Mame Value
18 g=p+200; 0= x 2
] add example local(2,3);//Step In here - 3
retorn =X+y+d; (XFE 100
)= q 300

add example local(int x,int v)

int p,g;
p=100;
q=p+200;
retorn X+y+qg:;

*

5. After stepping in, you can step through the rest of the code.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
254 NXP Semiconductors

g |

Debugging Embedded Linux Software
Preparing U-Boot for debugging

The Debug view shows the function calls to the add_example function (shown in the figure below).

Figure 91: Debug View - Shared Library Project

%5 Debug 1% & D o> 3D R v =5
= EPPC Linux Applications, SharedLib_IM.elf, PID 1000 (Suspended) ~

=g Thread [ID: 0] (Suspended)

6 add_example_local() D:\Profiles'b 14446 \Uboot\SharedLibrary\Source \LibExample, c: 28 0x0ffdf!

5 add_example() D:\Profiles\b 14446 boot\Sharedlibrary \Source \LibExample. c: 20 Ox0ffdf40
4 main() D:Profiles\b 14446 \Uboot\SharedLibrary\Source\SharedLib_IM,c:30 0x 10001514

3 OxOFESE1C4 (Ox0FEBELICH)() OxOfeSelcd
2 Ox0FESE348 (0x0FESE348)() Oxlfede34d
1 0x00000000 {0x0000000030) 0x00000000
| Di\Profiles\b 14446\ Uboot\SharedLibrary\SharedLib_IM\SharedLib_IM.elf (3/6/08 10:48 AM)

£

6. View the output of the program.

The rest of the code is executed and the output appears in the Variables view (shown in the figure below).

Figure 92: Variables View - Shared Library Project

gint temp(int i,int 3j)

[sharedlib_IM.c 2 =g EE Outline Disassembly | = Variables 73
26 b= 20: ~ Mame Value
27 9= ret 330
28 ret = temp(a,b):)= a 10
23 B)=b 20
30 ret = add example(a,b)://Step In here
32
¥ 33 return ret;
361}

(!
o~
b

7.5 Preparing U-Boot for debugging

U-Boot resides in flash memory on target systems and boots an embedded Linux image developed for those

systems.
Before debugging U-Boot on a target system, follow these steps:
Install BSP on page 256.

Configure hardware to use U-Boot image on page 257.
Create a CodeWarrior project to debug U-Boot on page 257

Specify launch configuration settings on page 258

o g A w N =

Create launch configurations for U-Boot debug stages on page 260

Configure U-Boot and build U-Boot images with CodeWarrior debugger support on page 257.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

255

Debugging Embedded Linux Software

Preparing U-Boot for debugging

7.5.1 Install BSP

Install the board support package (BSP) for the target system you want to debug on the Linux host computer.

NOTE
The BSP versions keep changing frequently. For different BSP versions, you might
encounter build environments based on various tools. The subsequent sections will
describe necessary procedures and use specific examples from real Freescale BSPs
for illustration. The examples in these sections need to be adapted based on the BSP
versions or build tools you are currently using.

Follow these steps to install the BSP:

1. On the Linux computer, download the BSP for your target hardware to install kernel files and Linux
compiler toolchains on your system.
BSP image files for target boards are located at http://www.freescale.com/linux.
2. Download the BSP image file for your target board.
NOTE
You will need to log-in or register to download the BSP image file.
The downloaded image file has an . iso extension. For example,
QorIQ-DPAA-SDK-<yyyymmdds>-yocto.iso
3. Mount the image file to the CDROM as root, or using "sudo":
<sudo> mount -o loop QorIQ-DPAA-SDK-<yyyymmdds>-yocto.iso/mnt/cdrom
NOTE
sudo is a Linux utility that allows users to run applications as root. You need to be
setup to run sudo commands by your system administrator to mount and install the
BSPs.
4. Execute the BSP install file to install the build tool files to a directory of your choice, where you have
privileges to write files:
/mnt/cdrom/install
NOTE
The BSP must be installed as a non-root user, otherwise the install will exit.
5. Answer the questions from the installation program until the file copy process begins.
You will be prompted to input the required build tool install path. Ensure you have the correct permissions for
the install path.
6. Upon successful installation, you will be prompted to install the ISO for the core(s) you want to build.
For example, if you want to build the SDK for P4080, that is a e500mc core, then you have to install the ISO
images for e500mc core:
c23174e5e3d187£43414e5b4420e8587 QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.partl
292c6elc5e97834987fbdb5£69635ald QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.part2
CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
256 NXP Semiconductors

http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_BSP&tid=vanLINUX

Debugging Embedded Linux Software
Preparing U-Boot for debugging

NOTE
You can see the SDK Manual for instructions about how to build the BSP images and
run different scenarios from the iso/help/documents/pdf location.

7.5.2 Configure U-Boot and build U-Boot images with CodeWarrior
debugger support

After installing the BSP, you need to configure the BSP U-Boot package, to place debugger symbolic
information in the U-Boot binary executable file, and build the U-Boot images with CodeWarrior debugger
support, on the Linux host computer.

For more information on configuring the U-Boot and building U-Boot images, see the SDK User Manual available
in the iso/help/documents/pdf folder.

7.5.3 Configure hardware to use U-Boot image

To configure the hardware to use U-Boot image, you need to burn the U-Boot image to the flash memory of
the hardware.

NOTE
See the Burning U-Boot fo Flash cheat sheet for the entire procedure for burning U-Boot
to flash. To access the cheat sheets, select Help > Cheat Sheets from the CodeWarrior
IDE menu bar.

7.5.4 Create a CodeWarrior project to debug U-Boot

Create a new CodeWarrior project to debug U-Boot on the target system.

To create a CodeWarrior project, use these steps:

1. Launch CodeWarrior IDE.

2. Select File > Import. The Import wizard appears.

3. Expand the CodeWarrior group and select CodeWarrior Executable Importer.
4. Click Next.

The Import a CodeWarrior Executable file page appears.

o

Specify a name for the project, to be imported, in the Project name text box.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

NOTE
An existing directory cannot be specified for the project location.
7. Click Next.
The Import C/C++/Assembler Executable Files page appears.
8. Click Browse next to the Executable field.
9. Select the U-Boot ELF file obtained after the U-Boot compilation.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 257

V¥ ¢
i

Debugging Embedded Linux Software
Preparing U-Boot for debugging

You can see the SDK Manual, for instrugi(())-rl;lszabout how to generate an U-Boot ELF
file, from the iso/help/documents/pdf location.
10.Click Open.
11.From the Processor list, expand the processor family and select the required processor.
12.Select Bareboard Application from the Toolchain group.
The selected toolchain sets up the default compiler, linker, and libraries used to build the new project.
13.Select None from the Target OS list.
14.Click Next.
The Debug Target Settings page appears.
15.From the Debugger Connection Types list, select the required connection type.

16.Specify the settings, such as board, launch configuration, connection type, and TAP address if you are
using CodeWarrior TAP (over Ethernet), Ethernet TAP, or Gigabit TAP.

17 Click Next.
The Configurations page appears.
18.From the Core index list, select Core 0.
19.Click Finish.
The wizard creates a CodeWarrior project to debug the U-Boot image.

You can access the project from the CodeWarrior Projects view on the workbench.

7.5.5 Specify launch configuration settings

Now, you need to specify the settings for the newly created Attach launch configuration in the Debug
Configuration dialog.

To specify launch configuration settings, follow these steps:
1. Select Run > Debug Configurations.

2. On the Main tab, if you have an already existing system for the attach configuration, select it from the
Connection drop-down list, else create a new one by following the steps given below:

a. Click New. The New Connection wizard appears.

b. Expand the CodeWarrior Bareboard Debugging group and select Hardware or Simulator Connection.
c. Click Next. The Hardware or Simulator Connection page appears.

d. Specify a name and a description for the connection.

e. Click New next to the Target drop-down list. The New Connection wizard appears.

f. Expand the CodeWarrior Bareboard Debugging group and select Hardware or Simulator System.
Click Next.

Select a processor from the Target type drop-down list.

= @

On the Initialization tab, clear the Execute reset checkbox.

j- Select the checkbox for the respective core in the Initialize target column.

k. Click the ellipsis button in the Initialize target column.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
258 NXP Semiconductors

® N o a0 b~ W

Debugging Embedded Linux Software
Preparing U-Boot for debugging

The Initialization target dialog appears.

I. Click File System and select the target initialization file from the following path:

<CWInstallDir>\PA\PA Support\Initialization Files

NOTE
If you want to use an initialization file that initializes CCSR and PIXIS before U-Boot,
you can uncomment the specific lines in the <board_name>_uboot_<numbitss>.tcl
initialization file, where <numbits> can be 32 or 36.

m. Based on the target you select, you may also have to specify the memory configuration file details by
selecting the Memory Configuration checkbox on the Memory tab.

n. Click the ellipsis button in the Memory Configuration column.
The Memory Configuration dialog appears.

o. Click File System and select the memory configuration file from the following path:
<CWInstallDir>\PA\PA Support\Initialization Files\Memory

p. Click Finish.

g. From the Connection type drop-down list, select the type of connection you plan to use.
The Connection tab appears along with the other tabs on the page.

r. On the Connection tab, specify the IP address of the TAP.

s. Click Finish.

t. From the System panel, select all the cores on which U-Boot is running.

Click the Debugger tab.

On the PIC page, select the Alternate Load Address checkbox.

In the text box that comes up, enter the 0xFFF40000 address.

Click the Source tab and verify the source mapping configuration.

Click Apply to save the settings made to the various tabs.

Click Debug.

The Debug perspective appears with the core 0 stopped at the reset vector (shown in the figure below).

NOTE
You will need to press Reset in the Debug view. Select the Core reset checkboxes for
all cores except core 0. You will then see core 0 stopped at the reset vector.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 259

A 4
4\

Debugging Embedded Linux Software
Preparing U-Boot for debugging

Figure 93: Debug Perspective - U-Boot Debug

ﬁDebug &4 =g

2 [= o i M o m~

= E Debug u-boot [CodeWarrior Attach]
= EPPC, u-boot, core 0 (Suspended)
=l Thread [ID: 0x0] (Suspended: Signal 'Halt' received. Description: User halted t
=
gl D:VTemplu-boot-1,3,3+c2\u-boot (7/30,/08 3:29 PM)

< >

resetvec.5 &3 — O
.section .resetvec, "ax"

s b start e500

7.5.6 Create launch configurations for U-Boot debug stages

Finally, you need to create launch configurations for different U-Boot debug stages.

During a typical U-Boot start-up sequence, the target processor starts executing U-Boot in flash memory. U-
Boot then enables the Memory Management Unit (MMU), and relocates itself to RAM. From the memory layout
perspective, U-Boot debug has four different stages. For each of these stages, you will need a separate launch
configuration. You have already configured the launch configuration settings for the first stage in the p4080 U-
Boot Stage 1 launch configuration.

To create launch configurations for the remaining three stages for U-Boot debug:

Create these launch configurations onlyr;lf?/-(l)-lljE are using the hardware option to debug
U-Boot.
1. To open the Remote Systems view, select Window > Show View > Other.
The Show View dialog appears.
2. Expand the Remote Systems group and select Remote Systems.
The Remote Systems view appears as a tabbed view at the bottom of the workbench.
3. Select the P4080 U-Boot Stage 1 remote system from the view.
4. Right-click and from the context menu select Copy.
The Copy Resource dialog appears.
5. Select the active profile from the list. Click OK.
The Duplicate Name Collision message box appears.
6. Select the Rename option.
The Rename to text box is enabled.

7. Enter the name for the copied remote system. For example, P4080DS u-boot mem translation.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
260 NXP Semiconductors

Debugging Embedded Linux Software
Preparing U-Boot for debugging

The new remote system appears in the Remote Systems view.

NOTE
This remote system will be used in the second stage of U-Boot debug.
8. Right-click P4080DS u-boot mem translation and select Properties from the context menu.
The Properties for P4080DS u-boot mem translation window appears.
9. On the System tab, select the checkbox for the respective core in the Memory configuration column.
10.Click the ellipsis button in the Memory configuration file column.
The Memory Configuration File dialog appears.

11.Click File System and select the memory configuration file from this path:

<CWInstallDir>\PA\PA Support\Initialization Files\Memory\${BoardName} uboot ${bits} $
{FlashDevice} ${stage}.mem

12.Click OK.

13.Click OK.

14 Select Run > Debug Configurations to open the Debug Configurations dialog.
15.Expand the CodeWarrior Attach group.

16.Right-click the p4080 U-Boot Stage 1 launch configuration and select Duplicate from the context menu
that appears.

A new launch configuration appears in the CodeWarrior Attach group.

17.0n the right-hand side, in the Name text box, enter an appropriate name. For example, P4080 U-Boot
Stage 2.

18.0n the Main page, in the Remote system panel, from the System drop-down list, select the r40s8oDs u-
boot mem translation system.

19.0n the Debugger tab, in the PIC page, clear the Alternate Load Address checkbox.
20.Duplicate the p4080 U-Boot Stage 1 launch configuration.

21.0n the right-hand side in the Name text box, enter an appropriate name. For example, P4080 U-Boot
Stage 3.

22.0n the Debugger tab, in the PIC page, clear the Alternate Load Address checkbox.
23.Duplicate the p4080 U-Boot Stage 1 launch configuration.

24.0n the right-hand side in the Name text box, enter an appropriate name. For example, P4080 U-Boot
Stage 4.

25.0n the Debugger tab, in the PIC page, select the Alternate Load Address checkbox.
26.In the text box that comes up, enter the address printed by U-Boot as "Now running in RAM".
You have successfully created launch configurations for all the four stages of U-Boot debug.

From a memory layout perspective, U-Boot has four different stages till you get the U-Boot prompt. CodeWarrior
debug settings required to debug U-Boot in flash memory differ from the settings required to debug U-Boot in
RAM.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 261

|
y

'
A

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

7.6 Debugging U-Boot using NOR, NAND, SPI, and SD
Card/MMC Flash Devices

U-Boot resides in flash memory on target systems and boots an embedded Linux image developed for those
systems. This section shows you how to use the CodeWarrior debugger to debug the U-Boot using NOR,
NAND, SPI, and SD Card/MMC flash devices.

This section explains:

+ Configuring and Building U-Boot on page 262

+ Creating a CodeWarrior Project to Debug U-Boot on page 264
» Specifying the Launch Configuration Settings on page 265

» Debugging U-Boot using Flash Devices on page 267

7.6.1 Configuring and Building U-Boot

This section explains how to configure and build U-Boot and how to write configuration words in the U-Boot
code to create the final boot image.

See Preparing U-Boot for debugging on page 255 to install and configure the BSP. For more information on
configuring the build tool and building U-Boot with CodeWarrior debugger support, see the SDK User Manual
available in the iso/help/documents/pdf folder.

Upon successful compilation of U-Boot, the binary images for NOR and NAND flash devices are written to the
flash. For the SPI and SD flash devices, write the configuration words at the beginning of the u-boot .bin file
to create the final boot image.

See the figure below for the required eSPI/SD EEPROM data structure.
Figure 94: eSPI/SD EEPROM Data Structure

0x00

Reserved
0x3F
0x40

Control Words

0x63
Ox64

Reserved
0x7F

0x80

Configuration Words
Source Address

User's Code

The table below describes the eSPI/SD EEPROM data structure.

Table 131: eSPI/SD EEPROM Data Structure Details

Address Data Bits
0x00-0x3F Reserved

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
262 NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

Table 131: eSPI/SD EEPROM Data Structure Details (continued)

Address

Data Bits

0x40-0x43

0x44-0x47
0x48-0x4B

0x4C-0x4F
0x50-0x53

0x54-0x57
0x58-0x5B

0x5C-0x5F
0x60-0x63

0x64-0x67
0x68-0x6B

0x6C-0x7F
0x80-0x83
0x84-0x87
0x88-0x8B
0x8C-0x8F

0x80 + 8%(N-1)

BOOT signature - This location should contain the value 0x424f_4f54, which
is the ASCII encoding for BOOT. The eSPI loader code searches for this
signature, initially in 24-bit addressable mode. If the value at this location
does not match the BOOT signature, the EEPROM is accessed again, but in
16-bit mode. If the value in this location still does not match the BOOT
signature, the eSPI device does not contain a valid user code. In such a case,
the eSPI loader code disables the eSPI and issues a hardware reset request
of the SoC by setting RSTCR[HRESET_REQ)].

Reserved

User's code length - Number of bytes in the user's code to be copied. The
value must be a multiple of 4. 4<=User's code length <= 2GBytes.

Reserved

Source Address - Contains the starting address of the user's code as an offset
from the EEPROM starting address. In the 24-bit addressing mode, the 8
most significant bits of the source address should be written to as zero,
because the EEPROM is accessed with a 3-byte (24-bit) address. In 16-bit
addressing mode, the 16 most significant bits of the source address should
be written as zero.

Reserved

Target Address - Contains the target address in the system's local memory
address space in which the user's code is copied. This is a 32-bit effective
address. The core is configured in such a way that the 36-bit real address is
equal to the target address (with 4 most significant bits zero).

Reserved

Execution Starting Address - Contains the jump address of the system's local
memory address space into which the user's code first instruction is
executed. This is a 32-bit effective address. The core is configured in such a
way that the 36-bit real address is equal to this (with 4 most significant bits
zero).

Reserved

N - Number of Config Address/Data pairs. This address must be <=1024 (but
it is recommended to keep it as small as possible).

Reserved

Config Address 1
Config Data 1
Config Address 2
Config Data 2

Config Address N

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

263

V¥ ¢
i

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

Table 131: eSPI/SD EEPROM Data Structure Details (continued)

Address Data Bits
0x80 + 8*(N-1)+4 Config Data N (Final Config Data N optional)
User's Code Your U-Boot code.

This section contains the following subsection:

» Writing configuration words in U-Boot code on page 264

7.6.1.1 Writing configuration words in U-Boot code

You can use the boot format tool to write the configuration words to the beginning of the U-Boot code.
The boot format tool is used only for SPI and SD flash devices.

To use the boot format tool:

1. Access the BSP folder to access the boot format tool.

NOTE
See the BSP documentation to read more about the boot format tool.

2. Issue the following commands:

cd boot_format
make [all]

3. Issue the following command for the SPI flash device:
./boot_format config XXX ddr.dat u-boot.bin -spi spi-boot.bin

where config xxx_ddr.dat is the appropriate DDR init file for your board.

4. For the SD flash device, you need to format your SD device to vfat:

/sbin/mkfs.vfat /dev/sdcl
./boot_format config ddr3 xxx.dat u-boot.bin -sd /dev/sdcl

where /dev/sdc1 is the SD flash device.

7.6.2 Creating a CodeWarrior Project to Debug U-Boot

This section provides steps to create a CodeWarrior project for debugging U-Boot.
To create a CodeWarrior project to debug U-Boot:

1. Start the CodeWarrior IDE.

2. Select File > Import. The Import wizard appears.

3. Expand the CodeWarrior group and select CodeWarrior Executable Importer.
4. Click Next.

The Import a Codewarrior Executable file page appears.

o

Specify the project name in the Project name text box.
6. Click Next.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
264 NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

7. Click Browse next to the Executable text box.

For NOR, SPI, and SD, browse to the U-Boot folder and select the U-Boot file.

For NAND, browse to the U-Boot folder and select the u-boot-spl file from the nand_spl folder. You need
two .elf£ files when performing U-Boot debug in NAND. To specify the second .elf£ file, see Specifying
the Launch Configuration Settings on page 265.

Click Open.

Click Next.

From the Processor list, expand the processor family and select the required processor.
From the Toolchain list, select Bareboard Application.

Click Next.

From the Debugger Connection Types list, select the required connection type.

NOTE
Select the Simulator option from the Debugger Connection Types list if you want to use
the simulator to debug U-Boot.
Select a required launch configuration.
From the Core index list, select the required core.

Click Next.
Specify connection type, and TAP address if you are using Ethernet or Gigabit TAP.

NOTE
If you are using the simulator to debug U-Boot, this page will show the simulator options.

Click Finish.

The imported project appears in the CodeWarrior Projects view.

You just finished creating a CodeWarrior project to debug the U-Boot image.

7.6.3 Specifying the Launch Configuration Settings

You can specify settings for the launch configuration created earlier using the Debug Configurations dialog.

To specify settings for the newly created Attach launch configuration:

1. Select Run > Debug Configurations.

2. On the Main tab, if you have an already existing system for the attach configuration, select it from the
Connection drop-down list, else create a new one by following the steps given below:

a.

=2 @

Click New. The New Connection wizard appears.

b. Expand the CodeWarrior Bareboard Debugging group and select Hardware or Simulator Connection.
c. Click Next. The Hardware or Simulator Connection page appears.

d.
e
f

Specify a name and a description for the connection.

. Click New next to the Target drop-down list. The New Connection wizard appears.

Expand the CodeWarrior Bareboard Debugging group and select Hardware or Simulator System.
From the Target type drop-down list, expand the eppc group and select the required processor.

On the Initialization tab, clear the Execute system reset checkbox.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 265

|
y

'
A

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

N o o &

J-

0.

p.
. On the Debugger tab, in the Other Executables page specify the second elf file needed to perform U-Boot

Select the checkbox for the respective core in the Initialize target column.
Click the ellipsis button in the Initialize target script column.
The Target Initialization File dialog appears.

Click File System and select the target initialization file from the following path:

<CWInstallDir>\PA\PA Support\Initialization Files\

NOTE
If you want to use an initialization file that initializes CCSR and PIXIS before U-Boot,
you can uncomment the specific lines in the <boardname>_uboot_<Numbits>.tcl
initialization file, where <NumBits> can be 32 or 36.

Click Finish.

. From the Connection type drop-down list, select the type of connection you want to use (Ethernet TAP,

Gigabit TAP, or Simulator).

The Connection tab appears along with the other tabs on the page.

. On the Connection tab, specify the IP address of the TAP if you are using a TAP or configure the Simics

paths (model startup script, simics executable, and CodeWarrior add-on) if you are using Simics. For
Simics, select the Manual launch option from the CCS server panel and enter the IP address of the
CCS server in the Server hostname/IP text box.

Click Finish.

From the Target panel, select all the cores on which U-Boot is running.

debug in NAND.

a.

b.

c
d

Click Add. The Debug Other Executable dialog appears.

In the Additional Executable File text box, browse to the U-Boot folder and select the U-Boot file.
Select the Load Symbols checkbox.

Click OK.

On the Debugger tab, in the PIC page, clear the Alternate Load Address checkbox.

On the Source tab, specify the source mapping configuration.

Click Apply to save the settings made to the various tabs.
Click Debug.

The Debug perspective appears with the core 0 stopped at the reset vector (shown in the figure below).

NOTE
Select the Core reset checkboxes for all cores except core 0 and then click Reset in the
Debug view. You will then see core 0 stopped at the reset vector.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

266

NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

Figure 95: Debug Perspective - U-Boot Debug

#a‘FDebug i3 =8
= [] 3 i oot om

= ﬁ Debug u-boot [CodeWarrior Attach]
= EPPC, u-boot, core 0 (Suspended)
= Thread [ID: 0x0] (Suspended: Signal 'Halt' received. Description: User halted th

= 1 (AsmSection)() YhomedocalharpreetsethilLinuxBSPYtib-e500mc-2008051

s Di\Templu-boot-1.3. 3+c2\u-boot (7/30/08 3:29 PM)

£ >

resetvec.5 E5 =
. section .resetvec, "ax"

¥ b _start_e500

7.6.4 Debugging U-Boot using Flash Devices

This section explains how to debug U-Boot using different flash devices.

From a memory layout perspective, U-Boot has four different stages till you get the U-Boot prompt. CodeWarrior
debug settings required to debug U-Boot in flash memory differ from the settings required to debug U-Boot in
RAM. Each of these stages requires specific debug settings that are described in the following sections for each
flash device, NOR, NAND, SPI, and SD/MMC.

+ Points to remember on page 267

» Debugging U-Boot using NOR flash on page 268

» Debugging U-Boot using SPI and SD/MMC flash on page 273

» Debugging U-Boot using NAND flash on page 278

7.6.4.1 Points to remember

This section talks about some important points to remember while debugging U-Boot using a flash device.

Before debugging U-Boot, you should be aware of the board you are using, if the U-Boot was built on 32 or 36
bits, and the configuration files you will use from the layout.

Select the correct initialization and memory files used by the CodeWarrior Debugger. These configuration files
have various names:

${BoardName} uboot ${bits} ${FlashDevice} ${stage}.mem
${BoardName} uboot ${bits}.tcl
* BoardName is any available board, for example, P4080DS, P2040RDB, P2010DS, and so on
* bits are any token from 32 or 36
* FlashDevice is any token from NOR, NAND, SPI, and SD
* stage can be any token from 1, 2, 3,4, 1_2, 3_4,{}
NOTE

Note that the configuration files in which the stage token is missing (for example,
P1024RDB_uboot 32.tcl) can be used in all debug stages.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 267

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

Whenever you want to set a breakpoint, verify the following:
» A valid opcode at the debug exception interrupt vector.

In a scenario where the valid opcode is missing, when a breakpoint is hit, an exception is generated for the
invalid opcode found at the debug interrupt vector memory location.

« All available support for debug.

For example, a very common error is when the code is relocated from reset space (Oxfffffxxx) to flash space
(Oxefffxxxx) for the NOR and NAND flash devices. In such a scenario, IVPR remains at Oxffff0000 and IVOR15
at 0x0000f000. Any access to Oxfffff000 (the debug exception) generates a TLB miss exception. The
workaround is to set IVPR to 0xefff0000 before the U-Boot relocation.

To hit breakpoints set on a previous debug session after changing the PIC address, verify the following:

» Do not disable and enable back those breakpoints after the PIC value has been changed. Use the
breakpoints relocation feature to deal with these changes

» Do not set breakpoints in Stage 4 (relocation to RAM) until you move execution there.

» Do not set breakpoints from Stage 1 to Stage 2. The Instruction Address Space (IS) and Data Address
Space (DS) bits from MSR are cleared in Stage 1. So the processor will use only the TLB entries with
Translation Space (TS) = 0 instead of Stage 2 where TS = 1.

7.6.4.2 Debugging U-Boot using NOR flash

This section explains how to debug U-Boot using the NOR flash device in different U-Boot debug stages.

During a typical U-Boot start-up sequence, the target processor starts executing U-Boot in flash memory. U-
Boot then enables the Memory Management Unit (MMU), and relocates itself to RAM. From the memory layout
perspective, U-Boot debug has four different stages.

The following sections describe four U-Boot debug stages for debugging U-Boot using the NOR flash device:
» Debugging U-Boot before switching address space on page 268

» Debugging U-Boot in translated address space on page 269

» Debugging U-Boot after switching back to initial address space on page 271

» Debugging U-Boot in RAM on page 272
7.6.4.2.1 Debugging U-Boot before switching address space

This section tells how to debug U-Boot in a NOR flash device before switching address space.
To debug U-Boot in flash before switching address space:
1. Start the CodeWarrior IDE.

2. Open the CodeWarrior U-Boot project that you created in Creating a CodeWarrior Project to Debug U-Boot
on page 264.

Select Run > Debug Configurations. The Debug Configurations dialog appears.
Expand the CodeWarrior group and select the appropriate launch configuration.

Click Debug. The Debug perspective appears with the core 0 running.

o o k~ w

Click Reset on the Debug view toolbar.
The Reset dialog appears.

7. In the Run out of reset column, select the checkboxes for all cores except core 0.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
268 NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

After the reset completes, core 0 appears stopped at the reset vector. In the Debugger Shell view, issue the
following command to enter the PIC alternate load address:

setpicloadaddr OxFFF40000

8. From the Debug view toolbar, select the Instruction Stepping Mode (i'$) command.

9. From the Debug view toolbar, select the Step Into (.) command to step intob _start_e500.

The start.s file appears in the editor area and the disassembled code with memory addresses appears in
the Disassembly view.

Figure 96: U-Boot Debug - Disassembly View

|8 start.s 22 = B || 5= outline | [si} Disassembly &2 =0
~ 1i ro,2 A
clear registers/arrays not reset by hardware */ W OxfEfff000 < (AsmSection)>: 1i rd,2
mtspr L1CSRO, r0D /* invalidate d-cache */
f* L1 =f Oxfffff004 < (AsmSection)+4>: mtspr sprlild, ro0
> 1i 0,2 mtspr L1CSR1, r0 /* invalidate i-cache */

mtspr L1CSRO, x0 Oxfffff008 < (AsmSection)+8>: mtapr sprl0ll, r0

mtspr L1CSE1,r0

mfspr rl, DBSR
mfspr rl,DBSE Oxfffff00c < (AsmSection)+12>: mfspr rsp,spr304
mCepT DBSR, rl /* Clear all wvalid bits */ mCepT DBSR,rl f* Clear all valid bits */
OxfEEfff010 < (AsmSection)+16>»: mtspr spr304,rsp

Enable L1 Caches early i

v * Enable L1 Caches early w
£ *

10.Move the Debug Current Instruction Pointer to _start_e500.

1 Deselect the Instruction Stepping Mode (¥) command.

You can now do source-level debugging and set breakpoints in start . s until the address space switch at
the rfi before switch as (start.s, line 326). See Points to remember on page 267 for more details.

7.6.4.2.2 Debugging U-Boot in translated address space

This section tells how to debug U-Boot in the translated address space in a NOR flash device.

After you have reached the r£i call, the execution will move to the next stage. You should now use a memory
configuration file for debugging in this section.

It is necessary to inspect the TLB registers to check if there are address spaces translated or to search in the
CW PA10 layout (PA\PA Support\Initialization Files\Memory)) if there are memory configuration files
that match your U-Boot debug scenario.

NOTE
For e500v2 cores (36-bit U-Boot debug only), due to a hardware issue (terminating the
current debug session will put the core in running) another script must be executed
before proceeding further with the instructions provided in this section:

1. Open Debugger Shell view.
2. Execute ${BoardName} uboot 36 stage2 preparation.tcl usingthe

following command:

source /${BoardName} uboot 36 stage2 preparation.tcl
To debug U-Boot in the translated address space in flash before switching back to initial address space

(start.s, bl cpu_init_f, line 396):

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 269

|
y

'
A

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

1.

2.

Click ® on the Debug view toolbar to terminate the current debug session.

Select Run > Debug Configurations. The Debug Configurations dialog appears.

3. Expand the CodeWarrior group and select the appropriate launch configuration.

9.

In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.
On the Memory tab, select the checkbox for the respective core in the Memory configuration column.
Click the ellipsis button in the Memory configuration file column.

The Memory Configuration File dialog appears.

. Click File System and select the memory configuration file from the following path:

<CWInstallDir>\PA\PA Support\Initialization Files\Memory\

NOTE
To select an appropriate memory configuration file, it is necessary to inspect the TLB
registers and check if there are address spaces translated or if there are memory
configuration files available in the CodeWarrior layout that match your U-Boot debug
scenario.

Click OK to close the Memory Configuration File dialog.

10.Click OK to close the Properties for <Target> dialog.

11.Click OK to close the Properties for <connection> dialog.
12.Click Debug.

The instruction pointer is now on the rfi function call.

NOTE
For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName} uboot 36 stage2.tcl is needed.

13.In the Debugger Shell, issue the following command to reset PIC load address to the location specified in

14

u-boot.elf.

setpicloadaddr reset

‘From the Debug view toolbar, select the Instruction Stepping Mode (I) command.

15.Ensure the Debug Current Instruction Pointer is at r£i. From the Debug view toolbar, select the Step Into

(.) command to step into rfi. The Disassembly view appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

270

NXP Semiconductors

Figure 97:
|5 resetvec.s |.5] £
233 mtspr SPRN SERO, r7
2 mtspr SPRN_SRR1,ré
2 rfi

(I T Y Y

237=switch as:

qqqqqq

242 lis r3,CFG_INIT RAM ADDREh
243 ori r3,r3,CFG INIT RAM ADDREL

mfspr LI1CFGO

andi.

r2,

T LN b

<

r2, r2, OxI1ff

f* marhe aize * 13

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

U-Boot Debug - Translated Address Space in Flash

=8

Es

5= outline | [oi} Disassembly 52

mtspr SPRN_SERI1, ré
Oxfffff17c < (AsmSection)+132>: mtsrrl ré
rfi
W Oxfffff180 < (AsmSection)+136>: rfi
switch as:
M *f /* L1 DCache iz used for initial RAM */

h /* BAllocate Initial RAM in data cache.
*/
lis r3,CFG_INIT RAM ADDREh
Oxfffff184 < (AsmSection)+140>: lis
ori r3,r3,CFG_INIT RZM ADDREL
Oxffff£f188 < (AsmSection)+144>:
T.1CFGRN

r3,-560

ori r3,r3, 50000

- . W

= ine

>

mfanr T2,

16.Deselect the Instruction Stepping Mode command when the instruction pointer is at switch_as.

You can set breakpoints and use the Step Over, Step Into, and Step Out commands from line (switch_as:

label) in start.stoline (/* switch back to AS =

0 */)in start.s. At these locations, the Instruction

Address Space (IS) and Data Address Space (DS) bits from MSR are cleared, so that the processor uses

only the TLB entries with TS = 0. See Points to remember on page 267 for more details.

NOTE
To set breakpoints in Stage2 after rfi (start.S), you can set the Alternate Load
Address by using setpicloadaddr reset. Forlow-end processors (€500v1,
e500v2), set DE (Debug Enable) from MSR register using the Debugger Shell or the
Registers view. You can then perform the set, resume, and remove operations on the
breakpoints.

NOTE
To access breakpoints set on a previous debug session after changing the PIC address,
you need to disable and enable back those breakpoints after the PIC value has been
changed.

7.6.4.2.3 Debugging U-Boot after switching back to initial address space

This section tells how to debug U-Boot in a NOR flash device after switching back to initial address space.

While debugging U-Boot, when you reach the cpu_init_f call you are back to address space 0. You now need
to remove the memory configuration file used in the previous section or set another memory configuration file

for U-Boot compiled on 36 bits.
To debug U-Boot in flash after switching back to initial address space:

1. Click ® on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.
3. Expand the CodeWarrior group and select the appropriate launch configuration.
In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

6. On the Memory tab, deselect the checkbox for the respective core in the Memory configuration column to
remove the memory configuration file you had set in the previous section.

NOTE
If required, you can set another memory configuration file for U-Boot compiled on 36
bits on the Memory tab.

7. Click OK to close the Memory Configuration File dialog.
8. Click OK to close the Properties for <Target> dialog.

9. Click OK to close the Properties for <connection> dialog.
10.Click Debug.

The instruction pointer is now on the cpu_init_f function call.

NOTE
For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName} uboot 36 stage3.tcl is needed.

11.If you used a different PIC value, in the Debugger Shell, issue the following command to reset PIC load
address to the location specified in u-boot . elf.

setpicloadaddr reset

12'From the Debug view toolbar, select the Instruction Stepping Mode (H>) command.

13'From the Debug view toolbar, select the Step Into (.) command to step into cpu_init_f.

You can set breakpoints and use the Step Over, Step Into, and Step Out commands from line 396 in start.s
(bl cpu_init f) toline 980 in start.S (blr /* NEVER RETURNS! */).

NOTE
To access breakpoints set on a previous debug session after changing the PIC address,
you need to disable and enable back those breakpoints after the PIC value has been
changed.

7.6.4.2.4 Debugging U-Boot in RAM
This section tells how to debug U-Boot in RAM using a NOR flash device.

To debug U-Boot in RAM:

1. In the Debugger Shell view, issue the following command to reset PIC load address to RAM space:

setpicloadaddr Oxxxxx0000

NOTE
The address printed by U-Boot at line "Now running in ram" is Oxxxxx0000. You can
also see this address in the Disassembly view and observe the current address space
you are in.

& From the Debug view toolbar, select the Instruction Stepping Mode (I) command.

3. From the Debug view toolbar, select the Step Into (.) command to step into blr.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
272 NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

Figure 98: U-Boot Debug - Running in RAM

B X - O
S1la bne 3b A
3176:

1 mr r3,rS /¥ Init Data polinter *f
520 mr r4,rl0 /* Destination Address *f
21 bl board init r

4. Deselect the Instruction Stepping Mode command when the instruction pointer is at in_ram.

You can now do source-level debugging and set breakpoints in all RAM area, including board_init_r.See
Points to remember on page 267 for more details.

NOTE
Before closing the debug session, change back the alternate load address to flash
address space by issuing the setpicloadaddr 0xFFF40000 command in the
Debugger Shell. Now, you do not need to manually set it from the Debugger Shell in
Stage 1.

7.6.4.3 Debugging U-Boot using SPI and SD/MMC flash

This section explains how to debug U-Boot using the SPI and SD/MMC flash devices in different U-Boot
debug stages.

U-Boot debug using the SPI and SD/MMC flash devices is similar. The only difference between these devices
is how the final image (u-boot .bin and the configuration and control words) is built. For more details, see
Configuring and Building U-Boot on page 262.

After the device has completed the reset sequence, if the ROM location selects the on-chip ROM eSDHC/eSPI
Boot configuration, the e500 core starts to execute code from the internal on-chip ROM. The €500 core
configures the eSDHC/eSPI controller, enabling it to communicate with the external SD/SPI card. The SD/SPI
device should contain a specific data structure with control words, device configuration information, and
initialization code. The on-chip ROM boot code uses the information from the SD/SPI card content to configure
the device, and to copy the initialization code to a target memory device through the eSDHC interface. After all
the code has been copied, the €500 core starts to execute the code from the target memory device. There are
different ways you can utilize the eSDHC/eSPI boot feature. The simplest way is for the on-chip ROM to copy
an entire operating system boot image into the system memory, and then access it to begin execution. This is
the preferred way for small applications and for U-Boot application debug. After the reset sequence, all code is
in RAM at 0x11000000.

The following sections describe four U-Boot debug stages for debugging U-Boot using the SPI and SD/MMC
flash devices:

» Debugging U-Boot before switching address space on page 274

» Debugging U-Boot in translated address space on page 275

« Debugging U-Boot after switching back to initial address space on page 277
» Debugging U-Boot in RAM on page 278

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 273

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

7.6.4.3.1 Debugging U-Boot before switching address space
This section tells how to debug U-Boot in the SPI and SD/MMC flash devices before switching address space.

To debug U-Boot in flash before switching address space:
1. Start the CodeWarrior IDE.

2. Open the CodeWarrior U-Boot project that you created in Creating a CodeWarrior Project to Debug U-Boot
on page 264.

3. Select Run > Debug Configurations. The Debug Configurations dialog appears.

4. From the left pane, expand the CodeWarrior Attach container and select the appropriate launch
configuration.

5. Click Debug. The Debug perspective appears with the core 0 running.
6. Click Reset on the Debug view toolbar.
The Reset dialog appears.
7. In the Run out of reset column, select the checkboxes for all cores except core 0.

After the reset completes, core 0 appears stopped at the reset vector.

NOTE
To jump over the on-chip ROM code that performs block copy from SD EPROM and the
reset sequence, you can set a hardware breakpointat _start_e500 by issuing the bp
-hw _start e500 command.

" From the Debug view toolbar, select the Instruction Stepping Mode (I) command.

" From the Debug view toolbar, select the Step Into (.) command to step intob _start e500.

The start.s file appears in the editor area and the disassembled code with memory addresses appears in
the Disassembly view.

Figure 99: U-Boot Debug - Disassembly View

|8 start.s 22 = 0| B= outline | [5i} Disassembly &2 =g
”~ 1i zr0,2 ”
* glear registers/arrays not reset by hardware */ W OxfEfff000 < (AsmSection)>: 1i rd,2
mtspr L1CSRO, r0D /* invalidate d-cache */
f* L1 ®/f OxfEfff004 < (AsmSection)+4>: mtspr sprldld, ro0
L3 1i 0,2 mtspr L1CSR1, r0 /* invalidate i-cache */
mtepr L1CSRO, x0 /* inwvalidate d-cache 4 Oxfffff008 < (AsmSection)+8>: mtspr sprlldll,x0
mCepT L1C5R1,r0 /* invalidate i-cache
mfspr rl, DBSR
mfspr rl,DBSE Oxfffff00c < (AsmSection)+12>: mfspr rsp,spr304
mtspr DBSR, rl /* Clear all valid bits */ mtspr DBESR, rl /* Clear all wvalid bits */
O0xfEffff010 < (AsmSection)+l6>: mtspr spr304,rsp
Enable L1 Caches early Fad
. * Enable L1 Caches early w
£ >

10.Move the Debug Current Instruction Pointer to _start_e500.

11'Deselect the Instruction Stepping Mode (i+) command.

You can now do source-level debugging and set breakpoints in start . s until the address space switch at
the r£i before switch as (start.s, line 326). See Points to remember on page 267 for more details.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
274 NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

7.6.4.3.2 Debugging U-Boot in translated address space
This section tells how to debug U-Boot in the translated address space in the SPl and SD/MMC flash devices.

After you have reached the rfi call, the execution will move to the next stage. You should now use a memory
configuration file for debugging in this section.

It is necessary to inspect the TLB registers to check if there are address spaces translated or to search in the
CW PA10 layout (PA\PA Support\Initialization Files\Memory)) if there are memory configuration files
that match your U-Boot debug scenario.

NOTE
For e500v2 cores (36-bit U-Boot debug only), due to a hardware issue (terminating the
current debug session will put the core in running) another script must be executed
before proceeding further with the instructions provided in this section:

1. Open Debugger Shell view.
2. Execute ${BoardName} uboot 36 stage2 preparation.tcl usingthe

following command:

source /${BoardName} uboot 36 stage2 preparation.tcl

To debug U-Boot in the translated address space in flash before switching back to initial address space
(start.s, bl cpu_init_f, line 396):

1. Click ® on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.
3. Expand the CodeWarrior group and select the appropriate launch configuration.
4. In the Connection panel, click Edit next to the Connection drop-down list.
The Properties for <connection> dialog appears.
5. Click Edit next to the Target drop-down list.
The Properties for <Target> dialog appears.
6. On the Memory tab, select the checkbox for the respective core in the Memory configuration column.
7. Click the ellipsis button in the Memory configuration file column.
The Memory Configuration File dialog appears.

8. Click File System and select the memory configuration file from the following path:

<CWInstallDir>\PA\PA Support\Initialization Files\Memory\

NOTE

To select an appropriate memory configuration file, it is necessary to inspect the TLB
registers and check if there are address spaces translated or if there are memory
configuration files available in the CodeWarrior layout that match your U-Boot debug
scenario.

9. Click OK to close the Memory Configuration File dialog.

10.Click OK to close the Properties for <Target> dialog.

11.Click OK to close the Properties for <connection> dialog.

12 Click Debug.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 275

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

The instruction pointer is now on the rfi function call.

NOTE
For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName} uboot 36 stage2.tcl is needed.

13.In the Debugger Shell, issue the following command to reset PIC load address to the location specified in
u-boot.elf:

setpicloadaddr reset

14'From the Debug view toolbar, select the Instruction Stepping Mode (i+) command.

15.Ensure the Debug Current Instruction Pointer is at r£i. From the Debug view toolbar, select the Step Into
(2.) command to step into r£i. The Disassembly view appears.
Figure 100: U-Boot Debug - Translated Address Space in Flash

|8] resetvec.s 5] e = O || B= outline | [} Disassembly 52
232 A mtspr SPEN_SRR1, ré
233 mtspr S5PRN_SRRO,r7 Oxfffff17c < (AsmSection)+132>: mtsrrl ré
234 mtepr SPRN_SRR1,ré rfi
235 rfi » OxfEfFff180 < (AsmSection)+136>: rfi

237switch as: switch_as:

23 L1 is used for initial RAM */ /* L1 DCache is used for initial RAM */
240 f#% Bllocate Initial BRLM in data cach /% Bllocate Initial RAM in data cache.
241 */ */
242 lis r3,CFG_INIT RAM ADDREh lis r3,CFG_INIT RAM ADDRER
ori r3,r3,CFG_INIT RAM ADDREL Oxfffff184 < (AsmSection)+140>: 1lis r3,-560
mfspr r2, LICFGO ori r3,r3,CFG_INIT_ RAM ADDREL
andi. r2, r2, O=x1ff Oxfffff188 < (AsmSection)+144>: ori r3,r3,50000
/* mache size * 1024 / (2 * 17 line ¥ mfanr 2. TICFEN
>

16.Deselect the Instruction Stepping Mode command when the instruction pointer is at switch_as.

You can set breakpoints and use the Step Over, Step Into, and Step Out commands from line (switch_as:
label) in start.stoline (/* switch back to AS = 0 */)in start.S. At these locations, the Instruction
Address Space (IS) and Data Address Space (DS) bits from MSR are cleared, so that the processor uses
only the TLB entries with TS = 0. See Points to remember on page 267 for more details.

NOTE
To set breakpoints in Stage2 after rfi (start.S), you can set the Alternate Load
Address by using setpicloadaddr reset. For low-end processors (€500v1, e500v2), set
DE (Debug Enable) from MSR register via the Debugger Shell or the Registers view.
You can then perform the set, resume, and remove operations on the breakpoints.

NOTE
To access breakpoints set on a previous debug session after changing the PIC address
you will need to disable and enable back those breakpoints after the PIC value has been
changed.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
276 NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

7.6.4.3.3 Debugging U-Boot after switching back to initial address space
This section tells how to debug U-Boot in the SPI and SD/MMC flash devices after switching back to initial
address space.

While debugging U-Boot when you reach the cpu_init_ £ call you are back to address space 0; you now need
to remove the memory configuration file used in the previous section or set another memory configuration file
for U-Boot compiled on 36 bits.

To debug U-Boot in flash after switching back to initial address space:

1. Click ® on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.
3. From the left pane, in the CodeWarrior Attach container, select the appropriate launch configuration.
4. In the Connection panel, click Edit next to the Connection drop-down list.
The Properties for <connection> dialog appears.
5. Click Edit next to the Target drop-down list.
The Properties for <Target> dialog appears.

6. On the Memory tab, deselect the checkbox for the respective core in the Memory configuration column to
remove the memory configuration file you had set in the previous section.

NOTE
If required, you can set another memory configuration file for U-Boot compiled on 36
bits on the Memory tab.

7. Click OK to close the Memory Configuration File dialog.
8. Click OK to close the Properties for <Target> dialog.
9. Click OK to close the Properties for <connection> dialog.

10.Click Debug.

The instruction pointer is now on the cpu_init_f function call.

NOTE
For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName} uboot 36 stage2.tcl is needed.

11.If you used a different PIC value, issue the following command in the Debugger Shell to reset PIC load
address to the location specified in u-boot .elf.

setpicloadaddr reset

12'From the Debug view toolbar, select the Instruction Stepping Mode (i) command.

13'From the Debug view toolbar, select the Step Into (-) command to step into cpu_init_f.
You can set breakpoints and use the Step Over, Step Into and Step Out commands from line 396 in start.s
(bl cpu init f) toline 980 in start.S (blr /* NEVER RETURNS! */).

NOTE
To access breakpoints set on a previous debug session after changing the PIC address,
you will need to disable and enable back those breakpoints after the PIC value has been
changed.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 277

V¥ ¢
i

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

7.6.4.3.4 Debugging U-Boot in RAM
This section tells how to debug U-Boot in RAM using the SPl and SD/MMC flash devices.

To debug U-Boot in RAM:
1. In the Debugger Shell, issue the following command to reset PIC load address to RAM space:

setpicloadaddr Oxxxxx0000

NOTE
0xxxxx0000 is the address printed by U-Boot at line "Now running in ram". You can also
see this address in the Disassembly view and observe the current address space you
are in.

From the Debug view toolbar, select the Instruction Stepping Mode (i+) command.

From the Debug view toolbar, select the Step Into (-) command to step into b1r. The Disassembly
view appears.

Figure 101: U-Boot Debug - Running in RAM

E ¢ =g
la bne Sb A
176:

519 mr r3,rS /% Init Data pointer *f
920 mr r4,rl0 /* Destination Address & f

921 bl board init_r

4. Deselect the Instruction Stepping Mode command when the instruction pointer is at in_ram.

You can now do source level debugging and set breakpoints in all RAM area, including board _init r. See
Points to remember on page 267 for more details.

NOTE
Before closing the debug session, change back the alternate load address to flash
address space by issuing the setpicloadaddr 0xFFF40000 command in the
Debugger Shell. Now, you do not need to manually set it from the Debugger Shell in
Stage 1.

7.6.4.4 Debugging U-Boot using NAND flash

This section explains how to debug U-Boot using the NAND flash device in different U-Boot debug stages.
The following sections describe four U-Boot debug stages for debugging U-Boot using the NAND flash device:
» Debugging U-Boot before switching address space on page 279

» Debugging U-Boot in translated address space on page 279

» Debugging U-Boot after switching back to initial address space on page 281

» Debugging U-Boot in RAM on page 282

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
278 NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

7.6.4.4.1 Debugging U-Boot before switching address space

This section tells how to debug U-Boot in a NAND flash device before switching address space.
To debug U-Boot in flash before switching address space:
1. Start the CodeWarrior IDE.

2. Open the CodeWarrior U-Boot project that you created in Creating a CodeWarrior Project to Debug U-Boot
on page 264.

3. Select Run > Debug Configurations. The Debug Configurations dialog appears.

4. From the left pane, expand the CodeWarrior Attach container and select the appropriate launch
configuration.

5. Click Debug. The Debug perspective appears with the core 0 running.
6. Click Reset on the Debug view toolbar.
The Reset dialog appears.
7. In the Run out of reset column, select the checkboxes for all cores except core 0.
After the reset completes, core 0 appears stopped at the reset vector. In the Debugger Shell view, issue the

following command to enter the PIC alternate load address:

setpicloadaddr OxFFF40000

" From the Debug view toolbar, select the Instruction Stepping Mode (ing) command.

" From the Debug view toolbar, select the Step Into (2.) command to step intob _start e500.

The start.s file appears in the editor area and the disassembled code with memory addresses appear in
the Disassembly view.

Figure 102: U-Boot Debug - Disassembly View

|5 start.5 2 =0 EE Outline | [m} Disassembly &2 =0
~ 1i 0,2 A
* clear registers/arrays not reset by hardware #*/ » 0xfffff000 < (AsmSection)>: 1i xr0,2

mtspr L1CSRO, r0 /* invalidate d-cache */

f* L1 =/ Oxfffff004 < (AsmSection)+4>: mtspr sprl0l0,x0

> 1i 0,2 mtEpr L1CSR1,r0 /* invalidate i-cache */
mtspr L1C3RO, 0 OxfEfff008 <« (AsmSection)+8>: mtspr sprldll, 0

mtspr L1CSR1,x0

mfspr rl, DBSR
mfspr rl,DBSR OxfEffff00c < (AsmSection)+12»: mfspr rsp,spr304
mtepr DBSR, rl /* Clear all valid bits */ mtepr DBESER, rl /* Clear all wvalid bits */
OxfEEFff010 « (AsmSection)+16>: mtspr spr304, rap

ches early /*

- * Enable L1 Caches early v
< ¥

10.Move the Debug Current Instruction Pointer to _start_e500.

11'Deselect the Instruction Stepping Mode (i+) command.

You can now do source-level debugging and set breakpoints in start . s until the address space switch at
the rfi before switch_as (start.s, line 326). See Points to remember on page 267 for more details.

7.6.4.4.2 Debugging U-Boot in translated address space

This section tells how to debug U-Boot in the translated address space in a NAND flash device.

After you have reached the rfi call the execution moves to the next stage. You should now use a memory
configuration file for debugging in this section.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 279

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

It is necessary to inspect the TLB registers to check if there are address spaces translated or to search in the
CW PA10 layout (PAIPA_Supportlinitialization_Files|Memory)) if there are memory configuration files that match
your U-Boot debug scenario.

NOTE
For e500v2 cores (36-bit U-Boot debug only), due to a hardware issue (terminating the
current debug session will put the core in running) another script must be executed
before proceeding further with the instructions provided in this section:

» Open Debugger Shell view.
+ Execute ${BoardName} uboot 36 stage2 preparation.tcl using the

following command:

source /${BoardName} uboot 36 stage2 preparation.tcl

To debug U-Boot in the translated address space in flash before switching back to initial address space
(start.s, bl cpu_init_f, line 396):

1. Click ¥ on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.
3. From the left pane, in the CodeWarrior Attach container, select the appropriate launch configuration.
4. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.
5. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.
6. On the Memory tab, select the checkbox for the respective core in the Memory configuration column.
7. Click the ellipsis button in the Memory configuration file column.

The Memory Configuration File dialog appears.

8. Click File System and select the memory configuration file from the path:

<CWInstallDir>\PA\PA Support\Initialization Files\Memory\

NOTE
To select an appropriate memory configuration file, it is necessary to inspect the TLB
registers and check if there are address spaces translated or if there are memory
configuration files available in the CodeWarrior layout that match your U-Boot debug
scenario.
9. Click OK to close the Memory Configuration File dialog.
10.Click OK to close the Properties for <Target> dialog.
11.Click OK to close the Properties for <connection> dialog.
12.Click Debug.
The instruction pointer is now on the rfi function call.
NOTE

For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName} uboot 36 stage2.tcl is needed.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
280 NXP Semiconductors

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

13.In the Debugger Shell, issue the following command to reset PIC load address to the location specified in
u-boot.elf.

setpicloadaddr reset

14'From the Debug view toolbar, select the Instruction Stepping Mode (i+) command.

15.Ensure the Debug Current Instruction Pointer is at r£i. From the Debug view toolbar, select the Step Into
(2.) command to step into r£i. The Disassembly view appears.
Figure 103: U-Boot Debug - Translated Address Space in Flash

|5 resetvec.s |.5] 53 = B || 5= outline | &} Disassembly &3
232 - mtspr SPRN_SER1, ré
233 mLspr SPREN SERO,r7 Oxfffff17c < (AsmSection)+132>: mtsrrl ré
234 mtspr SPRN_SERI1, ré rfi
235 rfi » ORFFFFFf180 « (AsmSection)+136>: rfi
23T7switch as: switch as=:
238/* L1 DCache is used for initial RAM =/ /* L1 DCache is used for initial RAM =/
24 f* BAllocate Initial RAM in data cach /* Bllocate Initial RAM in data cache.
241 *f *J
242 1lis r3,CFG_INIT_RAM ADDREh 1lis r3,CFG_INIT_RAM RDDREh
243 ori r3,r3,CFG_INIT_RZM ADDREL Oxfffff184 < (AsmSection)+140>: lis r3,-560
244 mfspr rZ2, LI1CFGO ori IB,IS,CFG_INIT_RRM_ADDR@l
245 andi. r2, r2, O0x1ff OxfEfff188 < (AsmSection)+144>: ori r3,r3,50000
4F f* cache =ize * 1024 / (2 * 1.7 Tine b mfanr 7. TICFGEN
< >

16.Deselect the Instruction Stepping Mode command when the instruction pointer is at switch_as.

You can set breakpoints and use the Step Over, Step Into, and Step Out commands from line (switch_as:
label) in start.stoline (/* switch back to AS = 0 */)in start.S. At these locations, the Instruction
Address Space (IS) and Data Address Space (DS) bits from MSR are cleared, so the processor will use only
the TLB entries with TS = 0. See Points to remember on page 267 for more details.

NOTE
To access breakpoints set on a previous debug session after changing the PIC address,
you will need to disable and enable back those breakpoints after the PIC value was
changed.

NOTE
To set breakpoints in Stage2 after rfi (start . S), you can set the Alternate Load Address
by using setpicloadaddr reset. Forlow-end processors (€500v1, e500v2), set DE
(Debug Enable) from MSR register using the Debugger Shell or the Registers view. You
can then perform the set, resume, and remove operations on the breakpoints.

7.6.4.4.3 Debugging U-Boot after switching back to initial address space

This section tells how to debug U-Boot in a NAND flash device after switching back to initial address space.

While debugging U-Boot when you reach the cpu_init_ £ call you are back to address space 0; you now need
to remove the memory configuration file used in the previous section or set another memory configuration file
for U-Boot compiled on 36 bits.

To debug U-Boot in flash after switching back to initial address space:
1. Click ® on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 281

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

3. From the left pane, in the CodeWarrior Attach container, select the appropriate launch configuration.
4. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.
5. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.

6. On the Memory tab, deselect the checkbox for the respective core in the Memory configuration column to
remove the memory configuration file you had set in the previous section.

If required, you can set another memoryr\lc(c?;‘lizguration file for U-Boot compiled on 36
bits on the Memory tab.

7. Click OK to close the Memory Configuration File dialog.

8. Click OK to close the Properties for <Target> dialog.

9. Click OK to close the Properties for <connection> dialog.

10.Click Debug.

The instruction pointer is now on the cpu_init_f function call.

NOTE
For e500v2 cores (36-bit u-boot debug only) a reset using $
{BoardName} uboot 36 stage2.tcl is needed.

11.If you used a different PIC value, in the Debugger Shell view, issue the following command to reset PIC
load address to the location specified in u-boot .elf.

setpicloadaddr reset

12'From the Debug view toolbar, select the Instruction Stepping Mode (i) command.

13'From the Debug view toolbar, select the Step Into (-) command to step into cpu_init_ f.

You can set breakpoints and use the Step Over, Step Into and Step Out commands from line 396 in start.s
(bl cpu_init f) toline 980 in start.S (blr /* NEVER RETURNS! */).

NOTE
To access breakpoints set on a previous debug session after changing the PIC address
you will need to disable and enable back those breakpoints after the PIC value was
changed.

7.6.4.4.4 Debugging U-Boot in RAM
This section tells how to debug U-Boot in RAM using a NAND flash device.

To debug U-Boot in RAM:

1. In the Debugger Shell view, issue the following command to reset PIC load address to RAM space:

setpicloadaddr Oxxxxx0000

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
282 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

NOTE
0xxxxx0000 is the address printed by U-Boot at line "Now running in ram". You can also
see this address in the Disassembly view and observe the current address space you
are in.

& From the Debug view toolbar, select the Instruction Stepping Mode (I) command.

3. From the Debug view toolbar, select the Step Into (.) command to step into blr.

Figure 104: U-Boot Debug - Running in RAM

LS| £ - B
S9la bne 5Sb A
3176:

1 mr r3,rS9 /* Init Data pointer =
920 mr r4,rl0 /* Destination Address =
21 Bl board init r

1 L b
*

3
H
0|
m
o
=]
)
H
m
w
W
H
rr
m
=]
=}
w
[=}
(=
H
m
m
W
H
i
ot
[al
H
In]
m
ot
£
)
[
;
m
W
w

4. Deselect the Instruction Stepping Mode command when the instruction pointer is at in_ram.

You can now do source-level debugging and set breakpoints in all the RAM area, including board init r.
See Points to remember on page 267 for more details.

NOTE
You can enter the board_init_r, nand boot, and uboot functions. Beginning with
the uboot function, the second image is relocated to RAM at 0x11000000 and you begin
to execute the entire code again from RAM address space. See Points to remember on
page 267 to avoid any debugging issues.

NOTE
Before closing the debug session, change back the alternate load address to flash
address space by issuing the setpicloadaddr 0xFFF40000 command in the
Debugger Shell. Now, you do not need to manually set it from the Debugger Shell in
Stage 1.

7.7 Debugging the Linux Kernel
This section shows you how to use the CodeWarrior debugger to debug the Linux kernel.

The Linux operating system (OS) works in two modes, kerne/ mode and user mode. The Linux kernel operates
in kernel mode and resides at the top level of the OS memory space, or kernel space. The kernel performs the
function of a mediator among all the currently running programs and between the programs and the hardware.
The kernel manages the memory for all the programs (processes) currently running and ensures that the
processes share the available memory such that each process has enough memory to function adequately. In
addition, the kernel allows application programs to manipulate various hardware architectures via a common
software interface.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 283

Debugging Embedded Linux Software

Debugging the Linux Kernel

User mode uses the memory in the lowest level of the OS memory space, called the user space or the application
level. At the application level, a program accesses memory or other hardware through system calls to the kernel
as it does not have permission to directly access these resources.

Debugging the Linux kernel involves the following major actions:

® N o a bk~ Db =

9.

Setting Up the Target Hardware on page 284

Installing the Board Support Package (BSP) on page 286

Configuring the Build Tool on page 287

Configuring the Linux Kernel on page 287

Creating a CodeWarrior Project using the Linux Kernel Image on page 289
Configuring the kernel project for debugging on page 290

Debugging the kernel to download the kernel, RAM disk, and device tree on page 301
Debugging the kernel based on MMU initialization on page 302

Debugging the kernel by attaching to a running U-Boot on page 305

7.7.1 Setting Up the Target Hardware

Before you use the CodeWarrior IDE to debug the Linux kernel, you need to set up the target hardware.

One requirement of the setup is to have a debug probe connected between the CodeWarrior debug host and
target board.

The figure below illustrates the setup required to use the IDE to debug the Linux kernel running on a Power
Architecture target board.

Figure 105: Setup for Kernel Debugging Using the CodeWarrior IDE

CodeWarrier Debug Host

Freescale BSP for vour target
— board

Hamdware debug probe connected to
the tamet board

Powsr Architecturs
Targst Board

Connect the hardware debug probe between the target board and CodeWarrior debug host. Kernel debugging
is possible using a Linux-hosted or Windows-hosted CodeWarrior installation. There are a variety of debug

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

284 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

probes. The current kernel debugging example uses the USB TAP. Connection information for other debug
probes can be determined from documentation provided with the probes.

The following subsections provide the steps to set up the target hardware:

1. Connect USB TAP on page 285

2. Establish a Console Connection on page 285

7.7.1.1 Connect USB TAP

This section explains how to connect the USB TAP between the CodeWarrior debug host and target board.
To connect the USB TAP, perform these steps:

1. Ensure that the power switch on the target board is OFF.

2. Connect the square end (USB "B" connector) of the USB cable to the USB TAP.

3. Connect the rectangular end (USB "A" connector) of the USB cable to a free USB port on the host Linux
machine.

4. Connect the ribbon cable coming out of the USB TAP to the 16-pin connector on the target board.

5. Connect the power supply to the USB TAP.

7.7.1.2 Establish a Console Connection

You need to establish a console connection before applying power to the target board, so that boot messages
can be viewed in a terminal window.

Establishing the console connection allows you to:

* View target generated log and debug messages

» Confirm successful installation of the bootloader (U-Boot)

+ Use the bootloader to boot the Linux OS

 Halt the booting of the Linux OS

The bootloader receives keyboard input through a serial port that has default settings 115,200-8-N-1.

Follow these steps to establish a console connection to the target hardware.

1. Connect a serial cable from a serial port of the CodeWarrior debug host to a serial port of the target board.

2. On the CodeWarrior debug host computer, open a terminal-emulator program of your choice (for example,
minicom for a Linux host).

3. From the terminal-emulator program, open a console connection to the target hardware.

Use the connection settings given in the table below.

Table 132: Terminal Connection Settings

Name Setting

Baud rate 115, 200 bits per second
Data bits 8

Parity None

Stop bits 1

Flow control Hardware

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 285

Debugging Embedded Linux Software
Debugging the Linux Kernel

NOTE
See the board specific README file inside the stationery wizard project to find out more
details on the serial connection settings, changing the serial port on the board, and the
type of serial cable to use.

4. Test the connection by turning on the test board with the power switch and viewing the boot messages in
the console connection.

7.7.2 Installing the Board Support Package (BSP)

This section describes installation of a BSP on a Linux computer.

NOTE
The BSP versions keep changing frequently. For different BSP versions, you might
encounter build environments based on Itib, bitbake, or other tools. The subsequent
sections will describe necessary procedures and use specific examples from real
Freescale BSPs for illustration. The examples in these sections will need to be adapted
based on the BSP versions or build tools you are currently using.
To install a BSP, perform the following steps:

1. On the Linux computer, download the Board Support Package (BSP) for your target hardware to install
kernel files and Linux compiler toolchains on your system.

Board Support Package image files for target boards are located at http://www.freescale.com/linux.

2. Download the BSP image file for your target board.

NOTE
You will need to log in or register to download the BSP image file.

The downloaded image file has an . iso extension.

For example,
QorIQ-DPAA-SDK-<yyyymmdds>-yocto.iso
3. Mount the image file to the CDROM as root, or using "sudo":

<sudo> mount -o loop QorIQ-DPAA-SDK-<yyyymmdd>-yocto.iso /mnt/cdrom

NOTE
sudo is a Linux utility that allows users to run applications as root. You need to be
setup to run sudo commands by your system administrator to mount the BSP image
files.

4. Execute the BSP install file to install the build tool files to a directory of your choice, where you have
privileges to write files:

/mnt/cdrom/install

NOTE
The BSP must be installed as a non-root user, otherwise the install will exit.

5. Answer the questions from the installation program until the file copy process begins.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
286 NXP Semiconductors

http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_BSP&tid=vanLINUX

6.

Debugging Embedded Linux Software
Debugging the Linux Kernel

You will be prompted to input the required build tool install path. Ensure you have the correct permissions for
the install path.

Upon successful installation, you will be prompted to install the 1ISO for the core(s) you want to build.

For example, if you want to build the SDK for P4080, that is a €500mc core, then you have to install the ISO
images for e500mc core:

c23174e5e3d187£43414e5b4420e8587 QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.partl
292c6elc5e97834987fbdb5f69635ald QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.part2

NOTE
You can see the SDK User Manual for instructions about how to build the BSP images
and run different scenarios from the iso/help/documents/pdf location.

7.7.3 Configuring the Build Tool

After installing the BSP, you need to configure the build tool and build the Linux kernel and U-boot images for
CodeWarrior debug.

For more information on configuring the build tool, see the SDK User Manual from iso/help/documents/pdf.

7.7.4 Configuring the Linux Kernel

After you complete the BSP configuration, configure the Linux kernel to enable CodeWarrior support.

To configure the Linux kernel, perform the following steps:

1.

Launch a terminal window and navigate to the <yocto installtion path>/build <boards> release
folder.

. Execute the following command to get a new and clean kernel tree:

bitbake -c¢ configure -f virtual/kernel

. Configure the Linux kernel using the various configuration options available in the kernel configuration user

interface. For example, run the following command to display the kernel configuration user interface:
bitbake -c menuconfig virtual/kernel

The kernel configuration user interface appears.

. CodeWarrior supports both SMP and non-SMP debug. To change the default settings, you can make

changes by selecting the Processor support options.

To run a monolithic kernel, you do not need to enable loadable module support. However, during the
debug phase of drivers, it is easier to debug them as loadable modules to avoid rebuilding the Linux kernel
on every debug iteration. If you intend to use loadable modules, select the Loadable module support menu
item.

Select the Enable loadable module support option.

Select the Module unloading option.

NOTE
If you want to use the rmmod -f <mod_ name> command for kernel modules under
development, select the Forced module unloading option.

Select Exit to return to the main configuration menu.

Select Kernel hacking.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 287

|
y

'
A

Debugging Embedded Linux Software
Debugging the Linux Kernel

10.Select Include CodeWarrior kernel debugging by pressing Y. Enabling this option allows the CodeWarrior
debugger to debug the target. Select other desired configuration options for Linux kernel debug.

11.Select Exit to return to the main configuration menu.

12.Select the General Setup option.

13.Select Configure standard kernel features (expert users) and ensure that the Sysctl syscall support option
is selected.

14.If you are using the Open Source Device Tree debugging method, under the General Setup > Configure
standard kernel features (expert users) option, then select:

» Load all symbols for debugging/ksymoops.

* Include all symbols in kallsyms.

These settings are optional. They aid thgdoeTbEugging process by providing the vmlinux
symbols in /proc/kallsyms.
15.Select Exit to exit the configuration screen.
16.Select Yes when asked if you want to save your configuration.
17 Execute the following command to rebuild the Linux kernel:
bitbake virtual/kernel

The uncompressed Linux kernel image with debug symbols, vmlinux.elf, is created.

NOTE
The location of the images directory might differ based on the BSP version being used.
For the correct location of where the Linux kernel images are stored, see the SDK User
Manual from iso/help/documents/pdf.

You just created a Linux kernel image that contains symbolic debugging information.

Now, you can use this image and create a CodeWarrior project for debugging the Linux kernel. The various use
cases for the Linux kernel debug scenario are:

» CodeWarrior allows you to download this Linux kernel image (vmlinux.elf), RAM disk, and dtb files to the
target.

* You can start the Linux kernel and RAM disk manually from U-Boot. The U-Boot, the kernel, RAM disk, and
dtb images are written into flash memory.

* You can download the Linux kernel and RAM disk from CodeWarrior without using U-Boot.

* You can perform an early kernel debug before the MMU is enabled or debug after the Linux kernel boots
and the login prompt is shown.

The Linux kernel debug scenarios are explained in the following sections:

» Creating a CodeWarrior Project using the Linux Kernel Image on page 289

» Configuring the kernel project for debugging on page 290

« Debugging the kernel to download the kernel, RAM disk, and device tree on page 301
» Debugging the kernel based on MMU initialization on page 302

» Debugging the kernel by attaching to a running U-Boot on page 305

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
288 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

7.7.5 Creating a CodeWarrior Project using the Linux Kernel Image

After creating a Linux kernel image with symbolic debugging information, you need to create a CodeWarrior
project using the kernel image.

To create a CodeWarrior project:

1. Start the CodeWarrior IDE from the Windows system.

2. Select File > Import. The Import wizard appears.

3. Expand the CodeWarrior group and select CodeWarrior Executable Importer.
4. Click Next.

The Import a CodeWarrior executable file page appears.

o

Specify a name for the project, to be imported, in the Project name text box.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

NOTE
An existing directory cannot be specified for the project location.
7. Click Next.
The Import C/C++/Assembler Executable Files page appears.
8. Click Browse next to the Executable field.
9. Select the vmlinux file obtained.
10.Click Open.
11.From the Processor list, expand the processor family and select the required processor.
12.Select the Bareboard Application toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

13.Select the Linux Kernel option from the Target OS list.

NOTE

Selecting Linux Kernel will automatically configure the initialization file for kernel
download, the default translation settings (these settings need to be adjusted according
to the actual Linux kernel configuration) in the OS Awareness tab, and the startup stop
function to start kernel.

14 Click Next.

The Debug Target Settings page appears.
15.From the Debugger Connection Types list, select the required connection type.

16.Specify the settings, such as board configuration, launch configuration, connection type, and TAP address
if you are using Ethernet or Gigabit TAP.

17 Click Next.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 289

V¥ ¢
i

Debugging Embedded Linux Software
Debugging the Linux Kernel

The Configurations page appears.
18.From the Core index list, select the required core.
19.Click Finish.
The wizard creates a project according to your specifications.
You can access the project from the CodeWarrior Projects view on the workbench.
7.7.5.1 Updating the Linux Kernel Image
By modifying the Linux kernel image, you can update the project you just created.

You have built a new Linux kernel image file, vmlinux.el£, with some changes as compared to the current
vmlinux.elf file being used in the CodeWarrior project you created. The following subsections present two
scenarios to replace the current vmlinux.elf file with the new vmlinux.elf file:

« Cache Symbolics Between Sessions is Enabled on page 290

+ Cache Symbolics Between Sessions is Disabled on page 290

7.7.5.1.1 Cache Symbolics Between Sessions is Enabled

This section provides steps to replace the current vmlinux.elf file with the new vmlinux.elf file when the
cache symbolics between sessions is enabled.

Follow these steps:
1. Terminate the current debug session.
2. Right-click in the Debug window.

3. From the context menu, select Purge Symbolics Cache. The old vmlinux.elf file is being used by the
debugger, but after you select this option, the debugger stops using this file in the disk.

4. Copy the new vmlinux.elf file over the old file.

Now, when you reinitiate a debug session, the updated vmlinux.elf file is used for the current debug
session.

7.7.5.1.2 Cache Symbolics Between Sessions is Disabled

This section provides steps to replace the current vmlinux.elf file with the new vmlinux.elf file when the
cache symbolics between sessions is disabled.

Follow these steps:
1. Terminate the current debug session.
2. Copy the new vmlinux.elf file over the old file.

Now, when you reinitiate a debug session, the updated vmlinux.elf file is used for the current debug
session.

7.7.6 Configuring the kernel project for debugging

After you have created a CodeWarrior project using the Linux kernel image, the next action is to configure this
project for debugging.

» Configuring a download kernel debug scenario on page 291
» Configure an attach kernel debug scenario on page 291
» Setting up RAM disk on page 294

» Using Open Firmware Device Tree Initialization method on page 297

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
290 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

7.7.6.1 Configuring a download kernel debug scenario
This section describes how to configure a download debug scenario.

For a download debug scenario, CodeWarrior:
* Resets the target
* Runs the initialization file

+ Downloads the .elf£ file to the target; from the vmlinux.elf file, CodeWarrior writes the binary file to the
target memory

+ Sets the entry point based on the information available from the .e1f file
* Runs the target

For a download debug scenario, to boot the Linux kernel, CodeWarrior requires the RAMDISK or ROOTFS file
in addition to the vmlinux.elf£ file. This file is also built along with the image files when the kernel is compiled
using the build tool. CodeWarrior also requires a DTB file that specifies the resources to be used by the kernel
during its execution. For a download debug scenario, you need to configure the vmlinux.elf file, RAMDISK or
ROOTFS file, and the DTB files to be downloaded into the target memory. All these files can be found in the
specific target images folder.

NOTE
The location of the images directory might differ based on the BSP version being used.
For the correct location of where the kernelimages are stored, see the SDK User Manual
in iso/help/documents/pdf.

These files are specified in the Download launch configuration after you have created the CodeWarrior project
with the Linux kernel image. Table 134. Kernel Project Download Launch Configuration Settings on page 309
describes the settings you need to provide in the launch configuration.

7.7.6.2 Configure an attach kernel debug scenario
This section describes how to configure an attach debug scenario.

For the attach debug scenario, CodeWarrior does not download any file on the target. The kernel is started
directly from U-Boot. You need to burn the U-Boot image to the flash memory of the hardware.

NOTE
See the Burning U-Boot fo Flash cheat sheet for the entire procedure for burning U-Boot
to flash. To access the cheat sheets, select Help > Cheat Sheets from the CodeWarrior
IDE.

After the boot process, the U-Boot console is available and the Linux kernel can be started manually from U-
Boot. For this, the following files can be either written into flash memory or can be copied from U-Boot using
TFTP:

* Binary kernel image file, uimage

» Ramdisk to be started from U-Boot, for example,
<target version>.rootfs.ext2.gz.u-boot

« dtb file, for example, uImage-<target versions.dtb

After the Linux boot process, the Linux login appears and you can connect to debug the kernel using the
CodeWarrior Attach launch configuration. As all the files are manually loaded from U-Boot, these files must not
be specified in the launch configuration.

The table below describes the settings you need to provide in the launch configuration.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 291

Debugging Embedded Linux Software
Debugging the Linux Kernel

To specify the launch configuration settings in CodeWarrior:

1. Select Run > Debug Configurations.

2. Enter the launch configuration settings, given in the table below, in the Debug Configurations dialog.

Table 133: Kernel Project Attach Launch Configuration Settings

Debug Window Component

Settings

Main Tab

Debugger Tab > Debugger options >
Symbolics Tab

Debugger Tab > Debugger options > OS
Awareness Tab

Debugger Tab > Debugger options > OS
Awareness Tab > Boot Parameters

Select an appropriate system (if existing) from the Connection
drop-down list or define a new system.

Select the Cache Symbolics between sessions checkbox. The
symbolics are loaded from the elf file to the debugger for the first
session only. This shows a speed improvement for vmlinux.elf
as the size is bigger than around 100 MB.

Select Linux from the Target OS drop-down list.

Disable all settings on the Boot Parameters tab.

Table continues on the next page...

To define a new system, click New.

Select Hardware or Simulator Connection from the CodeWarrior
Bareboard Debugging list. Click Next.

Specify a name and a description for the connection.

Select an appropriate target (if existing) from the Target drop-
down list or define a new target.

To define a new target, click New on the Hardware or Simulator
Connection dialog.

Select Hardware or Simulator Target from the CodeWarrior
Bareboard Debugging list. Click Next.

Specify a name and a description for the target.

Select a target from the Target type drop-down list. On the
Initialization tab, ensure there are no initialization files selected.

Click Finish to create the target and close the Hardware or
Simulator Target dialog.

Select the type of connection you will use from the Connection
type drop-down list.

Click Finish.

Select all the cores on which Linux is running (for example, core
0 for single-core or cores 0-7 for 8-core SMP).

NOTE
For details on the options available on
the Boot Parameters tab, see Setting
up RAM disk on page 294.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

292

NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

Table 133: Kernel Project Attach Launch Configuration Settings (continued)

Debug Window Component

Settings

Debugger Tab > Debugger options > OS
Awareness Tab > Debug Tab

Debug tab

Select the Enable Memory Translation checkbox

Physical Base Address is set to value
CONFIG_KERNEL_START (0x0)

Virtual Base Address is set to value CONFIG_KERNEL_START
(0xc000 0000 for 32 bits, and 0xC000 0000 0000 0000 for
64bits).

Memory Size is the kernel space translation size.

NOTE
The values shown above should be
set as configured in the linux config
file (.config). You can read the
MMU registers to verify what you
have configured and do a correction,
if required.

Select Enable Threaded Debugging Support checkbox
Select Enable Delayed Software Breakpoint Support

If required, also select Update Background Threads on Stop.
When enabled, the debugger reads the entire thread list when
the target is suspended. This decreases the speed. If the option
is disabled, the speed is increased but the Debug window might
show non-existent threads, as the list is not refreshed.

3. Click the Source page to specify path mappings. Path mappings are not required if the debug host is
similar to the compilation host. If the two hosts are separate, the .e1f file contains the paths for the
compilation host. Specifying the path mappings helps establish paths from compilation host to where the
sources are available to be accessed by the debugger on the debugger host. If no path mapping is
specified, when you perform a debug on the specified target, a source file missing message appears

(shown in the figure below).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

293

g |

You can specify RAM disk information in the Boot Parameters tab, which is present on the OS Awareness tab
of the Debugger tab of the Debug Configurations dialog, as shown in the figure below. Table 134. Kernel Project
Download Launch Configuration Settings on page 309 lists the instructions to set up the RAM disk.

Debugging Embedded Linux Software
Debugging the Linux Kernel

Figure 106: Debug View When No Path Mapping is Specified

ﬁDebugE@
oD | 2. 2 & 8|+ &

@M m-|=-

El@ P4080_kernel_Linux_SDK1.2_download (1) [Codewarrior Download]
E| EPPC, wmlinux-3.0. 18-00525-g6 152334, core 0 (Suspended)
: Eluf’} Thread [ID: 0] (Suspended: Signal ‘Halt' received. Description: User halted thread.)
. atomic_dec_return() atomic,h: 165 0xc008b 1cc
= 3 mem_init{) mem.c:354 Oxc06ch338
= 2mm_init() main. c:450 Oxc0&c45f3
E “= 1 (AsmSection){) head_fsl_booke.5: 227 Oxc00003fc
o Crworklimages\P4080_1. 2 \wmlinux-3.0, 18-00525-g6 152334 (3/20/12 11:27 AM)

Can't find & source file at "/data/oit/vocto/sdk-devel linuxarch/powerpcfindude fasm/atomic, h”

View Dizassembly. .. |

Locate File. .. |

Edit Source Lookup Path... |

[apply to Common Source Lookup Path

You can specify the path mappings, either by adding a new path mapping on the Source tab or by clicking
the appropriate buttons (Locate File, Edit Source Lookup Path) that appear when a source path mapping is
not found.

4. Click Apply to save the settings.
5. Click Close.

7.7.6.3 Setting up RAM disk

This section describes specifying RAM disk information that is used by the Linux kernel when it is booted.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

294

NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

Figure 107: Kernel Debug - OS Awareness Tab

Target OS: |Linux |w

Boot Parameters | Debug | Modules
[Enable Command Line Settings

Enable Initial RAM Disk Settings

File Path: | D:\TempYrootfs.ext2.0z

Address: | 0x02000000

Size: 000000000

Download to target

Open Firmware Device Tree Settings

File Path: | p4080sim.dtb

Address: | 0x00600000

Depending on the method you choose for passing parameters to the kernel during kernel initialization, the RAM
disk information can be provided in any of the following ways:

 Flattened Device Tree Initialization on page 295

* Regular Initialization on page 296

7.7.6.3.1 Flattened Device Tree Initialization
In this method, the RAM disk is set up by specifying a device tree file that contains the initialization
information.

To follow the Flattened device tree initialization method:

1. Open the Debug Configurations dialog.

2. Select the Debugger tab.

3. From the Debugger options panel, select the OS Awareness tab.

4. From the Target OS drop-down list, select Linux.

5. On the Boot Parameters tab, select the Enable Initial RAM Disk Settings checkbox.
The options in this group activate.

6. In the File Path field, type the path of the RAM disk.
Alternatively, click Browse to display a dialog that you can use to select this path.

NOTE

The RAM disk is created by the build tool and not by the kernel. It contains the initial file
system. For details, see the SDK User Manual in iso/help/documents/pdf.

7. In the Address text box, enter 0x02000000, or another appropriate base address where you want the RAM
disk to be written.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 295

|
y

'
A

Debugging Embedded Linux Software

Debugging the Linux Kernel

8.

9.

NOTE
Ensure that the address you specify does not cause the RAM disk to overwrite the
kernel. The kernel is loaded to 0x00000000. The address you specify should be greater
than the size, in bytes, of the uncompressed Linux kernel with no debug symbols.

NOTE
If you use a DTB file, ensure to use the same addresses for RAM disk and initial RAM
disk (initrd) start value from the chosen section. The kernel must find the RAM disk
at the address specified in the .dtb file.

In the Size text box, enter the size of the RAM disk file. To copy all the contents of the RAM disk file, enter
zero (0).

Select the Download to target checkbox to download the RAM disk file to the target board.
The debugger copies the initial RAM disk to the target board only if this checkbox is checked.

NOTE
Most embedded development boards do not just use a small initial RAM disk, but a large
root file system. The Download to target option works in both the cases, but for large
file systems it is better to deploy the file directly to the target in the flash memory and
not have it downloaded by the debugger.

7.7.6.3.2 Regular Initialization
In this method, the RAM disk is set up by passing the parameters through the command-line settings using
the Boot Parameters tab.

To follow the regular initialization method:

1.

Open the Debug Configurations dialog.

2. Select the Debugger tab.
3.
4
5

From the Debugger options panel, select the OS Awareness tab.

. From the Target OS drop-down list, select Linux.

. On the Boot Parameters tab, select the Enable Command Line Settings checkbox.

The options in this group activate.
Specify the RAM disk parameters for use in the Command Line field. For example:

* You can specify the following when the regular initialization of the kernel is used:
root=/dev/ram rw"
» Sample NFS parameters:

"root=/dev/nfs ip=10.171.77.26

nfsaddr=10.171.77.26:10.171.77.21

nfsroot=/tftpboot/10.171.77.26"

"root=/dev/nfs rw

nfsroot=10.171.77.21:/tftpboot/10.171.77.26
ip=10.171.77.26:10.171.77.21:10.171.77.254:255.255.255.0:8280x:ethO0:0ff"

where, 10.171.77.21 is the IP address of the NFS serverand 10.171.77.26 is the IP address of the target
platform.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

296

NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

"/tftpboot/10.171.77.26" is a directory on the host computer where the target platform file system is
located.
ng280x" is the host name.

» Sample flash parameters: root=/dev/mtdblock0 or root=/dev/mtdblock2

(depending on your configuration)

7.7.6.4 Using Open Firmware Device Tree Initialization method

You can use the Open Firmware Device Tree Initialization method as an alternate way of loading parameters
to the kernel from a bootloader on Power Architecture processors.

Since downloading the kernel with the CodeWarrior IDE emulates bootloader behavior, the IDE provides this
way of passing the parameters to the kernel.

The Open Firmware Device Tree initialization method involves the following general actions:
Obtain a DTS file on page 297

Edit DTS file on page 299

Compile DTS file on page 300

Test DTB file on page 300

5. Modify a DTS file on page 300

7.7.6.4.1 Obtain a DTS file

A device tree settings (.dts) file is a text file that contains the kernel setup information and parameters.

> N =

To obtain a device tree source file that can be used with CodeWarrior:

1. Configure a TFTP server on a Linux PC.

2. Copy the Linux images on the TFTP server PC in the specific directory. The following files are needed:
» ulmage

* rootfs.ex2.gz.uboot (if this is not present, check if the Target Image Generation > Create a ramdisk
that can be used by u-boot option is enabled.

» A device tree blob (DTB) obtained from the kernel sources. To convert this into a DTB, use the Device
Tree Compiler (DTC) that is available in the BSP:

dtc -£f -b 0 -S 0x3000 -R 8 -I dtb -0 dts <target>.dtb > <target>.dts

NOTE
Standard DTS files are available along with Linux kernel source files in
<SDK_Linux_sources_root>/arch/powerpc/boot/dts. For the exact location
of where the kernel images are stored, see the SDK User Manual from iso/help/
documents/pdf.

3. Power on the target. Wait until the uboot prompt is displayed.

4. Ensure that networking is working on the target. You need to have a network cable plugged in and set
several variables (ipaddr, netmask, serverip, gatewayip), including the IP address of the TFTP server. For
example,

ipaddr=10.171.77.230
netmask=255.255.255.0

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 297

Debugging Embedded Linux Software
Debugging the Linux Kernel

serverip=10.171.77.192
gatewayip=192.168.1.1

5. Check that network connectivity is working by pinging the TFTP server.
ping S$serverip
6. On the uboot prompt, download the DTS and configure it for the current target. For example,

tftp 3000000 /tftpboot/<targets>.dtb
fdt addr 0x3000000

fdt boardsetup

fdt print

7. Copy the output of this command as a DTS file.

8. Modify the memreserve statement at the beginning of the DTS fie. The first parameter is the start address
of the memory reserved for the RAM disk. The second parameter is the size of the RAM disk and must be
modified each time the RAM disk is repackaged as you might add additional packages to the RAM disk.
For example,

/memreserve/ 0x20000000 0x453ecc;

9. Modify the chosen node in the DTS file. The linux,initrd-start argument must be the start address of the
RAM disk, and the linux,initrd-end value must be the end address of the RAM disk. For example,

chosen {
linux, initrd-start = <0x2000000>;
linux, initrd-end = <0x2453ecc>;
linux, stdout-path = "/soc8572@ffe00000/serial@4500";

bi

10.Ensure that the frequencies of the target are correct. If the DTS was generated in U-Boot as described
above, the frequencies should be correct. However, if you update an existing DTS file for a new board
revision, the frequencies might have changed and they need to be corrected in the DTS file.

a. At the U-Boot prompt, inspect the current configuration.
bdinfo

intfreq 1500 MHz
busfreq = 600 MHz

b. The intfreq value from the U-Boot output must be converted to a hexadecimal value and added to the
clock-frequency value of the CPU node in the DTS file. The busfreq value must be placed in the same
way in the bus-frequency parameter. For example,

cpus {
PowerPC, <target>@0 {

timebase-frequency = <0x47865d2>;
bus-frequency = <0x23c34600>;
clock-frequency = <0x5967£477>;
}i
bi

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
298 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

c. The same busfreq value is the clock frequency for the serial ports and must be updated in the DTS file
also:

serial0: serial@4500 ({

clock-frequency = <0x23c34600>;

}i

NOTE
If you are using hardware for kernel debugging, see Edit DTS file on page 299.

7.7.6.4.2 Edit DTS file

You need to edit the settings (. dts) file with information relevant to the current target board and kernel.

If you have a DTS file specifically designed for your target board, you should modify only the RAM disk end
address and reserved memory area, in case you are using a RAM disk.

A standard .dts text file has a number of nodes which are given no value (actually <0>) or are missing nodes
(for example, the /chosen branch).

When the Linux kernel is started from U-Boot with bootm, U-Boot dynamically edits the . dtb file in RAM so as
to fill in the missing values and add the /chosen branch, based on the U-Boot environment variables.

The CodeWarrior IDE does not fill in the missing values and branches when it downloads the . dtb file to RAM.
You must manually create and compile a separate and complete .dts file.

The following steps detail the changes that must be applied to the .dts file so the kernel boots successfully
when the CodeWarrior IDE loads the . dtb file into RAM with a Linux kernel and a initial RAM disk.

1. Update the bus-frequency and clock-frequency nodes from the value KRD=>bi_busfreq
2. Update the clock-frequency nodes from the value KRD=>bi_initfreq:
3. Update the following nodes from the value KRD=>bi_tbfreq:

/cpus/ PowerPC,8349@0/timebase-frequency

4. Create the following node from the size on disk of the file entered in LKBP=>Enable Initial RAM Disk=>File
Path or from the address entered in LKBP=>Enabile Initial RAM Disk=>Address:

/memreserve/
5. Create the following node from LKBP=>Command Line:
/chosen/bootargs
6. Create the node:
linux, stdout-path
7. Create the following node from the address entered in LKBP=>Enable Initial RAM Disk=>Address:
/chosen/linux, initrd-start

8. Create the following node from the size on disk of the file entered in LKBP=>Enable Initial RAM Disk=>File
Path and from the address entered in LKBP=>Enable Initial RAM Disk=>Address:

/chosen/linux, initrd-end

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 299

Debugging Embedded Linux Software
Debugging the Linux Kernel

7.7.6.4.3 Compile DTS file

You can compile the settings (.dts) file to a binary (.dtb) file, if you need the binary file to set up the kernel
parameters for the board.

1. Ensure that you have the DTC device tree compiler on your host machine.

If the DTC device tree compiler is missing, get the latest DTC source archive from bitshrine.org. Extract
the archive, run make, and put the binary somewhere reachable by your PATH.

wget dtc-20070307.tar.bz2
wget dtc-20070307.tar.bz2.md5
wget dtc-20070307.tar.gz
wget dtc-20070307.tar.gz.md5

2. Navigate to the folder containing DTS files.

NOTE
The location of the DTS file might differ based on the BSP version being used. For the
correct location of the file, see the SDK User Manual in iso/help/documents/pdf.

3. Compile the .dts device tree source file for the board:

$ cd arch/powerpc/boot/dts
$ dtc -I dts -O dtb -V 0x10 -b 0 <target>.dts > <target>.dtb

NOTE
You can use the created binary (. dtb) file in the CodeWarrior IDE (in the Boot
Parameters tab); see Configure an attach kernel debug scenario on page 291 for details.

7.7.6.4.4 Test DTB file

You can test the binary (. dtb) file outside the CodeWarrior IDE.
The steps are as follows:
1. Load the uImage, rootfs.ext2.gz.uboot, and <targets>.dtb file onto the board.

2. Boot the board and verify that Linux comes up fine.

S bootm <kerneladdress> <ramdiskaddress> <dtbaddress>

NOTE
The target board must have U-Boot present in the flash at the reset address so that U-
Boot can run and set board configurations.

7.7.6.4.5 Modify a DTS file

You may need to modify a DTS file if you are using a BSP version that is not supported by a CodeWarrior
DTS file or custom board.

Follow these steps to modify the DTS file:
1. Obtain a DTS file.
NOTE

The location of the DTS file might differ based on the BSP version being used. For the
correct location of the file, see the SDK User Manual in iso/help/documents/pdf.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors

300

Debugging Embedded Linux Software
Debugging the Linux Kernel

2. Modify this DTS file with the information provided by U-Boot. To do this:

a.

Check the /proc/device-tree/ directory for the required information after kernel boot from U-Boot.
Alternatively, you may:

Enable ft_dump_blob call from the u-boot /common/cmd_bootm. c file. By default this is disabled.
Build the U-Boot and write it on the target to have this enabled when booting the kernel.

After this, configure U-Boot as described in the BSP documentation to boot the kernel and save the
boot log.

Check the device tree displayed during kernel boot and accordingly modify your DTS file.

7.7.7 Debugging the kernel to download the kernel, RAM disk, and

device tree

This section describes how to debug the Linux kernel using CodeWarrior IDE to download the kernel, RAM
disk, and device tree.

Perform the following steps:

1. Create a project for the Linux kernel image. See Creating a CodeWarrior Project using the Linux Kernel
Image on page 289.

2. Configure the launch configuration for Linux kernel debug.

a.

i-

k.

Select Run > Debug Configurations.
The Debug Configurations dialog appears.
From the left pane, in the CodeWarrior group, select the appropriate launch configuration.

On the Main page, in the Connection panel, select the appropriate system from the Connection drop-
down list.

Click Edit.

The Properties for <connection> window appears.
Click Edit next to the Target drop-down list.

The Properties for < Target> dialog appears.

On the Initialization tab, select the checkboxes for all the cores in the Run out of reset column.

. In the Initialize target column, select the checkbox for core 0.

Click the ellipses button in the Initialize target script column.
The Target Initialization dialog appears.

Click File System and select the target initialization file from the following path:

<CWInstallDir>\PA\PA Support\Initialization Files\<Processor Family>
\<target> uboot init Linux.tcl

NOTE
The initialization file is automatically set when you select Linux Kernel as the Target
OS, while creating a new Power Architecture project using the CodeWarrior Bareboard
Project Wizard.
Click OK to close the Memory Configuration File dialog.

Click OK to close the Properties for < 7arget> dialog.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 301

|
y

'
A

Debugging Embedded Linux Software
Debugging the Linux Kernel

I. Click OK to close the Properties for <connectior> dialog.

m. On the Debug tab of the Debugger tab, select an Program execution option, to stop the debug process
at the program entry point or at a specified user function or address like start_kernel.

n. On the OS Awareness tab of the Debugger tab, select Linux from the Target OS drop-down list.
0. On the Boot Parameters tab of the OS Awareness tab:

i. Select the Enable Initial RAM Disk Settings checkbox.

The fields in that panel are enabled.

ii. In the File Path text box, enter the location of the BSP file, rootfs.ext2.gz.

ii. In the Address text box, enter the address where you want to add the RAM disk.

iv. In the Size text box enter 0 if you want the entire RAM disk to be downloaded.

v. Select the Open Firmware Device Tree Settings checkbox.

vi. In the File Path text box, enter the location of the device tree file.

vii. In the Address text box, enter the location in memory where you want to place the device tree.

NOTE
Ensure that the memory areas for kernel, RAM disk, and device tree do not overlap.
p. Click Apply to save the settings you made to the launch configuration.

3. Click Debug to start debugging the kernel.

NOTE
If the kernel does not boot correctly, check the values entered in the Boot Parameters
tab. Also ensure that you provided a valid device tree and RAM disk.

7.7.8 Debugging the kernel based on MMU initialization

This section describes how to debug the Linux kernel based on whether the MMU is disabled, being enabled,
or enabled.

NOTE

You can debug the kernel on all stages from 0x0 till start _kernel and further, without

the need of PIC changes, breakpoints at start_kernel, and multiple debug sessions.
Debugging the Linux kernel involves three stages with different views and functionality:
» Debugging the Kernel before the MMU is Enabled on page 302
» Debugging the Kernel while the MMU is being Enabled on page 304
» Debugging the Kernel after the MMU is Enabled on page 304
7.7.8.1 Debugging the Kernel before the MMU is Enabled
This procedure shows how to debug the kernel before the memory management unit (MMU) is initialized.

You can always debug assembly before virtual addresses are being used, without setting the alternate load
address.

To debug the kernel before the MMU is enabled, follow these steps:

1. Select Run > Debug Configurations from the CodeWarrior menu bar to open the Debug Configurations
dialog.

2. From the Debugger page, select the PIC tab.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
302 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel
3. Select the Alternate Load Address checkbox.

4. In the Alternate Load Address field, type the hexadecimal form of the memory address (for example,
0x00000000).

5. Click Apply. The CodeWarrior IDE saves your changes to the launch configuration.

6. Click Debug. The Debug perspective appears.

7. Set a breakpoint early in head fsl booke.S.

You can perform source level debug until the r£i instruction in head _fsl booke.s.
Figure 108: Kernel Debug - Before MMU is Enabled

@@ EPPC, core 0, wmlinux(a/ 12/05 10:40 AM) (Suspended)
i Euj"’-‘-‘ Thread [I0: 0xc03dde18] (Suspended: Breakpoint hik.)

LE {AsmSeckion)d) Dyikernel 357 2 Multicarllinux-2 .6, 23 archipowerpoikernelhead_Fsl_boaoke.3:66 0w
fepi] DriKernel 8572 Mulkicore | inux-2.6, 23\ vinlinu (8/12/08 10:40 AM)

1]
head_fs|_booke.5 53

* r? - End of kernel command line string
*
*/
.section .text.head, "ax™
_ENTREY|_stext):
_ENTRY(_start):
P
* Reserve a word at a fixed location to store the address
of sbatron pteptrs

w

nop
'
* Bgve paraweters we are passed
w

i wr r3l,r3
mr r3ld,r4
mr r29,r5
mr r28,re
mr r27,r7
li rz4,0 J* CPU nunber *f

We try to not make any assumptions sbout how the boot loader
setup or used the TLEs. We invalidate all mappings from the
hoot loader and load a single entry in TLE1[0] to map the
first 16M of kernel memory. Lny boot info passed from the

oot 1ol e ds ke T drre G ki Fdaeoh WM

+ o # o

1=,

NOTE
You must stop the debug session and clear the Alternate Load Address checkbox in the
PIC tab to debug after the rfi instruction in head fsl booke.S.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 303

Debugging Embedded Linux Software

Debugging the Linux Kernel

7.7.8.2 Debugging the Kernel while the MMU is being Enabled

This procedure shows how to debug the kernel while the memory management unit is being initialized.

To debug this section of code, ensure that the Alternate Load Address checkbox in the PIC tab is disabled.

7.7.8.3 Debugging the Kernel after the MMU is Enabled

This procedure shows how to debug the kernel after the memory management unit is initialized.

To debug the kernel after the MMU is enabled, follow these steps:

1.

7.

o g bk~ w DN

Select Run > Debug Configurations from the CodeWarrior menu bar to open the DebugConfigurations
dialog.

From the Debugger tab, select the PIC tab.

Clear the Alternate Load Address checkbox.

Click Apply.

Click Debug to start the debug session. The Debug perspective appears.

In the editor area, set a breakpoint at start_kernel, after the eventpoint, in main. c. This will stop the debug
session at start_kernel function (shown in the figure below).

Figure 109: Kernel Debug - After MMU is Enabled

E EPPiC, core 0, wmilinux(8/11/08 4:49 PM) (Suspended)

© E-g® Thread [ID: 0xc03dda18] (Suspended: Signal 'Halt' received, Description: User halted thread.,)

= 7 stark_kernel() D:iKernel{857 2 Multicarelinux-2. 6. 23initymain. c:514 0xc03b18bd

= 1 {Asm3ection)() thomeibogdantBSP_857 2\ tib-mpc8572ds-2007 1 203 prl BUILDY N2, 6. 23 archipowerpctk,
epe DniKernel 8572 Multicoretlinus-2,6, 23 wmlinu: (8/11/08 4:49 PM)

1 | i

¢ main.c 23

Cpu Set (Ccpu, cpu possible wap) ;
i

void _ init attribute ({(weak)] sSwp_setup processor idivedid)
{
i
asmlinkage void _ init start_kernel (void)
+

char * commwand line;
extern struct kernel param _ start param[], _ sStop param[] ;

Smp_setup processor_idf():

i
* Need to run as early as possible, to initialize the
* lockdep hash:
w4

unwind init();

lockdep init():;

local irg disablef():
early boot_irgs offi):;
early init_irq lock classi);

Lx

Click Run.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

304 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the Linux Kernel

The debugger halts execution of the program at whatever breakpoints have been set in the project (if any
breakpoints have been set).

8. Run through the rest of the code until the kernel starts to boot.

When the kernel boots, boot status messages appear in the simulator window.

NOTE
You can click Terminate to halt running of the kernel and set breakpoint/watchpoints in
the debug window, as shown in the figure below.

Figure 110: Kernel Stopped by User

-8 EPPC, care 0, vmlinux(8/11/05 +:43 PM) (Suspended)
ElJ Thread [10n DchdeﬁlS] {Suspended: S|gna| 'Halt' received, Description: User halted thread.)

prt BLILCAin
3 rest_inik() D '|,Kerne|'|,85?2'|,MuIt|core'l,llnux 2.6.23initmain.c: 460 Oxc02e5ad4
2 start_kernel() D:iKernel\ 85721 Multicore' inux-2.6. 234 initmain. c: 653 Oxc03b1bba
----- = 1 (AsmSection)() \home\bogdan\E5P_857 2 kib-mpos5 7 2ds-2007 1 203 rpmiBUILD inux-2 . 6. 234 archipower|
EI J? Thread [ID: Oxeffclael] (Suspended: Signal 'Process Suspended' received, Description: Process Suspended.)
-+= 4 _ switch_tol) home\bogdaniBsP_8572lib-mpea572ds-2007 1203 prd BUILDAlinux-2. 6,23 archipowerp

3 scheduled) Duikernell 8572 Multicorellinux-2.6. 23 kernelisched. c: 1397 Oxc02e6670

2 do_wait() thome\bogdamBsP_857 2\ kb-mpcEs72ds-2007 1 203y pm BUILDY inux-2. 6,23 kerneliexit . 164
----- = 1 {AsmSection){) thome\bogdanB5P_&57 2 bib-mpcdS 7 2ds-2007 L2053 rpm BUILD inux-2 . 6, 23 archiypower|
[=l-g# Secondary Process {Suspended)

E| J? Thread [ID: Oxeffc04b0] (Suspended: Signal 'Process Suspended' received. Description: Process Suspended.)
5 _ switch_tol) thomelbogdanESP _8572ilkib-mpc8572ds-2007 1 203 pratBUILDlinux-2 . 6. 23 archipowerp
4 scheduled) Dnikernel\ 3572 Multicorellinux-2, 6, 23 kernelisched, c: 1397 Dxc02e6a70

idle.c &2
w
void cpu idle(roid)
i

if (ppc_md.idle loop)
ppe_md.idle loop(): /% dossn't return */

set_thread flag(TIF POLLING WRFLAG]:
while (1] {
» while (!'need resched() &£:& !cpu_should die()) {
ppcéd runlatch off();

if (ppc wd.power save)] |

clear thread flag(TIF_POLLING _NRFLAG) ;

FA
* smp_wh is S0 clearing of TIF POLLING NEFLALG
* iz ordered w.r.t. need resched(] test.
=/

swp_rib (] ;

logal irg disablel():

il

9. Continue debugging.
10.When finished, you can either:
a. Kill the process by selecting Run > Terminate.

b. Leave the kernel running on the hardware.

7.7.9 Debugging the kernel by attaching to a running U-Boot

This section explains how to debug the Linux kernel by attaching it to a running U-Boot.

To debug the kernel by attaching to a running U-Boot, perform the following:

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 305

|
y

'
A

Debugging Embedded Linux Software

Debugging the Linux Kernel

1. Create a project for the Linux kernel image. For more details, see Creating a CodeWarrior Project using
the Linux Kernel Image on page 289.

2. Configure the launch configuration for Linux kernel debug. For more details, see Configure an attach
kernel debug scenario on page 291.

© ® N o 0o M

Select Run > Debug Configurations. The Debug Configurations dialog appears.

From the left pane, expand the CodeWarrior Attach tree and select the appropriate launch configuration.
From the Debugger tab, select the PIC tab.

Clear the Alternate Load Address checkbox.

Click Apply.

Click Debug to start the debug session. The Debug perspective appears.

While the U-Boot is running, attach the target.

The debugger displays a warning, in the console, as the kernel is not being executed on the target.

NOTE
For multi-core processors, only core0 is targeted in the Debug view. This is normal as
the secondary cores are initialized in the Linux kernel after MMU initialization.
CodeWarrior will automatically add other cores, in the Debug view, after the kernel
initializes the secondary cores.

10.Set software or hardware breakpoints for any stage (before or after MMU initialization).

To set a software breakpoint for the entry point address (for example, address 0x0), issue the following
command in the Debugger Shell view.

bp 0x0

11.Using the U-boot console, load the Linux kernel, DTB file, and RAM disk/rootfs from flash or from TFTP.
12.Debug the kernel.

The debugger halts execution of the program at whatever breakpoints have been set in the project. Typical
stages involved in debugging the kernel are discussed below:

a.

Debugging the kernel at the entry point

The CodeWarrior debugger will stop at the kernel entry point, if any software or hardware breakpoint has
been set for entry point.

NOTE
For the debugger to stop at the kernel entry point, set a breakpoint before loading the
kernel from the U-boot console.

At the entry point, the MMU is not initialized and therefore debugging before MMU initialization also applies
in this stage.

. Debugging the Kernel before the MMU is enabled

Being in early debug stage, the user should set the correct PIC value, to see the source correspondence,
by issuing the setpicloadaddr 0x0 command in the Debugger Shell view.

Before setting a breakpoint for the stage after MMU initialization (for example, breakpoint at
start_kernel) the correct PIC should be set, by issuing the setpicloadaddr reset command in the
Debugger Shell view. This is required to ensure that the new breakpoint is set with the correct PIC for the
stage after MMU initialization.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

306

NXP Semiconductors

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

The user can set breakpoints and run/step to navigate, before MMU initialization. The correct PIC should
be set by issuing the setpicloadaddr reset command inthe Debugger Shell view, before the debuggers
enters the next stage.

c. Debugging the Kernel after the MMU is enabled

After the MMU is initialized, the PIC value must be reset y issuing the setpicloadaddr reset command
in the Debugger Shell view. During the Linux Kernel booting, you can debug this stage directly, if no
breakpoint has been set for the stage before MMU initialization. Alternatively, you can also debug this
stage after run or step from the stage before initialization.

NOTE
In case of SMP, all the secondary cores are targeted and displayed in the Debug view.
13.When finished, you can either:
a. Kill the process by selecting Run > Terminate.

b. Leave the kernel running on the hardware.

7.8 Debugging Loadable Kernel Modules

This section explains how to use the CodeWarrior debugger to debug a loadable kernel module.
This section contains the following subsections:

» Loadable Kernel Modules - An Introduction on page 307

+ Creating a CodeWarrior Project from the Linux Kernel Image on page 308

+ Configuring Symbolics Mappings of Modules on page 310
7.8.1 Loadable Kernel Modules - An Introduction

The Linux kernel is a monolithic kernel, that is, it is a single, large program in which all the functional
components of the kernel have access to all of its internal data structures and routines.

Alternatively, you may have a micro kernel structure where the functional components of the kernel are broken
into pieces with a set communication mechanism between them. This makes adding new components to the
kernel using the configuration process very difficult and time consuming. A more reliable and robust way to
extend the kernel is to dynamically load and unload the components of the operating system using Linux /oadable
kernel modules.

A loadable kernel module is a binary file that you can dynamically link to the Linux kernel. You can also unlink
and remove a loadable kernel module from the kernel when you no longer need it. Loadable kernel modules are
used for device drivers or pseudo-device drivers, such as network drivers and file systems.

When a kernel module is loaded, it becomes a part of the kernel and has the same rights and responsibilities
as regular kernel code.

Debugging a loadable kernel module consists of several general actions, performed in the following order:

1. Create a CodeWarrior Linux kernel project for the loadable kernel module to be debugged. See Creating a
CodeWarrior Project from the Linux Kernel Image on page 308

2. Add the modules and configure their symbolics mapping. See Configuring Symbolics Mappings of Modules
on page 310

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 307

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

7.8.2 Creating a CodeWarrior Project from the Linux Kernel Image

The steps in this section show how to create a CodeWarrior project from a Linux kernel image that contains
symbolic debugging information.

NOTE
The following procedure assumes that you have made an archive of the Linux kernel
image and transferred it to the Windows machine. For kernel modules debugging,
ensure that you build the kernel with loadable module support and also make an archive
for the rootfs directory, which contains the modules for transferring to Windows.
Launch CodeWarrior IDE.
Select File > Import. The Import wizard appears.
Expand the CodeWarrior group and select CodeWarrior Executable Importer.

Click Next.

o=

The Import a CodeWarrior Executable file page appears.

o

Specify a name for the project, to be imported, in the Project name text box.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

NOTE
An existing directory cannot be specified for the project location.

7. Click Next.
The Import C/C++/Assembler Executable Files page appears.
8. Click Browse next to the Executable field.
9. Select the vmlinux.elf file.
10.Click Open.
11.From the Processor list, expand the processor family and select the required processor.
12.Select Bareboard Application from the Toolchain group.
13.Select Linux Kernel from the Target OS list.
14.Click Next.
The Debug Target Settings page appears.
15.From the Debugger Connection Types list, select the required connection type.

16.Specify the settings, such as board, launch configuration, connection type, and TAP address if you are
using Ethernet or Gigabit TAP.

17 Click Next.

The Configuration page appears.
18.From the Core index list, select the required core.
19.Click Finish.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
308 NXP Semiconductors

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

The wizard creates a project according to your specifications. You can access the project from the
CodeWarrior Projects view on the Workbench.

20.Configure the launch configuration for linux kernel debug.

a. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

21 Enter the launch configuration settings in the Debug Configurations dialog. The table below lists the launch

configuration settings.

Table 134: Kernel Project Download Launch Configuration Settings

Debug Window Component

Settings

Main Tab

Debugger Tab > Debugger options >
Symbolics Tab

Debugger Tab > Debugger options >
Awareness Tab

Select an appropriate system (if existing) from the Connection
drop-down list or define a new system.

Select the Cache Symbolics between sessions checkbox. The
symbolics are loaded from the elf file to the debugger for the first
session only. This shows a speed improvement for vmlinux.elf
as the size is bigger than around 100 MB.

OS | Select Linux from the Target OS drop-down list.

Table continues on the next page...

To define a new system, click New.

Select Hardware or Simulator Connection from the CodeWarrior
Bareboard Debugging list. Click Next.

Specify a name and a description for the connection.

Select an appropriate target (if existing) from the Target drop-
down list or define a new target.

To define a new target, click New on the Hardware or Simulator
Connection dialog.

Select Hardware or Simulator Target from the CodeWarrior
Bareboard Debugging list. Click Next.

Specify a name and a description for the target.

Select a processor from the Target type drop-down list. On the
Initialization tab, ensure that there are no initialization files
selected.

Click Finish to create the target and close the Hardware or
Simulator Target dialog.

Select the type of connection you will use from the Connection
type drop-down list.

Click Finish.

Select all the cores on which Linux is running (for example, core
0 for single-core or cores 0-7 for 8-core SMP).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

309

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

Table 134: Kernel Project Download Launch Configuration Settings (continued)

Debug Window Component Settings

Debugger Tab > Debugger options > OS | Select the Enable Initial RAM Disk Settings checkbox

Awareness Tab > Boot Parameters Tab |, pjiq path: Path of the RAM disk that you transferred from the
Linux machine

» Address: The address specified in Linux, initrd-start from the dts
file

Select the Download to target checkbox

Select the Open Firmware Device Tree Settings checkbox
+ File Path: Path to the <target>.dtb file

+ Address: 0x00600000

Debugger Tab > Debugger options > OS | . gelect the Enable Memory Translation checkbox
Awareness Tab > Debug Tab .
Physical Base Address is set to value

CONFIG_KERNEL_START (0x0)

Virtual Base Address is set to value CONFIG_KERNEL_START
(0xc000 0000 for 32 bits, and 0xC000 0000 0000 0000 for
64bits).

* Memory Size is the kernel space translation size.

NOTE
The values shown above should be
set as configured in the linux config
file (. config). You can read the
MMU registers to verify what you
have configured and do a correction,
if required.

Select the Enable Threaded Debugging Support checkbox

Select the Enable Delayed Software Breakpoint Support
checkbox

Debugger Tab > Debugger options > OS |. gelect the Detect module loading checkbox
Awareness Tab > Modules Tab
* Click Add to insert the kernel module file. See Configuring

Symbolics Mappings of Modules on page 310

+ Select the Prompt for symbolics path if not found checkbox

22 Click the Source page to add source mappings for rootfs and 1inux-<versions.

23.Click Apply to save the settings.

7.8.3 Configuring Symbolics Mappings of Modules

You can add modules to the Linux kernel project and configure the symbolics mappings of the modules using
the Modules tab of the Debug Configurations dialog.

The figure below shows the Modules tab of the Debug Configurations dialog.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
310 NXP Semiconductors

[#] Detect module loading

Debugging Embedded Linux Software

Debugging Loadable Kernel Modules

Figure 111: Kernel Module Debug - Modules Tab

Modubes' symibolics mappings

Module
miec_rtic_besk

e _wdog_tm
ey _dey

Symbobcs Path

D YweorkLinuee _2_6_18\my_buibd|Linue:_11_07_2007 sourcesimiscimoduls_testimeoc_rtic_best. ko
D fweorkiLinue:_2_6_ 18wy _bulbd|Linue:_11_07_2007 sources|miscimodule_testimeoc_wdog_bm. ko
D: WweorkiLinu_jtag_enimy_devimy _dev.ko

[« Prompt For symbobics path i not Found

!—|liee1:- target suspendad

The table below describes the various options available on the Modules tab.

5¢

Riemorve Al

DUkle

Table 135: Kernel Module Project Launch Configuration - Modules Tab Settings

Option

Description

Detect module loading

Add

Scan

Remove

Remove All

Table continues on the next page...

Enables the debugger to detect module load events and insert an
eventpoint in the kernel. Disabling this setting delays the module
loading. This is useful in scenarios where multiple modules are
loaded to the kernel and not all of them need to be debugged. You
can enable this setting again in the Modules dialog. The dialog is
available during the Debug session from the System Browser
View toolbar > Module tab.

Adds a module name along with the corresponding symbolic path
This option displays a dialog in the following scenarios:

» The file that you have selected is not a valid compiled kernel
module

+ If the selected module already exists in the list with the same
path

Automatically searches for module files and populates the kernel
module list.

Removes the selected items. This button will be enabled only if a
row is selected.

Removes all items. This button will be enabled only if the kernel
list contains any entries.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors

311

V¥ ¢
i

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

Table 135: Kernel Module Project Launch Configuration - Modules Tab Settings (continued)

Option Description

Prompt for symbolics path if not found Prompts to locate the symbolics file if a mapping for it is not
available in the settings A Browse dialog appears that allows you
to browse for a module file containing symbolics. The debugger
will add the specified symbolics to the modules' symbolics

mapping.

Keep target suspended Keeps the target suspended after the debugger loads the
symbolics file for a module. This option is useful if you want to
debug the module's initialization code. It allows you to set
breakpoints in the module's initialization code before running it.

NOTE
This option is automatically enabled
when activating the Prompt for
symbolics path if not found option.

NOTE
Breakpoints are resolved each time a symbolics file is loaded and the debugger uses
the modules unload events for symbolics disposal and breakpoints cleanup.

7.9 Debugging Hypervisor Guest Applications
This section shows you how to debug hypervisor guest applications.

This section explains:

» Hypervisor - An Introduction on page 312

» Prerequisites for Debugging a Guest Application on page 313

Adding CodeWarrior HyperTRK Debug Stub Support in Hypervisor for Linux Kernel Debugging on page
313

* Preparing Connection to P4080DS Target on page 314
» Debugging AMP/SMP Guest Linux Kernels Running Under Hypervisor on page 315

» Debugging Hypervisor During the Boot and Initialization Process on page 322

7.9.1 Hypervisor - An Introduction

The embedded hypervisor is a layer of software that enables the efficient and secure partitioning of a multi-
core system.

A system's CPUs, memory, and I/O devices can be divided into groupings or partitions. Each partition is capable
of executing a guest operating system.

Key features of the hypervisor software architecture are summarized below-
+ Partitioning: Support for partitioning of CPUs, memory, and 1/O devices:

» CPUs: Each partition is assigned one or more CPU cores in the system.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
312 NXP Semiconductors

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

» Memory: Each partition has a private memory region that is only accessible to the partition that is
assigned the memory. In addition, shared memory regions can be created and shared among multiple
partitions.

* 1/O devices: P4080 I/O devices may be assigned directly to a partition (Direct 1/0), making the device a
private resource of the partition, and providing optimal performance.

Protection and Isolation: The hypervisor provides complete isolation of partitions, so that one partition
cannot access the private resources of another. The P4080 PAMU (an iommu) is used by Topaz to ensure
device-to-memory accesses are constrained to allowed memory regions only.

Sharing: Mechanisms are provided to selectively enable partitions to share certain hardware resources
(such as memory)

Virtualization: Support for mechanisms that enable the sharing of certain devices among partitions such as
the system interrupt controller

Performance: The hypervisor software uses the features of the Freescale Embedded Hypervisor APU to
provide security and isolation with very low overhead. Guest operating systems take external interrupts
directly without hypervisor involvement providing very low interrupt latency.

Ease of migration: The hypervisor uses a combination full emulation and para-virtualization to maintain high
performance and requiring minimal guest OS changes when migrating code from an e500mc CPU to the
hypervisor.

7.9.2 Prerequisites for Debugging a Guest Application

The P4080 software bundle is the prerequisite for debugging a hypervisor guest application using the
CodeWarrior IDE.

The software bundle used in the current example is P4080 Beta 2.0.2 SW Bundle.

7.9.3 Adding CodeWarrior HyperTRK Debug Stub Support in

Hypervisor for Linux Kernel Debugging

This section explains how to add CodeWarrior HyperTRK debug stub support in the hypervisor for guest LWE
or Linux kernel debugging.

To add CodeWarrior HyperTRK debug stub support:

1.

Download the appropriate P4080 software bundle image (the BSP in . iso format) to a Linux computer.

2. Mount the .iso image file using this command: mount -o loop BSP-Image-Name.iso /mnt/iso
3.
4

Install the BSP image file according to the instructions given in the BSP documentation.

. Add CodeWarrior HyperTRK debug support to the hypervisor image (hv.uImage)

You can enable the HyperTRK debug support directly in the BSP. Alternatively, you can modify and build the
HyperTRK manually, and then enable it in the hypervisor.

Perform the steps given in the subsections below:

» Enabling HyperTRK Debug Support Directly in Build Tool on page 314

» Applying New HyperTRK Patches from CodeWarrior Install Layout on page 314
* Modifying and Building HyperTRK Manually on page 314

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 313

|
y

'
A

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

7.9.3.1 Enabling HyperTRK Debug Support Directly in Build Tool

Follow this procedure only if the <cwInstallDir>/PA/PA_ Tools/HyperTRK directory does not contain any
newer HyperTRK patches than the ones in the SW bundle.

In case the <cwInstallDir>/PA/PA Tools/HyperTRK directory contains newer HyperTRK patch, see Applying
New HyperTRK Patches from CodeWarrior Install Layout on page 314.

NOTE
For more details on configuring or compiling the Hypervisor, refer the SDK Manual
available in the iso/help/documents/pdf folder.

7.9.3.2 Applying New HyperTRK Patches from CodeWarrior Install
Layout

Follow this procedure to manually apply new HyperTRK patches from CodeWarrior install layout.

The <cwinstallDir>/PA/PA Tools/HyperTRK directory contains new patches. To apply the new patches, see
the procedures defined in the SDK manual.

7.9.3.3 Modifying and Building HyperTRK Manually

Follow this procedure only if you need to modify the HyperTRK sources.
The steps are as follows:

1. Apply the new HyperTRK patches, if any (see Applying New HyperTRK Patches from CodeWarrior Install
Layout on page 314).

The hypervisor and the HyperTRK sources are extracted to this directory:
<BSP-Directory>/rpm/BUILD/embedded-hv-{version}

2. Ensure that the environment variables point to the correct compiler that BSP uses, so that it correctly
builds HyperTRK and the hypervisor.

NOTE
For more details on adding new patches, modifying the HyperTRK and building the
packet, see the SDK manual available in the SDK Manual available in the iso/help/
documents/pdf folder.

7.9.4 Preparing Connection to P4080DS Target

This section explains how to debug AMP/SMP guest application on the P4080DS target board.

You must have a serial cable connected between the board UARTO and the UARTO ports of your Linux host.
The debugger connects to the running mux_server from the Linux host and then communicates with the target
board through the serial connection between the Linux host and the target board. The steps to start the
mux_server are given below.

1. Telnet is not recommended to be used with the mux_server. Use socat instead. The syntax is:

socat -,raw,echo=0 tcp:<addresss>:<ports>
For example:

socat -,raw,echo=0 tcp:rhuath:9002

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
314 NXP Semiconductors

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

2. For the standalone P4080DS target board, which is connected with the serial cable, you can use the
Makefile for starting the mux_server, and the xtel shipped with the SDK.

a. Run make xtel P4080DSs, if you want to automatically launch the mux_server, and have eight serial
consoles started.

b. Run make mux_server P4080DS TARGET=/dev/ttyso0, which will connect the mux_server to the /dev/
ttyso device using the ports from 12000 to 12015. However, in this case, you need to manually run
socat to open the serial consoles.

c. If you need to change the ports, edit the tool you are using for starting the mux_server.

d. In case you are running only the mux_server, and not the xtel, you need to open the serial consoles
for the hypervisor and the guest applications. To know on which port you can access the serial console
of the hypervisor or the guest application, check the hypervisor device tree (the .dts file) that is used for
starting the application.

» Check for stdout nodes; for example, the hypervisor is using the hvbc node, which is using the
muxer on channel 0. This means that the hypervisor serial console can be reached on the first port
given as argument to the mux_server.

*» Look at the first partition, part1; stdout is using part1_bco, which is using muxer channel 1. This
means that the serial port will be mux_server base port + 1.

The same concept applies to other partitions or other device trees as well.

7.9.5 Debugging AMP/SMP Guest Linux Kernels Running Under
Hypervisor

This section describes how to debug AMP/SMP guest Linux kernels, running under the hypervisor.
This section explains:

* Prerequisites for Debugging AMP/SMP Guest Linux Kernels on page 315

» Creating an Attach Launch Configuration to Debug a Linux Partition after Kernel Boot on page 315

+ Creating a Download Launch Configuration to Debug a Linux Partition from an Entry Point or a User-
Defined Function on page 318

7.9.5.1 Prerequisites for Debugging AMP/SMP Guest Linux Kernels
This section provides the prerequisites for debugging AMP/SMP guest Linux kernels.
As prerequisites, ensure that:

« For Download debug session, the hypervisor loads the kernel images because CodeWarrior does not
support this option.

» For Download launch configuration, the Linux partitions do not have the no-auto-start option set in the
hypervisor DTS file. The CodeWarrior IDE resets the Linux partition and the hypervisor starts the partition,
by default.

« If you want to use the Windows version of CodeWarrior, you need to transfer the Linux directory along with
the vmlinux.elf, the associated sources, and the used .dtb file from the BSP directory to the Windows
computer.

7.9.5.2 Creating an Attach Launch Configuration to Debug a Linux

Partition after Kernel Boot
You can use an attach launch configuration to debug a Linux partition after kernel boot.

Follow these steps:

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 315

3
4

y
A

Debugging Embedded Linux Software

Debugging Hypervisor Guest Applications

1.

3. Select the Main page.

Click New in the Remote System group to create a new remote system

The New Connection wizard appears.

select TRK Connection, as shown in the figure below.

Figure 112: Select Remote System Type Dialog Box

i
.

New Connection

Select Remote System Type

Syskem bype:
type filer text

+-[.= Codevvarrior Application Debugging
== Codewvarrior Bareboard Debugaging
+-=h= Hardware or Simulator Connection
+ Hardware or Simulator Target
8.8 TRE Connection
TR Target
== General

5o

Connection configuration For a target running the TRE debug agent.

'C?,' « Back][Mexk =

Cancel

. Click Next.

The TRK Connection window appears.

. Click Edit next to the Target drop-down list.

The Properties for <target>window appears.

Click Edit next to the Target type drop-down list

The Target Types dialog appears.

Click Import and import the used hypervisor .dtb file.

Click OK to close the Target Types dialog.

Configure the following settings in the Properties for <target>window.

+ In the Initialization tab, ensure that Execute target reset checkbox is not selected.

Import the vmlinux.elf file from the BSP-Directory/1inux directory by using the PA ELF Import feature in
CodeWarrior IDE

Create a new CodeWarrior Attach launch configuration. The steps that follow describe how to configure
the required settings.

a. In the Select Remote System Type page, expand the CodeWarrior Bareboard Debugging group, and

* In the Memory tab, do not add any memory configuration files for the debugged Linux partition cores

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

316

NXP Semiconductors

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

h. Click OK.
The TRK Connection page reappears.
i. Select Trk Muxer in the Connectiontype drop-down list.

+ Select Use existing host muxer process, and type the IP address of the Linux host on which the
Mmux_server is running.

Alternatively, for Linux host only, you can select Launch host muxer process for automatically
launching the muxer process. If you follow this step, you need to select the mux_server executable,
and a TCP/IP target muxer with an IP address and a starting port on which you want to launch the
mux_server.

» For TRK muxer ports, click Sequence and type the first port on which the mux_server started.
The channels and ports on which the debugger accesses the cores appear.
» The channels must correspond to the trk-stub's mux channels added in the hypervisor dts file.
j- Click Finish.

The New Connection wizard disappears and the new remote system that you just created appears in
Connection drop-down list in the Remote system group.

5. Select all the cores that you want to debug from the Linux partition

NOTE
You can use the new remote system, which you just created, in other launch
configurations also by selecting different cores and making other necessary
adjustments.
6. Select the Debugger page to configure the debugger specific settings
a. In the Debugger options group, select the OS Awareness tab

b. Select Linux in the Target OS drop-down list. Note that it is mandatory to select Linux for the specific
scenario described in this section.

The Boot Parameters, Debug and Modules tabs appear
In the Boot Parameters tab:
» Disable all the options available on this tab.

In the Debug tab:

+ Select the Enable Memory Translation checkbox, and configure it according to the Linux MMU
settings. For example:

Physical Base Address 0x0
Virtual Base Address 0xc0000000
Memory Size 0x20000000

+ Select the Enable Threaded Debugging Support checkbox

+ The Update Background Threads on Stop option is used to remove the dead threads, which were
debugged at some point during the debugging session, but later, were terminated or killed. This option
might cause a decrease in speed because a big amount of memory must be read at every stop.

+ Do not select the Enable Delayed Software Breakpoint Support checkbox (see the figure below).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 317

wr
PRt

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

Figure 113: Boot Parameters, Debug, and Modules tab

Target OS5 |Linus %

Boot Parameters | Debug | Maodules

Enable Memory Translation
Physical Base Address | Dx20000000

Virtual Base Address | Dx00000000

Mermnaty Size Cx0000a000

["]Enable Threaded Debugging Support

[JEnable Delayed Software Breakpoint Support

c. Configure other options in the Debugger options group according to your specific requirements

You have successfully created the Attach Launch configuration. Click Debug and attach the configuration to the
running Linux kernel.

7.9.5.3 Creating a Download Launch Configuration to Debug a Linux

Partition from an Entry Point or a User-Defined Function

You can use a download launch configuration to debug a Linux partition from an entry point or a user-defined
function.

Follow these steps:

1. Import the vmlinux.elf file from the BsP-Directory/linux directory by using the PA ELF Import feature
in CodeWarrior IDE.

2. Create a new CodeWarrior download launch configuration. The steps that follow describe how to configure
the required settings.

3. Select the Main page.
4. Click New in the Remote system group to create a new remote system.
The New Connection wizard appears.

a. In the Select Remote System Type window, select CodeWarrior Bareboard Debugging, and then TRK
Connection.

b. Click Next.

c. In the TRK Connection, click Edit next to the Target drop-down list.
The Properties for <target>window appears.

d. Click Edit next to the Target type drop-down list.
The Target Types dialog appears.

e. Click Import and import the used hypervisor .dtb file.

f. Click OK to close the Target Types dialog.

g. Configure the following settings in the Properties for <targef> window.
+ In the Initialization tab, select the Execute system reset checkbox.
» Ensure that no init files exist for the debugged Linux partition cores.

+ In the Memory tab, do not add any memory configuration files for the debugged Linux partition cores.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
318 NXP Semiconductors

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications
h. Click OK.
The TRK Connection page reappears.
i. Select Trk Muxer in the Connection type drop-down list.

+ Select Use existing host muxer process, and type the IP address of the Linux host on which the
mux_server iS running.

Alternatively, for Linux host only, you can select Launch host muxer process for automatically
launching the muxer process. If you follow this step, you need to select the mux_server executable,
and a TCP/IP target muxer with an IP address and a starting port on which you want to launch the
mux_server.

» For TRK muxer ports, click Sequence and type the first port on which the mux_server started.
The channels and ports on which the debugger accesses the cores appear.
* The channels must correspond to the trk-stub's mux channels added in the hypervisor . dts file.
j- Click Finish.

The New Connection wizard disappears and the new remote system that you just created appears in
Connection drop-down list in the Remote system group.

5. Select all the cores that you want to debug from the Linux partition.

NOTE
You can use the new remote system, which you just created, in other launch
configurations also by selecting different cores and making other necessary
adjustments.
6. Select the Debugger page to configure the debugger specific settings.
a. In the Debugger options group, select the OS Awareness tab.

b. Select Linux in the Target OS drop-down list. Note that it is mandatory to select Linux for the specific
scenario described in this section.

The Boot Parameters, Debug, and Modules tabs appear.

In the Boot Parameters tab:

» Ensure that you disable all the options available on this tab.
In the Debug tab:

+ Select the Enable Memory Translation checkbox, and configure it according to the Linux MMU
settings. For example:

Physical Base Address 0x0
Virtual Base Address 0xc0000000
Memory Size 0x20000000

+ Select the Enable Threaded Debugging Support checkbox.

» The Update Background Threads on Stop option is used to remove the dead threads, which were
debugged at some point during the debugging session, but later, were terminated or killed. This option
might cause a decrease in speed because a big amount of memory must be read at every stop.

» Do not select the Enable Delayed Software Breakpoint Support checkbox.
c. In the Debugger options group, select the Debug tab.

d. Select the Stop on startup at checkbox in the Program execution options group.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 319

wr
PRt

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

e.

+ Select the Program entry point option, if you want the debugging session to start from 0x0.

+ Specify the function name in the User specified field, if you want the debugging session to start from a

specific kernel function.
In the Debugger options group, select the Download tab.
NOTE

Ensure that the Perform standard download checkbox is not selected. Hypervisor
transfers the required kernel images for partition boot to memory.

f. Configure other option in the Debugger options group according to your specific requirements.

You have successfully created the Download Launch configuration. Click Debug and observe the Linux partition
restarting, hypervisor loading the kernel images, and the debug session stopping at the Stop on startup at point/
function, if specified.

7.10 Debugging the P4080 Embedded Hypervisor

You can debug the P4080 embedded hypervisor during the boot and initialization process by using a JTAG
probe and by creating an attach launch configuration.

To debug the hypervisor, perform the following steps:

1. Download the appropriate P4080 SW Bundle image (the BSP in . iso format) to a Linux computer.

2. Mount the . iso image file using this command:

3. Install the BSP image file according to the instructions given in the BSP documentation,

mount -o loop BSP-Image-Name.iso /mnt/iso

P4080 BSP_User Manual.

NOTE
Ensure that you are able to boot the hypervisor on the P4080 board.

4. Import the hv.elf file and create an Attach launch configuration.

o

a. Start the CodeWarrior IDE.
b.

c. The Import wizard appears.
d.

From the CodeWarrior menu bar, select File > Import.

Expand the CodeWarrior group.

Select CodeWarrior Executable Importer to debug a .e1f£ file.
Click Next.

The Import a CodeWarrior Executable page appears.

. In the Project name text box specify a name for the imported project.

Click Next.

The Import C/C++/Assembler Executable Files page appears.
Click Browse next to the Executable option.

The Select file page appears.

Select the hv.elf file obtained from the output folder of the package.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

320

NXP Semiconductors

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

k. Click Open.
I. The Select file dialog closes. The path to the executable file appears in the Executable text box.
m. Click Next.
The Processors page appears.
n. Select the processor family, toolchain, and target operating system for the executable file.
0. Click Next.
The Debug Target Settings page appears.

p. Specify the debugger connection type, board, launch configuration, and connection options for the
executable file.

g. Click Next.

The Configurations page appears.
r. Select the core index for the executable file.
s. Click Finish.

The Import a CodeWarrior Executable window closes. The project for the imported elf file appears in the
CodeWarrior Projects view. You can now open the Debug Configurations dialog box by selecting Run >
Debug Configurations. The Debug Configurations dialog shows the current settings for the launch
configuration that you just created. The Debug Configurations dialog appears.

t. Expand the CodeWarrior group and select the launch configuration.
u. In the Connection panel, click Edit next to the Connection drop-down list.
The Properties for <connection launch configuration>window appears.
v. Select the appropriate <Connection type> from the drop-down list.
The Connection page appears.
w. Ensure that CCS executable is selected in the CCS server panel.
x. Specify the path of the executable file of the CCS server.

y. Enter the IP address in the Hostname/IP address text box.

NOTE
Use the default port, 41475 and JTAG clock speed, 16000 kHz.
z. In the Advanced tab, none of the checkbox should be selected.
aa.Click Edit next to the Target drop-down list.
The Properties for <sysfem /aunch configuration>window appears.
ab.In the Initialization tab, clear any reset options if checked.
ac.Clear the Initialize target options for any of the cores so that no initialization file is selected.

ad.In the Memory tab, nothing should be selected because we currently do not have a memory
configuration file. The file will be created later with hypervisor MMU entries.

The Properties window appears for the Attach launch configuration
ae.Click OK. The Properties window closes.
af. On the Main tab, in the Connection panel, check all the core checkboxes.

ag.Click Debug.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 321

|
y

'
A

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

The Debug view appears with the debugger attached to each core of the selected processor.

5. Create the required memory configuration file based on the hypervisor MMU entries.
a. In the Debug view, select the first core and click Suspend.
b. In the Registers view, expand the regpPCTLB1 group.
c. Find the MMU entries corresponding to the 0x00100000 address.

NOTE

The MMU entry for this translation uses the physical address 0x7f900000 and the

translation size is 1 MB.

d. Add the following code to the memory configuration file:

AutoEnableTranslations true
translate v:0x00100000 p:0x7£900000 0x00100000

e. Add specific translations to access memory areas for which the translation is not 1-1.

NOTE

The memory mapped registers are accessed directly on physical memory space, no

translation is required in such cases.

f. Save the memory configuration file and add it to the attach launch configuration.
g. Select Run > Debug Configurations.

The Debug Configurations dialog appears.
h. Expand the CodeWarrior group and select the launch configuration you created.
i. In the Connection panel, click Edit next to the Connection drop-down list box.

The Properties for <connection> window appears.

j- Inthe Memory tab, select the created memory configuration file at the processor level.

NOTE
By default, the memory configuration files, P4080_HV EntryPoint.mem and

P4080_HV.mem needed for debugging the hypervisor, included in P4080 2.1 software

bundle, are provided with the CodeWarrior layout in the PA\PA Support

\Initialization Files\Memory folder. If you use a different hypervisor or use a

hypervisor with different MMU entries, you need to follow the steps above.

You are now ready to debug the hypervisor at different stages.

7.10.1 Debugging Hypervisor During the Boot and Initialization

Process

This section discusses the various debug scenarios while debugging hypervisor from the boot.

This section explains:

» Debugging Hypervisor from the Entry Point on page 323

» Debugging Hypervisor from Relocation till Release of Secondary Cores on page 325
» Debugging Hypervisor after Release of Secondary Cores on page 326

» Debugging the Hypervisor Partitions Initialization Process on page 327

» Debugging the Hypervisor Partitions Image Loading Process on page 328

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

322

NXP Semiconductors

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

» Debugging All Cores when Starting the Guest Applications on page 328

» Debugging the Hypervisor Partition Manager on page 328

7.10.1.1 Debugging Hypervisor from the Entry Point

In this section, you will see how the hypervisor code is debugged from the _start function in the 1ibos/1ib/

head. s file until the t1bwe from branch to reloc from the scr/misc.s file, when the new text mapping is
created and the initial one is removed.

To debug hypervisor from the entry point until the hypervisor relocation:
1. Download the appropriate P4080 SW Bundle image (the BSP in . iso format) to a Linux computer.
2. Mount the . iso image file using this command: mount -o loop BSP-Image-Name.iso /mnt/iso

3. Install the BSP image file according to the instructions given in the BSP documentation, help/
documents/pdf/BSP_User Manual.

4. Configure <build tool> to have U-Boot boot the hypervisor as per instructions given in the BSP
documentation, help/documents/pdf/BSP_User Manual.

5. Import the U-Boot file and create an Attach launch configuration.
a. Launch the CodeWarrior IDE.
b. From the main menu bar, select File > Import.
The Import wizard appears.
c. Expand the CodeWarrior group.
d. Select CodeWarrior Executable Importer to debug a .e1f file.
e. Click Next.
The Import a CodeWarrior Executable file page appears.
f. Specify the project name for the imported project.
g. Click Next.
The Import C/C++/Assembler Executable Files page appears.
h. Click Browse next to the Executable option.
i. Selectthe hv.elf file.
j- Click Next.
The Processor page appears.
k. Select the processor family and toolchain for the executable file.
I. Click Next.
The Debug Target Settings page appears.

m. Specify the debugger connection type, board, launch connection, and connection type for the
executable file.

n. Click Next.

The Configurations page appears.
0. Select a core index.
p. Click Finish.

The Import a CodeWarrior Executable window closes.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 323

V¥ ¢
i

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

g. Select Run > Debug Configurations.

The Debug Configurations dialog appears with the specified launch configuration settings.

r. Click Edit near the Connection list box to check or edit the settings you made during the creation of the
launch configuration.

The Properties window appears for the selected launch configuration.
s. Select the type of connection using the Connection type drop-down list.
The Connection page appears.
t. Ensure that CCS executable is selected in the CCS server panel.
u. Specify the path of the executable file of the CCS server.

v. Enter the IP address in the Hostname/IP Address text box.

NOTE
Use the default port, 41475 and JTAG clock speed, 16000 kHz.
w. Click Edit next to the System drop-down list.
The System page appears.

X. Select P4080 HV EntryPoint.mem from \CWInstall dir\PA\PA Support\Initialization Files
\Memory in the Initialize target script column.

y. Click OK.
The Properties window closes.

z. On the Main tab, in the System panel list, ensure that e500mc-0 is selected. Run the launch
configuration.

aa.Click Finish.

NOTE
You can attach to all 8 cores, but for this example you will just select the first core. In
the beginning the hypervisor runs from address 0x0 and uses this translation v :
0x00100000 p:0x00000000 0x00100000 inits TLB1 MMU.

6. Open the Debugger Shell and set a hardware breakpoint at the entry point (_start function from
libos/lib/head.S) by issuing this command:

bp -hw 0x0 or bp -hw libos client entry
7. Find the address of this entry point by using the elf dump file:
powerpc-linux-gnu-objdump -D hv > hv.objdump;
8. Open the generated dump and search for _start address (for example, 0x100000)
NOTE
You use the objdump utility here because head. s is not present in the hv.elf file.
To set a hardware breakpoint, you can also expand the hv. elf file, open the required

file (if present) and set a hardware breakpoint directly at the desired function, for
example, the 1ibos_client_ entry or any other function.

9. Boot the hypervisor at the U-Boot prompt.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
324 NXP Semiconductors

g |

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

The debugger stops at the specified hardware breakpoint (see the figure below). You can now debug from

this location until hypervisor relocation.

Figure 114: Hypervisor Debug - Entry Point
%% Debug &2 = O | |09= Variables | % Breakpoints 2 0 Cache | i}l Registers =i Modules, = O
v X % & & o = B % v
& D o i & oo i Address

- [&] Debug hv [CodeWarrior Attach]
= &% EPPC, hv, core 0 (Suspended)
= 3 Thread [ID: 0x0] (Suspended: Breakpoint hit.)

=L 0x00000000 (0x00000000)() 0x00000000

sl /nomejtestfarm/Hypervisor/hv-0.6/output/bin/hv (6/2/10 2:34 PM)

al []

[£] 0x00000000 (0x00000000)() 0x00000000 &5 =8 Disassemb & . g= Outinel = O
Mo source available for "0x00000000 {0x00000000)() * #30x00000000 11 =
0x00000004 tlbivax
0x00000008 isync
View Disassembly... 0x0000000c sync

0x000000180
0x00000014
0x00000018
0x0000001c
0x000000280
0x00000024

nop

lis

ori

mtilr

b {
lis

Gl

[[r)

7.10.1.2 Debugging Hypervisor from Relocation till Release of

Secondary Cores

After the hypervisor relocation, the MMU entry from TLB1 is changed. Therefore, to continue debugging the

hypervisor, the used memory configuration file should use the new translation.

NOTE
For debugging hypervisor from relocation, use the P4080_HV.mem file from
\CWPAv10.0\PA\PA Support\Initialization Files\Memory.

Follow these steps to debug hypervisor from relocation:

1.

Select Run > Debug Configurations.

The Debug Configurations dialog appears.

. On the left panel, from the CodeWarrior Attach group, select the attach launch configuration you had

imported using the hv.elf file.
On the Main tab, in the System panel, select all the cores and click Debug.

The Debug perspective appears.

. In the Editor view, open the init.c file and set a hardware breakpoint at the branch_to_reloc function

call from the init hv mem function.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 325

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

Figure 115: Hypervisor Debug - Setting Breakpoint

%5 Debug £ = O | - Variables (“o Breakpoints £3 i Cache} e Registers}ﬂModu\es} =0
¥ ® % g & o w =2 & v
o B Ik = & i & @ ot Name Context Address Type
< [t] Debug hv [CodeWarrior Attach] L=/ b A& /homejtest 0x00000000 Hardware
~ &2 EPPC, hv, core 0 (Suspended) = |||k o fhomeftest Hardware

= 3 Thread [ID: 0x0] (Suspended: Breakpoint hit.) Ly
< & EPPC, hv, core 1
32 Thread [ID: 0x0] (Running)
~ & EPPC, hv, core 7

»2 Thread [ID: 0x0] (Running) z
| 1 I D}

_[£] 0x00000000 (0x00000000)() 0x00000000 1 =g Disassemb &2 S= Out\ine} =g

barrier{); [«| #50x00000000 1i =
memcpy (new_text, (void *)PHYSBASE, (uintptr_t)& end - PHYSBASE); 0x00000004 tlbivax =
IEEETN SN (new_text, (text_phys & MAS3_RPN) | TLB_MAS3_KERN, 0x00000008 isync -
text_phys == 32); 9x0000000C sync
} | 0x00000010 nop
L 0x00000014 1is
return 0; 0x000B001E ori
} 0x0000001Cc mtlr
0x00000020 b (
static void early_bind_ccm_law_devices(void) [~ 0x00000024 lis [~

] Il [+)] Il I [*)

5. Debug until the secondary cores are being released from the spin table in the release secondary
function from init.c at start secondary spin table call.

Figure 116: Hypervisor Debug - Release of Secondary Cores

%5 Debug 2 = B | |#= variables (% Breakpoints &3] Cache} it Registers} =3 Mudules} =t
¥ ® % o & = B & -
b B I = 3 = i o ¥ Y @l || Name Context Address Type
< [£]Debug hv [CodeWarrior Attach] p O .5 [address: 0x0000000000113 Reqular
< &% EPPC, hv, core 0 (Suspended) b @ & homeftes 0x00000000 Hardware
< o Thread [ID: 0x0] (Suspended) [o /homeftest Hardware
=' 0x00000010 (0x00000010)() 000000010
= &2 EPPC, hv, core 1
(o il [D)
ol init.c 53 0x 10 (0x 10)() Oxi 10 1 = O =¥ Disasse ¥ - o= Outlinew =
) o d
create_doorbells();
[DX0011395C | b l &]
/% Main deuice| tree must be const after this point. */ —
L50011396c: lwz r3,3021€[+

release_secondary_cores(); 00113970 1 4 21
partition_init(); ‘ 15 14,

} 00113974: lis r5,21

00113978: 1lis r7,17

0011397c: subi r4,rd,€
D0113980: subi rS5,r5,€
00113984: addi r7,r7,1
D0113988: 1i r6,4 L
0011398c: 1i r8,0
e iiain AA113990: bl dt for e:l”)

(4] [[r] Lo T

void secondary_init(void)

{

secondary_map_mem(};
cpu-=console_ok = 1;

(]

7.10.1.3 Debugging Hypervisor after Release of Secondary Cores

This section explains how to debug hypervisor after the release of secondary cores.
Follow these steps:
1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
326 NXP Semiconductors

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

On the left panel, from the CodeWarrior Attach group, select the attach launch configuration you had
imported using the hv.elf file.

On the Main tab, in the System panel, select all the cores and click Debug.

The Debug perspective appears.

When the secondary cores are released, set a hardware breakpoint at the start_secondary spin table
function in the mp . c file.

Boot the hypervisor.

The first core will stop at the start secondary spin_table function.

NOTE
For debugging the secondary cores, set a breakpoint either at the secondary start
entry point for secondary cores from 1ibos/1lib/head. S or at a function called by
secondary cores (for example, set a breakpoint at the secondary_init function
inthe init . c file).

Find out the address of the secondary start entry point by using the elf dump file:
powerpc-linux-gnu-objdump -D hv > hv.objdump;

Open the generated dump and search for secondary_start address (for example, 0x10006c).
After having the translation from 0x00100000 to 0x7f900000, add a breakpoint at 0x7f90006c.
Resume the first core which was stopped at the start _secondary spin table function.

Each secondary core will stop at the specified breakpoint either at the entry point or the secondary init
function.

10.Debug all the cores until the init_guest function call from the partition init function.

7.10.1.4 Debugging the Hypervisor Partitions Initialization Process

This section explains how to debug the hypervisor partition initialization process.

Follow these steps:

1.

N o o &

Select Run > Debug Configurations.
The Debug Configurations dialog appears.

On the left panel, from the CodeWarrior Attach group, select the attach launch configuration you had
imported using the hv.elf file.

On the Main tab, in the System panel, select all the cores and click Debug.

The Debug perspective appears.

In the Editor view, open the init.c file and set a hardware breakpoint at the partition init function.
Debug the init_ guest function on each core.

Set a breakpoint in the init guest primary function for debugging each primary core of a partition.

Set a breakpoint in the register cpu with guest function for the other cores of a partition.

NOTE
The secondary cores wait on a barrier in the register cpu with guest function
until the primary core of that partition allocates the guest - >gcpus member; after this
they will enter idle loop from src/misc.S. The primary core of each partition will
continue in the init guest primary function with different device-tree operations.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 327

|
y

'
A

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

7.10.1.5 Debugging the Hypervisor Partitions Image Loading Process
After debugging the hypervisor partitions initialization process, the image loading process begins at the
start_load guest Or load guest function from the guest.c file.

Each primary boot core will set a event of this type in the init guest function causing one of this functions to
be called.

1. From the start_load guest function, the primary core of each partition begins the process of image
loading for each partition.

2. Inthe start_guest_primary function, the 1oad images function call will load the specific files for each
partition.

3. Set different breakpoints in these functions for debugging the image loading process.

7.10.1.6 Debugging All Cores when Starting the Guest Applications
After the images for each partition are loaded, the primary core of each partition should take the secondary
partition cores from the idle loop and start the partition.

Follow these steps to debug all cores:

1. Inthe start_guest primary noload function, each partition primary core sets a gev_start event and
will wait on a barrier until all the cores from the partition become active.

2. The secondary partition cores will continue in the start guest secondary function and will wait in the
while loop for different events.

3. After all the partition cores become active and they are waiting for events in the while loop, the primary
core moves over the barrier, sets the partition state to running, sets the srr1 variable to guest state and at
the return from exception will start executing the guest application.

4. The other secondary cores from the partition set srr1 to guest state and at the return from exception will
start executing the guest application.

5. Set different breakpoints in these start guest primary noload and start_guest_ secondary functions
for debugging.

7.10.1.7 Debugging the Hypervisor Partition Manager

If you want to verify the behavior of different commands on a user space, you can use partman, which is a
Linux user space application.

For debugging the associated hypercalls routines, you will need to attach to the hypervisor with all the eight
cores and set breakpoints at the required function calls.

In this section, we will take an example of issuing the partition restart command from partman.
1. Select Run > Debug Configurations.
The Debug Configurations dialog appears.

2. On the left panel, from the CodeWarrior Attach group, select the attach launch configuration you had
imported using the hv.elf file.

3. On the Main tab, in the System panel, select all the cores and click Debug.
The Debug perspective appears.
4. In the Editor view, in the hcalls.c file set a breakpoint at the hcall partition restart function.

The debugger stops at this breakpoint and you can debug this hypercall handle.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
328 NXP Semiconductors

Debugging Embedded Linux Software
User Space Debugging with On-Chip Debug

7.11 User Space Debugging with On-Chip Debug

The user space on-chip debug (OCD) feature introduces the capability of debugging only one user space
application per debug session, using the Linux kernel awareness debug feature.

The advantage of this feature is that the debugger functionality is not conditioned by any target services and the
target serial/ethernet capabilities do not consume target resources. It works regardless of the target's processes
state. The solution does not require any debugger add-on for the target board.

The Linux kernel awareness debug feature has been enhanced to accept the on-source debugging for one user
space application per debug session. The limitation is multiple applications are linked and run on different virtual
addresses. In real time, user space applications are linked to the same virtual address, so that only one can be
debugged on the source.

A typical Linux kernel debug session (attach or download) adds the symbolics information for the user space
application. The symbolic information must be added before starting the debug session. Follow these steps to
add the information:

1. Select Run > Debug Configurations.
The Debug Configurations dialog appears.
2. Click the Debugger tab.
The Debugger options group appears.
3. Select the Other Executables tab.
4. Click Add to add the application elf file.
The Debug Other Executable dialog appears.
5. Select the Load Symbols checkbox and clear the Download to Device checkbox.

6. To download and start the application on the target board, the application should be included in the target
file system (using RAM disk or rootfs). You can either include the application manually or using SDK.

» From the SDK: The application is included in the root £s file from the SDK. The application will be
downloaded on the target board with the rest of the file system using the RAM disk download feature.
Follow all the steps from the BSP user manual (iso/help/documents/pdf on the BSP image) to include
the application in the target file system.

* Place the application manually: You can place the application manually in the target file system by
copying the application to the target, after the linux application is running on the target board using the
file transfer protocol like, FTP, TFTP, or SCP. If you use NFS, copy the application on the NFS server
location of the RAM disk.

7. Click Debug.

The debugged application processes will be presented as kernel tasks with the respective PID. If a core is
terminated while running inside the application, the corresponding thread will appear in the System Browser
view.

8. Select Window > Show View > Other.

The Show View dialog appears.
9. From the Debug group, select System Browser.
10.Click OK.

The System Browser window appears with the process and thread information.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 329

V¥ ¢
i

Debugging Embedded Linux Software
User Space Debugging with On-Chip Debug

11.Locate the particular thread among the other threads and double click on it to debug the selected thread.
You can also right-click the thread and select the Debug option.

The selected thread appears in the Debug perspective for the current core.

NOTE
On multi-core systems the application can be found on any core and, if it creates multiple
threads/processes, each has a separate entry in System Browser view.

12'Click on the thread in the Debug view, the program counter icon % on the marker bar points to the next
statement to be executed.
3. =
In the Debug view, click Step Into e
The debugger executes the current statement and halts at the next statement.
14 Set the breakpoint on the appropriate function.

15.You can inspect the variables, view the Disassembly or perform any other debug capability as required.

NOTE
The Linux kernel and user space stack frames are not simultaneously supported for a
thread. In a system call, the kernel stack is displayed corresponding to the kernel
function (system call) called from the application.
This section contains the following subsections:
+ Attaching Core to Debug Application on page 330

» Debugging Application from main() Function on page 330

7.11.1 Attaching Core to Debug Application

In this section, we will take an example to attach the target to an already executed debugging application.
The steps are as follows:

1. Click Suspend from the debug view to suspend the debug session or Multicore Suspend if a multicore
target is used.

2. Select Window > Show View > Other.
The Show View dialog appears.
3. From the Debug group, select System Browser.
4. Click OK.
The System Browser window appears.
5. Select and double-click on the particular thread to attach it to the target.
NOTE

If the application stack does not appear in the Debug view, go to System Browser view
and attach the application.

7.11.2 Debugging Application from main() Function

In this section, we will describe the steps to debug the application from the beginning of the program, that is,
from the main () function.

Before executing the main () function, the application load process must be interrupted by setting a breakpoint
after the MMU setup and before the main execution. It can be performed in two steps:

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
330 NXP Semiconductors

Debugging Embedded Linux Software
User Space Debugging with On-Chip Debug

1. Attach to a running instance of the application (as described above) and set the breakpoint.
a. Right-click the selected thread in the application stack.
The context menu appears.

b. Select the Debug option to debug the application after the application stack is displayed in the
Disassembly view.

c. Click the thread in the Debug view.

The program counter icon % on the marker bar points to the next statement to be executed.

d. Set breakpoint at the stack frame under main ().

2. Click Resume P and restart the application from the console.

3. When the breakpoint is hit, set a new breakpoint on source, and repeat the above steps.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 331

V¥ ¢
i

Debugging Embedded Linux Software
User Space Debugging with On-Chip Debug

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
332 NXP Semiconductors

JTAG Configuration Files
JTAG configuration file syntax

Chapter 8
JTAG Configuration Files

This chapter explains the JTAG configuration files that pass specific configuration settings to the debugger and
support chaining of multiple devices.

A JTAG configuration file is a text file, specific to the CodeWarrior debugger, which describes a custom JTAG
scan chain. You can specify the file in the remote system settings.

This chapter explains:

» JTAG configuration file syntax on page 333

» Using a JTAG configuration file to override RCW on page 334

» Using a JTAG configuration file to specify multiple linked devices on a JTAG chain on page 335

» Setting up a remote system to use a JTAG configuration file on page 337

8.1 JTAG configuration file syntax

This section describes the syntax of a JTAG configuration file.

You can create a JTAG configuration file that specifies the type, chain order, and various settings for the devices
you want to debug. To create the JTAG configuration file, list each device on a separate line, starting with the
device that is directly connected to the transmit data out (TDO) signal (Pin 1) of the 16-pin COP/JTAG debug
connector on the hardware target, and conclude with a blank line.

The listing below shows the complete syntax for a JTAG configuration file.
Figure 117: JTAG Configuration File Syntax

cfgfile:
l\nl

'#' 'any other characters until end of line'

line

cfgfile line
line:

target

target filter list_or params
target:

target name

target name = target id

'Generic' number number number
filter list or params:

filter list_entity

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 333

wr
PRt

J1AG Configuration Files
Using a JTAG configuration file to override RCW

filter list or params filter list entity
filter list_entity:
' (' number number ')'

filter name

o
<

In the listing above, target_name represents a processor name, such as P1010, P2020, P4080, and so on.

NOTE
If a JTAG scan chain contains a processor, such as P1011, P1012, P1013, P1015,
P1016, P1017, and P2010, then an additional parameter, (0x80000000 1), needs to be
specified in the JTAG configuration file. An example of this parameter is given in Using
a JTAG configuration file to specify multiple linked devices on a JTAG chain on page
335.

8.2 Using a JTAG configuration file to override RCW

You can use a JTAG configuration file to override reset configuration word (RCW) for a processor, such as
P4080.

In the following scenarios, the JTAG configuration files are used for overriding RCW:
* Programming RCW in a target board that does not have RCW programmed already
* New board bring-up

» Recovering a board having a blank or corrupted flash

NOTE
For more information on RCW, see the reference manual for your processor.

The CodeWarrior software includes example JTAG configuration files that can be used for overriding the RCW
(see the listing below). The JTAG Configuration files are available at the following location:

<CWInstallDir>\PA\PA Support\Initialization Files\jtag_ chains

Figure 118: Sample JTAG configuration file for overriding RCW

Example file to allow overriding the whole RCW or a portion of it

Syntax:
P4080 (2 RCW option) (RCWn value)

#

#

#

#

#

where:

RCW _option = 0 [RCW override disabled]
1 [RCW override enabled]
2
#

#

#

#

[Reset previous RCW override parts]
RCWn = 21000+n (n = 1 .. 16; index of RCW wvalue)

value = 32-bit value

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
334 NXP Semiconductors

JTAG Configuration Files
Using a JTAG configuration file to specify multiple linked devices on a JTAG chain

As specified in the listing above, the JTAG configuration files can be used to override a portion or the complete
RCW for P4080, by specifying (index, value) pairs for some (or all) of the 16 x (32-bit words) of the RCW.

NOTE
You can use the pre-boot loader (PBL) tool to configure the various settings of the RCW
and output the RCW in multiple formats, including CodeWarrior JTAG configuration files.
For more information on the PBL tool, see QCVS PBL Tool User Guide.

8.3 Using a JTAG configuration file to specify multiple linked
devices on a JTAG chain

This section explains how to connect multiple processors through a single JTAG chain and how to describe
such a JTAG chain in a JTAG configuration file.

The listing and figure below show a sample JTAG initialization file with a single core.
Figure 119: Sample JTAG Initialization File for P1010 Processor

A single device in the chain
P1010

Figure 120: A Single Device in a JTAG Chain

TDI TDO
P1010

Chain pos. 0

The listing and figure below show a sample JTAG initialization file with two devices in a JTAG chain.

Figure 121: Sample JTAG Initialization File for P1014 and P2020 Processors

Two devices in a JTAG chain
P1014

P2020

Figure 122: Two Devices in a JTAG Chain

DI TDO
P2020 o P1014

Chain pos. 1-3 Chain pos. 0

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 335

http://www.freescale.com/files/soft_dev_tools/doc/user_guide/QCVS_PBL_User_Guide.pdf?fpsp=1&WT_TYPE=Users%2520Guides&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf

JIAG Configuration Files
Using a JTAG configuration file to specify multiple linked devices on a JTAG chain

NOTE
The devices are enumerated in the direction starting from TDO output to TDI input.

The listing and figure below show two devices connected in a JTAG chain.

Figure 123: Sample JTAG Initialization File for P2010 and P4080 Processors

Two devices in a JTAG chain
P2010 (0x80000000 1)

P4080 (2 1) (210005 0x90404000)

Figure 124: Two Devices in a JTAG Chain

™ DO
PA0&D N P2010
D > e
Chain pos. 1-9 Chain pos. 0
Index 2—Data 1l Index 0x80000000 — Datal

Index 210005 — Data 0x90404000

The listing and figure below show two devices connected in a JTAG chain with a filter applied for the second
device.

Figure 125: Sample JTAG Initialization File for Two Devices with Filter for Second Device

Two devices in a JTAG chain
8306 (1 1) (2 0x44050006) (3 0x00600000)

8309 log

Figure 126: Two Devices in a JTAG Chain with Filter Applied to Second Device

log
TDI TDO
8309 - 8306 I
—
Chain pos. 1 Chain pos. 0

Index 1 - Data 1
Index 2 - Data 0x44050006
Index 3 - Data 0x00600000

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
336 NXP Semiconductors

JTAG Configuration Files
Setting up a remote system to use a JTAG configuration file

In the above example, the entry for the 8306 also includes the Hard Reset Control Word (HRCW) data that will
overwrite the HRCW fetched by the 8306 upon power up or Hard Reset. The Hard Reset Control Word
parameters are optional.

The CodeWarrior debugger not only supports Freescale devices but also supports non-Freescale devices in a
JTAG scan chain. Each non-Freescale device used in a scan chain is declared as "Generic" and it takes the
following three parameters:

» JTAG Instruction Length
* Bypass Command
» Bypass Length

The values for these three parameters are available in the device's data sheet or can be obtained from the
manufacturer of the device.

The listing and figure below show a Freescale device, 8560, connected with a non-Freescale device, PLA, in a
JTAG scan chain. From the PLA's data sheet, the JTAG Instruction Length = 5, the Bypass Command = 1, and
the Bypass Length = Ox1F.

Figure 127: Sample JTAG Initialization File including Non-Freescale Devices

8560
Generic 5 1 O0x1F

Figure 128: A Freescale Device and a Non-Freescale Device in a JTAG Chain

TDI TDO TDI TDO
— FLA

¥

8360 |—»

Chain pos. 1 Chain pos. 0

8.4 Setting up a remote system to use a JTAG configuration file

This section explains how to configure a remote system to use a JTAG configuration file.
To connect to a JTAG chain, specify these settings in the launch configurations:

1. Create a JTAG initialization file that describes the items on the JTAG chain. For more information on how
to create a JTAG initialization file, see JTAG configuration file syntax on page 333 and Using a JTAG
configuration file to specify multiple linked devices on a JTAG chain on page 335.

2. Open the CodeWarrior project you want to debug.
3. Select Run > Debug Configurations.

The Debug Configurations dialog appears with a list of debug configurations that apply to the current
application.

4. Expand the CodeWarrior tree control.

5. From the expanded list, select the debug configuration for which you want to modify the debugger settings.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 337

V¥ ¢
i

JIAG Configuration Files
Setting up a remote system to use a JTAG configuration file

The Debug view shows the settings for the selected configuration.
6. Select a remote system from the Connection drop-down list.
7. Select a core from the Target list.
8. In the Connection group, click Edit.

The Properties for <project>window appears.
9. Click Edit next to the Target list.

The Properties for <remote system>window appears.
10.Click Edit next to the Target type drop-down list.

The Target Types dialog appears.
11.Click Import.
12.The Import Target Type dialog appears.

13.Select the JTAG initialization file that describes the items on the JTAG chain from this location:
<CWInstallDir>\PA\PA Support\Initialization Files\jtag chains

14.Click OK.
The items on the JTAG chain described in the file appear in the Target Types dialog.
15.Click OK.
The selected JTAG configuration file appears on the Advanced tab (shown in the figure below).
Figure 129: Advanced Tab Showing the JTAG Configuration File

Connection | Advanced

Target connection lost settings
When an active connection is lost, do the following:
) Try to reconnect

() Terminate the debug session(s)
() Ask me

Advanced CCS settings
CCS timeout (seconds): | 100
["]Enable logging

JTAG config file
D:VPA 10 Installed Build\CWW PA v10.0. 1YPAVPA_Support\Initilization_Files\jtag_chains\P408005_RCW_1200-500-800. bt

Advanced TAF settings
[IForce shell download
[Disable fast download
[C]Enable ITAG diagnostics
[]5ecure debug key:

16.Click OK.
17 Click the Debugger tab.
The Debugger page appears.

18.Ensure that the Stop on startup at checkbox is selected and main is specified in the User specified text
box.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
338 NXP Semiconductors

JTAG Configuration Files
Setting up a remote system to use a JTAG configuration file

19.Click Apply to save the changes.

You have successfully configured a debug configuration.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 339

V¥ ¢
i

JIAG Configuration Files
Setting up a remote system to use a JTAG configuration file

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
340 NXP Semiconductors

Target Initialization Files
Using target initialization files

Chapter 9
Target Initialization Files

A target initialization file is a file that contains commands that initialize registers, memory locations, and other
components on a target board.

The most common use case is to have the CodeWarrior debugger execute a target initialization file immediately
before the debugger downloads a bareboard binary to a target board. The commands in a target initialization
file put a board in the state required to debug a bareboard program.

NOTE
The target board can be initialized either by the debugger (by using an initialization file),
or by an external bootloader or OS (U-Boot, Linux). In both cases, the extra use of an
initialization file is necessary for debugger-specific settings (for example, silicon
workarounds needed for the debug features).
This chapter explains:
+ Using target initialization files on page 341

+ Target initialization commands on page 343

9.1 Using target initialization files

This section describes how to configure the CodeWarrior debugger to use a specific target initialization file.

A target initialization file contains commands that the CodeWarrior debugger executes each time the launch
configuration, the initialization file is assigned to, is debugged. You can use the target initialization file for all
launch configuration types (Attach, Connect and Download). The target initialization file is executed after the
connection to the target is established, but before the download operation takes place.

The debugger executes the commands in the target initialization file using the target connection protocol, such
as a JTAG run-control device.

You do not need to use an initialization fri\llgil-sou debug using the CodeWarrior TRK
debug protocol.

To instruct the CodeWarrior debugger to use a target initialization file:

1. Start the CodeWarrior IDE.

2. Open a bareboard project.

3. Select one of this project's build targets.

4. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

o

Select the appropriate launch configuration from the left panel.

6. In the Main tab, from the Connection panel, click Edit next to the Connection drop-down list.
The Properties for <Launch Configuration Name> window appears.

7. Click Edit next to the Target drop-down list.

The Properties for <remote system> window appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 341

I arget Initialization Files
Using target initialization files

8. In the Initialization tab, select the appropriate cores checkboxes from the Initialize target column, as shown
in the figure below.

Figure 130: Initialization Tab

Initialization | Memary | Advanced

Execute target reset (applies to initial launch only)

Target Care reset Fun ouk of reset Initialize target Initialize target scripk
= P4050 F F
e500mc-0 L il $4{ProjDirPath RGP0
e500mc-1 F Fl
e500mc-2] F
e500mc-3 F Fl
e500mc-4 O F
e500mc-5]]
e500mc-& Ll F
e500me-7 [l i

Mote: Target initialization Files and core reset only apply to cores being launched.

9. In the Initialize target script column, click the ellipsis button, as shown in the figure above.

TIP
Click in the specified cell of the Initialize target script column for the ellipsis button to
appear.

The Target Initialization File dialog appears, as shown in the figure below.

Figure 131: Target Initialization File Dialog Box

Target Initialization File

Select a file to apply to the currently selected system node
and recursively to all descendant nodes, if any:

D:\PA 10 Installed BuildCW PA w10, 1PAPA_SupportiInitialization_Files\QorlQ_P4'

[Workspace...] |§File System...§| [Variables. ..]

[0K ” Cancel]

10.Select the target initialization file by using the buttons provided in the dialog and click OK.

The target initialization files are available at the following path:
<CWInstallDir>\PA\PA Support\Initialization Files\

You can also write your own target initialization files. The next section documents the commands that can appear
in such files.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
342 NXP Semiconductors

Target Initialization Files
Target initialization commands

9.2 Target initialization commands

Target initialization commands are of two types, .cfg commands and .tcl commands.
The syntax of each target initialization command follows these rules:
» Spaces and tabs (white space) are ignored
» Character case is ignored
+ Unless otherwise noted, values may be specified in hexadecimal, octal, or decimal:
* Hexadecimal values are preceded by ox (for example, 0xDEADBEEF)
* Octal values are preceded by o (for example, 01234567)
» Decimal values start with a non-zero numeric character (for example, 1234)
» Comments start with a semicolon (;) or pound sign (#), and continue to the end of the line
This section explains:
« .cfg target initialization commands on page 343

« .tcl target initialization commands on page 353

9.2.1 .cfg target initialization commands

This section describes for each . cfg target initialization command a brief statement of what the command
does, the command's syntax, a definition of each argument that can be passed to the command, and
examples showing how to use the command.

Some commands described in this section allow access to memory-mapped register by name as well as address.
Based on the processor selection in the debugger settings, these commands will accept the register names
shown in the debugger's Registers view. There are also commands to access built-in registers of a processor
core, for example, writereg. The names of these registers follow the architectural description for the respective
processor core for general purpose and special purpose registers. Note that these names (for example, GPR5)
might be different from names used in assembly language (for example, r5). You can identify the register names
by looking at the debugger's Registers view.

The current release does not include .crzg-il;:iztialization files but provides backward
compatibility to these files.

Listed below are the commands that can appear in a . cfg target initialization file:

« alternatePC on page 344

+ ANDmem.l on page 344

+« ANDmmr on page 345

* IncorMMR on page 345

*+ ORmem.l on page 346

* reset on page 346

* run on page 347

+ setCorelD on page 347

* resetCorelD on page 347

* sleep on page 347

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 343

I arget Initialization Files

Target initialization commands

+ stop on page 348

» writemem.b on page 348
* writemem.w on page 348
» writemem.| on page 349
» writemmr on page 349
 writereg on page 350
 writereg64 on page 350
 writereg128 on page 351
+ writereg192 on page 352
+ writespr on page 352

9.2.1.1 alternatePC

Sets the initial program counter (PC) register to the specified value, disregarding any entry point value read
from the ELF application being debugged.

Syntax

alternatePC
address

Arguments
address
The 32-bit address to assign to the program counter register.

This address may be specified in hexadecimal (for example, 0xaBCcD0000), octal (for example, 025363200000),
or decimal (for example, 28823388156).

Example

This command assigns the address 0xc28737a4 to the program counter register:

alternatePC 0xc28737a4

9.2.1.2 ANDmem.I

Performs a bit AND using the 32-bit value at the specified memory address and the supplied 32-bit mask and
writes the result back to the specified address.

No read/write verify is performed.

Syntax

ANDmem. 1

address

mask
Arguments
address

The address of the 32-bit value upon which to perform the bit AND operation.

This address may be specified in hexadecimal (for example, 0xaBCcD0000), octal (for example, 025363200000),
or decimal (for example, 28823388156).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
344 NXP Semiconductors

Target Initialization Files
Target initialization commands
mask
32-bit mask to use in the bit AND operation.
Example

The command below performs a bit AND operation using the 32-bit value at memory location 0xc30a0004 and
the 32-bit mask oxFFFFFFFF. The command then writes the result back to memory location 0xc30a0004.

ANDmem.1l 0xC30A0004 OxXFFFFFEFF

9.2.1.3 ANDmmr

Performs a bit AND using the contents of the specified memory-mapped register (MMR) and the supplied 32-
bit mask and writes the result back to the specified register.

Syntax

ANDmmr
regName
mask

Arguments

regName

The name of the memory-mapped register upon which to perform a bit AND.
mask

32-bit mask to use in the bit AND operation.

Example

This command bit ANDs the contents of the acra register with the value 0x00002000:

ANDmmr ACFG 0x0000200

9.2.1.4 IncorMMR

Performs a bitwise OR using the contents of the specified memory-mapped register (MMR) and the supplied
32-bit mask and writes the result back to the specified register.

Syntax

incorMMR
regName
mask

Arguments

regName

The name of the MMR register upon which to perform a bit OR.
mask

32-bit mask to use in the bit inclusive OR operation.

Example

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 345

I arget Initialization Files
Target initialization commands

This command bit ORs the contents of the acFc register with the value 0x00002000:

incorMMR ACFG 0x00002000

9.2.1.5 ORmem.l

Performs a bit OR using the 32-bit value at the specified memory address and the supplied 32-bit mask and
writes the result back to the specified address.

No read/write verify is performed.

Syntax

ORmem. 1
address
mask

Arguments
address
The address of the 32-bit value upon which to perform the bit OR operation.

This address may be specified in hexadecimal (for example, 0xaBcD0000), octal (for example, 025363200000),
or decimal (for example, 28823388156).

mask
32-bit mask to use in the bit OR operation.
Example

The command below performs a bit OR operation using the 32-bit value at memory location oxc30a0008 and
the 32-bit mask oxo01000800. The command then writes the result back to memory location 0xc30a0004.

ORmem.1 0xC30A0008 0x01000800

9.2.1.6 reset

Resets the processor on the target board.

Syntax

reset
code

Arguments
code
Number that defines what the debugger does after it resets the processor on the target board.

The table below describes the Post Reset Actions. Use any one of the values specified.

Table 136: Post Reset Actions

Value Description
0 reset the target processor, then run on page 347
1 reset the target processor, then stop on page 348

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
346 NXP Semiconductors

Target Initialization Files
Target initialization commands

9.2.1.7 run

Starts program execution at the current program counter (PC) address.

Syntax

run

9.2.1.8 setCorelD

Tells the debugger to issue all subsequent commands on the specified core index, disregarding the actual
core index on which the initialization is executed.

NOTE
Ensure to reset the core index after the sequence of commands intended to execute on
the other core is finished (see the resetCorelD on page 347 command).

TIP
This command can be useful in cases where you need to execute a command sequence
on other cores than the current one, for example in a SMP initialization scenario.

Syntax
setCoreID core

Arguments

core

The core index on which to execute.
Example

This command tells the debugger to issue all subsequent commands on the core index 1:

setCorelID 1

9.2.1.9 resetCorelD

Tells the debugger to revert to executing commands on the current core, thus cancelling the effect of a
previous setCorelD command.

Syntax
resetCorelD
9.2.1.10 sleep
Causes the debugger to pause the specified number of milliseconds before executing the next instruction.
Syntax
sleep
milliseconds
Arguments
milliseconds

The number of milliseconds (in decimal) to pause the debugger.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 347

I arget Initialization Files
Target initialization commands
Example

This command pauses the debugger for 10 milliseconds:

sleep 10

9.2.1.11 stop

Stops program execution and halts the processor on the target board.

Syntax

stop

9.2.1.12 writemem.b
Writes a byte (8 bits) of data to the specified memory address.

Syntax

writemem.b

address

value
Arguments
address

The 32-bit memory address to which to assign the supplied 8-bit value.

This address may be specified in hexadecimal (for example, oxaBcb), octal ((for example, 0125715), or decimal
(43981).

value
The 8-bit value to write to the specified memory address.

This value may be specified in hexadecimal (for example, oxFF), octal (for example, 0377), or decimal (for
example, 255).

Example

This command writes the byte ox1a to the memory location 0x0001FFo00:

writemem.b 0x0001FF00 Ox1A

9.2.1.13 writemem.w
Writes a word (16 bits) of data to the specified memory address.

Syntax

writemem.w

address

value
Arguments

address

The 32-bit memory address to which to assign the supplied 16-bit value.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
348 NXP Semiconductors

Target Initialization Files
Target initialization commands

This address may be specified in hexadecimal (for example, 0xaBCcD0000), octal (for example, 025363200000),
or decimal (for example, 28823388156).

value

The 16-bit value to write to the specified memory address.

This value may be specified in hexadecimal (for example, 0xFFFF), octal (for example, 0177777), or decimal (for
example, 65535).

Example

This command writes the word 0x1234 to memory location 0x0001FF00:

writemem.w O0x0001FF00 0x1234

9.2.1.14 writemem.|
Writes a long integer (32 bits) of data to the specified memory location.

Syntax

writemem. 1l
address
value

Arguments
address
The 32-bit memory address to which to assign the supplied 32-bit value.

This address may be specified in hexadecimal (for example, 0xaBCcD0000), octal (for example, 025363200000),
or decimal (for example, 28823388156).

value
The 32-bit value to write to the specified memory address.

This value may be specified in hexadecimal (for example, oxFFFFABRCD), octal (for example, 037777725715), or
decimal (for example, 4294945741).

Example

This command writes the long integer 0x12345678 to the memory location 0x0001FF00:

writemem.w O0x0001FF00 0x12345678

9.2.1.15 writemmr

Writes a value to the specified memory-mapped register (MMR).

Syntax

writemmr
regName
value

Arguments
regName

The name of the memory-mapped register, the supplied value is assigned to.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 349

I arget Initialization Files
Target initialization commands

NOTE
This command accepts most Power Architecture processor memory-mapped register
names.
value

The value to write to the specified memory-mapped register.

This value may be specified in hexadecimal (for example, oxFFFFABCD), octal (for example, 037777725715), or
decimal (for example, 4294945741).

Example

This command writes the value oxfff£££fc3 to the SYPCR register:
writemmr SYPCR Oxffffffc3

This command writes the value 0x0001 to the rRMR register:
writemmr RMR 0x0001

This command writes the value 0x3200 to the MPTPR register:

writemmr MPTPR 0x3200

9.2.1.16 writereg

Writes the supplied data to the specified register.

Syntax

writereg
regName value

Parameters

regName

The name of the register to which to assign the supplied value.
value

The value to write to the specified register.

This value may be specified in hexadecimal (for example, oxFFFFABCD), octal (for example, 037777725715), or
decimal (for example, 4294945741).

Example

This command writes the value 0x00001002 to the MSRr register:

writereg MSR 0x00001002

9.2.1.17 writereg64

Writes the supplied 32-bit values to the specified 64-bit register.

NOTE
This command is applicable only to 64-bit Book E cores like the e5500.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
350 NXP Semiconductors

Target Initialization Files
Target initialization commands

Syntax

writereg regName valuel valueZ2

Arguments

regName

The name of the 64-bit register to which to assign the supplied value.

valuel, value2

The two 32-bit values that together make up the 64-bit value to assign to the specified register.
Each value may be specified in hexadecimal (for example, 0OXFFFFABCD), octal

(for example, 037777725715), or decimal (for example, 4294945741).

Example

This command writes the 64-bit value 0x0123456789ABCDEF to the 64-bit GPRS5 register:

writereg64 GPR5 0x01234567 0x89ABCDEF

9.2.1.18 writereg128

Writes the supplied 32-bit values to the specified TLB register.

NOTE
This command is applicable only to Book E cores, such as the €500 or e500mc variants.

Syntax

writeregl2s8
regName valuel value2 value3 value4

Arguments
regName

The name (or number) of the TLB register to which to assign the specified values.

TIP
Valid TLBO register names range from L2MMU TLBO through L2MMU TLB255
(L2mMMu_TLB511 for e500v2 and e500mc).

Valid TLB1 register names range from L211\-/III\|/:I,U_CAMO through L2MMU_caM15, and
L2MMU_CAMG63 for e500mc.
valuel, value2, value3, value4
The four 32-bit values that together make up the 128-bit value to assign to the specified TLB register.
Each value must be specified in hexadecimal (for example, 0xFFFFABCD).
Example

This command writes the values 0xa1002, 0xB1003, 0xC1004, and 0xD1005 to the Lamvu_camo TLB register:

writeregl28 L2MMU CAM1 0x7000000A 0x1C080000 OxFE000000 OxFE000001

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 351

I arget Initialization Files
Target initialization commands

9.2.1.19 writereg192

Writes the supplied 32-bit values to the specified TLB register.

NOTE
This command is applicable only to 64-bit Book E cores, such as the e5500 variant.

Syntax

writeregl92
regName valuel value2 value3 value4 value5 value6

Arguments
regName

The name (or number) of the TLB register to which to assign the specified values.

TIP
Valid TLBO register names range from L2MMU_TLBO through L2MMU_TLB511.

Valid TLB1 register names range fron-:IZZMMU_CAMO through L2MMU_CAM63.
valuel, value2, value3, value4, value5, value6
The six 32-bit values that together make up the 192-bit value to assign to the specified TLB register.
Each value must be specified in hexadecimal (for example, 0OXFFFFABCD).
Example
This command writes the values 0x7000000A 0x1C080000 0x00000000 OxFE000000 0x00000000 0xFEO00001
to the LZMMU_CAM1 TLB register:

writeregl92 L2MMU CAM1 0x7000000A 0x1C080000 0x00000000 OxFE000000
0x00000000 OxFE000001

9.2.1.20 writespr

Writes the specified value to the specified SPR register.

NOTE
This command is similar to the writereg SPRxxx command, except that writespr
lets you specify the SPR register to modify by number (in hexadecimal, octal, or
decimal).

Syntax

writespr
regNumber value
Arguments
regNumber
The number of the SPR register to which to assign the supplied value.

This value may be specified in hexadecimal (for example, 0x27&), octal (for example, 01176), or decimal (for
example, 638).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
352 NXP Semiconductors

Target Initialization Files
Target initialization commands

value
The value to write to the specified SPR register.

This value may be specified in hexadecimal (for example, oxFFFFABCD), octal (for example, 037777725715), or
decimal (for example, 4294945741).

Example

This command writes the value 0x0220000 to SPR register 638:

writespr 638 0x0220000

9.2.2 .tcl target initialization commands

This section describes the tool command language (TCL) - based commands that are used to initialize a
target.

Similar to a . c£g initialization file, a TCL-based initialization file can contain target-specific initialization,
processor core initialization, or debugger-specific initialization.

The .tc1 file format offers some advantages over the .cfg file format, for example, it implements a better
memory management approach, and allows you to use memory address ranges higher than 32-bit and use flow
control statements. The . tc1 file format is the recommended target initialization file format.

The debugger automatically executes the TCL script when you debug the launch configuration. You can also
execute the script manually at any time from the Debugger Shell, by using the source command. The TCL-based
target initialization is basically a debugger shell script and implicitly supports all Debugger Shell commands. For
more details on the Debugger Shell commands, see CodeWarrior Development Studio Common Features
Guide.

The table below lists the equivalent Debugger Shell commands that you can include in a TCL script for target
initialization.

Table 137: .tdl target initialization commands

Target initialization commands Debugger Shell equivalent

writereg, writeregé4, writeregl2$, reg Or change

writeregl92

writespr reg Or change (partial equivalence - uses the register

name instead of the spr number)

writemem.1l mem 32bit Or change 32bit

writemem.w mem 16bit Or change 16bit

writemem.b mem 8bit Or change 8bit

sleep wait

writemmr reg Or change

IncOrmmr change regName [format %x [expr [reg
regName %d -npl | [expr mask]]] Or reg
regName = [format %x [expr [reg regName %d
-np] | [expr mask]]]

Table continues on the next page...

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 353

I arget Initialization Files
Target initialization commands

Table 137: .tcl target initialization commands (continued)

Target initialization commands

Debugger Shell equivalent

ANDmmr change regName [format %x [expr [reg
regName %d -np]l & [expr mask]]] Or reg
regName = [format %x [expr [reg regName %d
-np] | [expr mask]]]

setCorelD eppc: :setcoreid

resetCorelD eppc: :setcoreid default

run go

stop stop

reset reset

ANDmem. 1 change address [format %x [expr [mem
address %d -npl & [expr mask]]] Or mem
address = [format %$x [expr [mem address %d
-npl & [expr mask] 1 1

ORmem. 1 change address [format %x [expr [mem
address %d -np] | [expr mask]]] Or mem
address = [format %$x [expr [mem address %d
-np] & [expr mask]]]

alternatePC N/A

TIP

When accessing registers, for best performance you can add the register group name
followed by '/' before the name of the register, for example:

reg "e500mc Special Purpose Registers"/MSR = 0x00002000

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

354

NXP Semiconductors

Memory Configuration Files
Using memory configuration files

Chapter 10
Memory Configuration Files

A memory configuration file is a command file containing commands that define the rules the debugger follows
when accessing a target board's memory.

NOTE
Memory configuration files do not define the memory map for the target. Instead, they
define how the debugger should treat the memory map the target has already
established. The actual memory map is initialized either by a target resident boot loader
or by a target initialization file. For more information, see the Target Initialization Files
on page 341 chapter of this manual.

If necessary, you can have the CodeWarrior debugger execute a memory configuration file immediately before
the debugger downloads a bareboard binary to a target board. The memory configuration file defines the memory
access rules (restrictions, translations) used each time the debugger needs to access memory on the target
board.

NOTE
Assign a memory configuration file to bareboard build targets only. The memory of a
board that boots embedded Linux® is already set up properly. A memory configuration
file defines memory access rules for the debugger; the file has nothing to do with the
OS running on a board. If needed, a memory configuration file should be in place at all
times. The Linux Kernel Aware Plugin performs memory translations automatically,
relieving the user from specifying them in the memory configuration file. In addition, for
certain processors, the debugger can automatically read the translations from the target
in a bareboard scenario, relieving the user from specifying them in the memory
configuration file. For more information, see Memory translations on page 155.

This chapter explains:

+ Using memory configuration files on page 355

* Memory configuration commands on page 356

10.1 Using memory configuration files

This section describes how to configure the CodeWarrior debugger to use a specific memory configuration
file.

A memory configuration file contains memory access rules that the CodeWarrior debugger uses each time the
build target, the configuration file is assigned to, is debugged.

You specify a memory configuration file in the Memory tab of the remote system configuration (shown in the
figure below).

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 355

V¥ ¢
i

Memory Configuration Files
Memory configuration commands

Figure 132: Specifying a memory configuration file

Initialization | Memory | Advanced

Target Memory configuration Memory configuration File
= P40a0]

e500mc-0

e500me-1

e500mc-2

e500mc-3

e500mc-4

e500mc-5

e500mc-6

e500mc-7

I

You can also write your own memory configuration files. The next section documents the commands that can
appear in such files.

10.2 Memory configuration commands

This section describes for each memory configuration command a brief statement of what the command
does, the command's syntax, a definition of each argument that can be passed to the command, and
examples showing how to use the command.

In general, the syntax of memory configuration commands follows these rules:
» Spaces and tabs (white space) are ignored

» Character case is ignored

Unless otherwise noted, values may be specified in hexadecimal, octal, or decimal:
* Hexadecimal values are preceded by ox (for example, 0xDEADBEEF)

* Octal values are preceded by o (for example, 01234567)

» Decimal values start with a non-zero numeric character (for example, 1234)

+ Addresses are values that might be prefixed with the memory space command line prefix:
[<MemSP>:]<value>. For example: p: 0x80000004 Or 0x80000004.

+ Comments start with standard C and C++ comment characters, and continue to the end of the line
Listed below are the commands that can appear in a memory configuration file:

» autoEnableTranslations on page 357

* range on page 357

* reserved on page 358

* reservedchar on page 358

translate on page 359

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
356 NXP Semiconductors

Memory Configuration Files
Memory configuration commands

10.2.1 autoEnableTranslations

The autoEnableTranslations command configures if the translate commands are considered by the
debugger or not.

Syntax
autoEnableTranslations enableFlag

Arguments
enableFlag
Pass true to instruct the debugger to consider the translate commands.

If this command is not present, the translations will not be considered, so this command should usually be present
and have a "true" argument.

Examples

This command enables the debugger to consider the translate commands:

AutoEnableTranslations true

10.2.2 range

The range command sets debugger access to a block of memory.

NOTE
The range command must have both the loAddress and hiAddress in the same memory
space.

Syntax

range
loAddress hiAddress size access
Arguments
loAddress
the starting address of the memory range
hiAddress
the ending address of the memory range
size
the size, in bytes, the debug monitor or emulator uses for memory accesses
access
controls what type of access the debugger has to the memory block - supply one of: Read, Write, Or ReadWrite
Examples

To set memory locations 0xFF000000 through 0xFF0000FF to read-only with a size of 4 bytes:

range O0xFF000000 OxFFOOOOFF 4 Read

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 357

Memory Configuration Files
Memory configuration commands

To set memory locations 0xFr0001000 through oxFro001FF to write-only with a size of 2 bytes:
range O0xFF000100 OxFFO0001lFF 2 Write
To set memory locations 0xFr0002000 through oxFFFFFFFF to read and write with a size of 1 byte:

range O0xFF000200 OxFFFFFFFF 1 ReadWrite

10.2.3 reserved

The reserved command allows you to specify a reserved range of memory.

If the debugger attempts to read reserved memory, the resulting buffer is filled with the reserved character. If
the debugger attempts to write to reserved memory, no write takes place. Note that the reserved command
must have both the 1oaddress and hiaddress in the same memory space.

NOTE
For information showing how to set the reserved character, see reservedchar on page
358.

Syntax

reserved
loAddress hiAddress

Arguments

loAddress

the starting address of the memory range

hiAddress

the ending address of the memory range

Examples

To reserve memory starting at 0xFF000024 and ending at 0OxFFOO002F:

reserved 0xFF000024 OxFFO00002F

10.2.4 reservedchar

The reservedchar command sets the reserved character for the memory configuration file.
When the debugger attempts to read a reserved or invalid memory location, it fills the buffer with this character.

Syntax

reservedchar rChar

Arguments
rChar
the one-byte character the debugger uses when it accesses reserved or invalid memory

Example

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
358 NXP Semiconductors

Memory Configuration Files
Memory configuration commands

To set the reserved character to "x":

reservedchar 0x78

10.2.5 translate

The translate command lets you configure how the debugger performs virtual-to-physical memory address
translations.

Typically, you use address translations to debug programs that use a memory management unit (MMU) that
performs block address translations.

NOTE
Using the translate commands in the memory configuration file prevents the
debugger from automatically reading the translations from the target MMU. For more
information, see Memory translations on page 155.

Syntax

translate
virtualAddress
physicalAddress
numBytes
Arguments
virtualAddress
the address of the first byte of the virtual address range to translate
physicalAddress
the address of the first byte of the physical address range to which the debugger translates virtual addresses
numBytes
the size (in bytes) of the address range to translate
Example
The following translate command:
» Defines a one-megabyte address range (0x100000 bytes is one megabyte)

* Instructs the debugger to convert a virtual address in the range 0xc0000000 to 0xco0100000 to the
corresponding physical address in the range 0x00000000 t0 0x00100000

translate v:0xC0000000 p:0x00000000 0x100000

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 359

V¥ ¢
i

Memory Configuration Files
Memory configuration commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
360 NXP Semiconductors

Working with Hardware Tools
Flash programmer

Chapter 11
Working with Hardware Tools

This chapter explains how to use the CodeWarrior hardware tools. Use these tools for board bring-up, test, and
analysis.

In this chapter:

* Flash programmer on page 361

* Flash File to Target on page 370

» Hardware diagnostics on page 372

* Import/Export/Fill memory on page 380

11.1 Flash programmer

Flash programmer is a CodeWarrior plug-in that lets you program the flash memory of the supported target
boards from within the IDE.

The flash programmer can program the flash memory of the target board with code from a CodeWarrior IDE
project or a file. You can perform the following actions on a flash device using the flash programmer:

» Erase/Blank check actions on page 365
* Program/Verify actions on page 366

» Checksum actions on page 367

» Diagnostics actions on page 367

» Dump Flash actions on page 368

» Protect/Unprotect actions on page 368

» Secure/Unsecure actions on page 369

NOTE
Click the Save button or press Ctrl+S to save task settings.

The flash programmer runs as a target task in the Eclipse IDE. To program the flash memory on a target board,
you need to perform the following tasks:

» Create a flash programmer target task on page 361

» Configure flash programmer target task on page 363

» Execute flash programmer target task on page 369

11.1.1 Create a flash programmer target task

You can create a flash programmer task using the Create New Target Task wizard.

1. Choose Window > Show View > Other from the CodeWarrior IDE menu bar.

The Show View dialog appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 361

h o
g |

working with Hardware Tools
Flash programmer

Figure 133: Show View dialog

2 Show View

(type filter text |

=== Debug »
©g Breakpoints
ﬂ Cache
ﬁ? Debug
Ef Debugger Shell
Dizassembly
“-‘32" Expressions
ﬂ Memory
iﬂ MMU Configurator
B, Modules
ﬁ OCE Configurator
ai0i Registers
5e Signals
B| System Browser
2

()= Variables

| &

[0K l [Cancel

2. Expand the Debug group and select Target Tasks.
3. Click OK.
The Target Tasks view appears.

Figure 134: Target Tasks view

(8] Target Tasks 53 =08 % B iy e
Arrange By:Task Groups ™ =] Tasks ‘?
= Root ame Task Type Run Configuration

Flash Programmer | Active Debug C...

4. Click the Create a new Target Task button in the Target Tasks view toolbar.

The Create New Target Task wizard appears.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
362 NXP Semiconductors

Working with Hardware Tools
Flash programmer

Figure 135: Create New Target Task window

* Create New Target Task

Create a new target task d}_ v
Task Mame Fs
Task Group
Run Configuration | Active Debug Context Z
Task Type Flash Programmer a3

@ uinish | [Cancel

5. In the Task Name textbox, enter a name for the new flash programming target task.
6. Choose a launch configuration from the Run Configuration pop-up menu.
» Choose Active Debug Context when flash programmer is used over an active debug session.

» Choose a project-specific debug context when flash programmer is used without an active debug
session.

7. Choose Flash Programmer from the Task Type pop-up menu.
8. Click Finish.

The target task is created and the Flash Programmer Task editor window appears. You use this window to
configure the flash programmer target task.

» Flash Devices - Lists the devices added in the current task.
» Target RAM - Lets you specify the settings for Target RAM.

» Flash Program Actions - Displays the programmer actions to be performed on the flash devices.

11.1.2 Configure flash programmer target task

You can add flash devices, specify Target RAM settings, and add flash program actions to a flash
programmer task to configure it.

This topic contains the following sub-topics:
+ Add flash device on page 364
» Specify target RAM settings on page 364

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 363

|
y

'
A

working with Hardware Tools
Flash programmer

» Add flash programmer actions on page 364
11.1.2.1 Add flash device
This topic explain how to add a flash device.
To add a flash device to the Flash Devices table:
1. Click the Add Device button.
The Add Device dialog appears.
2. Select a flash device from the device list.
3. Click the Add Device button.

The flash device is added to the Flash Devices table in the Flash Programmer Task editor window.

NOTE
You can select multiple flash devices to add to the Flash Devices table. To select
multiple devices, hold down the Control key while selecting the devices.

4. Click Done.

The Add Device dialog closes and the flash device appears in the Flash Devices table in the Flash
Programmer Task editor window.

NOTE
For NOR flashes, the base address indicates the location where the flash is mapped in
the memory. For SPI and NAND flashes, the base address is usually 0x0.

11.1.2.2 Specify target RAM settings

The Target RAM is used by Flash Programmer to download its algorithms.

NOTE
The Target RAM memory area is not restored by flash programmer. If you are using
flash programmer with Active Debug Context, it will impact your debug session.

The Target RAM (Add flash device on page 364) group contains fields to specify settings for the Target RAM.

» Address textbox: Use it to specify the address from the target memory. The Address textbox should contain
the first address from target memory used by the flash algorithm running on a target board.

+ Size textbox: Use it to specify the size of the target memory. The flash programmer does not modify any
memory location other than the target memory buffer and the flash memory.

+ Verify Target Memory Writes checkbox: Select this checkbox to verify all write operations to the hardware
RAM during flash programming.

11.1.2.3 Add flash programmer actions
This section lists the various Flash Programmer actions avalable in the Flash Programmer Task editor
window.

In the Flash Programmer Actions group in the Flash Programmer Task editor window (Create a flash programmer
target task on page 361), you can add following actions on the flash device.

» Erase/Blank check actions on page 365
* Program/Verify actions on page 366

* Checksum actions on page 367

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
364 NXP Semiconductors

Working with Hardware Tools
Flash programmer

» Diagnostics actions on page 367

* Dump Flash actions on page 368

Protect/Unprotect actions on page 368

» Secure/Unsecure actions on page 369

The Flash Programmer Actions group contains the following Ul controls to work with flash programmer actions:
» Add Action pop-up menu

+ Erase/Blank Check Action: Allows you to add erase or blank check actions for a flash device.

» Program/Verify Action: Allows you to add program or verify flash actions for a flash device.

» Checksum Action: Allows you to add checksum actions for a flash device.

+ Diagnostics Action: Lets you add a diagnostics action.

» Dump Flash Action: Lets you add a dump flash action.

Protect/Unprotect Action: Lets you add protect or unprotect action.
+ Secure/Unsecure Action: Lets you add secure or unsecure action.

+ Duplicate Action button: Allows you to duplicate a flash program action in the Flash Programmer Actions
table.

* Remove Action button: Allows you to remove a flash program action from the Flash Programmer Actions
table.

* Move Upbutton: Allows you to move up the selected flash action in the Flash Programmer Actions table.

* Move Down button: Allows you to move down the selected flash action in the Flash Programmer Actions
table.

Actions can also be enabled or disabledr\:fs)i-ll'-llgE the Enabled column. The Description
column contains the default description for the flash programmer actions. You can also
edit the default description.

This section includes:

» Erase/Blank check actions on page 365

» Program/Verify actions on page 366

* Checksum actions on page 367

+ Diagnostics actions on page 367

« Dump Flash actions on page 368

* Protect/Unprotect actions on page 368

» Secure/Unsecure actions on page 369

» Duplicate action on page 369

* Remove action on page 369

11.1.2.3.1 Erase/Blank check actions

The Erase action erases sectors from the flash device.

You can also use the erase action to erase the entire flash memory without selecting sectors. The blank check
action verifies if the specified areas have been erased from the flash device.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 365

|
y

'
A

working with Hardware Tools

Flash programmer

NOTE
Flash Programmer will not erase a bad sector in the NAND flash. After the erase action
a list of bad sectors is reported (if any).

To add an erase/blank check action:

1.

Choose Erase/Blank Check Action from the Add Action pop-up menu.
The Add Erase/Blank Check Action dialog appears.

Select a sector from the Sectors table and click the Add Erase Action button to add an erase operation on
the selected sector.

NOTE
Press the Control or the Shift key for selecting multiple sectors from the Sectors table.
Click the Add Blank Check button to add a blank check operation on the selected sector.

Select the Erase All Sectors Using Chip Erase Command checkbox to erase the entire flash memory.

NOTE
After selecting the Erase All Sectors Using Chip Erase Command checkbox, you need
to add either erase or blank check action to erase all sectors.

Click Done.

The Add Erase/Blank Check Action dialog closes and the added erase/blank check actions appear in the
Flash Programmer Actions table in the Flash Programmer Task editor window.

11.1.2.3.2 Program/Verify actions

The Program action allows you to program the flash device and the verify action verifies the programmed
flash device.

NOTE
The program action will abort and fail if it is performed in a bad block for NAND flashes.

To add a program/verify action:

1.

Choose Program/Verify Action from the Add Action pop-up menu.
The Add Program/Verify Action dialog appears.
Select the file to be written to the flash device.

Select the Use File from Launch Configuration checkbox to use the file from the launch (run) configuration
associated with the task.

. Specify the file name in the File textbox. You can use Workspace, File System, or Variables buttons to

select the desired file.

Choose a file type from the File Type pop-up menu. You can select any one of the following file types:
 Auto - Detects the file type automatically.

« EIf - Specifies executable in ELF format.

» Srec - Specifies files in Motorola S-record format.

 Binary - Specifies binary files.

Select the Erase sectors before program checkbox to erase sectors before program.

[Optional] Select the Verify after program checkbox to verify after the program.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

366 NXP Semiconductors

Working with Hardware Tools
Flash programmer

NOTE
The Verify after program checkbox is available only with the processors supporting it.

8. Select the Restricted To Address in this Range checkbox to specify a memory range. The write action is
permitted only in the specified address range. In the Start textbox, specify the start address of the memory
range sector and in the End textbox, specify the end address of the memory range.

9. Select the Apply Address Offset checkbox and set the memory address in the Address textbox. Value is
added to the start address of the file to be programmed or verified.

10.Click the Add Program Action button to add a program action on the flash device.
11.Click the Add Verify Action button to add a verify action on the flash device.
12 Click Done.

The Add Program/Verify Action dialog closes and the added program/verify actions appear in the Flash
Programmer Actions table in the Flash Programmer Task editor window.

11.1.2.3.3 Checksum actions

The checksum can be computed over host file, target file, memory range or entire flash memory.
To add a checksum action:
1. Choose Checksum Action from the Add Action pop-up menu.
The Add Checksum Action dialog appears.
2. Select the file for checksum action.

3. Select the Use File from Launch Configuration checkbox to use the file from the launch (run) configuration
associated with the task.

4. Specify the filename in the File textbox. You can use the Workspace, File System, or Variables buttons to
select the desired file.

5. Choose the file type from the File Type pop-up menu.

6. Select an option from the Compute Checksum Over options. The checksum can be computed over the
host file, the target file, the memory range, or the entire flash memory.

7. Specify the memory range in the Restricted To Addresses in this Range group. The checksum action is
permitted only in the specified address range. In the Start textbox, specify the start address of the memory
range sector and in the End textbox, specify the end address of the memory range.

8. Select the Apply Address Offset checkbox and set the memory address in the Address textbox. Value is
added to the start address of the file to be programmed or verified.

9. Click the Add Checksum Action button.
10.Click Done.

The Add Checksum Action dialog closes and the added checksum actions appear in the Flash Programmer
Actions table in the Flash Programmer Task editor window.

11.1.2.3.4 Diagnostics actions
The diagnostics action generates the diagnostic information for a selected flash device.

NOTE
Flash Programmer will report bad blocks, if they are present in the NAND flash.

To add a diagnostics action:

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 367

|
y

'
A

working with Hardware Tools

Flash programmer

1.

Choose Diagnostics from the Add Action pop-up menu.

The Add Diagnostics Action dialog appears.

. Select a device to perform the diagnostics action.

. Click the Add Diagnostics Action button to add diagnostic action on the selected flash device.

NOTE
Select the Perform Full Diagnostics checkbox to perform full diagnostics on a flash
device.

. Click Done.

The Add Diagnostics Action dialog closes and the added diagnostics action appears in the Flash Programmer
Actions table in the Flash Programmer Task editor window.

11.1.2.3.5 Dump Flash actions

The dump flash action allows you to dump selected sectors of a flash device or the entire flash device.

To add a dump flash action:

1.

Choose Dump Flash Action from the Add Action pop-up menu.
The Add Dump Flash Action dialog appears.

. Specify the file name in the File textbox. The flash is dumped in this selected file.

. Choose the file type from the File Type pop-up menu. You can choose any one of the following file types:

¢ Srec: Saves files in Motorola S-record format.

 Binary: Saves files in binary file format.

. Specify the memory range for which you want to add dump flash action.

 Enter the start address of the range in the Start textbox.

» Enter the end address of the range in the End textbox.

. Click the Add Dump Flash Action button to add a dump flash action.
. Click Done.

The Add Dump Flash Action dialog closes and the added dump flash action appear in the Flash Programmer
Actions table in the Flash Programmer Task editor window.

11.1.2.3.6 Protect/Unprotect actions

The protect/unprotect actions allow you to change the protection of a sector in the flash device.

To add a protect/unprotect action:

1.

Choose the Protect/Unprotect Action from the Add Action pop-up menu.
The Add Protect/Unprotect Action dialog appears.

Select a sector from the Sectors table and click the Add Protect Action button to add a protect operation on
the selected sector.

NOTE
Press the Control or Shift key for selecting multiple sectors from the Sectors table.

Click the Add Unprotect Action button to add an unprotect action on the selected sector.

Select the All Device checkbox to add action on full device.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

368 NXP Semiconductors

Working with Hardware Tools
Flash programmer

5. Click Done.

The Add Protect/Unprotect Action dialog closes and the added protect or unprotect actions appear in the
Flash Programmer Actions table in the Flash Programmer Task editor window.

11.1.2.3.7 Secure/Unsecure actions
The secure/unsecure actions help you change the security of a flash device.

The Secure/Unsecure flash actionsNa?;:r Iiot supported for StarCore devices.

To add a secure/unsecure action:
1. Choose the Secure/Unsecure Action from the Add Action pop-up menu.

The Add Secure/UnSecure Action dialog appears.
2. Select a device from the Flash Devices table.
3. Click the Add Secure Action button to add Secure action on the selected flash device.

a. Enter password in the Password textbox.

b. Choose the password format from the Format pop-up menu.
4. Click the Add Unsecure Action button to add an unprotect action on the selected sector.
5. Click Done.

The Add Secure/UnSecure Action dialog closes and the added secure or unsecure action appears in the
Flash Programmer Actions table in the Flash Programmer Task editor window.

11.1.2.3.8 Duplicate action

You can duplicate a flash programmer action from the Flash Programmer Actions table.
1. Select the action in the Flash Programmer Actions table.
2. Click the Duplicate Action button.

The selected action is copied in the Flash Programmer Action table.

11.1.2.3.9 Remove action
You can remove a flash programmer action from the Flash Programmer Actions table.

1. Select the action in the Flash Programmer Actions table.
2. Click the Remove Action button.

The selected action is removed from the Flash Programmer Action table.

11.1.3 Execute flash programmer target task

You can execute the flash programmer tasks using the Target Tasks view.

To execute the configured flash programmer target task, select a target task and click the Execute button in the
Target Tasks view toolbar. Alternatively, right-click on a target task and choose Execute from the shortcut menu.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 369

|
y

'
A

working with Hardware Tools
Flash File to Target

Figure 136: Execute target task

a x & LC7"|'i;"|* % = (4 15 | Execute
1 [=] Tasks 7 Button
[== Roak Mame Task Type Run Configuration
T@“:Sl Flash Programmer TestProject_C_...
NOTE

You can use predefined target tasks for supported boards. To load a predefined target
task, right-click in the Target Tasks view and choose Import Target Task from the
shortcut menu. To save your custom tasks, right-click in the Target Tasks view and then
choose Export Target Task from the shortcut menu.

You can check the results of flash batch actions in the Console view. The green color indicates the success and
the red color indicates the failure of the task.

Figure 137: Console view

El cansale &2
=lash Programmer Consaole
Writing the address of the sector list
Writing the sector list
Erasing Sector 0x00000000 to OxOO00O0FFFF
Erazing Sector 0x00010000 to OxOOQOQ1FFFF
Clearing the status
Jetting up Registers
Commanding target to run
Erazing

I s . P
a1 g g Y e s e e 1 gt 2 e e e g T

Erase Command Succeeded

ol =

11.2 Flash File to Target

You can use the Flash File to Target feature to perform flash operations such as erasing a flash device or
programming a file.

You do not need any project for using Flash File to Target feature, only a valid Remote System is required.

To open the Flash File to Target dialog, click the Flash Programmer button on the IDE toolbar.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
370 NXP Semiconductors

Working with Hardware Tools
Flash File to Target

Connection pop-up menu- Lists all run configurations defined in Eclipse. If a connection to the target has
already been made the control becomes inactive and contains the text Active Debug Configuration.

Flash Configuration File pop-up menu - Lists predefined target tasks for the processor selected in the
Launch Configuration and tasks added by user with the Browse button. The items in this pop-up menu are
updated based on the processor selected in the launch configuration. For more information on launch
configurations, see product's 7argefing Manual.

+ Unprotect flash memory before erase checkbox - Select to unprotect flash memory before erasing the
flash device. This feature allows you to unprotect the flash memory from Flash File To Target dialog.

File to Flash group - Allows selecting the file to be programmed on the flash device and the location.

* File textbox - Used for specifying the filename. You can use the Workspace, File System, or Variables
buttons to select the desired file.

+ Offset:0x textbox - Used for specifying offset location for a file. If no offset is specified the default value of
zero is used. The offset is always added to the start address of the file. If the file does not contain address
information then zero is considered as start address.

Save as Target Task - Select to enable Task Name textbox.

» Task Name textbox - Lets you to save the specified settings as a Flash target task. Use the testbox to
specify the name of the target task.

Erase Whole Device button - Erases the flash device. In case you have multiple flash blocks on the device,
all blocks are erased. If you want to selectively erase or program blocks, use the Flash programmer on
page 361 feature.

Erase and Program button - Erases the sectors that are occupied with data and then programs the file. If
the flash device can not be accessed at sector level then the flash device is completely erased.

This feature helps you perform these basic flash operations:

Erasing flash device on page 371

Programming a file on page 372

11.2.1 Erasing flash device

This topic explains how to erase a flash device.

To erase a flash device, follow these steps:

1.

Click the Flash Programmer button on the IDE toolbar.
The Flash File to Target dialog appears.

Choose a connection from the Connection pop-up menu.

NOTE
If a connection is already established with the target, this control is disabled.

The Flash Configuration File pop-up menu is updated with the supported configurations for the processor
from the launch configuration.
Choose a flash configuration from the Flash Configuration File pop-up menu.

Select the Unprotect flash memory before erase checkbox to unprotect flash memory before erasing the
flash device.

Click the Erase Whole Device button.

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016

NXP Semiconductors 371

|
y

'
A

working with Hardware Tools
Hardware diagnostics

11.2.2 Programming a file

This topic explains how to program a file using Falsh prgrammer.
1. Click the Flash Programmer button on the IDE toolbar.
The Flash File to Target dialog appears.

2. Choose a connection from the Connection pop-up menu.

NOTE
If a connection is already established with the target, this control is disabled.

The Flash Configuration File pop-up menu is updated with the supported configurations for the processor
from the launch configuration.
3. Choose a flash configuration from the Flash Configuration File pop-up menu.

4. Select the Unprotect flash memory before erase checkbox to unprotect flash memory before erasing the
flash device.

5. Type the file name in the File textbox. You can use the Workspace, File System, or Variables buttons to
select the desired file.

6. Type the offset location in the Offset textbox.

7. Click the Erase and Program button.

11.3 Hardware diagnostics

The Hardware Diagnostics utility lets you run a series of diagnostic tests that determine if the basic hardware
is functional.

These tests include:

+ Memory read/write: This test only makes a read or write access to the memory to read or write a byte, word
(2 bytes) and long word (4 bytes) to or from the memory. For this task, the user needs to set the options in
the Memory Access group.

» Scope loop: This test mak