
CodeWarrior Development Studio for Power
Architecture Processors Targeting Manual

NXP Semiconductors Document Number: CWPADBGUG
Reference Manual 10.5.1, 01/2016

Contents

Chapter 1 Introduction...11
1.1 Release notes...11
1.2 Contents of this manual..11
1.3 Accompanying documentation... 12
1.4 PowerPC Embedded Application Binary Interface... 12
1.5 CodeWarrior Development Studio tools... 13

1.5.1 Eclipse IDE... 14
1.5.2 C/C++ compiler...14
1.5.3 Assembler...14
1.5.4 Linker..15
1.5.5 Debugger..15
1.5.6 Main standard libraries... 15
1.5.7 CodeWarrior Profiling and Analysis tools... 16

1.6 CodeWarrior IDE.. 16
1.6.1 Project files... 17
1.6.2 Code editing..17
1.6.3 Compiling..17
1.6.4 Linking.. 17
1.6.5 Debugging.. 17

Chapter 2 Working with Projects... 19
2.1 CodeWarrior Bareboard Project Wizard... 19

2.1.1 Create a CodeWarrior Bareboard Project Page... 20
2.1.2 Processor Page.. 21
2.1.3 Debug Target Settings Page.. 22
2.1.4 Build Settings Page.. 24
2.1.5 Configurations Page... 26
2.1.6 Trace Configuration Page...28

2.2 CodeWarrior Linux Project Wizard... 29
2.2.1 Create a CodeWarrior Linux Project Page... 29
2.2.2 Processor Page.. 31
2.2.3 Build Settings Page.. 32
2.2.4 Linux Application Page... 33

2.3 Creating Projects..34
2.3.1 Creating CodeWarrior Bareboard Application Project.. 35
2.3.2 Creating CodeWarrior Bareboard Library Project...37
2.3.3 Creating CodeWarrior Linux Application Project.. 39

2.4 Building projects... 40
2.4.1 Manual-Build Mode...41
2.4.2 Auto-Build Mode... 41

2.5 Importing Classic CodeWarrior Projects...42
2.6 Deleting Project.. 43

Chapter 3 Build Properties.. 45
3.1 Changing Build Properties..45
3.2 Restoring Build Properties..46
3.3 Build Properties for Power Architecture..46

Contents

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 3

3.3.1 CodeWarrior Build Tool Settings.. 48
3.3.1.1 PowerPC CPU.. 49
3.3.1.2 Debugging...50
3.3.1.3 Messages..50
3.3.1.4 PowerPC Linker.. 51
3.3.1.5 PowerPC Compiler... 57
3.3.1.6 PowerPC Assembler...68
3.3.1.7 PowerPC Disassembler.. 70
3.3.1.8 PowerPC Preprocessor.. 72

3.3.2 GCC Build Tool Settings...73
3.3.2.1 Architecture...76
3.3.2.2 PowerPC Linker.. 76
3.3.2.3 PowerPC Compiler... 80
3.3.2.4 PowerPC Assembler...86
3.3.2.5 PowerPC Preprocessor.. 87
3.3.2.6 PowerPC Disassembler.. 88

Chapter 4 Debug Configurations ..91
4.1 Using Debug Configurations Dialog Box.. 91

4.1.1 Main..92
4.1.2 Arguments.. 97
4.1.3 Debugger..98

4.1.3.1 Debug... 99
4.1.3.2 EPPC Exceptions..101
4.1.3.3 Download..102
4.1.3.4 PIC..104
4.1.3.5 System Call Services.. 105
4.1.3.6 Other Executables.. 107
4.1.3.7 Symbolics..108
4.1.3.8 OS Awareness.. 110

4.1.4 Trace and Profile.. 113
4.1.5 Source.. 114
4.1.6 Environment..116
4.1.7 Common... 117

4.2 Customizing Debug Configurations..118
4.3 Reverting Debug Configuration Settings.. 120

Chapter 5 Working with Debugger.. 121
5.1 Debugging a CodeWarrior Project..121
5.2 Consistent debug control..122
5.3 Connection types..122

5.3.1 CCSSIM2 ISS...122
5.3.2 Ethernet TAP.. 124
5.3.3 Gigabit TAP + Trace... 128
5.3.4 Gigabit TAP.. 133
5.3.5 Simics... 138
5.3.6 TCF...140
5.3.7 USB TAP.. 141
5.3.8 CodeWarrior TAP... 145

5.4 JTAG diagnostics tests...150
5.4.1 Power at probe test...151
5.4.2 IR scan test...151
5.4.3 Bypass scan test...151

Contents

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
4 NXP Semiconductors

5.4.4 Arbitrary TAP state move test...152
5.4.5 Reading JTAG IDCODEs test...152

5.5 Editing remote system configuration.. 152
5.5.1 Initialization tab...153
5.5.2 Memory tab...154
5.5.3 Advanced tab..155

5.6 Memory translations... 155
5.7 CodeWarrior Command-Line Debugger...156
5.8 Working with Breakpoints...158

5.8.1 Setting Breakpoints...159
5.8.2 Setting Hardware Breakpoints..161

5.8.2.1 Using IDE to Set Hardware Breakpoints...161
5.8.2.2 Using Debugger Shell to Set Hardware Breakpoints.. 161

5.8.3 Removing Breakpoints..161
5.8.3.1 Remove Breakpoints using Marker Bar.. 161
5.8.3.2 Remove Breakpoints using Breakpoints View.. 162

5.8.4 Removing Hardware Breakpoints... 162
5.8.4.1 Remove Hardware Breakpoints using the IDE... 162
5.8.4.2 Remove Hardware Breakpoints using Debugger Shell.......................................162

5.9 Working with Watchpoints.. 163
5.9.1 Setting Watchpoints..163
5.9.2 Removing Watchpoints...165

5.10 Working with Registers...165
5.10.1 Changing Bit Value of a Register..166
5.10.2 Viewing Register Details...167

5.10.2.1 Bit Fields... 168
5.10.2.2 Changing Bit Fields...168
5.10.2.3 Actions.. 169
5.10.2.4 Description.. 170

5.10.3 Registers View Context Menu.. 170
5.10.4 Working with Register Groups.. 172

5.10.4.1 Adding a Register Group.. 172
5.10.4.2 Editing a Register Group...173
5.10.4.3 Removing a Register Group... 173

5.10.5 Working with TLB Registers... 173
5.10.5.1 Viewing TLB Registers in Registers View...174
5.10.5.2 Reading TLB Registers from Debugger Shell...175
5.10.5.3 Initializing TLB Registers.. 177
5.10.5.4 TLB Register Details... 177

5.10.6 Working with IMMR...193
5.11 Viewing Memory...193

5.11.1 Adding Memory Monitor..194
5.12 Viewing Cache..196

5.12.1 Cache View...196
5.12.2 Cache View Toolbar Menu... 197
5.12.3 Components of Cache View... 199
5.12.4 Using Debugger Shell to View Caches...199
5.12.5 Debugger Shell Global Cache Commands...200
5.12.6 Debugger Shell Cache Line Commands.. 201
5.12.7 Processor-Specific Cache Features... 201

5.13 Changing Program Counter Value... 204
5.14 Hard Resetting..204
5.15 Setting Stack Depth..204
5.16 Import a CodeWarrior Executable file Wizard.. 204

5.16.1 Import a CodeWarrior Executable file Page... 205

Contents

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 5

5.16.2 Import C/C++/Assembler Executable Files Page... 205
5.16.3 Processor Page.. 206
5.16.4 Linux Application Launch Configurations Page.. 206
5.16.5 Debug Target Settings Page.. 207
5.16.6 Configurations Page... 208

5.17 Debugging Externally Built Executable Files..209
5.17.1 Import an Executable File...209
5.17.2 Edit the Launch Configuration.. 211
5.17.3 Specify the Source Lookup Path.. 212
5.17.4 Debug the Executable File..214

Chapter 6 Multi-Core Debugging...215
6.1 Debugging Multi-Core Projects...215

6.1.1 Setting Launch Configurations..215
6.1.2 Debugging Multiple Cores.. 218

6.2 Multi-Core Debugging Commands... 221
6.2.1 Multi-Core Commands in CodeWarrior IDE..221
6.2.2 Multi-Core Commands in Debugger Shell.. 222

Chapter 7 Debugging Embedded Linux Software... 227
7.1 Debugging a Linux Application...227

7.1.1 Install CodeWarrior TRK on Target System... 228
7.1.2 Start CodeWarrior TRK on Target System... 228

7.1.2.1 TCP/IP Connections... 228
7.1.2.2 Serial Connections..229

7.1.3 Create a CodeWarrior Download Launch Configuration for the Linux Application........... 230
7.1.4 Specify Console I/O Redirections for the Linux Application..233
7.1.5 Configure Linux Process Signal Policy... 234

7.1.5.1 Signal Inheritance... 234
7.1.5.2 Default Signal Policy... 234
7.1.5.3 Modifying Signal Policy... 234

7.1.6 Debug the Linux Application...236
7.2 Viewing multiple processes and threads.. 236
7.3 Debugging applications that use fork() and exec() system calls.. 237
7.4 Debugging a shared library.. 247

7.4.1 Create an example project..247
7.4.2 Configure the shared library build configuration... 250
7.4.3 Configure the executable build configuration..250
7.4.4 Build the shared library...251
7.4.5 Build the executable... 251
7.4.6 Configure the launch configuration...251
7.4.7 Debug the shared library.. 253

7.5 Preparing U-Boot for debugging...255
7.5.1 Install BSP.. 256
7.5.2 Configure U-Boot and build U-Boot images with CodeWarrior debugger support............257
7.5.3 Configure hardware to use U-Boot image.. 257
7.5.4 Create a CodeWarrior project to debug U-Boot..257
7.5.5 Specify launch configuration settings... 258
7.5.6 Create launch configurations for U-Boot debug stages.. 260

7.6 Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices........................... 262
7.6.1 Configuring and Building U-Boot.. 262

7.6.1.1 Writing configuration words in U-Boot code..264
7.6.2 Creating a CodeWarrior Project to Debug U-Boot..264

Contents

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
6 NXP Semiconductors

7.6.3 Specifying the Launch Configuration Settings..265
7.6.4 Debugging U-Boot using Flash Devices... 267

7.6.4.1 Points to remember...267
7.6.4.2 Debugging U-Boot using NOR flash... 268
7.6.4.3 Debugging U-Boot using SPI and SD/MMC flash...273
7.6.4.4 Debugging U-Boot using NAND flash... 278

7.7 Debugging the Linux Kernel... 283
7.7.1 Setting Up the Target Hardware... 284

7.7.1.1 Connect USB TAP.. 285
7.7.1.2 Establish a Console Connection... 285

7.7.2 Installing the Board Support Package (BSP)..286
7.7.3 Configuring the Build Tool.. 287
7.7.4 Configuring the Linux Kernel.. 287
7.7.5 Creating a CodeWarrior Project using the Linux Kernel Image.. 289

7.7.5.1 Updating the Linux Kernel Image..290
7.7.6 Configuring the kernel project for debugging..290

7.7.6.1 Configuring a download kernel debug scenario..291
7.7.6.2 Configure an attach kernel debug scenario.. 291
7.7.6.3 Setting up RAM disk... 294
7.7.6.4 Using Open Firmware Device Tree Initialization method....................................297

7.7.7 Debugging the kernel to download the kernel, RAM disk, and device tree...................... 301
7.7.8 Debugging the kernel based on MMU initialization...302

7.7.8.1 Debugging the Kernel before the MMU is Enabled...302
7.7.8.2 Debugging the Kernel while the MMU is being Enabled.....................................304
7.7.8.3 Debugging the Kernel after the MMU is Enabled..304

7.7.9 Debugging the kernel by attaching to a running U-Boot...305
7.8 Debugging Loadable Kernel Modules.. 307

7.8.1 Loadable Kernel Modules - An Introduction..307
7.8.2 Creating a CodeWarrior Project from the Linux Kernel Image... 308
7.8.3 Configuring Symbolics Mappings of Modules...310

7.9 Debugging Hypervisor Guest Applications...312
7.9.1 Hypervisor - An Introduction... 312
7.9.2 Prerequisites for Debugging a Guest Application... 313
7.9.3 Adding CodeWarrior HyperTRK Debug Stub Support in Hypervisor for Linux Kernel

Debugging.. 313
7.9.3.1 Enabling HyperTRK Debug Support Directly in Build Tool................................. 314
7.9.3.2 Applying New HyperTRK Patches from CodeWarrior Install Layout.................. 314
7.9.3.3 Modifying and Building HyperTRK Manually...314

7.9.4 Preparing Connection to P4080DS Target... 314
7.9.5 Debugging AMP/SMP Guest Linux Kernels Running Under Hypervisor.......................... 315

7.9.5.1 Prerequisites for Debugging AMP/SMP Guest Linux Kernels............................ 315
7.9.5.2 Creating an Attach Launch Configuration to Debug a Linux Partition after

Kernel Boot.. 315
7.9.5.3 Creating a Download Launch Configuration to Debug a Linux Partition from an

Entry Point or a User-Defined Function... 318
7.10 Debugging the P4080 Embedded Hypervisor.. 320

7.10.1 Debugging Hypervisor During the Boot and Initialization Process................................. 322
7.10.1.1 Debugging Hypervisor from the Entry Point..323
7.10.1.2 Debugging Hypervisor from Relocation till Release of Secondary Cores.........325
7.10.1.3 Debugging Hypervisor after Release of Secondary Cores............................... 326
7.10.1.4 Debugging the Hypervisor Partitions Initialization Process...............................327
7.10.1.5 Debugging the Hypervisor Partitions Image Loading Process..........................328
7.10.1.6 Debugging All Cores when Starting the Guest Applications............................. 328
7.10.1.7 Debugging the Hypervisor Partition Manager... 328

7.11 User Space Debugging with On-Chip Debug...329

Contents

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 7

7.11.1 Attaching Core to Debug Application..330
7.11.2 Debugging Application from main() Function..330

Chapter 8 JTAG Configuration Files... 333
8.1 JTAG configuration file syntax..333
8.2 Using a JTAG configuration file to override RCW.. 334
8.3 Using a JTAG configuration file to specify multiple linked devices on a JTAG chain..................... 335
8.4 Setting up a remote system to use a JTAG configuration file...337

Chapter 9 Target Initialization Files...341
9.1 Using target initialization files... 341
9.2 Target initialization commands...343

9.2.1 .cfg target initialization commands..343
9.2.1.1 alternatePC...344
9.2.1.2 ANDmem.l...344
9.2.1.3 ANDmmr... 345
9.2.1.4 IncorMMR... 345
9.2.1.5 ORmem.l...346
9.2.1.6 reset..346
9.2.1.7 run...347
9.2.1.8 setCoreID..347
9.2.1.9 resetCoreID...347
9.2.1.10 sleep... 347
9.2.1.11 stop... 348
9.2.1.12 writemem.b... 348
9.2.1.13 writemem.w...348
9.2.1.14 writemem.l...349
9.2.1.15 writemmr... 349
9.2.1.16 writereg... 350
9.2.1.17 writereg64... 350
9.2.1.18 writereg128... 351
9.2.1.19 writereg192... 352
9.2.1.20 writespr... 352

9.2.2 .tcl target initialization commands...353

Chapter 10 Memory Configuration Files..355
10.1 Using memory configuration files... 355
10.2 Memory configuration commands.. 356

10.2.1 autoEnableTranslations..357
10.2.2 range...357
10.2.3 reserved..358
10.2.4 reservedchar...358
10.2.5 translate..359

Chapter 11 Working with Hardware Tools...361
11.1 Flash programmer.. 361

11.1.1 Create a flash programmer target task... 361
11.1.2 Configure flash programmer target task... 363

11.1.2.1 Add flash device..364
11.1.2.2 Specify target RAM settings..364
11.1.2.3 Add flash programmer actions.. 364

Contents

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
8 NXP Semiconductors

11.1.3 Execute flash programmer target task..369
11.2 Flash File to Target...370

11.2.1 Erasing flash device..371
11.2.2 Programming a file..372

11.3 Hardware diagnostics...372
11.3.1 Creating hardware diagnostics task..372
11.3.2 Working with Hardware Diagnostic Action editor..373

11.3.2.1 Action Type... 374
11.3.2.2 Memory Access.. 374
11.3.2.3 Loop Speed...375
11.3.2.4 Memory Tests... 376

11.3.3 Memory test use cases...379
11.3.3.1 Use Case 1: Execute host-based Scope Loop on target.................................. 379
11.3.3.2 Use Case 2: Execute target-based Memory Tests on target............................ 379

11.4 Import/Export/Fill memory.. 380
11.4.1 Creating task for import/export/fill memory... 380
11.4.2 Importing data into memory.. 382
11.4.3 Exporting memory to file... 384
11.4.4 Fill memory... 386

Chapter 12 Making a Custom MSL C Library..389
12.1 Source library modifications... 389

12.1.1 Files modified..390
12.2 Modifications to avoid errors from GCC LD tool... 391

12.2.1 Files modified..391
12.3 Software floating point emulation support.. 392
12.4 Building a custom MSL C library.. 392

Chapter 13 Debugger Limitations and Workarounds.................................... 395
13.1 PowerQUICC II processors.. 395
13.2 PowerQUICC II Pro processors..395
13.3 PowerQUICC III processors... 396
13.4 QorIQ communications processors.. 398
13.5 T-series processors..399
13.6 QorIQ Qonverge processors.. 401
13.7 Generic processors.. 402

Index.. 403

Contents

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 9

Contents

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
10 NXP Semiconductors

Chapter 1
Introduction
This manual explains how to use CodeWarrior Development Studio tools to develop software for bareboard
applications and embedded Linux® operating system running on Freescale Power Architecture® processors.

This chapter provides an overview of this manual and introduces you to the CodeWarrior development tools and
development process.

The topics covered here are as follows:

• Release notes on page 11

• Contents of this manual on page 11

• Accompanying documentation on page 12

• PowerPC Embedded Application Binary Interface on page 12

• CodeWarrior Development Studio tools on page 13

• CodeWarrior IDE on page 16

1.1 Release notes
Release notes include information about new features, last-minute changes, bug fixes, incompatible
elements, or other sections that may not be included in this manual.

You should read release notes before using the CodeWarrior IDE.

The release notes for specific components of the CodeWarrior IDE are located in the
Release_Notes folder in the CodeWarrior installation directory.

 NOTE

1.2 Contents of this manual
Each chapter of this manual describes a different area of software development.

The table below lists each chapter in the manual.

Table 1: Organization of this manual

Chapter Description

Introduction on page 11 This chapter.

Working with Projects on page 19 Describes the different types of projects you can create, provides
an overview of CodeWarrior project wizards.

Build Properties on page 45 Explains build properties for Power Architecture projects.

Debug Configurations on page 91 Describes the different types of launch configurations you can
create, provides an overview of the debugger.

Table continues on the next page...

Introduction
Release notes

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 11

Table 1: Organization of this manual (continued)

Chapter Description

Working with Debugger on page 121 Explains various aspects of CodeWarrior debugging, such as
debugging a project, connection types, setting breakpoints and
watchpoints, working with registers, viewing memory, viewing
cache, and debugging externally built executable files.

Multi-Core Debugging on page 215 Explains multi-core debugging capabilities of CodeWarrior
debugger.

Debugging Embedded Linux Software on
page 227

Explains debugging activities related to embedded Linux
software.

JTAG Configuration Files on page 333 Explains JTAG configuration files that pass specific configuration
settings to the debugger and support chaining of multiple devices.

Target Initialization Files on page 341 Discusses how to use a target initialization file and describes .cfg
and .tcl target initialization commands.

Memory Configuration Files on page 355 Discusses how to use a memory configuration file and describes
memory configuration commands.

Working with Hardware Tools on page
361

Explains CodeWarrior hardware tools used for board bring-up,
test, and analysis.

Making a Custom MSL C Library on page
389

Discusses how to port an MSL C library to the GNU Compiler
Collection (GCC) tool to support bareboard applications that
execute on the Power Architecture-based boards.

Debugger Limitations and Workarounds on
page 395

Describes processor-specific CodeWarrior debugger limitations
and workarounds.

1.3 Accompanying documentation
The Documentation page describes the documentation included in this version of CodeWarrior Development
Studio for Power Architecture.

You can access the Documentation page by:

• Using a shortcut link that the CodeWarrior installer creates by default on the Desktop.

• Opening the START_HERE.html file available in the <CWInstallDir>\PA\Help folder.

1.4 PowerPC Embedded Application Binary Interface
The Power Architecture Embedded Application Binary Interface (PowerPC EABI) specifies data structure
alignment, calling conventions, and other information about how high-level languages can be implemented on
a Power Architecture processor.

The code generated by CodeWarrior for Power Architecture conforms to the PowerPC EABI.

To learn more about the PowerPC EABI:

• Information and documentation about all supported Power Architecture hardware is available here:

Introduction
Accompanying documentation

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
12 NXP Semiconductors

http://www.freescale.com/powerarchitecture

• PowerPC Embedded Binary Interface, 32-Bit Implementation., published by Freescale Semiconductor, Inc.,
and available here:

http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf

• System V Application Binary Interface, available here:

http://www.freescale.com/files/archives/doc/app_note/PPCABI.pdf

The PowerPC EABI also specifies the object and symbol file format. It specifies Executable and Linkable Format
(ELF) as the output file format and Debug With Arbitrary Record Formats (DWARF) as the debugging information
format. For more information about those formats, see:

• Executable and Linkable Format, Version 1.1, published by UNIX System Laboratories.

• DWARF Debugging Standard website available at:

www.dwarfstd.org

• DWARF Debugging Information Format, Revision: Version 1.1.0, published by UNIX International,
Programming Languages SIG, October 6, 1992 and available here:

www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf

• DWARF Debugging Information Format, Revision: Version 2.0.0, Industry Review Draft, published by UNIX
International, Programming Languages SIG, July 27, 1993.

1.5 CodeWarrior Development Studio tools
This section talks about some important tools of CodeWarrior Development Studio.

Programming for Power Architecture processors is much like programming for any other CodeWarrior platform
target. If you have not used CodeWarrior tools before, start by studying the Eclipse IDE, which is used to host
the tools.

Note that CodeWarrior Development Studio for Power Architecture uses the Eclipse IDE, whose user interface
is substantially different from the "classic" CodeWarrior IDE. For more details on these interface differences,
see CodeWarrior Development Studio Common Features Guide available in the <CWInstallDir>\PA\Help
\PDF\ folder.

The following are some important tools of CodeWarrior Development Studio:

• Eclipse IDE on page 14

• C/C++ compiler on page 14

• Assembler on page 14

• Linker on page 15

• Debugger on page 15

• Main standard libraries on page 15

• CodeWarrior Profiling and Analysis tools on page 16

Introduction
CodeWarrior Development Studio tools

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 13

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=PCPPCP&tid=vanpowerarchitecture
http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf
http://www.freescale.com/files/archives/doc/app_note/PPCABI.pdf
http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf
http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf

1.5.1 Eclipse IDE
The Eclipse Integrated Development Environment (IDE) is an open-source development environment that lets
you develop and debug your software.

It controls the project manager, the source code editor, the class browser, the compilers and linkers, and the
debugger. The Eclipse workspace organizes all files related to your project. This allows you to see your project
at a glance and navigate easily through the source code files.

The Eclipse IDE has an extensible architecture that uses plug-in compilers and linkers to target various operating
systems and microprocessors. The IDE can be hosted on Microsoft Windows, Linux, and other platforms. There
are many development tools available for the IDE, including C, C++, and Java compilers for desktop and
embedded processors

For more information about the Eclipse IDE, read the Eclipse documentation at:

http://www.eclipse.org/documentation/

1.5.2 C/C++ compiler
A C/C++ compiler compiles C and C++ statements and assembles inline assembly language statements.

The CodeWarrior Eclipse IDE for Power Architecture processors supports the following two types of C/C++
compilers:

• CodeWarrior C/C++ compiler

• GCC C/C++ compiler

Each supported compiler is ANSI-compliant. You can generate Power Architecture applications and libraries
that conform to the PowerPC EABI by using the CodeWarrior/GCC compiler in conjunction with the CodeWarrior/
GCC linker for Power Architecture processors.

The IDE manages the execution of the compiler. The IDE invokes the compiler if you:

• Change a source file and issue the make command.

• Select a source file in your project and issue the compile, preprocess, or precompile command.

For more information about the CodeWarrior Power Architecture C/C++ compiler and its inline assembler, see
the Power Architecture Build Tools Reference Manual from the <CWInstallDir>\PA\Help\PDF\ folder.

For more information about the GCC Power Architecture C/C++ compiler, see the gcc.pdf manual from the
<CWInstallDir>\Cross_Tools\gcc-<version>-<target>\powerpc-<[eabi]/[eabispe]/[aeabi]/
[linux/libc]>\share\docs\pdf\gcc folder.

1.5.3 Assembler
The assembler translates assembly-language source code to machine-language object files or executable
programs.

The CodeWarrior Eclipse IDE for Power Architecture processors supports two types of standalone assemblers:

• CodeWarrior assembler

• GCC assembler

Either you can provide the assembly-language source code to the assembler, or the assembler can take the
assembly-language source code generated by the compiler.

For more information about the CodeWarrior Power Architecture assembler, see the Power Architecture Build
Tools Reference manual from the <CWInstallDir>\PA\Help\PDF\ folder.

Introduction
CodeWarrior Development Studio tools

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
14 NXP Semiconductors

http://www.eclipse.org/documentation/

For more information about the GCC Power Architecture assembler, see the as.pdf manual from the
<CWInstallDir>\Cross_Tools\gcc-<version>-<target>\powerpc-<[eabi]/[eabispe]/[aeabi]/
[linux/libc]>\share\docs\pdf folder.

1.5.4 Linker
The linker generates binaries that conform to the PowerPC Embedded Application Binary Interface (EABI).

The linker combines object modules created by the compiler and/or assembler with modules in static libraries
to produce a binary file in executable and linkable (ELF) format.

CodeWarrior Eclipse IDE for Power Architecture processors supports two types of linkers:

• CodeWarrior linker

• GCC linker

Among many powerful features, the linker lets you:

• Use absolute addressing

• Create multiple user-defined sections

• Generate S-Record files

• Generate PIC/PID binaries

The IDE runs the linker each time you build your project.

For more information about the CodeWarrior Power Architecture linker, see the Power Architecture Build Tools
Reference manual from the <CWInstallDir>\PA\Help\PDF\ folder.

For more information about the GCC Power Architecture linker, see the ld.pdf manual from the
<CWInstallDir>\Cross_Tools\gcc-<version>-<target>\powerpc-<[eabi]/[eabispe]/[aeabi]/
[linux/libc]>\share\docs\pdf folder.

1.5.5 Debugger
The CodeWarrior Power Architecture debugger controls the execution of your program and allows you to see
what is happening internally as the program runs.

You can use the debugger to find problems in your program. The debugger can execute your program one
statement at a time and suspend execution when control reaches a specified point. When the debugger stops
a program, you can view the chain of function calls, examine and change the values of variables, and inspect
the contents of registers.

The debugger allows you to debug your CodeWarrior project using either a simulator or target hardware.

The Power Architecture debugger communicates with the board through a monitor program (such as
CodeWarrior TRK) or through a hardware probe (such as CodeWarrior TAP (over USB)).

For more information, see CodeWarrior Development Studio Common Features Guide and the Working with
Debugger on page 121 chapter of this manual.

1.5.6 Main standard libraries
The main standard libraries (MSL) are ANSI-compliant C and C++ standard libraries that help you create
applications for Power Architecture processors.

The Power Architecture versions of the MSL libraries have been customized and the runtime has been adapted
for Power Architecture processor development.

For more information about MSL, see MSL C Reference and MSL C++ Reference.

Introduction
CodeWarrior Development Studio tools

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 15

1.5.7 CodeWarrior Profiling and Analysis tools
The CodeWarrior Profiling and Analysis tools allow you to monitor an application as it runs on the simulator
and hardware.

This helps you understand how your application runs, as well as identify operational problems. The tools also
provide the following user-friendly data viewing features:

• Simultaneously step through trace data and the corresponding source and assembly code of that trace data

• Export source line information of the performance data generated by the simulator into an Excel file

• Export the trace and function data generated by simulator and target hardware into an Excel file

• Apply multi-level filters to isolate data

• Apply multi-level searches to find specific data

• Display results in an intuitive, user friendly manner in the trace, critical code, and performance views

• Show or hide columns and also reorder the columns

• Copy and paste a cell or a line of the trace, alu-agu and performance data generated by simulator and
target hardware

• Control trace collection by using start and stop tracepoints to reduce the amount of unwanted trace events
in the trace buffer making the trace data easier to read

• View the value of the DPU counters in form of graphs (pie charts and bar charts) while the application is in
debug mode

• Display real time cycle count for simulated targets to allow quick monitoring of evolution of application in
time

For more information, see Tracing and Analysis Tools User Guide available in the <CWInstallDir>\PA\Help
\PDF\ folder.

1.6 CodeWarrior IDE
This section explains the CodeWarrior IDE and tells how to perform basic IDE operations.

While working with the CodeWarrior IDE, you will proceed through the development stages familiar to all
programmers, such as writing code, compiling and linking, and debugging. See CodeWarrior Development
Studio Common Features Guide for:

• Complete information on tasks, such as editing, compiling, and linking

• Basic information on debugging

The difference between the CodeWarrior development environment and traditional command-line environments
is how the software, in this case the CodeWarrior IDE, helps you manage your work more effectively.

The following sections explain the CodeWarrior IDE and describe how to perform basic CodeWarrior IDE
operations:

• Project files on page 17

• Code editing on page 17

• Compiling on page 17

• Linking on page 17

• Debugging on page 17

Introduction
CodeWarrior IDE

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
16 NXP Semiconductors

1.6.1 Project files
A CodeWarrior project is analogous to a set of make files, because a project can have multiple settings that
are applied when building the program.

For example, you can have one project that has both a debug version and a release version of your program.
You can build one or the other, or both as you wish. The different settings used to launch your program within
a single project are called launch configurations.

The CodeWarrior IDE uses the CodeWarrior Projects view to list all the files in a project. A project includes files,
such as source code files and libraries. You can add or remove files easily. You can assign files to one or more
different build configurations within the project, so files common to multiple build configurations can be managed
simply.

The CodeWarrior IDE itself manages all the interdependencies between files and tracks which files have
changed since the last build.

The CodeWarrior IDE also stores the settings for the compiler and linker options for each build configuration.
You can modify these settings using the IDE, or with the #pragma statements in your code.

1.6.2 Code editing
CodeWarrior IDE has an integral text editor designed for programmers. It handles text files in ASCII,
Microsoft® Windows®, and UNIX® formats.

To edit a file in a project, double-click the file name in the CodeWarrior Projects view. CodeWarrior IDE opens
the file in the editor associated with the file type.

The editor view has excellent navigational features that allow you to switch between related files, locate any
particular function, mark any location within a file, or go to a specific line of code.

1.6.3 Compiling
A source code file is compiled if it is part of the current launch configuration.

If the file is in the configuration, select it in the CodeWarrior Projects view and choose Project > Build Project
from the CodeWarrior IDE menu bar.

To automatically compile all the files in the current launch configuration after you modify them, select Project >
Build Automatically from the CodeWarrior IDE menu bar.

1.6.4 Linking
Choose Project > Build Project from the CodeWarrior IDE menu bar to link object code into a final binary file.

The Build Project command makes the active project up-to-date and links the resulting object code into a final
output file.

You can control the linker through the IDE. There is no need to specify a list of object files. The workspace tracks
all the object files automatically.

You can also modify the build configuration settings to specify the name of the final output file.

1.6.5 Debugging
Choose Run > Debug from the CodeWarrior IDE menu bar to debug your project.

This command downloads the current project's executable to the target board and starts a debug session.

Introduction
CodeWarrior IDE

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 17

The CodeWarrior IDE uses the settings in the launch configuration to generate
debugging information and initiate communications with the target board.

 NOTE

You can now use the debugger to step through the program code, view and change the value of variables, set
breakpoints, and much more. For more information, see CodeWarrior Development Studio Common Features
Guide and the Working with Debugger on page 121 chapter of this manual.

Introduction
CodeWarrior IDE

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
18 NXP Semiconductors

Chapter 2
Working with Projects
This chapter explains how to create and build projects for Power Architecture processors using the CodeWarrior
tools.

This chapter explains:

• CodeWarrior Bareboard Project Wizard on page 19

• CodeWarrior Linux Project Wizard on page 29

• Creating projects on page 34

• Building projects on page 40

• Importing Classic CodeWarrior Projects on page 42

• Deleting Projects on page 43

2.1 CodeWarrior Bareboard Project Wizard
The term bareboard refers to hardware systems that do not need an operating system to operate. The
CodeWarrior Bareboard Project Wizard presents a series of pages that prompt you for the features and
settings to be used when making your program.

This wizard also helps you specify other settings, such as whether the program executes on a simulator rather
than actual hardware.

This section describes the various pages that the CodeWarrior Bareboard Project Wizard displays as it assists
you in creating a bareboard project.

The pages that the wizard presents can differ, based upon the choice of project type or
execution target.

 NOTE

The pages of the CodeWarrior Bareboard Project Wizard are:

• Create a CodeWarrior Bareboard Project Page on page 20

• Processor Page on page 21

• Debug Target Settings Page on page 22

• Build Settings Page on page 24

• Configurations Page on page 26

• Trace Configuration Page on page 28

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 19

2.1.1 Create a CodeWarrior Bareboard Project Page
Use this page to specify the project name and the directory where the project files are located.

Figure 1: Create a CodeWarrior Bareboard Project page

The table below describes the various options available on the Create a CodeWarrior Bareboard Project page.

Table 2: Create a CodeWarrior Bareboard Project page settings

Option Description

Project name Enter the name for the project in this text box.

Use default location Select to choose the directory to store the files required to build the program.
Use the Location option to select the desired directory.

Location Specifies the directory that contains the project files. Use Browse to navigate
to the desired directory. This option is only available when Use default
location is cleared.

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
20 NXP Semiconductors

2.1.2 Processor Page
This page displays the target devices supported by the current installation. Use this page to specify the type
of processor and the output for the new project.

Figure 2: Processor Page

The table below describes the various options available on the Processor page.

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 21

Table 3: Processor Page Settings

Option Description

Processor Expand the processor family tree and select a supported target. The toolchain
uses this choice to generate code that makes use of processor-specific
features, such as multiple cores.

Project Output Select any one of the following supported project output:

• Application: Select to create an application with ".elf" extension, that
includes information related to the debug over a board.

• Static Library: Select to create a library with ".a" extension, that can be
included in other projects. Library files created using this option do not
include board specific details.

2.1.3 Debug Target Settings Page
Use this page to select debugger connection type, board type, launch configuration type, and connection type
for your project.

This page also lets you configure the connection settings for your project.

This wizard page will prompt you to either create a new remote system configuration or
select an existing one. A remote system is a system configuration that defines
connection, initialization, and target parameters. The remote system explorer provides
data models and frameworks to configure and manage remote systems, their
connections, and their services. For more information, see CodeWarrior Development
Studio Common Features Guide available in the <CWInstallDir>\PA\Help\PDF\
folder, where <CWInstallDir> is the installation directory of your CodeWarrior
software.

 NOTE

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
22 NXP Semiconductors

Figure 3: Debug Target Settings Page

The table below describes the various options available on the Debug Target Settings page.

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 23

Table 4: Debug Target Settings page settings

Option Description

Debugger Connection Types Specifies the available target types:

• Hardware - Select to execute the program on the target hardware available.

• Simulator - Select to execute the program on a software simulator.

• Emulator - Select to execute the program on a hardware emulator.

Board Specifies the hardware supported by the selected processor.

Launch Specifies the launch configurations and corresponding connection,
supported by the selected processor.

Connection Type Specifies the interface to communicate with the hardware.

• CodeWarrior TAP (over USB) - Select to use the CodeWarrior TAP
interface (over USB) to communicate with the hardware device.

• CodeWarrior TAP (over Ethernet) - Select to use the CodeWarrior TAP
interface (over Ethernet) to communicate with the hardware device.

• USB TAP - Select to use the USB interface to communicate with the
hardware device.

• Ethernet TAP - Select to use the Ethernet interface to communicate with
the target hardware.

For more details on CodeWarrior TAP, see CodeWarrior TAP User Guide
available in the <CWInstallDir>\PA\Help\PDF\ folder, where
<CWInstallDir> is the installation directory of your Codewarrior software.

• Gigabit TAP - Corresponds to a Gigabit TAP that includes an Aurora
daughter card, which allows you to collect Nexus trace in a real-time non-
intrusive fashion from the high speed serial trace port (the Aurora interface).

• Gigabit TAP + Trace (JTAG over JTAG cable) - Select to use the Gigabit
TAP and Trace probe to send JTAG commands over the JTAG cable.

• Gigabit TAP + Trace (JTAG over Aurora cable) - Select to use the Gigabit
TAP and Trace probe to send JTAG commands over the Aurora cable.

For more details on Gigabit TAP, see Gigabit TAP Users Guide available in
the <CWInstallDir>\PA\Help\PDF\ folder, where <CWInstallDir> is the
installation directory of your Codewarrior software.

TAP address Enter the IP address of the selected TAP device.

2.1.4 Build Settings Page
Use this page to select a programming language, toolchain, and the output project type for your project.

The current release does not include toolchains for Linux applications by default. To add
the required build tools support, you should install the corresponding service pack for
the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

 NOTE

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
24 NXP Semiconductors

Figure 4: Build Settings Page

The table below describes the various options available on the Build Settings page.

Table 5: Build Settings Page

Option Description

Language Specifies the programming language used by the new project. The current
installation supports the following languages:

• C - Select to generate ANSI C-compliant startup code, and initializes global
variables.

• C++ - Select to generate ANSI C++ startup code, and performs global class
object initialization.

Toolchain Specifies the toolchains supported by the current installation. Selected
toolchain sets up the default compiler, linker, and libraries used to build the
new project. Each toolchain generates code targeted for a specific platform.

Floating Point Specifies how the compiler handles floating-point operations, encountered in
the source code.

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 25

2.1.5 Configurations Page
Use this page to specify the processing model and the processor core that executes the project.

Figure 5: Configurations Page

The table below describes the various options available on the Configurations page.

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
26 NXP Semiconductors

Table 6: Configurations Page Setting

Option Description

Processing Model The current installation supports the following processing models:

• SMP - Select this option to generate a single project for the selected cores.
The cores share the same interrupt vector, text, data sections and heap
memory. Each core has its own, dedicated stack. A single initialization file
should be executed for each core.

The SMP option is available for selection only
while creating projects for some e500mc, e5500,
and e6500 core targets.

 NOTE

• AMP (one project per core) - Select this option to generate a separate
project for each selected core. The option will also set the core index for
each project based on the core selection.

• AMP (one build configuration per core) - Select this option to generate one
project with multiple targets, each containing an lcf file for the specified
core.

Selecting the AMP (One build configuration per
core) option displays a checkbox, Set up build
references for build configurations of all cores, just
below this option. If you select the Set up build
references for build configurations of all cores
checkbox, then building the project for one core
will automatically build the project for other cores
as well. If you do not select this checkbox, then
you would need to manually build the project for
each core.

 NOTE

Core Index Select the processor core that executes the project.

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 27

2.1.6 Trace Configuration Page
Use this page to enable collection of trace and profiling data.

Figure 6: The Trace Configuration Page

The table below describes the various options available on the Trace Configuration page.

Table 7: Trace Configuration Page Settings

Option Description

Start a trace session on debug
launch

Allows you to enable trace and profile for your project.

Generate trace configurations Specifies the source used for collecting trace data. The current installation
supports the following options:

• DDR Buffer - Select to send trace to a DDR memory buffer.

• NPC Buffer - Select to send trace data to a small dedicated trace buffer.

• Gigabit TAP + Trace - Select to collect trace data on a GigabitTAP+Trace
probe.

Enable circular collection (DDR
and NPC only)

Specifies circular collection of trace data in the generated trace
configurations. If selected, the trace buffer is treated as a ̀ circular buffer', and
tracing continues even after the buffer is full by replacing the oldest entries.

Working with Projects
CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
28 NXP Semiconductors

2.2 CodeWarrior Linux Project Wizard
The CodeWarrior Linux Project Wizard helps you create a Linux project by displaying various pages that allow
you to specify settings for your project.

The pages that the wizard presents can differ, based upon the choice of project type or
execution target.

 NOTE

The pages of the CodeWarrior Linux Project Wizard are:

• Create a CodeWarrior Linux Project Page on page 29

• Processor Page on page 31

• Build Settings Page on page 32

• Linux Application Page on page 33

2.2.1 Create a CodeWarrior Linux Project Page
Use this page to specify the project name and the directory where the project files are located.

Figure 7: Create a CodeWarrior Linux Project Page

The table below describes the various options available on the Create a CodeWarrior Linux Project page.

Table 8: Create a CodeWarrior Linux Project Page Settings

Option Description

Project name Enter the name for the project in this text box.

Table continues on the next page...

Working with Projects
CodeWarrior Linux Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 29

Table 8: Create a CodeWarrior Linux Project Page Settings (continued)

Option Description

Use default location Select to choose the directory to store the files required to build the program.
Use the Location option to select the desired directory.

Location Specifies the directory that contains the project files. Use Browse to navigate
to the desired directory. This option is only available when Use default
location is cleared. Ensure that you append the name of the project to the
path to create a new location for your project.

Working with Projects
CodeWarrior Linux Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
30 NXP Semiconductors

2.2.2 Processor Page
This page displays the processors supported by the current installation. Use this page to specify the type of
processor and the output for the new project.

Figure 8: Processor Page

The table below describes the various options available on the Processor page.

Working with Projects
CodeWarrior Linux Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 31

Table 9: Processor Page Settings

Option Description

Processor Expand the processor family tree and select a supported target. The toolchain
uses this choice to generate code that makes use of processor-specific
features, such as multiple cores.

Project Output Select any one of the following supported project output:

• Application -Select to create an application with ".elf" extension, that
includes information related to the debug over a board.

• Library -Select to create a library with ".a" extension, that can be included
in other projects. Library files created using this option do not include board
specific details.

2.2.3 Build Settings Page
This page displays the toolchains supported by the current installation. Use this page to specify the toolchain
for the new project.

The current release does not include toolchains for Linux applications by default. To add
the required build tools support, you should install the corresponding service pack for
the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

 NOTE

Figure 9: Build Settings Page

The table below describes the various options available on the Build Settings page.

Working with Projects
CodeWarrior Linux Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
32 NXP Semiconductors

Table 10: Build Settings Page Setting

Option Description

Toolchain Specifies the toolchains supported by the current installation. Selected
toolchain sets up the default compiler, linker, and libraries used to build the
new project. Each toolchain generates code targeted for a specific platform.

Language Specifies the programming language used by the new project. The current
installation supports the following languages:

• C - Select to generate ANSI C-compliant startup code, and initializes global
variables.

• C++ - Select to generate ANSI C++ startup code, and performs global class
object initialization.

Build Tools Architecture Specifies the processor used by the new project. The current installation
supports the following architectures:

• 32 bit - 32 bit option is available by default for QorIQ_P4 processors.

• 64 bit - 64 bit option is only available for QorIQ_P5 processors

For QorIQ_P4 processors, 32 bit option is
selected by default and 64 bit is unavailable. But
if you are using QorIQ_P5 processors, both the
options are enabled.

 NOTE

2.2.4 Linux Application Page
Use this page to specify how the debugger communicates with the host Linux system and controls your Linux
application.

The Linux Application page appears, in the CodeWarrior Linux Project Wizard, only
when you add the Linux build tools support, by installing the corresponding service pack
for the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

 NOTE

Working with Projects
CodeWarrior Linux Project Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 33

Figure 10: Linux Application Page

When debugging a Linux application, you must use the CodeWarrior TRK to manage
the communications interface between the debugger and Linux system. For details, see
Install CodeWarrior TRK on Target System on page 228.

 NOTE

The table below describes the various options available on the Linux Application page.

Table 11: Linux Application Page Setting

Option Description

CodeWarrior TRK Select to use the CodeWarrior Target Resident Kernel (TRK) protocol, to
download and control application on the Linux host system.

IP Address Specifies the IP address of the Linux host system, the project executes on.

Port Specifies the port number that the debugger will use to communicate to the
Linux host.

Remote Download Path Specifies the host directory into which the debugger downloads the
application.

2.3 Creating projects
You can use a project creation wizard provided by CodeWarrior Development Studio to create a CodeWarrior
project according to your requirements.

This section explains:

• Creating CodeWarrior Bareboard Application Project on page 35

• Creating CodeWarrior Bareboard Library Project on page 37

Working with Projects
Creating projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
34 NXP Semiconductors

• Creating CodeWarrior Linux Application Project on page 39

2.3.1 Creating CodeWarrior Bareboard Application Project
You can create a CodeWarrior bareboard application project using the CodeWarrior Bareboard Project
Wizard.

To create a CodeWarrior bareboard application project, perform these steps:

1. Select Start > All Programs > Freescale CodeWarrior > CW for Power Architecture vnumber >
CodeWarrior IDE, where number is the version number of your product.

The Workspace Launcher dialog appears, prompting you to select a workspace to use.

Click Browse to change the default location for workspace folder. You can also select
the Use this as the default and do not ask again checkbox to set default or selected path
as the default location for storing all your projects.

 NOTE

2. Click OK.

The default workspace is accepted. The CodeWarrior IDE launches and the Welcome page appears.

The Welcome page appears only if the CodeWarrior IDE or the selected workspace is
started for the first time. Otherwise, the Workbench window appears.

 NOTE

3. Click Go to Workbench from the Welcome page.

The workbench window appears.

4. Select File > New > CodeWarrior Bareboard Project Wizard, from the CodeWarrior IDE menu bar.

The CodeWarrior Bareboard Project Wizard launches and the Create a CodeWarrior Bareboard Project page
appears.

5. Specify a name for the new project in the Project name text box.

For example, enter the project name as Hello_World.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project. In the Location text box, append the location with the name of the directory in which you
want to create your project.

An existing directory cannot be specified for the project location. If created, the
CodeWarrior will prompt an error message.

 NOTE

7. Click Next.

The Processor page appears.

8. Select the target processor for the new project, from the Processor list.

9. Select Application from the Project Output group, to create an application with .elf extension, that
includes information required to debug the project.

10.Click Next.

Working with Projects
Creating projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 35

The Debug Target Settings page appears.

11.Select a supported connection type (hardware, simulator, or emulator), from the Debugger Connection
Types group. Your selection determines the launch configurations that you can include in your project.

12.Select the board you are targeting, from the Board drop-down list.

Hardware or Simulators that supports the target processor selected on the Processors
page are only available for selection. If you are using the Simics simulator, see https://
www.simics.net/ for latest version and installation instructions for Simics.

 NOTE

13.Select the launch configurations that you want to include in your project and the corresponding connection,
from the Launch group.

14.Select the interface to communicate with the hardware, from the Connection Type drop-down list.

15.Enter the IP address of the TAP device in the TAP address text box. This option is disabled and cannot be
edited, if you select USB TAP from the Connection Type drop-down list.

16.Click Next.

The Build Settings page appears.

17.Select the programming language, you want to use, from the Language group.

The language you select determines the libraries that are linked with your program and the contents of the
main source file that the wizard generates.

18.Select the architecture type used by the new project, from the Build Tools Architecture group.

For projects created for QorIQ_P5 processors, both the 32 bit and 64 bit options are
enabled and can be selected. This option may not be available for some target
processors selected on the Processors page.

 NOTE

19.Select a toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

The current release does not include toolchains for Linux applications by default. To add
the required Linux build tools support, you should install the corresponding service pack
for the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

 NOTE

20.Select an option from the Floating Point drop-down list, to prompt the compiler to handle the floating-point
operations by generating instructions for the selected floating-point unit.

21.Click Next.

The Configurations page appears.

22.Select a processing model option from the Processing Model group.

The SMP option is available for selection only while creating projects for some e500mc
and e5500 core targets.

 NOTE

Working with Projects
Creating projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
36 NXP Semiconductors

https://www.simics.net/
https://www.simics.net/

• Select SMP (One build configuration for all the cores) to generate a single project for the selected cores.
The cores share the same interrupt vector, text, data sections and heap memory. Each core has its own,
dedicated stack. A single initialization file should be executed for each core.

• Select AMP (One project per core) to generate a separate project for each selected core. The option will
also set the core index for each project based on the core selection.

• Select AMP (One build configuration per core) to generate one project with multiple targets, each
containing an .lcf file for the specified core.

23.Select the processor core that executes the project, from the Core index list.

24.Click Next.

The Trace Configuration page appears.

25.If you plan to collect the trace details:

a. Select the Start a trace session on debug launch checkbox, to start a trace session automatically on
debug launch.

b. Select the source used for collecting trace data, from the Generate trace configurations group.

• Select the DDR Buffer checkbox, to send the trace data to a DDR memory buffer.

• Select the NPC Buffer checkbox, to send the trace data to a small dedicated trace buffer.

• Select the Gigabit TAP + Trace checkbox, to collect trace data on a Gigabit TAP+Trace probe.

c. Select the Enable circular collection checkbox, from the Enable circular collection (DDR and NPC only)
group, to treat the trace buffer as a `circular buffer'. Selection of this checkbox, ensures continuation of
trace collection, even after the buffer is full, by replacing the oldest entries.

26.Click Finish.

The wizard creates an application project according to your specifications. You can access the project from
the CodeWarrior Projects view on the Workbench.

The new project is ready for use. You can now customize the project by adding your own source code files,
changing debugger settings and adding libraries.

2.3.2 Creating CodeWarrior Bareboard Library Project
You can create a CodeWarrior bareboard library project using the CodeWarrior Bareboard Project Wizard.

To create a CodeWarrior bareboard library project, perform these steps:

1. Select Start > All Programs > Freescale CodeWarrior > CW for Power Architecture vnumber >
CodeWarrior IDE, where number is the version number of your product.

The Workspace Launcher dialog appears, prompting you to select a workspace to use.

Click Browse to change the default location for workspace folder. You can also select
the Use this as the default and do not ask again checkbox to set default or selected path
as the default location for storing all your projects.

 NOTE

2. Click OK.

The default workspace is accepted. The CodeWarrior IDE launches and the Welcome page appears.

The Welcome page appears only if the CodeWarrior IDE or the selected workspace is
started for the first time. Otherwise, the Workbench window appears.

 NOTE

Working with Projects
Creating projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 37

3. Click Go to Workbench, on the Welcome page.

The workbench window appears.

4. Select File > New > CodeWarrior Bareboard Project Wizard, from the CodeWarrior IDE menu bar.

The CodeWarrior Bareboard Project Wizard launches and the Create a CodeWarrior Bareboard Project page
appears.

5. Specify a name for the new project in the Project name text box.

For example, enter the project name as library_project.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

An existing directory cannot be specified for the project location.

 NOTE

7. Click Next.

The Processor page appears.

8. Select the target processor for the new project, from the Processor list.

9. Select Static Library from the Project Output group, to create a library with .a extension, that can be
included in other projects. Library files created using this option do not include board specific details.

10.Click Next.

The Build Settings page appears.

11.Select the programming language, you want to use, from the Language group.

The language you select determines the libraries that are linked with your program and the contents of the
main source file that the wizard generates.

12.Select a toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

The current release does not include toolchains for Linux applications by default. To add
the required build tools support, you should install the corresponding service pack for
the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

 NOTE

13.Select an option from the Floating Point drop-down list, to prompt the compiler to handle the floating-point
operations by generating instructions for the selected floating-point unit.

14.Click Finish.

The wizard creates a library project according to your specifications. You can access the project from the
CodeWarrior Projects view on the Workbench.

The new library project is ready for use. You can now customize the project to match your requirements.

Working with Projects
Creating projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
38 NXP Semiconductors

2.3.3 Creating CodeWarrior Linux Application Project
You can create a CodeWarrior Linux application project using the CodeWarrior Linux Project Wizard.

To create a CodeWarrior Linux application project, perform these steps:

1. Select Start > All Programs > Freescale CodeWarrior > CW for Power Architecture vnumber >
CodeWarrior IDE, where number is the version number of your product.

The Workspace Launcher dialog appears, prompting you to select a workspace to use.

Click Browse to change the default location for workspace folder. You can also select
the Use this as the default and do not ask again checkbox to set default or selected path
as the default location for storing all your projects.

 NOTE

2. Click OK.

The default workspace is accepted. The CodeWarrior IDE launches and the Welcome page appears.

The Welcome page appears only if the CodeWarrior IDE or the selected workspace is
started for the first time. Otherwise, the Workbench window appears.

 NOTE

3. Click Go to Workbench, on the Welcome page.

The workbench window appears.

4. Select File > New > CodeWarrior Linux Project Wizard, from the CodeWarrior IDE menu bar.

The CodeWarrior Linux Project Wizard launches and the Create a CodeWarrior Linux Project page appears.

5. Specify a name for the new project in the Project name text box.

For example, enter the project name as linux_project.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

An existing directory cannot be specified for the project location.

 NOTE

7. Click Next.

The Processor page appears.

8. Select the target processor for the new project, from the Processor list.

9. Select Application from the Project Output group, to create an application with .elf extension, that
includes information required to debug the project.

10.Click Next.

The Build Settings page appears.

11.Select a toolchain for Linux applications from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

Working with Projects
Creating projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 39

The current release does not include toolchains for Linux applications by default. To add
the required Linux build tools support, you should install the corresponding service pack
for the required target. For more information on installing service packs, see the Service
Pack Updater Quickstart available in the <CWInstallDir>\PA\ folder.

 NOTE

12.Select the programming language, you want to use, from the Language group.

The language you select determines the libraries that are linked with your program and the contents of the
main source file that the wizard generates.

13.Select the architecture type used by the new project, from the Build Tools Architecture group.

For projects created for QorIQ_P5 processors, both the 32 bit and 64 bit options are
enabled and can be selected. For all other processors, 32 bit option is selected by default
and 64 bit is disabled and cannot be selected.

 NOTE

14.Click Next.

The Linux Application page appears.

15.Select CodeWarrior TRK to use the CodeWarrior Target Resident Kernel (TRK) protocol, to download and
control application on the Linux host system.

When debugging a Linux application, you must use the CodeWarrior TRK to manage
the communications interface between the debugger and Linux system. For details, see
Install CodeWarrior TRK on Target System on page 228.

 NOTE

16.Specify a Remote System Configuration option.

17.In the IP Address text box, enter the IP Address of the Linux host system, the project executes on.

18.In the Port text box, enter the port number that the debugger will use to communicate to the Linux host
system.

19.In the Remote Download Path text box, enter the absolute path for the host directory, into which the
debugger downloads the application.

20.Click Finish.

The wizard creates a CodeWarrior Linux application project according to your specifications. You can access
the project from the CodeWarrior Projects view on the Workbench.

The new CodeWarrior Linux application project is ready for use. You can now customize the project to match
your requirements.

2.4 Building projects
CodeWarrior IDE supports two modes of building projects.

These modes are:

• Manual-Build mode on page 41

• Auto-Build mode on page 41

Working with Projects
Building projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
40 NXP Semiconductors

2.4.1 Manual-Build mode
This section explains the manual mode of building projects.

In large workspaces, building the entire workspace can take a long time if users make changes with a significant
impact on dependent projects. Often there are only a few projects that really matter to a user at a given time.

To build only the selected projects, and any prerequisite projects that need to be built to correctly build the
selected projects, select Project > Build Project from the CodeWarrior IDE menu bar.

Figure 11: Project Menu- Build Project

Alternatively, right-click on the selected project in the CodeWarrior Projects view and select Build Project from
the context menu.

To build all projects available in the CodeWarrior Projects view, select Project > Build All.

Figure 12: Project Menu-Build All

2.4.2 Auto-Build mode
This section explains the automatic mode of building projects.

CodeWarrior IDE takes care of compiling source files automatically. When auto-build is enabled, project build
occurs automatically in the background every time you change files in the workspace (for example saving an
editor).

Working with Projects
Building projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 41

To automatically build all the projects in a workspace, select Project > Build Automatically from the CodeWarrior
IDE menu bar.

Figure 13: Project Menu-Build Automatically

If auto-build is taking too long and is interfering with ongoing development, it can be turned off. Select Project >
Build Automatically from the CodeWarrior IDE menu bar to disable auto-build mode.

It is advised that you do not use the Build Automatically option for C/C++ development.
Using this option will result in building the entire project whenever you save a change
to the makefile or source files. This can take a significant amount of time for very large
projects.

 NOTE

2.5 Importing Classic CodeWarrior Projects
The CodeWarrior Project Importer feature in Eclipse IDE helps automate the conversion of a legacy C/C++
CodeWarrior IDE project to a project supported by the latest versions of the CodeWarrior IDE.

This feature lets you:

• Select the classic CodeWarrior project

• Set targets to import

• Configure source trees and shielded folders

• Edit access paths for each target

• List files that are not found in the previous settings

• Specify the new project name and location

• List warnings or errors in the conversion process

• Open the newly created Eclipse project.

For more information on importing classic CodeWarrior projects to the latest versions
of the CodeWarrior IDE, see the CodeWarrior Common Features Guide from the
<CWInstallDir>\PA\Help\PDF\ folder.

 NOTE

Working with Projects
Importing Classic CodeWarrior Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
42 NXP Semiconductors

2.6 Deleting Projects
Using the options available in CodeWarrior IDE, you can delete a project and optionally the resources linked
to the project.

To delete a project, follow these steps:

1. Select the project you want to delete in the CodeWarrior Projects view.

2. Select Edit > Delete.

The Delete Resources dialog appears.

Alternatively, you can also select Delete from the context menu that appears when you
right-click the project.

 NOTE

3. Select the Delete project contents on disk (cannot be undone) option to delete the project contents
permanently.

You will not be able to restore your project using Undo, if you select the Delete project
contents on disk (cannot be undone) option.

 NOTE

4. Click OK.

In case, the Unreferenced Remote Systems dialog appears displaying a list of remote
systems used by the deleted project, click Remove to delete the unreferenced remote
systems. Alternatively, click Cancel to reuse the remote systems.

 NOTE

The selected project is deleted and relevant details of the project are removed from the CodeWarrior Projects
view.

Working with Projects
Deleting Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 43

Working with Projects
Deleting Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
44 NXP Semiconductors

Chapter 3
Build Properties
This chapter explains build properties for CodeWarrior for Power Architecture projects.

A build configuration is a named collection of build tools options. The set of options in a given build configuration
causes the build tools to generate a final binary with specific characteristics. For example, the binary produced
by a "Debug" build configuration might contain symbolic debugging information and have no optimizations, while
the binary product by a "Release" build configuration might contain no symbolics and be highly optimized.

The settings of the CodeWarrior IDE's build and launch configurations correspond to an
object called a target made by the classic CodeWarrior IDE.

 NOTE

This chapter explains:

• Changing Build Properties on page 45

• Restoring Build Properties on page 46

• Build Properties for Power Architecture on page 46

3.1 Changing Build Properties
You can modify the build properties of a project to better suit your needs.

To change build properties of a project, perform the steps given below:

1. Start the CodeWarrior IDE.

2. In the CodeWarrior Projects view, select the project for which you want to modify the build properties.

3. Select Project > Properties from the menu bar.

The Properties for <project> window appears. The left pane of this window shows the build properties that
apply to the current project.

4. Expand the C/C++ Build property.

5. Select Settings.

6. Use the Configuration drop-down list in the right pane to specify the launch configuration for which you
want to modify the build properties.

7. Click the Tool Settings tab. The corresponding page appears.

8. From the list of tools on the Tool Settings page, select the tool for which you want to modify properties.

9. Change the settings that appear in the page.

10.Click Apply.

The IDE saves your new settings.

You can select other tool pages and modify their settings. When you finish, click OK to save your changes and
close the Properties for <project> window.

Build Properties
Changing Build Properties

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 45

3.2 Restoring Build Properties
If you had modified a build configuration of a project in the past, you can restore the build properties to have a
factory-default configuration, or to revert to a last-known working build configuration.

To undo your modifications to build properties, click Restore Defaults at the bottom of the Properties window.

This changes the values of the options to the absolute default of the toolchain. By default, the toolchain options
are blank.

For example, when a Power Architecture project is created the Power ELF Linker panel has some values set,
which are specific to the project. By selecting Restore Defaults the default values of settings will return to blank
state of the toolchain.

3.3 Build Properties for Power Architecture
Based on different processor families, CodeWarrior for Power Architecture supports both CodeWarrior and
GCC builds tools.

The build tools used in a project depend upon the processor and the build toolchain that is selected while creating
a project.

The table below lists the build tools supported by different processors.

Table 12: Build Tools for Power Architecture Processor Families

Family Processor Build Tool

82xx 8250 CodeWarrior tools

83xx 8306 CodeWarrior tools

8309 CodeWarrior tools

8323 CodeWarrior tools

8377 CodeWarrior tools

85xx 8536 CodeWarrior tools

8548 CodeWarrior tools

8560 CodeWarrior tools

8568 CodeWarrior tools

8569 CodeWarrior tools

8572 CodeWarrior tools

C29x C29x CodeWarrior tools

Qonverge B4420 GCC tools

B4460 GCC tools

B4860 GCC tools

Table continues on the next page...

Build Properties
Restoring Build Properties

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
46 NXP Semiconductors

Table 12: Build Tools for Power Architecture Processor Families (continued)

Family Processor Build Tool

BSC9131 CodeWarrior/GCC tools

BSC9132 CodeWarrior/GCC tools

G1110 CodeWarrior/GCC tools

G4860 GCC tools

QorIQ_P1 P1010 CodeWarrior tools

P1011 CodeWarrior tools

P1012 CodeWarrior tools

P1013 CodeWarrior tools

P1014 CodeWarrior tools

P1015 CodeWarrior tools

P1016 CodeWarrior tools

P1017 CodeWarrior tools

P1020 CodeWarrior tools

P1021 CodeWarrior/GCC tools

P1022 CodeWarrior tools

P1023 CodeWarrior tools

P1024 CodeWarrior tools

P1025 CodeWarrior tools

QorIQ_P2 P2010 CodeWarrior tools

P2020 CodeWarrior tools

P2040 GCC tools

P2041 GCC tools

QorIQ_P3 P3041 GCC tools

QorIQ_P4 P4040 GCC tools

P4080 GCC tools

QorIQ_P5 P5010 GCC tools

P5020 GCC tools

P5021 GCC tools

P5040 GCC tools

QorIQ_T1 T1013 GCC tools

T1014 GCC tools

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 47

Table 12: Build Tools for Power Architecture Processor Families (continued)

Family Processor Build Tool

T1020 GCC tools

T1022 GCC tools

T1023 GCC tools

T1024 GCC tools

T1040 GCC tools

T1042 GCC tools

QorIQ_T2 T2080 GCC tools

T2081 GCC tools

QorIQ_T4 T4160 GCC tools

T4240 GCC tools

The following sections will help you with more details on the build tools supported by the current installation:

• CodeWarrior Build Tool Settings on page 48

• GCC Build Tool Settings on page 73

3.3.1 CodeWarrior Build Tool Settings
CodeWarrior build tools are build tools developed by Freescale.

The table below lists the CodeWarrior build tool settings specific to developing software for Power Architecture.

For more details on CodeWarrior build tools, see the Power Architecture Build Tools
Reference Manual available in the <CWInstallDir>\PA\Help\PDF\ folder.

 NOTE

Table 13: CodeWarrior Build Tool Settings for Power Architecture

Build Tool Build Properties Panels

PowerPC CPU on page 49

Debugging on page 50

Messages on page 50

PowerPC Linker on page 51 Input on page 51

Link Order on page 53

General on page 53

Output on page 54

PowerPC Compiler on page 57 Preprocessor on page 58

Input on page 58

Warnings on page 59

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
48 NXP Semiconductors

Table 13: CodeWarrior Build Tool Settings for Power Architecture (continued)

Build Tool Build Properties Panels

Optimization on page 62

Processor on page 62

C/C++ Language on page 66

PowerPC Assembler on page 68 Input on page 69

General on page 70

PowerPC Disassembler on page 70 Disassembler Settings on page 71

PowerPC Preprocessor on page 72 Preprocessor Settings on page 72

3.3.1.1 PowerPC CPU
Use the PowerPC CPU panel to specify the Power Architecture processor family for the project.

The properties specified on this page are also used by the build tools (compiler, linker, and assembler).

The table below lists and describes the various options available on the PowerPC CPU panel.

Table 14: CodeWarrior Build Tool Settings - PowerPC CPU Options

Option Explanation

Processor Generates and links object code for a specific processor. This setting is
equivalent to specifying the -proc[essor] keyword command-line option.

Floating Point Controls floating-point code generation. This setting is equivalent to
specifying the -fp keyword command-line option.

Byte Ordering Generates object code and links an executable image to use the specified
data format. This setting is equivalent to specifying the -big or -little
command-line options.

Code Model Specifies the addressing mode that the linker uses when resolving
references. This setting is equivalent to specifying the -model keyword
command-line option.

ABI Chooses which ABI (Application Binary Interface) to conform to. This setting
is equivalent to specifying the -abi keyword command-line option.

Tune Relocations Ensures that references made by the linker conform to the PowerPC EABI
(Embedded Application Binary Interface) or position-independent ABI
(Application Binary Interface). Use this option only when you select EABI or
SDA PIC/PID from the ABI drop-down list, to ensure that references in the
executable image conform to these ABIs. To conform to both of these ABIs,
the linker will modify relocations that do not reach the desired executable
code. The linker first converts near branch instructions to far branch
instructions. Then it will convert absolute branches to PC-relative branches.
For branches that cannot be converted to far or PC-relative addressing, the
linker will generate branch islands. To conform to the SDA PIC/PID ABI, the
linker will generate the appropriate style of addressing. This setting is
equivalent to specifying the -tune_relocations command-line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 49

Table 14: CodeWarrior Build Tool Settings - PowerPC CPU Options (continued)

Option Explanation

Compress for PowerPC VLE
(Zen)

Specifies compression of the VLE (Variable Length Encoding) code by
shortening the gaps between the functions.

For Power Architecture processors that do not
have the VLE capability, this option is disabled
and cannot be selected.

 NOTE

Small Data Limits the size of the largest objects in the small data section. This setting is
equivalent to specifying the -sdata[threshold] size command-line option.
The size value specifies the maximum size, in bytes, of all objects in the small
data section (.sdata). The default value for size is 8. The linker places
objects that are greater than this size in the data section (.data) instead.

Small Data2 Limits the size of the largest objects in the small constant data section. This
setting is equivalent to specifying the -sdata2[threshold] size command-
line option. The size value specifies the maximum size, in bytes, of all objects
in the small constant data section (.sdata2). The default value for size is 8.
The linker places constant objects that are greater than this size in the
constant data section (.rodata) instead.

3.3.1.2 Debugging
Use the Debugging panel to specify the global debugging options for the project.

The table below lists and describes the various options available on the Debugging panel.

Table 15: CodeWarrior Build Tool Settings - Debugging Options

Option Explanation

Generate DWARF Information Generates DWARF 2.x conforming debugging information. This setting is
equivalent to specifying the -sym dwarf-2 command-line option.

Store Full Paths To Source
Files

Stores absolute paths of the source files instead of relative paths. This setting
is equivalent to specifying the -sym full[path] command-line option.

3.3.1.3 Messages
Use the Messages panel to specify the error and warning message options for the project.

The table below lists and describes the various options available on the Messages panel.

Table 16: CodeWarrior Build Tool Settings - Messages Options

Option Explanation

Message Style Controls the style used to show error and warning messages. This setting is
equivalent to specifying the -msgstyle keyword command-line option.

Maximum Number of Errors Specifies the maximum number of errors messages to show. This setting is
equivalent to specifying the -maxerrors number command-line option.

Maximum Number of Warnings Specifies the maximum number of warning messages to show. This setting
is equivalent to specifying the -maxwarnings number command-line option.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
50 NXP Semiconductors

3.3.1.4 PowerPC Linker
Use the PowerPC Linker panel to specify the CodeWarrior linker options that are specific to Power
Architecture software development.

The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.

 NOTE

The table below lists and describes the various options available on the PowerPC Linker panel.

Table 17: CodeWarrior Build Tool Settings - PowerPC Linker Options

Option Explanation

Command Specifies the location of the linker executable file

All Options Specifies the actual command line, the linker will be called with

Expert settings:

Command line pattern

Specifies the expert settings command line parameters

This section contains the following subsections:

• Input on page 51

• Link Order on page 53

• General on page 53

• Output on page 54

3.3.1.4.1 Input
Use the Input panel to specify the path to the linker command file and libraries.

The table below lists and describes the various options available on the Input panel.

Table 18: CodeWarrior Build Tool Settings - Input Options

Option Explanation

No Standard Library Uses standard system library access paths as specified by the environment
variable %MWLibraries% to add system libraries as specified by the
environment variable %MWLibraryFiles% at the end of link order. This setting
is equivalent to specifying the -nostdlib command-line option.

Link Command File (.lcf) Specifies the path of the linker-command file that the linker reads to
determine how to build the output file. Alternatively, click Browse, then use
the resulting dialog to specify the linker command file. This setting is
equivalent to specifying the -lcf filename command-line option.

Code Address Sets the run-time address of the executable code. This setting is equivalent
to specifying the -codeaddr addr command-line option. The addr value is
an address, in decimal or hexadecimal format. Hexadecimal values must
begin with 0x. The default is 65536. This option is disabled and cannot be
selected if you have specified the .lcf file in the Link Command File (.lcf)
text box.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 51

Table 18: CodeWarrior Build Tool Settings - Input Options (continued)

Option Explanation

Data Address Sets the loading address of the data. This setting is equivalent to specifying
the -dataaddr addr command-line option. The addr value is an address, in
decimal or hexadecimal format. Hexadecimal values must begin with 0x. The
default is the address after the code and large constant sections. This option
is disabled and cannot be selected if you have specified the .lcf file in the
Link Command File (.lcf) text box.

Small Data Address Sets the loading address of small data. This setting is equivalent to specifying
the -sdataaddr addr command-line option. The addr value is an address,
in decimal or hexadecimal format. Hexadecimal values must begin with 0x.
The default is the address after the large data section. This option is disabled
and cannot be selected if you have specified the .lcf file in the Link
Command File (.lcf) text box.

Small Data 2 Address Sets the loading address of small constant data. This setting is equivalent to
specifying the -sdata2addr addr command-line option. The addr value is
an address, in decimal or hexadecimal format. Hexadecimal values must
begin with 0x. The default is the address after the small data section. This
option is disabled and cannot be selected if you have specified the .lcf file
in the Link Command File (.lcf) text box.

Entry Point Specifies the main entry point for the executable image. This setting is
equivalent to specifying the -m[ain] symbol command-line option. The
maximum length of symbol is 63 characters. The default is _start.

Library Search Paths Use this panel to specify multiple paths that the Power Architecture linker
searches for libraries. The linker searches the paths in the order shown in
this list. The table that follows lists and describes the toolbar buttons that help
work with the library search paths.

Library Files Lists paths to libraries that the Power Architecture linker uses. The linker uses
the libraries in the order shown in this list. The table that follows lists and
describes the toolbar buttons that help work with the library file search paths.

The table below lists and describes the toolbar buttons that help work with the library search paths.

Table 19: CodeWarrior Build Tool Settings - Input Toolbar Buttons

Button Tooltip Description

Add Click to open the Add file path or the Add directory path dialog and
create a file or directory path.

Delete Click to delete the selected file or directory. To confirm deletion,
click Yes in the Confirm Delete dialog.

Edit Click to open the Edit file path or Edit directory path dialog and
update the selected file or directory.

Move up Click to move the selected file search path one position higher in
the list.

Move down Click to move the selected file search path one position lower in
the list.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
52 NXP Semiconductors

3.3.1.4.2 Link Order
Use the Link Order panel to control the link input order.

The table below lists and describes the various options available on the Link Order panel.

Table 20: CodeWarrior Build Tool Settings - Link Order Options

Option Explanation

Customize linker input order Allows to change the default link input order. Selecting this option enables
the Link Order panel, allowing you to change the default link input order by
using the Move Up and Move Down buttons on the Link Order panel toolbar.

Link Order Shows the default link input order that you can change by selecting a link
input and clicking the Move Up or Move Down button on the Link Order panel
toolbar.

3.3.1.4.3 General
Use the General panel to specify the linker performance and optimization parameters.

The table below lists and describes the various options available on the General panel.

Table 21: CodeWarrior Build Tool Settings - General Options

Option Explanation

Link Mode Controls the performance of the linker. The default options are:

• Normal - Uses little memory but may take more processing time.

• Use Less RAM - Uses medium amount of memory for medium processing
time.

• Use More RAM - Uses lots of memory to improve processing time.

This setting is equivalent to specifying the -linkmode keyword command-
line option.

Code Merging Code merging reduces the size of object code by removing identical
functions. This option takes the following values:

• Off - Disables code merging optimization. This is the default value.

• All Functions - Controls code merging for all identical functions.

• Safe Functions - Controls code merging for weak functions.

This setting is equivalent to specifying the -code_merging off | all |
safe command-line option.

Aggresive Merging The code merging optimization will not remove an identical copy of a function
if your program refers to its address. In this case, the compiler keeps this
copied function but replaces its executable code with a branch instruction to
the original function. To ignore references to function addresses, use
aggressive code merging. This setting is equivalent to specifying the -
code_merging all,aggressive or -code_merging safe,aggressive
command-line options.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 53

Table 21: CodeWarrior Build Tool Settings - General Options (continued)

Option Explanation

Merges FP Constants Compiler pools strings of a file, when the option is checked. Deselect this
option to keep individual the strings of each file. (This permits deadstripping
of unused strings.) This setting is equivalent to specifying the #pragma
fp_constants merge pragma.

Other Flags Specify linker flags.

3.3.1.4.4 Output
Use the Output panel to specify the configuration of your final output file.

The table below lists and describes the various options available on the Output panel.

Table 22: CodeWarrior Build Tool Settings - Output Options

Option Explanation

Output Type Specifies the generated output type. The default options are:

• Application

• Static Library

• Partial Link

This setting is equivalent to specifying the -application, -library, -
partial command-line options.

Optimize Partial Link Specifies the use of a linker command file, create tables for C++ static
constructors, C++ static destructors, and C++ exceptions. This option also
configures the linker to build an executable image, even if some symbols
cannot be resolved.

Select Partial Link from the Output Type list box to
enable this option.

 NOTE

This setting is equivalent to specifying the -opt_partial command-line
option.

Deadstrip Unused Symbols Removes unreferenced objects on a partially linked image.

Select Partial Link from the Output Type list box to
enable this option.

 NOTE

This setting is equivalent to specifying the -strip_partial command-line
option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
54 NXP Semiconductors

Table 22: CodeWarrior Build Tool Settings - Output Options (continued)

Option Explanation

Require Resolved Symbols Finishes a partial link operation and issues error messages for unresolved
symbols.

Select Partial Link from the Output Type list box to
enable this option.

 NOTE

This setting is equivalent to specifying the -resolved_partial command-
line option.

Heap Size (k) Sets the run-time size of the heap, in kilobytes. This setting is equivalent to
specifying the -heapsize size command-line option.

Stack Size (k) Sets the run-time size of the stack, in kilobytes. This setting is equivalent to
specifying the -stacksize size command-line option.

Interpreter Specifies the interpreter file used by the linker.

Generate Link Map Generates a text file that describes the contents of the linker's output file. This
setting is equivalent to specifying the -map [filename] command-line option.

List Closure Controls the appearance of symbol closures in the linker map file. This setting
is equivalent to specifying the -listclosure command-line option.

List Unused Objects Controls the appearance of a list of unused symbols in the linker map file.
This setting is equivalent to specifying the -mapunused command-line
option.

List DWARF Objects Controls the appearance of DWARF debugging information in the linker map
file. This setting is equivalent to specifying the -listdwarf command-line
option.

Generate Binary File Controls generation of the binary files. The default options are:

• None - Generates no binary file even if S-record generation is on. This is
the default option.

• One - Generates a single binary file with all the loadable code and data,
even if S-record generation is off.

• Multiple - Generates separate binary files for each MEMORY directive,
even if S-record generation is off.

This setting is equivalent to specifying the -genbinary keyword command-
line option.

Generate S-Record File Generates an S-record file. This setting is equivalent to specifying the -srec
command-line option.

Sort S-Record Sorts the records, in ascending order, in an S-record file.

Select Generate S-Record File to enable this
option.

 NOTE

This setting is equivalent to specifying the -sortsrec command-line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 55

Table 22: CodeWarrior Build Tool Settings - Output Options (continued)

Option Explanation

Max S-Record Length Specifies the length of S-records. You can select a value from 8 to 255. The
default is 26.

Select Generate S-Record File to enable this
option.

 NOTE

This setting is equivalent to specifying the -sreclength command-line
option.

EOL Character Specifies the end-of-line style to use in an S-record file. The default options
are:

• Mac - Use Mac OS®-style end-of-line format.

• DOS - Use Microsoft® Windows®-style end-of-line format. This is the
default choice.

• UNIX - Use a UNIX-style end-of-line format.

Select Generate S-Record File to enable this
option.

 NOTE

This setting is equivalent to specifying the -sreceol keyword command-
line option.

Generate Warning Messages Turns on most warning messages issued by the build tools. This setting is
equivalent to specifying the -w on command-line option.

Heap Address Sets the run-time address of the heap. The specified address must be in
decimal or hexadecimal format. Hexadecimal values must begin with 0x. The
default is stack_address - (heap_size + stack_size) where
stack_address is the address of the stack, heap_size is the size of the
heap, and stack_size is the size of the stack. This setting is equivalent to
specifying the -heapaddr address command-line option.

Stack Address Sets the run-time address of the stack. The specified address must be in
decimal or hexadecimal format. Hexadecimal values must begin with 0x. This
setting is equivalent to specifying the -stackaddr address command-line
option.

Generate ROM Image Enables generation of a program image that may be stored in and started
from ROM.

ROM Image Address Generates a ROM image and specifies the image's starting address at run
time.

Select Generate ROM Image to enable this
option.

 NOTE

This setting is equivalent to specifying the -romaddr address command-line
option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
56 NXP Semiconductors

Table 22: CodeWarrior Build Tool Settings - Output Options (continued)

Option Explanation

RAM Buffer Address of ROM
Image

Specifies a run-time address in which to store the executable image in RAM
so that it may be transferred to flash memory.

Select Generate ROM Image to enable this
option.

 NOTE

This option specifies information for a legacy flashing tool (some
development boards that used the Power Architecture 821 processor). This
tool required that the executable image must first be loaded to an area in
RAM before being transferred to ROM.

Do not use this option if your flash memory tool
does not follow this behavior.

 NOTE

This setting is equivalent to specifying the -rombuffer address command-
line option.

3.3.1.5 PowerPC Compiler
Use the PowerPC Compiler panel to specify the compiler options that are specific to Power Architecture
software development.

The table below lists and describes the various options available on the PowerPC Compiler panel.

Table 23: CodeWarrior Build Tool Settings - PowerPC Compiler Options

Option Explanation

Command Specifies the location of the PowerPC ELF compiler executable file that will
be used to build the project.

All Options The actual command line the compiler will be called with.

Expert settings:

Command line pattern

Shows the expert settings command line parameters.

This section contains the following subsections:

• Preprocessor on page 58

• Input on page 58

• Warnings on page 59

• Optimization on page 62

• Processor on page 62

• C/C++ Language on page 66

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 57

3.3.1.5.1 Preprocessor
Use the Preprocessor panel to specify the preprocessor behavior by providing details of the file, whose
contents can be used as prefix to all source files.

The table below lists and describes the various options available on the Preprocessor panel.

Table 24: CodeWarrior Build Tool Settings - Preprocessor Options

Option Explanation

Prefix Files Adds contents of a text file or precompiled header as a prefix to all source
files. This setting is equivalent to specifying the -prefix file command-line
option.

Source encoding Specifies the default source encoding used by the compiler. The compiler
automatically detects UTF-8 (Unicode Transformation Format) header or
UCS-2/UCS-4 (Uniform Communications Standard) encodings regardless of
setting. The default setting is ascii. This setting is equivalent to specifying the
-enc[oding] keyword command-line option.

Defined Macros (-D) Defines a specified symbol name. This setting is equivalent to specifying the
-D name command-line option, where name is the symbol name to define.

Undefined Macros (-U) Undefines the specified symbol name. This setting is equivalent to specifying
the -U name command-line option, where name is the symbol name to
undefine.

3.3.1.5.2 Input
Use the Input panel to specify the path and search order of the #include files.

The table below lists and describes the various options available on the Input panel.

Table 25: CodeWarrior Build Tool Settings - Input Options

Option Explanation

Compile Only, Do Not Link Instructs the compiler to compile but not invoke the linker to link the object
code. This setting is equivalent to specifying the -c command-line option.

Do not use MWCIncludes
variable

Restricts usage of standard system include paths as specified by the
environment variable %MWCIncludes%. This setting is equivalent to specifying
the -nostdinc command-line option.

Always Search User Paths Performs a search of both the user and system paths, treating #include
statements of the form #include <xyz> the same as the form #include
"xyz". This setting is equivalent to specifying the -nosyspath command-line
option.

User Path (-i) Use this panel to specify multiple user paths and the order in which to search
those paths. The table that follows lists and describes the toolbar buttons that
help work with the file search paths. This setting is equivalent to specifying
the -i command-line option.

User Recursive Path (-ir) Appends a recursive access path to the current User Path list. The table that
follows lists and describes the toolbar buttons that help work with the file
search paths. This setting is equivalent to specifying the -ir path command-
line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
58 NXP Semiconductors

Table 25: CodeWarrior Build Tool Settings - Input Options (continued)

Option Explanation

System Path (-I- -I) Changes the build target's search order of access paths to start with the
system paths list. The table that follows lists and describes the toolbar buttons
that help work with the file search paths.

• The compiler can search #include files in several different ways. Use this
panel to set the search order as follows:

• For include statements of the form #include "xyz", the compiler first
searches user paths, then the system paths

• For include statements of the form #include <xyz>, the compiler searches
only system paths

This setting is equivalent to specifying the -I- -I path command-line option.

System Recursive Path (-I- -ir) Appends a recursive access path to the current System Path list. The table
that follows lists and describes the toolbar buttons that help work with the file
search paths. This setting is equivalent to specifying the -I- -ir command-
line option.

Disable CW Extensions Controls deadstripping files. Not all third-party linkers require checking this
option.

The table below lists and describes the toolbar buttons that help work with the Input panel.

Table 26: CodeWarrior Build Tool Settings - Input Toolbar Buttons

Button Tooltip Description

Add Click to open the Add file path or the Add directory path dialog and
create a file or directory path.

Delete Click to delete the selected file or directory. To confirm deletion,
click Yes in the Confirm Delete dialog.

Edit Click to open the Edit file path or Edit directory path dialog and
update the selected file or directory.

Move up Click to move the selected file search path one position higher in
the list.

Move down Click to move the selected file search path one position lower in
the list.

3.3.1.5.3 Warnings
Use the Warnings panel to control how the compiler reports the error and warning messages.

The table below lists and describes the various options available on the Warnings panel.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 59

Table 27: CodeWarrior Build Tool Settings - Warnings

Option Explanation

Treat All Warnings As Errors Select to make all warnings into hard errors. Source code which triggers
warnings will be rejected.

Illegal Pragmas Select to issue a warning message if the compiler encounters an
unrecognized pragma. This setting is equivalent to specifying the pragma
warn_illpragma pragma and the -warnings illpragmas command-line
option.

Possible Errors Select to issue warning messages for common, usually-unintended logical
errors: in conditional statements, using the assignment (=) operator instead
of the equality comparison (==) operator, in expression statements, using the
== operator instead of the = operator, placing a semicolon (;) immediately
after a do, while, if, or for statement. This setting is equivalent to specifying
the warn_possunwant pragma and the -warnings possible command-line
option.

Extended Error Checking Select to issue warning messages for common programming errors: mis-
matched return type in a function's definition and the return statement in the
function's body, mismatched assignments to variables of enumerated types.
This setting is equivalent to specifying the extended_errorcheck pragma
and the -warnings extended command-line option.

Hidden virtual functions Select to issue warning messages if you declare a non-virtual member
function that prevents a virtual function, that was defined in a superclass,
from being called. This setting is equivalent to specifying the
warn_hidevirtual pragma and the -warnings hidevirtual command-
line option.

Implicit Arithmetic Conversions Select to issue warning messages when the compiler applies implicit
conversions that may not give results you intend: assignments where the
destination is not large enough to hold the result of the conversion, a signed
value converted to an unsigned value, an integer or floating-point value is
converted to a floating-point or integer value, respectively. This setting is
equivalent to specifying the warn_implicitconv pragma and the -warnings
implicitconv command-line option.

Implicit Integer To Float
Conversions

Select to issue warning messages for implicit conversions from integer to
floating-point values. This setting is equivalent to specifying the
warn_impl_i2f_conv pragma and the -warnings impl_int2float
command-line option.

Implicit Float To Integer
Conversions

Select to issue warning messages for implicit conversions from floating point
values to integer values. This setting is equivalent to specifying the
warn_impl_f2i_conv pragma and the -warnings impl_float2int
command-line option.

Implicit Signed/Unsigned
Conversions

Select to issue warning messages for implicit conversions from a signed or
unsigned integer value to an unsigned or signed value, respectively. This
setting is equivalent to specifying the warn_impl_s2u_conv pragma and the
-warnings signedunsigned command-line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
60 NXP Semiconductors

Table 27: CodeWarrior Build Tool Settings - Warnings (continued)

Option Explanation

Pointer/Integral Conversions Select to issue warning messages for implicit conversions from pointer values
to integer values and from integer values to pointer values. This setting is
equivalent to specifying the warn_any_ptr_int_conv and
warn_ptr_int_conv pragmas and the -warnings ptrintconv,
anyptrinvconv command-line option.

Unused Arguments Select to issue warning messages for function arguments that are not
referred to in a function. This setting is equivalent to specifying the
warn_unusedarg pragma and the -warnings unusedarg command-line
option.

Unused Variables Select to issue warning messages for local variables that are not referred to
in a function. This setting is equivalent to specifying the warn_unusedvar
pragma and the -warnings unusedvar command-line option.

Missing `return' Statement Select to issue warning messages, if a function that is defined to return a
value has no return statement. This setting is equivalent to specifying the
warn_missingreturn pragma and the -warnings missingreturn
command-line option.

Expression Has No Side Effect Select to issue warning messages if a statement does not change the
program's state. This setting is equivalent to specifying the
warn_no_side_effect pragma and the -warnings unusedexpr command-
line option.

Extra Commas Select to issue a warning messages if a list in an enumeration terminates
with a comma. The compiler ignores terminating commas in enumerations
when compiling source code that conforms to the ISO/IEC 9899-1999 ("C99")
standard. This setting is equivalent to specifying the warn_extracomma
pragma and the -warnings extracomma command-line option.

Empty Declarations Select to issue warning messages if a declaration has no variable name. This
setting is equivalent to specifying the warn_emptydecl pragma and the -
warnings emptydecl command-line option.

Inconsistent `class' / 'struct'
Usage

Select to issue warning messages if the class and struct keywords are used
interchangeably in the definition and declaration of the same identifier in C+
+ source code. This setting is equivalent to specifying the warn_structclass
pragma and the -warnings structclass command-line option.

Include File Capitalization Select to issue warning messages if the name of the file specified in a
#include file directive uses different letter case from a file on disk. This
setting is equivalent to specifying the warn_filenamecaps pragma and the
-warnings filecaps command-line option.

Check System Includes Select to issue warning messages if the name of the file specified in a
#include file directive uses different letter case from a file on disk. This
setting is equivalent to specifying the warn_filenamecaps_system pragma
and the -warnings sysfilecaps command-line option.

Pad Bytes Added Select to issue warning messages when the compiler adjusts the alignment
of components in a data structure. This setting is equivalent to specifying the
warn_padding pragma and the -warnings padding command-line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 61

Table 27: CodeWarrior Build Tool Settings - Warnings (continued)

Option Explanation

Undefined Macro in #if Select to issue warning messages if an undefined macro appears in #if and
#elif directives. This setting is equivalent to specifying the
warn_undefmacro pragma and the -warnings undefmacro command-line
option.

Non-Inlined Functions Select to issue warning messages if a call to a function defined with the
inline, _inline_, or _inline keywords could not be replaced with the
function body. This setting is equivalent to specifying the warn_notinlined
pragma and the -warnings notinlined command-line option.

3.3.1.5.4 Optimization
Use the Optimization panel to control the code optimization settings.

The table below lists and describes the various options available on the Optimization panel.

Table 28: CodeWarrior Build Tool Settings - Optimization Options

Option Explanation

Optimization Level Specifies code optimization options to apply to object code. This setting is
equivalent to specifying the -opt keyword command-line option.

Speed vs. Size Specifies code optimization for speed or size. This setting is equivalent to
specifying the optimize_for_size on or optimize_for_size off
pragmas and -opt speed or -opt size command-line option.

Inlining Specifies inline options. Default settings are:

• Smart - The compiler considers the functions declared with inline.

• Auto Inline - Inlines small functions even if they are not declared with the
inline qualifier.

• Off - Turns off inlining.

This setting is equivalent to specifying the -inline, -inline auto, or -
inline off command-line option.

Bottom-up Inlining Select to instruct the compiler to inline functions from the last function called
to the first function in a chain of function calls. This setting is equivalent to
specifying the inline_bottom_up pragma and -inline bottomup
command-line option.

3.3.1.5.5 Processor
Use the Processor panel to control the processor-dependent code-generation settings.

The table below lists and describes the various options available on the Processor panel.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
62 NXP Semiconductors

Table 29: CodeWarrior Build Tool Settings - Processor Options

Option Explanation

Struct Alignment Specifies structure and array alignment. The default options are:

• PowerPC - Use conventional Power Architecture alignment.
This choice is the default.

• 68K - Use conventional Mac OS® 68K alignment.

• 68K 4-Byte - Use Mac OS® 68K 4-byte alignment.

This setting is equivalent to specifying the -align keyword
command-line option.

Function Alignment Specifies alignment of functions in executable code. The default
alignment is 4. However, at an optimization level 4, the alignment
changes to 16. If you are using -func_align 4 (or none) and if
you are compiling for VLE, then the linker will compress gaps
between VLE functions:

• If those functions are not called by a Classic PPC function

• The function has an alignment greater than 4.

Compression of the gaps will only
happen on files compiled by the
CodeWarrior compiler.

 NOTE

This setting is equivalent to specifying the -func_align
command-line option.

Relax HW IEEE Controls the use of relaxed IEEE floating point operations. This
setting is equivalent to specifying the -relax_ieee command-line
option.

Use Fused Mult-Add/Sub Controls the use of fused multiply-addition instructions. This
setting is equivalent to specifying the -maf on | off command-
line option.

Generate FSEL Instructions Controls the use of FSEL instructions.

Do not turn on this option, if the Power
Architecture processor of your target
platform does not have hardware
floating-point capabilities, that
includes fsel. This option only has an
effect if Relax HW IEEE option or -
relax_ieee command-line option is
also specified. The default is off.

 NOTE

This setting is equivalent to specifying the -gen_fsel command-
line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 63

Table 29: CodeWarrior Build Tool Settings - Processor Options (continued)

Option Explanation

Assume Ordered Compares Controls the assumption of no unordered values in comparisons.
This setting is equivalent to specifying the -ordered-fp-
compares, -no-ordered-fp-compares command-line options.

Vector Support Specifies supported vector options. Default settings are:

• None - Turns off vectorization.

• SPE - Enables the SPE vector support. This option needs to be
enabled when the floating point is set to SPFP or DPFP as both
SPFP and DPFP require support from the SPE vector unit. If the
option is not turned on, the compiler generates a warning and
automatically enables the SPE vector generation.

• AltiVec - Enables the Altivec vector support and generate
AltiVec vectors and related instructions.

This setting is equivalent to specifying the -spe_vector and -
vector keyword command-line options.

Generate VRSAVE Instructions Specifies generation of AltiVec vectors and instructions that use
VRSAVE prologue and epilogue code. This setting is equivalent
to specifying the -vector novrsave, -vector vrsave command-
line options.

AltiVec Structure Moves Controls the use of Altivec instructions to optimize block moves.
This setting is equivalent to specifying the -
noaltivec_move_block, -altivec_move_block command-
line options.

Make Strings ReadOnly Places string constants in a read-only section. This setting is
equivalent to specifying the -readonlystrings command-line
options.

Merges String Constants Specifies how the compiler will place strings of a file. If this option
is selected, the strings of a file will be kept as a pool; otherwise,
they will be placed separately.

This option is enabled only when the
Make Strings ReadOnly option is
selected.

 NOTE

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
64 NXP Semiconductors

Table 29: CodeWarrior Build Tool Settings - Processor Options (continued)

Option Explanation

Pool Data Controls the grouping of similar-sized data objects. Use this option
to reduce the size of executable object code in functions that refer
to many objects of the same size. These similar-sized objects do
not need to be of the same type. The compiler only applies this
option to a function if the function refers to at least 3 similar-sized
objects. The objects must be global or static. At the beginning of
the function, the compiler generates instructions to load the
address of the first similar-sized object. The compiler then uses
this address to generate 1 instruction for each subsequent
reference to other similar-sized objects instead of the usual 2
instructions for loading an object using absolute addressing. This
setting is equivalent to specifying the pool_data pragma and -
pool[data] command-line option.

Use Common Section Moves uninitialized data into a common section. The default is off.
This setting is equivalent to specifying the -common command-line
option.

Use LMW STMW Controls the use of multiple load and store instructions for function
prologues and epilogues. The default is off.

This option is only available for big-
endian processors. This option is not
available for big-endian e500v1 and
e500v2 architectures when vector
and double-precision floating-point
instructions are used.

 NOTE

This setting is equivalent to specifying the -use_lmw_stmw
command-line option.

Inlined Assembler is Volatile Controls whether or not inline assembly statements will be
optimized. This setting is equivalent to specifying the -
volatileasm, -novolatileasm command-line options.

Instruction Scheduling Controls the rearrangement of instructions to reduce the effects
of instruction latency. The default is off. This setting is equivalent
to specifying the -schedule command-line option.

Peephole Optimization Specifies peephole optimization. This setting is equivalent to
specifying the peephole pragma and the -opt peep[hole]
command-line option.

Profiler Information Controls the appearance of calls to a profiler library at the entry
and exit points of each function. The default is off. This setting is
equivalent to specifying the -profile command-line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 65

Table 29: CodeWarrior Build Tool Settings - Processor Options (continued)

Option Explanation

Generate ISEL Instructions (e500/Zen) Controls the use of isel instructions. The default is off.

If the Power Architecture processor of
your target platform does not
implement the Freescale ISEL APU,
this option appears disabled and
cannot be selected.

 NOTE

This setting is equivalent to specifying the -use-isel command-
line option.

Translate PPC Asm to VLE Asm (Zen) Controls VLE code generation for inline assembly statements.

If the Power Architecture processor of
your target platform does not have
the VLE capability, this option
appears disabled and cannot be
selected.

 NOTE

This setting is equivalent to specifying the -ppc_asm_to_vle
command-line option.

3.3.1.5.6 C/C++ Language
Use the C/C++ Language panel to control the compiler language features and some object code storage
features for the current build target.

The table below lists and describes the various options available on the C/C++ Language panel.

Table 30: CodeWarrior Build Tool Settings - C/C++ Language Options

Option Explanation

Force C++ Compilation Translates all C source files as C++ source code. This setting is equivalent
to specifying the cplusplus pragma and -lang c++ command-line option.

ISO C++ Template Parser Enforces the use of ISO/IEC 14882-1998 standard for C++ to translate
templates, and more careful use of the typename and template keywords.
The compiler also follows stricter rules for resolving names during declaration
and instantiation. This setting is equivalent to specifying the
parse_func_templ pragma and -iso_templates command-line option.

Use Instance Manager Reduces compile time by generating any instance of a C++ template (or non-
inlined inline) function only once. This setting is equivalent to specifying the
-instmgr command-line option.

Enable C++ Exceptions Generates executable code for C++ exceptions. Enable this option, if you use
the try, throw, and catch statements specified in the ISO/IEC 14882-1998
C++ standard. Otherwise, disable this setting to generate smaller and faster
code. This setting is equivalent to specifying the -cpp_exceptions
command-line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
66 NXP Semiconductors

Table 30: CodeWarrior Build Tool Settings - C/C++ Language Options (continued)

Option Explanation

Enable RTTI Allows the use of the C++ run-time type information (RTTI) capabilities,
including the dynamic_cast and typeid operators. This setting is equivalent
to specifying the -RTTI command-line option.

Enable C++ `bool' type, `true'
and `false' Constants

Instructs the C++ compiler to recognize the bool type and its true and false
values specified in the ISO/IEC 14882-1998 C++ standard. This setting is
equivalent to specifying the -bool command-line option.

Enable wchar_t Support Instructs the C++ compiler to recognize the wchar_t data type specified in the
ISO/IEC 14882-1998 C++ standard. This setting is equivalent to specifying
the -wchar_t command-line option.

EC++ Compatibility Mode Verifies C++ source code files for Embedded C++ source code. This setting
is equivalent to specifying the -dialect ec++ command-line option.

ANSI Strict Recognizes source code that conforms to the ISO/IEC 9899-1990 standard
for C. This setting is equivalent to specifying the -ansi strict command-line
option.

ANSI Keywords Only Generates an error message for all non-standard keywords.

Enable this setting only if the source code strictly
adheres to the ISO standard.

 NOTE

This setting is equivalent to specifying the -stdkeywords command-line
option.

Expand Trigraphs Specifies compiler to recognize trigraph sequences. clear this option to use
many common characters, that look like trigraph sequences, without
including escape characters. This setting is equivalent to specifying the -
trigraphs command-line option.

Legacy for-scoping Generates an error message when the compiler encounters a variable scope
usage that the ISO/IEC 14882-1998 C++ standard disallows, but is allowed
in the C++ language specified in The Annotated C++ Reference Manual
("ARM"). This setting is equivalent to specifying the -for_scoping
command-line option.

Require Prototypes Specifies compiler to enforce the requirement of function prototypes.

The compiler generates an error message if you
define a previously referenced function that does
not have a prototype. The compiler generates a
warning message, if you define the function before
it is referenced but do not give it a prototype.

 NOTE

This setting is equivalent to specifying the -requireprotos command-line
option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 67

Table 30: CodeWarrior Build Tool Settings - C/C++ Language Options (continued)

Option Explanation

Enable C99 Extensions Specifies compiler to recognize ISO/IEC 9899-1999 ("C99") language
features. This setting is equivalent to specifying the -dialect c99
command-line option.

Enable GCC Extensions Specifies compiler to recognize language features of the GNU Compiler
Collection (GCC) C compiler that are supported by CodeWarrior compilers.
This setting is equivalent to specifying the -gcc_extensions command-line
option.

Enum Always Int Specifies compiler to use signed integers to represent enumerated
constants. This setting is equivalent to specifying the -enum command-line
option.

Use Unsigned Chars Specifies compiler to treat char declarations as unsigned char declarations.
This setting is equivalent to specifying the -char unsigned command-line
option.

Pool Strings Specifies compiler to collect all string constants into a single data section in
the object code, it generates. This setting is equivalent to specifying the -
strings pool command-line option.

Reuse Specifies compiler to store only one copy of identical string literals. This
setting is equivalent to specifying the -string reuse command-line option.

IPA Specifies the Interprocedural Analysis (IPA) policy. The default values are:

• Off - No interprocedural analysis, but still performs function-level
optimization. Equivalent to the "no deferred inlining" compilation policy of
older compilers.

• File - Completely parse each translation unit before generating any code
or data. Equivalent to the "deferred inlining" option of older compilers. Also
performs an early dead code and dead data analysis in this mode. Objects
with unreferenced internal linkages will be dead-stripped in the compiler
rather than in the linker.

This setting is equivalent to specifying the -ipa command-line option.

Other flags Specify compiler flags.

3.3.1.6 PowerPC Assembler
Use the PowerPC Assembler panel to determine the format used for the assembly source files and the code
generated by the PowerPC assembler.

The table below lists and describes the various options available on the PowerPC Assembler panel.

Table 31: CodeWarrior Build Tool Settings - PowerPC Assembler Options

Option Explanation

Command Shows the location of the assembler executable file.

All Options Shows the actual command line the assembler will be called with.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
68 NXP Semiconductors

Table 31: CodeWarrior Build Tool Settings - PowerPC Assembler Options (continued)

Option Explanation

Expert settings:

Command line pattern

Shows the expert settings command line parameters.

This section contains the following subsections:

• Input on page 69

• General on page 70

3.3.1.6.1 Input
Use the Input panel to specify the path and search order of the #include files.

The table below lists and describes the various options available on the Input panel.

Table 32: CodeWarrior Build Tool Settings - Input Options

Option Explanation

Always Search user Paths Performs a search of both the user and system paths, treating #include
statements of the form #include <xyz>, the same as the form #include
"xyz". This setting is equivalent to specifying the -nosyspath command-line
option.

User Path (-i) Use this panel to specify multiple user paths and the order in which to search
those paths. The table that follows lists and describes the toolbar buttons that
help work with the file search paths. This setting is equivalent to specifying
the -i command-line option.

User Recursive Path (-ir) Appends a recursive access path to the current User Path list. The table that
follows lists and describes the toolbar buttons that help work with the file
search paths. This setting is equivalent to specifying the -ir path command-
line option.

System Path (-I- -I) Changes the build target's search order of access paths to start with the
system paths list. The table that follows lists and describes the toolbar buttons
that help work with the file search paths. This setting is equivalent to
specifying the -I- -I path command-line option.

System Recursive Path (-I- -ir) Appends a recursive access path to the current System Path list. The table
that follows lists and describes the toolbar buttons that help work with the file
search paths. This setting is equivalent to specifying the -I- -ir command-
line option.

The table below lists and describes the toolbar buttons that help work with the Input panel.

Table 33: CodeWarrior Build Tool Settings - Input Toolbar Buttons

Button Tooltip Description

Add Click to open the Add file path or the Add directory path dialog and
create a file or directory path.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 69

Table 33: CodeWarrior Build Tool Settings - Input Toolbar Buttons (continued)

Button Tooltip Description

Delete Click to delete the selected file or directory. To confirm deletion,
click Yes in the Confirm Delete dialog.

Edit Click to open the Edit file path or Edit directory path dialog and
update the selected file or directory.

Move up Click to move the selected file search path one position higher in
the list.

Move down Click to move the selected file search path one position lower in
the list.

3.3.1.6.2 General
Use the General panel to specify the PowerPC assembler options that are specific to the Power Architecture
software development.

The table below lists and describes the various options available on the General panel.

Table 34: CodeWarrior Build Tool Settings - General Options

Option Explanation

Labels Must End With ':' Specifies whether labels must end with a colon (:). Deselect this option to
omit the ending colon from label names that start in the first column. This
setting is equivalent to specifying the .option colon off | on | reset
assembler control option.

Directives Begin With '.' Controls period usage for directives. Select this option to ensure that each
directive must start with a period. This setting is equivalent to specifying
the .option period off | on | reset assembler control option.

Case Sensitive Identifier Specifies case sensitivity for identifiers. This setting is equivalent to
specifying the .option case off | on | reset assembler control option.

Allow Space In Operand Field Controls spaces in operand fields. Deselect this option, if a space in an
operand field starts with a comment. This setting is equivalent to specifying
the .option space off | on | reset assembler control option.

GNU Compatible Syntax CodeWarrior Assembler supports several GNU-format assembly language
extensions. Select this option to control GNU's assembler format conflicts
with that of the CodeWarrior assembler.

Generate Listing File Controls generation of a listing file that includes files source, line numbers,
relocation information, and macro expansions. Deselect this option, if no
listing file is specified.

Other Flags Specify assembler flags.

3.3.1.7 PowerPC Disassembler
Use the PowerPC Disassembler panel to specify the command, options, and expert settings related to the
PowerPC disassembler.

The table below lists and describes the various options available on the PowerPC Disassembler panel.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
70 NXP Semiconductors

Table 35: CodeWarrior Build Tool Settings - PowerPC Disassembler Options

Option Explanation

Command Shows the location of the disassembler executable file.

All options Shows the actual command line the disassembler will be called with.

Expert settings:

Command line pattern

Shows the expert settings command line parameters.

This section contains the following subsection:

• Disassembler Settings on page 71

3.3.1.7.1 Disassembler Settings
Use the Disassembler Settings panel to specify the PowerPC disassembler options that are specific to the
Power Architecture software development.

The table below lists and describes the various options available on the Disassembler panel.

Table 36: CodeWarrior Build Tool Settings - Disassembler Options

Option Explanation

Show Headers Controls display of object header information This setting is
equivalent to specifying the -show headers | noheaders
command-line option.

Show Symbol and String Tables Controls display of character string and symbol tables. This
setting is equivalent to specifying the -show tables | notables
command-line option.

Show Core Modules Controls display of executable code sections. This setting is
equivalent to specifying the -show code | nocode command-line
option.

Show Extended Mnemonics Controls display of extended mnemonics. This setting is
equivalent to specifying the -show extended | noextended
command-line option.

Show Source Code Interleaves the code disassembly with C or C++ source code. This
setting is equivalent to specifying the -show source | nosource
command-line option.

Only Show Operands and mnemonics Controls display of address and op-code values. This setting is
equivalent to specifying the -show binary | nobinary
command-line option.

Show Data Modules Controls display of data sections. This setting is equivalent to
specifying the -show data | nodata command-line option.

Disassemble Exception Tables Controls display of C++ exception tables. This setting is
equivalent to specifying the -show xtab[les] | noxtab[les]
or -show exceptions | noexceptions command-line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 71

Table 36: CodeWarrior Build Tool Settings - Disassembler Options (continued)

Option Explanation

Show DWARF Info Controls display of debugging information. This setting is
equivalent to specifying the -show debug | nodebug or -show
dwarf | nodwarf command-line option.

Verbose Controls display of extra information. This setting is
equivalent to specifying the -show detail | nodetail
command-line option.

3.3.1.8 PowerPC Preprocessor
Use the PowerPC Preprocessor panel to specify the command, options, and expert settings related to the
PowerPC preprocessor.

The table below lists and describes the various options available on the PowerPC Preprocessor panel.

Table 37: CodeWarrior Build Tool Settings - PowerPC Preprocessor Options

Option Explanation

Command Shows the location of the preprocessor executable file

All options Shows the actual command line the preprocessor will be called with

Expert settings:

Command line pattern

Shows the expert settings command line parameters

This section contains the following subsection:

• Preprocessor Settings on page 72

3.3.1.8.1 Preprocessor Settings
Use the Preprocessor Settings panel to specify the PowerPC preprocessor options that are specific to the
Power Architecture software development.

The table below lists and describes the various options available on the Preprocessor panel.

Table 38: CodeWarrior Build Tool Settings - Preprocessor Options

Option Explanation

Mode Specifies the tool to preprocess source files. This setting is equivalent to
specifying the -E command-line option.

Emit file change Controls generation of file and line breaks. This setting is equivalent to
specifying the -ppopt [no]break command-line option.

Emit #pragmas Controls generation of #pragma directives. This setting is equivalent to
specifying the -ppopt [no]pragma command-line option.

Show full path Controls generation of full paths or just the base file name. This setting is
equivalent to specifying the -ppopt [no]full[path] command-line option.

Keep comment Controls generation of comments. This setting is equivalent to specifying the
-ppopt [no]comment command-line option.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
72 NXP Semiconductors

Table 38: CodeWarrior Build Tool Settings - Preprocessor Options (continued)

Option Explanation

Use #line Controls generation of #line directives. This setting is equivalent to
specifying the -ppopt [no]line command-line option.

Keep whitespace Controls generation of white spaces. This setting is equivalent to specifying
the -ppopt [no]space command-line option.

3.3.2 GCC Build Tool Settings
GNU compiler collection (GCC) build tools are open source tools that you can use in your CodeWarrior
projects.

In the current installation, every core or target has a separate GCC build tool attached to it. For example, projects
created for e500mc bareboard use powerpc-eabi toolchain; whereas, projects created for e5500 or e6500
(32/64) bareboard use powerpc-aeabi e5500 or powerpc-aeabi e6500 toolchain.

For more information about the GCC build tools, see documents available in the
<CWInstallDir>\Cross_Tools\gcc-<version>-<target>\powerpc-
<[eabi]/[eabispe]/[aeabi]/[linux/libc]>\share\docs\pdf folder.

 NOTE

For this version of CodeWarrior Development Studio for Power Architecture, the default version of GCC
PowerPC toolchain (bareboard and Linux) is GCC v4.9.2 (rev1267).

By default, GCC v4.9.x generates DWARF4. To generate an older DWARF version
(DWARF2/DWARF3), use -g with -gdwarf-2 or -gdwarf-3.

 NOTE

For older versions of GCC PowerPC toolchain, such as GCC v4.8.2 (rev963), or for toolchains not available in
the current release by default, install the corresponding service pack by performing these steps:

1. Select Help > Install New Software from the CodeWarrior IDE menu bar.

The Install wizard launches and the Available Software page appears.

2. Select FSL PA Build Tools from the Work with drop-down list.

A list of PA GCC service packs is displayed in the pane below the Work with drop-down list.

3. Select the appropriate service pack, as shown in the figure below.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 73

Figure 14: Selecting a service pack

4. Click Next and complete the remaining wizard steps.

The service pack, along with the new toolchain, will be installed on your computer.

For more information on service packs, see the Service Pack Updater Quickstart
available in the <CWInstallDir>\PA\ folder.

 NOTE

After installing the service pack, you need to set the new toolchain as the default toolchain to build your project
with the new toolchain. To set the new toolchain as the default toolchain and to build the project, use these steps:

1. Select Project > Properties from the CodeWarrior IDE menu bar.

The Properties dialog appears.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
74 NXP Semiconductors

2. In the left pane, select C/C++ Build > Settings.

3. In the right pane, select the Build Tool Versions tab.

4. Select the required toolchain version and click Set As Default, as shown in the figure below.
Figure 15: Setting a toolchain as default toolchain

5. Click OK.

6. Select Project > Build Project from the CodeWarrior IDE menu bar.

The project is built using the new toolchain.

The table below lists the GCC build tool settings specific to developing software for Power Architecture.

Table 39: GCC Build Tool Settings for Power Architecture

Build Tool Build Properties Panels

Architecture on page 76

PowerPC Linker on page 76 General on page 77

Libraries on page 77

Miscellaneous on page 78

Shared Library Settings on page 79

PowerPC Environment on page 79

PowerPC Compiler on page 80 Preprocessor on page 80

Symbols on page 81

Includes on page 82

Optimization on page 83

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 75

Table 39: GCC Build Tool Settings for Power Architecture (continued)

Build Tool Build Properties Panels

Debugging on page 84

Warnings on page 85

Miscellaneous on page 86

PowerPC Assembler on page 86 General on page 87

PowerPC Preprocessor on page 87 Preprocessor Settings on page 88

PowerPC Disassembler on page 88 Disassembler Settings on page 89

The CodeWarrior build tools listed in the above table share some properties panels, such as Include Search
Paths. Properties specified in these panels apply to the selected build tool on the Tool Settings page of the
Properties for <project> window.

3.3.2.1 Architecture
Use the Architecture panel to specify the Power Architecture processor family for the build.

The properties specified on this page are also used by the build tools (compiler, linker, and assembler).

The table below lists and describes the options available on the Architecture panel.

Table 40: Tool Settings - Architecture Options

Option Explanation

Architecture Specifies which architecture variant is used by the target.

Target Mode Specifies the target environment (32-bit/64-bit mode) on which your
generated code will run. This option takes the following values:

• 32-bit: Enables 32-bit code generation

• 64-bit: Enables 64-bit code generation

3.3.2.2 PowerPC Linker
Use the PowerPC Linker panel to specify the GCC linker options that are specific to Power Architecture
software development.

The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.

 NOTE

The table below lists and describes the various options available on the PowerPC Linker panel.

Table 41: Tool Settings - PowerPC Linker Options

Option Description

Command Specifies the PowerPC GCC command line driver or linker required to build
the project

All options Shows the actual command line the linker will be called with

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
76 NXP Semiconductors

Table 41: Tool Settings - PowerPC Linker Options (continued)

Option Description

Expert settings:

Command line pattern

Shows the expert settings command line parameters

This section contains the following subsections:

• General on page 77

• Libraries on page 77

• Miscellaneous on page 78

• Shared Library Settings on page 79

• PowerPC Environment on page 79

3.3.2.2.1 General
Use the General panel to specify the general linker behavior.

The following table lists and describes the various options available on the General panel.

Table 42: Tool Settings - General Options

Option Description

Do not use standard start files (-
nostartfiles)

Specifies linker to not to use the standard system startup files
when linking. The standard system libraries are used normally,
unless -nostdlib or -nodefaultlibs command-line options are
used. This setting is equivalent to specifying the -nostartfiles
command-line option.

Do not use default libraries (-
nodefaultlibraries)

Specifies linker to not to use the standard system libraries when
linking. Only the libraries you specify will be passed to the linker.
Options specifying linkage of the system libraries, such as -
static-libgcc or -shared-libgcc, will be ignored. This setting
is equivalent to specifying the -nodefaultlibraries command-
line option.

No startup or default libs (-nostdlib) Specifies linker to not to use the standard system startup files or
libraries when linking. This setting is equivalent to specifying the
-nostdlib command-line option.

Omit all symbol information (-s) Specifies linker to remove all symbol table and relocation
information from the executable. This setting is equivalent to
specifying the -s command-line option.

No shared libraries (-static) Specifies linker to prevent linking with the shared libraries. This
setting is equivalent to specifying the -static command-line
option.

3.3.2.2.2 Libraries
Use the Libraries panel to specify the libraries and their search paths if the libraries are available in non-
standard location.

You can specify multiple additional libraries and library search paths. The following table lists and describes the
various options available on the Libraries panel.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 77

Table 43: Tool Settings - Libraries Options

Option Explanation

Libraries Lists the libraries that are to be passed to the linker while building the project.
The Linker uses the libraries in the same order as shown in this list. The table
that follows lists and describes the toolbar buttons that help work with the
library file.

Library search path Use this panel to specify multiple paths that the Power Architecture linker
searches for libraries. The linker searches the paths in the order shown in
this list. The table that follows lists and describes the toolbar buttons that help
work with the library search paths.

The table below lists and describes the toolbar buttons that help work with the libraries.

Table 44: Tool Settings - Libraries Toolbar Buttons

Button Tooltip Description

Add Click to open the Add file path or the Add directory path dialog and
add a file or directory path.

Delete Click to delete the selected file or directory. To confirm deletion,
click Yesin the Confirm Delete dialog.

Edit Click to open the Edit file name or Edit directory path dialog and
update the selected file or directory.

Move up Click to re-order the selected file or search path one position
higher in the list.

Move down Click to re-order the selected file or search path one position lower
in the list.

3.3.2.2.3 Miscellaneous
Use the Miscellaneous panel to specify linker behavior.

The following table lists and describes the various options available on the Miscellaneous panel.

Table 45: Tool Settings - MiscellaneousOptions

Option Explanation

Linker flags Specify flags to be passed to the linker.

Other options Enter additional linker command-line options. The IDE passes these options
to the linker shell during the link phase.

The IDE passes command-line options to the shell
exactly as you enter them in this text box.

 NOTE

Other objects Add other objects or libraries that needs to be passed tothe linker. These
objects or libraries will be linked at the end.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
78 NXP Semiconductors

3.3.2.2.4 Shared Library Settings
Use the Shared Library Settings panel to specify the path to the shared libraries.

You can specify multiple additional shared libraries and library search paths.

The options provided on the Shared Library Settings panel are only applicable to Linux
projects.

 NOTE

The table below lists and defines the various options available on the Shared Libraries Settings panel.

Table 46: Tool Settings - Shared Libraries Settings Options

Option Explanation

Shared (-shared) Controls generation of a shared object which can be linked with
other objects to form an executable.

This setting is equivalent to specifying the -shared command-line
option.

Shared object name (-WI, -soname=) Specifies the internal DT_SONAME field to the specified name, when
creating a shared object.

When an executable is linked with a shared object which has a
DT_SONAME field and the executable is run, the dynamic linker will
attempt to load the shared object specified by the DT_SONAME field,
rather than the using the file name given to the linker.

Import Library name (-WI,--out-implib=) Creates a file containing an import library corresponding to the
shared object generated by the linker.

DEF file name (-WI, --output-def=) Creates a file containing a DEF file corresponding to the shared
object generated by the linker.

3.3.2.2.5 PowerPC Environment
Use the PowerPC Environment panel to specify the configuration files used by the linker.

The following table lists and describes the various options available on the PowerPC Environment panel.

Table 47: Tool Settings - PowerPC Environment Options

Option Explanation

Map File (-Xlinker -Map) Prints a link map to the map specified map file. The specified file name must
have a .map extension.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 79

Table 47: Tool Settings - PowerPC Environment Options (continued)

Option Explanation

LCF File Specifies the path of the linker-command file that the linker reads to
determine how to build the output file. Alternatively, click Browse, then use
the resulting dialog to specify the linker command file.

The specified linker script replaces the default
linker script, so it must specify everything
necessary to describe the output file.

 NOTE

This setting is equivalent to specifying the -lcf filename command-line
option.

3.3.2.3 PowerPC Compiler
Use the PowerPC Compiler panel to specify the compiler options that are specific to Power Architecture
software development.

The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.

 NOTE

The table below lists and describes the various options available on the PowerPC Compiler panel.

Table 48: Tool Settings - PowerPC Compiler Options

Option Description

Command Specifies the PowerPC GCC command line driver or compiler required to
build the source files in the project.

All options Specifies the actual command line the compiler will be called with.

Expert settings:

Command line pattern

Specifies the expert settings command line parameters.

This section contains the following subsections:

• Preprocessor on page 80

• Symbols on page 81

• Includes on page 82

• Optimization on page 83

• Debugging on page 84

• Warnings on page 85

• Miscellaneous on page 86

3.3.2.3.1 Preprocessor
Use the Preprocessor panel to specify preprocessor behavior.

You can specify whether to search system directories or preprocess only based on the options available in this
panel.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
80 NXP Semiconductors

The table below lists and describes the various options available on the Preprocessor panel.

Table 49: Tool Settings - Preprocessor Options

Options Explanation

Do not search system directories (--
nostdinc)

Specifies compiler to not to search the standard system
directories for header files. Only the directories specified by the
user with -I option (and the directory of the current file, if
appropriate) are searched. This setting is equivalent to specifying
the -nostdinc command-line option.

Preprocess only (-E) Specifies command-line tool to preprocess the source files and
not to run the compiler. This setting is equivalent to specifying the
-E command-line option.

3.3.2.3.2 Symbols
Use the Symbols panel to control how the compiler structures the generated object code.

The table below lists and describes the various options available on the Symbols options.

Table 50: Tool Settings - Symbols Options

Option Explanation

Defined symbols (-D) Specifies substitution strings that the assembler applies to all the assembly-
language modules in the build target.

Enter just the string portion of a substitution string.
The IDE prepends the -d token to each string that
you enter. For example, entering opt1 x
produces this result on the command line: -dopt1
x

 NOTE

This option is similar to the DEFINE directive, but
applies to all assembly-language modules in a
build target.

 NOTE

Use these toolbar buttons to work with the panel:

• Add - Click to specify the undefined symbols string.

• Delete - Click to remove the selected string.

• Edit - Click to edit an existing string.

• Move up - Click to move the selected string one position higher in the list.

• Move down - Click to move the selected string one position lower in the list.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 81

Table 50: Tool Settings - Symbols Options (continued)

Option Explanation

Undefined symbols (-U) Undefines the substitution strings you specify in this panel. Use these toolbar
buttons to work with the panel:

• Add - Click to specify the undefined symbols string.

• Delete - Click to remove the selected string.

• Edit - Click to edit an existing string.

• Move up - Click to move the selected string one position higher in the list.

• Move down - Click to move the selected string one position lower in the list.

3.3.2.3.3 Includes
Use the Includes panel to specify paths to search for the #include files.

The IDE displays an error message, if a header file is in a different directory from the
referencing source file. In some instances, the IDE also displays an error message, if a
header file is in the same directory as the referencing source file. For example, if you
see the message Could not open source file myfile.h, you must add the
path for myfile.h to this panel.

 NOTE

The table below lists and describes the various options available on the Includes panel.

Table 51: Tool Settings - Includes Options

Option Explanation

Include paths (-I) Adds the directory to the list of directories to be searched for header files.
Directories named by -I are searched before the standard system include
directories. If the directory is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and
the special treatment of system headers are not defeated . If the directory
name begins with =, then the = will be replaced by the sysroot prefix. Use
these toolbar buttons to work with the Include paths (-I) panel:

• Add - Click to open the Add directory path dialog and specify the directory
search path.

• Delete - Click to delete the selected directory search path. To confirm
deletion, click Yes in the Confirm Delete dialog.

• Edit - Click to open the Edit directory path dialog and update the selected
directory search path.

• Move up - Click to re-order the selected directory search path one position
higher in the list.

• Move down - Click to re-order the selected directory search path one
position lower in the list.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
82 NXP Semiconductors

Table 51: Tool Settings - Includes Options (continued)

Option Explanation

Include files (-include) Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor's
working directory instead of the directory containing the main source file. If
not found, the preprocessor's working directory is searched for in the
remainder of the #include "..." search chain as normal. If multiple -
include options are specified, the files are included in the order they appear
on the command line. Use these toolbar buttons to work with the Include files
(-include) panel:

• Add - Click to open the Add file path dialog and specify the file.

• Delete - Click to delete the selected file. To confirm deletion, click Yes in
the Confirm Delete dialog.

• Edit - Click to open the Edit directory path dialog and update the selected
file.

• Move up - Click to re-order the selected file one position higher in the list.

• Move down - Click to re-order the selected file one position lower in the list.

3.3.2.3.4 Optimization
Use the Optimization panel to control compiler optimizations.

Compiler optimization can be applied in either global or non-global optimization mode. You can apply global
optimization at the end of the development cycle, after compiling and optimizing all source files individually or
in groups.

The table below lists and describes the various options available on the Optimization panel.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 83

Table 52: Tool Settings - Optimization Options

Option Explanation

Optimization Level Specifies the optimization that you want the compiler to apply to the
generated object code. The default options are:

• None(-O0) - Disable optimizations. Reduce compilation time and make
debugging produce the expected results. This is the default.This setting is
equivalent to specifying the -O0 command-line option.

• Optimize (-O1) - Optimizing compilation takes more time, and a lot more
memory for a large function. With -O/-O1, the compiler tries to reduce code
size and execution time, without performing any optimizations that take a
great deal of compilation time. This setting is equivalent to specifying the
-O1 command-line option.

• Optimize more(-O2) - Optimize even more. GCC performs nearly all
supported optimizations that do not involve a space-speed tradeoff. As
compared to -O/O1, this option increases both compilation time and the
performance of the generated code. This setting is equivalent to specifying
the -O2 command-line option.

• Optimize most(-O3) - Turns on all optimizations specified by -O2 and also
turns on the -finline-functions, -funswitch-loops, -fpredictive-
commoning, -fgcse-after-reload and -ftree-vectorize options. At
this optimization level, the compiler generates code that is usually faster
than the code generated from level 2 optimizations.This setting is
equivalent to specifying the -O3 command-line option.

• Optimize for size(-Os) - Optimize for size. -Os enables all -O2 optimizations
that do not typically increase code size. It also performs further
optimizations designed to reduce code size.This setting is equivalent to
specifying the -Os command-line option.

Other optimization flags Specifies individual optimization flag that can be turned ON/OFF based on
the user requirements.

3.3.2.3.5 Debugging
Use the Debugging panel to set the debugging information.

The following table lists and describes the various options available on the Debugging panel.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
84 NXP Semiconductors

Table 53: Tool Settings - Debugging Options

Option Explanation

Debug Level Specify the debug levels for the compiler. the default options are:

• None - No Debug level.

• Minimal (-g1) - Produces minimal information, enough for making
backtraces in parts of the program that you don't plan to debug. This
includes descriptions of functions and external variables, but no information
about local variables and no line numbers.

• Default (-g2) same as (-g) - The compiler generates DWARF 2.0
conforming debugging information.

• Maximum (-g3) - The compiler provides maximum debugging support. Also
includes extra information, such as all the macro definitions present in the
program.

Other debugging flags Specify the other debugging flags that need to be passed with the compiler

Generate prof information (-p) Generate extra code to write profile information suitable for the analysis
program prof. You must use this option while compiling and linking the
source files.

Generate gprof information (-
pg)

Generate extra code to write profile information suitable for the analysis
program gprof. You must use this option while compiling and linking the
source files.

3.3.2.3.6 Warnings
Use the Warnings panel to control how the compiler reports the error and warning messages.

The following table lists and describes the various options available on the Warnings panel.

Table 54: Tool settings - Warnings Options

Option Explanation

Check syntax only (-fsyntax-only) Check the code for syntax errors, but do not do anything beyond
that.

Pedantic (-pedantic) Select to issue all the mandatory diagnostics listed in the C
standard. Some of them are left out by default, since they trigger
frequently on harmless code.

Pedantic warnings as errors (-pedantic-
errors)

Select to issue all the mandatory diagnostics, and make all
mandatory diagnostics into errors. This includes mandatory
diagnostics that GCC issues without -pedantic but treats as
warnings.

Inhibit all warnings (-w) Select to suppress all warnings, including those which GNU CPP
issues by default.

Table continues on the next page...

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 85

Table 54: Tool settings - Warnings Options (continued)

Option Explanation

All warnings (-Wall) Select to turn on all optional warnings which are desirable for
normal code. At present this is -Wcomment, -Wtrigraphs, -
Wmultichar and a warning about integer promotion causing a
change of sign in #if expressions.

Many of the preprocessor's warnings
are on by default and have no options
to control them.

 NOTE

Warnings as errors (-Werror) Select to make all warnings into hard errors. Source code which
triggers warnings will be rejected.

3.3.2.3.7 Miscellaneous
Use the Miscellaneous panel to specify compiler options.

The following table lists and describes the various options available on the Miscellaneous panel.

Table 55: Tool Settings - Miscellaneous Options

Option Explanation

Other flags Specify the compiler flags.

Verbose (-v) Select to print on console the commands executed to run the
stages of compilation. Also print the version number of the
compiler driver program, the preprocessor and the compiler
proper.

Support ANSI programs (-ansi) Compiler strictly conforms to ANSI standard. In C mode, this is
equivalent to -std=c89. In C++ mode, it is equivalent to -std=c+
+98.

Position Independent Code (-fPIC) If supported for the target machine, emits position-independent
code, which is suitable for dynamic linking and avoids any limit on
the size of the global offset table.

Other Assembler options (-Xassembler
[option])

Allows you to make GCC pass an option to the assembler. It is
generally used to supply system-specific assembler options that
are not recognized by GCC. To supply an option that takes an
argument, use -Xassembler twice, first for the option and then for
the argument.

3.3.2.4 PowerPC Assembler
Use PowerPC Assembler panel to specify the command, options, and expert settings for the build tool
assembler.

The table below lists and describes the various options available on the PowerPC Assembler panel.

The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.

 NOTE

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
86 NXP Semiconductors

Table 56: Tool Settings - PowerPC Assembler Options

Option Description

Command Specifies the PowerPC GCC command line Assembler required to build the
assembly files in the project.

All options Shows the actual command line the assembler will be called with.

Expert settings:

Command line pattern

Shows the expert settings command line parameters.

This section contains the following subsection:

• General on page 87

3.3.2.4.1 General
Use the General panel to specify the assembler behavior.

The following table lists and describes the various options available on the General panel.

Table 57: Tool Settings - General

Option Explanation

Assembler flags Specify the flags that need to be passed with the assembler.

Include paths (-I) Add a path to the list of directories, assembler searches for files specified
in .include directives. -I can be used multiple times as required to include
a variety of paths. The current working directory is always searched first;
followed by any -I directories, in the order they were specified (left to right)
on the command line. Use these toolbar buttons to work with the Include
paths (-I) panel:

• Add - Click to open the Add directory path dialog and specify the file search
path.

• Delete - Click to delete the selected file search path. To confirm deletion,
click Yes in the Confirm Delete dialog.

• Edit - Click to open the Edit directory path dialog and update the selected
object file search path.

• Move up - Click to re-order the selected file search path one position higher
in the list.

• Move down - Click to re-order the selected file search path one position
lower in the list.

Supress warnings (-W) Supresses warning messages.

Announce version (-v) Prints the assembler version.

3.3.2.5 PowerPC Preprocessor
Use the PowerPC Preprocessor panel to specify specify the command, options, and expert settings for the
preprocessor.

The table below lists and describes the various options available on the PowerPC Preprocessor panel.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 87

The list of tools presented on the Tool Settings page can differ, based upon the toolchain
used by the project.

 NOTE

Table 58: Tool Settings - PowerPC Preprocessor Options

Option Explanation

Command Specifies the PowerPC GCC command line Pre-processor required to pre-
process the source files.

All options Shows the actual command line the preprocessor will be called with.

Expert settings:

Command line pattern

Shows the expert settings command line parameters.

This section contains the following subsection:

• Preprocessor Settings on page 88

3.3.2.5.1 Preprocessor Settings
Use the Preprocessor Settings panel to specify preprocessor behavior.

The following table lists and describes the various options available on the Preprocessor Settings panel.

Table 59: Tool Settings - Preprocessor Settings Options

Option Explanation

Handle Directives Only When preprocessing, handle directives, but do not expand macros. This
setting is equivalent to specifying the -fdirectives-only command-line
option.

Print Header File Names Select to print the name of each header file used. This setting is equivalent
to specifying the -H command-line option.

3.3.2.6 PowerPC Disassembler
Use the PowerPC Disassembler panel to specify the command, options, and expert settings for the Power
ELF disassembler.

The table below lists and describes the various options available on the PowerPC Disassembler panel.

Table 60: Tool Settings - PowerPC Disassembler Options

Option Explanation

Command Specifies the PowerPC GCC command line disassembler required to
disassemble the generated object code.

All options Shows the actual command line the disassembler will be called with.

Expert settings:

Command line pattern

Shows the expert settings command line parameters.

This section contains the following subsection:

• Disassembler Settings on page 89

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
88 NXP Semiconductors

3.3.2.6.1 Disassembler Settings
Use the Disassembler Settings panel to specify or modify the existing settings for the disassembler.

The following table lists and describes the various options available on the Disassembler Settings panel.

Table 61: Tool Settings - Disassembler Settings Options

Option Explanation

Disassemble All Section Content (including debug
information)

Disassembles the content of all sections, not just those
expected to contain instructions.

Disassemble Executable Section Content Disassembles all executable content and send output
to a file.

Intermix Source Code With Disassembly Intermixes source code with disassembly.

Display All Header Content Displays the contents of all headers.

Display Archive Header Information Displays archive header information.

Display Overall File Header Content Displays the contents of the overall file header.

Display Object Format Specific File Header Contents Displays the file header contents and object format

Display Section Header Content Displays the section header of the file.

Display Full Section Content Displays the full section of the file.

Display Debug Information Displays debug information in the object file.

Display Debug Information Using ctag Style Displays debug information using the ctags style.

Display STABS Information Displays any STABS information in the file, in raw
form.

Display DWARF Information Displays any DWARF information in the file.

Display Symbol Table Content Displays the contents of the symbol tables.

Display Dynamic Symbol Table Content Displays the contents of the dynamic symbol table.

Display Relocation Entries Displays the relocation entries in the file.

Display Dynamic Relocation Entries Displays the dynamic relocation entries in the file.

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 89

Build Properties
Build Properties for Power Architecture

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
90 NXP Semiconductors

Chapter 4
Debug Configurations
A CodeWarrior project can have multiple associated debug configurations. A debug configuration is a named
collection of settings that the CodeWarrior tools use.

Debug configurations let you specify settings, such as:

• The files that belong to the debug configuration

• Behavior of the debugger and the related debugging tools

This chapter explains:

• Using Debug Configurations Dialog Box on page 91

• Customizing Debug Configurations on page 118

• Reverting Debug Configuration Settings on page 120

4.1 Using Debug Configurations Dialog Box
The Debug Configurations dialog allows you to specify debugger-related settings for your CodeWarrior
project.

As you modify a launch configuration's debugger settings, you create pending, or
unsaved, changes to that launch configuration. To save the pending changes, you must
click the Apply button of the Debug Configurations dialog, or click the Close button and
then the Yes button.

 NOTE

Table 62: Debug Configuration Tabs

Main on page 92

Arguments on page 97

Debugger on page 98 Debug on page 99

EPPC Exceptions on page 101

Download on page 102

PIC on page 104

System Call Services on page 105

Other Executables on page 107

Symbolics on page 108

OS Awareness on page 110

Trace and Profile on page 113

Source on page 114

Environment on page 116

Common on page 117

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 91

This section contains the following subsections:

4.1.1 Main
Use this tab to specify the project and the application you want to run or debug.

You can also specify a remote system configuration on this tab.

The remote system configuration is separated into connection and system configurations allowing you to define
a single system configuration that can be referred to by multiple connection configurations. The launch
configurations refer to a connection configuration, which in turn refers to a system configuration.

The options displayed on the Main tab vary depending on the selected debug session
type.

 NOTE

The following figure shows the Main tab.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
92 NXP Semiconductors

Figure 16: Debug Configurations-Main Tab

The table below describes the various options available on the Main page.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 93

Table 63: Main Tab Options

Option Description

Debug session type Specifies the options to initiate a debug session using pre-configured debug
configurations. The options include:

• Download - Resets the target if the debug configuration specifies the action.
Further, the command stops the target, (optionally) runs an initialization
script, downloads the specified ELF file, and modifies the program
counter(PC).

• Attach - Assumes that code is already running on the board and therefore
does not run a target initialization file. The state of the running program is
undisturbed. The debugger loads symbolic debugging information for the
current build target's executable. The result is that you have the same
source-level debugging facilities you have in a normal debug session (the
ability to view source code and variables, and so on). The function does
not reset the target, even if the launch configuration specifies this action.
Further, the command loads symbolics, does not stop the target, run an
initialization script, download an ELF file, or modify the program counter
(PC).

The debugger does not support restarting
debugging sessions that you start by attaching the
debugger to a process.

 NOTE

• Connect - Runs the target initialization file specified in the RSE
configuration to set up the board before connecting to it. The Connect
debug session type does not load any symbolic debugging information for
the current build target's executable thereby, denying access to source-
level debugging and variable display. The Connect command resets the
target if the launch configuration specifies this action. Further, the
command stops the target, (optionally) runs an initialization script, does not
load symbolics, download an ELF file, or modify the program counter(PC).

The default debugger configuration causes the
debugger to cache symbolics between sessions.
However, selecting the Connect option invalidates
this cache. If you must preserve the contents of
the symbolics cache, and you plan to use the
Connect option, clear the Cache Symbolics
Between Sessions checkbox in the Symbolics
page.

 NOTE

• Custom - Provides user an advantage to create a custom debug
configuration.

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
94 NXP Semiconductors

Table 63: Main Tab Options (continued)

Option Description

C/C++ application Specifies the settings for the C/C++ application. The options include:

• Project - Specifies the name of the project associated with the selected
debug launch configuration. Click Browse to select a different project.

• Application - Specifies the name of the C or C++ application executable.

This option is disabled when Connect debug
session type is selected.

 NOTE

• Search Project - Click to open the Program Selection dialog and select a
binary.

This option is disabled when Connect debug
session type is selected.

 NOTE

• Variables - Click to open the Select build variable dialog and select the build
variables to be associated with the program.

The dialog displays an aggregation of multiple variable databases and not
all these variables are suitable to be used from a build environment. Given
below are the variables that should be used:

ProjDirPath - returns the absolute path of the current project location in
the file system

${ProjDirPath}/Source/main.c"

workspace_loc - returns the absolute path of a workspace resource in the
file system, or the location of the workspace if no argument is specified

${workspace_loc:/ProjectName/Source main.c"${workspace_loc}

Gnu_Make_Install_Dir - returns the absolute path of the GNU make.exe
tool

${Gnu_Make_Install_Dir}\make.exe

This option is disabled when Connect debug
session type is selected.

 NOTE

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 95

Table 63: Main Tab Options (continued)

Option Description

Build (if required) before
launching

Controls how auto build is configured for the launch configuration. Changing
this setting overrides the global workspace setting and can provide some
speed improvements.

These options are set to default and collapsed
when Connect debug session type is selected.

 NOTE

The options include:

• Build configuration - Specifies the build configuration either explicitly or use
the current active configuration.

• Select configuration using `C/C++ Application' - Select/clear to enable/
disable automatic selection of the configuration to be built, based on the
path to the program.

• Enable auto build - Enables auto build for the debug configuration which
can slow down launch performance.

• Disable auto build - Disables auto build for the debug configuration which
may improve launch performance. No build action will be performed before
starting the debug session. You have to rebuild the project manually.

• Use workspace settings (default) - Uses the global auto build settings.

• Configure Workspace Settings - Opens the Launching preference panel
where you can change the workspace settings. It will affect all projects that
do not have project specific settings.

Target settings Specifies the connection and other settings for the target. The options
include:

• Connection - Specifies the applicable Remote System configuration.

• Edit - Click to edit the selected Remote System configuration.

• New - Click to create a new Remote System configuration for the selected
project and application.

• Execute reset sequence - Select to apply reset settings, specified in the
target configuration, when attaching to a target. Alternatively, clear the
option to ignore reset settings.

This option is not available when Attach debug
session type is selected.

 NOTE

• Execute initialization script(s) - Select to execute the initialization script(s),
specified in the target configuration, when attaching to a target.
Alternatively, clear the option to ignore the initialization script(s).

• Target (multicore only) - Select the core to be debugged. For SMP
debugging, select all cores in the SMP group.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
96 NXP Semiconductors

4.1.2 Arguments
Use this tab to specify the program arguments that an application uses and the working directory for a run or
debug configuration.

Figure 17: Debug Configurations-Arguments Tab

The table below lists the various options available on the Arguments page.

Table 64: Arguments Tab options

Option Description

Program arguments Specifies the arguments passed on the command line.

Variables Click to select variables by name to include in the program arguments list.

Working Directory Specifies the run/debug configuration working directory.

Use default Select to specify the default run/debug configuration working directory, which
is a directory within the current project directory, or clear to specify a different
workspace, a file system location, or a variable. For Linux applications, the
default working directory is the current directory on the process that started
CodeWarrior TRK on the target. This should not be confused with the
directory where the CodeWarrior TRK binary resides.

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 97

Table 64: Arguments Tab options (continued)

Option Description

Workspace Click to specify the path of, or browse to, a workspace relative working
directory.

File System Click to specify the path of, or browse to, a file system directory.

Variables Click to specify variables by name to include in the working directory.

4.1.3 Debugger
Use this tab to configure debugger settings.

The Debugger tab presents different pages for specifying different settings.

The content in the Debugger Options panel changes, depending on the Debug session
type selected on the Main page.

 NOTE

Figure 18: Debug Configurations-Debugger Tab

The table below lists the various options available on the Arguments page.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
98 NXP Semiconductors

Table 65: Debugger tab options

Option Description

Debugger Options Displays configuration options specific to the selected debugger type. See
the following sections for more details:

• Debug on page 99

• EPPC Exceptions on page 101

• Download on page 102

• PIC on page 104

• System Call Services on page 105

• Other Executables on page 107

• Symbolics on page 108

• OS Awareness on page 110

This section contains the following subsections:

4.1.3.1 Debug
Use this page to specify the program execution options, Breakpoint and watchpoint options, and target
access behavior.

Figure 19: Debugger Options-Debug Page

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 99

The options displayed on the Debug tab varies depending on the selected launch
configuration.

 NOTE

The table below lists the various options available on the Debug page.

Table 66: Debugger Options - Debug

Option Description

Initialize program counter at Controls the initialization of program counter.

• Program entry point - Select to initialize the program counter at
a specified program entry pont.

• User specified - Select to initialize the program counter at a
user-specified function. The default location is main.

Disabling this option will also disable
the Resume program and Stop on
startup at options.

 NOTE

Resume program Select to resume the execution after the program counter is
initialized.

Disabling this option will also disable
the Stop on startup at option.

 NOTE

Stop on startup at Stops program at specified location. When cleared, the program
runs until you interrupt it manually, or until it hits a breakpoint.

• Program entry point - Select to stop the debugger at a specified
program entry point.

• User specified - Select to stop the debugger at a user-specified
function. The default location is main.

Stop on exit Select this option to have the debugger set a breakpoint at the
code's exit point. For multicore projects, when you set this option
for one project on one core, it is set for projects on the other cores.
Deselect this option to prevent the debugger from setting a
breakpoint at the code's exit point.

Install regular breakpoints as Select this option to install breakpoints as either:

• Regular

• Hardware

• Software

Deselect this option to install breakpoints as Regular breakpoints.

Restore watchpoints Select this option to restore previous watchpoints.

Disable display of variable values by
default

Select this option to disable the display of variable values.
Deselect this option to enable the display of variable values

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
100 NXP Semiconductors

Table 66: Debugger Options - Debug (continued)

Option Description

Disable display of register values by default Select this option to disable the display of register values.
Deselect this option to enable the display of register values

Refresh while running period (seconds) Specifies the refresh period used when a view is configured to
refresh, while the application is running. By default, the refresh
period is set to two seconds.

4.1.3.2 EPPC Exceptions
The EPPC Exceptions page lists each of the EPPC exceptions that the CodeWarrior debugger can catch.

Use this page to specify which processor exceptions you want the debugger to catch. The EPPC Exceptions
page is shown in the figure below.

The EPPC Exceptions page currently provides options to configure projects created for
PowerQUICC III and QorIQ processors based on the e500v2 core.

 NOTE

The features of this page are currently not supported by this implementation.

 NOTE

Figure 20: Debugger Options - EPPC Exceptions page

Selecting any of the checkboxes, available on the EPPC Exceptions page, configures the core to automatically
halt when the corresponding exception is taken. The debugger stops at the entry point of the interrupt handler
for the selected exception, allowing you to inspect the processor state and continue debugging from there.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 101

Catching the selected exceptions works only if the target is debugged. To ensure that
the CodeWarrior debugger works properly, the debug exception is set and cannot be
selected.

 NOTE

The table below lists the various options available on the EPPC Exceptions page.

Table 67: EPPC Exceptions Page Options

Option Description

Exception handling Select the checkboxes in this panel if you want the debugger to catch the
required exceptions. By default, catching all exceptions is disabled. Only the
Debug exception is caught, as the debugger uses this exception for setting
breakpoints. Catching the debug exception cannot be unset.

4.1.3.3 Download
Use this page to specify which executable code sections the debugger downloads to the target, and whether
the debugger should read back those sections and verify them.

Selecting all options in the Program Download Options group significantly increases
download time.

 NOTE

Initial Launch options apply to the first debugging session. Successive Runs options apply to subsequent
debugging sessions.

The Download options control whether the debugger downloads the specified Program Section Data type to the
target hardware. The Verify options control whether the debugger reads the specified Program Section Data
type from the target hardware and compares the read data against the data written to the device.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
102 NXP Semiconductors

Figure 21: Debugger Options-Download page

The table below lists the various options available on the Download page.

Table 68: Debugger Options - Download

Section Data Type Explanation

Perform standard download Controls download of the target application using memory write command.

First Represents a group of settings that are used when an application is
debugged for the first time.

Subsequent Represents a group of settings that are used when the application is
debugged subsequent times. To make these settings be used during
debugging, you need to select the Cache Symbolics Between Sessions
option on the Symbolics page.

Executable Controls downloading and verification for executable sections. Select
appropriate checkboxes to specify downloading and verifications, for initial
launch and for successive runs.

Constant Data Controls downloading and verification for constant-data sections. Select
appropriate checkboxes to specify downloading and verifications, for initial
launch and for successive runs.

Initialized Data Controls downloading and verification for initialized-data sections. Select
appropriate checkboxes to specify downloading and verifications, for initial
launch and for successive runs.

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 103

Table 68: Debugger Options - Download (continued)

Section Data Type Explanation

Uninitialized Data Controls downloading and verification for uninitialized-data sections. Select
appropriate checkboxes to specify downloading and verifications, for initial
launch and for successive runs.

Execute Tasks Enables the execution of target tasks.

Name For target tasks, this is the name of the target task as seen in the Target Task
view. For Debugger Shell scripts, this is the path to the CLDE script.

Task Type Contains either Debugger Shell scripts or target tasks (such as Flash
Programmer).

Add Adds a download task that can be either a target task or Debugger shell script.

Remove Removes the selected target task or debugger shell script.

Up Moves the selected task up the list.

Down Moves the selected task down the list.

4.1.3.4 PIC
Use this page to specify an alternate address at which the debugger loads the PIC module onto target
memory.

Usually, Position Independent Code (PIC) is linked in such a way that the entire image starts at address
0x00000000.

Figure 22: Debugger Options-PIC page

The table below lists the various options available on the PIC page.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
104 NXP Semiconductors

Table 69: PIC Page Options

Option Description

Alternate Load Address Specify the starting address at which the debugger loads your program. You
can also use this setting when you have an application which is built with
ROM addresses and then relocates itself to RAM (such as U-Boot).
Specifying a relocation address lets the debugger map the symbolic
debugging information contained in the original ELF file (built for ROM
addresses) to the relocated application image in RAM. Clear the checkbox
to have the debugger load your program at a default starting address.

The debugger does not verify whether your code can execute at the specified address.
As a result, the PIC generation settings of the compiler, linker and your program's startup
routines must correctly set any base registers and perform any required relocations.

 NOTE

4.1.3.5 System Call Services
Use this page to activate the debugger's support for system calls and to select options that define how the
debugger handles system calls.

The CodeWarrior debugger provides system call support over JTAG. System call support lets bareboard
applications use the functions of host OS service routines. This feature is useful if you do not have a board
support package (BSP) for your target board.

The host debugger implements these services. Therefore, the host OS service routines are available only when
you are debugging a program on a target board or simulator.

The OS service routines provided must comply with an industry-accepted standard. The
definitions of the system service functions provided are a subset of Single UNIX
Specification (SUS).

 NOTE

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 105

Figure 23: Debugger Options-System Call Services page

The table below lists the various options available on the System Call Services page.

Table 70: System Call Services Page Options

Option Description

Activate Supportfor System Services Select this option to enable support for system services. All the
other options on the System Call Services panel are enabled only
if you check this checkbox.

stdout/stderr By default, the output written to stdout and stderr appears in a
CodeWarrior IDE "console" window. To redirect console output to
a file, select the stdout/stderr checkbox. Click Browse to display
a dialog and specify the path and name of this file.

Use shared console window Select this option if you wish to share the same console window
between different debug targets. This setting is useful in multi-
core or multi-target debugging.

Trace level Use this drop-down list to specify the system call trace level. The
place where the debugger displays the traced system service
requests is determined by the Trace checkbox.The system call
trace level options available are:

• No Trace - system calls are not traced

• Summary - the requests for system services are displayed

• Detailed - the requests for system services are displayed along
with the arguments/parameters of the request

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
106 NXP Semiconductors

Table 70: System Call Services Page Options (continued)

Option Description

Trace By default, traced system service requests appear in a
CodeWarrior IDE "console" window. To log traced system service
requests to a file, select the Trace checkbox. Click Browse to
display a dialog and define the path and name of this file. In a
Power Architecture project created using the CodeWarrior
Bareboard Project Wizard, use the library syscall.a rather than
a UART library for handling the output.

Root folder The directory on the host system which contains the OS routines
that the bareboard program uses for system calls.

4.1.3.6 Other Executables
Use this page to specify additional ELF files to download or debug in addition to the main executable file
associated with the launch configuration.

Figure 24: Debugger Options-Other Executables Page

The table below lists the various options available on the Other Executables page.

Table 71: Debugger Options - Other Executables

Option Description

File list Shows files and projects that the debugger uses during each debug
session.

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 107

Table 71: Debugger Options - Other Executables (continued)

Option Description

Debug column:

• Checked-The debugger loads
symbolics for the file.

• Cleared-The debugger does not
load symbolics for the file.

Download column:

• Checked-The debugger
downloads the file to the Target
Device.

• Cleared-The debugger does not
download the file to the Target
Device.

Add Click to open the Debug Other Executable dialog, and add other
executable file to debug while debugging this target.

Use this dialog to specify the following settings:

• Specify the location of the additional executable - Enter the path to the
executable file that the debugger controls in addition to the current
project's executable file. Alternatively, click Workspace, File System, or
Variables to specify the file path.

• Load symbols - Check to have the debugger load symbols for the
specified file. Clear to prevent the debugger from loading the symbols.
The Debug column of the File list corresponds this setting.

• Download to device - Check to have the debugger download the
specified file to the target device. Specify the path of the file in the
Specify the remote download path text box. Clear the Download to
device checkbox to prevent the debugger from downloading the file to
the device. The Download column of the File list corresponds to the
Download to device setting.

• OK - Click to add the information that you specify in the Debug Other
Executable dialog to the File list.

Change Click to change the settings for the entry currently selected in the File list
column. Change this information as needed, then click the OK button to
update the entry in the File list.

Remove Click to remove the entry currently selected in the File list.

4.1.3.7 Symbolics
Use this page to specify whether the IDE keeps symbolics in memory.

Symbolics represent an application's debugging and symbolic information. Keeping symbolics in memory, known
as caching symbolics, is beneficial when you debug a large-size application.

Consider a situation in which the debugger loads symbolics for a large application, but does not download content
to a hardware device and the project uses custom makefiles with several build steps to generate this application.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
108 NXP Semiconductors

In such a situation, caching symbolics helps speed up the debugging process. The debugger uses the readily
available cached symbolics during subsequent debugging sessions. Otherwise, the debugger spends significant
time creating an in-memory representation of symbolics during subsequent debugging sessions.

Caching symbolics provides the most benefit for large applications, where doing so
speeds up application-launch time. If you debug a small application, caching symbolics
does not significantly improve the launch times.

 NOTE

Figure 25: Debugger Options-Symbolics page

The table below lists the various options available on the Symbolics page.

Table 72: Debugger Options - Symbolics

Option Description

Cache Symbolics Between Sessions Select this option to have the debugger cache symbolics between
debugging sessions. If you check this checkbox and clear the
Create and Use Copy of Executable checkbox, the executable file
remains locked after the debugging session ends. In the Debug
view, right-click the locked file and select Un-target Executables
to have the debugger delete its symbolics cache and release the
file lock. The IDE enables this menu command when there are
currently unused cached symbolics that it can purge.

Deselect this option so that the debugger does not cache
symbolics between debugging sessions.

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 109

Table 72: Debugger Options - Symbolics (continued)

Option Description

Create and Use Copy of Executable Select this option to have the debugger create and use a copy of
the executable file. Using the copy helps avoid file-locking issues
with the build system. If you check this checkbox, the IDE can
build the executable file in the background during a debugging
session.

Deselect this option so that the debugger does not create and use
a copy of the executable file.

4.1.3.8 OS Awareness
Use this page to specify the operating system (OS) that resides on the target device.

Figure 26: Debugger Options-OS Awareness page

The table below lists the options available on the OS Awareness page.

Table 73: OS Awareness Page Options

Option Description

Target OS Use the Target OS list box to specify the OS that runs
on the target device, or specify None to have the
debugger use the bareboard.

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
110 NXP Semiconductors

Table 73: OS Awareness Page Options (continued)

Option Description

Boot Parameters tab Enable Command Line Settings: Select this option to
specify settings for regular initialization. Enter the
specific command line parameters in the Command
Line and Base Address text boxes.

Enable Initial RAM Disk Settings: Select this option to
specify settings for flattened device tree initialization
that downloads parameters to the kernel during its
initialization. You can specify a .dts file that contains
initialization information.

• File Path: Specifies the path of the RAM disk that you
transferred from the Linux machine

• Address: Specifies the address specified in Linux,
initrd-start from the dts file

• Size: Specifies the size of the dts file

• Download to target: Downloads the initial RAM disk
settings to the target

Open Firmware Device Tree Settings: Select this
option to load parameters to the kernel from a
bootloader on Power Architecture processors

• File Path: Specifies the path to the dtb file for kernel
debug

• Address: Specifies the address specified in Linux,
initrd-start from the dts file

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 111

Table 73: OS Awareness Page Options (continued)

Option Description

Debug tab Specifies the parameters required for Linux kernel
debug.

• Enable Memory Translation: Select this option to
translate memory by specifying the following values:

• Physical Base Address: This is the
CONFIG_PHYSICAL_START option of the kernel
configuration

• Virtual Base Address: This is the
CONFIG_KERNEL_START option of the kernel
configuration

• Memory Size: This is the
CONFIG_LOWMEM_SIZE option of the kernel
configuration

Note: The virtual memory space should not overflow
the 32-bit memory space. This indicates that the
Virtual Base Address + Memory Size should not be
greater than 0xFFFFFFFF. CodeWarrior displays an
error when this happens.

• Enable Threaded Debugging Support: Select this
option to enable support for Linux kernel threaded
debugging

• Update Background Threads on Stop: Select this
option only if you want to update the background
threads on stop. Keep this option unchecked as it
may increase debug speed.

• Enable Delayed Software Breakpoint Support:
Select this option to enable support for delayed
software breakpoints during kernel debug

Modules tab This tab allows you to add modules to the Linux kernel
project and configure the module's symbolics
mapping. For more information on the Modules tab,
see Configuring Symbolics Mappings of Modules on
page 310.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
112 NXP Semiconductors

4.1.4 Trace and Profile
Use this tab to configure the selected launch configuration for simulator and hardware profiling.

Figure 27: Debug Configurations-Trace and Profile Tab

The table below lists the various options available on the Trace and Profile page.

Table 74: Trace and Profile Tab Options

Option Description

Start a trace session Select to start the trace session immediately on launch.

Default trace Configuration Select the default trace configuration. The Show all configurations
option will display all the trace configurations available in the
Default trace Configuration drop-down list and the Only show
configurations for the associated project option will display those
configurations which are related to the selected project.

Edit Click to modify the selected configuration.

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 113

Table 74: Trace and Profile Tab Options (continued)

Option Description

Trace Collection Select the trace collection mode.

CodeWarrior configures the target and
enables trace collection

Select to configure and control trace collection. If the target is
running and must be suspended to configure trace hardware -
Click to suspend the target to configure trace hardware.

• Suspend and resume the target automatically - Select to
suspend the target automatically for trace configuration. If this
option is enabled and you choose to configure trace while the
target is running, the target suspends immediately while trace
configuration is applied, and then resumes automatically.

• Wait until the target is resumed manually - Select to suspend
and resume the target for trace configuration manually. If this
option is enabled and you choose to configure trace while the
target is running, the configuration is changed, but not applied
to the target until the target is suspended and resumed.

After configuring trace hardware, start trace collection - Select the
option to start trace collection after configuring the trace hardware.

• Automatically - Select to start trace collection immediately after
configuring trace hardware.

• Manually from the toolbar or by an Analysis Point - Click to start
your trace session and configure trace hardware with trace
collection disabled. Trace collection will be enabled later by
clicking Start Collection or by executing code at an Analysis
Point

Stop trace collection when the core is suspended - Select to stop
trace collection. When the trace collection stops, upload trace
results - Select to upload trace results after the trace collection is
stopped.

• Automatically - Click to save data to the Trace.dat file
automatically after collection completes or is stopped.

• Manually from the toolbar - Click to save the trace data manually
to the Trace.dat file.

The application configures the target and
enables trace collection

Click to start collecting new trace data for the trace session using
your application.

Trace display Display new trace data automatically

For more information on Trace, see the Tracing and Analysis Tools User Guide available
in the <CWInstallDir>\PA\Help\PDF folder, where CWInstallDir is the
installation directory of your CodeWarrior software.

 NOTE

4.1.5 Source
Use this tab to specify the location of source files used when debugging a C application.

By default, this information is taken from the build path of your project.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
114 NXP Semiconductors

Figure 28: Debug Configurations-Source tab

The table below lists the various options available on the Source page.

Table 75: Source Tab Options

Option Description

Source Lookup Path Lists the source paths used to load an image after
connecting the debugger to the target.

Add Click to add new source containers to the Source
Lookup Path search list.

Edit Click to modify the content of the selected source
container.

Remove Click to remove selected items from the Source
Lookup Path list.

Up Click to move selected items up the Source Lookup
Path list.

Down Click to move selected items down the Source Lookup
Path list.

Restore Default Click to restore the default source search list.

Search for duplicate source files on the path Select to search for files with the same name on a
selected path.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 115

4.1.6 Environment
Use this tab to specify the environment variables and values to use when an application runs.

Figure 29: Debug Configuration-Environment tab

The table below lists the various options available on the Environment page.

Table 76: Environment Tab Options

Option Description

Environment Variables to set Lists the environment variable name and its value.

New Click to create a new environment variable.

Select Click to select an existing environment variable.

Edit Click to modify the name and value of a selected
environment variable.

Remove Click to remove selected environment variables from
the list.

Append environment to native environment Select to append the listed environment variables to
the current native environment.

Replace native environment with specified
environment

Select to replace the current native environment with
the specified environment set.

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
116 NXP Semiconductors

4.1.7 Common
Use this tab to specify the location to store your run configuration, standard input and output, and background
launch options.

Figure 30: Debug Configuration-Common tab

The table below lists the various options available on the Common page.

Table 77: Common Tab Options

Option Description

Local file Select to save the launch configuration locally.

Shared file Select to specify the path of, or browse to, a workspace to store the launch
configuration file, and be able to commit it to a repository.

Display in favorites menu Select to add the configuration name to Run or Debug menus for easy
selection.

Encoding Select an encoding scheme to use for console output.

Allocate Console (necessary for
input)

Select to assign a console view to receive the output. You must select this
option if you want to use the host CodeWarrior to view the output of the
debugged application.

File Specify the file name to save output. For Linux applications, this option
provides a way to select a host-side file to redirect the output forwarded by
CodeWarrior TRK to host CodeWarrior (if redirections are specified in the
Arguments tab, then this feature makes no sense because redirections are
using target-side files).

Workspace Specifies the path of, or browse to, a workspace to store the output file.

Table continues on the next page...

Debug Configurations
Using Debug Configurations Dialog Box

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 117

Table 77: Common Tab Options (continued)

Option Description

File System Specifies the path of, or browse to, a file system directory to store the output
file.

Variables Select variables by name to include in the output file.

Append Select to append output. Clear to recreate file each time. Selecting this option
means that the file (host-side file, in case of Linux applications) mentioned in
the File text box will not be overwritten for new content. Instead, the new
content will be appended to the file.

Port Select to redirect standard output (stdout, stderr) of a process being
debugged to a user specified socket.

You can also use the redirect command in
debugger shell to redirect standard output
streams to a socket.

 NOTE

Act as Server Select to redirect the output from the current process to a local server socket
bound to the specified port.

Hostname/IP Address Select to redirect the output from the current process to a server socket
located on the specified host and bound to the specified port. The debugger
will connect and write to this server socket via a client socket created on an
ephemeral port

Launch in background Select to launch configuration in background mode.

4.2 Customizing Debug Configurations
When you use the CodeWarrior wizard to create a new project, the wizard sets the project's launch
configurations to default values. You can change the default values of your project's launch configurations,
according to your program's requirements.

To modify the launch configurations:

1. Start the CodeWarrior IDE.

2. From the main menu bar of the IDE, select Run > Debug Configurations.

The Debug Configurations dialog appears. The left side of this dialog has a list of debug configurations that
apply to the current application.

3. Expand the CodeWarrior configuration.

4. From the expanded list, select the debug configuration that you want to modify.

The follwoing figure shows the Debug Configurations dialog with the settings for the debug configuration you
selected.

Debug Configurations
Customizing Debug Configurations

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
118 NXP Semiconductors

Figure 31: CodeWarrior Debug Configuration-Main tab

5. In the group of tabs in the upper-right side of the dialog, click a tab.

6. Change the settings on the debug configuration page as per your requirements. See Using Debug
Configurations Dialog Box on page 91 for details on the various settings of this page.

7. Click Apply to save the new settings.

When you finish, you can click Debug to start a new debugging session, or click Close to save your changes
and close the Debug Configurations dialog.

Debug Configurations
Customizing Debug Configurations

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 119

4.3 Reverting Debug Configuration Settings
After making some modifications in a debug configuration's settings, you can either save the pending
(unsaved) changes or revert to last saved settings.

To save the pending changes, click the Apply button of the Debug Configurations dialog, or click the Close button
and then the Yes button.

To undo pending changes and restore the last saved settings, click the Revert button at the bottom of the Debug
Configurations dialog.

The IDE restores the last set of saved settings to all pages of the Debug Configurations dialog. Also, the IDE
disables the Revert button until you make new pending changes.

Debug Configurations
Reverting Debug Configuration Settings

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
120 NXP Semiconductors

Chapter 5
Working with Debugger
This chapter explains various aspects of CodeWarrior debugging, such as debugging a project, connection
types, setting breakpoints and watchpoints, working with registers, viewing memory, viewing cache, and
debugging externally built executable files.

This chapter documents debugger features that are specific to CodeWarrior
Development Studio for Power Architecture. For more information on debugger features
that are common in all CodeWarrior products, see CodeWarrior Development Studio
Common Features Guide.

 NOTE

This chapter explains:

• Debugging a CodeWarrior project on page 121

• Consistent debug control on page 122

• Connection types on page 122

• JTAG diagnostics tests on page 150

• Editing remote system configuration on page 152

• Memory translations on page 155

• CodeWarrior Command-Line Debugger on page 156

• Working with Breakpoints on page 158

• Working with Watchpoints on page 163

• Working with Registers on page 165

• Viewing memory on page 193

• Viewing Cache on page 196

• Changing Program Counter Value on page 204

• Hard resetting on page 204

• Setting Stack Depth on page 204

• Import a CodeWarrior Executable file Wizard on page 204

• Debugging Externally Built Executable Files on page 209

5.1 Debugging a CodeWarrior project
This section explains how to change the debugger settings and how to debug a CodeWarrior project.

The CodeWarrior Bareboard Project Wizard or the CodeWarrior Linux Project Wizard sets the debugger settings
of a project's launch configurations to default values. You can change these default values as per your
requirements.

To change the debugger settings and start debugging a CodeWarrior project, perform these steps:

1. From the CodeWarrior IDE menu bar, select Run > Debug Configurations. The CodeWarrior IDE uses the
settings in the launch configuration to generate debugging information and initiate communications with the
target board.

Working with Debugger
Debugging a CodeWarrior project

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 121

The Debug Configurations dialog appears. The left side of this dialog has a list of debug configurations that
apply to the current application.

2. Expand the CodeWarrior configuration.

3. From the expanded list, select the debug configuration that you want to modify.

4. Click Apply to save the new settings.

You can click Revert to undo any of the unsaved changes. The CodeWarrior IDE
restores the last set of saved settings to all pages of the Debug Configurations dialog.
Also, the IDE disables Revert until you make new pending changes.

 TIP

5. Click Debug to start the debugging session.

You just modified the debugger settings and initialized a debugging session.

5.2 Consistent debug control
This section describes the consistent debug control feature of the CodeWarrior debugger.

When you attempt to stop the target during a debugging session, the consistent debug control feature enables
the debugger to report core's Doze and Nap low power management states.

In addition, the debugger at the same time grants you access to the system states, such as core registers, TLB
registers, caches, and so on.

When you attempt to resume the debugging session, the debugger displays a warning message and puts the
respective core in the same power management state (Doze or Nap, whichever is the previous one). The
debugger waits for the core to exit out of Doze or Nap state to continue with the attempted operation.

5.3 Connection types
This section describes the different connection types provided by CodeWarrior debugger for connecting the
target board to a computer.

The connection types supported by CodeWarrior debugger are:

• CCSSIM2 ISS on page 122

• Ethernet TAP on page 124

• Gigabit TAP + Trace on page 128

• Gigabit TAP on page 133

• Simics on page 138

• TCF on page 140

• USB TAP on page 141

• CodeWarrior TAP on page 145

5.3.1 CCSSIM2 ISS
Select this connection type to connect to simulators based on the CCSSIM2 ISS interface.

To configure the settings of the CCSSIM2 ISS connection type, perform the following steps:

Working with Debugger
Consistent debug control

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
122 NXP Semiconductors

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select CCSSIM2 ISS from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of the selected connection
type.

The table below describes various options available on the Connection page.

Table 78: CCSSIM2 ISS - Connection Tab Options

Option Description

CCS server Automatic launch Select to automatically launch the
specified CCS server on the specified
port.

Server port number Specifies the port number to launch the
CCS server on.

CCS executable Select to specify the path of, or browse to,
the executable file of the CCS server.

Manual launch Select to manually launch the specified
CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of
the CCS server.

Server port number Specifies the port number to launch the
CCS server on.

Connect server to TAP Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 79: CCSSIM2 ISS - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

Terminate the debug session If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 123

Table 79: CCSSIM2 ISS - Advanced Tab Options (continued)

Option Description

Ask me This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Enable logging Select to display protocol logging in
console.

5.3.2 Ethernet TAP
Select this connection type when Ethernet network is used as interface to communicate with the hardware
device.

To configure the settings of an Ethernet TAP connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select the Ethernet TAP from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of the selected connection
type.

The table below describes various options available on the Connection page.

Table 80: Ethernet TAP - Connection Tab Options

Option Description

Ethernet TAP Hostname/IP Specifies hostname or the IP address of
the TAP.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed. By
default, set to 10230 kHz.

CCS server Automatic launch Select to automatically launch the
specified CCS server on the specified
port.

Server port number Specifies the port number to launch the
CCS server on.

CCS executable Click to specify the path of, or browse to,
the executable file of the CCS server.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
124 NXP Semiconductors

Table 80: Ethernet TAP - Connection Tab Options (continued)

Option Description

Manual launch Select to manually launch the specified
CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of
the CCS server.

Server port number Specifies the port number to launch the
CCS server on.

Connect server to TAP Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 81: Ethernet TAP - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

Terminate the debug session If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Ask me This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Enable logging Select to display protocol logging in
console.

JTAG config file This panel displays the JTAG
configuration file being used. This panel is
populated only if you have selected a
JTAG configuration file for your project. If
a JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 125

Table 81: Ethernet TAP - Advanced Tab Options (continued)

Option Description

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

Disable fast download Select to disable fast download.

This option is not
available for
e500mc, e5500,
and e6500 core
based targets.

 NOTE

Enable JTAG diagnostics When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
126 NXP Semiconductors

Table 81: Ethernet TAP - Advanced Tab Options (continued)

Option Description

Secure debug key Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

 NOTE

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 127

Table 81: Ethernet TAP - Advanced Tab Options (continued)

Option Description

Reset Delay (ms) Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the pre-boot loader (PBL) is used to
perform boot image manipulation (for
example, copying U-Boot from SPI flash
to internal cache/SRAM during reset) that
does not complete within the default reset
timeout window. A good start value to test
out board-specific requirements in such
cases is 1000 ms; however, this value
may need to be increased for very large
PBL transfers.

Reset delay is
supported for
processors based
on the e500mc,
e5500, and e6500
cores.

 NOTE

5.3.3 Gigabit TAP + Trace
Select this connection type when Gigabit TAP and Trace is used as interface to communicate with the
hardware device.

To configure the settings of a Gigabit TAP + Trace connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select the Gigabit TAP + Trace from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection
type.

The table below describes various options available on the Connection page.

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
128 NXP Semiconductors

Table 82: Gigabit TAP + Trace - Connection Tab Options

Option Description

Gigabit TAP + Trace Hostname/IP Specifies hostname or the IP address of
the TAP.

Debug connection Specifies the type of debug connection to
use. The options available are JTAG over
JTAG cable connection, JTAG over
Aurora cable connection, and Aurora
connection.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed. By
default, set to 10230 kHz.

Aurora settings Aurora data rate Specifies the Aurora data rate, which
refers to the frequency with which the raw
data bits are transferred on the wire. The
Aurora connection is used only for trace
analysis.

CCS server Automatic launch Select to automatically launch the
specified CCS server on the specified
port.

Server port number Specifies the port number to launch the
CCS server on.

CCS executable Select to specify the path of, or browse to,
the executable file of the CCS server.

Manual launch Select to manually launch the specified
CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of
the CCS server.

Server port number Specifies the port number to launch the
CCS server on.

Connect server to TAP Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 83: Gigabit TAP + Trace - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 129

Table 83: Gigabit TAP + Trace - Advanced Tab Options (continued)

Option Description

Terminate the debug session If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Ask me This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Enable logging Select to display protocol logging in
console.

JTAG config file This panel displays the JTAG
configuration file being used. This panel is
populated only if you have selected a
JTAG configuration file for your project. If
a JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

Disable fast download Select to disable fast download.

This option is not
available for
processors based
on e500mc,
e5500, and e6500
cores.

 NOTE

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
130 NXP Semiconductors

Table 83: Gigabit TAP + Trace - Advanced Tab Options (continued)

Option Description

Enable JTAG diagnostics When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 131

Table 83: Gigabit TAP + Trace - Advanced Tab Options (continued)

Option Description

Secure debug key Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

 NOTE

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
132 NXP Semiconductors

Table 83: Gigabit TAP + Trace - Advanced Tab Options (continued)

Option Description

Reset Delay (ms) Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the PBL is used to perform boot image
manipulation (for example, copying U-
Boot from SPI flash to internal cache/
SRAM during reset) that does not
complete within the default reset timeout
window. A good start value to test out
board-specific requirements in such cases
is 1000 ms; however, this value may need
to be increased for very large PBL
transfers.

Reset delay is
supported for
processors based
on the e500mc,
e5500, and e6500
cores.

 NOTE

5.3.4 Gigabit TAP
Select this connection type when Gigabit TAP is used as interface to communicate with the hardware device.

To configure the settings of a Gigabit TAP connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select the Gigabit TAP from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of the selected connection
type.

The table below describes various options available on the Connection page.

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 133

Table 84: Gigabit TAP - Connection Tab Options

Option Description

Gigabit TAP Hostname/IP Specifies hostname or the IP address of
the TAP.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed. By
default, set to 10230 kHz.

CCS server Automatic launch Select to automatically launch the
specified CCS server on the specified
port.

Server port number Specifies the port number to launch the
CCS server on.

CCS executable Click to specify the path of, or browse to,
the executable file of the CCS server.

Manual launch Select to manually launch the specified
CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of
the CCS server.

Server port number Specifies the port number to launch the
CCS server on.

Connect server to TAP Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 85: Gigabit TAP - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

Terminate the debug session If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Ask me This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
134 NXP Semiconductors

Table 85: Gigabit TAP - Advanced Tab Options (continued)

Option Description

Enable logging Select to display protocol logging in
console.

JTAG config file This panel displays the JTAG
configuration file being used. This panel is
populated only if you have selected a
JTAG configuration file for your project. If
a JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

Disable fast download Select to disable fast download.

This option is not
available for
processors based
on e500mc,
e5500, and e6500
cores.

 NOTE

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 135

Table 85: Gigabit TAP - Advanced Tab Options (continued)

Option Description

Enable JTAG diagnostics When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
136 NXP Semiconductors

Table 85: Gigabit TAP - Advanced Tab Options (continued)

Option Description

Secure debug key Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

 NOTE

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 137

Table 85: Gigabit TAP - Advanced Tab Options (continued)

Option Description

Reset Delay (ms) Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the PBL is used to perform boot image
manipulation (for example, copying U-
Boot from SPI flash to internal cache/
SRAM during reset) that does not
complete within the default reset timeout
window. A good start value to test out
board-specific requirements in such cases
is 1000 ms; however, this value may need
to be increased for very large PBL
transfers.

Reset delay is
supported for
processors based
on the e500mc,
e5500, and e6500
cores.

 NOTE

5.3.5 Simics
Select this connection type when Simics simulator is used.

To configure the settings of a Simics connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select Simics from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection
type.

The table below describes various options available on the Connection page.

Table 86: Simics - Connection Tab Options

Option Description

Simics settings Model startup script Specifies the Simics startup script.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
138 NXP Semiconductors

Table 86: Simics - Connection Tab Options (continued)

Option Description

Simics executable Specifies the Simics executable file.

CodeWarrior add-on Specifies the Simics add-on for
CodeWarrior IDE.

Show Simics Control window Select to allow control of the Simics
environment.

CCS server Automatic launch Select to automatically launch the
specified CCS server on the specified
port.

Server port number Specifies the port number to launch the
CCS server on.

CCS executable Click to specify the path of, or browse to,
the executable file of the CCS server.

Manual launch Select to manually launch the specified
CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of
the CCS server.

Server port number Specifies the port number to launch the
CCS server on.

The table below describes the various options available on the Advanced page.

Table 87: Simics - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

Terminate the debug session If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Ask me This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Advanced CCS settings CCS timeout (seconds) Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Enable logging Select to display protocol logging in
console.

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 139

5.3.6 TCF
Select this connection type when Simics simulator is used.

To configure the settings of a TCF connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select TCF from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection
type.

The table below describes various options available on the Connection page.

Table 88: TCF - Connection Tab Options

Option Description

Connection Hostname/IP Specifies hostname or IP address of the
host, TCF agent runs on. 127.0.0.1 is
used if the agent runs locally.

Port Specifies the TCP port the agent is
listening on.

Enable Logging Select to enable logging of all ongoing
TCF traffic in the Console view.

Connection timeout Specifies connection timeout in seconds.

Agent Start Agent Select to start the agent and specify the
run-time properties.

Path to executable Specifies the path to the TCF agent
executable file.

Arguments to pass Specifies all the command line arguments
to be passed to the TCF agent while
starting up.

Redirect stdout Select to have the standard output and
standard error output redirected to the
Console view in CodeWarrior IDE.

The table below describes the various options available on the Advanced page.

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
140 NXP Semiconductors

Table 89: TCF - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

Terminate the debug session If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Ask me This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

5.3.7 USB TAP
Select this connection type when USB TAP is used as interface to communicate with the hardware device.

To configure the settings of a USB TAP connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select USB TAP from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection
type.

4. n

The table below describes various options available on the Connection page.

Table 90: USB TAP - Connection Tab Options

Option Description

USB TAP USB serial number Select and specify the USB serial number
of the USB TAP, required only if using
multiple USB TAPs.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed. By
default, set to 10230 kHz.

CCS server Automatic launch Select to automatically launch the
specified CCS server on the specified
port.

Server port number Specifies the port number to launch the
CCS server on.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 141

Table 90: USB TAP - Connection Tab Options (continued)

Option Description

CCS executable Click to specify the path of, or browse to,
the executable file of the CCS server.

Manual launch Select to manually launch the specified
CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of
the CCS server.

Server port number Specifies the port number to launch the
CCS server on.

Connect server to TAP Select to enable the CCS server to
connect to the TAP.

The table below describes the various options available on the Advanced page.

Table 91: USB TAP - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

Terminate the debug session If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Ask me This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Enable logging Select to display protocol logging in
console.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
142 NXP Semiconductors

Table 91: USB TAP - Advanced Tab Options (continued)

Option Description

JTAG config file This panel displays the JTAG
configuration file being used. This panel is
populated only if you have select a JTAG
configuration file for your project. If a
JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

Disable fast download Select to disable fast download.

This option is not
available for
processors based
on e500mc,
e5500, and e6500
cores.

 NOTE

Enable JTAG diagnostics When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 143

Table 91: USB TAP - Advanced Tab Options (continued)

Option Description

Secure debug key Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

 NOTE

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
144 NXP Semiconductors

Table 91: USB TAP - Advanced Tab Options (continued)

Option Description

Reset Delay (ms) Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the PBL is used to perform boot image
manipulation (for example, copying U-
Boot from SPI flash to internal cache/
SRAM during reset) that does not
complete within the default reset timeout
window. A good start value to test out
board-specific requirements in such cases
is 1000 ms; however, this value may need
to be increased for very large PBL
transfers.

Reset delay is
supported for
processors based
on the e500mc,
e5500, and e6500
cores.

 NOTE

5.3.8 CodeWarrior TAP
Select this connection type when either the CodeWarrior TAP is used as interface to communicate with the
hardware device.

To configure the settings of a CodeWarrior TAP connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select CodeWarrior TAP from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings of the selected connection
type.

The table below describes various options available on the Connection page.

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 145

Table 92: CodeWarrior TAP - Connection Tab Options

Option Description

CodeWarrior TAP Hardware Connection Specifies CodeWarrior TAP interface to
communicate with the hardware device.
CodeWarrior TAP supports both USB and
Ethernet network interfaces.

Hostname/IP Specifies hostname or the IP address of
the TAP.

Enabled only if
Hardware
Connection is set
to Ethernet.

 NOTE

Serial Number Select and specify the USB serial number
of the USB TAP; required only if using
multiple CodeWarror TAPs (over USB).

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed. By
default, set to 10230 kHz.

CCS server Automatic launch Select to automatically launch the
specified CCS server on the specified
port.

Server port number Specifies the port number to launch the
CCS server on.

CCS executable Click to specify the path of, or browse to,
the executable file of the CCS server.

Manual launch Select to manually launch the specified
CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of
the CCS server.

Server port number Specifies the port number to launch the
CCS server on.

Connect server to TAP Select to enable the CCS server to
connect to the CodeWarrior TAP.

The table below describes the various options available on the Advanced page.

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
146 NXP Semiconductors

Table 93: CodeWarrior TAP - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS
connection between the target and host is
reset. Select the Timeout checkbox to
specify the time interval (in seconds) after
which the connection will be lost.

Terminate the debug session If this option is selected, the debug
session is terminated and the lost
connection between JTAG and CCS
server is not reset.

Ask me This is the default setting. If the CCS
connection is lost between the target and
host, the user is asked if the connection
needs to be reset or terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the
target does not respond in the provided
time-interval, you receive a CCS timeout
error.

Enable logging Select to display protocol logging in
console.

JTAG config file This panel displays the JTAG
configuration file being used. This panel is
populated only if you have select a JTAG
configuration file for your project. If a
JTAG configuration file is not selected,
this panel displays a None value. For
more details on JTAG configuration files,
see the JTAG Configuration Files on page
333 chapter.

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

Disable fast download Select to disable fast download.

This option is not
available for
e500mc, e5500,
and e6500 core
based targets.

 NOTE

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 147

Table 93: CodeWarrior TAP - Advanced Tab Options (continued)

Option Description

Enable JTAG diagnostics When selected, the option enables
performing advanced diagnostics of the
JTAG connection to be used during
custom board bring-up. After the
connection to the probe has been
established the debugger performs the
JTAG diagnostics tests (Power at probe,
IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan
check) and the result of the tests are
printed to the console log and in case of
an error, a CodeWarrior Alert box
appears. When this option is not selected,
the CodeWarrior debugger only performs
a limited test while configuring the JTAG
chain. It checks if the PWR pin is correctly
connected and displays a Cable
disconnected error if not connected
properly. The connection details are
provided in the CCS protocol log along
with the JTAG ID and in case of an error,
a CodeWarrior Alert box appears. See
JTAG diagnostics tests on page 150 for
more information on JTAG diagnostics
tests.

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
148 NXP Semiconductors

Table 93: CodeWarrior TAP - Advanced Tab Options (continued)

Option Description

Secure debug key Select to enable the debugger to unlock
the secured board with the secure debug
key provided in the associated text box. If
this option is not selected, you will receive
a secure debug violation error when you
try to debug on the locked board.

If you provide a
wrong key and an
unlock sequence
is run by the
debugger with the
erroneous key, the
associated part will
be locked until a
rest occurs and
you will need to
reset the target to
connect again. For
the P1010
processor, if you
have one failed
attempt with a
wrong key then a
subsequent unlock
sequence with a
valid key will
succeed. But, if
you provide a
wrong key twice,
you will need to
hard reset the
board before the
next attempt.

 NOTE

Table continues on the next page...

Working with Debugger
Connection types

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 149

Table 93: CodeWarrior TAP - Advanced Tab Options (continued)

Option Description

Reset Delay (ms) Specifies the time in milliseconds that
CodeWarrior takes to gain control of the
target, after issuing a reset. The default
value for this option is 200 ms. The delay
needs to be increased if the debugger
connection does not work reliably, after
issuing the reset. This can happen for
specific boards and in scenarios where
the PBL is used to perform boot image
manipulation (for example, copying U-
Boot from SPI flash to internal cache/
SRAM during reset) that does not
complete within the default reset timeout
window. A good start value to test out
board-specific requirements in such cases
is 1000 ms; however, this value may need
to be increased for very large PBL
transfers.

Reset delay is
supported for
processors based
on the e500mc,
e5500, and e6500
cores.

 NOTE

5.4 JTAG diagnostics tests
JTAG diagnostics tests are advanced diagnostics tests performed on the JTAG connection to be used during
custom board bring-up.

After connection to the probe has been established, the debugger performs JTAG diagnostics tests and prints
the test results to the console log.

Five JTAG header pins (TDI, TDO, TMS, TCK, and TRST) are used in JTAG diagnostics tests. Failing of any of
these pins can generate errors. Other JTAG header pins, such as HRESET are architecture-specific and not
directly related to JTAG.

JTAG diagnostics tests available in CodeWarrior are:

• Power at probe test on page 151

• IR scan test on page 151

• Bypass scan test on page 151

• Arbitrary TAP state move test on page 152

• Reading JTAG IDCODEs test on page 152

Working with Debugger
JTAG diagnostics tests

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
150 NXP Semiconductors

5.4.1 Power at probe test
This test checks if the PWR pin is correctly connected. If not, an error message, Error: No target power
detected, is displayed.

5.4.2 IR scan test
The IR scan test uses the TCK and TMS pins to move the target into the Shift-IR state, and then sends a long
test pattern through the IR by holding TMS=0, clocking TCK, and feeding the test pattern bits in the TDI pin.

It captures the bits coming out on the TDO pin. If the connection is working correctly, the TDI bits pass through
the IR shift register (instruction register) and eventually show up on the TDO pin. The test compares the TDO
data it captures against the TDI test pattern it sent to see if TDO contains the test pattern. It expects to find the
test pattern in the TDO, but bit-shifted to the left by some number of bits (corresponding to the IR length).

If it fails to find the test pattern, then the test reports an error, Error testing IR scan.

If the test fails to measure the length of the instruction register, then an error, Error measuring IR length, is
thrown.

The error might be due to one or more of the following reasons:

• TRST stuck low: This may hold the target JTAG logic in reset, preventing any shifts to occur.

• TMS disconnected or stuck: This may prevent the target from making any JTAG state changes.

• TCK disconnected or stuck: This may prevent any state changes or clocking of data.

• TDI disconnected or stuck: This may prevent the test pattern data from getting into the target.

• TDO disconnected or stuck: This may prevent the test pattern data from getting out of the target.

If the test fails, then it is possible that there is a physical connection problem with the JTAG pins, or the JTAG
frequency is too high.

5.4.3 Bypass scan test
The bypass scan test uses the TCK and TMS pins to move the target into the Shift-Bypass state, and then
sends a long test pattern through the data register (DR) by holding TMS=0, clocking TCK, and feeding the
test pattern bits in the TDI pin.

It captures the bits coming out on the TDO pin. If the connection is working correctly, the TDI bits pass through
the DR shift register and eventually show up on TDO. The test compares the TDO data it captures against the
TDI test pattern it sent to see if TDO contains the test pattern. It expects to find the test pattern in the TDO, but
bit-shifted to the left by some number of bits (corresponding to the bypass length).

If the test fails to find the test pattern, then it reports an error, Error testing bypass scan.

If the test fails to measure the length of the data register, then an error, Error measuring bypass length, is thrown.

The error might be due to one or more of the following reasons:

• TRST stuck low: This would hold the target JTAG logic in reset, preventing any shifts to occur.

• TMS disconnected or stuck: This would prevent the target from making any JTAG state changes.

• TCK disconnected or stuck: This would prevent any state changes or clocking of data.

• TDI disconnected or stuck: This would prevent the test pattern data from getting into the target.

• TDO disconnected or stuck: This would prevent the test pattern data from getting out of the target.

If the test fails, then it is possible that there is a physical connection problem with the JTAG pins, or the JTAG
frequency is too high.

Working with Debugger
JTAG diagnostics tests

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 151

5.4.4 Arbitrary TAP state move test
The arbitrary TAP state move test tries to exercise the TMS pin more rigorously than the other tests.

Usually, there is a little bit of TMS activity at the beginning and end of every test, but this test keeps it toggling
frequently during the entire test. If other tests are passing and this test is failing, then it might be due to a signal
integrity problem on the TMS pin.

Errors may occur at the first TAP state move operation (Error performing first TAP state move) or at the second
TAP state move operation (Error performing second TAP state move), or the IR scan operation may fail after
performing the state move operations (Error on IR scan after state moves).

5.4.5 Reading JTAG IDCODEs test
This test scans all JTAG IDCODEs on the JTAG chain and displays the detected JTAG IDCODEs.

If the test fails, then an error, Failed to scan the JTAG IDCODEs on the chain, is displayed.

The method used to scan the IDCODEs depends on a feature that is recommended by the JTAG standard, but
is not mandatory. It works on most parts, but not on all parts. If the JTAG chain has a part (provided by Freescale
or third party) that does not implement the recommended behavior, then the test results might be wrong and
misleading, and confirming the successful completion of the test will be difficult.

5.5 Editing remote system configuration
The remote system configuration model defines the connection and system configurations where you can
define a single system configuration that can be referred to by multiple connection configurations.

To edit the system configuration, perform these steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Click Edit next to the Target drop-down list.

The Properties for <system launch configuration> window appears.

4. Select the appropriate system type from the Target type drop-down list.

5. Make the respective settings in Initialization tab on page 153, Memory tab on page 154 and Advanced
tab on page 155.

6. Click OK to save the settings.

7. Click OK to close the Properties window.

In this section:

• Initialization tab on page 153

• Memory tab on page 154

• Advanced tab on page 155

Working with Debugger
Editing remote system configuration

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
152 NXP Semiconductors

5.5.1 Initialization tab
Use the Initialization tab to specify target initialization file for various cores.

Figure 32: USB TAP connection type - Initialization tab

The table below lists the various options available on the Initialization page.

Table 94: Initialization tab options

Option Description

Execute Target reset Select to execute target system reset.

Core reset Select to include the respective core for core reset operation.

Run out of reset Select to include the respective core for run out of reset operation.

Initialize target Click to specify a target initialization file for the respective core.

Initialize target script Lists the path to a Debugger Shell Tcl script that runs when launching a
debug session for the respective core. To edit, select a cell, then click the
ellipsis (...) button to open the Target InitializationFile dialog. The settings
for a group of cores can be changed all at once by editing the cell of a
common ancestor node in the Target hierarchy.

Working with Debugger
Editing remote system configuration

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 153

5.5.2 Memory tab
Use the Memory tab to specify memory configuration file for various cores.

Figure 33: USB TAP connection type - Memory tab

Figure 34: Memory tab

The table below lists the various options available on the Memory page.

Table 95: Memory tab options

Option Description

Target Lists the targets and the supported cores.

Memory configuration Select to specify a memory configuration file for the respective core.

Table continues on the next page...

Working with Debugger
Editing remote system configuration

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
154 NXP Semiconductors

Table 95: Memory tab options (continued)

Option Description

Memory configuration file Lists the path to the memory configuration file for the respective core. To edit,
select a cell, then click the ellipsis button to open the Memory Configuration
File dialog. The settings for a group of cores can be changed all at once by
editing the cell of a common ancestor node in the Target hierarchy.

5.5.3 Advanced tab
Use the Advanced tab to specify that Palladium is used to emulate the target.

Figure 35: USB TAP connection type - Advanced tab

5.6 Memory translations
This section tells how to inform the CodeWarrior debugger about the Memory Management Unit (MMU)
translations.

When debugging a Linux kernel, the debugger is automatically aware of the memory translations.

When debugging a bareboard system, there are two mutually exclusive ways of informing the debugger about
memory translations:

• A memory configuration file containing translate directives can be used to instruct the debugger about
memory translations. These translations are considered to be static for the duration of the debug session.

• The debugger can actively monitor the target MMU and read the currently active translations. This MMU
awareness feature is activated only if there are no translate directives defined in the memory
configuration file (or no such file is specified).

The MMU awareness for bareboard is supported only for processors based on e500v2,
e500mc, e5500, and e6500 cores.

 NOTE

Choose one of the two alternatives based on processor support (see Note above), the type of application being
debugged (whether the translations are static or can change dynamically at runtime), and performance (note
that constantly reading the MMU from the target can have a certain performance penalty on the debugger
operation).

Working with Debugger
Memory translations

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 155

Stationary projects in CodeWarrior are pre-configured to use a memory configuration
file. To enable the debugger MMU awareness, you need to remove the translate
directives from the memory configuration file for processors that support this feature
(e500v2, e500mc, e5500, and e6500 cores).

 NOTE

36-Bit Physical Address Support

In general, a 32-bit processor core (including e500v2 and e500mc) has virtual memory support for 232 bytes of
effective address space and real memory support for 236 bytes of physical address space. Therefore, only the
physical address space is 36-bit wide; whereas the effective address space remains 32-bit wide.

The processor executes in the effective address space. Therefore, to have the processor use the entire 36-bit
physical address space, you need to configure the MMU to translate 32-bit effective addresses to 36-bit real
addresses.

When debugging a bareboard system, you can either use a memory configuration file to instruct the debugger
about non 1:1 MMU translations, or let the debugger read the MMU translations automatically from the target.

A memory configuration file must not be related directly/only to the 36-bit addressing
features.

 TIP

For more information on memory configuration files, see the Memory Configuration Files on page 355 chapter.

5.7 CodeWarrior Command-Line Debugger
CodeWarrior supports a command-line interface that you can use to interact with CodeWarrior debugger, by
issuing commands.

You can use the command-line interface together with various scripting engines, such as the Microsoft® Visual
Basic® script engine, the Java™ script engine, TCL, Python, and Perl. You can even issue a command that
saves your command-line activity to a log file.

You use the Debugger Shell view to issue command lines to the IDE. For example, you enter the command
debug in this window to start a debugging session. The window displays the standard output and standard error
streams of command-line activity.

To open the Debugger Shell view, follow these steps:

1. Switch the IDE to the Debug perspective and start a debugging session.

2. Select Window > Show View > Other.

The Show View dialog appears.

3. Expand the Debug group.

4. Select Debugger Shell.

5. Click OK.

The Debugger Shell view appears in the view stack at the bottom of the IDE.

To issue a command-line command, type the desired command at the command prompt (%>) in the Debugger
Shell view, then press Enter or Return. The command-line debugger executes the specified command.

Working with Debugger
CodeWarrior Command-Line Debugger

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
156 NXP Semiconductors

To display a list of the commands the command-line debugger supports, type help at
the command prompt and press Enter. The help command lists each supported
command along with a brief description of each command.

 NOTE

Figure 36: Debugger Shell View

If you work with hardware as part of your project, you can use the command-line debugger to issue commands
to the debugger while the hardware is running.

To view page-wise listing of the debugger shell commands, right-click in the Debugger
Shell view and select Paging from the context menu. Alternatively, click the Enable

Paging icon from the view toolbar.

 TIP

The table below lists the instructions for common command-line debugging tasks.

Table 96: Common Command-Line Debugging Tasks

Task Instruction Comments

Open the Debugger Shell view Select Windows > Show View >
Other > Debugger Shell

The Debugger Shell view appears.

Use the help command 1. On the Debugger shell
command prompt (%>), type
help.

2. Press Enter key.

The command list for CodeWarrior
appears.

Table continues on the next page...

Working with Debugger
CodeWarrior Command-Line Debugger

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 157

Table 96: Common Command-Line Debugging Tasks (continued)

Task Instruction Comments

Enter a command. 1. On the Debugger shell, type a
command followed by a space.

2. Type any valid command-line
options, separating each with a
space.

3. Press Enter key.

You can use shortcuts instead of
complete command names, such
as k for kill.

View debug command hints. Type alias followed by a space. The syntax for the rest of the
command appears.

Review previous commands. Press Up Arrow and Down Arrow
keys.

Clear command from the
command line.

Press the Esc key.

Stop an executing script. Press the Esc key.

Toggle between insert/overwrite
mode.

Press the Insert key.

Scroll up/ down a page. Press Page Up or Page Down key.

Scroll left/right one column. Press Ctrl+Left Arrow or Ctrl+Right
Arrow keys.

Scroll to beginning or end of
buffer.

Press Ctrl+Home or Ctrl+End
keys.

5.8 Working with Breakpoints
A breakpoint is set on an executable line of a program; if the breakpoint is enabled when you debug, the
execution suspends before that line of code executes.

The different breakpoint types that you can set are listed below:

• Software breakpoints: The debugger sets a software breakpoint into target memory. When program
execution reaches the breakpoint, the processor stops and activates the debugger. The breakpoint remains
in the target memory until the user removes it.

The breakpoint can only be set in writable memory, such as SRAM or DDR. You cannot use this type of
breakpoints in ROM.

• Hardware breakpoints: Selecting the Hardware menu option causes the debugger to use the internal
processor breakpoints. These breakpoints are usually very few and can be used with all types of memories
(ROM/RAM) because they are implemented by using processor registers.

You can also set breakpoint types by issuing the bp command in the Debugger Shell
view.

 TIP

In this section:

Working with Debugger
Working with Breakpoints

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
158 NXP Semiconductors

• Setting Breakpoints on page 159

• Setting Hardware Breakpoints on page 161

• Removing Breakpoints on page 161

• Removing Hardware Breakpoints on page 162

5.8.1 Setting Breakpoints
This section explains how to set breakpoints within a program in CodeWarrior IDE.

To set a breakpoint, perform the following steps:

1. Switch to the Debug perspective in CodeWarrior IDE.

2. Open the Debug view if it is not already open by selecting Window > Show View > Debug.

The Debug view appears, shown in the figure below.

Figure 37: Debug View

3. Expand the Thread group.

4. Under the Thread group, select the thread that has the main() function.

The source code appears in the Editor view (shown in the figure below). The small blue arrow to the left of
the source code indicates which code statement the processor's program counter is set to execute next.

Figure 38: Editor View

5. In the Editor view, place the cursor on the line that has this statement: printf("Welcome to
CodeWarrior!\r\n");

6. Select Run > Toggle Line Breakpoint.

Working with Debugger
Working with Breakpoints

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 159

A blue dot appears in the marker bar to the left of the line (shown in the figure below). This dot indicates an
enabled breakpoint. After the debugger installs the breakpoint, a blue checkmark appears beside the dot.
The debugger installs a breakpoint by loading into the Java™ virtual machine the code in which you set that
breakpoint.

An alternate way to set a breakpoint is to double-click the marker bar to the left of any
source-code line. If you set the breakpoint on a line that does not have an executable
statement, the debugger moves the breakpoint to the closest subsequent line that has
an executable statement. The marker bar shows the installed breakpoint location. If you
want to set a hardware breakpoint instead of a software breakpoint, use the bp
command in the Debugger Shell view. You can also right-click on the marker bar to the
left of any source-code line, and select Set Special Breakpoint from the context menu
that appears.

 TIP

Figure 39: Editor View - After Setting Breakpoints

7. From the menu bar, select Run > Resume.

The debugger executes all lines up to, but not including, the line at which you set the breakpoint. The editor
view highlights the line at which the debugger suspended execution (shown in the figure below). Note also
that the program counter (blue arrow) is positioned here.

Figure 40: Editor Vie w - After Reaching a Breakpoint

Working with Debugger
Working with Breakpoints

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
160 NXP Semiconductors

5.8.2 Setting Hardware Breakpoints
This section explains how to set hardware breakpoints within a program in CodeWarrior IDE.

There are two ways to set hardware breakpoints:

• Using IDE to Set Hardware Breakpoints on page 161

• Using Debugger Shell to Set Hardware Breakpoints on page 161

5.8.2.1 Using IDE to Set Hardware Breakpoints
This section provides the steps to set a hardware breakpoint using the CodeWarrior IDE.

Follow these steps:

1. In the CodeWarrior IDE, select Run > Breakpoint Types > C/C++ Hardware Breakpoints.

2. In the Editor view, click in the source line where you want to place the breakpoint.

3. Select Run > Toggle Breakpoint.

A hardware breakpoint appears in the marker bar on the left side of the source line.

5.8.2.2 Using Debugger Shell to Set Hardware Breakpoints
This section provides the steps to set a hardware breakpoint using the Debugger Shell view.

Follow these steps:

1. Open the Debugger Shell view.

2. Begin the command line with the text:

bp -hw

3. Complete the command line by specifying the function, address, or file at which you want to set the
hardware breakpoint.

For example, to set a breakpoint for line 6 in your program, type:

bp -hw 6

4. Press the Enter key.

The debugger shell executes the command and sets the hardware breakpoint.

Enter help bp at the command-line prompt to see examples of the bp command syntax
and usage.

 TIP

5.8.3 Removing Breakpoints
This section explains how to remove breakpoints from a program in CodeWarrior IDE.

To remove a breakpoint from your program, you have two options:

• Remove Breakpoints using Marker Bar on page 161

• Remove Breakpoints using Breakpoints View on page 162

5.8.3.1 Remove Breakpoints using Marker Bar
This section provides the steps to remove an existing breakpoint using the marker bar.

Follow these steps:

Working with Debugger
Working with Breakpoints

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 161

1. Right-click the breakpoint in the marker bar.

2. Select Toggle Breakpoint from the menu that appears.

5.8.3.2 Remove Breakpoints using Breakpoints View
This section provides the steps to remove an existing breakpoint using the Breakpoints view.

Follow these steps:

1. Open the Breakpoints view if it is not already open by selecting Window > Show View > Breakpoints.

The Breakpoints view appears, displaying a list of breakpoints.

2. Right-click on the breakpoint you wish to remove and select Remove from the menu that appears.

The selected breakpoint is removed, and it disappears from the both the marker bar and the list in the view.

To remove all of the breakpoints from the program at once, select Remove All from the
menu.

 NOTE

5.8.4 Removing Hardware Breakpoints
This section explains how to remove hardware breakpoints from a program in CodeWarrior IDE.

There are two ways to remove existing hardware breakpoints:

• Remove Hardware Breakpoints using the IDE on page 162

• Remove Hardware Breakpoints using Debugger Shell on page 162

5.8.4.1 Remove Hardware Breakpoints using the IDE
This section explains how to remove a hardware breakpoint using the CodeWarrior IDE.

To remove a hardware breakpoint, follow these steps:

1. Right-click on the existing breakpoint in the marker bar.

2. Select Toggle Breakpoint from the menu that appears.

Alternatively, you can remove the breakpoint from the Breakpoints view, using the following steps:

1. Open the Breakpoints view if it is not already open by choosing Window > Show View > Breakpoints.

The Breakpoints view appears, displaying a list of breakpoints.

2. Right-click on the hardware breakpoint you wish to remove and select Remove from the menu that
appears.

The selected breakpoint is removed, and it disappears from the both the marker bar and the list in the view.

5.8.4.2 Remove Hardware Breakpoints using Debugger Shell
This section explains how to remove a hardware breakpoint using the Debugger Shell view.

Follow these steps:

1. Open the debugger shell.

2. Begin the command line with the text:

bp -hw

Working with Debugger
Working with Breakpoints

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
162 NXP Semiconductors

3. Complete the command line by specifying the function, address, or file at which you want to remove the
hardware breakpoint.

For example, to remove a breakpoint at line 6 in your program, type:

bp -hw 6 off

4. Press the Enter key.

The debugger shell executes the command and removes the hardware breakpoint.

5.9 Working with Watchpoints
A watchpoint is another name for a data breakpoint that you can set on an address or a range of addresses in
the memory.

The debugger halts execution each time the watchpoint location is read, written, or accessed (read or written).
You can set a watchpoint using the Add Watchpoint dialog. To open the Add Watchpoint dialog, use one of the
following views:

• Breakpoints view

• Memory view

• Variables view

The debugger handles both watchpoints and breakpoints in similar manners. You can use the Breakpoints view
to manage both watchpoints and breakpoints. It means, you can use the Breakpoints view to add, remove,
enable, and disable both watchpoints and breakpoints. The debugger attempts to set the watchpoint if a session
is in progress based on the active debugging context (the active context is the selected project in the Debug
view).

If the debugger sets the watchpoint when no debugging session is in progress, or when re-starting a debugging
session, the debugger attempts to set the watchpoint at startup as it does for breakpoints. The Problems view
displays error messages when the debugger fails to set a watchpoint. For example, if you set watchpoints on
overlapping memory ranges, or if a watchpoint falls out of execution scope, an error message appears in the
Problems view. You can use this view to see additional information about the error.

The following sections explain how to set or remove watchpoints:

• Setting Watchpoints on page 163

• Removing Watchpoints on page 165

5.9.1 Setting Watchpoints
This section provides the steps to set a watchpoint for a memory range.

You can create a watchpoint for a memory range using the Add Watchpoint dialog. You can specify these
parameters for a watchpoint:

• An address (including memory space)

• An expression that evaluates to an address

• A memory range

• An access type on which to trigger

To open the Add Watchpoint dialog, follow these steps:

1. Open the Debug perspective.

Working with Debugger
Working with Watchpoints

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 163

2. Click one of these tabs:

• Breakpoints

• Memory

• Variables

The corresponding view appears.

3. Right-click the appropriate content inside the view as mentioned in the table below.

Table 97: Opening the Add Watchpoint dialog

In the View... Right-Click...

Breakpoints An empty area inside the view.

Memory The cell or range of cells on which you want to set the watchpoint.

Variables A global variable.

The debugger does not support setting a watchpoint on a stack variable or a register
variable.

 NOTE

4. Select Add Watchpoint (C/C++) from the context menu that appears.

The Add Watchpoint dialog appears (shown in the figure below). The debugger sets the watchpoint according
to the settings that you specify in the Add Watchpoint dialog. The Breakpoints view shows information about
the newly set watchpoint. The Problems view shows error messages when the debugger fails to set the
watchpoint.

Figure 41: Add Watchpoint Dialog Box

The table below describes the options available in the Add Watchpoint dialog.

Working with Debugger
Working with Watchpoints

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
164 NXP Semiconductors

Table 98: Add Watchpoint dialog options

Option Description

Expression to watch Enter an expression that evaluates to an address on the target device.
When the specified expression evaluates to an invalid address, the
debugger halts execution and displays an error message. You can enter
these types of expressions:

• An r-value, such as &variable

• A register-based expression. Use the $ character to denote register names.
For example, enter $SP-12 to have the debugger set a watchpoint on the
stack pointer address minus 12 bytes.

The Add Watchpoint dialog does not support entering expressions that
evaluate to registers.

Memory space Select this option to specify an address, including memory space, at which
to set the watchpoint. Use the text box to specify the address or address
range on which to set the watchpoint. If a debugging session is not active,
the text/list box is empty, but you can still type an address or address
range.

Units Enter the number of addressable units that the watchpoint monitors.

Write Select this option to enable the watchpoint to monitor write activity on the
specified memory space and address range. Deselect this option if you do
not want the watchpoint to monitor write activity.

Read Select this option to enable the watchpoint to monitor read activity on the
specified memory space and address range. Deselect this option if you do
not want the watchpoint to monitor read activity.

5.9.2 Removing Watchpoints
This seciton provides the steps to remove a watchpoint.

Perform these steps:

1. Open the Breakpoints view if it is not already open by selecting Window > Show View > Breakpoints.

The Breakpoints view appears, displaying a list of watchpoints.

2. Right-click on the watchpoint you wish to remove and select Remove from the menu that appears.

The selected watchpoint is removed, and it disappears from the list in the Breakpoints view.

5.10 Working with Registers
Use the Registers view to display and modify the contents of the registers of the processor on your target
board.

To display the Registers view, select Window > Show View > Other > Debug > Registers. The Registers view
appears (shown in the figure below). The default state of the Registers view provides details on the processor's
registers.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 165

The Registers view displays categories of registers in a tree format. To display the contents of a particular
category of registers, expand the tree element of the register category of interest. The figure below shows the
Registers view with the General Purpose Registers tree element expanded.

You can also view and update registers by issuing the reg, change, and display
commands in the Debugger Shell view.

 TIP

Figure 42: Registers View

In this section:

• Changing Bit Value of a Register on page 166

• Viewing Register Details on page 167

• Registers View Context Menu on page 170

• Working with Register Groups on page 172

• Working with TLB Registers on page 173

• Working with IMMR on page 193

5.10.1 Changing Bit Value of a Register
You can change the bit value of a register in the Registers view.

To change a bit value in a register, first switch the IDE to the Debug perspective and start a debugging session.
Then proceed as follows:

1. Open the Registers view by selecting Window > Show View > Other > Debug > Registers.

2. In the Registers view, expand the register group that contains the register with the bit value that you want
to change.

3. Click the register's current bit value in the view's Value column.

The value becomes editable.

4. Type in the new value.

5. Press the Enter key.

The debugger updates the bit value. The bit value in the Value column changes to reflect your modification.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
166 NXP Semiconductors

5.10.2 Viewing Register Details
This section explains how to use the Registers view to show the details of a register.

To open the Registers view, you must first start a debugging session.

To see the registers and their descriptions, follow these steps:

1. In the Debug perspective, click the Registers view tab.

The Registers view appears.

2. Click the View Menu button (the inverted triangle) on the Registers view toolbar.

3. Select Layout > Vertical or Layout > Horizontal to show register details.

Selecting Layout > Registers View Only hides the register details.

 NOTE

The details of the register, selected by default in the Registers view, are displayed, as shown in the figure
below.

Figure 43: Registers View - Register Details

4. Expand a register group to see individual registers.

5. Select a specific register by clicking it.

The details of the selected register get displayed.

Use the Format list box to change the format of data displayed for the selected register.

 NOTE

6. Examine register details. For example,

• Use the Bit Fields group to see a graphical representation of the selected register's bit fields. You can
use this graphical representation to select specific bits or bit fields.

• Use the Actions group to perform operations, such as update bit field values and format the displayed
register data.

• Use the Description group to see an explanation of the selected register, bit field, or bit value.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 167

To enlarge the Registers view, click Maximize on the view's toolbar. After you finish
looking at the register details, click Restore on the view's toolbar to return the view to
its previous size. Alternatively, right-click the Registers tab and select Detached. The
Registers view becomes a floating window that you can resize. After you finish looking
at the register details, right-click the Registers tab of the floating window and select
Detached again. You can rearrange the re-attached view by dragging its tab to a
different collection of view tabs.

 TIP

In this section:

• Bit Fields on page 168

• Changing Bit Fields on page 168

• Actions on page 169

• Description on page 170

5.10.2.1 Bit Fields
The Bit Fields group of the Registers view shows a graphical representation of the selected register's bit
values.

The figure below shows the Bit Fields group of the Registers view. This graphical representation shows how the
register organizes bits. You can use this representation to select and change the register's bit values. Hover the
cursor over each part of the graphical representation to see additional information.

Figure 44: Register Details - Bit Fields Group

You can also view register details by issuing the reg command in the Debugger Shell
view.

 TIP

A bit field is either a single bit or a collection of bits within a register. Each bit field has a mnemonic name that
identifies it. You can use the Field list box to view and select a particular bit field of the selected register. The
list box shows the mnemonic name and bit-value range of each bit field. In the Bit Fields graphical representation,
a box surrounds each bit field. A red box surrounds the bit field shown in the Field list box.

After you use the Field list box to select a particular bit field, you see its current value in the = text box. If you
change the value shown in the text box, the Registers view shows the new bit field value.

5.10.2.2 Changing Bit Fields
To change a bit field in a register, you must first start a debugging session, and then open the Registers view.

To change a bit field, perform these steps:

1. In the Registers view, view register details.

2. Expand the register group that contains the bit field you want to change.

Register details appear in the Registers view (shown in the figure below).

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
168 NXP Semiconductors

Figure 45: Registers View - Register Details

3. From the expanded register group above the register details, select the name of the register that contains
the bit field that you want to change.

The Bit Fields group displays a graphical representation of the selected bit field. The Description group
displays explanatory information about the selected bit field and parent register.

4. In the Bit Fields group, click the bit field that you want to change. Alternatively, use the Field list box to
specify the bit field that you want to change.

5. In the = text box, type the new value that you want to assign to the bit field.

6. In the Action group, click Write.

The debugger updates the bit field value. The bit values in the Value column and the Bit Fields group change
to reflect your modification.

Click Revert to discard your changes and restore the original bit field value.

 NOTE

5.10.2.3 Actions
Use the Actions group of the Registers view to perform various operations on the selected register's bit field
values.

The figure below shows the Actions group of the Registers view.

Figure 46: Register View - Actions Group

The table below lists each item in the Actions group and explains the purpose of each.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 169

Table 99: Actions Group Items

Item Description

Revert Discard your changes to the current bit field value and restore the original
value. The debugger disables this button if you have not made any
changes to the bit field value.

Write Save your changes to the current bit field value and write those changes
into the register's bit field. The debugger disables this button after writing
the new bit field value, or if you have not made any changes to that value.

Reset Change each bit of the bit field value to its register-reset value. The register
takes on this value after a target-device reset occurs. To confirm the bit
field change, click Write. To cancel the change, click Revert.

Summary Display Description group content in a pop-up window. Press the Esc key
to close the pop-up window.

Format Specify the data format of the displayed bit field values.

5.10.2.4 Description
The Description group of the Registers view shows explanatory information for the selected register.

The Description group of the Registers view is shown in the figure below.

Figure 47: Register View - Description Group

The register information covers:

• Current value

• Description

• Bit field explanations and values

Some registers have multiple modes (meaning that the register's bits can have multiple meanings, depending
on the current mode). If the register you examine has multiple modes, you must select the appropriate mode.

5.10.3 Registers View Context Menu
The Registers view context menu provides you various options for working with registers.

To display the Registers view context menu, right-click a register in the Registers view.

The table below lists the options of the Registers view context menu.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
170 NXP Semiconductors

Table 100: Registers View Context Menu Options

Option Description

Select All Selects the entire contents of the current register.

Copy Registers Copies to the system clipboard the contents of the selected register.

Enable Allows the debugger to access the selected register.

Disable Prevents the debugger from accessing the selected register.

View Memory Displays the corresponding memory for the selected register.

Format Use to specify the displayed data format for the selected register:

• Natural: Default data format

• Decimal: Decimal data format

• Hexadecimal: Hexadecimal data format

• Binary: Binary data format

• Fractional: Fractional data formats, Q0-Q31

Cast to Type Opens a dialog that you can use to cast the selected register value to a
different data type.

Restore Original Type Reverts the selected register value to its default data type.

Find Opens a dialog that you can use to select a particular register.

Change Value Opens a dialog that you can use to change the current register value.

Show Details As Allows you to specify how the debugger displays the register's contents.
The options are:

• Default Viewer: The register's contents are displayed as a hexadecimal
value.

• Register Details Panel: The register's values are display in a bit format,
along with a description of their purpose.

Add Register Group Opens a dialog that you can use to create a new collection of registers to
display in the Registers view.

Restore Default Register
Groups

Resets the custom groups of registers created using the Add Register
Group option, and restores the default groups provided by the debugger as
they were when CodeWarrior was installed. Note that if you select this
option, all custom groupings of registers done by you are lost.

Add Watchpoint (C/C++) Opens the Add Watchpoint dialog, proposing to set a watchpoint on an
expression representing the register. The debugger sets the watchpoint
according to the settings that you specify in the Add Watchpoint dialog.
The Breakpoints view shows information about the newly set watchpoint.
The Problems view shows error messages when the debugger fails to set
the watchpoint.

Watch Adds a new watch-expression entry to the Expressions view.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 171

5.10.4 Working with Register Groups
This section describes different operations that can be performed on register groups.

You can perform the following operations on the register groups:

• Adding a Register Group on page 172

• Editing a Register Group on page 173

• Removing a Register Group on page 173

5.10.4.1 Adding a Register Group
You can add a custom group of registers to the default register tree structure. The default display of the
Registers view groups the related registers into a tree structure.

To add a new register group, perform these steps:

1. Right-click in the Registers view.

A context menu appears.

2. Select Add Register Group from the context menu.

The Register Group dialog appears, as shown in the figure below.

Figure 48: Register Group Dialog Box

3. Enter in the Group Name text box a descriptive name for the new group.

4. Select the checkbox next to each register you want to appear in the new group.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
172 NXP Semiconductors

Click Select All to check all of the checkboxes. Click Deselect All to clear all of the
checkboxes.

 TIP

5. Click OK.

The Register Group dialog closes. The new group name appears in the Registers view.

5.10.4.2 Editing a Register Group
In the Registers view, you can edit both the default register groups and the groups that you add.

To do so, use the following steps:

1. In the Registers view, right-click the name of the register group you want to edit.

A context menu appears.

2. Select Edit Register Group from the context menu.

The Register Group dialog appears.

3. If you wish, enter in the Group Name text box a new name for the group.

4. Check the checkbox next to each register you want to appear in the group.

Click Select All to check all of the checkboxes. Click Deselect All to clear all of the
checkboxes.

 TIP

5. Click OK.

The Register Group dialog closes. The new group name appears in the Registers view.

5.10.4.3 Removing a Register Group
In the Registers view, you can remove register groups.

To remove a register group, follow these steps:

1. In the Registers view, right-click the name of register group that you wish to remove.

A context menu appears.

2. Select Remove Register Group from the context menu.

The selected register group disappears from the Registers view.

5.10.5 Working with TLB Registers
This section explains how to work with translation look-aside buffer (TLB) registers.

TLB registers can be classified into the following three categories:

• TLB0: A 256-entry, 2-way (e500v1) or 512-entry, 4-way (e500v2, e500mc, e5500) or 1024-entry, 8-way
(e6500) set-associative unified (for instruction and data accesses) array supporting only 4 KB pages.

• TLB1: A 16-entry (e500v1, e500v2) or 64-entry (e500mc, e5500, e6500) fully-associative unified (for
instruction and data accesses) array supporting a range of variable-sized pages (VSP) page sizes.

• Real Address Translation (LRAT): An 8-element, fully associative array. LRAT registers are available only
for e6500 core.

In this section:

• Viewing TLB Registers in Registers View on page 174

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 173

• Reading TLB Registers from Debugger Shell on page 175

• Initializing TLB Registers on page 177

• TLB Register Details on page 177

5.10.5.1 Viewing TLB Registers in Registers View
This section explains how to find TLB registers using the Registers view.

To view TLB registers in the Registers view, follow these steps:

1. Start the CodeWarrior IDE.

2. Open (or create) a project that targets the Power Architecture system you want to debug.

3. From the CodeWarrior IDE menu bar, select Run > Debug.

The IDE starts a debug session, connects to the target system, and halts the system at the program entry
point.

4. Select Window > Show View > Registers.

The Registers view appears, as shown in the figure below.

Figure 49: Registers View - TLB Register Groups Displayed

The Registers view shows all registers supported by the target system. The Registers view groups all
regPPCTLB0 registers and regPPCTLB1 registers in the separate groups (see the figure above).

To view all of the elements of a TLB register group, double-click the group you want to view. A window appears
that displays all of the elements of the selected TLB.

This window shows all of the TLB registers, and their contents. To modify TLB registers during a CodeWarrior
debug session, select the TLB register you want to modify from the Registers view, as shown in the figure below.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
174 NXP Semiconductors

Figure 50: Registers View

This window allows you to view register contents in different formats, and change portions of the selected
register.

5.10.5.2 Reading TLB Registers from Debugger Shell
This section explains how to read TLB registers from the Debugger Shell view.

TLB registers are very complex, so to easily understand TLB register information, the information should be
provided in a format that is easy to read and understand. The Debugger Shell command, displaytlb, extracts
the meaningful information about a TLB register set and presents it in an easy to understand format. This
command outputs only valid entries from the TLB register set. The displaytlb command is very useful when
debugging a Linux kernel.

The syntax of the displaytlb command is as follows:

displaytlb [TLBSetNumber] ?[printInvalid]?

The command arguments are explained below:

• TLBSetNumber: Indicates a number representing the TLB register set that the user wants to print. Each
value for this argument corresponds to one TLB register set displayed in the Registers view. The table
below shows all the values taken by the TLBSetNumber argument.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 175

Table 101: TLBSetNumber Values

TLBSetNumber Value TLB Register Set Name

0 regPPCTLB0

1 regPPCTLB1

2 LRAT (available only for e6500 core)

• printInvalid: Determines whether only valid TLB register set entries will get displayed or all entries will get
displayed. It is an optional argument. If no value is given to this argument, it takes the value, 0, which
means only valid TLB register set entries will be displayed in the output. If a non-zero value is given to this
argument, then all the TLB register set entries will get displayed in the output.

To use the displaytlb command, perform the following steps:

1. From the CodeWarrior IDE menu bar, select Window > Show View > Other.

The Show View dialog appears.

2. Expand the Debug group.

3. Select Debugger Shell.

4. Click OK.

The Debugger Shell view appears in the view stack at the bottom of the IDE.

5. In the Debugger Shell view, run the following command:

displaytlb 1

The command output is shown in the figure below.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
176 NXP Semiconductors

Figure 51: Output of Running the displaytlb 1 Command for P2040DS

5.10.5.3 Initializing TLB Registers
This section describes how to initialize TLB registers using commands.

You can use reg, writereg128/writereg192 commands in the debugger initialization files to set up TLB
registers at target system startup. For more details, see writereg128 on page 351.

5.10.5.4 TLB Register Details
This section provides detailed information on TLB registers, categorizing the registers based on the processor
core used.

This section explains the following registers:

• e500 Registers on page 178

• e500v2 Registers on page 181

• e500mc Registers on page 184

• e5500 Registers on page 187

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 177

• e6500 Registers on page 189

5.10.5.4.1 e500 Registers
This section provides information about e500 TLB0 registers, starting from L2MMU_TLB0 through
L2MMU_TLB255.

Table 102: e500 TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB255)

Offset Range Field Description

0 : 0 V Valid bit for entry

1 : 1 TS Translation address space (compared with AS bit of the current access)

2 : 5 TSIZE Encoded Page size

0000 Reserved

0001 4 Kbyte

0010 16 Kbyte

0011 64 Kbyte

0100 256 Kbyte

0101 1 Mbyte

0110 4 Mbyte

0111 16 Mbyte

1000 64 Mbyte

1001 256 Mbyte

6 : 7 - RESERVED

8 : 15 TID Translation ID (compared with PID0, PID1, PID2 or TIDZ (all zeros))

16 : 17 NV Next Victim bits used for LRU replacement algorithm.

18 : 31 - RESERVED

32 : 36 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

37 : 37 - RESERVED

38 : 38 X0 Extra system attribute bits (for definition by system software)

39 : 39 X1 Extra system attribute bits (for definition by system software)

40 : 43 U0 - U3 User attribute bits, used only by software. These bits exist in the L2 MMU
TLBs only (TLB1 and TLB0)

44 : 44 - RESERVED

45 : 45 SR Supervisor read permission bit

46 : 46 SW Supervisor write permission bit

47 : 47 SX Supervisor execute permission bit

48 : 48 UR User read permission bit

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
178 NXP Semiconductors

Table 102: e500 TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB255) (continued)

Offset Range Field Description

49 : 49 UW User write permission bit

50 : 50 UX User execute permission bit

51:59 - RESERVED

60 : 63 Extended
RPN

64 : 83 RPN Real page number

84: 95 - RESERVED

96 : 115 EPN Effective page number

116 : 127 - RESERVED

The table below shows e500 TLB1 registers, starting from L2MMU_CAM0 through L2MMU_CAM15.

Table 103: e500 TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM15)

Offset Range Field Description

0 : 3 TSIZE Encoded Page size

0000 Reserved

0001 4 Kbyte

0010 16 Kbyte

0011 64 Kbyte

0100 256 Kbyte

0101 1 Mbyte

0110 4 Mbyte

0111 16 Mbyte

1000 64 Mbyte

1001 256 Mbyte

4 : 4 TS Translation address space (compared with AS bit of the current access)

5 : 7 - RESERVED

8 : 15 TID Translation ID (compared with PID0, PID1, PID2 or TIDZ (all zeros))

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 179

Table 103: e500 TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM15) (continued)

Offset Range Field Description

16 : 23 MASK SIZE MASK

4 KB 0x0000000000

16 KB 0x0000000001

64 KB 0x0000000011

256 KB 0x0000000111

1 MB 0x0000001111

4 MB 0x0000011111

16 MB 0x0000111111

64 MB 0x0001111111

256 MB 0x0011111111

24 : 26 - RESERVED

27 : 31 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

32 : 32 UR User read permission bit

33 : 33 UW User write permission bit

34 : 34 UX User execute permission bit

35 : 35 SR Supervisor read permission bit

36 : 36 SW Supervisor write permission bit

37 : 37 SX Supervisor execute permission bit

38 : 38 X0 Extra system attribute bits (for definition by system software)

39 : 39 X1 Extra system attribute bits (for definition by system software)

40 : 43 U0 - U3 User attribute bits, used only by software. These bits exist in the L2 MMU
TLBs only (TLB1 and TLB0)

44 : 44 IPROT Invalidation protection (exists in TLB1 only)

45 : 63 - RESERVED

64 : 83 RPN Real page number

84 : 95 - RESERVED

96 : 115 EPN Effective page number

116 : 126 - RESERVED

127 : 127 V Valid bit for entry

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
180 NXP Semiconductors

5.10.5.4.2 e500v2 Registers
This section provides information about e500v2 TLB0 registers, starting from L2MMU_TLB0 through
L2MMU_TLB511.

Table 104: e500v2 TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB511)

Offset Range Field Description

0 : 0 V Valid bit for entry

1 : 1 TS Translation address space (compared with AS bit of the current access)

2 : 5 TSIZE Encoded Page size

0000 Reserved

0001 4 Kbyte

0010 16 Kbyte

0011 64 Kbyte

0100 256 Kbyte

0101 1 Mbyte

0110 4 Mbyte

0111 16 Mbyte

1000 64 Mbyte

1001 256 Mbyte

1010 1 Gbyte

1011 4 Gbyte

6 : 7 - RESERVED

8 : 15 TID Translation ID (compared with PID0, PID1, PID2, or TIDZ (all zeros))

16 : 17 NV Next Victim bits used for LRU replacement algorithm.

18 : 31 - RESERVED

32 : 36 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

37 : 37 - RESERVED

38 : 38 X0 Extra system attribute bits (for definition by system software)

39 : 39 X1 Extra system attribute bits (for definition by system software)

40 : 43 U0 - U3 User attribute bits, used only by software. These bits exist in the L2 MMU
TLBs only (TLB1 andTLB0)

44 : 44 - RESERVED

45 : 45 SR Supervisor read permission bit

46 : 46 SW Supervisor write permission bit

47 : 47 SX Supervisor execute permission bit

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 181

Table 104: e500v2 TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB511) (continued)

Offset Range Field Description

48 : 48 UR User read permission bit

49 : 49 UW User write permission bit

50 : 50 UX User execute permission bit

51:59 - RESERVED

60 : 63 Extended
RPN

64 : 83 RPN Real page number

84: 95 - RESERVED

96 : 115 EPN Effective page number

116 : 127 - RESERVED

The table below shows e500v2 TLB1 registers, starting from L2MMU_CAM0 through L2MMU_CAM15.

Table 105: e500v2 TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM15)

Offset Range Field Description

0 : 3 TSIZE Encoded Page size

0000 Reserved

0001 4 Kbyte

0010 16 Kbyte

0011 64 Kbyte

0100 256 Kbyte

0101 1 Mbyte

0110 4 Mbyte

0111 16 Mbyte

1000 64 Mbyte

1001 256 Mbyte

1010 1 Gbyte

1011 4 Gbyte

4 : 4 TS Translation address space (compared with AS bit of the current access)

5 : 7 - RESERVED

8 : 15 TID Translation ID (compared with PID0, PID1, PID2 or TIDZ (all zeros))

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
182 NXP Semiconductors

Table 105: e500v2 TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM15) (continued)

Offset Range Field Description

16 : 25 MASK SIZE MASK

4 KB 0x0000000000

16 KB 0x0000000001

64 KB 0x0000000011

256 KB 0x0000000111

1 MB 0x0000001111

4 MB 0x0000011111

16 MB 0x0000111111

64 MB 0x0001111111

256 MB 0x0011111111

1 GB 0x0111111111

4 GB 0x1111111111

26 : 26 - RESERVED

27 : 31 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

32 : 32 UR User read permission bit

33 : 33 UW User write permission bit

34 : 34 UX User execute permission bit

35 : 35 SR Supervisor read permission bit

36 : 36 SW Supervisor write permission bit

37 : 37 SX Supervisor execute permission bit

38 : 38 X0 Extra system attribute bits (for definition by system software)

39 : 39 X1 Extra system attribute bits (for definition by system software)

40 : 43 U0 - U3 User attribute bits, used only by software. These bits exist in the L2 MMU
TLBs only (TLB1 and TLB0)

44 : 44 IPROT Invalidation protection (exists in TLB1 only)

45 : 59 - RESERVED

60 : 63 Extended
RPN

64 : 83 RPN Real page number

84 : 95 - RESERVED

96 : 115 EPN Effective page number

116 : 126 - RESERVED

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 183

Table 105: e500v2 TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM15) (continued)

Offset Range Field Description

127 : 127 V Valid bit for entry

5.10.5.4.3 e500mc Registers
This section provides information about e500mc TLB0 registers, starting from L2MMU_TLB0 through
L2MMU_TLB511.

Table 106: e500mc TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB511)

Offset Range Field Description

0:0 V Valid bit for entry.

1:1 TS Translation space. Compared with MSR[IS] (instruction fetch) or MSR[DS]
(memory reference) to determine if this TLB entry may be used for
translation.

2:5 TSIZE Defines the page size of the TLB entry.

6:7 Reserved -

8:15 TID Translation identity. Defines the process ID for this TLB entry.

16:17 NV Next victim. Can be used to identify the next victim to be targeted for a TLB
miss replacement operation for those TLBs that support the NV field.

18:31 Reserved -

32:32 W Write-through

33:33 I Caching-inhibited

34:34 M Memory coherency required

35:35 G Guarded

36:36 E Endianness. Determines endianness for the corresponding page.

37:37 Reserved -

38:38 X0 Implementation-dependent page attribute. Implemented as storage.

39:39 X1 Implementation-dependent page attribute. Implemented as storage.

40:43 U0-U3 User attribute bits. These bits are associated with a TLB entry and can be
used by system software.

44:44 Reserved -

45:45 SR Supervisor read permission bit.

46:46 SW Supervisor write permission bit.

47:47 SX Supervisor execute permission bit.

48:48 UR User read permission bit.

49:49 UW User write permission bit.

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
184 NXP Semiconductors

Table 106: e500mc TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB511) (continued)

Offset Range Field Description

50:50 UX User execute permission bit.

51:51 Reserved -

52:52 GS Translation guest space.

53:53 VF Virtualization fault. Controls whether a DSI occurs on data accesses to the
page, regardless of permission bit settings.

54:59 LPIDR Translation logical partition ID.

60:83 RPN Real page number

84:95 Reserved -

96:115 EPN Effective page number

116:127 Reserved -

The table below shows e500mc TLB1 registers, starting from L2MMU_CAM0 through L2MMU_CAM63.

Table 107: e500mc TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM63)

Offset Range Field Description

0:3 TSIZE Defines the page size of the TLB entry.

4:4 TS Translation space. Compared with MSR[IS] (instruction fetch) or MSR[DS]
(memory reference) to determine if this TLB entry may be used for
translation.

5:7 Reserved -

8:15 TID Translation identity. Defines the process ID for this TLB entry.

16:25 MASK SIZE MASK

4 KB 0x0000000000

16 KB 0x0000000001

64 KB 0x0000000011

256 KB 0x0000000111

1 MB 0x0000001111

4 MB 0x0000011111

16 MB 0x0000111111

64 MB 0x0001111111

256 MB 0x0011111111

1 GB 0x0111111111

4 GB 0x1111111111

26:26 Reserved -

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 185

Table 107: e500mc TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM63) (continued)

Offset Range Field Description

27:27 W Write-through

28:28 I Caching-inhibited

29:29 M Memory coherency required

30:30 G Guarded

31:31 E Endianness. Determines endianness for the corresponding page.

32:32 UR User read permission bit.

33:33 UW User write permission bit.

34:34 UX User execute permission bit.

35:35 SR Supervisor read permission bit.

36:36 SW Supervisor write permission bit.

37:37 SX Supervisor execute permission bit.

38:38 X0 Implementation-dependent page attribute. Implemented as storage.

39:39 X1 Implementation-dependent page attribute. Implemented as storage.

40:43 U0-U3 User attribute bits. These bits are associated with a TLB entry and can be
used by system software.

44:44 IPROT Invalidate protect. Set to protect this TLB entry from invalidate operations
from tlbivax, tlbilx, or MMUCSR0 TLB flash invalidates.

45:51 Reserved -

52:52 GS Translation guest space.

53:53 VF Virtualization fault. Controls whether a DSI occurs on data accesses to the
page, regardless of permission bit settings.

54:59 LPIDR Translation logical partition ID.

60:83 RPN Real page number

84:95 Reserved -

96:115 EPN Effective page number

116:126 Reserved -

127:127 V Valid bit for entry.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
186 NXP Semiconductors

5.10.5.4.4 e5500 Registers
This section provides information about e5500 TLB0 registers, starting from L2MMU_TLB0 through
L2MMU_TLB511.

Table 108: e5500 TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB511)

Offset Range Field Description

0:0 V Valid bit for entry.

1:1 TS Translation space. Compared with MSR[IS] (instruction fetch) or MSR[DS]
(memory reference) to determine if this TLB entry may be used for
translation.

2:5 TSIZE Defines the page size of the TLB entry.

6:7 Reserved -

8:15 TID Translation identity. Defines the process ID for this TLB entry.

16:17 NV Next victim. Can be used to identify the next victim to be targeted for a TLB
miss replacement operation for those TLBs that support the NV field.

18:31 Reserved -

32:32 W Write-through

33:33 I Caching-inhibited

34:34 M Memory coherency required

35:35 G Guarded

36:36 E Endianness. Determines endianness for the corresponding page.

37:37 Reserved -

38:38 X0 Implementation-dependent page attribute. Implemented as storage.

39:39 X1 Implementation-dependent page attribute. Implemented as storage.

40:43 U0-U3 User attribute bits. These bits are associated with a TLB entry and can be
used by system software.

44:44 Reserved -

45:45 SR Supervisor read permission bit.

46:46 SW Supervisor write permission bit.

47:47 SX Supervisor execute permission bit.

48:48 UR User read permission bit.

49:49 UW User write permission bit.

50:50 UX User execute permission bit.

51:51 Reserved -

52:52 GS Translation guest space.

53:53 VF Virtualization fault. Controls whether a DSI occurs on data accesses to the
page, regardless of permission bit settings.

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 187

Table 108: e5500 TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB511) (continued)

Offset Range Field Description

54:59 LPIDR Translation logical partition ID.

60:91 Reserved -

92:115 RPN Real page number

116:127 Reserved -

128:179 EPN Effective page number

180:191 Reserved -

The table below shows e5500 TLB1 registers, starting from L2MMU_CAM0 through L2MMU_CAM63.

Table 109: e5500 TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM63)

Offset Range Field Description

0:3 TSIZE Defines the page size of the TLB entry.

4:4 TS Translation space. Compared with MSR[IS] (instruction fetch) or MSR[DS]
(memory reference) to determine if this TLB entry may be used for
translation.

5:7 Reserved -

8:15 TID Translation identity. Defines the process ID for this TLB entry.

16:25 MASK SIZE MASK

4 KB 0x0000000000

16 KB 0x0000000001

64 KB 0x0000000011

256 KB 0x0000000111

1 MB 0x0000001111

4 MB 0x0000011111

16 MB 0x0000111111

64 MB 0x0001111111

256 MB 0x0011111111

1 GB 0x0111111111

4 GB 0x1111111111

26:26 Reserved -

27:27 W Write-through

28:28 I Caching-inhibited

29:29 M Memory coherency required

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
188 NXP Semiconductors

Table 109: e5500 TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM63) (continued)

Offset Range Field Description

30:30 G Guarded

31:31 E Endianness. Determines endianness for the corresponding page.

32:32 UR User read permission bit.

33:33 UW User write permission bit.

34:34 UX User execute permission bit.

35:35 SR Supervisor read permission bit.

36:36 SW Supervisor write permission bit.

37:37 SX Supervisor execute permission bit.

38:38 X0 Implementation-dependent page attribute. Implemented as storage.

39:39 X1 Implementation-dependent page attribute. Implemented as storage.

40:43 U0-U3 User attribute bits. These bits are associated with a TLB entry and can be
used by system software.

44:44 IPROT Invalidate protect. Set to protect this TLB entry from invalidate operations
from tlbivax, tlbilx, or MMUCSR0 TLB flash invalidates.

45:51 Reserved -

52:52 GS Translation guest space.

53:53 VF Virtualization fault. Controls whether a DSI occurs on data accesses to the
page, regardless of permission bit settings.

54:59 LPIDR Translation logical partition ID.

60:91 Reserved -

92:115 RPN Real page number

116:127 Reserved -

128:179 EPN Effective page number

180:190 Reserved -

191:191 V Valid bit for entry.

5.10.5.4.5 e6500 Registers
This section provides information about e6500 TLB0 registers, starting from L2MMU_TLB0 through
L2MMU_TLB1023.

Table 110: e6500 TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB1023)

Offset Range Field Description

0:0 V Valid bit for entry.

1:1 TS Translation address space (compared with AS bit of the current access.)

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 189

Table 110: e6500 TLB0 Registers (L2MMU_TLB0 through L2MMU_TLB1023) (continued)

Offset Range Field Description

2:6 TSIZE Encoded page size. Only present in TLB1, however software should
always set page sizes for TLB0 for future compatibility.

7:9 - Reserved

10:23 TID Translation ID (compared with PID)

24:26 NV

27:31 - Reserved

32:36 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

37:37 - Reserved

38:38 X0 Extra system attribute bit

39:39 X1 Extra system attribute bit

40:43 U0-U3 User attribute bits, used only by software.

44:44 - Reserved

45:45 SR Supervisor read permission bit

46:46 SW Supervisor write permission bit

47:47 SX Supervisor execute permission bit

48:48 UR User read permission bit

49:49 UW User write permission bit

50:50 UX User execute permission bit

51:51 - Reserved

52:52 GS Translation guest space

53:53 VF Virtualization fault

54:59 LPIDR Translation logical partition ID

60:87 - Reserved

88:115 RPN Real page number

116:127 - Reserved

128:179 EPN Effective page number

180:191 - Reserved

The table below shows e6500 TLB1 registers, starting from L2MMU_CAM0 through L2MMU_CAM63.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
190 NXP Semiconductors

Table 111: e6500 TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM63)

Offset Range Field Description

0:4 TSIZE Encoded Page size

0b00010 4 KB

0b00011 8 KB

0b00100 16 KB

0b00101 32 KB

0b00110 64 KB

0b00111 128 KB

0b01000 256 KB

0b01001 512 KB

0b01010 1 MB

0b01011 2 MB

0b01100 4 MB

0b01101 8 MB

0b01110 16 MB

0b01111 32 MB

0b10000 64 MB

0b10001 128 MB

0b10010 256 MB

0b10011 512 MB

0b10100 1 GB

0b10101 2 GB

0b10110 4 GB

0b10111 8 GB

0b11000 16 GB

0b11001 32 GB

0b11010 64 GB

0b11011 128 GB

0b11100 256 GB

0b11101 512 GB

5:5 Reserved

6:6 IND Indirect bit. When set, this TLB entry is an indirect entry used to locate a
page table.

7:7 TS Translation address space (compared with AS bit of the current access.)

Table continues on the next page...

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 191

Table 111: e6500 TLB1 Registers (L2MMU_CAM0 through L2MMU_CAM63) (continued)

Offset Range Field Description

8:9 Reserved

10:23 TID Translation ID (compared with PID)

24:26 Reserved

27:31 WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

32:32 UR User read permission bit

33:33 UW User write permission bit

34:34 UX User execute permission bit

35:35 SR Supervisor read permission bit

36:36 SW Supervisor write permission bit

37:37 SX Supervisor execute permission bit

38:38 X0 Extra system attribute bit

39:39 X1 Extra system attribute bit

40:43 U0-U3 User attribute bits, used only by software.

44:44 IPROT Invalidation protection

45:51 Reserved

52:52 GS Translation guest space

53:53 VF Virtualization fault

54:59 LPIDR Translation logical partition ID

60:87 Reserved

88:115 RPN Real page number (depending on page size, only the bits associated with a
page boundary are valid. Bits that represent offsets within a page are
ignored and should be zero)

116:127 Reserved

128:179 EPN Effective page number (Depending on page size, only the bits associated
with a page boundary are valid. Bits that represent offsets within a page
are ignored and should be zero.)

180:190 Reserved

191:191 V Valid bit for entry.

The table below shows e6500 LRAT registers, starting from L2MMU_LRAT0 through L2MMU_LRAT7.

Working with Debugger
Working with Registers

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
192 NXP Semiconductors

Table 112: e6500 LRAT Registers (L2MMU_LRAT0 through L2MMU_LRAT7)

Offset Range Field Description

0:4 LSIZE Logical page size. Describes the size of the logical page of the LRAT entry.
The possible values are the same as for TSIZE field from TLB0 and TLB1.

5:25 Reserved

26:31 LPID Logical partition ID value. Is compared with LPIDR during translation to
help select an LRAT entry.

32:55 Reserved

56:83 LRPN Real page number

84:119 Reserved

120:147 LPN Logical page number. Describes the logical address of the start of the
page.

148:158 Reserved

159:159 V LRAT valid bit

5.10.6 Working with IMMR
This section describes internal memory map register (IMMR).

Use the Debugger Shell: eppc::setMMRBaseAddr command to define the memory location of the IMMR. This
information lets the CodeWarrior debugger find the IMMR register during a debug session.

The Change IMMR command is applicable to 825x or 826x processors.

 NOTE

5.11 Viewing memory
This section explains how to view memory of a target processor.

The debugger allocates multiple memory spaces in the IDE for flexible control over the memory access. The
number of supported memory spaces and their properties depends upon the debugged processor.

You can display and access the supported memory spaces for a target in the Memory and Memory Browser
views, in the Import/Export/Fill Memory Action Task View or in the Debugger Shell view using the designated
memory space prefix. Use the mem -ms command to list the supported memory spaces for a processor.

To display the Memory view, select Window > Show View > Other > Debug > Memory. The figure below shows
a Memory view displaying physical memory address space.

Working with Debugger
Viewing memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 193

Figure 52: Memory View

The Memory view seamlessly displays 32-bit, 36-bit, 40-bit, and 64-bit addresses
depending upon the selected memory space and the target processor currently under
debug process.

 NOTE

In this section:

• Adding Memory Monitor on page 194

5.11.1 Adding Memory Monitor
This section describes how to add memory monitor in the Memory view.

To display the supported memory spaces for a target in the Memory view, perform the following steps:

1.
In the Memory view, click the Add Memory Monitor icon .

The Monitor Memory dialog appears (shown in the figure below).

2. Specify the address in the Enter address or expression to monitor drop-down list.
Figure 53: Monitor Memory Dialog Box

Working with Debugger
Viewing memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
194 NXP Semiconductors

3. Select one of the supported memory spaces from the Memory space drop-down list.

• Virtual (v)

Indicates that the specified address space is same as the address space in which the processor executes.
When you select the Virtual option, the debugger performs virtual to physical translations based on the
MMU translations read from the target or based on the translate directives specified in the memory
configuration file (for bareboard debugging) or the kernel awareness plug-in (for Linux debugging). In
addition, the Virtual memory space is the one that is relevant for the Program Counter (PC) and the Stack
Pointer (SP) registers. The width of the Virtual memory space is determined by the target processor's
effective address size. For e500v2 and e500mc processors the width of the Virtual memory space is 32-
bit. For e5500 and e6500 processors, the width of the Virtual memory is 64-bit. Note that the Virtual memory
space is the default memory space in the Disassembly view.

• Physical (p)

Indicates that the specified address is interpreted as a physical address. The debugger does not attempt
to perform virtual to physical translations, therefore it simply accesses the specified address as a physical
address. When you select the Physical option, any translations read from the target MMU or defined in the
memory configuration file or the kernel awareness plug-in are disregarded. In addition, the behavior is
cache-coherent. If the data is in cache, the debugger gets it from there, otherwise the access goes to the
memory. Note that a Physical cacheable read access can cause modified cache lines to be flushed to the
memory before being accessed.

For processors based on e500v2, e500mc, e5500 cores, the width of the physical memory address space
is 36-bit. The e6500 core has a 40-bit physical memory space. Older cores like e300 and e500 only support
32-bit physical addresses.

• Physical Cache Inhibited

The Physical Cache Inhibited option disregards the cache and accesses whatever is in the memory. This
option allows you to access the data directly from the main memory, even if the data or address is available
in one of the caches. The Physical Cache Inhibited memory space is only available on processors based
on e500mc/e5500/e6500 cores.

The e500mc/e5500/e6500 core architecture specifies that it is a programming error to
inter-mix cache-inhibited with cacheable accesses to the same memory range. If this
error is encountered, it can lead to a number of problems like stale data, and un-intended
corruption of neighboring locations.

Also, you should not perform a cacheable access to a memory range which is defined
as cache-inhibited in the MMU.

 CAUTION

When using the Virtual memory space, the debugger performs virtual to physical translations, and based on the
MMU setup it requires the correct cacheable/cache-inhibited attribute for the particular memory range.

• For Linux debugging, CodeWarrior uses the Kernel Awareness plug-in to automatically extract the
cacheable/cache-inhibited attribute from the CAM/TLB registers (I bit of the WIMGE) or the PTE kernel
structure.

• For bareboard debugging, when CodeWarrior is not configured for reading the MMU, it relies on the
information available in the memory configuration file. The translate directives are used to inform the
debugger of MMU translations and cacheable/cache-inhibited attribute (even for 1:1 translations), using the
appropriate memory space, for example:

translate v:<v_addr> p:<p_addr> - for cacheable ranges
translate v:<v_addr> i:<p_addr> - for cache-inhibited ranges

Working with Debugger
Viewing memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 195

• CodeWarrior can also automatically read the translations from the target while debugging bareboard
applications for most processors based on e500v2, e500mc, e5500, and e6500 cores, relieving the user
from specifying the translations in the memory configuration file. For more information, see Memory
translations on page 155.

5.12 Viewing Cache
This section provides detailed information on working with caches.

The CodeWarrior debugger allows you to view and modify the instruction cache and data cache of the target
system during a debug session.

In this section:

• Cache View on page 196

• Cache View Toolbar Menu on page 197

• Components of Cache View on page 199

• Using Debugger Shell to View Caches on page 199

• Debugger Shell Global Cache Commands on page 200

• Debugger Shell Cache Line Commands on page 201

• Processor-Specific Cache Features on page 201

5.12.1 Cache View
This section describes how to use the Cache view.

Use the Cache view to examine L1 cache (such as instruction cache or data cache). Also, you can use the
viewer to display L2 and L3 cache for targets that support it.

To open the Cache view, use the following steps:

1. Start a debugging session.

2. From the CodeWarrior IDE menu bar, select Window > Show View > Other.

The Show View dialog appears.

3. Expand the Debug group.

4. Select Cache.

5. Click OK.

The Cache view appears, as shown in the figure below.

You can use the type filter text box as a shortcut to specify the Cache view. Start typing
cache into the text box. The Show View dialog shortens the list of views to those whose
names match the characters you type. The list continues to shorten as you type each
additional character. When the list shows just the Cache view, select it and click OK to

open that view. You can click Clear () to empty the text box and restore the full list
of views.

 TIP

Working with Debugger
Viewing Cache

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
196 NXP Semiconductors

Figure 54: Cache View

6. Use the Choose a Cache list box to specify the cache that you want to examine.

If the Choose a Cache list box is grayed out, the current target does not support viewing
cache. If a cache line appears in red, it indicates that the line has been changed by the
processor in the cache but has not been updated in the storage. This is also suggested
by the Dirty flag that reads Yes in this case.

 NOTE

5.12.2 Cache View Toolbar Menu
Use the Cache view toolbar menu is to configure the cache information.

To display this menu, click the Menu button (inverted triangle) in the Cache view toolbar.

The Cache view toolbar buttons are alternative ways to implement the control actions
defined in the toolbar menu.

 TIP

Certain toolbar buttons are unavailable (grayed out) if the target hardware does not
support their corresponding functions, or if a specific operation can be performed in
assembly language and is not supported by the Cache view.

 NOTE

The table below describes the Cache view toolbar menu options.

Table 113: Cache View Toolbar Menu Options

Option Description

Write Commits content changes from the Cache view to the
cache registers on the target hardware (if the target
hardware supports doing so).

Refresh Reads data from the target hardware and updates the
Cache view display.

Table continues on the next page...

Working with Debugger
Viewing Cache

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 197

Table 113: Cache View Toolbar Menu Options (continued)

Option Description

Invalidate Discards the cache.

Flush Flushes the entire contents of the cache. This option
commits uncommitted data to the next level of the
memory hierarchy, then invalidates the data within the
cache.

Lock Locks the cache and prevent the debugger from
fetching new lines or discarding current valid lines.

Enable/Disable Turns on/off the cache.

Disable LRU Removes the Least Recently Used (LRU) attribute
from the existing display for each cache line. This
option is never activated because the function does
not apply to Power Architecture processors.

Enable/Disable Parity Turns on/off the line data parity checksum calculation.

Inverse LRU Displays the inverse of the Least Recently Used
attribute for each cache line. This option is never
activated because the function does not apply to
Power Architecture processors.

Copy Cache Copies the cache contents to the system clipboard.

Export Cache Exports the cache contents to a file.

Search Finds an occurrence of a string in the cache lines.

Search Again Finds the next occurrence of a string in the cache lines.

Preserve Sorting Preserves sorting of the cache when the cache data is
updated and the cache is refreshing. This option is
disabled by default. If enabled, every operation that
triggers cache refresh (such as step, run to breakpoint)
will have to wait for cache data loading and sorting.

View Memory Allows you to view the corresponding memory for the
selected cache lines.

Lock Line Locks the selected cache lines.

Invalidate Line Invalidates the selected cache lines.

Flush Line Flushes the entire contents of the selected cache lines.

Synchronize Line Synchronizes selected cache data with memory data.

Lock Way Locks the cache ways specified with the Lock Ways
menu option. Locking a cache way means that the data
contained in that way must not change. If the cache
needs to discard a line, it will not discard locked lines
(such as lines explicitly locked, or lines belonging to
locked ways).

Table continues on the next page...

Working with Debugger
Viewing Cache

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
198 NXP Semiconductors

Table 113: Cache View Toolbar Menu Options (continued)

Option Description

Unlock Way Unlocks the cache ways specified with the Lock Ways
menu option.

Lock Ways Specifies the cache ways on which the Lock Way and
Unlock Way menu options operate.

5.12.3 Components of Cache View
This section describes the components of the Cache view.

Below the toolbar, there are two panes in the window, separated by another vertical divider line. The pane to
the left of the divider line displays the attributes for each displayed cache line. The pane to the right of the divider
line displays the actual contents of each displayed cache line. You can modify information in this pane and click
Write to apply those changes to the cache on the target board.

Above the cache line display panes are Refresh and Write and the View As drop-down menu. Click Refresh to
clear the entire contents of the cache, re-read status information from the target hardware, and update the cache
lines display panes. Click Write to commit cache content changes from this window to the cache memory on the
target hardware (if the target hardware supports doing so). Select Raw Data or Disassembly from the View As
drop-down menu to change the way the IDE displays the data in the cache line contents pane on the right side
of the window.

You can perform all cache operations from assembly code in your programs. For details about assembly code,
see the core documentation for the target processor.You can also perform cache operations by clicking Menu,
shown as an inverted triangle, which opens a pull-down menu that contain actions for the Cache view.

5.12.4 Using Debugger Shell to View Caches
Another way to manipulate the processor's caches is by using the Debugger Shell view.

To display the Debugger Shell view, follow these steps:

1. Start a debugging session.

2. Select Window > Show View > Other.

The Show View dialog appears.

3. Expand the Debug group.

4. Select Debugger Shell.

5. Click OK.

The Debugger Shell view appears.

To display a list of the commands supported by the Debugger Shell view, enter this at the command prompt:

 help -tree

For more information about the Debugger Shell support of cache commands, enter these commands at the
command prompt:

 help cmdwin::ca

 help cmdwin::caln

Working with Debugger
Viewing Cache

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 199

The next sections describe these commands in detail.

5.12.5 Debugger Shell Global Cache Commands
The cmdwin::ca cache commands manage global cache operations, that is, they affect the operation of the
entire cache.

For multi-core processors, these commands operate on a specific cache if an optional ID number is provided.
If the ID number is absent, the command operates on the cache that was assigned as the default by the last
cmdwin::ca::default command.

The table below lists the cache commands.

Table 114: Debugger Shell Global Cache Commands

Command Description

cmdwin::ca::default Set specified cache as default

cmdwin::ca::enable Enable/disable cache

cmdwin::ca::flush Flushes cache

cmdwin::ca::inval Invalidates cache

cmdwin::ca::lock Lock/Unlock cache

cmdwin::ca::show Show the architecture of the cache

The basic format of a shell global cache command is:

command [<cache ID>] [on | off]

The optional cache ID number argument selects the cache that the command affects.

The optional on or off argument changes a cache's state.

For example, to display a particular cache's characteristics:

%> cmdwin::ca:show 1

displays the characteristics of the second processor cache.

You use the cmd::ca::default to assign a default cache that becomes the target of global cache commands.
For example:

%> cmdwin::ca:default 0

makes the first processor cache the default cache. Subsequent global cache commands that do not specify a
cache ID will affect this cache.

Other cache commands require the off or on state argument. When specifying a particular cache, the state
argument follows the ID argument. For example:

%> cmdwin::ca:lock 2 on

locks the contents of the third processor cache, while:

%> cmdwin::ca:enable 1 off

disables the second processor cache.

Working with Debugger
Viewing Cache

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
200 NXP Semiconductors

5.12.6 Debugger Shell Cache Line Commands
The cmdwin::caln commands manage cache line operations, that is, they affect memory elements within a
designated cache.

The table below lists these commands.

Table 115: Debugger Shell Cache Line Commands

Command Description

cmdwin::caln::get Display cache line

cmdwin::caln::flush Flush cache line

cmdwin::caln::inval Invalidate cache line

cmdwin::caln::lock Locks/unlocks cache line

cmdwin::caln::set Writes specified data to cache line

The basic format for a shell cache line command is:

command [<cache ID>] <line> [<count>]

The optional cache ID argument specifies the cache that the command affects, otherwise it affects the default
cache, as set by the cmdwin::ca::default command.

The required line argument specifies the cache line to affect.

The optional count argument specifies the number of cache lines the command affects. The default is one line.
For example:

%> cmdwin::caln:flush 2

flushes line 2 of the default cache.

The cmdwin::caln:set command varies from the other commands in that you must specify data words that fill
the cache line. For example:

%> cmdwin::caln:set 2 = 0 1 1 2 3 5 8 13

Sets the contents of cache line two, where the first word has a value of 0, the second word has a value of 1, the
third word has a value of 1, the fourth word has a value of 2, and so on.

If the command specifies a list of data values that are less than one line's worth of words,
then the values are repeated from the beginning of the list to complete the filling the
cache line. If too many data words are specified for the cache line to hold, the extra
values are discarded.

 NOTE

5.12.7 Processor-Specific Cache Features
This section lists the cache features and status flags supported by this product.

The table below lists cache features supported by P4080 QorIQ processors.

Working with Debugger
Viewing Cache

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 201

Table 116: P4080 QorIQ - Supported Cache Operations

Cache Features Supported Operations Supported Status Flags

L1 data cache • 32 KB size

• 64 sets

• 8 ways

• 16 words / line

• enable/disable cache

• lock/unlock cache

• invalidate cache

• lock/unlock line

• invalidate line

• read/modify data

• flush cache

• flush line

• valid

• lock

• shared

• dirty

• castout

• plru

L1 instruction cache • 32 KB size

• 64 sets

• 8 ways

• 16 words / line

• enable/disable cache

• lock/unlock cache

• invalidate cache

• lock/unlock line

• invalidate line

• read/modify data

• valid

• lock

• plru

L2 cache • 128 KB size

• 256 sets

• 8 ways

• 16 words / line

• enable/disable cache

• lock/unlock cache

• invalidate cache

• lock/unlock line

• invalidate line

• read/modify data

• flush cache

• flush line

• valid

• lock

• shared

• dirty

• non-coherent

• plru

L3 cache • 2 banks

• 512KB/bank

• 512 sets

• 32 ways

• 16 words/line

• enable/disable cache

• lock/unlock cache

• invalidate cache

• lock/unlock line

• invalidate line

• read/modify data

• flush cache

• flush line

• valid

• locked

• modified

• plru

The table below lists cache features supported by PowerQUICC II processors.

Working with Debugger
Viewing Cache

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
202 NXP Semiconductors

Table 117: PowerQUICC II Family - Supported Cache Operations

Cache Features Supported Operations

L1D L1 data cache • 16 KB size

• 128 sets

• 4 ways

• 8 words / line

• enable/disable cache

• lock/unlock cache

• invalidate cache

• read/modify data

L1I L1 instruction cache • 16 KB size

• 128 sets

• 4 ways

• 8 words / line

• enable/disable cache

• lock/unlock cache

• invalidate cache

• read/modify data

The table below lists cache features supported by PowerQUICC III processors.

Table 118: PowerQUICC III Family - Supported Cache Operations

Cache Features Supported Operations

L1D L1 data cache • 32 KB size

• 128 sets

• 8 ways

• 8 words / line

• enable/disable cache

• lock/unlock cache

• invalidate cache

• lock/unlock line

• invalidate line

• read/modify data

L1I L1 instruction cache • 32 KB size

• 128 sets

• 8 ways

• 8 words / line

• enable/disable cache

• lock/unlock cache

• invalidate cache

• lock/unlock line

• invalidate line

• read/modify data

L2 L2 cache (data only, instruction
only, unified)

• 256 KB/512 KB size

• 1024/2048 sets

• 8 ways

• 8 words / line

• enable/disable cache

• lock/unlock cache

• invalidate cache

• read/modify data

Working with Debugger
Viewing Cache

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 203

5.13 Changing Program Counter Value
This section explains how to change the program counter value in the CodeWarrior IDE to make the
debugger execute a specific line of code.

To change the program counter value, follow these steps:

1. Start a debugging session.

2. In the Editor view, place the cursor on the line that you want the debugger to execute next.

3. Right-click in the Editor view.

A context menu appears.

4. From the context menu, select Move To Line.

The CodeWarrior IDE modifies the program counter according to the specified location. The Editor view shows
the new location.

5.14 Hard resetting
Use the reset hard command in the Debugger Shell view to send a hard reset signal to the target processor.

The Hard Reset command is enabled only if the debug hardware you are using supports
it.

 NOTE

You can also perform a hard reset by clicking Reset () on the Debug perspective
toolbar.

 TIP

5.15 Setting Stack Depth
This section describes how to control the depth of the call stack displayed by the debugger.

Select Window > Preferences > C/C++ > Debug > Maximum stack crawl depth option to set the depth of the
stack to read and display. Showing all levels of calls when you are examining function calls several levels deep
can sometimes make stepping through code more time consuming. Therefore, you can use this menu option to
reduce the depth of calls that the debugger displays.

5.16 Import a CodeWarrior Executable file Wizard
The Import a CodeWarrior Executable file wizard helps you to import a CodeWarrior executable file and
create a new project.

To use the Import a CodeWarrior Executable file wizard, perform these steps:

1. From the CodeWarrior IDE menu bar, select File > Import.

Working with Debugger
Changing Program Counter Value

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
204 NXP Semiconductors

The Import wizard launches and the Select page appears.

2. Expand the CodeWarrior group.

3. Select the CodeWarrior Executable Importer to import a Power Architecture .elf file.

4. Click Next.

The wizard name changes to Import a CodeWarrior Executable file and the Import a CodeWarrior Executable
file page appears.

The following sections describe the various pages that the wizard displays as it assists you in importing an
executable (.elf) file:

• Import a CodeWarrior Executable file Page on page 205

• Import C/C++/Assembler Executable Files Page on page 205

• Processor Page on page 206

• Linux Application Launch Configurations Page on page 206

• Debug Target Settings Page on page 207

• Configurations Page on page 208

5.16.1 Import a CodeWarrior Executable file Page
Use the Import a CodeWarrior Executable file page to specify the name and location for your project.

The table below describes the options available on this page.

Table 119: Import a CodeWarrior Executable file page settings

Option Description

Project name Specify the name of the project. The specified name identifies the project
created for debugging (but not building) the executable file.

Use default location If you select this option, the project files required to build the program are
stored in the current workspace directory of the workbench. If you clear this
option, the project files are stored in the directory that you specify in the
Location option.

Location Specifies the directory that contains the project files. Use the Browse
button to navigate to the desired directory. This option is only available
when the Use default location option is cleared.

5.16.2 Import C/C++/Assembler Executable Files Page
Use the Import C/C++/Assembler Executable Files page to select an executable file or a folder to search for
C/C++/assembler executable files.

The table below explains the options available on the page.

Table 120: Import C/C++/Assembler Executable Files page settings

Option Description

File to import Specifies the C/C++/assembler executable file. Click
Browse to choose an executable file.

Copy the selected file to current project folder Select this option to copy the executable file in the
project folder.

Working with Debugger
Import a CodeWarrior Executable file Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 205

5.16.3 Processor Page
Use the Processor page to specify the processor family for the imported executable file and also specify the
toolchain to be used.

The table below describes the options available on the page.

Table 121: Processor page settings

Option Description

Processor Expand the processor family and select the appropriate target processor
for the execution of the specified executable file. The toolchain uses this
choice to generate code that makes use of processor-specific features,
such as multiple cores.

You can also type the processor name in the text
box.

 TIP

Toolchain Chooses the compiler, linker, and libraries used to build the program. Each
toolchain generates code targeted for a specific platform. These are:

• Bareboard Application: Targets a hardware board without an operating
system.

• Linux Application: Targets a board running the Linux operating system.

Target OS Select if the board runs no operation system or imports a Linux kernel
project to be executed on the board. The option is applicable only for
bareboard application projects.

5.16.4 Linux Application Launch Configurations Page
Use the Linux Application Launch Configurations page to specify how the debugger communicates with the
host Linux system and controls your Linux application.

The Linux Application page appears, only when select the Linux Application toolchain
option on the Processor page in the Import a CodeWarrior Executable file wizard.

 NOTE

When debugging a Linux application, you must use the CodeWarrior TRK to manage
the communications interface between the debugger and Linux system. For details, see
Install CodeWarrior TRK on Target System on page 228.

 NOTE

The table below lists the options available on the page.

Table 122: Linux Application Launch Configurations Page Setting

Option Description

CodeWarrior TRK Select to use the CodeWarrior Target Resident Kernel (TRK) protocol, to
download and control application on the Linux host system.

TAP Address Specifies the IP address of the Linux host system, the project executes on.

Table continues on the next page...

Working with Debugger
Import a CodeWarrior Executable file Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
206 NXP Semiconductors

Table 122: Linux Application Launch Configurations Page Setting (continued)

Option Description

Port Specifies the port number that the debugger will use to communicate to the
Linux host.

Remote Download Path Specifies the host directory into which the debugger downloads the
application.

5.16.5 Debug Target Settings Page
Use the Debug Target Settings page to specify debugger connection type, board type, launch configuration
type, and connection type for your project.

This page also allows you to configure connection settings for your project.

The table below describes the options available on the page.

Table 123: Debug Target Settings page settings

Option Description

Debugger Connection Types Specifies what target the program executes on.

• Hardware: Select to execute the program on the hardware available for the
product.

• Simulator: Select to execute the program on a software simulator.

• Emulator: Select to execute the program on a hardware emulator.

Board Specifies the hardware (board) supported by the selected processor.

Launch Specifies the launch configurations and corresponding connection
configurations, supported by the selected processor.

Table continues on the next page...

Working with Debugger
Import a CodeWarrior Executable file Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 207

Table 123: Debug Target Settings page settings (continued)

Option Description

Connection Type Specifies the interface to communicate with the hardware.

• USB TAP: Select to use the USB interface to communicate with the
hardware device.

• Ethernet TAP: Select to use the Ethernet interface to communicate with
the target hardware.

• CodeWarrior TAP (over USB): Select to use the CodeWarrior TAP
interface (over USB) to communicate with the hardware device.

• CodeWarrior TAP (over Ethernet): Select to use the CodeWarrior TAP
interface (over Ethernet) to communicate with the hardware device.

For more details on CodeWarrior TAP, see the CodeWarrior TAP User Guide
available in the <CWInstallDir>\\Help\PDF\ folder.

• Gigabit TAP: Corresponds to a Gigabit TAP that includes an Aurora
daughter card, which allows you to collect Nexus trace in a real-time non-
intrusive fashion from the high speed serial trace port (the Aurora
interface).

• Gigabit TAP + Trace (JTAG over JTAG cable): Select to use the Gigabit
TAP and Trace probe to send JTAG commands over the JTAG cable.

• Gigabit TAP + Trace (JTAG over Aurora cable): Select to use the Gigabit
TAP and Trace probe to send JTAG commands over the Aurora cable.

For more details on Gigabit TAP, see Gigabit TAP Users Guide available in
the <CWInstallDir>\PA\Help\PDF\ folder.

TAP address Enter the IP address of the selected TAP device.

The Debug Target Settings page may prompt you to either create a new remote system
configuration or select an existing one.

A remote system is a system configuration that defines connection, initialization, and
target parameters. The remote system explorer provides data models and frameworks
to configure and manage remote systems, their connections, and their services. For
more information, see the CodeWarrior Development Studio Common Features Guide
available in the <CWInstallDir>\PA\Help\PDF\ folder.

 NOTE

5.16.6 Configurations Page
Use the Configurations page to select the processor core that executes the project.

The table below lists the options available on the page.

Table 124: Configurations Page

Options Description

Core Index Select the processor core that executes the project.

Working with Debugger
Import a CodeWarrior Executable file Wizard

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
208 NXP Semiconductors

5.17 Debugging Externally Built Executable Files
You can use the Import a CodeWarrior Executable file wizard to debug an externally built executable file, that
is, an executable (.elf) file that has no associated CodeWarrior project.

For example, you can debug a .elf file that was generated using a different IDE.

The process of debugging an externally built executable file can be divided into the following tasks:

• Import an Executable File on page 209

• Edit the Launch Configuration on page 211

• Specify the Source Lookup Path on page 212

• Debug Executable File on page 214

5.17.1 Import an Executable File
First of all, you need to import the executable file that you want the CodeWarrior IDE to debug.

The IDE imports the executable file into a new project.

To import an externally built executable file, follow these steps:

1. From the CodeWarrior IDE menu bar, select File > Import.

The Import wizard appears.

2. Expand the CodeWarrior group.

3. Select CodeWarrior Executable Importer to import a Power Architecture .elf file.

4. Click Next.

The wizard name changes to Import a CodeWarrior Executable file and the Import a CodeWarrior Executable
file page appears.

5. In the Project name text box, enter the name of the project. This name identifies the project that the IDE
creates for debugging (but not building) the executable file.

6. Clear the Use default location checkbox and click Browse to specify a different location for the new project.
By default, the Use default location checkbox is selected.

7. Click Next.

The Import C/C++/Assembler Executable Files page appears.

8. Click Browse.

The Select file dialog appears. Use the dialog to navigate to the executable file that you want to debug.

9. Select the required file and click Open.

The Select file dialog closes. The path to the executable file appears in the File to import text box.

You can also drag and drop a .elf file in the CodeWarrior Eclipse IDE. When you drop
the .elf file in the IDE, the Import a CodeWarrior Executable file wizard appears with
the .elf file already specified in the Project Name and File to Import text box.

 TIP

10.Check the Copy the selected file to current project folder checkbox to copy the executable file in the
current workspace.

11.Click Next.

Working with Debugger
Debugging Externally Built Executable Files

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 209

The Processor page appears.

12.Select the processor family for the executable file.

13.Select a toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

14.Select if the board runs no operation system or imports a Linux kernel project to be executed on the board.
The Target OS options are applicable only for bareboard application projects.

15.Click Next.

The Debug Target Settings page appears.

16.Select a supported connection type, from the Debugger Connection Types group. Your selection
determines the launch configurations that you can include in your project.

17.Select the hardware or simulator, you plan to use, from the Board drop-down list.

Hardware or Simulators that supports the target processor selected on the Processors
page are only available for selection.

 NOTE

18.Select the launch configurations that you want to include in your project and the corresponding connection.

19.Select the interface to communicate with the hardware, from the Connection Type drop-down list.

20.Enter the IP address of the TAP device in the TAP address text box. This option is disabled and cannot be
edited, if you select USB TAP from the Connection Type drop-down list.

21.Click Next.

The Configurations page appears.

22.Select the processor core that executes the project, from the Core index list.

23.Click Finish.

The Import a CodeWarrior Executable file wizard ends. The project for the imported .elf file appears in the
CodeWarrior Projects view. You can now open the Debug Configurations dialog box by selecting Run > Debug
Configurations. The Debug Configurations dialog shows the current settings for the launch configuration that
you just created. A remote system is created with details of all the connection, initialization, and target
parameters you had set while importing the .elf file.

Working with Debugger
Debugging Externally Built Executable Files

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
210 NXP Semiconductors

Figure 55: Debug Configurations Dialog Box - Launch Configuration for Executable File

5.17.2 Edit the Launch Configuration
Using the tabs of the Debug Configurations dialog, you can change the launch configuration settings that you
specified while importing the .elf file.

To edit the launch configuration for your executable file, follow these steps:

1. On the Main tab, click Edit in the Connection panel.

The corresponding Connection page appears.

2. Use the Connection type list box to modify the current connection type.

3. Configure the various connection options as appropriate for your executable file by using the various tabs
available on the Connection page.

For example, specify the appropriate target processor, any initialization files, and connection protocol.

4. Click OK to close the Connection page.

For more information on how to modify settings using the remote system explorer, see
CodeWarrior Common Features Guide from the <CWInstallDir>\PA\Help\PDF\
folder.

 NOTE

Working with Debugger
Debugging Externally Built Executable Files

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 211

5.17.3 Specify the Source Lookup Path
Source lookup path is specified in terms of the compilation path and the local file system path.

The CodeWarrior debugger uses both these paths to debug the executable file.

The compilation path is the path to the original project that built the executable file. If the original project is from
an IDE on a different computer, you need to specify the compilation path in terms of the file system on that
computer.

The local file system path is the path to the project that the CodeWarrior IDE creates to debug the executable
file.

To specify a source lookup path for your executable file, perform the following steps:

1. Click the Source tab of the Debug Configurations dialog.

The corresponding page appears.

Figure 56: Debug Configurations Dialog Box - Source Page

2. Click Add.

The Add Source dialog appears.

3. Select Path Mapping from the available list of sources.

Working with Debugger
Debugging Externally Built Executable Files

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
212 NXP Semiconductors

Figure 57: Add Source Dialog Box

4. Click OK.

The Add Source dialog closes. The Path Mappings dialog appears.

5. In the Name text box, enter the name of the new path mapping.

6. Click Add.

The cursor blinks in the Compilation path column.

7. In the Compilation path column, enter the path to the parent project of the executable file, relative to the
computer that generated the file.

Suppose the computer on which you debug the executable file is not the same computer that generated that
executable file. On the computer that generated the executable file, the path to the parent project is D:
\workspace\originalproject. Enter this path in the Compilation path text box.

You can use the IDE to discover the path to the parent project of the executable file,
relative to the computer that generated the file. In the C/C++ Projects view of the C/C+
+ perspective, expand the project that contains the executable file that you want to
debug. Next, expand the group that has the name of the executable file itself. A list of
paths appears, relative to the computer that generated the file. Search this list for the
names of source files used to build the executable file. The path to the parent project of
one of these source files is the path you should enter in the Compilation path column.

 TIP

8. In the Local file system path text box, enter the path to the parent project of the executable file, relative to
your computer. Click the ellipsis button to specify the parent project.

Suppose the computer on which you debug the executable file is not the same computer that generated that
executable file. On your current computer, the path to the parent project of the executable file is C:\projects
\thisproject. Enter this path in the Local file system path text box.

9. Click OK.

The Path Mapping dialog closes. The mapping information now appears under the path mapping shown in
the Source Lookup Path list of the Source page.

10.If needed, change the order in which the IDE searches the paths.

The IDE searches the paths in the order shown in the Source Lookup Path list, stopping at the first match.
To change this order, select a path, then click Up or Down to change its position in the list.

Working with Debugger
Debugging Externally Built Executable Files

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 213

11.Click Apply.

The IDE saves your changes.

5.17.4 Debug Executable File
You can use the CodeWarrior debugger to debug the externally built executable file.

To debug the executable file:

1. Select the project in the CodeWarrior Projects view.

2. Click the Debug button from the IDE toolbar.

The IDE switches to Debug perspective listing the debugging output.

Working with Debugger
Debugging Externally Built Executable Files

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
214 NXP Semiconductors

Chapter 6
Multi-Core Debugging
This chapter explains how to use the multi-core debugging capability of the CodeWarrior debugger.

In this chapter:

• Debugging Multi-Core Projects on page 215

• Multi-Core Debugging Commands on page 221

6.1 Debugging Multi-Core Projects
This section explains how to set launch configurations and how to debug multiple cores in a multi-core
project.

The CodeWarrior debugger provides the facility to debug multiple Power Architecture processors using a single
debug environment. The run control operations can be operated independently or synchronously. A common
debug kernel facilitates multi-core, run control debug operations for examining and debugging the interaction of
the software running on the different cores on the system.

This procedure assumes that you have already created a multi-core project, named
board_project.

 NOTE

To debug a multi-core project, perform the steps given in the following sections:

• Setting Launch Configurations on page 215

• Debugging Multiple Cores on page 218

6.1.1 Setting Launch Configurations
Setting a launch configuration allows you to specify all core-specific initializations.

To set up the launch configurations, follow these steps:

1. Open the CodeWarrior project you want to debug.

2. Switch to the Debug perspective.

3. Select Run > Debug Configurations.

The Debug Configurations dialog appears (shown in the figure below) with a list of debug configurations that
apply to the current application.

4. Expand the CodeWarrior tree control.

5. From the expanded list, select the debug configuration for which you want to modify the debugger settings.
For example, board_project-core00_RAM_B4860_Download .

Multi-Core Debugging
Debugging Multi-Core Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 215

Figure 58: Debug Configurations Dialog Box

6. On the Main tab, select a connection from the Connection drop-down list.

7. Select a core from the Target list.

8. Click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

Multi-Core Debugging
Debugging Multi-Core Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
216 NXP Semiconductors

Figure 59: Properties for <connection> Dialog Box

9. Select a target from the Target drop-down list.

10.Select the required TAP connection from the Connection type drop-down list. For example, CodeWarrior
TAP .

11.On the Connection tab, specify the hostname/IP of the target board in the Hostname/IP text box.

12.Enter the JTAG clock speed in the JTAG clock speed text box.

13.Specify the port number of the CCS server in the Server port number text box.

Multi-Core Debugging
Debugging Multi-Core Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 217

Figure 60: Properties for <connection> Dialog Box - Connection Settings

14.Click OK.

15.Click the Debugger tab in the Debug Configurations dialog.

The Debugger page appears.

16.Ensure that the Stop on startup at checkbox is selected and main is specified in the User specified text
box.

17.Click Apply to save the changes.

You have successfully configured a debug configuration.

18.Similarly, configure remaining debug configurations.

To successfully debug multiple cores, the connection settings must be identical for all
debug configurations.

 NOTE

6.1.2 Debugging Multiple Cores
The CodeWarrior debugger enables system developers to simultaneously develop and debug applications on
a system with multiple processors, within the same debug environment.

Ensure that you have attached a debug probe to the target board and to the computer
hosting the CodeWarrior IDE before performing the steps listed in this section.

 NOTE

Multi-Core Debugging
Debugging Multi-Core Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
218 NXP Semiconductors

To debug multiple cores, follow these steps:

1. Select a multi-core project in the CodeWarrior Projects view.

2. Select Run > Debug.

The debugger downloads core 0 and switches to the Debug perspective. The debugger halts execution at
the first statement of main(). The Debug view displays all the threads associated with the core.

Figure 61: Multi-Core Debugging - Debug Core 0

3. Download all other cores associated with the project.

4. Select a thread from core 0 in the Debug view.

All the views in the Debug perspective will be updated to display the debug session for the selected core.
The figure below displays the debug session for a selected thread in core 0.

Figure 62: Viewing Debug Information for Core 0

Multi-Core Debugging
Debugging Multi-Core Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 219

5. Select and expand the General Purpose Registers group.

6. Select Run > Step Over.

The following actions occur:

• Debugger executes the current statement and halts at the next statement.

• The program counter (PC) indicator moves to the next executable source line in the Source view.

• In the Debug view, the status of the program changes to (Suspended).

• Modified register values are highlighted in yellow.

7. Select Window > New Window.

Another instance of the Debug perspective opens in a new window. The figure below displays multiple
instances of an active debug session.

Figure 63: Viewing Multiple Instances of Active Debug Session

8. Select a thread from core 1 in the Debug view of the newly opened Debug - <project> window.

All the views in the Debug perspective will be updated to display the debug session for the selected core.

9. Select and expand the External Debug Registers group.

10.Select Run > Step Over.

The following actions occur:

• Debugger executes the current statement and halts at the next statement.

• The program counter (PC) indicator moves to the next executable source line in the Source view.

11.Issue several more Step Over commands and watch the register values change.

12.Select main() thread from core 0 again.

Notice that the register values remain unchanged. This is because the CodeWarrior debugger controls each
core's execution individually.

Multi-Core Debugging
Debugging Multi-Core Projects

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
220 NXP Semiconductors

13.
With core 0 still selected, click the Step Over button several times until you reach the printf()
statement.

Debugger executes the current statement, the following statements, and halts at the printf() statement.

14.Switch to the other debug window.

15.Select the main() thread for core 1 by clicking it. Notice that the program counter icon in the Source view
did not move. The debugger controls the execution of each core individually.

16.
In the Debug view, click the Resume button.

Core 1 enters an infinite loop. The status of the program changes to (Running).

17.
In the Debug view, click the main() thread for core 0 and click the Resume button.

Core 0 enters an infinite loop and core 1 continues to execute in its loop.

18.
Select main() thread from core 1 and click the Suspend button.

The debugger halts core 1 at the current statement and the status of the program changes to (Halted). Core
0 continues to execute.

19.Select Run > Multicore Terminate.

The debugger terminates the active debug session. The threads associated with each core in the Debug view
disappear.

6.2 Multi-Core Debugging Commands
This section describes the multi-core commands available in the Run menu of CodeWarrior IDE and in the
Debugger Shell.

If you are debugging a multi-core project, you can use single and multi-core debugging commands to debug
parts of each core project.

This section contains the following subsections:

• Multi-Core Commands in CodeWarrior IDE on page 221

• Multi-Core Commands in Debugger Shell on page 222

6.2.1 Multi-Core Commands in CodeWarrior IDE
This section describes the multi-core commands in the CodeWarrior IDE.

When you start a multi-core debug session, multi-core commands are enabled on the CodeWarrior IDE Run
menu. These commands, when issued, affect all cores simultaneously. The table below describes each menu
choice. For detailed information on these commands, see CodeWarrior Development Studio Common Features
Guide.

Table 125: Multi-Core Debugging Commands

Command Icon Description

Multicore Resume Starts all cores of a multi-core system running simultaneously.

Table continues on the next page...

Multi-Core Debugging
Multi-Core Debugging Commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 221

Table 125: Multi-Core Debugging Commands (continued)

Command Icon Description

Multicore Suspend Stops execution of all cores of a multi-core system
simultaneously.

Multicore Restart Restarts all the debug sessions for all cores of a multi-core
system simultaneously.

Multicore Terminate Kills all the debug sessions for all cores of a multi-core system
simultaneously.

Multicore Groups Use All Cores: If the selected debug context is a multi-core
system, then all cores are used for multi-core operations.

Disable Halt Groups: Disables breakpoint halt groups. For more
information on halt groups, see "Multicore Breakpoint Halt
Groups" in CodeWarrior Development Studio Common Features
Guide.

Limit new breakpoints to current group: If selected, all new
breakpoints set during a debug session are reproduced only on
cores belonging to the group of the core on which the breakpoint
is set.

Edit Target Types: Opens Target Types dialog that lets you add
and remove system types.

Edit Multicore Groups: Opens the Multicore Groups dialog to
create multi-core groups. You can also use this option to modify
the existing multi-core groups.

For more information about creating/modifying multi-core groups, or editing target type,
see "Multicore Groups" in CodeWarrior Development Studio Common Features Guide.

 NOTE

To use the multi-core commands from the Debug perspective, follow these steps:

1. Start a debugging session by selecting the appropriately configured launch configuration.

2. If necessary, expand the desired core's list of active threads by clicking on the tree control in the Debug
view.

3. Click the thread you want to use with multi-core operations.

4. From the Run menu, specify the multi-core operation to perform on the thread.

The keyboard shortcut for the Multicore Resume operation is Alt+Shift+F8.

 NOTE

6.2.2 Multi-Core Commands in Debugger Shell
This section describes the multi-core commands in debugger shell.

In addition to the multicore-specific toolbar buttons and menu commands available in the Debug view, the
Debugger Shell has multi-core specific commands that can control the operation of one or more processor cores
at the same time. Like the menu commands, the multi-core debugger shell commands allow you to select, start,
and stop a specific core. You can also restart or kill sessions executing on a particular core. The table below
lists and defines the affect of each multi-core debugging command.

Multi-Core Debugging
Multi-Core Debugging Commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
222 NXP Semiconductors

Table 126: Multi-Core Debugging Commands

Command Shortcut Description

mc::config mc::c List or edit multicore group options.

Syntax

mc::config

mc::go mc::g Resume multiple cores

Syntax

mc::go

Examples

mc::go

Resumes the selected cores associated with the current thread
context.

mc::group mc::gr Display or edit multicore groups

Syntax

group group new <type-name> [<name>] group rename
<name>|<group-index> <new-name>group remove <name>|
<group-index> ... group removeall group enable|
disable <index> ...|all

Examples

mc::group

Shows the defined groups, including indices for use in the
mc::group rename|enable|remove set of commands.

mc::group new 8572

Creates a new group for system type 8572. The group name will
be based on the system name and will be unique. The enablement
of the group elements will be all non-cores enabled, all cores
disabled.

mc::group rename 0 "My Group Name"

Renames the group at index 0 to "My Group Name".

mc::group enable 0 0.0

Enables the group at index 0 and the element at index 0.0 of the
mc::group command.

mc::group remove "My Group Name"

Removes the group named "My Group Name".

mc::group removeall

Removes all groups.

Table continues on the next page...

Multi-Core Debugging
Multi-Core Debugging Commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 223

Table 126: Multi-Core Debugging Commands (continued)

Command Shortcut Description

mc::kill mc::kill Terminates the debug session for selected cores associated with
the current thread context.

Syntax

mc::kill

Examples

mc::kill

Terminates multiple cores.

mc::reset mc::reset Resets multiple cores.

Syntax

mc::reset

mc::restart mc::restart Restarts the debug session for selected cores associated with the
current thread context.

Syntax

mc::restart

Examples

mc::restart

Restarts multiple cores.

mc::stop mc::stop Stops the selected cores associated with the current thread
context.

Syntax

mc::stop

Examples

mc::stop

Suspends multiple cores.

Table continues on the next page...

Multi-Core Debugging
Multi-Core Debugging Commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
224 NXP Semiconductors

Table 126: Multi-Core Debugging Commands (continued)

Command Shortcut Description

mc::type mc::t Shows the system types available for multicore debugging as well
as type indices for use by the mc::type remove and mc::group
new commands.

Syntax

type type import <filename> type remove <filename>|
<type-index> ... type removeall

Examples

mc::type

Display or edit system types.

mc::type import 8572_jtag.txt

Creates a new type from the JTAG configuration file.

mc::type remove 8572_jtag.txt

Removes the type imported from the specified file.

mc::type removeall

Removes all imported types.

Multi-Core Debugging
Multi-Core Debugging Commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 225

Multi-Core Debugging
Multi-Core Debugging Commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
226 NXP Semiconductors

Chapter 7
Debugging Embedded Linux Software
This chapter explains how to use the CodeWarrior Development Studio tools to debug embedded Linux®

software for Power Architecture® processors.

This chapter documents debugger features that are specific to the CodeWarrior for
Power Architecture Processors product. For more information on debugger features that
are in all CodeWarrior products, see CodeWarrior Development Studio Common
Features Guide from the <CWInstallDir>\PA\Help\PDF\ folder.

 NOTE

This chapter includes the following sections:

• Debugging a Linux Application on page 227

• Viewing multiple processes and threads on page 236

• Debugging applications that use fork() and exec() system calls on page 237

• Debugging a shared library on page 247

• Preparing U-Boot for debugging on page 255

• Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices on page 262

• Debugging the Linux Kernel on page 283

• Debugging Loadable Kernel Modules on page 307

• Debugging Hypervisor Guest Applications on page 312

• Debugging the P4080 Embedded Hypervisor on page 320

• User Space Debugging with On-Chip Debug on page 329

7.1 Debugging a Linux Application
This section describes CodeWarrior Target-Resident Kernel (TRK) and provides information related to using it
with CodeWarrior projects.

For embedded Linux development, CodeWarrior TRK is a user-level application that resides on target embedded
Linux systems and accepts connections from the CodeWarrior debugger. You use the CodeWarrior remote
connections feature to download and debug applications built with CodeWarrior projects. The CodeWarrior
debugger connects to CodeWarrior TRK on the remote target system through a serial or ethernet connection.

On embedded Linux systems, CodeWarrior TRK is packaged as a regular Linux application, named apptrk.
This application runs on the remote target system along side the program you are debugging to provide
application-level debug services to the CodeWarrior debugger.

To debug a Linux application using CodeWarrior TRK:

• Install CodeWarrior TRK on Target System on page 228

• Start CodeWarrior TRK on Target System on page 228

• Create a CodeWarrior Download Launch Configuration for the Linux Application on page 230

• Specify Console I/O Redirections for the Linux Application on page 233

• Debug the Linux Application on page 236

Debugging Embedded Linux Software
Debugging a Linux Application

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 227

7.1.1 Install CodeWarrior TRK on Target System
This section talks about installation of CodeWarrior TRK on target system.

To connect the CodeWarrior debugger to CodeWarrior TRK, the CodeWarrior TRK binary executable file must
be installed and running on the remote target system. When CodeWarrior TRK starts running on the target
system, the debugger can upload your application and debug the application on the target system.

If CodeWarrior TRK is not present on a given target system, you need to use a file
transfer facility, such as Secure Copy (SCP) or File Transfer Protocol (FTP) to download
the CodeWarrior TRK binary executable file, AppTRK.elf, to a suitable location on the
file system of the target system. You also need to place the unstripped versions of the
ld.so, libpthread.so, and libthread_db.so files in the /lib directory of the
target system to debug shared library code or multi-threaded code with CodeWarrior
TRK.

 NOTE

7.1.2 Start CodeWarrior TRK on Target System
This section explains how to start CodeWarrior TRK on target system.

How you start CodeWarrior TRK on the target hardware depends on the type of connection between the host
computer and that target hardware:

• Transmission Control Protocol / Internet Protocol (TCP/IP): The host computer communicates with the
target hardware over a TCP/IP connection

• Serial cable: A serial cable connecting the host computer to the target hardware

CodeWarrior TRK can be started as either a root user or a normal user; however, if the application to be
debugged requires root permission, then you need to start CodeWarrior TRK as a root user. In other words,
CodeWarrior TRK must have all the privileges required by the application that it will debug. You also need to
ensure that the download directory specified in the Remote tab of the launch configuration matches the user
privileges of the CodeWarrior TRK running on the target system.

This section contains the following subsections:

• TCP/IP Connections on page 228

• Serial Connections on page 229

7.1.2.1 TCP/IP Connections
This section explains how to start CodeWarrior TRK using a TCP/IP connection.

To start CodeWarrior TRK through a TCP/IP connection:

1. Connect to the remote target system.

a. On the host computer, open a new terminal window.

b. At the command prompt in the terminal window, enter the following command, where IPAddress
represents the target system's IP address:

telnet IPAddress

The telnet client connects to the telnet daemon on the target system.

2. Navigate to the directory that contains the AppTRK.elf binary executable file.

The system changes the current working directory.

Debugging Embedded Linux Software
Debugging a Linux Application

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
228 NXP Semiconductors

3. Type the following command (where Port is the listening port number optionally specified in the
Connections panel of Debug window- typically 1000):

./AppTRK.elf :Port

CodeWarrior TRK starts on the target system, and listens to the specified TCP/IP port for connections from
the CodeWarrior IDE.

To continue use of the terminal session after launching CodeWarrior TRK, start
CodeWarrior TRK as a background process by appending the ampersand symbol (&)
to the launch command. For example, to start CodeWarrior TRK as a background
process listening to TCP/IP port number 6969, you would enter the following command:

./AppTRK.elf :6969 &

 TIP

7.1.2.2 Serial Connections
This section explains how to launch CodeWarrior TRK using a serial connection.

To launch CodeWarrior TRK through a serial connection:

To improve your debugging experience, we recommend the host computer running the
IDE have two serial ports. In an ideal scenario, you would connect one serial port of the
host computer to the first serial port of the target board to monitor startup and console
log messages. You would then connect another serial port of the host computer to the
second serial port of the target board; the debugger would use this connection to
communicate with CodeWarrior TRK on the target system.

 TIP

1. Connect a serial cable between the host computer's serial port and the second serial port of the target
system.

2. On the host computer, start a terminal emulation program (such as minicom).

3. Configure the terminal emulation program with baud rate, stop bit, parity, and handshake settings
appropriate for the target system.

4. Connect the terminal emulator to the target system.

A command prompt appears in the terminal emulation program.

5. Boot the system. Log in as the root user.

6. Use the cd command at the command prompt to navigate to the directory where the CodeWarrior TRK
binary executable file, AppTRK.elf, resides on the target system.

The system changes the current working directory.

7. Configure the serial port on which CodeWarrior TRK is going to connect.

a. Enter this command: stty -F /dev/ttyS1 raw

This command configures the serial port for raw mode of operation. If you do not use raw mode, special
characters sent as part of packets may be interpreted (dropped), causing the connection to break.

b. Enter this command: stty -F /dev/ttyS1 ispeed 115200

The serial input speed is set to 115200 baud.

c. Enter this command: stty -F /dev/ttyS1 ospeed 115200

Debugging Embedded Linux Software
Debugging a Linux Application

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 229

The serial output speed is set to 115200 baud.

d. Enter this command: stty -F /dev/ttyS1 crtscts

The terminal emulation program enables handshake mode

e. Enter this command: stty -a -F /dev/ttyS1

The system displays the current device settings.

8. Enter the command: ./AppTRK.elf /dev/ttyS1

CodeWarrior TRK launches on the remote target system.

7.1.3 Create a CodeWarrior Download Launch Configuration for the
Linux Application

This section explains how to create a CodeWarrior download launch configuration for debugging a Linux
application on target system.

To create a CodeWarrior download launch configuration, perform the following steps:

1. In the CodeWarrior Projects view of the C/C++ perspective, select the name of the project that builds the
Linux application.

2. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

3. Select CodeWarrior on the left-hand side of the Debug Configurations dialog.

4. Click the New launch configuration toolbar button of the Debug Configurations dialog.

The IDE creates a new launch configuration under the CodeWarrior group. The settings pages for this new
launch configuration appear on the right-hand side of the Debug Configurations dialog.

5. In the Main tab of the Debug Configuration dialog:

a. Select Download from the Debug session type group.

b. Click New next to the Connection drop-down list.

The New Connection wizard appears.

6. Expand the CodeWarrior Application Debugging group and select Linux AppTRK, as shown in the figure
below.

Debugging Embedded Linux Software
Debugging a Linux Application

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
230 NXP Semiconductors

Figure 64: Remote System - New Connection Wizard

7. Click Next.

The Linux AppTRK page appears.

8. Specify the connection name, description, template and connection type on this page.

9. When you select the connection type, the corresponding Connection tab appears (shown in the figure
below).

Debugging Embedded Linux Software
Debugging a Linux Application

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 231

Figure 65: Remote Linux AppTRK System Connection Page

10.Specify the settings as appropriate for the connection between the host computer and the target hardware
on this page.

11.Click Finish.

The new remote system that you just created appears in the Connection drop-down list.

12.Click the Debugger tab.

The Debugger options panel appears with the respective tabs.

13.On the Debug tab, if required, specify a function or address in the application where you want the program
control to stop first in the debug session:

a. Select the Stop on startup at checkbox.

The IDE enables the corresponding text box.

b. Enter in the text box an address or a function inside the application.

14.Click the Remote tab.

The corresponding sub-page comes forward.

15.Enter in the Remote download path text box the path of a target-computer directory to which the Linux
application, running on the target hardware, can read and write files.

The specified directory must exist on the target system.

 NOTE

Debugging Embedded Linux Software
Debugging a Linux Application

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
232 NXP Semiconductors

16.If required, specify information about other executable files to debug in addition to the Linux application:

a. Click the Other Executables tab.

The corresponding sub-page appears.

b. Use the sub-page settings to specify information about each executable file.

17.Click Apply.

The IDE saves the pending changes you made to the launch configuration.

You just finished creating a CodeWarrior download launch configuration that you can use to debug the Linux
application.

7.1.4 Specify Console I/O Redirections for the Linux Application
CodeWarrior TRK allows you to specify I/O redirections as arguments for applications to be debugged.

This feature allows users to use a file on the target or even the target console for file descriptors, including stdin,
stdout, and stderr. By default, the CodeWarrior TRK running on the target forwards the output of the
application to the host CodeWarrior. The host CodeWarrior will be able to print the received output only if the
Allocate Console (necessary for input) checkbox is selected in the Common tab of the Debug Configurations
dialog.

The CodeWarrior console, allocated for the debugged application, can only be used to
view the output of the application running on the target; forwarding the input from a
CodeWarrior console to the debugged application is not supported currently for Linux
applications.

 NOTE

The listing below displays the syntax to specify I/O redirections for the stdin, stdout, and stderr file
descriptors.

Figure 66: Specifying I/O Redirections

 - '< <filename>' - stdin redirection from <filename>
 - '> <filename>' - stdout redirection to <filename>
 - '2> <filename>' - stderr redirection to <filename>

To specify I/O redirections for a Linux application:

1. In the CodeWarrior Projects view of the C/C++ perspective, select the name of the project that builds the
Linux application.

2. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

3. Expand CodeWarrior group and select the launch configuration associated with the project.

The settings pages for the selected launch configuration appears on the right-hand side of the Debug
Configurations dialog.

4. Click the Arguments tab.

5. Specify the I/O redirections in the Program arguments text box.

6. Click Apply to save the changes.

The listing below displays an example of redirections, added to the list of arguments, to forward the output to
the console where CodeWarrior TRK was started.

Debugging Embedded Linux Software
Debugging a Linux Application

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 233

Figure 67: Sample I/O Redirections

 - '< /proc/self/fd/0' -> use target console for stdin (this way, stdin
is functional and can be used - using a CW console it isn't)
 - '> /proc/self/fd/1' -> use target console for stdout
 - '2> /proc/self/fd/2' -> use target console for stderr

7.1.5 Configure Linux Process Signal Policy
This section explains how to control applications being debugged using signals and how to manage signals,
using CodeWarrior IDE.

AppTRK and CodeWarrior can be configured to stop the application being debugged, whenever the application
receives a signal. A user can send signals to the application directly from CodeWarrior, when the application
resumes execution. To send a signal to an application, right-click the signal name in the Signals view and select
Resume With Signal from the context menu that appears.

This section contains the following subsections:

• Signal Inheritance on page 234

• Default Signal Policy on page 234

• Modifying Signal Policy on page 234

7.1.5.1 Signal Inheritance
When a new process is forked, it inherits the signal settings from the parent process.

For example, if a process has a setting that if the SIGUSR1 signal is received, the application being debugged
will be stopped, then a child process forked by this process will also inherit this setting. It will stop the application
being debugged if the SIGUSR1 signal is received.

All the threads created by a process share the signal settings of that process. Signal settings cannot be
configured at thread level.

7.1.5.2 Default Signal Policy
By default, the SIGINT, SIGILL, SIGTRAP, SIGSTOP, and SIGSEGV signals are caught by the debugger.The
debugger stops the application being debugged if any of these signals is received.

7.1.5.3 Modifying Signal Policy
CodeWarrior IDE provides a view, Signals, which can be used to view signals and change the debugger's
policy for a signal.

To open the Signals view, perform the following steps:

1. Select Window > Show View > Other in the CodeWarrior IDE.

The Show View dialog appears.

2. Select Debug > Signals.

The Signals view appears, as shown in the figure below.

Debugging Embedded Linux Software
Debugging a Linux Application

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
234 NXP Semiconductors

Figure 68: Signals View

To send a signal to a stopped process or thread, right-click the signal in the Signals view and select Resume
With Signal, as shown in the figure below.

Figure 69: Sending a Signal to a Process or Thread

To catch a signal, perform the following steps:

1. Right-click the signal in the Signals view and select Signal Properties.

The Properties for window appears (shown in the figure below).

2. Select the Suspend the program when this signal happens checkbox, as shown in the figure below.
Figure 70: Catching a Signal

The figure below shows a child process stopped on receiving the SIGUSR1 signal.

Figure 71: A Stopped Child Process

Some signals cannot be caught, but they can be passed to the debugged application. These signals have read-
only properties. One such signal is SIGKILL.

Debugging Embedded Linux Software
Debugging a Linux Application

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 235

7.1.6 Debug the Linux Application
You can use the CodeWarrior download launch configuration created earlier to debug the Linux application on
the target system.

To debug the Linux application, perform the following steps:

1. On the left-hand side of the Debug Configurations dialog, ensure to select the CodeWarrior download
launch configuration that you created to debug the Linux application.

2. Click Debug in the Debug Configurations dialog.

The IDE uses the selected CodeWarrior download launch configuration to start a debug session and opens
the Debug view, as shown in the figure below.

Figure 72: Debug View - A Sample Linux Application

You just finished using the CodeWarrior download launch configuration to debug a Linux application.

7.2 Viewing multiple processes and threads
This section explains how to view all processes and threads on a target.

When you debug an application, the CodeWarrior debugger opens the Debug view. In this view, you can see
only processes and threads/tasks on which debugger is attached, as shown in the figure below.

Figure 73: Debug view - processes and threads

For Linux debugging, you can view all processes on a target in the System Browser view.

Debugging Embedded Linux Software
Viewing multiple processes and threads

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
236 NXP Semiconductors

To view processes and threads in System Browser view:

1. Open a Linux application in the CodeWarrior IDE.

2. Select Run > Debug.

The Debug perspective appears.

3. While the application is running, select Window > Show View > Other.

The Show View dialog appears.

4. From the Debug group, select System Browser.

5. Click OK.

The System Browser view appears with the process and thread information (shown in the figure below).

Figure 74: System Browser view

7.3 Debugging applications that use fork() and exec() system
calls

This section describes how to use the CodeWarrior debugger to debug programs that contain fork() and
exec() system calls.

The table below describes the fork() and exec() system calls.

Table 127: fork() and exec() Description

System Call Description

fork() This generic Linux system call creates a new process that is the exact replica
of the process that creates it. This call returns 0 to the child process and
returns the PID (Process ID) of the newly-created child process to the parent
process.

exec() This Linux system call launches a new executable in an already running
process. The debugger destroys the instance of the previous executable
loaded into that address space and a new instance is created.

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 237

You can also pick up sample Linux applications from the following folder:

<CWInstallDir>\PA\CodeWarrior_Examples\Linux_Examples

 NOTE

For CodeWarrior debugging purposes, when applications call the fork() system call, the debugger instead calls
the clone() system call with the flag CLONE_PTRACE. This causes:

• The operating system to attach CodeWarrior TRK to the child process

• The child process to stop with a SIGTRAP on return from the clone() system call

To make this happen, you must add a static library to your CodeWarrior project. The source code for building
the static library is described later in this section.

Before you start following the steps given in this section, ensure that you have:

• Installed the BSP on Linux

• Created a TCP/IP connection between the host computer and the remote target

• Launched CodeWarrior TRK on the target system

These steps demonstrate how to use the CodeWarrior IDE to debug programs that contain fork() and exec()
system calls:

1. Create a CodeWarrior project with the settings listed in the table below.

Table 128: Static Library Project Settings

Option Name Value

Project name Fork

Location <workspace-dir>\Fork

Project type Linux application

Language C

The IDE creates a project with a debug launch configuration.

2. Create a new build configuration. Right-click on the project folder and select Build Configurations >
Manage.

The Fork: Manage Configurations dialog appears.

3. Rename the default debug configuration to Fork.

4. Click New to create a new build configuration.

The Create New Configuration dialog appears.

5. In the Name field, enter the configuration name, Fork2clone.

6. From the Copy settings from options, select Existing configuration.

7. Click OK. The Fork: Manage Configurations dialog appears (shown in the figure below).

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
238 NXP Semiconductors

Figure 75: Fork: Manage Configurations Dialog Box

8. Activate the Fork2clone build configuration.

9. Build the Fork2clone build configuration by right-clicking it in the CodeWarrior Projects view and selecting
Build Project from the context menu. The CodeWarrior IDE builds the project and stores the support
library, libfork2clone.a, in the Output directory within the project directory.

Remember to build the Fork2clone build configuration before the Fork build
configuration to avoid getting a library file missing error as the libfork2clone.a is
used in the Fork project.

 NOTE

10.To specify the linker settings and add the support library to the project.

a. Right-click the Fork build configuration in the CodeWarrior Projects view.

b. Select Properties from the context menu. The Properties window for the shared library project appears.

c. From the C/C++ Build group, select Settings.

d. On the Tool Settings page, from the Power ELF Linker container, select Libraries.

e.
In the Libraries (-l) panel, click Add (). The Enter Value dialog appears.

f. Enter the library file name in the Libraries field.

g.
In the Libraries search path (-L) panel, click Add (). The Add directory path dialog appears.

h. Enter the library path in the Directory field, as shown in the figure below.

These settings enable the CodeWarrior IDE linker to locate the shared library
libfork2clone.a. For detailed information on other linker command line arguments,
see GNU linker manuals. You can find GNU documentation here: http://www.gnu.org.

 NOTE

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 239

http://www.gnu.org

Figure 76: Libraries Linker Settings - Fork Project

11.Remove the default main.c file from the project.

12.Add a new db_fork.c file to the project.

13.Enter the below code in the editor window of db_fork.c file.
Figure 77: Source Code for db_fork.c

/*

 User Include files

*/

#include "db_fork.h"

/*

 Main Program

*/

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
240 NXP Semiconductors

int __libc_fork(void)

{

 return(__db_fork());

}

extern __typeof (__libc_fork) __fork __attribute__ ((weak, alias
("__libc_fork")));

extern __typeof (__libc_fork) fork __attribute__ ((weak, alias
("__libc_fork")));

14.Create a header file db_fork.h in your project directory and add the below code in the header file.
Figure 78: Source Code for db_fork.h

#include <asm/unistd.h>
#include <sys/syscall.h>
#include <errno.h>
#include <signal.h>
#include <sched.h>
#define __NR___db_clone__NR_clone
#define __db_fork()
syscall(__NR___db_clone, SIGCHLD | CLONE_PTRACE, 0);

15.Enter the below code in the editor window of fork.c file.
Figure 79: Source Code for fork.c

/*
/*

 * fork.c

 *

 */

/*--*

 System Include files

 ---/

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/ptrace.h>

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 241

#include <sys/errno.h>

#include <sys/types.h>

#include <signal.h>

#include <sched.h>

#include <fcntl.h>

#include <dlfcn.h>

/*---*

 Function Prototypes

 * ---*/

int fn1(int j);

int fn2(int i);

/*--*

 Global Variables

 --/

int gint;

/*--*

 Main Program

 ---/

int main(void)

{

 int pid,x;

 int shared_local;

 printf("Fork Testing!\r\n");

 fflush(stdout);

 gint = 5;

 shared_local =5;

 pid = fork();

 if(pid == 0)

 {

 x=0;

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
242 NXP Semiconductors

 gint = 10;

 shared_local = fn1(9);

 printf("\nForked : Child");

 printf("\nChild:Global=%d,Shared_Local=%d",gint,shared_local);

 printf("\nChild pid = %d, parent pid =%d \n", getpid(),getppid());

 fflush(stdout);

 }

 else

 {

 x=0;

 gint = 12;

 shared_local = fn2(11);

 printf("\nForked : Parent");

 printf("\nParent:Global=%d,Shared_Local=%d",gint,shared_local);

 printf("\nParent pid = %d, Parent's parent pid =%d \n",
getpid(),getppid());

 fflush(stdout);

 }

 return 0;

}

int fn1(int j)

{

 j++;

 return j;

}

int fn2(int i)

{

 i++;

 return i;

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 243

}

The code of the parent process creates a forked process (child process) when the __db_fork function
executes. The debugger opens a separate thread window for the child process. When the child process
finishes executing, the debugger closes the thread window. To debug the code of the child process, you need
to set a breakpoint in the child process code. You can debug the code of the child process the same way you
debug code of any other process.

16.Create another project, Exec, and create two new build configurations with the following settings:

Table 129: Exec Example Project Settings

Option Name Value

Project name Exec

Location <workspace-dir>\Exec

Project type Linux application

Language C

Build configurations • Exec

• Exec-1

17.Add the source files exec.c and exec-1.c to the Exec project.

• exec.c: The code demonstrating exec() functionality

• exec-1.c: Generates the executable file exec-1.elf

As you step through the code of the exec.elf file, the exec() function call executes and a separate debugger
window for the exec-1.elf appears. You can perform normal debug operations in this window. The debugger
destroys the instance of the previous file (exec.elf) and creates a new instance for the exec-1.elf file.

18.Enter the below code in the editor window of Exec.c file.
Figure 80: Source Code for Exec.c

/** Exec.c
 *
 * Demonstrates Exec system call functionality
 */

/*--*
 System Include files
 --/
#include <stdio.h>
#include <unistd.h>
/*--*
 Constant Defintions
 --/
#define EXEC_1 "/tmp/Exec-1.elf"

/*--*
 Main Program
 --/
int main(void)
{

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
244 NXP Semiconductors

 char *argv[2];
 printf("Exec Testing!\r\n");
 printf("Before exec my ID is %d\n",getpid());
 printf("My parent process's ID is %d\n",getppid());
 fflush(stdout);

 /*Calling another program exec-1.elf*/
 argv[0] = EXEC_1;
 argv[1] = NULL;
 printf("exec starts\n");
 execv(argv[0],argv);
 printf("This will not print\n");
 fflush(stdout);
 return 0;
}

19.Enter the below code in the editor window of Exec-1.c file.
Figure 81: Source Code for Exec-1.c

/** Exec-1.c *
Demonstrates Exec system call functionality */
/*---*
System Include files
---/
#include <stdio.h>
#include <unistd.h>
/*---*
Main Program
---/
int main(void){
 printf("After exec my process ID is %d\n",getpid());
 printf("My parent process's ID is %d\n",getppid());
 printf("exec ends\n");
 fflush(stdout);
 return 0;
}

20.Create the build configurations for building Exec.elf and Exec-1.elf (similar to creating the build
configurations for the Fork project).

21.Build Exec project.

a. Select the Exec build configuration, if not selected.

b. Select Project > Build Project.

The CodeWarrior IDE generates the exec.elf, and exec-1.elf executable files and places them in the
project folder.

22.Specify the remote download path of the executable files to be launched by the exec() system call.

a. Select Run > Debug Configurations to open the Debug Configurations dialog.

b. In the left panel from the CodeWarrior group, select the Exec launch configuration.

c. On the Debugger page, click the Remote tab.

d. Type /tmp in the Remote Download Path field, as shown in the figure below. This specifies that the final
executable file will be downloaded to this location on the target platform for debugging.

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 245

In the current example, the remote download path is specified as /tmp. If you wish, you
may specify an alternate remote download path for the executable file.

 NOTE

Figure 82: Remote Download Path - Shared Library Project

23.Specify the host-side location of the executable files to be launched by the exec() system call.

a. Click the Other Executables tab.

b. Click Add. The Debug Other Executable dialog appears.

c. Click File System. The Open dialog appears.

d. Navigate to the location of the exec-1.elf file in your project directory.

e. Select the exec-1.elf file name.

f. Click Open. The host-side location of exec-1.elf appears in the Additional Executable File text box.

g. Select the Load Symbols checkbox.

h. Select the Download to Device checkbox. The Specify the remote download path field is activated.

If you do not want to download the selected file on the target platform, do not select the
Download to Device checkbox.

 NOTE

i. Type /tmp in the Remote download path text box. The shared library will be downloaded to this location
when you debug or run the executable file.

j. Click OK. The settings are saved.

24.Click Apply to save the settings made to the launch configuration.

25.Set breakpoints in the child and parent processes.

a. Double-click the fork.c file name in the CodeWarrior Projects view.

b. Set a breakpoint in the code of the child process at this line: x=0;

c. Set a breakpoint in the code of the parent process.

d. Close the fork.c file.

26.Select Run > Debug.

The debugger window appears and the Fork project starts debugging. As a result, the Fork.elf and
libfork2clone.a files are downloaded on the target system.

27.Step over the code until you reach the line of code that calls the fork() system call: pid = fork ();

When the fork() system call is called, the child process debugger window appears. You can now perform
normal debugging operations in this window.

Debugging Embedded Linux Software
Debugging applications that use fork() and exec() system calls

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
246 NXP Semiconductors

28.Step over the code in the child process debugger window a couple of times.

29.Next, step over the code in the parent process debugger window a couple of times.

The console window of the parent process is shared by the child process.

 NOTE

30.Terminate the debug session.

31.Clear previously set breakpoints.

32.Select Run > Debug for Exec project.

33.Set a breakpoint in the Exec.c file on the line containing the execv() function call.

34.Click Resume. The target stops at the line where you set the breakpoint.

35.Click Resume. The exec() call is executed and the debugger stops in the main() function of the
Exec-1.elf file.

36.Execute some steps in Exec-1.c file.

37.Terminate the debug session and remove all breakpoints.

7.4 Debugging a shared library
CodeWarrior allows you to perform source-level debugging of shared libraries.

When you debug an executable file using a shared library, you can step into the shared library code. This section
demonstrates how to debug a shared library that is implicitly linked to an application.

In this section:

• Create an example project on page 247

• Configure the shared library build configuration on page 250

• Configure the executable build configuration on page 250

• Build the shared library on page 251

• Build the executable on page 251

• Configure the launch configuration on page 251

• Debug the shared library on page 253

7.4.1 Create an example project
First of all, you need to create an example Linux project that uses a shared library.

To create an example Linux project, perform the following steps:

1. In the CodeWarrior IDE, use File > New > CodeWarrior Linux Project Wizard to create a new Linux project
with the settings given in the table below.

Instead of creating a new Linux project, you can import an example Linux project,
SharedLibrary, available in the <CWInstallDir>\PA\CodeWarrior_Examples
\Linux_Examples\ folder as a reference. The example project can be imported as a
CodeWarrior Example Project using the File > Import menu bar option.

 NOTE

Debugging Embedded Linux Software
Debugging a shared library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 247

Table 130: Example Project Settings

Option Name Value

Project name SharedLibraryExample

Location <workspace-dir>\SharedLibraryExample

Project type Linux application

Language C

Build configurations • LibExample (generates the dynamic library needed by the launch
configurations)

• SharedLib_IM (used to demonstrate implicit linking with the library
generated by LibExample build configuration)

Launch configurations SharedLib_IM (launches the application that demonstrates implicit linking
with a shared library)

In the current example, only implicit library linking is mentioned; however, in the example
project shipped with CodeWarrior, SharedLibrary, we have also demonstrated
explicit library loading. For explicit library loading, we have used another build/launch
configuration, SharedLib_EX.

 NOTE

2. Remove the default main.c file and add the source files (SharedLib_IM.c and LibExample.c) to your
project.

3. In the CodeWarrior IDE, create a header file, LibExample.h, as depicted in the listing below.
Figure 83: Source Code for LibExample.h

/* LibExample.h */
int add_example(int x,int y);
int add_example_local(int x,int y);

4. Save the LibExample.h file in the project directory.

5. Enter the below code into the editor window of the SharedLib_IM.c file.
Figure 84: Source Code for SharedLib_IM.c

/*
 Sharedlib_IM.c

 Demonstrates implicit linking.

*/

// User Include files

#include "LibExample.h"

// function prototype declaration

int temp (int, int);

Debugging Embedded Linux Software
Debugging a shared library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
248 NXP Semiconductors

// main program

int main ()

{

 int ret;

 int a, b;

 a = 10;

 b = 20;

 ret = temp (a, b);

 ret = add_example (a, b); // step in here

 return ret;

}

int temp(int i, int j)

{

 return i + j;

}

6. Enter the below code into the editor window of the LibExample.c file.
Figure 85: Source Code for LibExample.c

/*
 LibExample.c

*/

// user include files#include "LibExample.h"// functions definitions

int add_example(int x, int y)

{

 int p,q;

 p=100;

 q=p+200;

 add_example_local (2, 3); // step in here

 return x+y+q;

}

 int add_example_local (int x, int y)

Debugging Embedded Linux Software
Debugging a shared library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 249

{

 int p,q;

 p = 100;

 q = p + 200;

 return x + y + q;

}

7.4.2 Configure the shared library build configuration
The next action is to configure the LibExample build configuration, which generates libexample.so.

The steps are given below:

1. Select the SharedLibraryExample project in the CodeWarrior Projects view.

2. Select the LibExample build configuration by selecting Project > Build Configurations > Set Active > <Build
Configuration Name>.

3. Check LibExample.c and LibExample.h in the Build column.

Use the CodeWarrior example project, SharedLibrary, as a reference to set up the
build configuration settings of the LibExample build configuration.

 TIP

7.4.3 Configure the executable build configuration
Now, you need to set up the SharedLib_IM build configuration.

The steps are given below:

1. Select the SharedLibraryExample project in the CodeWarrior Projects view.

2. Select the SharedLib_IM build configuration by selecting Project > Build Configurations > Set Active >
<Build Configuration Name>.

3. Specify the linker settings.

a. Select the SharedLib_IM build configuration in the CodeWarrior Projects view.

b. Select Project > Properties. The Properties window for the shared library project appears.

c. In the Tool settings page, from the Power ELF Linker container, select Libraries.

d.
In the Libraries (-l) panel, click Add (). The Enter Value dialog appears.

e. Enter the library file name, example, in the Libraries field.

f.
In the Libraries (-L) panel, click Add (). The Add directory path dialog appears.

g. Enter the library path in the Directory field. The library path is the path of the Output directory that is
used by LibExample build configuration.

Debugging Embedded Linux Software
Debugging a shared library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
250 NXP Semiconductors

These settings enable the CodeWarrior IDE linker to locate the shared library,
libexample.so. For detailed information on other linker command line arguments,
see GNU linker manuals. You can find GNU documentation here: http://www.gnu.org.

 NOTE

7.4.4 Build the shared library
The next action is to build the shared library.

To build the shared library, perform the following steps:

1. Select the SharedLibraryExample project in the CodeWarrior Projects view.

2. Select the LibExample build configuration by selecting Project > Build Configurations > Set Active > <Build
Configuration Name>.

3. Select Project > Build Project. The CodeWarrior IDE builds the project and stores the output file
libexample.so in the Output directory within the project directory.

7.4.5 Build the executable
Now, you need to build the executable that uses the shared library.

To build the executable, perform the following steps:

1. Select the SharedLibraryExample project in the CodeWarrior Projects view.

2. Select the SharedLib_IM build configuration by selecting Project > Build Configurations > Set Active >
<Build Configuration Name>.

You can also select a build configuration from the drop-down list that appears when you
click the down arrow next to the project name in the CodeWarrior Projects view.

 TIP

3. Select Project > Build Project. The CodeWarrior IDE builds the project and stores the output file
SharedLib_IM.elf in the Output directory within the project directory.

7.4.6 Configure the launch configuration
The next action is to configure the SharedLib_IM launch configuration.

You can configure the SharedLib_IM launch configuration by:

1. Specifying the remote download path of the final executable file.

2. Specifying the host-side location of the executable file to be used for debugging the shared library.

3. Specifying the environment variable that enables the shared object loader to locate the shared library on
the remote target at run time.

Following are complete steps of configuring a launch configuration:

1. Activate the SharedLib_IM launch configuration in the project.

2. Specify the remote download path of the final executable file.

a. Select Run > Debug Configurations to open the Debug Configurations dialog.

b. In the left pane from the CodeWarrior group, select the SharedLib_IM launch configuration.

c. On the Debugger page, click the Remote tab.

d. Type /tmp in the Remote Download Path field, as shown in the figure below. This specifies that the final
executable file will be downloaded to this location on the target platform for debugging.

Debugging Embedded Linux Software
Debugging a shared library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 251

http://www.gnu.org

In the current example, the remote download path is specified as /tmp. You can
replace /tmp with any other directory for which CodeWarrior TRK has the necessary
access permissions.

 NOTE

Figure 86: Remote Download Path - Shared Library Project

3. Specify the host-side location of the executable file to be used for debugging the shared library.

a. Click the Other Executables tab in the Debugger page.

b. Click Add. The Debug Other Executable dialog appears.

c. Click Workspace. The Open dialog appears.

d. Navigate to the location where you have stored the libexample.so file in your project directory.

e. Select the libexample.so file name.

f. Click Open. The host-side location of the shared library appears in the Specify the location of the other
executable field.

g. Select the Load Symbols checkbox, so that the debugger has visibility of symbols within the library.

h. Select the Download to Device checkbox. The Specify the remote download path field is activated.

i. Type /tmp in the Remote download path text box. The shared library will be downloaded to this location
when you debug or run the executable file.

The default location of shared libraries on the embedded Linux operating system is /usr/lib. In the
current example, the remote download location of libexample.so is /tmp.

j. Click OK. The settings (shown in the figure below) are saved.
Figure 87: Debug Other Executable Dialog Box

Debugging Embedded Linux Software
Debugging a shared library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
252 NXP Semiconductors

4. Specify the environment variable that enables the shared object loader to locate the shared library on the
remote target at run time.

At run time, the shared object loader first searches for a shared library in the path specified by the
LD_LIBRARY_PATH environment variable's value. In this case, the value of this environment variable will be /
tmp, which is the remote download path for the shared library you specified in the Debug Other Executable
dialog. If you have not specified the environment variable or have assigned an incorrect value, the shared
object loader searches for the shared library in the default location /usr/lib.

a. In the Debug window, click Environment to open the Environment page.

b. Click New to open the New Environment Variable dialog.

c. In the Name field, type LD_LIBRARY_PATH.

d. In the Value field, type /tmp.

Ensure that you type the same remote download path in the Value field that you specified
in the Debug Other Executable dialog.

 NOTE

e. Click OK. The environment variable is added to the launch configuration.

f. Add another environment variable with name, AVOID_SYSTEM_PATH and value YES.

The AVOID_SYSTEM_PATH variable sets the launch configuration to use the library path
settings you specify. By specifying the value YES you avoid the launch configuration
from picking up any other system path.

 NOTE

g. Click Apply to save the launch configuration settings. The target settings are saved (shown in the figure
below).

Figure 88: Environment Variables - Shared Library Project

h. Click OK to close the Debug view.

7.4.7 Debug the shared library
Finally, you need to debug the shared library.

In the steps that follow, you will launch the debugger. Next, you will step through the code of the executable file,
SharedLib_IM.elf, until you reach the code that makes a call to the add_example function implemented in the
shared library. At this point, you will step into the code of the add_example function to debug it.

1. Activate the SharedLib_IM launch configuration in the project.

2. Select Run > Debug.

Debugging Embedded Linux Software
Debugging a shared library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 253

The debugger starts and downloads the SharedLib_IM.elf and libexample.so files to the specified
location on the remote target, one after another. The Debug perspective appears.

3. Click Step Over in the debugger window until you reach the following line of code (shown in the figure
below):

ret=add_example(a,b)

Before you set breakpoints in the code of an imported shared library to step into the
code, you can use the Executables view to navigate and check the source files of the
library. For more information on the Executables view, open CodeWarrior Eclipse Help
by selecting Help > Help Contents in the CodeWarrior IDE, and then select Third Party
References > C/C++ Development User Guide > Reference > C/C++ Views and Editors
> Executables view in the Contents pane.

 TIP

Figure 89: SharedLib_IM.c - Step In Location

4. In the Debug view, click Step Into to step into the code of the add_example function.

The debugger steps into the source code of the add_example function in the LibExample.c file (shown in
the figure below).

Figure 90: LibExample.c - add_example Function

5. After stepping in, you can step through the rest of the code.

Debugging Embedded Linux Software
Debugging a shared library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
254 NXP Semiconductors

The Debug view shows the function calls to the add_example function (shown in the figure below).

Figure 91: Debug View - Shared Library Project

6. View the output of the program.

The rest of the code is executed and the output appears in the Variables view (shown in the figure below).

Figure 92: Variables View - Shared Library Project

7.5 Preparing U-Boot for debugging
U-Boot resides in flash memory on target systems and boots an embedded Linux image developed for those
systems.

Before debugging U-Boot on a target system, follow these steps:

1. Install BSP on page 256.

2. Configure U-Boot and build U-Boot images with CodeWarrior debugger support on page 257.

3. Configure hardware to use U-Boot image on page 257.

4. Create a CodeWarrior project to debug U-Boot on page 257

5. Specify launch configuration settings on page 258

6. Create launch configurations for U-Boot debug stages on page 260

Debugging Embedded Linux Software
Preparing U-Boot for debugging

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 255

7.5.1 Install BSP
Install the board support package (BSP) for the target system you want to debug on the Linux host computer.

The BSP versions keep changing frequently. For different BSP versions, you might
encounter build environments based on various tools. The subsequent sections will
describe necessary procedures and use specific examples from real Freescale BSPs
for illustration. The examples in these sections need to be adapted based on the BSP
versions or build tools you are currently using.

 NOTE

Follow these steps to install the BSP:

1. On the Linux computer, download the BSP for your target hardware to install kernel files and Linux
compiler toolchains on your system.

BSP image files for target boards are located at http://www.freescale.com/linux.

2. Download the BSP image file for your target board.

You will need to log-in or register to download the BSP image file.

 NOTE

The downloaded image file has an .iso extension. For example,

QorIQ-DPAA-SDK-<yyyymmdd>-yocto.iso

3. Mount the image file to the CDROM as root, or using "sudo":

<sudo> mount -o loop QorIQ-DPAA-SDK-<yyyymmdd>-yocto.iso/mnt/cdrom

sudo is a Linux utility that allows users to run applications as root. You need to be
setup to run sudo commands by your system administrator to mount and install the
BSPs.

 NOTE

4. Execute the BSP install file to install the build tool files to a directory of your choice, where you have
privileges to write files:

/mnt/cdrom/install

The BSP must be installed as a non-root user, otherwise the install will exit.

 NOTE

5. Answer the questions from the installation program until the file copy process begins.

You will be prompted to input the required build tool install path. Ensure you have the correct permissions for
the install path.

6. Upon successful installation, you will be prompted to install the ISO for the core(s) you want to build.

For example, if you want to build the SDK for P4080, that is a e500mc core, then you have to install the ISO
images for e500mc core:

c23174e5e3d187f43414e5b4420e8587 QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.part1
292c6e1c5e97834987fbdb5f69635a1d QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.part2

Debugging Embedded Linux Software
Preparing U-Boot for debugging

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
256 NXP Semiconductors

http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_BSP&tid=vanLINUX

You can see the SDK Manual for instructions about how to build the BSP images and
run different scenarios from the iso/help/documents/pdf location.

 NOTE

7.5.2 Configure U-Boot and build U-Boot images with CodeWarrior
debugger support

After installing the BSP, you need to configure the BSP U-Boot package, to place debugger symbolic
information in the U-Boot binary executable file, and build the U-Boot images with CodeWarrior debugger
support, on the Linux host computer.

For more information on configuring the U-Boot and building U-Boot images, see the SDK User Manual available
in the iso/help/documents/pdf folder.

7.5.3 Configure hardware to use U-Boot image
To configure the hardware to use U-Boot image, you need to burn the U-Boot image to the flash memory of
the hardware.

See the Burning U-Boot to Flash cheat sheet for the entire procedure for burning U-Boot
to flash. To access the cheat sheets, select Help > Cheat Sheets from the CodeWarrior
IDE menu bar.

 NOTE

7.5.4 Create a CodeWarrior project to debug U-Boot
Create a new CodeWarrior project to debug U-Boot on the target system.

To create a CodeWarrior project, use these steps:

1. Launch CodeWarrior IDE.

2. Select File > Import. The Import wizard appears.

3. Expand the CodeWarrior group and select CodeWarrior Executable Importer.

4. Click Next.

The Import a CodeWarrior Executable file page appears.

5. Specify a name for the project, to be imported, in the Project name text box.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

An existing directory cannot be specified for the project location.

 NOTE

7. Click Next.

The Import C/C++/Assembler Executable Files page appears.

8. Click Browse next to the Executable field.

9. Select the U-Boot ELF file obtained after the U-Boot compilation.

Debugging Embedded Linux Software
Preparing U-Boot for debugging

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 257

You can see the SDK Manual, for instructions about how to generate an U-Boot ELF
file, from the iso/help/documents/pdf location.

 NOTE

10.Click Open.

11.From the Processor list, expand the processor family and select the required processor.

12.Select Bareboard Application from the Toolchain group.

The selected toolchain sets up the default compiler, linker, and libraries used to build the new project.

13.Select None from the Target OS list.

14.Click Next.

The Debug Target Settings page appears.

15.From the Debugger Connection Types list, select the required connection type.

16.Specify the settings, such as board, launch configuration, connection type, and TAP address if you are
using CodeWarrior TAP (over Ethernet), Ethernet TAP, or Gigabit TAP.

17.Click Next.

The Configurations page appears.

18.From the Core index list, select Core 0.

19.Click Finish.

The wizard creates a CodeWarrior project to debug the U-Boot image.

You can access the project from the CodeWarrior Projects view on the workbench.

7.5.5 Specify launch configuration settings
Now, you need to specify the settings for the newly created Attach launch configuration in the Debug
Configuration dialog.

To specify launch configuration settings, follow these steps:

1. Select Run > Debug Configurations.

2. On the Main tab, if you have an already existing system for the attach configuration, select it from the
Connection drop-down list, else create a new one by following the steps given below:

a. Click New. The New Connection wizard appears.

b. Expand the CodeWarrior Bareboard Debugging group and select Hardware or Simulator Connection.

c. Click Next. The Hardware or Simulator Connection page appears.

d. Specify a name and a description for the connection.

e. Click New next to the Target drop-down list. The New Connection wizard appears.

f. Expand the CodeWarrior Bareboard Debugging group and select Hardware or Simulator System.

g. Click Next.

h. Select a processor from the Target type drop-down list.

i. On the Initialization tab, clear the Execute reset checkbox.

j. Select the checkbox for the respective core in the Initialize target column.

k. Click the ellipsis button in the Initialize target column.

Debugging Embedded Linux Software
Preparing U-Boot for debugging

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
258 NXP Semiconductors

The Initialization target dialog appears.

l. Click File System and select the target initialization file from the following path:

<CWInstallDir>\PA\PA_Support\Initialization_Files

If you want to use an initialization file that initializes CCSR and PIXIS before U-Boot,
you can uncomment the specific lines in the <board_name>_uboot_<numbits>.tcl
initialization file, where <numbits> can be 32 or 36.

 NOTE

m. Based on the target you select, you may also have to specify the memory configuration file details by
selecting the Memory Configuration checkbox on the Memory tab.

n. Click the ellipsis button in the Memory Configuration column.

The Memory Configuration dialog appears.

o. Click File System and select the memory configuration file from the following path:

<CWInstallDir>\PA\PA_Support\Initialization_Files\Memory

p. Click Finish.

q. From the Connection type drop-down list, select the type of connection you plan to use.

The Connection tab appears along with the other tabs on the page.

r. On the Connection tab, specify the IP address of the TAP.

s. Click Finish.

t. From the System panel, select all the cores on which U-Boot is running.

3. Click the Debugger tab.

4. On the PIC page, select the Alternate Load Address checkbox.

5. In the text box that comes up, enter the 0xFFF40000 address.

6. Click the Source tab and verify the source mapping configuration.

7. Click Apply to save the settings made to the various tabs.

8. Click Debug.

The Debug perspective appears with the core 0 stopped at the reset vector (shown in the figure below).

You will need to press Reset in the Debug view. Select the Core reset checkboxes for
all cores except core 0. You will then see core 0 stopped at the reset vector.

 NOTE

Debugging Embedded Linux Software
Preparing U-Boot for debugging

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 259

Figure 93: Debug Perspective - U-Boot Debug

7.5.6 Create launch configurations for U-Boot debug stages
Finally, you need to create launch configurations for different U-Boot debug stages.

During a typical U-Boot start-up sequence, the target processor starts executing U-Boot in flash memory. U-
Boot then enables the Memory Management Unit (MMU), and relocates itself to RAM. From the memory layout
perspective, U-Boot debug has four different stages. For each of these stages, you will need a separate launch
configuration. You have already configured the launch configuration settings for the first stage in the P4080 U-
Boot Stage 1 launch configuration.

To create launch configurations for the remaining three stages for U-Boot debug:

Create these launch configurations only if you are using the hardware option to debug
U-Boot.

 NOTE

1. To open the Remote Systems view, select Window > Show View > Other.

The Show View dialog appears.

2. Expand the Remote Systems group and select Remote Systems.

The Remote Systems view appears as a tabbed view at the bottom of the workbench.

3. Select the P4080 U-Boot Stage 1 remote system from the view.

4. Right-click and from the context menu select Copy.

The Copy Resource dialog appears.

5. Select the active profile from the list. Click OK.

The Duplicate Name Collision message box appears.

6. Select the Rename option.

The Rename to text box is enabled.

7. Enter the name for the copied remote system. For example, P4080DS u-boot mem translation.

Debugging Embedded Linux Software
Preparing U-Boot for debugging

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
260 NXP Semiconductors

The new remote system appears in the Remote Systems view.

This remote system will be used in the second stage of U-Boot debug.

 NOTE

8. Right-click P4080DS u-boot mem translation and select Properties from the context menu.

The Properties for P4080DS u-boot mem translation window appears.

9. On the System tab, select the checkbox for the respective core in the Memory configuration column.

10.Click the ellipsis button in the Memory configuration file column.

The Memory Configuration File dialog appears.

11.Click File System and select the memory configuration file from this path:

<CWInstallDir>\PA\PA_Support\Initialization_Files\Memory\${BoardName}_uboot_${bits}_$
{FlashDevice}_${stage}.mem

12.Click OK.

13.Click OK.

14.Select Run > Debug Configurations to open the Debug Configurations dialog.

15.Expand the CodeWarrior Attach group.

16.Right-click the P4080 U-Boot Stage 1 launch configuration and select Duplicate from the context menu
that appears.

A new launch configuration appears in the CodeWarrior Attach group.

17.On the right-hand side, in the Name text box, enter an appropriate name. For example, P4080 U-Boot
Stage 2.

18.On the Main page, in the Remote system panel, from the System drop-down list, select the P4080DS u-
boot mem translation system.

19.On the Debugger tab, in the PIC page, clear the Alternate Load Address checkbox.

20.Duplicate the P4080 U-Boot Stage 1 launch configuration.

21.On the right-hand side in the Name text box, enter an appropriate name. For example, P4080 U-Boot
Stage 3.

22.On the Debugger tab, in the PIC page, clear the Alternate Load Address checkbox.

23.Duplicate the P4080 U-Boot Stage 1 launch configuration.

24.On the right-hand side in the Name text box, enter an appropriate name. For example, P4080 U-Boot
Stage 4.

25.On the Debugger tab, in the PIC page, select the Alternate Load Address checkbox.

26.In the text box that comes up, enter the address printed by U-Boot as "Now running in RAM".

You have successfully created launch configurations for all the four stages of U-Boot debug.

From a memory layout perspective, U-Boot has four different stages till you get the U-Boot prompt. CodeWarrior
debug settings required to debug U-Boot in flash memory differ from the settings required to debug U-Boot in
RAM.

Debugging Embedded Linux Software
Preparing U-Boot for debugging

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 261

7.6 Debugging U-Boot using NOR, NAND, SPI, and SD
Card/MMC Flash Devices

U-Boot resides in flash memory on target systems and boots an embedded Linux image developed for those
systems. This section shows you how to use the CodeWarrior debugger to debug the U-Boot using NOR,
NAND, SPI, and SD Card/MMC flash devices.

This section explains:

• Configuring and Building U-Boot on page 262

• Creating a CodeWarrior Project to Debug U-Boot on page 264

• Specifying the Launch Configuration Settings on page 265

• Debugging U-Boot using Flash Devices on page 267

7.6.1 Configuring and Building U-Boot
This section explains how to configure and build U-Boot and how to write configuration words in the U-Boot
code to create the final boot image.

See Preparing U-Boot for debugging on page 255 to install and configure the BSP. For more information on
configuring the build tool and building U-Boot with CodeWarrior debugger support, see the SDK User Manual
available in the iso/help/documents/pdf folder.

Upon successful compilation of U-Boot, the binary images for NOR and NAND flash devices are written to the
flash. For the SPI and SD flash devices, write the configuration words at the beginning of the u-boot.bin file
to create the final boot image.

See the figure below for the required eSPI/SD EEPROM data structure.

Figure 94: eSPI/SD EEPROM Data Structure

The table below describes the eSPI/SD EEPROM data structure.

Table 131: eSPI/SD EEPROM Data Structure Details

Address Data Bits

0x00-0x3F Reserved

Table continues on the next page...

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
262 NXP Semiconductors

Table 131: eSPI/SD EEPROM Data Structure Details (continued)

Address Data Bits

0x40-0x43 BOOT signature - This location should contain the value 0x424f_4f54, which
is the ASCII encoding for BOOT. The eSPI loader code searches for this
signature, initially in 24-bit addressable mode. If the value at this location
does not match the BOOT signature, the EEPROM is accessed again, but in
16-bit mode. If the value in this location still does not match the BOOT
signature, the eSPI device does not contain a valid user code. In such a case,
the eSPI loader code disables the eSPI and issues a hardware reset request
of the SoC by setting RSTCR[HRESET_REQ].

0x44-0x47 Reserved

0x48-0x4B User's code length - Number of bytes in the user's code to be copied. The
value must be a multiple of 4. 4<=User's code length <= 2GBytes.

0x4C-0x4F Reserved

0x50-0x53 Source Address - Contains the starting address of the user's code as an offset
from the EEPROM starting address. In the 24-bit addressing mode, the 8
most significant bits of the source address should be written to as zero,
because the EEPROM is accessed with a 3-byte (24-bit) address. In 16-bit
addressing mode, the 16 most significant bits of the source address should
be written as zero.

0x54-0x57 Reserved

0x58-0x5B Target Address - Contains the target address in the system's local memory
address space in which the user's code is copied. This is a 32-bit effective
address. The core is configured in such a way that the 36-bit real address is
equal to the target address (with 4 most significant bits zero).

0x5C-0x5F Reserved

0x60-0x63 Execution Starting Address - Contains the jump address of the system's local
memory address space into which the user's code first instruction is
executed. This is a 32-bit effective address. The core is configured in such a
way that the 36-bit real address is equal to this (with 4 most significant bits
zero).

0x64-0x67 Reserved

0x68-0x6B N - Number of Config Address/Data pairs. This address must be <=1024 (but
it is recommended to keep it as small as possible).

0x6C-0x7F Reserved

0x80-0x83 Config Address 1

0x84-0x87 Config Data 1

0x88-0x8B Config Address 2

0x8C-0x8F Config Data 2

... ...

0x80 + 8*(N-1) Config Address N

Table continues on the next page...

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 263

Table 131: eSPI/SD EEPROM Data Structure Details (continued)

Address Data Bits

0x80 + 8*(N-1)+4 Config Data N (Final Config Data N optional)

~ ~ ~ ~ ~ ~

User's Code Your U-Boot code.

This section contains the following subsection:

• Writing configuration words in U-Boot code on page 264

7.6.1.1 Writing configuration words in U-Boot code
You can use the boot format tool to write the configuration words to the beginning of the U-Boot code.

The boot format tool is used only for SPI and SD flash devices.

To use the boot format tool:

1. Access the BSP folder to access the boot format tool.

See the BSP documentation to read more about the boot format tool.

 NOTE

2. Issue the following commands:

cd boot_format
make [all]

3. Issue the following command for the SPI flash device:

./boot_format config_XXX_ddr.dat u-boot.bin -spi spi-boot.bin

where config_XXX_ddr.dat is the appropriate DDR init file for your board.

4. For the SD flash device, you need to format your SD device to vfat:

/sbin/mkfs.vfat /dev/sdc1
./boot_format config_ddr3_xxx.dat u-boot.bin -sd /dev/sdc1

where /dev/sdc1 is the SD flash device.

7.6.2 Creating a CodeWarrior Project to Debug U-Boot
This section provides steps to create a CodeWarrior project for debugging U-Boot.

To create a CodeWarrior project to debug U-Boot:

1. Start the CodeWarrior IDE.

2. Select File > Import. The Import wizard appears.

3. Expand the CodeWarrior group and select CodeWarrior Executable Importer.

4. Click Next.

The Import a Codewarrior Executable file page appears.

5. Specify the project name in the Project name text box.

6. Click Next.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
264 NXP Semiconductors

7. Click Browse next to the Executable text box.

• For NOR, SPI, and SD, browse to the U-Boot folder and select the U-Boot file.

• For NAND, browse to the U-Boot folder and select the u-boot-spl file from the nand_spl folder. You need
two .elf files when performing U-Boot debug in NAND. To specify the second .elf file, see Specifying
the Launch Configuration Settings on page 265.

• Click Open.

• Click Next.

• From the Processor list, expand the processor family and select the required processor.

• From the Toolchain list, select Bareboard Application.

• Click Next.

• From the Debugger Connection Types list, select the required connection type.

Select the Simulator option from the Debugger Connection Types list if you want to use
the simulator to debug U-Boot.

 NOTE

• Select a required launch configuration.

• From the Core index list, select the required core.

• Click Next.

• Specify connection type, and TAP address if you are using Ethernet or Gigabit TAP.

If you are using the simulator to debug U-Boot, this page will show the simulator options.

 NOTE

• Click Finish.

The imported project appears in the CodeWarrior Projects view.

You just finished creating a CodeWarrior project to debug the U-Boot image.

7.6.3 Specifying the Launch Configuration Settings
You can specify settings for the launch configuration created earlier using the Debug Configurations dialog.

To specify settings for the newly created Attach launch configuration:

1. Select Run > Debug Configurations.

2. On the Main tab, if you have an already existing system for the attach configuration, select it from the
Connection drop-down list, else create a new one by following the steps given below:

a. Click New. The New Connection wizard appears.

b. Expand the CodeWarrior Bareboard Debugging group and select Hardware or Simulator Connection.

c. Click Next. The Hardware or Simulator Connection page appears.

d. Specify a name and a description for the connection.

e. Click New next to the Target drop-down list. The New Connection wizard appears.

f. Expand the CodeWarrior Bareboard Debugging group and select Hardware or Simulator System.

g. From the Target type drop-down list, expand the eppc group and select the required processor.

h. On the Initialization tab, clear the Execute system reset checkbox.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 265

i. Select the checkbox for the respective core in the Initialize target column.

j. Click the ellipsis button in the Initialize target script column.

The Target Initialization File dialog appears.

k. Click File System and select the target initialization file from the following path:

<CWInstallDir>\PA\PA_Support\Initialization_Files\

If you want to use an initialization file that initializes CCSR and PIXIS before U-Boot,
you can uncomment the specific lines in the <boardname>_uboot_<Numbits>.tcl
initialization file, where <NumBits> can be 32 or 36.

 NOTE

l. Click Finish.

m. From the Connection type drop-down list, select the type of connection you want to use (Ethernet TAP,
Gigabit TAP, or Simulator).

The Connection tab appears along with the other tabs on the page.

n. On the Connection tab, specify the IP address of the TAP if you are using a TAP or configure the Simics
paths (model startup script, simics executable, and CodeWarrior add-on) if you are using Simics. For
Simics, select the Manual launch option from the CCS server panel and enter the IP address of the
CCS server in the Server hostname/IP text box.

o. Click Finish.

p. From the Target panel, select all the cores on which U-Boot is running.

3. On the Debugger tab, in the Other Executables page specify the second elf file needed to perform U-Boot
debug in NAND.

a. Click Add. The Debug Other Executable dialog appears.

b. In the Additional Executable File text box, browse to the U-Boot folder and select the U-Boot file.

c. Select the Load Symbols checkbox.

d. Click OK.

4. On the Debugger tab, in the PIC page, clear the Alternate Load Address checkbox.

5. On the Source tab, specify the source mapping configuration.

6. Click Apply to save the settings made to the various tabs.

7. Click Debug.

The Debug perspective appears with the core 0 stopped at the reset vector (shown in the figure below).

Select the Core reset checkboxes for all cores except core 0 and then click Reset in the
Debug view. You will then see core 0 stopped at the reset vector.

 NOTE

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
266 NXP Semiconductors

Figure 95: Debug Perspective - U-Boot Debug

7.6.4 Debugging U-Boot using Flash Devices
This section explains how to debug U-Boot using different flash devices.

From a memory layout perspective, U-Boot has four different stages till you get the U-Boot prompt. CodeWarrior
debug settings required to debug U-Boot in flash memory differ from the settings required to debug U-Boot in
RAM. Each of these stages requires specific debug settings that are described in the following sections for each
flash device, NOR, NAND, SPI, and SD/MMC.

• Points to remember on page 267

• Debugging U-Boot using NOR flash on page 268

• Debugging U-Boot using SPI and SD/MMC flash on page 273

• Debugging U-Boot using NAND flash on page 278

7.6.4.1 Points to remember
This section talks about some important points to remember while debugging U-Boot using a flash device.

Before debugging U-Boot, you should be aware of the board you are using, if the U-Boot was built on 32 or 36
bits, and the configuration files you will use from the layout.

Select the correct initialization and memory files used by the CodeWarrior Debugger. These configuration files
have various names:

${BoardName}_uboot_${bits}_${FlashDevice}_${stage}.mem

${BoardName}_uboot_${bits}.tcl

• BoardName is any available board, for example, P4080DS, P2040RDB, P2010DS, and so on

• bits are any token from 32 or 36

• FlashDevice is any token from NOR, NAND, SPI, and SD

• stage can be any token from 1, 2, 3, 4, 1_2, 3_4, {}

Note that the configuration files in which the stage token is missing (for example,
P1024RDB_uboot_32.tcl) can be used in all debug stages.

 NOTE

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 267

Whenever you want to set a breakpoint, verify the following:

• A valid opcode at the debug exception interrupt vector.

In a scenario where the valid opcode is missing, when a breakpoint is hit, an exception is generated for the
invalid opcode found at the debug interrupt vector memory location.

• All available support for debug.

For example, a very common error is when the code is relocated from reset space (0xfffffxxx) to flash space
(0xefffxxxx) for the NOR and NAND flash devices. In such a scenario, IVPR remains at 0xffff0000 and IVOR15
at 0x0000f000. Any access to 0xfffff000 (the debug exception) generates a TLB miss exception. The
workaround is to set IVPR to 0xefff0000 before the U-Boot relocation.

To hit breakpoints set on a previous debug session after changing the PIC address, verify the following:

• Do not disable and enable back those breakpoints after the PIC value has been changed. Use the
breakpoints relocation feature to deal with these changes

• Do not set breakpoints in Stage 4 (relocation to RAM) until you move execution there.

• Do not set breakpoints from Stage 1 to Stage 2. The Instruction Address Space (IS) and Data Address
Space (DS) bits from MSR are cleared in Stage 1. So the processor will use only the TLB entries with
Translation Space (TS) = 0 instead of Stage 2 where TS = 1.

7.6.4.2 Debugging U-Boot using NOR flash
This section explains how to debug U-Boot using the NOR flash device in different U-Boot debug stages.

During a typical U-Boot start-up sequence, the target processor starts executing U-Boot in flash memory. U-
Boot then enables the Memory Management Unit (MMU), and relocates itself to RAM. From the memory layout
perspective, U-Boot debug has four different stages.

The following sections describe four U-Boot debug stages for debugging U-Boot using the NOR flash device:

• Debugging U-Boot before switching address space on page 268

• Debugging U-Boot in translated address space on page 269

• Debugging U-Boot after switching back to initial address space on page 271

• Debugging U-Boot in RAM on page 272

7.6.4.2.1 Debugging U-Boot before switching address space
This section tells how to debug U-Boot in a NOR flash device before switching address space.

To debug U-Boot in flash before switching address space:

1. Start the CodeWarrior IDE.

2. Open the CodeWarrior U-Boot project that you created in Creating a CodeWarrior Project to Debug U-Boot
on page 264.

3. Select Run > Debug Configurations. The Debug Configurations dialog appears.

4. Expand the CodeWarrior group and select the appropriate launch configuration.

5. Click Debug. The Debug perspective appears with the core 0 running.

6. Click Reset on the Debug view toolbar.

The Reset dialog appears.

7. In the Run out of reset column, select the checkboxes for all cores except core 0.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
268 NXP Semiconductors

After the reset completes, core 0 appears stopped at the reset vector. In the Debugger Shell view, issue the
following command to enter the PIC alternate load address:

setpicloadaddr 0xFFF40000

8. From the Debug view toolbar, select the Instruction Stepping Mode () command.

9. From the Debug view toolbar, select the Step Into () command to step into b _start_e500.

The start.s file appears in the editor area and the disassembled code with memory addresses appears in
the Disassembly view.

Figure 96: U-Boot Debug - Disassembly View

10.Move the Debug Current Instruction Pointer to _start_e500.

11.Deselect the Instruction Stepping Mode () command.

You can now do source-level debugging and set breakpoints in start.s until the address space switch at
the rfi before switch_as (start.S, line 326). See Points to remember on page 267 for more details.

7.6.4.2.2 Debugging U-Boot in translated address space
This section tells how to debug U-Boot in the translated address space in a NOR flash device.

After you have reached the rfi call, the execution will move to the next stage. You should now use a memory
configuration file for debugging in this section.

It is necessary to inspect the TLB registers to check if there are address spaces translated or to search in the
CW PA10 layout (PA\PA_Support\Initialization_Files\Memory\) if there are memory configuration files
that match your U-Boot debug scenario.

For e500v2 cores (36-bit U-Boot debug only), due to a hardware issue (terminating the
current debug session will put the core in running) another script must be executed
before proceeding further with the instructions provided in this section:

1. Open Debugger Shell view.

2. Execute ${BoardName}_uboot_36_stage2_preparation.tcl using the
following command:

source /${BoardName}_uboot_36_stage2_preparation.tcl

 NOTE

To debug U-Boot in the translated address space in flash before switching back to initial address space
(start.S, bl cpu_init_f, line 396):

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 269

1. Click on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.

3. Expand the CodeWarrior group and select the appropriate launch configuration.

4. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

5. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.

6. On the Memory tab, select the checkbox for the respective core in the Memory configuration column.

7. Click the ellipsis button in the Memory configuration file column.

The Memory Configuration File dialog appears.

8. Click File System and select the memory configuration file from the following path:

<CWInstallDir>\PA\PA_Support\Initialization_Files\Memory\

To select an appropriate memory configuration file, it is necessary to inspect the TLB
registers and check if there are address spaces translated or if there are memory
configuration files available in the CodeWarrior layout that match your U-Boot debug
scenario.

 NOTE

9. Click OK to close the Memory Configuration File dialog.

10.Click OK to close the Properties for <Target> dialog.

11.Click OK to close the Properties for <connection> dialog.

12.Click Debug.

The instruction pointer is now on the rfi function call.

For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName}_uboot_36_stage2.tcl is needed.

 NOTE

13.In the Debugger Shell, issue the following command to reset PIC load address to the location specified in
u-boot.elf.

setpicloadaddr reset

14.From the Debug view toolbar, select the Instruction Stepping Mode () command.

15.Ensure the Debug Current Instruction Pointer is at rfi. From the Debug view toolbar, select the Step Into

() command to step into rfi. The Disassembly view appears.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
270 NXP Semiconductors

Figure 97: U-Boot Debug - Translated Address Space in Flash

16.Deselect the Instruction Stepping Mode command when the instruction pointer is at switch_as.

You can set breakpoints and use the Step Over, Step Into, and Step Out commands from line (switch_as:
label) in start.S to line (/* switch back to AS = 0 */) in start.S. At these locations, the Instruction
Address Space (IS) and Data Address Space (DS) bits from MSR are cleared, so that the processor uses
only the TLB entries with TS = 0. See Points to remember on page 267 for more details.

To set breakpoints in Stage2 after rfi (start.S), you can set the Alternate Load
Address by using setpicloadaddr reset. For low-end processors (e500v1,
e500v2), set DE (Debug Enable) from MSR register using the Debugger Shell or the
Registers view. You can then perform the set, resume, and remove operations on the
breakpoints.

 NOTE

To access breakpoints set on a previous debug session after changing the PIC address,
you need to disable and enable back those breakpoints after the PIC value has been
changed.

 NOTE

7.6.4.2.3 Debugging U-Boot after switching back to initial address space
This section tells how to debug U-Boot in a NOR flash device after switching back to initial address space.

While debugging U-Boot, when you reach the cpu_init_f call you are back to address space 0. You now need
to remove the memory configuration file used in the previous section or set another memory configuration file
for U-Boot compiled on 36 bits.

To debug U-Boot in flash after switching back to initial address space:

1. Click on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.

3. Expand the CodeWarrior group and select the appropriate launch configuration.

4. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

5. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 271

6. On the Memory tab, deselect the checkbox for the respective core in the Memory configuration column to
remove the memory configuration file you had set in the previous section.

If required, you can set another memory configuration file for U-Boot compiled on 36
bits on the Memory tab.

 NOTE

7. Click OK to close the Memory Configuration File dialog.

8. Click OK to close the Properties for <Target> dialog.

9. Click OK to close the Properties for <connection> dialog.

10.Click Debug.

The instruction pointer is now on the cpu_init_f function call.

For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName}_uboot_36_stage3.tcl is needed.

 NOTE

11.If you used a different PIC value, in the Debugger Shell, issue the following command to reset PIC load
address to the location specified in u-boot.elf.

setpicloadaddr reset

12.From the Debug view toolbar, select the Instruction Stepping Mode () command.

13.From the Debug view toolbar, select the Step Into () command to step into cpu_init_f.

You can set breakpoints and use the Step Over, Step Into, and Step Out commands from line 396 in start.S
(bl cpu_init_f) to line 980 in start.S (blr /* NEVER RETURNS! */).

To access breakpoints set on a previous debug session after changing the PIC address,
you need to disable and enable back those breakpoints after the PIC value has been
changed.

 NOTE

7.6.4.2.4 Debugging U-Boot in RAM
This section tells how to debug U-Boot in RAM using a NOR flash device.

To debug U-Boot in RAM:

1. In the Debugger Shell view, issue the following command to reset PIC load address to RAM space:

setpicloadaddr 0xxxxx0000

The address printed by U-Boot at line "Now running in ram" is 0xxxxx0000. You can
also see this address in the Disassembly view and observe the current address space
you are in.

 NOTE

2. From the Debug view toolbar, select the Instruction Stepping Mode () command.

3. From the Debug view toolbar, select the Step Into () command to step into blr.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
272 NXP Semiconductors

Figure 98: U-Boot Debug - Running in RAM

4. Deselect the Instruction Stepping Mode command when the instruction pointer is at in_ram.

You can now do source-level debugging and set breakpoints in all RAM area, including board_init_r. See
Points to remember on page 267 for more details.

Before closing the debug session, change back the alternate load address to flash
address space by issuing the setpicloadaddr 0xFFF40000 command in the
Debugger Shell. Now, you do not need to manually set it from the Debugger Shell in
Stage 1.

 NOTE

7.6.4.3 Debugging U-Boot using SPI and SD/MMC flash
This section explains how to debug U-Boot using the SPI and SD/MMC flash devices in different U-Boot
debug stages.

U-Boot debug using the SPI and SD/MMC flash devices is similar. The only difference between these devices
is how the final image (u-boot.bin and the configuration and control words) is built. For more details, see
Configuring and Building U-Boot on page 262.

After the device has completed the reset sequence, if the ROM location selects the on-chip ROM eSDHC/eSPI
Boot configuration, the e500 core starts to execute code from the internal on-chip ROM. The e500 core
configures the eSDHC/eSPI controller, enabling it to communicate with the external SD/SPI card. The SD/SPI
device should contain a specific data structure with control words, device configuration information, and
initialization code. The on-chip ROM boot code uses the information from the SD/SPI card content to configure
the device, and to copy the initialization code to a target memory device through the eSDHC interface. After all
the code has been copied, the e500 core starts to execute the code from the target memory device. There are
different ways you can utilize the eSDHC/eSPI boot feature. The simplest way is for the on-chip ROM to copy
an entire operating system boot image into the system memory, and then access it to begin execution. This is
the preferred way for small applications and for U-Boot application debug. After the reset sequence, all code is
in RAM at 0x11000000.

The following sections describe four U-Boot debug stages for debugging U-Boot using the SPI and SD/MMC
flash devices:

• Debugging U-Boot before switching address space on page 274

• Debugging U-Boot in translated address space on page 275

• Debugging U-Boot after switching back to initial address space on page 277

• Debugging U-Boot in RAM on page 278

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 273

7.6.4.3.1 Debugging U-Boot before switching address space
This section tells how to debug U-Boot in the SPI and SD/MMC flash devices before switching address space.

To debug U-Boot in flash before switching address space:

1. Start the CodeWarrior IDE.

2. Open the CodeWarrior U-Boot project that you created in Creating a CodeWarrior Project to Debug U-Boot
on page 264.

3. Select Run > Debug Configurations. The Debug Configurations dialog appears.

4. From the left pane, expand the CodeWarrior Attach container and select the appropriate launch
configuration.

5. Click Debug. The Debug perspective appears with the core 0 running.

6. Click Reset on the Debug view toolbar.

The Reset dialog appears.

7. In the Run out of reset column, select the checkboxes for all cores except core 0.

After the reset completes, core 0 appears stopped at the reset vector.

To jump over the on-chip ROM code that performs block copy from SD EPROM and the
reset sequence, you can set a hardware breakpoint at _start_e500 by issuing the bp
-hw _start_e500 command.

 NOTE

8. From the Debug view toolbar, select the Instruction Stepping Mode () command.

9. From the Debug view toolbar, select the Step Into () command to step into b _start_e500.

The start.s file appears in the editor area and the disassembled code with memory addresses appears in
the Disassembly view.

Figure 99: U-Boot Debug - Disassembly View

10.Move the Debug Current Instruction Pointer to _start_e500.

11.Deselect the Instruction Stepping Mode () command.

You can now do source-level debugging and set breakpoints in start.s until the address space switch at
the rfi before switch_as (start.S, line 326). See Points to remember on page 267 for more details.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
274 NXP Semiconductors

7.6.4.3.2 Debugging U-Boot in translated address space
This section tells how to debug U-Boot in the translated address space in the SPI and SD/MMC flash devices.

After you have reached the rfi call, the execution will move to the next stage. You should now use a memory
configuration file for debugging in this section.

It is necessary to inspect the TLB registers to check if there are address spaces translated or to search in the
CW PA10 layout (PA\PA_Support\Initialization_Files\Memory\) if there are memory configuration files
that match your U-Boot debug scenario.

For e500v2 cores (36-bit U-Boot debug only), due to a hardware issue (terminating the
current debug session will put the core in running) another script must be executed
before proceeding further with the instructions provided in this section:

1. Open Debugger Shell view.

2. Execute ${BoardName}_uboot_36_stage2_preparation.tcl using the
following command:

source /${BoardName}_uboot_36_stage2_preparation.tcl

 NOTE

To debug U-Boot in the translated address space in flash before switching back to initial address space
(start.S, bl cpu_init_f, line 396):

1. Click on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.

3. Expand the CodeWarrior group and select the appropriate launch configuration.

4. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

5. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.

6. On the Memory tab, select the checkbox for the respective core in the Memory configuration column.

7. Click the ellipsis button in the Memory configuration file column.

The Memory Configuration File dialog appears.

8. Click File System and select the memory configuration file from the following path:

<CWInstallDir>\PA\PA_Support\Initialization_Files\Memory\

To select an appropriate memory configuration file, it is necessary to inspect the TLB
registers and check if there are address spaces translated or if there are memory
configuration files available in the CodeWarrior layout that match your U-Boot debug
scenario.

 NOTE

9. Click OK to close the Memory Configuration File dialog.

10.Click OK to close the Properties for <Target> dialog.

11.Click OK to close the Properties for <connection> dialog.

12.Click Debug.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 275

The instruction pointer is now on the rfi function call.

For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName}_uboot_36_stage2.tcl is needed.

 NOTE

13.In the Debugger Shell, issue the following command to reset PIC load address to the location specified in
u-boot.elf:

setpicloadaddr reset

14.From the Debug view toolbar, select the Instruction Stepping Mode () command.

15.Ensure the Debug Current Instruction Pointer is at rfi. From the Debug view toolbar, select the Step Into

() command to step into rfi. The Disassembly view appears.
Figure 100: U-Boot Debug - Translated Address Space in Flash

16.Deselect the Instruction Stepping Mode command when the instruction pointer is at switch_as.

You can set breakpoints and use the Step Over, Step Into, and Step Out commands from line (switch_as:
label) in start.S to line (/* switch back to AS = 0 */) in start.S. At these locations, the Instruction
Address Space (IS) and Data Address Space (DS) bits from MSR are cleared, so that the processor uses
only the TLB entries with TS = 0. See Points to remember on page 267 for more details.

To set breakpoints in Stage2 after rfi (start.S), you can set the Alternate Load
Address by using setpicloadaddr reset. For low-end processors (e500v1, e500v2), set
DE (Debug Enable) from MSR register via the Debugger Shell or the Registers view.
You can then perform the set, resume, and remove operations on the breakpoints.

 NOTE

To access breakpoints set on a previous debug session after changing the PIC address
you will need to disable and enable back those breakpoints after the PIC value has been
changed.

 NOTE

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
276 NXP Semiconductors

7.6.4.3.3 Debugging U-Boot after switching back to initial address space
This section tells how to debug U-Boot in the SPI and SD/MMC flash devices after switching back to initial
address space.

While debugging U-Boot when you reach the cpu_init_f call you are back to address space 0; you now need
to remove the memory configuration file used in the previous section or set another memory configuration file
for U-Boot compiled on 36 bits.

To debug U-Boot in flash after switching back to initial address space:

1. Click on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.

3. From the left pane, in the CodeWarrior Attach container, select the appropriate launch configuration.

4. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

5. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.

6. On the Memory tab, deselect the checkbox for the respective core in the Memory configuration column to
remove the memory configuration file you had set in the previous section.

If required, you can set another memory configuration file for U-Boot compiled on 36
bits on the Memory tab.

 NOTE

7. Click OK to close the Memory Configuration File dialog.

8. Click OK to close the Properties for <Target> dialog.

9. Click OK to close the Properties for <connection> dialog.

10.Click Debug.

The instruction pointer is now on the cpu_init_f function call.

For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName}_uboot_36_stage2.tcl is needed.

 NOTE

11.If you used a different PIC value, issue the following command in the Debugger Shell to reset PIC load
address to the location specified in u-boot.elf.

setpicloadaddr reset

12.From the Debug view toolbar, select the Instruction Stepping Mode () command.

13.From the Debug view toolbar, select the Step Into () command to step into cpu_init_f.

You can set breakpoints and use the Step Over, Step Into and Step Out commands from line 396 in start.S
(bl cpu_init_f) to line 980 in start.S (blr /* NEVER RETURNS! */).

To access breakpoints set on a previous debug session after changing the PIC address,
you will need to disable and enable back those breakpoints after the PIC value has been
changed.

 NOTE

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 277

7.6.4.3.4 Debugging U-Boot in RAM
This section tells how to debug U-Boot in RAM using the SPI and SD/MMC flash devices.

To debug U-Boot in RAM:

1. In the Debugger Shell, issue the following command to reset PIC load address to RAM space:
setpicloadaddr 0xxxxx0000

0xxxxx0000 is the address printed by U-Boot at line "Now running in ram". You can also
see this address in the Disassembly view and observe the current address space you
are in.

 NOTE

2. From the Debug view toolbar, select the Instruction Stepping Mode () command.

3. From the Debug view toolbar, select the Step Into () command to step into blr. The Disassembly
view appears.

Figure 101: U-Boot Debug - Running in RAM

4. Deselect the Instruction Stepping Mode command when the instruction pointer is at in_ram.

You can now do source level debugging and set breakpoints in all RAM area, including board_init_r. See
Points to remember on page 267 for more details.

Before closing the debug session, change back the alternate load address to flash
address space by issuing the setpicloadaddr 0xFFF40000 command in the
Debugger Shell. Now, you do not need to manually set it from the Debugger Shell in
Stage 1.

 NOTE

7.6.4.4 Debugging U-Boot using NAND flash
This section explains how to debug U-Boot using the NAND flash device in different U-Boot debug stages.

The following sections describe four U-Boot debug stages for debugging U-Boot using the NAND flash device:

• Debugging U-Boot before switching address space on page 279

• Debugging U-Boot in translated address space on page 279

• Debugging U-Boot after switching back to initial address space on page 281

• Debugging U-Boot in RAM on page 282

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
278 NXP Semiconductors

7.6.4.4.1 Debugging U-Boot before switching address space
This section tells how to debug U-Boot in a NAND flash device before switching address space.

To debug U-Boot in flash before switching address space:

1. Start the CodeWarrior IDE.

2. Open the CodeWarrior U-Boot project that you created in Creating a CodeWarrior Project to Debug U-Boot
on page 264.

3. Select Run > Debug Configurations. The Debug Configurations dialog appears.

4. From the left pane, expand the CodeWarrior Attach container and select the appropriate launch
configuration.

5. Click Debug. The Debug perspective appears with the core 0 running.

6. Click Reset on the Debug view toolbar.

The Reset dialog appears.

7. In the Run out of reset column, select the checkboxes for all cores except core 0.

After the reset completes, core 0 appears stopped at the reset vector. In the Debugger Shell view, issue the
following command to enter the PIC alternate load address:

setpicloadaddr 0xFFF40000

8. From the Debug view toolbar, select the Instruction Stepping Mode () command.

9. From the Debug view toolbar, select the Step Into () command to step into b _start_e500.

The start.s file appears in the editor area and the disassembled code with memory addresses appear in
the Disassembly view.

Figure 102: U-Boot Debug - Disassembly View

10.Move the Debug Current Instruction Pointer to _start_e500.

11.Deselect the Instruction Stepping Mode () command.

You can now do source-level debugging and set breakpoints in start.s until the address space switch at
the rfi before switch_as (start.S, line 326). See Points to remember on page 267 for more details.

7.6.4.4.2 Debugging U-Boot in translated address space
This section tells how to debug U-Boot in the translated address space in a NAND flash device.

After you have reached the rfi call the execution moves to the next stage. You should now use a memory
configuration file for debugging in this section.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 279

It is necessary to inspect the TLB registers to check if there are address spaces translated or to search in the
CW PA10 layout (PA\PA_Support\Initialization_Files\Memory\) if there are memory configuration files that match
your U-Boot debug scenario.

For e500v2 cores (36-bit U-Boot debug only), due to a hardware issue (terminating the
current debug session will put the core in running) another script must be executed
before proceeding further with the instructions provided in this section:

• Open Debugger Shell view.

• Execute ${BoardName}_uboot_36_stage2_preparation.tcl using the
following command:

source /${BoardName}_uboot_36_stage2_preparation.tcl

 NOTE

To debug U-Boot in the translated address space in flash before switching back to initial address space
(start.S, bl cpu_init_f, line 396):

1. Click on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.

3. From the left pane, in the CodeWarrior Attach container, select the appropriate launch configuration.

4. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

5. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.

6. On the Memory tab, select the checkbox for the respective core in the Memory configuration column.

7. Click the ellipsis button in the Memory configuration file column.

The Memory Configuration File dialog appears.

8. Click File System and select the memory configuration file from the path:

<CWInstallDir>\PA\PA_Support\Initialization_Files\Memory\

To select an appropriate memory configuration file, it is necessary to inspect the TLB
registers and check if there are address spaces translated or if there are memory
configuration files available in the CodeWarrior layout that match your U-Boot debug
scenario.

 NOTE

9. Click OK to close the Memory Configuration File dialog.

10.Click OK to close the Properties for <Target> dialog.

11.Click OK to close the Properties for <connection> dialog.

12.Click Debug.

The instruction pointer is now on the rfi function call.

For e500v2 cores (36-bit U-Boot debug only) a reset using $
{BoardName}_uboot_36_stage2.tcl is needed.

 NOTE

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
280 NXP Semiconductors

13.In the Debugger Shell, issue the following command to reset PIC load address to the location specified in
u-boot.elf.

setpicloadaddr reset

14.From the Debug view toolbar, select the Instruction Stepping Mode () command.

15.Ensure the Debug Current Instruction Pointer is at rfi. From the Debug view toolbar, select the Step Into

() command to step into rfi. The Disassembly view appears.
Figure 103: U-Boot Debug - Translated Address Space in Flash

16.Deselect the Instruction Stepping Mode command when the instruction pointer is at switch_as.

You can set breakpoints and use the Step Over, Step Into, and Step Out commands from line (switch_as:
label) in start.S to line (/* switch back to AS = 0 */) in start.S. At these locations, the Instruction
Address Space (IS) and Data Address Space (DS) bits from MSR are cleared, so the processor will use only
the TLB entries with TS = 0. See Points to remember on page 267 for more details.

To access breakpoints set on a previous debug session after changing the PIC address,
you will need to disable and enable back those breakpoints after the PIC value was
changed.

 NOTE

To set breakpoints in Stage2 after rfi (start.S), you can set the Alternate Load Address
by using setpicloadaddr reset. For low-end processors (e500v1, e500v2), set DE
(Debug Enable) from MSR register using the Debugger Shell or the Registers view. You
can then perform the set, resume, and remove operations on the breakpoints.

 NOTE

7.6.4.4.3 Debugging U-Boot after switching back to initial address space
This section tells how to debug U-Boot in a NAND flash device after switching back to initial address space.

While debugging U-Boot when you reach the cpu_init_f call you are back to address space 0; you now need
to remove the memory configuration file used in the previous section or set another memory configuration file
for U-Boot compiled on 36 bits.

To debug U-Boot in flash after switching back to initial address space:

1. Click on the Debug view toolbar to terminate the current debug session.

2. Select Run > Debug Configurations. The Debug Configurations dialog appears.

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 281

3. From the left pane, in the CodeWarrior Attach container, select the appropriate launch configuration.

4. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection> dialog appears.

5. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.

6. On the Memory tab, deselect the checkbox for the respective core in the Memory configuration column to
remove the memory configuration file you had set in the previous section.

If required, you can set another memory configuration file for U-Boot compiled on 36
bits on the Memory tab.

 NOTE

7. Click OK to close the Memory Configuration File dialog.

8. Click OK to close the Properties for <Target> dialog.

9. Click OK to close the Properties for <connection> dialog.

10.Click Debug.

The instruction pointer is now on the cpu_init_f function call.

For e500v2 cores (36-bit u-boot debug only) a reset using $
{BoardName}_uboot_36_stage2.tcl is needed.

 NOTE

11.If you used a different PIC value, in the Debugger Shell view, issue the following command to reset PIC
load address to the location specified in u-boot.elf.

setpicloadaddr reset

12.From the Debug view toolbar, select the Instruction Stepping Mode () command.

13.From the Debug view toolbar, select the Step Into () command to step into cpu_init_f.

You can set breakpoints and use the Step Over, Step Into and Step Out commands from line 396 in start.S
(bl cpu_init_f) to line 980 in start.S (blr /* NEVER RETURNS! */).

To access breakpoints set on a previous debug session after changing the PIC address
you will need to disable and enable back those breakpoints after the PIC value was
changed.

 NOTE

7.6.4.4.4 Debugging U-Boot in RAM
This section tells how to debug U-Boot in RAM using a NAND flash device.

To debug U-Boot in RAM:

1. In the Debugger Shell view, issue the following command to reset PIC load address to RAM space:

setpicloadaddr 0xxxxx0000

Debugging Embedded Linux Software
Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
282 NXP Semiconductors

0xxxxx0000 is the address printed by U-Boot at line "Now running in ram". You can also
see this address in the Disassembly view and observe the current address space you
are in.

 NOTE

2. From the Debug view toolbar, select the Instruction Stepping Mode () command.

3. From the Debug view toolbar, select the Step Into () command to step into blr.
Figure 104: U-Boot Debug - Running in RAM

4. Deselect the Instruction Stepping Mode command when the instruction pointer is at in_ram.

You can now do source-level debugging and set breakpoints in all the RAM area, including board_init_r.
See Points to remember on page 267 for more details.

You can enter the board_init_r, nand_boot, and uboot functions. Beginning with
the uboot function, the second image is relocated to RAM at 0x11000000 and you begin
to execute the entire code again from RAM address space. See Points to remember on
page 267 to avoid any debugging issues.

 NOTE

Before closing the debug session, change back the alternate load address to flash
address space by issuing the setpicloadaddr 0xFFF40000 command in the
Debugger Shell. Now, you do not need to manually set it from the Debugger Shell in
Stage 1.

 NOTE

7.7 Debugging the Linux Kernel
This section shows you how to use the CodeWarrior debugger to debug the Linux kernel.

The Linux operating system (OS) works in two modes, kernel mode and user mode. The Linux kernel operates
in kernel mode and resides at the top level of the OS memory space, or kernel space. The kernel performs the
function of a mediator among all the currently running programs and between the programs and the hardware.
The kernel manages the memory for all the programs (processes) currently running and ensures that the
processes share the available memory such that each process has enough memory to function adequately. In
addition, the kernel allows application programs to manipulate various hardware architectures via a common
software interface.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 283

User mode uses the memory in the lowest level of the OS memory space, called the user space or the application
level. At the application level, a program accesses memory or other hardware through system calls to the kernel
as it does not have permission to directly access these resources.

Debugging the Linux kernel involves the following major actions:

1. Setting Up the Target Hardware on page 284

2. Installing the Board Support Package (BSP) on page 286

3. Configuring the Build Tool on page 287

4. Configuring the Linux Kernel on page 287

5. Creating a CodeWarrior Project using the Linux Kernel Image on page 289

6. Configuring the kernel project for debugging on page 290

7. Debugging the kernel to download the kernel, RAM disk, and device tree on page 301

8. Debugging the kernel based on MMU initialization on page 302

9. Debugging the kernel by attaching to a running U-Boot on page 305

7.7.1 Setting Up the Target Hardware
Before you use the CodeWarrior IDE to debug the Linux kernel, you need to set up the target hardware.

One requirement of the setup is to have a debug probe connected between the CodeWarrior debug host and
target board.

The figure below illustrates the setup required to use the IDE to debug the Linux kernel running on a Power
Architecture target board.

Figure 105: Setup for Kernel Debugging Using the CodeWarrior IDE

Connect the hardware debug probe between the target board and CodeWarrior debug host. Kernel debugging
is possible using a Linux-hosted or Windows-hosted CodeWarrior installation. There are a variety of debug

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
284 NXP Semiconductors

probes. The current kernel debugging example uses the USB TAP. Connection information for other debug
probes can be determined from documentation provided with the probes.

The following subsections provide the steps to set up the target hardware:

1. Connect USB TAP on page 285

2. Establish a Console Connection on page 285

7.7.1.1 Connect USB TAP
This section explains how to connect the USB TAP between the CodeWarrior debug host and target board.

To connect the USB TAP, perform these steps:

1. Ensure that the power switch on the target board is OFF.

2. Connect the square end (USB "B" connector) of the USB cable to the USB TAP.

3. Connect the rectangular end (USB "A" connector) of the USB cable to a free USB port on the host Linux
machine.

4. Connect the ribbon cable coming out of the USB TAP to the 16-pin connector on the target board.

5. Connect the power supply to the USB TAP.

7.7.1.2 Establish a Console Connection
You need to establish a console connection before applying power to the target board, so that boot messages
can be viewed in a terminal window.

Establishing the console connection allows you to:

• View target generated log and debug messages

• Confirm successful installation of the bootloader (U-Boot)

• Use the bootloader to boot the Linux OS

• Halt the booting of the Linux OS

The bootloader receives keyboard input through a serial port that has default settings 115,200-8-N-1.

Follow these steps to establish a console connection to the target hardware.

1. Connect a serial cable from a serial port of the CodeWarrior debug host to a serial port of the target board.

2. On the CodeWarrior debug host computer, open a terminal-emulator program of your choice (for example,
minicom for a Linux host).

3. From the terminal-emulator program, open a console connection to the target hardware.

Use the connection settings given in the table below.

Table 132: Terminal Connection Settings

Name Setting

Baud rate 115, 200 bits per second

Data bits 8

Parity None

Stop bits 1

Flow control Hardware

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 285

See the board specific README file inside the stationery wizard project to find out more
details on the serial connection settings, changing the serial port on the board, and the
type of serial cable to use.

 NOTE

4. Test the connection by turning on the test board with the power switch and viewing the boot messages in
the console connection.

7.7.2 Installing the Board Support Package (BSP)
This section describes installation of a BSP on a Linux computer.

The BSP versions keep changing frequently. For different BSP versions, you might
encounter build environments based on ltib, bitbake, or other tools. The subsequent
sections will describe necessary procedures and use specific examples from real
Freescale BSPs for illustration. The examples in these sections will need to be adapted
based on the BSP versions or build tools you are currently using.

 NOTE

To install a BSP, perform the following steps:

1. On the Linux computer, download the Board Support Package (BSP) for your target hardware to install
kernel files and Linux compiler toolchains on your system.

Board Support Package image files for target boards are located at http://www.freescale.com/linux.

2. Download the BSP image file for your target board.

You will need to log in or register to download the BSP image file.

 NOTE

The downloaded image file has an .iso extension.

For example,

QorIQ-DPAA-SDK-<yyyymmdd>-yocto.iso

3. Mount the image file to the CDROM as root, or using "sudo":

<sudo> mount -o loop QorIQ-DPAA-SDK-<yyyymmdd>-yocto.iso /mnt/cdrom

sudo is a Linux utility that allows users to run applications as root. You need to be
setup to run sudo commands by your system administrator to mount the BSP image
files.

 NOTE

4. Execute the BSP install file to install the build tool files to a directory of your choice, where you have
privileges to write files:

/mnt/cdrom/install

The BSP must be installed as a non-root user, otherwise the install will exit.

 NOTE

5. Answer the questions from the installation program until the file copy process begins.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
286 NXP Semiconductors

http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_BSP&tid=vanLINUX

You will be prompted to input the required build tool install path. Ensure you have the correct permissions for
the install path.

6. Upon successful installation, you will be prompted to install the ISO for the core(s) you want to build.

For example, if you want to build the SDK for P4080, that is a e500mc core, then you have to install the ISO
images for e500mc core:

c23174e5e3d187f43414e5b4420e8587 QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.part1
292c6e1c5e97834987fbdb5f69635a1d QorIQ-SDK-V1.2-PPCE500MC-20120603-yocto.iso.part2

You can see the SDK User Manual for instructions about how to build the BSP images
and run different scenarios from the iso/help/documents/pdf location.

 NOTE

7.7.3 Configuring the Build Tool
After installing the BSP, you need to configure the build tool and build the Linux kernel and U-boot images for
CodeWarrior debug.

For more information on configuring the build tool, see the SDK User Manual from iso/help/documents/pdf.

7.7.4 Configuring the Linux Kernel
After you complete the BSP configuration, configure the Linux kernel to enable CodeWarrior support.

To configure the Linux kernel, perform the following steps:

1. Launch a terminal window and navigate to the <yocto_installtion_path>/build_<board>_release
folder.

2. Execute the following command to get a new and clean kernel tree:

bitbake -c configure -f virtual/kernel

3. Configure the Linux kernel using the various configuration options available in the kernel configuration user
interface. For example, run the following command to display the kernel configuration user interface:

bitbake -c menuconfig virtual/kernel

The kernel configuration user interface appears.

4. CodeWarrior supports both SMP and non-SMP debug. To change the default settings, you can make
changes by selecting the Processor support options.

5. To run a monolithic kernel, you do not need to enable loadable module support. However, during the
debug phase of drivers, it is easier to debug them as loadable modules to avoid rebuilding the Linux kernel
on every debug iteration. If you intend to use loadable modules, select the Loadable module support menu
item.

6. Select the Enable loadable module support option.

7. Select the Module unloading option.

If you want to use the rmmod -f <mod_name> command for kernel modules under
development, select the Forced module unloading option.

 NOTE

8. Select Exit to return to the main configuration menu.

9. Select Kernel hacking.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 287

10.Select Include CodeWarrior kernel debugging by pressing Y. Enabling this option allows the CodeWarrior
debugger to debug the target. Select other desired configuration options for Linux kernel debug.

11.Select Exit to return to the main configuration menu.

12.Select the General Setup option.

13.Select Configure standard kernel features (expert users) and ensure that the Sysctl syscall support option
is selected.

14.If you are using the Open Source Device Tree debugging method, under the General Setup > Configure
standard kernel features (expert users) option, then select:

• Load all symbols for debugging/ksymoops.

• Include all symbols in kallsyms.

These settings are optional. They aid the debugging process by providing the vmlinux
symbols in /proc/kallsyms.

 NOTE

15.Select Exit to exit the configuration screen.

16.Select Yes when asked if you want to save your configuration.

17.Execute the following command to rebuild the Linux kernel:

bitbake virtual/kernel

The uncompressed Linux kernel image with debug symbols, vmlinux.elf, is created.

The location of the images directory might differ based on the BSP version being used.
For the correct location of where the Linux kernel images are stored, see the SDK User
Manual from iso/help/documents/pdf.

 NOTE

You just created a Linux kernel image that contains symbolic debugging information.

Now, you can use this image and create a CodeWarrior project for debugging the Linux kernel. The various use
cases for the Linux kernel debug scenario are:

• CodeWarrior allows you to download this Linux kernel image (vmlinux.elf), RAM disk, and dtb files to the
target.

• You can start the Linux kernel and RAM disk manually from U-Boot. The U-Boot, the kernel, RAM disk, and
dtb images are written into flash memory.

• You can download the Linux kernel and RAM disk from CodeWarrior without using U-Boot.

• You can perform an early kernel debug before the MMU is enabled or debug after the Linux kernel boots
and the login prompt is shown.

The Linux kernel debug scenarios are explained in the following sections:

• Creating a CodeWarrior Project using the Linux Kernel Image on page 289

• Configuring the kernel project for debugging on page 290

• Debugging the kernel to download the kernel, RAM disk, and device tree on page 301

• Debugging the kernel based on MMU initialization on page 302

• Debugging the kernel by attaching to a running U-Boot on page 305

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
288 NXP Semiconductors

7.7.5 Creating a CodeWarrior Project using the Linux Kernel Image
After creating a Linux kernel image with symbolic debugging information, you need to create a CodeWarrior
project using the kernel image.

To create a CodeWarrior project:

1. Start the CodeWarrior IDE from the Windows system.

2. Select File > Import. The Import wizard appears.

3. Expand the CodeWarrior group and select CodeWarrior Executable Importer.

4. Click Next.

The Import a CodeWarrior executable file page appears.

5. Specify a name for the project, to be imported, in the Project name text box.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

An existing directory cannot be specified for the project location.

 NOTE

7. Click Next.

The Import C/C++/Assembler Executable Files page appears.

8. Click Browse next to the Executable field.

9. Select the vmlinux file obtained.

10.Click Open.

11.From the Processor list, expand the processor family and select the required processor.

12.Select the Bareboard Application toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

13.Select the Linux Kernel option from the Target OS list.

Selecting Linux Kernel will automatically configure the initialization file for kernel
download, the default translation settings (these settings need to be adjusted according
to the actual Linux kernel configuration) in the OS Awareness tab, and the startup stop
function to start_kernel.

 NOTE

14.Click Next.

The Debug Target Settings page appears.

15.From the Debugger Connection Types list, select the required connection type.

16.Specify the settings, such as board configuration, launch configuration, connection type, and TAP address
if you are using Ethernet or Gigabit TAP.

17.Click Next.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 289

The Configurations page appears.

18.From the Core index list, select the required core.

19.Click Finish.

The wizard creates a project according to your specifications.

You can access the project from the CodeWarrior Projects view on the workbench.

7.7.5.1 Updating the Linux Kernel Image
By modifying the Linux kernel image, you can update the project you just created.

You have built a new Linux kernel image file, vmlinux.elf, with some changes as compared to the current
vmlinux.elf file being used in the CodeWarrior project you created. The following subsections present two
scenarios to replace the current vmlinux.elf file with the new vmlinux.elf file:

• Cache Symbolics Between Sessions is Enabled on page 290

• Cache Symbolics Between Sessions is Disabled on page 290

7.7.5.1.1 Cache Symbolics Between Sessions is Enabled
This section provides steps to replace the current vmlinux.elf file with the new vmlinux.elf file when the
cache symbolics between sessions is enabled.

Follow these steps:

1. Terminate the current debug session.

2. Right-click in the Debug window.

3. From the context menu, select Purge Symbolics Cache. The old vmlinux.elf file is being used by the
debugger, but after you select this option, the debugger stops using this file in the disk.

4. Copy the new vmlinux.elf file over the old file.

Now, when you reinitiate a debug session, the updated vmlinux.elf file is used for the current debug
session.

7.7.5.1.2 Cache Symbolics Between Sessions is Disabled
This section provides steps to replace the current vmlinux.elf file with the new vmlinux.elf file when the
cache symbolics between sessions is disabled.

Follow these steps:

1. Terminate the current debug session.

2. Copy the new vmlinux.elf file over the old file.

Now, when you reinitiate a debug session, the updated vmlinux.elf file is used for the current debug
session.

7.7.6 Configuring the kernel project for debugging
After you have created a CodeWarrior project using the Linux kernel image, the next action is to configure this
project for debugging.

• Configuring a download kernel debug scenario on page 291

• Configure an attach kernel debug scenario on page 291

• Setting up RAM disk on page 294

• Using Open Firmware Device Tree Initialization method on page 297

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
290 NXP Semiconductors

7.7.6.1 Configuring a download kernel debug scenario
This section describes how to configure a download debug scenario.

For a download debug scenario, CodeWarrior:

• Resets the target

• Runs the initialization file

• Downloads the .elf file to the target; from the vmlinux.elf file, CodeWarrior writes the binary file to the
target memory

• Sets the entry point based on the information available from the .elf file

• Runs the target

For a download debug scenario, to boot the Linux kernel, CodeWarrior requires the RAMDISK or ROOTFS file
in addition to the vmlinux.elf file. This file is also built along with the image files when the kernel is compiled
using the build tool. CodeWarrior also requires a DTB file that specifies the resources to be used by the kernel
during its execution. For a download debug scenario, you need to configure the vmlinux.elf file, RAMDISK or
ROOTFS file, and the DTB files to be downloaded into the target memory. All these files can be found in the
specific target images folder.

The location of the images directory might differ based on the BSP version being used.
For the correct location of where the kernel images are stored, see the SDK User Manual
in iso/help/documents/pdf.

 NOTE

These files are specified in the Download launch configuration after you have created the CodeWarrior project
with the Linux kernel image. Table 134. Kernel Project Download Launch Configuration Settings on page 309
describes the settings you need to provide in the launch configuration.

7.7.6.2 Configure an attach kernel debug scenario
This section describes how to configure an attach debug scenario.

For the attach debug scenario, CodeWarrior does not download any file on the target. The kernel is started
directly from U-Boot. You need to burn the U-Boot image to the flash memory of the hardware.

See the Burning U-Boot to Flash cheat sheet for the entire procedure for burning U-Boot
to flash. To access the cheat sheets, select Help > Cheat Sheets from the CodeWarrior
IDE.

 NOTE

After the boot process, the U-Boot console is available and the Linux kernel can be started manually from U-
Boot. For this, the following files can be either written into flash memory or can be copied from U-Boot using
TFTP:

• Binary kernel image file, uImage

• Ramdisk to be started from U-Boot, for example,

<target version>.rootfs.ext2.gz.u-boot

• dtb file, for example, uImage-<target version>.dtb

After the Linux boot process, the Linux login appears and you can connect to debug the kernel using the
CodeWarrior Attach launch configuration. As all the files are manually loaded from U-Boot, these files must not
be specified in the launch configuration.

The table below describes the settings you need to provide in the launch configuration.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 291

To specify the launch configuration settings in CodeWarrior:

1. Select Run > Debug Configurations.

2. Enter the launch configuration settings, given in the table below, in the Debug Configurations dialog.

Table 133: Kernel Project Attach Launch Configuration Settings

Debug Window Component Settings

Main Tab Select an appropriate system (if existing) from the Connection
drop-down list or define a new system.

• To define a new system, click New.

• Select Hardware or Simulator Connection from the CodeWarrior
Bareboard Debugging list. Click Next.

• Specify a name and a description for the connection.

• Select an appropriate target (if existing) from the Target drop-
down list or define a new target.

• To define a new target, click New on the Hardware or Simulator
Connection dialog.

• Select Hardware or Simulator Target from the CodeWarrior
Bareboard Debugging list. Click Next.

• Specify a name and a description for the target.

• Select a target from the Target type drop-down list. On the
Initialization tab, ensure there are no initialization files selected.

• Click Finish to create the target and close the Hardware or
Simulator Target dialog.

• Select the type of connection you will use from the Connection
type drop-down list.

• Click Finish.

• Select all the cores on which Linux is running (for example, core
0 for single-core or cores 0-7 for 8-core SMP).

Debugger Tab > Debugger options >
Symbolics Tab

Select the Cache Symbolics between sessions checkbox. The
symbolics are loaded from the elf file to the debugger for the first
session only. This shows a speed improvement for vmlinux.elf
as the size is bigger than around 100 MB.

Debugger Tab > Debugger options > OS
Awareness Tab

Select Linux from the Target OS drop-down list.

Debugger Tab > Debugger options > OS
Awareness Tab > Boot Parameters

Disable all settings on the Boot Parameters tab.

For details on the options available on
the Boot Parameters tab, see Setting
up RAM disk on page 294.

 NOTE

Table continues on the next page...

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
292 NXP Semiconductors

Table 133: Kernel Project Attach Launch Configuration Settings (continued)

Debug Window Component Settings

Debugger Tab > Debugger options > OS
Awareness Tab > Debug Tab

Debug tab

• Select the Enable Memory Translation checkbox

Physical Base Address is set to value
CONFIG_KERNEL_START (0x0)

Virtual Base Address is set to value CONFIG_KERNEL_START
(0xc000 0000 for 32 bits, and 0xC000 0000 0000 0000 for
64bits).

• Memory Size is the kernel space translation size.

The values shown above should be
set as configured in the linux config
file (.config). You can read the
MMU registers to verify what you
have configured and do a correction,
if required.

 NOTE

• Select Enable Threaded Debugging Support checkbox

• Select Enable Delayed Software Breakpoint Support

• If required, also select Update Background Threads on Stop.
When enabled, the debugger reads the entire thread list when
the target is suspended. This decreases the speed. If the option
is disabled, the speed is increased but the Debug window might
show non-existent threads, as the list is not refreshed.

3. Click the Source page to specify path mappings. Path mappings are not required if the debug host is
similar to the compilation host. If the two hosts are separate, the .elf file contains the paths for the
compilation host. Specifying the path mappings helps establish paths from compilation host to where the
sources are available to be accessed by the debugger on the debugger host. If no path mapping is
specified, when you perform a debug on the specified target, a source file missing message appears
(shown in the figure below).

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 293

Figure 106: Debug View When No Path Mapping is Specified

You can specify the path mappings, either by adding a new path mapping on the Source tab or by clicking
the appropriate buttons (Locate File, Edit Source Lookup Path) that appear when a source path mapping is
not found.

4. Click Apply to save the settings.

5. Click Close.

7.7.6.3 Setting up RAM disk
This section describes specifying RAM disk information that is used by the Linux kernel when it is booted.

You can specify RAM disk information in the Boot Parameters tab, which is present on the OS Awareness tab
of the Debugger tab of the Debug Configurations dialog, as shown in the figure below. Table 134. Kernel Project
Download Launch Configuration Settings on page 309 lists the instructions to set up the RAM disk.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
294 NXP Semiconductors

Figure 107: Kernel Debug - OS Awareness Tab

Depending on the method you choose for passing parameters to the kernel during kernel initialization, the RAM
disk information can be provided in any of the following ways:

• Flattened Device Tree Initialization on page 295

• Regular Initialization on page 296

7.7.6.3.1 Flattened Device Tree Initialization
In this method, the RAM disk is set up by specifying a device tree file that contains the initialization
information.

To follow the Flattened device tree initialization method:

1. Open the Debug Configurations dialog.

2. Select the Debugger tab.

3. From the Debugger options panel, select the OS Awareness tab.

4. From the Target OS drop-down list, select Linux.

5. On the Boot Parameters tab, select the Enable Initial RAM Disk Settings checkbox.

The options in this group activate.

6. In the File Path field, type the path of the RAM disk.

Alternatively, click Browse to display a dialog that you can use to select this path.

The RAM disk is created by the build tool and not by the kernel. It contains the initial file
system. For details, see the SDK User Manual in iso/help/documents/pdf.

 NOTE

7. In the Address text box, enter 0x02000000, or another appropriate base address where you want the RAM
disk to be written.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 295

Ensure that the address you specify does not cause the RAM disk to overwrite the
kernel. The kernel is loaded to 0x00000000. The address you specify should be greater
than the size, in bytes, of the uncompressed Linux kernel with no debug symbols.

 NOTE

If you use a DTB file, ensure to use the same addresses for RAM disk and initial RAM
disk (initrd) start value from the chosen section. The kernel must find the RAM disk
at the address specified in the .dtb file.

 NOTE

8. In the Size text box, enter the size of the RAM disk file. To copy all the contents of the RAM disk file, enter
zero (0).

9. Select the Download to target checkbox to download the RAM disk file to the target board.

The debugger copies the initial RAM disk to the target board only if this checkbox is checked.

Most embedded development boards do not just use a small initial RAM disk, but a large
root file system. The Download to target option works in both the cases, but for large
file systems it is better to deploy the file directly to the target in the flash memory and
not have it downloaded by the debugger.

 NOTE

7.7.6.3.2 Regular Initialization
In this method, the RAM disk is set up by passing the parameters through the command-line settings using
the Boot Parameters tab.

To follow the regular initialization method:

1. Open the Debug Configurations dialog.

2. Select the Debugger tab.

3. From the Debugger options panel, select the OS Awareness tab.

4. From the Target OS drop-down list, select Linux.

5. On the Boot Parameters tab, select the Enable Command Line Settings checkbox.

The options in this group activate.

6. Specify the RAM disk parameters for use in the Command Line field. For example:

• You can specify the following when the regular initialization of the kernel is used:

root=/dev/ram rw"

• Sample NFS parameters:

"root=/dev/nfs ip=10.171.77.26
nfsaddr=10.171.77.26:10.171.77.21
nfsroot=/tftpboot/10.171.77.26"
"root=/dev/nfs rw
nfsroot=10.171.77.21:/tftpboot/10.171.77.26
ip=10.171.77.26:10.171.77.21:10.171.77.254:255.255.255.0:8280x:eth0:off"

where, 10.171.77.21 is the IP address of the NFS server and 10.171.77.26 is the IP address of the target
platform.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
296 NXP Semiconductors

"/tftpboot/10.171.77.26" is a directory on the host computer where the target platform file system is
located.

"8280x" is the host name.

• Sample flash parameters: root=/dev/mtdblock0 or root=/dev/mtdblock2

(depending on your configuration)

7.7.6.4 Using Open Firmware Device Tree Initialization method
You can use the Open Firmware Device Tree Initialization method as an alternate way of loading parameters
to the kernel from a bootloader on Power Architecture processors.

Since downloading the kernel with the CodeWarrior IDE emulates bootloader behavior, the IDE provides this
way of passing the parameters to the kernel.

The Open Firmware Device Tree initialization method involves the following general actions:

1. Obtain a DTS file on page 297

2. Edit DTS file on page 299

3. Compile DTS file on page 300

4. Test DTB file on page 300

5. Modify a DTS file on page 300

7.7.6.4.1 Obtain a DTS file
A device tree settings (.dts) file is a text file that contains the kernel setup information and parameters.

To obtain a device tree source file that can be used with CodeWarrior:

1. Configure a TFTP server on a Linux PC.

2. Copy the Linux images on the TFTP server PC in the specific directory. The following files are needed:

• uImage

• rootfs.ex2.gz.uboot (if this is not present, check if the Target Image Generation > Create a ramdisk
that can be used by u-boot option is enabled.

• A device tree blob (DTB) obtained from the kernel sources. To convert this into a DTB, use the Device
Tree Compiler (DTC) that is available in the BSP:

 dtc -f -b 0 -S 0x3000 -R 8 -I dtb -O dts <target>.dtb > <target>.dts

Standard DTS files are available along with Linux kernel source files in
<SDK_Linux_sources_root>/arch/powerpc/boot/dts. For the exact location
of where the kernel images are stored, see the SDK User Manual from iso/help/
documents/pdf.

 NOTE

3. Power on the target. Wait until the uboot prompt is displayed.

4. Ensure that networking is working on the target. You need to have a network cable plugged in and set
several variables (ipaddr, netmask, serverip, gatewayip), including the IP address of the TFTP server. For
example,

ipaddr=10.171.77.230
netmask=255.255.255.0

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 297

serverip=10.171.77.192
gatewayip=192.168.1.1

5. Check that network connectivity is working by pinging the TFTP server.

ping $serverip

6. On the uboot prompt, download the DTS and configure it for the current target. For example,

tftp 3000000 /tftpboot/<target>.dtb
fdt addr 0x3000000
fdt boardsetup
fdt print

7. Copy the output of this command as a DTS file.

8. Modify the memreserve statement at the beginning of the DTS fie. The first parameter is the start address
of the memory reserved for the RAM disk. The second parameter is the size of the RAM disk and must be
modified each time the RAM disk is repackaged as you might add additional packages to the RAM disk.
For example,

/memreserve/ 0x20000000 0x453ecc;

9. Modify the chosen node in the DTS file. The linux,initrd-start argument must be the start address of the
RAM disk, and the linux,initrd-end value must be the end address of the RAM disk. For example,

 chosen {
 linux,initrd-start = <0x2000000>;
 linux,initrd-end = <0x2453ecc>;
 linux,stdout-path = "/soc8572@ffe00000/serial@4500";
 };

10.Ensure that the frequencies of the target are correct. If the DTS was generated in U-Boot as described
above, the frequencies should be correct. However, if you update an existing DTS file for a new board
revision, the frequencies might have changed and they need to be corrected in the DTS file.

a. At the U-Boot prompt, inspect the current configuration.

bdinfo
...
 intfreq = 1500 MHz
 busfreq = 600 MHz
...

b. The intfreq value from the U-Boot output must be converted to a hexadecimal value and added to the
clock-frequency value of the CPU node in the DTS file. The busfreq value must be placed in the same
way in the bus-frequency parameter. For example,

cpus {
 PowerPC,<target>@0 {
 ...
 timebase-frequency = <0x47865d2>;
 bus-frequency = <0x23c34600>;
 clock-frequency = <0x5967f477>;
 };
 };

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
298 NXP Semiconductors

c. The same busfreq value is the clock frequency for the serial ports and must be updated in the DTS file
also:

 serial0: serial@4500 {
 ...
 clock-frequency = <0x23c34600>;
 };

If you are using hardware for kernel debugging, see Edit DTS file on page 299.

 NOTE

7.7.6.4.2 Edit DTS file
You need to edit the settings (.dts) file with information relevant to the current target board and kernel.

If you have a DTS file specifically designed for your target board, you should modify only the RAM disk end
address and reserved memory area, in case you are using a RAM disk.

A standard .dts text file has a number of nodes which are given no value (actually <0>) or are missing nodes
(for example, the /chosen branch).

When the Linux kernel is started from U-Boot with bootm, U-Boot dynamically edits the .dtb file in RAM so as
to fill in the missing values and add the /chosen branch, based on the U-Boot environment variables.

The CodeWarrior IDE does not fill in the missing values and branches when it downloads the .dtb file to RAM.
You must manually create and compile a separate and complete .dts file.

The following steps detail the changes that must be applied to the .dts file so the kernel boots successfully
when the CodeWarrior IDE loads the .dtb file into RAM with a Linux kernel and a initial RAM disk.

1. Update the bus-frequency and clock-frequency nodes from the value KRD=>bi_busfreq

2. Update the clock-frequency nodes from the value KRD=>bi_initfreq:

3. Update the following nodes from the value KRD=>bi_tbfreq:

/cpus/ PowerPC,8349@0/timebase-frequency

4. Create the following node from the size on disk of the file entered in LKBP=>Enable Initial RAM Disk=>File
Path or from the address entered in LKBP=>Enable Initial RAM Disk=>Address:

/memreserve/

5. Create the following node from LKBP=>Command Line:

/chosen/bootargs

6. Create the node:

linux,stdout-path

7. Create the following node from the address entered in LKBP=>Enable Initial RAM Disk=>Address:

/chosen/linux,initrd-start

8. Create the following node from the size on disk of the file entered in LKBP=>Enable Initial RAM Disk=>File
Path and from the address entered in LKBP=>Enable Initial RAM Disk=>Address:

/chosen/linux,initrd-end

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 299

7.7.6.4.3 Compile DTS file
You can compile the settings (.dts) file to a binary (.dtb) file, if you need the binary file to set up the kernel
parameters for the board.

1. Ensure that you have the DTC device tree compiler on your host machine.

If the DTC device tree compiler is missing, get the latest DTC source archive from bitshrine.org. Extract
the archive, run make, and put the binary somewhere reachable by your PATH.

wget dtc-20070307.tar.bz2
wget dtc-20070307.tar.bz2.md5
wget dtc-20070307.tar.gz
wget dtc-20070307.tar.gz.md5

2. Navigate to the folder containing DTS files.

The location of the DTS file might differ based on the BSP version being used. For the
correct location of the file, see the SDK User Manual in iso/help/documents/pdf.

 NOTE

3. Compile the .dts device tree source file for the board:

$ cd arch/powerpc/boot/dts
$ dtc -I dts -O dtb -V 0x10 -b 0 <target>.dts > <target>.dtb

You can use the created binary (.dtb) file in the CodeWarrior IDE (in the Boot
Parameters tab); see Configure an attach kernel debug scenario on page 291 for details.

 NOTE

7.7.6.4.4 Test DTB file
You can test the binary (.dtb) file outside the CodeWarrior IDE.

The steps are as follows:

1. Load the uImage, rootfs.ext2.gz.uboot, and <target>.dtb file onto the board.

2. Boot the board and verify that Linux comes up fine.

$ bootm <kerneladdress> <ramdiskaddress> <dtbaddress>

The target board must have U-Boot present in the flash at the reset address so that U-
Boot can run and set board configurations.

 NOTE

7.7.6.4.5 Modify a DTS file
You may need to modify a DTS file if you are using a BSP version that is not supported by a CodeWarrior
DTS file or custom board.

Follow these steps to modify the DTS file:

1. Obtain a DTS file.

The location of the DTS file might differ based on the BSP version being used. For the
correct location of the file, see the SDK User Manual in iso/help/documents/pdf.

 NOTE

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
300 NXP Semiconductors

2. Modify this DTS file with the information provided by U-Boot. To do this:

a. Check the /proc/device-tree/ directory for the required information after kernel boot from U-Boot.

Alternatively, you may:

b. Enable ft_dump_blob call from the u-boot/common/cmd_bootm.c file. By default this is disabled.

c. Build the U-Boot and write it on the target to have this enabled when booting the kernel.

d. After this, configure U-Boot as described in the BSP documentation to boot the kernel and save the
boot log.

e. Check the device tree displayed during kernel boot and accordingly modify your DTS file.

7.7.7 Debugging the kernel to download the kernel, RAM disk, and
device tree

This section describes how to debug the Linux kernel using CodeWarrior IDE to download the kernel, RAM
disk, and device tree.

Perform the following steps:

1. Create a project for the Linux kernel image. See Creating a CodeWarrior Project using the Linux Kernel
Image on page 289.

2. Configure the launch configuration for Linux kernel debug.

a. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

b. From the left pane, in the CodeWarrior group, select the appropriate launch configuration.

c. On the Main page, in the Connection panel, select the appropriate system from the Connection drop-
down list.

d. Click Edit.

The Properties for <connection> window appears.

e. Click Edit next to the Target drop-down list.

The Properties for <Target> dialog appears.

f. On the Initialization tab, select the checkboxes for all the cores in the Run out of reset column.

g. In the Initialize target column, select the checkbox for core 0.

h. Click the ellipses button in the Initialize target script column.

The Target Initialization dialog appears.

i. Click File System and select the target initialization file from the following path:

<CWInstallDir>\PA\PA_Support\Initialization_Files\<Processor Family>
\<target>_uboot_init_Linux.tcl

The initialization file is automatically set when you select Linux Kernel as the Target
OS, while creating a new Power Architecture project using the CodeWarrior Bareboard
Project Wizard.

 NOTE

j. Click OK to close the Memory Configuration File dialog.

k. Click OK to close the Properties for <Target> dialog.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 301

l. Click OK to close the Properties for <connection> dialog.

m. On the Debug tab of the Debugger tab, select an Program execution option, to stop the debug process
at the program entry point or at a specified user function or address like start_kernel.

n. On the OS Awareness tab of the Debugger tab, select Linux from the Target OS drop-down list.

o. On the Boot Parameters tab of the OS Awareness tab:

i. Select the Enable Initial RAM Disk Settings checkbox.

The fields in that panel are enabled.

ii. In the File Path text box, enter the location of the BSP file, rootfs.ext2.gz.

iii. In the Address text box, enter the address where you want to add the RAM disk.

iv. In the Size text box enter 0 if you want the entire RAM disk to be downloaded.

v. Select the Open Firmware Device Tree Settings checkbox.

vi. In the File Path text box, enter the location of the device tree file.

vii.In the Address text box, enter the location in memory where you want to place the device tree.

Ensure that the memory areas for kernel, RAM disk, and device tree do not overlap.

 NOTE

p. Click Apply to save the settings you made to the launch configuration.

3. Click Debug to start debugging the kernel.

If the kernel does not boot correctly, check the values entered in the Boot Parameters
tab. Also ensure that you provided a valid device tree and RAM disk.

 NOTE

7.7.8 Debugging the kernel based on MMU initialization
This section describes how to debug the Linux kernel based on whether the MMU is disabled, being enabled,
or enabled.

You can debug the kernel on all stages from 0x0 till start_kernel and further, without
the need of PIC changes, breakpoints at start_kernel, and multiple debug sessions.

 NOTE

Debugging the Linux kernel involves three stages with different views and functionality:

• Debugging the Kernel before the MMU is Enabled on page 302

• Debugging the Kernel while the MMU is being Enabled on page 304

• Debugging the Kernel after the MMU is Enabled on page 304

7.7.8.1 Debugging the Kernel before the MMU is Enabled
This procedure shows how to debug the kernel before the memory management unit (MMU) is initialized.

You can always debug assembly before virtual addresses are being used, without setting the alternate load
address.

To debug the kernel before the MMU is enabled, follow these steps:

1. Select Run > Debug Configurations from the CodeWarrior menu bar to open the Debug Configurations
dialog.

2. From the Debugger page, select the PIC tab.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
302 NXP Semiconductors

3. Select the Alternate Load Address checkbox.

4. In the Alternate Load Address field, type the hexadecimal form of the memory address (for example,
0x00000000).

5. Click Apply. The CodeWarrior IDE saves your changes to the launch configuration.

6. Click Debug. The Debug perspective appears.

7. Set a breakpoint early in head_fsl_booke.S.

You can perform source level debug until the rfi instruction in head_fsl_booke.S.

Figure 108: Kernel Debug - Before MMU is Enabled

You must stop the debug session and clear the Alternate Load Address checkbox in the
PIC tab to debug after the rfi instruction in head_fsl_booke.S.

 NOTE

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 303

7.7.8.2 Debugging the Kernel while the MMU is being Enabled
This procedure shows how to debug the kernel while the memory management unit is being initialized.

To debug this section of code, ensure that the Alternate Load Address checkbox in the PIC tab is disabled.

7.7.8.3 Debugging the Kernel after the MMU is Enabled
This procedure shows how to debug the kernel after the memory management unit is initialized.

To debug the kernel after the MMU is enabled, follow these steps:

1. Select Run > Debug Configurations from the CodeWarrior menu bar to open the DebugConfigurations
dialog.

2. From the Debugger tab, select the PIC tab.

3. Clear the Alternate Load Address checkbox.

4. Click Apply.

5. Click Debug to start the debug session. The Debug perspective appears.

6. In the editor area, set a breakpoint at start_kernel, after the eventpoint, in main.c. This will stop the debug
session at start_kernel function (shown in the figure below).

Figure 109: Kernel Debug - After MMU is Enabled

7. Click Run.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
304 NXP Semiconductors

The debugger halts execution of the program at whatever breakpoints have been set in the project (if any
breakpoints have been set).

8. Run through the rest of the code until the kernel starts to boot.

When the kernel boots, boot status messages appear in the simulator window.

You can click Terminate to halt running of the kernel and set breakpoint/watchpoints in
the debug window, as shown in the figure below.

 NOTE

Figure 110: Kernel Stopped by User

9. Continue debugging.

10.When finished, you can either:

a. Kill the process by selecting Run > Terminate.

b. Leave the kernel running on the hardware.

7.7.9 Debugging the kernel by attaching to a running U-Boot
This section explains how to debug the Linux kernel by attaching it to a running U-Boot.

To debug the kernel by attaching to a running U-Boot, perform the following:

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 305

1. Create a project for the Linux kernel image. For more details, see Creating a CodeWarrior Project using
the Linux Kernel Image on page 289.

2. Configure the launch configuration for Linux kernel debug. For more details, see Configure an attach
kernel debug scenario on page 291.

3. Select Run > Debug Configurations. The Debug Configurations dialog appears.

4. From the left pane, expand the CodeWarrior Attach tree and select the appropriate launch configuration.

5. From the Debugger tab, select the PIC tab.

6. Clear the Alternate Load Address checkbox.

7. Click Apply.

8. Click Debug to start the debug session. The Debug perspective appears.

9. While the U-Boot is running, attach the target.

The debugger displays a warning, in the console, as the kernel is not being executed on the target.

For multi-core processors, only core0 is targeted in the Debug view. This is normal as
the secondary cores are initialized in the Linux kernel after MMU initialization.
CodeWarrior will automatically add other cores, in the Debug view, after the kernel
initializes the secondary cores.

 NOTE

10.Set software or hardware breakpoints for any stage (before or after MMU initialization).

To set a software breakpoint for the entry point address (for example, address 0x0), issue the following
command in the Debugger Shell view.

bp 0x0

11.Using the U-boot console, load the Linux kernel, DTB file, and RAM disk/rootfs from flash or from TFTP.

12.Debug the kernel.

The debugger halts execution of the program at whatever breakpoints have been set in the project. Typical
stages involved in debugging the kernel are discussed below:

a. Debugging the kernel at the entry point

The CodeWarrior debugger will stop at the kernel entry point, if any software or hardware breakpoint has
been set for entry point.

For the debugger to stop at the kernel entry point, set a breakpoint before loading the
kernel from the U-boot console.

 NOTE

At the entry point, the MMU is not initialized and therefore debugging before MMU initialization also applies
in this stage.

b. Debugging the Kernel before the MMU is enabled

Being in early debug stage, the user should set the correct PIC value, to see the source correspondence,
by issuing the setpicloadaddr 0x0 command in the Debugger Shell view.

Before setting a breakpoint for the stage after MMU initialization (for example, breakpoint at
start_kernel) the correct PIC should be set, by issuing the setpicloadaddr reset command in the
Debugger Shell view. This is required to ensure that the new breakpoint is set with the correct PIC for the
stage after MMU initialization.

Debugging Embedded Linux Software
Debugging the Linux Kernel

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
306 NXP Semiconductors

The user can set breakpoints and run/step to navigate, before MMU initialization. The correct PIC should
be set by issuing the setpicloadaddr reset command in the Debugger Shell view, before the debuggers
enters the next stage.

c. Debugging the Kernel after the MMU is enabled

After the MMU is initialized, the PIC value must be reset y issuing the setpicloadaddr reset command
in the Debugger Shell view. During the Linux Kernel booting, you can debug this stage directly, if no
breakpoint has been set for the stage before MMU initialization. Alternatively, you can also debug this
stage after run or step from the stage before initialization.

In case of SMP, all the secondary cores are targeted and displayed in the Debug view.

 NOTE

13.When finished, you can either:

a. Kill the process by selecting Run > Terminate.

b. Leave the kernel running on the hardware.

7.8 Debugging Loadable Kernel Modules
This section explains how to use the CodeWarrior debugger to debug a loadable kernel module.

This section contains the following subsections:

• Loadable Kernel Modules - An Introduction on page 307

• Creating a CodeWarrior Project from the Linux Kernel Image on page 308

• Configuring Symbolics Mappings of Modules on page 310

7.8.1 Loadable Kernel Modules - An Introduction
The Linux kernel is a monolithic kernel, that is, it is a single, large program in which all the functional
components of the kernel have access to all of its internal data structures and routines.

Alternatively, you may have a micro kernel structure where the functional components of the kernel are broken
into pieces with a set communication mechanism between them. This makes adding new components to the
kernel using the configuration process very difficult and time consuming. A more reliable and robust way to
extend the kernel is to dynamically load and unload the components of the operating system using Linux loadable
kernel modules.

A loadable kernel module is a binary file that you can dynamically link to the Linux kernel. You can also unlink
and remove a loadable kernel module from the kernel when you no longer need it. Loadable kernel modules are
used for device drivers or pseudo-device drivers, such as network drivers and file systems.

When a kernel module is loaded, it becomes a part of the kernel and has the same rights and responsibilities
as regular kernel code.

Debugging a loadable kernel module consists of several general actions, performed in the following order:

1. Create a CodeWarrior Linux kernel project for the loadable kernel module to be debugged. See Creating a
CodeWarrior Project from the Linux Kernel Image on page 308

2. Add the modules and configure their symbolics mapping. See Configuring Symbolics Mappings of Modules
on page 310

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 307

7.8.2 Creating a CodeWarrior Project from the Linux Kernel Image
The steps in this section show how to create a CodeWarrior project from a Linux kernel image that contains
symbolic debugging information.

The following procedure assumes that you have made an archive of the Linux kernel
image and transferred it to the Windows machine. For kernel modules debugging,
ensure that you build the kernel with loadable module support and also make an archive
for the rootfs directory, which contains the modules for transferring to Windows.

 NOTE

1. Launch CodeWarrior IDE.

2. Select File > Import. The Import wizard appears.

3. Expand the CodeWarrior group and select CodeWarrior Executable Importer.

4. Click Next.

The Import a CodeWarrior Executable file page appears.

5. Specify a name for the project, to be imported, in the Project name text box.

6. If you do not want to create your project in the default workspace:

a. Clear the Use default location checkbox.

b. Click Browse and select the desired location from the Browse For Folder dialog.

c. In the Location text box, append the location with the name of the directory in which you want to create
your project.

An existing directory cannot be specified for the project location.

 NOTE

7. Click Next.

The Import C/C++/Assembler Executable Files page appears.

8. Click Browse next to the Executable field.

9. Select the vmlinux.elf file.

10.Click Open.

11.From the Processor list, expand the processor family and select the required processor.

12.Select Bareboard Application from the Toolchain group.

13.Select Linux Kernel from the Target OS list.

14.Click Next.

The Debug Target Settings page appears.

15.From the Debugger Connection Types list, select the required connection type.

16.Specify the settings, such as board, launch configuration, connection type, and TAP address if you are
using Ethernet or Gigabit TAP.

17.Click Next.

The Configuration page appears.

18.From the Core index list, select the required core.

19.Click Finish.

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
308 NXP Semiconductors

The wizard creates a project according to your specifications. You can access the project from the
CodeWarrior Projects view on the Workbench.

20.Configure the launch configuration for linux kernel debug.

a. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

21.Enter the launch configuration settings in the Debug Configurations dialog. The table below lists the launch
configuration settings.

Table 134: Kernel Project Download Launch Configuration Settings

Debug Window Component Settings

Main Tab Select an appropriate system (if existing) from the Connection
drop-down list or define a new system.

• To define a new system, click New.

• Select Hardware or Simulator Connection from the CodeWarrior
Bareboard Debugging list. Click Next.

• Specify a name and a description for the connection.

• Select an appropriate target (if existing) from the Target drop-
down list or define a new target.

• To define a new target, click New on the Hardware or Simulator
Connection dialog.

• Select Hardware or Simulator Target from the CodeWarrior
Bareboard Debugging list. Click Next.

• Specify a name and a description for the target.

• Select a processor from the Target type drop-down list. On the
Initialization tab, ensure that there are no initialization files
selected.

• Click Finish to create the target and close the Hardware or
Simulator Target dialog.

• Select the type of connection you will use from the Connection
type drop-down list.

• Click Finish.

• Select all the cores on which Linux is running (for example, core
0 for single-core or cores 0-7 for 8-core SMP).

Debugger Tab > Debugger options >
Symbolics Tab

Select the Cache Symbolics between sessions checkbox. The
symbolics are loaded from the elf file to the debugger for the first
session only. This shows a speed improvement for vmlinux.elf
as the size is bigger than around 100 MB.

Debugger Tab > Debugger options > OS
Awareness Tab

Select Linux from the Target OS drop-down list.

Table continues on the next page...

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 309

Table 134: Kernel Project Download Launch Configuration Settings (continued)

Debug Window Component Settings

Debugger Tab > Debugger options > OS
Awareness Tab > Boot Parameters Tab

Select the Enable Initial RAM Disk Settings checkbox

• File Path: Path of the RAM disk that you transferred from the
Linux machine

• Address: The address specified in Linux, initrd-start from the dts
file

Select the Download to target checkbox

Select the Open Firmware Device Tree Settings checkbox

• File Path: Path to the <target>.dtb file

• Address: 0x00600000

Debugger Tab > Debugger options > OS
Awareness Tab > Debug Tab

• Select the Enable Memory Translation checkbox

Physical Base Address is set to value
CONFIG_KERNEL_START (0x0)

Virtual Base Address is set to value CONFIG_KERNEL_START
(0xc000 0000 for 32 bits, and 0xC000 0000 0000 0000 for
64bits).

• Memory Size is the kernel space translation size.

The values shown above should be
set as configured in the linux config
file (.config). You can read the
MMU registers to verify what you
have configured and do a correction,
if required.

 NOTE

Select the Enable Threaded Debugging Support checkbox

Select the Enable Delayed Software Breakpoint Support
checkbox

Debugger Tab > Debugger options > OS
Awareness Tab > Modules Tab

• Select the Detect module loading checkbox

• Click Add to insert the kernel module file. See Configuring
Symbolics Mappings of Modules on page 310

• Select the Prompt for symbolics path if not found checkbox

22.Click the Source page to add source mappings for rootfs and linux-<version>.

23.Click Apply to save the settings.

7.8.3 Configuring Symbolics Mappings of Modules
You can add modules to the Linux kernel project and configure the symbolics mappings of the modules using
the Modules tab of the Debug Configurations dialog.

The figure below shows the Modules tab of the Debug Configurations dialog.

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
310 NXP Semiconductors

Figure 111: Kernel Module Debug - Modules Tab

The table below describes the various options available on the Modules tab.

Table 135: Kernel Module Project Launch Configuration - Modules Tab Settings

Option Description

Detect module loading Enables the debugger to detect module load events and insert an
eventpoint in the kernel. Disabling this setting delays the module
loading. This is useful in scenarios where multiple modules are
loaded to the kernel and not all of them need to be debugged. You
can enable this setting again in the Modules dialog. The dialog is
available during the Debug session from the System Browser
View toolbar > Module tab.

Add Adds a module name along with the corresponding symbolic path
This option displays a dialog in the following scenarios:

• The file that you have selected is not a valid compiled kernel
module

• If the selected module already exists in the list with the same
path

Scan Automatically searches for module files and populates the kernel
module list.

Remove Removes the selected items. This button will be enabled only if a
row is selected.

Remove All Removes all items. This button will be enabled only if the kernel
list contains any entries.

Table continues on the next page...

Debugging Embedded Linux Software
Debugging Loadable Kernel Modules

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 311

Table 135: Kernel Module Project Launch Configuration - Modules Tab Settings (continued)

Option Description

Prompt for symbolics path if not found Prompts to locate the symbolics file if a mapping for it is not
available in the settings A Browse dialog appears that allows you
to browse for a module file containing symbolics. The debugger
will add the specified symbolics to the modules' symbolics
mapping.

Keep target suspended Keeps the target suspended after the debugger loads the
symbolics file for a module. This option is useful if you want to
debug the module's initialization code. It allows you to set
breakpoints in the module's initialization code before running it.

This option is automatically enabled
when activating the Prompt for
symbolics path if not found option.

 NOTE

Breakpoints are resolved each time a symbolics file is loaded and the debugger uses
the modules unload events for symbolics disposal and breakpoints cleanup.

 NOTE

7.9 Debugging Hypervisor Guest Applications
This section shows you how to debug hypervisor guest applications.

This section explains:

• Hypervisor - An Introduction on page 312

• Prerequisites for Debugging a Guest Application on page 313

• Adding CodeWarrior HyperTRK Debug Stub Support in Hypervisor for Linux Kernel Debugging on page
313

• Preparing Connection to P4080DS Target on page 314

• Debugging AMP/SMP Guest Linux Kernels Running Under Hypervisor on page 315

• Debugging Hypervisor During the Boot and Initialization Process on page 322

7.9.1 Hypervisor - An Introduction
The embedded hypervisor is a layer of software that enables the efficient and secure partitioning of a multi-
core system.

A system's CPUs, memory, and I/O devices can be divided into groupings or partitions. Each partition is capable
of executing a guest operating system.

Key features of the hypervisor software architecture are summarized below-

• Partitioning: Support for partitioning of CPUs, memory, and I/O devices:

• CPUs: Each partition is assigned one or more CPU cores in the system.

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
312 NXP Semiconductors

• Memory: Each partition has a private memory region that is only accessible to the partition that is
assigned the memory. In addition, shared memory regions can be created and shared among multiple
partitions.

• I/O devices: P4080 I/O devices may be assigned directly to a partition (Direct I/O), making the device a
private resource of the partition, and providing optimal performance.

• Protection and Isolation: The hypervisor provides complete isolation of partitions, so that one partition
cannot access the private resources of another. The P4080 PAMU (an iommu) is used by Topaz to ensure
device-to-memory accesses are constrained to allowed memory regions only.

• Sharing: Mechanisms are provided to selectively enable partitions to share certain hardware resources
(such as memory)

• Virtualization: Support for mechanisms that enable the sharing of certain devices among partitions such as
the system interrupt controller

• Performance: The hypervisor software uses the features of the Freescale Embedded Hypervisor APU to
provide security and isolation with very low overhead. Guest operating systems take external interrupts
directly without hypervisor involvement providing very low interrupt latency.

• Ease of migration: The hypervisor uses a combination full emulation and para-virtualization to maintain high
performance and requiring minimal guest OS changes when migrating code from an e500mc CPU to the
hypervisor.

7.9.2 Prerequisites for Debugging a Guest Application
The P4080 software bundle is the prerequisite for debugging a hypervisor guest application using the
CodeWarrior IDE.

The software bundle used in the current example is P4080 Beta 2.0.2 SW Bundle.

7.9.3 Adding CodeWarrior HyperTRK Debug Stub Support in
Hypervisor for Linux Kernel Debugging

This section explains how to add CodeWarrior HyperTRK debug stub support in the hypervisor for guest LWE
or Linux kernel debugging.

To add CodeWarrior HyperTRK debug stub support:

1. Download the appropriate P4080 software bundle image (the BSP in .iso format) to a Linux computer.

2. Mount the .iso image file using this command: mount -o loop BSP-Image-Name.iso /mnt/iso

3. Install the BSP image file according to the instructions given in the BSP documentation.

4. Add CodeWarrior HyperTRK debug support to the hypervisor image (hv.uImage)

You can enable the HyperTRK debug support directly in the BSP. Alternatively, you can modify and build the
HyperTRK manually, and then enable it in the hypervisor.

Perform the steps given in the subsections below:

• Enabling HyperTRK Debug Support Directly in Build Tool on page 314

• Applying New HyperTRK Patches from CodeWarrior Install Layout on page 314

• Modifying and Building HyperTRK Manually on page 314

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 313

7.9.3.1 Enabling HyperTRK Debug Support Directly in Build Tool
Follow this procedure only if the <CWInstallDir>/PA/PA_Tools/HyperTRK directory does not contain any
newer HyperTRK patches than the ones in the SW bundle.

In case the <CWInstallDir>/PA/PA_Tools/HyperTRK directory contains newer HyperTRK patch, see Applying
New HyperTRK Patches from CodeWarrior Install Layout on page 314.

For more details on configuring or compiling the Hypervisor, refer the SDK Manual
available in the iso/help/documents/pdf folder.

 NOTE

7.9.3.2 Applying New HyperTRK Patches from CodeWarrior Install
Layout

Follow this procedure to manually apply new HyperTRK patches from CodeWarrior install layout.

The <CWInstallDir>/PA/PA_Tools/HyperTRK directory contains new patches. To apply the new patches, see
the procedures defined in the SDK manual.

7.9.3.3 Modifying and Building HyperTRK Manually
Follow this procedure only if you need to modify the HyperTRK sources.

The steps are as follows:

1. Apply the new HyperTRK patches, if any (see Applying New HyperTRK Patches from CodeWarrior Install
Layout on page 314).

The hypervisor and the HyperTRK sources are extracted to this directory:

<BSP-Directory>/rpm/BUILD/embedded-hv-{version}

2. Ensure that the environment variables point to the correct compiler that BSP uses, so that it correctly
builds HyperTRK and the hypervisor.

For more details on adding new patches, modifying the HyperTRK and building the
packet, see the SDK manual available in the SDK Manual available in the iso/help/
documents/pdf folder.

 NOTE

7.9.4 Preparing Connection to P4080DS Target
This section explains how to debug AMP/SMP guest application on the P4080DS target board.

You must have a serial cable connected between the board UART0 and the UART0 ports of your Linux host.
The debugger connects to the running mux_server from the Linux host and then communicates with the target
board through the serial connection between the Linux host and the target board. The steps to start the
mux_server are given below.

1. Telnet is not recommended to be used with the mux_server. Use socat instead. The syntax is:

socat -,raw,echo=0 tcp:<address>:<port>

For example:

socat -,raw,echo=0 tcp:rhuath:9002

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
314 NXP Semiconductors

2. For the standalone P4080DS target board, which is connected with the serial cable, you can use the
Makefile for starting the mux_server, and the xtel shipped with the SDK.

a. Run make xtel_P4080DS, if you want to automatically launch the mux_server, and have eight serial
consoles started.

b. Run make mux_server_P4080DS TARGET=/dev/ttyS0, which will connect the mux_server to the /dev/
ttyS0 device using the ports from 12000 to 12015. However, in this case, you need to manually run
socat to open the serial consoles.

c. If you need to change the ports, edit the tool you are using for starting the mux_server.

d. In case you are running only the mux_server, and not the xtel, you need to open the serial consoles
for the hypervisor and the guest applications. To know on which port you can access the serial console
of the hypervisor or the guest application, check the hypervisor device tree (the .dts file) that is used for
starting the application.

• Check for stdout nodes; for example, the hypervisor is using the hvbc node, which is using the
muxer on channel 0. This means that the hypervisor serial console can be reached on the first port
given as argument to the mux_server.

• Look at the first partition, part1; stdout is using part1_bc0, which is using muxer channel 1. This
means that the serial port will be mux_server base_port + 1.

The same concept applies to other partitions or other device trees as well.

7.9.5 Debugging AMP/SMP Guest Linux Kernels Running Under
Hypervisor

This section describes how to debug AMP/SMP guest Linux kernels, running under the hypervisor.

This section explains:

• Prerequisites for Debugging AMP/SMP Guest Linux Kernels on page 315

• Creating an Attach Launch Configuration to Debug a Linux Partition after Kernel Boot on page 315

• Creating a Download Launch Configuration to Debug a Linux Partition from an Entry Point or a User-
Defined Function on page 318

7.9.5.1 Prerequisites for Debugging AMP/SMP Guest Linux Kernels
This section provides the prerequisites for debugging AMP/SMP guest Linux kernels.

As prerequisites, ensure that:

• For Download debug session, the hypervisor loads the kernel images because CodeWarrior does not
support this option.

• For Download launch configuration, the Linux partitions do not have the no-auto-start option set in the
hypervisor DTS file. The CodeWarrior IDE resets the Linux partition and the hypervisor starts the partition,
by default.

• If you want to use the Windows version of CodeWarrior, you need to transfer the Linux directory along with
the vmlinux.elf, the associated sources, and the used .dtb file from the BSP directory to the Windows
computer.

7.9.5.2 Creating an Attach Launch Configuration to Debug a Linux
Partition after Kernel Boot

You can use an attach launch configuration to debug a Linux partition after kernel boot.

Follow these steps:

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 315

1. Import the vmlinux.elf file from the BSP-Directory/linux directory by using the PA ELF Import feature in
CodeWarrior IDE

2. Create a new CodeWarrior Attach launch configuration. The steps that follow describe how to configure
the required settings.

3. Select the Main page.

4. Click New in the Remote System group to create a new remote system

The New Connection wizard appears.

a. In the Select Remote System Type page, expand the CodeWarrior Bareboard Debugging group, and
select TRK Connection, as shown in the figure below.

Figure 112: Select Remote System Type Dialog Box

b. Click Next.

The TRK Connection window appears.

c. Click Edit next to the Target drop-down list.

The Properties for <target> window appears.

d. Click Edit next to the Target type drop-down list

The Target Types dialog appears.

e. Click Import and import the used hypervisor .dtb file.

f. Click OK to close the Target Types dialog.

g. Configure the following settings in the Properties for <target> window.

• In the Initialization tab, ensure that Execute target reset checkbox is not selected.

• In the Memory tab, do not add any memory configuration files for the debugged Linux partition cores

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
316 NXP Semiconductors

h. Click OK.

The TRK Connection page reappears.

i. Select Trk Muxer in the Connectiontype drop-down list.

• Select Use existing host muxer process, and type the IP address of the Linux host on which the
mux_server is running.

• Alternatively, for Linux host only, you can select Launch host muxer process for automatically
launching the muxer process. If you follow this step, you need to select the mux_server executable,
and a TCP/IP target muxer with an IP address and a starting port on which you want to launch the
mux_server.

• For TRK muxer ports, click Sequence and type the first port on which the mux_server started.

The channels and ports on which the debugger accesses the cores appear.

• The channels must correspond to the trk-stub's mux channels added in the hypervisor dts file.

j. Click Finish.

The New Connection wizard disappears and the new remote system that you just created appears in
Connection drop-down list in the Remote system group.

5. Select all the cores that you want to debug from the Linux partition

You can use the new remote system, which you just created, in other launch
configurations also by selecting different cores and making other necessary
adjustments.

 NOTE

6. Select the Debugger page to configure the debugger specific settings

a. In the Debugger options group, select the OS Awareness tab

b. Select Linux in the Target OS drop-down list. Note that it is mandatory to select Linux for the specific
scenario described in this section.

The Boot Parameters, Debug and Modules tabs appear

In the Boot Parameters tab:

• Disable all the options available on this tab.

In the Debug tab:

• Select the Enable Memory Translation checkbox, and configure it according to the Linux MMU
settings. For example:

Physical Base Address 0x0
Virtual Base Address 0xc0000000
Memory Size 0x20000000

• Select the Enable Threaded Debugging Support checkbox

• The Update Background Threads on Stop option is used to remove the dead threads, which were
debugged at some point during the debugging session, but later, were terminated or killed. This option
might cause a decrease in speed because a big amount of memory must be read at every stop.

• Do not select the Enable Delayed Software Breakpoint Support checkbox (see the figure below).

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 317

Figure 113: Boot Parameters, Debug, and Modules tab

c. Configure other options in the Debugger options group according to your specific requirements

You have successfully created the Attach Launch configuration. Click Debug and attach the configuration to the
running Linux kernel.

7.9.5.3 Creating a Download Launch Configuration to Debug a Linux
Partition from an Entry Point or a User-Defined Function

You can use a download launch configuration to debug a Linux partition from an entry point or a user-defined
function.

Follow these steps:

1. Import the vmlinux.elf file from the BSP-Directory/linux directory by using the PA ELF Import feature
in CodeWarrior IDE.

2. Create a new CodeWarrior download launch configuration. The steps that follow describe how to configure
the required settings.

3. Select the Main page.

4. Click New in the Remote system group to create a new remote system.

The New Connection wizard appears.

a. In the Select Remote System Type window, select CodeWarrior Bareboard Debugging, and then TRK
Connection.

b. Click Next.

c. In the TRK Connection, click Edit next to the Target drop-down list.

The Properties for <target> window appears.

d. Click Edit next to the Target type drop-down list.

The Target Types dialog appears.

e. Click Import and import the used hypervisor .dtb file.

f. Click OK to close the Target Types dialog.

g. Configure the following settings in the Properties for <target> window.

• In the Initialization tab, select the Execute system reset checkbox.

• Ensure that no init files exist for the debugged Linux partition cores.

• In the Memory tab, do not add any memory configuration files for the debugged Linux partition cores.

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
318 NXP Semiconductors

h. Click OK.

The TRK Connection page reappears.

i. Select Trk Muxer in the Connection type drop-down list.

• Select Use existing host muxer process, and type the IP address of the Linux host on which the
mux_server is running.

• Alternatively, for Linux host only, you can select Launch host muxer process for automatically
launching the muxer process. If you follow this step, you need to select the mux_server executable,
and a TCP/IP target muxer with an IP address and a starting port on which you want to launch the
mux_server.

• For TRK muxer ports, click Sequence and type the first port on which the mux_server started.

The channels and ports on which the debugger accesses the cores appear.

• The channels must correspond to the trk-stub's mux channels added in the hypervisor .dts file.

j. Click Finish.

The New Connection wizard disappears and the new remote system that you just created appears in
Connection drop-down list in the Remote system group.

5. Select all the cores that you want to debug from the Linux partition.

You can use the new remote system, which you just created, in other launch
configurations also by selecting different cores and making other necessary
adjustments.

 NOTE

6. Select the Debugger page to configure the debugger specific settings.

a. In the Debugger options group, select the OS Awareness tab.

b. Select Linux in the Target OS drop-down list. Note that it is mandatory to select Linux for the specific
scenario described in this section.

The Boot Parameters, Debug, and Modules tabs appear.

In the Boot Parameters tab:

• Ensure that you disable all the options available on this tab.

In the Debug tab:

• Select the Enable Memory Translation checkbox, and configure it according to the Linux MMU
settings. For example:

Physical Base Address 0x0
Virtual Base Address 0xc0000000
Memory Size 0x20000000

• Select the Enable Threaded Debugging Support checkbox.

• The Update Background Threads on Stop option is used to remove the dead threads, which were
debugged at some point during the debugging session, but later, were terminated or killed. This option
might cause a decrease in speed because a big amount of memory must be read at every stop.

• Do not select the Enable Delayed Software Breakpoint Support checkbox.

c. In the Debugger options group, select the Debug tab.

d. Select the Stop on startup at checkbox in the Program execution options group.

Debugging Embedded Linux Software
Debugging Hypervisor Guest Applications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 319

• Select the Program entry point option, if you want the debugging session to start from 0x0.

• Specify the function name in the User specified field, if you want the debugging session to start from a
specific kernel function.

e. In the Debugger options group, select the Download tab.

Ensure that the Perform standard download checkbox is not selected. Hypervisor
transfers the required kernel images for partition boot to memory.

 NOTE

f. Configure other option in the Debugger options group according to your specific requirements.

You have successfully created the Download Launch configuration. Click Debug and observe the Linux partition
restarting, hypervisor loading the kernel images, and the debug session stopping at the Stop on startup at point/
function, if specified.

7.10 Debugging the P4080 Embedded Hypervisor
You can debug the P4080 embedded hypervisor during the boot and initialization process by using a JTAG
probe and by creating an attach launch configuration.

To debug the hypervisor, perform the following steps:

1. Download the appropriate P4080 SW Bundle image (the BSP in .iso format) to a Linux computer.

2. Mount the .iso image file using this command:

mount -o loop BSP-Image-Name.iso /mnt/iso

3. Install the BSP image file according to the instructions given in the BSP documentation,
P4080_BSP_User_Manual.

Ensure that you are able to boot the hypervisor on the P4080 board.

 NOTE

4. Import the hv.elf file and create an Attach launch configuration.

a. Start the CodeWarrior IDE.

b. From the CodeWarrior menu bar, select File > Import.

c. The Import wizard appears.

d. Expand the CodeWarrior group.

e. Select CodeWarrior Executable Importer to debug a .elf file.

f. Click Next.

The Import a CodeWarrior Executable page appears.

g. In the Project name text box specify a name for the imported project.

h. Click Next.

The Import C/C++/Assembler Executable Files page appears.

i. Click Browse next to the Executable option.

The Select file page appears.

j. Select the hv.elf file obtained from the output folder of the package.

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
320 NXP Semiconductors

k. Click Open.

l. The Select file dialog closes. The path to the executable file appears in the Executable text box.

m. Click Next.

The Processors page appears.

n. Select the processor family, toolchain, and target operating system for the executable file.

o. Click Next.

The Debug Target Settings page appears.

p. Specify the debugger connection type, board, launch configuration, and connection options for the
executable file.

q. Click Next.

The Configurations page appears.

r. Select the core index for the executable file.

s. Click Finish.

The Import a CodeWarrior Executable window closes. The project for the imported elf file appears in the
CodeWarrior Projects view. You can now open the Debug Configurations dialog box by selecting Run >
Debug Configurations. The Debug Configurations dialog shows the current settings for the launch
configuration that you just created. The Debug Configurations dialog appears.

t. Expand the CodeWarrior group and select the launch configuration.

u. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

v. Select the appropriate <Connection type> from the drop-down list.

The Connection page appears.

w. Ensure that CCS executable is selected in the CCS server panel.

x. Specify the path of the executable file of the CCS server.

y. Enter the IP address in the Hostname/IP address text box.

Use the default port, 41475 and JTAG clock speed, 16000 kHz.

 NOTE

z. In the Advanced tab, none of the checkbox should be selected.

aa.Click Edit next to the Target drop-down list.

The Properties for <system launch configuration> window appears.

ab.In the Initialization tab, clear any reset options if checked.

ac.Clear the Initialize target options for any of the cores so that no initialization file is selected.

ad.In the Memory tab, nothing should be selected because we currently do not have a memory
configuration file. The file will be created later with hypervisor MMU entries.

The Properties window appears for the Attach launch configuration

ae.Click OK. The Properties window closes.

af. On the Main tab, in the Connection panel, check all the core checkboxes.

ag.Click Debug.

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 321

The Debug view appears with the debugger attached to each core of the selected processor.

5. Create the required memory configuration file based on the hypervisor MMU entries.

a. In the Debug view, select the first core and click Suspend.

b. In the Registers view, expand the regPPCTLB1 group.

c. Find the MMU entries corresponding to the 0x00100000 address.

The MMU entry for this translation uses the physical address 0x7f900000 and the
translation size is 1 MB.

 NOTE

d. Add the following code to the memory configuration file:

AutoEnableTranslations true
translate v:0x00100000 p:0x7f900000 0x00100000

e. Add specific translations to access memory areas for which the translation is not 1-1.

The memory mapped registers are accessed directly on physical memory space, no
translation is required in such cases.

 NOTE

f. Save the memory configuration file and add it to the attach launch configuration.

g. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

h. Expand the CodeWarrior group and select the launch configuration you created.

i. In the Connection panel, click Edit next to the Connection drop-down list box.

The Properties for <connection> window appears.

j. In the Memory tab, select the created memory configuration file at the processor level.

By default, the memory configuration files, P4080_HV_EntryPoint.mem and
P4080_HV.mem needed for debugging the hypervisor, included in P4080 2.1 software
bundle, are provided with the CodeWarrior layout in the PA\PA_Support
\Initialization_Files\Memory folder. If you use a different hypervisor or use a
hypervisor with different MMU entries, you need to follow the steps above.

 NOTE

You are now ready to debug the hypervisor at different stages.

7.10.1 Debugging Hypervisor During the Boot and Initialization
Process

This section discusses the various debug scenarios while debugging hypervisor from the boot.

This section explains:

• Debugging Hypervisor from the Entry Point on page 323

• Debugging Hypervisor from Relocation till Release of Secondary Cores on page 325

• Debugging Hypervisor after Release of Secondary Cores on page 326

• Debugging the Hypervisor Partitions Initialization Process on page 327

• Debugging the Hypervisor Partitions Image Loading Process on page 328

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
322 NXP Semiconductors

• Debugging All Cores when Starting the Guest Applications on page 328

• Debugging the Hypervisor Partition Manager on page 328

7.10.1.1 Debugging Hypervisor from the Entry Point
In this section, you will see how the hypervisor code is debugged from the _start function in the libos/lib/
head.S file until the tlbwe from branch_to_reloc from the scr/misc.S file, when the new text mapping is
created and the initial one is removed.

To debug hypervisor from the entry point until the hypervisor relocation:

1. Download the appropriate P4080 SW Bundle image (the BSP in .iso format) to a Linux computer.

2. Mount the .iso image file using this command: mount -o loop BSP-Image-Name.iso /mnt/iso

3. Install the BSP image file according to the instructions given in the BSP documentation, help/
documents/pdf/BSP_User_Manual.

4. Configure <build tool> to have U-Boot boot the hypervisor as per instructions given in the BSP
documentation, help/documents/pdf/BSP_User_Manual.

5. Import the U-Boot file and create an Attach launch configuration.

a. Launch the CodeWarrior IDE.

b. From the main menu bar, select File > Import.

The Import wizard appears.

c. Expand the CodeWarrior group.

d. Select CodeWarrior Executable Importer to debug a .elf file.

e. Click Next.

The Import a CodeWarrior Executable file page appears.

f. Specify the project name for the imported project.

g. Click Next.

The Import C/C++/Assembler Executable Files page appears.

h. Click Browse next to the Executable option.

i. Select the hv.elf file.

j. Click Next.

The Processor page appears.

k. Select the processor family and toolchain for the executable file.

l. Click Next.

The Debug Target Settings page appears.

m. Specify the debugger connection type, board, launch connection, and connection type for the
executable file.

n. Click Next.

The Configurations page appears.

o. Select a core index.

p. Click Finish.

The Import a CodeWarrior Executable window closes.

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 323

q. Select Run > Debug Configurations.

The Debug Configurations dialog appears with the specified launch configuration settings.

r. Click Edit near the Connection list box to check or edit the settings you made during the creation of the
launch configuration.

The Properties window appears for the selected launch configuration.

s. Select the type of connection using the Connection type drop-down list.

The Connection page appears.

t. Ensure that CCS executable is selected in the CCS server panel.

u. Specify the path of the executable file of the CCS server.

v. Enter the IP address in the Hostname/IP Address text box.

Use the default port, 41475 and JTAG clock speed, 16000 kHz.

 NOTE

w. Click Edit next to the System drop-down list.

The System page appears.

x. Select P4080_HV_EntryPoint.mem from \CWInstall_dir\PA\PA_Support\Initialization_Files
\Memory in the Initialize target script column.

y. Click OK.

The Properties window closes.

z. On the Main tab, in the System panel list, ensure that e500mc-0 is selected. Run the launch
configuration.

aa.Click Finish.

You can attach to all 8 cores, but for this example you will just select the first core. In
the beginning the hypervisor runs from address 0x0 and uses this translation v:
0x00100000 p:0x00000000 0x00100000 in its TLB1 MMU.

 NOTE

6. Open the Debugger Shell and set a hardware breakpoint at the entry point (_start function from
libos/lib/head.S) by issuing this command:

bp -hw 0x0 or bp -hw libos_client_entry

7. Find the address of this entry point by using the elf dump file:

powerpc-linux-gnu-objdump -D hv > hv.objdump;

8. Open the generated dump and search for _start address (for example, 0x100000)

You use the objdump utility here because head.S is not present in the hv.elf file.
To set a hardware breakpoint, you can also expand the hv.elf file, open the required
file (if present) and set a hardware breakpoint directly at the desired function, for
example, the libos_client_entry or any other function.

 NOTE

9. Boot the hypervisor at the U-Boot prompt.

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
324 NXP Semiconductors

The debugger stops at the specified hardware breakpoint (see the figure below). You can now debug from
this location until hypervisor relocation.

Figure 114: Hypervisor Debug - Entry Point

7.10.1.2 Debugging Hypervisor from Relocation till Release of
Secondary Cores

After the hypervisor relocation, the MMU entry from TLB1 is changed. Therefore, to continue debugging the
hypervisor, the used memory configuration file should use the new translation.

For debugging hypervisor from relocation, use the P4080_HV.mem file from
\CWPAv10.0\PA\PA_Support\Initialization_Files\Memory.

 NOTE

Follow these steps to debug hypervisor from relocation:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. On the left panel, from the CodeWarrior Attach group, select the attach launch configuration you had
imported using the hv.elf file.

3. On the Main tab, in the System panel, select all the cores and click Debug.

The Debug perspective appears.

4. In the Editor view, open the init.c file and set a hardware breakpoint at the branch_to_reloc function
call from the init_hv_mem function.

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 325

Figure 115: Hypervisor Debug - Setting Breakpoint

5. Debug until the secondary cores are being released from the spin table in the release_secondary
function from init.c at start_secondary_spin_table call.

Figure 116: Hypervisor Debug - Release of Secondary Cores

7.10.1.3 Debugging Hypervisor after Release of Secondary Cores
This section explains how to debug hypervisor after the release of secondary cores.

Follow these steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
326 NXP Semiconductors

2. On the left panel, from the CodeWarrior Attach group, select the attach launch configuration you had
imported using the hv.elf file.

3. On the Main tab, in the System panel, select all the cores and click Debug.

The Debug perspective appears.

4. When the secondary cores are released, set a hardware breakpoint at the start_secondary_spin_table
function in the mp.c file.

5. Boot the hypervisor.

The first core will stop at the start_secondary_spin_table function.

For debugging the secondary cores, set a breakpoint either at the secondary_start
entry point for secondary cores from libos/lib/head.S or at a function called by
secondary cores (for example, set a breakpoint at the secondary_init function
in the init.c file).

 NOTE

6. Find out the address of the secondary_start entry point by using the elf dump file:

powerpc-linux-gnu-objdump -D hv > hv.objdump;

7. Open the generated dump and search for secondary_start address (for example, 0x10006c).

8. After having the translation from 0x00100000 to 0x7f900000, add a breakpoint at 0x7f90006c.

9. Resume the first core which was stopped at the start_secondary_spin_table function.

Each secondary core will stop at the specified breakpoint either at the entry point or the secondary_init
function.

10.Debug all the cores until the init_guest function call from the partition_init function.

7.10.1.4 Debugging the Hypervisor Partitions Initialization Process
This section explains how to debug the hypervisor partition initialization process.

Follow these steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. On the left panel, from the CodeWarrior Attach group, select the attach launch configuration you had
imported using the hv.elf file.

3. On the Main tab, in the System panel, select all the cores and click Debug.

The Debug perspective appears.

4. In the Editor view, open the init.c file and set a hardware breakpoint at the partition_init function.

5. Debug the init_guest function on each core.

6. Set a breakpoint in the init_guest_primary function for debugging each primary core of a partition.

7. Set a breakpoint in the register_cpu_with_guest function for the other cores of a partition.

The secondary cores wait on a barrier in the register_cpu_with_guest function
until the primary core of that partition allocates the guest->gcpus member; after this
they will enter idle_loop from src/misc.S. The primary core of each partition will
continue in the init_guest_primary function with different device-tree operations.

 NOTE

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 327

7.10.1.5 Debugging the Hypervisor Partitions Image Loading Process
After debugging the hypervisor partitions initialization process, the image loading process begins at the
start_load_guest or load_guest function from the guest.c file.

Each primary boot core will set a event of this type in the init_guest function causing one of this functions to
be called.

1. From the start_load_guest function, the primary core of each partition begins the process of image
loading for each partition.

2. In the start_guest_primary function, the load_images function call will load the specific files for each
partition.

3. Set different breakpoints in these functions for debugging the image loading process.

7.10.1.6 Debugging All Cores when Starting the Guest Applications
After the images for each partition are loaded, the primary core of each partition should take the secondary
partition cores from the idle loop and start the partition.

Follow these steps to debug all cores:

1. In the start_guest_primary_noload function, each partition primary core sets a gev_start event and
will wait on a barrier until all the cores from the partition become active.

2. The secondary partition cores will continue in the start_guest_secondary function and will wait in the
while loop for different events.

3. After all the partition cores become active and they are waiting for events in the while loop, the primary
core moves over the barrier, sets the partition state to running, sets the srr1 variable to guest state and at
the return from exception will start executing the guest application.

4. The other secondary cores from the partition set srr1 to guest state and at the return from exception will
start executing the guest application.

5. Set different breakpoints in these start_guest_primary_noload and start_guest_secondary functions
for debugging.

7.10.1.7 Debugging the Hypervisor Partition Manager
If you want to verify the behavior of different commands on a user space, you can use partman, which is a
Linux user space application.

For debugging the associated hypercalls routines, you will need to attach to the hypervisor with all the eight
cores and set breakpoints at the required function calls.

In this section, we will take an example of issuing the partition restart command from partman.

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. On the left panel, from the CodeWarrior Attach group, select the attach launch configuration you had
imported using the hv.elf file.

3. On the Main tab, in the System panel, select all the cores and click Debug.

The Debug perspective appears.

4. In the Editor view, in the hcalls.c file set a breakpoint at the hcall_partition_restart function.

The debugger stops at this breakpoint and you can debug this hypercall handle.

Debugging Embedded Linux Software
Debugging the P4080 Embedded Hypervisor

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
328 NXP Semiconductors

7.11 User Space Debugging with On-Chip Debug
The user space on-chip debug (OCD) feature introduces the capability of debugging only one user space
application per debug session, using the Linux kernel awareness debug feature.

The advantage of this feature is that the debugger functionality is not conditioned by any target services and the
target serial/ethernet capabilities do not consume target resources. It works regardless of the target's processes
state. The solution does not require any debugger add-on for the target board.

The Linux kernel awareness debug feature has been enhanced to accept the on-source debugging for one user
space application per debug session. The limitation is multiple applications are linked and run on different virtual
addresses. In real time, user space applications are linked to the same virtual address, so that only one can be
debugged on the source.

A typical Linux kernel debug session (attach or download) adds the symbolics information for the user space
application. The symbolic information must be added before starting the debug session. Follow these steps to
add the information:

1. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

2. Click the Debugger tab.

The Debugger options group appears.

3. Select the Other Executables tab.

4. Click Add to add the application elf file.

The Debug Other Executable dialog appears.

5. Select the Load Symbols checkbox and clear the Download to Device checkbox.

6. To download and start the application on the target board, the application should be included in the target
file system (using RAM disk or rootfs). You can either include the application manually or using SDK.

• From the SDK: The application is included in the rootfs file from the SDK. The application will be
downloaded on the target board with the rest of the file system using the RAM disk download feature.
Follow all the steps from the BSP user manual (iso/help/documents/pdf on the BSP image) to include
the application in the target file system.

• Place the application manually: You can place the application manually in the target file system by
copying the application to the target, after the linux application is running on the target board using the
file transfer protocol like, FTP, TFTP, or SCP. If you use NFS, copy the application on the NFS server
location of the RAM disk.

7. Click Debug.

The debugged application processes will be presented as kernel tasks with the respective PID. If a core is
terminated while running inside the application, the corresponding thread will appear in the System Browser
view.

8. Select Window > Show View > Other.

The Show View dialog appears.

9. From the Debug group, select System Browser.

10.Click OK.

The System Browser window appears with the process and thread information.

Debugging Embedded Linux Software
User Space Debugging with On-Chip Debug

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 329

11.Locate the particular thread among the other threads and double click on it to debug the selected thread.
You can also right-click the thread and select the Debug option.

The selected thread appears in the Debug perspective for the current core.

On multi-core systems the application can be found on any core and, if it creates multiple
threads/processes, each has a separate entry in System Browser view.

 NOTE

12.Click on the thread in the Debug view, the program counter icon on the marker bar points to the next
statement to be executed.

13.
In the Debug view, click Step Into .

The debugger executes the current statement and halts at the next statement.

14.Set the breakpoint on the appropriate function.

15.You can inspect the variables, view the Disassembly or perform any other debug capability as required.

The Linux kernel and user space stack frames are not simultaneously supported for a
thread. In a system call, the kernel stack is displayed corresponding to the kernel
function (system call) called from the application.

 NOTE

This section contains the following subsections:

• Attaching Core to Debug Application on page 330

• Debugging Application from main() Function on page 330

7.11.1 Attaching Core to Debug Application
In this section, we will take an example to attach the target to an already executed debugging application.

The steps are as follows:

1. Click Suspend from the debug view to suspend the debug session or Multicore Suspend if a multicore
target is used.

2. Select Window > Show View > Other.

The Show View dialog appears.

3. From the Debug group, select System Browser.

4. Click OK.

The System Browser window appears.

5. Select and double-click on the particular thread to attach it to the target.

If the application stack does not appear in the Debug view, go to System Browser view
and attach the application.

 NOTE

7.11.2 Debugging Application from main() Function
In this section, we will describe the steps to debug the application from the beginning of the program, that is,
from the main() function.

Before executing the main() function, the application load process must be interrupted by setting a breakpoint
after the MMU setup and before the main execution. It can be performed in two steps:

Debugging Embedded Linux Software
User Space Debugging with On-Chip Debug

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
330 NXP Semiconductors

1. Attach to a running instance of the application (as described above) and set the breakpoint.

a. Right-click the selected thread in the application stack.

The context menu appears.

b. Select the Debug option to debug the application after the application stack is displayed in the
Disassembly view.

c. Click the thread in the Debug view.

The program counter icon on the marker bar points to the next statement to be executed.

d. Set breakpoint at the stack frame under main().

2. Click Resume and restart the application from the console.

3. When the breakpoint is hit, set a new breakpoint on source, and repeat the above steps.

Debugging Embedded Linux Software
User Space Debugging with On-Chip Debug

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 331

Debugging Embedded Linux Software
User Space Debugging with On-Chip Debug

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
332 NXP Semiconductors

Chapter 8
JTAG Configuration Files
This chapter explains the JTAG configuration files that pass specific configuration settings to the debugger and
support chaining of multiple devices.

A JTAG configuration file is a text file, specific to the CodeWarrior debugger, which describes a custom JTAG
scan chain. You can specify the file in the remote system settings.

This chapter explains:

• JTAG configuration file syntax on page 333

• Using a JTAG configuration file to override RCW on page 334

• Using a JTAG configuration file to specify multiple linked devices on a JTAG chain on page 335

• Setting up a remote system to use a JTAG configuration file on page 337

8.1 JTAG configuration file syntax
This section describes the syntax of a JTAG configuration file.

You can create a JTAG configuration file that specifies the type, chain order, and various settings for the devices
you want to debug. To create the JTAG configuration file, list each device on a separate line, starting with the
device that is directly connected to the transmit data out (TDO) signal (Pin 1) of the 16-pin COP/JTAG debug
connector on the hardware target, and conclude with a blank line.

The listing below shows the complete syntax for a JTAG configuration file.

Figure 117: JTAG Configuration File Syntax

cfgfile:
 '\n'

 '#' 'any other characters until end of line'

 line

 cfgfile line

line:

 target

 target filter_list_or_params

target:

 target_name

 target_name = target_id

 'Generic' number number number

filter_list_or_params:

 filter_list_entity

JTAG Configuration Files
JTAG configuration file syntax

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 333

 filter_list_or_params filter_list_entity

filter_list_entity:

 '(' number number ')'

 filter_name

 %

In the listing above, target_name represents a processor name, such as P1010, P2020, P4080, and so on.

If a JTAG scan chain contains a processor, such as P1011, P1012, P1013, P1015,
P1016, P1017, and P2010, then an additional parameter, (0x80000000 1), needs to be
specified in the JTAG configuration file. An example of this parameter is given in Using
a JTAG configuration file to specify multiple linked devices on a JTAG chain on page
335.

 NOTE

8.2 Using a JTAG configuration file to override RCW
You can use a JTAG configuration file to override reset configuration word (RCW) for a processor, such as
P4080.

In the following scenarios, the JTAG configuration files are used for overriding RCW:

• Programming RCW in a target board that does not have RCW programmed already

• New board bring-up

• Recovering a board having a blank or corrupted flash

For more information on RCW, see the reference manual for your processor.

 NOTE

The CodeWarrior software includes example JTAG configuration files that can be used for overriding the RCW
(see the listing below). The JTAG Configuration files are available at the following location:

<CWInstallDir>\PA\PA_Support\Initialization_Files\jtag_chains

Figure 118: Sample JTAG configuration file for overriding RCW

Example file to allow overriding the whole RCW or a portion of it

Syntax:
P4080 (2 RCW_option) (RCWn value) ...

where:
RCW_option = 0 [RCW override disabled]
1 [RCW override enabled]
2 [Reset previous RCW override parts]

RCWn = 21000+n (n = 1 .. 16; index of RCW value)

value = 32-bit value

JTAG Configuration Files
Using a JTAG configuration file to override RCW

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
334 NXP Semiconductors

As specified in the listing above, the JTAG configuration files can be used to override a portion or the complete
RCW for P4080, by specifying (index, value) pairs for some (or all) of the 16 x (32-bit words) of the RCW.

You can use the pre-boot loader (PBL) tool to configure the various settings of the RCW
and output the RCW in multiple formats, including CodeWarrior JTAG configuration files.
For more information on the PBL tool, see QCVS PBL Tool User Guide.

 NOTE

8.3 Using a JTAG configuration file to specify multiple linked
devices on a JTAG chain

This section explains how to connect multiple processors through a single JTAG chain and how to describe
such a JTAG chain in a JTAG configuration file.

The listing and figure below show a sample JTAG initialization file with a single core.

Figure 119: Sample JTAG Initialization File for P1010 Processor

A single device in the chain
P1010

Figure 120: A Single Device in a JTAG Chain

The listing and figure below show a sample JTAG initialization file with two devices in a JTAG chain.

Figure 121: Sample JTAG Initialization File for P1014 and P2020 Processors

Two devices in a JTAG chain
P1014

P2020

Figure 122: Two Devices in a JTAG Chain

JTAG Configuration Files
Using a JTAG configuration file to specify multiple linked devices on a JTAG chain

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 335

http://www.freescale.com/files/soft_dev_tools/doc/user_guide/QCVS_PBL_User_Guide.pdf?fpsp=1&WT_TYPE=Users%2520Guides&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf

The devices are enumerated in the direction starting from TDO output to TDI input.

 NOTE

The listing and figure below show two devices connected in a JTAG chain.

Figure 123: Sample JTAG Initialization File for P2010 and P4080 Processors

Two devices in a JTAG chain
P2010 (0x80000000 1)

P4080 (2 1) (210005 0x90404000)

Figure 124: Two Devices in a JTAG Chain

The listing and figure below show two devices connected in a JTAG chain with a filter applied for the second
device.

Figure 125: Sample JTAG Initialization File for Two Devices with Filter for Second Device

Two devices in a JTAG chain
8306 (1 1) (2 0x44050006) (3 0x00600000)

8309 log

Figure 126: Two Devices in a JTAG Chain with Filter Applied to Second Device

JTAG Configuration Files
Using a JTAG configuration file to specify multiple linked devices on a JTAG chain

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
336 NXP Semiconductors

In the above example, the entry for the 8306 also includes the Hard Reset Control Word (HRCW) data that will
overwrite the HRCW fetched by the 8306 upon power up or Hard Reset. The Hard Reset Control Word
parameters are optional.

The CodeWarrior debugger not only supports Freescale devices but also supports non-Freescale devices in a
JTAG scan chain. Each non-Freescale device used in a scan chain is declared as "Generic" and it takes the
following three parameters:

• JTAG Instruction Length

• Bypass Command

• Bypass Length

The values for these three parameters are available in the device's data sheet or can be obtained from the
manufacturer of the device.

The listing and figure below show a Freescale device, 8560, connected with a non-Freescale device, PLA, in a
JTAG scan chain. From the PLA's data sheet, the JTAG Instruction Length = 5, the Bypass Command = 1, and
the Bypass Length = 0x1F.

Figure 127: Sample JTAG Initialization File including Non-Freescale Devices

8560
Generic 5 1 0x1F

Figure 128: A Freescale Device and a Non-Freescale Device in a JTAG Chain

8.4 Setting up a remote system to use a JTAG configuration file
This section explains how to configure a remote system to use a JTAG configuration file.

To connect to a JTAG chain, specify these settings in the launch configurations:

1. Create a JTAG initialization file that describes the items on the JTAG chain. For more information on how
to create a JTAG initialization file, see JTAG configuration file syntax on page 333 and Using a JTAG
configuration file to specify multiple linked devices on a JTAG chain on page 335.

2. Open the CodeWarrior project you want to debug.

3. Select Run > Debug Configurations.

The Debug Configurations dialog appears with a list of debug configurations that apply to the current
application.

4. Expand the CodeWarrior tree control.

5. From the expanded list, select the debug configuration for which you want to modify the debugger settings.

JTAG Configuration Files
Setting up a remote system to use a JTAG configuration file

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 337

The Debug view shows the settings for the selected configuration.

6. Select a remote system from the Connection drop-down list.

7. Select a core from the Target list.

8. In the Connection group, click Edit.

The Properties for <project>window appears.

9. Click Edit next to the Target list.

The Properties for <remote system> window appears.

10.Click Edit next to the Target type drop-down list.

The Target Types dialog appears.

11.Click Import.

12.The Import Target Type dialog appears.

13.Select the JTAG initialization file that describes the items on the JTAG chain from this location:

<CWInstallDir>\PA\PA_Support\Initialization_Files\jtag_chains

14.Click OK.

The items on the JTAG chain described in the file appear in the Target Types dialog.

15.Click OK.

The selected JTAG configuration file appears on the Advanced tab (shown in the figure below).

Figure 129: Advanced Tab Showing the JTAG Configuration File

16.Click OK.

17.Click the Debugger tab.

The Debugger page appears.

18.Ensure that the Stop on startup at checkbox is selected and main is specified in the User specified text
box.

JTAG Configuration Files
Setting up a remote system to use a JTAG configuration file

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
338 NXP Semiconductors

19.Click Apply to save the changes.

You have successfully configured a debug configuration.

JTAG Configuration Files
Setting up a remote system to use a JTAG configuration file

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 339

JTAG Configuration Files
Setting up a remote system to use a JTAG configuration file

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
340 NXP Semiconductors

Chapter 9
Target Initialization Files
A target initialization file is a file that contains commands that initialize registers, memory locations, and other
components on a target board.

The most common use case is to have the CodeWarrior debugger execute a target initialization file immediately
before the debugger downloads a bareboard binary to a target board. The commands in a target initialization
file put a board in the state required to debug a bareboard program.

The target board can be initialized either by the debugger (by using an initialization file),
or by an external bootloader or OS (U-Boot, Linux). In both cases, the extra use of an
initialization file is necessary for debugger-specific settings (for example, silicon
workarounds needed for the debug features).

 NOTE

This chapter explains:

• Using target initialization files on page 341

• Target initialization commands on page 343

9.1 Using target initialization files
This section describes how to configure the CodeWarrior debugger to use a specific target initialization file.

A target initialization file contains commands that the CodeWarrior debugger executes each time the launch
configuration, the initialization file is assigned to, is debugged. You can use the target initialization file for all
launch configuration types (Attach, Connect and Download). The target initialization file is executed after the
connection to the target is established, but before the download operation takes place.

The debugger executes the commands in the target initialization file using the target connection protocol, such
as a JTAG run-control device.

You do not need to use an initialization file if you debug using the CodeWarrior TRK
debug protocol.

 NOTE

To instruct the CodeWarrior debugger to use a target initialization file:

1. Start the CodeWarrior IDE.

2. Open a bareboard project.

3. Select one of this project's build targets.

4. Select Run > Debug Configurations.

The Debug Configurations dialog appears.

5. Select the appropriate launch configuration from the left panel.

6. In the Main tab, from the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <Launch Configuration Name> window appears.

7. Click Edit next to the Target drop-down list.

The Properties for <remote system> window appears.

Target Initialization Files
Using target initialization files

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 341

8. In the Initialization tab, select the appropriate cores checkboxes from the Initialize target column, as shown
in the figure below.

Figure 130: Initialization Tab

9. In the Initialize target script column, click the ellipsis button, as shown in the figure above.

Click in the specified cell of the Initialize target script column for the ellipsis button to
appear.

 TIP

The Target Initialization File dialog appears, as shown in the figure below.

Figure 131: Target Initialization File Dialog Box

10.Select the target initialization file by using the buttons provided in the dialog and click OK.

The target initialization files are available at the following path:

<CWInstallDir>\PA\PA_Support\Initialization_Files\

You can also write your own target initialization files. The next section documents the commands that can appear
in such files.

Target Initialization Files
Using target initialization files

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
342 NXP Semiconductors

9.2 Target initialization commands
Target initialization commands are of two types, .cfg commands and .tcl commands.

The syntax of each target initialization command follows these rules:

• Spaces and tabs (white space) are ignored

• Character case is ignored

• Unless otherwise noted, values may be specified in hexadecimal, octal, or decimal:

• Hexadecimal values are preceded by 0x (for example, 0xDEADBEEF)

• Octal values are preceded by 0 (for example, 01234567)

• Decimal values start with a non-zero numeric character (for example, 1234)

• Comments start with a semicolon (;) or pound sign (#), and continue to the end of the line

This section explains:

• .cfg target initialization commands on page 343

• .tcl target initialization commands on page 353

9.2.1 .cfg target initialization commands
This section describes for each .cfg target initialization command a brief statement of what the command
does, the command's syntax, a definition of each argument that can be passed to the command, and
examples showing how to use the command.

Some commands described in this section allow access to memory-mapped register by name as well as address.
Based on the processor selection in the debugger settings, these commands will accept the register names
shown in the debugger's Registers view. There are also commands to access built-in registers of a processor
core, for example, writereg. The names of these registers follow the architectural description for the respective
processor core for general purpose and special purpose registers. Note that these names (for example, GPR5)
might be different from names used in assembly language (for example, r5). You can identify the register names
by looking at the debugger's Registers view.

The current release does not include .cfg initialization files but provides backward
compatibility to these files.

 NOTE

Listed below are the commands that can appear in a .cfg target initialization file:

• alternatePC on page 344

• ANDmem.l on page 344

• ANDmmr on page 345

• IncorMMR on page 345

• ORmem.l on page 346

• reset on page 346

• run on page 347

• setCoreID on page 347

• resetCoreID on page 347

• sleep on page 347

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 343

• stop on page 348

• writemem.b on page 348

• writemem.w on page 348

• writemem.l on page 349

• writemmr on page 349

• writereg on page 350

• writereg64 on page 350

• writereg128 on page 351

• writereg192 on page 352

• writespr on page 352

9.2.1.1 alternatePC
Sets the initial program counter (PC) register to the specified value, disregarding any entry point value read
from the ELF application being debugged.

Syntax

 alternatePC
 address

Arguments

address

The 32-bit address to assign to the program counter register.

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for example, 025363200000),
or decimal (for example, 2882338816).

Example

This command assigns the address 0xc28737a4 to the program counter register:

 alternatePC 0xc28737a4

9.2.1.2 ANDmem.l
Performs a bit AND using the 32-bit value at the specified memory address and the supplied 32-bit mask and
writes the result back to the specified address.

No read/write verify is performed.

Syntax

 ANDmem.l
 address
 mask

Arguments

address

The address of the 32-bit value upon which to perform the bit AND operation.

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for example, 025363200000),
or decimal (for example, 2882338816).

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
344 NXP Semiconductors

mask

32-bit mask to use in the bit AND operation.

Example

The command below performs a bit AND operation using the 32-bit value at memory location 0xC30A0004 and
the 32-bit mask 0xFFFFFFFF. The command then writes the result back to memory location 0xC30A0004.

 ANDmem.l 0xC30A0004 0xFFFFFEFF

9.2.1.3 ANDmmr
Performs a bit AND using the contents of the specified memory-mapped register (MMR) and the supplied 32-
bit mask and writes the result back to the specified register.

Syntax

 ANDmmr
 regName
 mask

Arguments

regName

The name of the memory-mapped register upon which to perform a bit AND.

mask

32-bit mask to use in the bit AND operation.

Example

This command bit ANDs the contents of the ACFG register with the value 0x00002000:

 ANDmmr ACFG 0x0000200

9.2.1.4 IncorMMR
Performs a bitwise OR using the contents of the specified memory-mapped register (MMR) and the supplied
32-bit mask and writes the result back to the specified register.

Syntax

 incorMMR
 regName
 mask

Arguments

regName

The name of the MMR register upon which to perform a bit OR.

mask

32-bit mask to use in the bit inclusive OR operation.

Example

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 345

This command bit ORs the contents of the ACFG register with the value 0x00002000:

 incorMMR ACFG 0x00002000

9.2.1.5 ORmem.l
Performs a bit OR using the 32-bit value at the specified memory address and the supplied 32-bit mask and
writes the result back to the specified address.

No read/write verify is performed.

Syntax

 ORmem.l
 address
 mask

Arguments

address

The address of the 32-bit value upon which to perform the bit OR operation.

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for example, 025363200000),
or decimal (for example, 2882338816).

mask

32-bit mask to use in the bit OR operation.

Example

The command below performs a bit OR operation using the 32-bit value at memory location 0xC30A0008 and
the 32-bit mask 0x01000800. The command then writes the result back to memory location 0xC30A0004.

 ORmem.l 0xC30A0008 0x01000800

9.2.1.6 reset
Resets the processor on the target board.

Syntax

 reset
 code

Arguments

code

Number that defines what the debugger does after it resets the processor on the target board.

The table below describes the Post Reset Actions. Use any one of the values specified.

Table 136: Post Reset Actions

Value Description

0 reset the target processor, then run on page 347

1 reset the target processor, then stop on page 348

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
346 NXP Semiconductors

9.2.1.7 run
Starts program execution at the current program counter (PC) address.

Syntax

 run

9.2.1.8 setCoreID
Tells the debugger to issue all subsequent commands on the specified core index, disregarding the actual
core index on which the initialization is executed.

Ensure to reset the core index after the sequence of commands intended to execute on
the other core is finished (see the resetCoreID on page 347 command).

 NOTE

This command can be useful in cases where you need to execute a command sequence
on other cores than the current one, for example in a SMP initialization scenario.

 TIP

Syntax

 setCoreID core

Arguments

core

The core index on which to execute.

Example

This command tells the debugger to issue all subsequent commands on the core index 1:

setCoreID 1

9.2.1.9 resetCoreID
Tells the debugger to revert to executing commands on the current core, thus cancelling the effect of a
previous setCoreID command.

Syntax

 resetCoreID

9.2.1.10 sleep
Causes the debugger to pause the specified number of milliseconds before executing the next instruction.

Syntax

 sleep
 milliseconds

Arguments

milliseconds

The number of milliseconds (in decimal) to pause the debugger.

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 347

Example

This command pauses the debugger for 10 milliseconds:

 sleep 10

9.2.1.11 stop
Stops program execution and halts the processor on the target board.

Syntax

 stop

9.2.1.12 writemem.b
Writes a byte (8 bits) of data to the specified memory address.

Syntax

 writemem.b
 address
 value

Arguments

address

The 32-bit memory address to which to assign the supplied 8-bit value.

This address may be specified in hexadecimal (for example, 0xABCD), octal ((for example, 0125715), or decimal
(43981).

value

The 8-bit value to write to the specified memory address.

This value may be specified in hexadecimal (for example, 0xFF), octal (for example, 0377), or decimal (for
example, 255).

Example

This command writes the byte 0x1A to the memory location 0x0001FF00:

 writemem.b 0x0001FF00 0x1A

9.2.1.13 writemem.w
Writes a word (16 bits) of data to the specified memory address.

Syntax

 writemem.w
 address
 value

Arguments

address

The 32-bit memory address to which to assign the supplied 16-bit value.

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
348 NXP Semiconductors

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for example, 025363200000),
or decimal (for example, 2882338816).

value

The 16-bit value to write to the specified memory address.

This value may be specified in hexadecimal (for example, 0xFFFF), octal (for example, 0177777), or decimal (for
example, 65535).

Example

This command writes the word 0x1234 to memory location 0x0001FF00:

 writemem.w 0x0001FF00 0x1234

9.2.1.14 writemem.l
Writes a long integer (32 bits) of data to the specified memory location.

Syntax

 writemem.l
 address
 value

Arguments

address

The 32-bit memory address to which to assign the supplied 32-bit value.

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for example, 025363200000),
or decimal (for example, 2882338816).

value

The 32-bit value to write to the specified memory address.

This value may be specified in hexadecimal (for example, 0xFFFFABCD), octal (for example, 037777725715), or
decimal (for example, 4294945741).

Example

This command writes the long integer 0x12345678 to the memory location 0x0001FF00:

 writemem.w 0x0001FF00 0x12345678

9.2.1.15 writemmr
Writes a value to the specified memory-mapped register (MMR).

Syntax

 writemmr
 regName
 value

Arguments

regName

The name of the memory-mapped register, the supplied value is assigned to.

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 349

This command accepts most Power Architecture processor memory-mapped register
names.

 NOTE

value

The value to write to the specified memory-mapped register.

This value may be specified in hexadecimal (for example, 0xFFFFABCD), octal (for example, 037777725715), or
decimal (for example, 4294945741).

Example

This command writes the value 0xffffffc3 to the SYPCR register:

 writemmr SYPCR 0xffffffc3

This command writes the value 0x0001 to the RMR register:

 writemmr RMR 0x0001

This command writes the value 0x3200 to the MPTPR register:

 writemmr MPTPR 0x3200

9.2.1.16 writereg
Writes the supplied data to the specified register.

Syntax

 writereg
 regName value

Parameters

regName

The name of the register to which to assign the supplied value.

value

The value to write to the specified register.

This value may be specified in hexadecimal (for example, 0xFFFFABCD), octal (for example, 037777725715), or
decimal (for example, 4294945741).

Example

This command writes the value 0x00001002 to the MSR register:

 writereg MSR 0x00001002

9.2.1.17 writereg64
Writes the supplied 32-bit values to the specified 64-bit register.

This command is applicable only to 64-bit Book E cores like the e5500.

 NOTE

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
350 NXP Semiconductors

Syntax

 writereg regName value1 value2

Arguments

regName

The name of the 64-bit register to which to assign the supplied value.

value1, value2

The two 32-bit values that together make up the 64-bit value to assign to the specified register.

Each value may be specified in hexadecimal (for example, 0xFFFFABCD), octal

(for example, 037777725715), or decimal (for example, 4294945741).

Example

This command writes the 64-bit value 0x0123456789ABCDEF to the 64-bit GPR5 register:

 writereg64 GPR5 0x01234567 0x89ABCDEF

9.2.1.18 writereg128
Writes the supplied 32-bit values to the specified TLB register.

This command is applicable only to Book E cores, such as the e500 or e500mc variants.

 NOTE

Syntax

 writereg128
 regName value1 value2 value3 value4

Arguments

regName

The name (or number) of the TLB register to which to assign the specified values.

Valid TLB0 register names range from L2MMU_TLB0 through L2MMU_TLB255
(L2MMU_TLB511 for e500v2 and e500mc).

 TIP

Valid TLB1 register names range from L2MMU_CAM0 through L2MMU_CAM15, and
L2MMU_CAM63 for e500mc.

 TIP

value1, value2, value3, value4

The four 32-bit values that together make up the 128-bit value to assign to the specified TLB register.

Each value must be specified in hexadecimal (for example, 0xFFFFABCD).

Example

This command writes the values 0xA1002, 0xB1003, 0xC1004, and 0xD1005 to the L2MMU_CAM0 TLB register:

 writereg128 L2MMU_CAM1 0x7000000A 0x1C080000 0xFE000000 0xFE000001

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 351

9.2.1.19 writereg192
Writes the supplied 32-bit values to the specified TLB register.

This command is applicable only to 64-bit Book E cores, such as the e5500 variant.

 NOTE

Syntax

 writereg192
 regName value1 value2 value3 value4 value5 value6

Arguments

regName

The name (or number) of the TLB register to which to assign the specified values.

Valid TLB0 register names range from L2MMU_TLB0 through L2MMU_TLB511.

 TIP

Valid TLB1 register names range from L2MMU_CAM0 through L2MMU_CAM63.

 TIP

value1, value2, value3, value4, value5, value6

The six 32-bit values that together make up the 192-bit value to assign to the specified TLB register.

Each value must be specified in hexadecimal (for example, 0xFFFFABCD).

Example

This command writes the values 0x7000000A 0x1C080000 0x00000000 0xFE000000 0x00000000 0xFE000001
to the L2MMU_CAM1 TLB register:

 writereg192 L2MMU_CAM1 0x7000000A 0x1C080000 0x00000000 0xFE000000
 0x00000000 0xFE000001

9.2.1.20 writespr
Writes the specified value to the specified SPR register.

This command is similar to the writereg SPRxxx command, except that writespr
lets you specify the SPR register to modify by number (in hexadecimal, octal, or
decimal).

 NOTE

Syntax

 writespr
 regNumber value

Arguments

regNumber

The number of the SPR register to which to assign the supplied value.

This value may be specified in hexadecimal (for example, 0x27E), octal (for example, 01176), or decimal (for
example, 638).

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
352 NXP Semiconductors

value

The value to write to the specified SPR register.

This value may be specified in hexadecimal (for example, 0xFFFFABCD), octal (for example, 037777725715), or
decimal (for example, 4294945741).

Example

This command writes the value 0x0220000 to SPR register 638:

 writespr 638 0x0220000

9.2.2 .tcl target initialization commands
This section describes the tool command language (TCL) - based commands that are used to initialize a
target.

Similar to a .cfg initialization file, a TCL-based initialization file can contain target-specific initialization,
processor core initialization, or debugger-specific initialization.

The .tcl file format offers some advantages over the .cfg file format, for example, it implements a better
memory management approach, and allows you to use memory address ranges higher than 32-bit and use flow
control statements. The .tcl file format is the recommended target initialization file format.

The debugger automatically executes the TCL script when you debug the launch configuration. You can also
execute the script manually at any time from the Debugger Shell, by using the source command. The TCL-based
target initialization is basically a debugger shell script and implicitly supports all Debugger Shell commands. For
more details on the Debugger Shell commands, see CodeWarrior Development Studio Common Features
Guide.

The table below lists the equivalent Debugger Shell commands that you can include in a TCL script for target
initialization.

Table 137: .tcl target initialization commands

Target initialization commands Debugger Shell equivalent

writereg, writereg64, writereg128,
writereg192

reg or change

writespr reg or change (partial equivalence - uses the register
name instead of the spr number)

writemem.l mem 32bit or change 32bit

writemem.w mem 16bit or change 16bit

writemem.b mem 8bit or change 8bit

sleep wait

writemmr reg or change

IncOrmmr change regName [format %x [expr [reg
regName %d -np] | [expr mask]]] or reg
regName = [format %x [expr [reg regName %d
-np] | [expr mask]]]

Table continues on the next page...

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 353

Table 137: .tcl target initialization commands (continued)

Target initialization commands Debugger Shell equivalent

ANDmmr change regName [format %x [expr [reg
regName %d -np] & [expr mask]]] or reg
regName = [format %x [expr [reg regName %d
-np] | [expr mask]]]

setCoreID eppc::setcoreid

resetCoreID eppc::setcoreid default

run go

stop stop

reset reset

ANDmem.l change address [format %x [expr [mem
address %d -np] & [expr mask]]] or mem
address = [format %x [expr [mem address %d
-np] & [expr mask]]]

ORmem.l change address [format %x [expr [mem
address %d -np] | [expr mask]]] or mem
address = [format %x [expr [mem address %d
-np] & [expr mask]]]

alternatePC N/A

When accessing registers, for best performance you can add the register group name
followed by '/' before the name of the register, for example:

reg "e500mc Special Purpose Registers"/MSR = 0x00002000

 TIP

Target Initialization Files
Target initialization commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
354 NXP Semiconductors

Chapter 10
Memory Configuration Files
A memory configuration file is a command file containing commands that define the rules the debugger follows
when accessing a target board's memory.

Memory configuration files do not define the memory map for the target. Instead, they
define how the debugger should treat the memory map the target has already
established. The actual memory map is initialized either by a target resident boot loader
or by a target initialization file. For more information, see the Target Initialization Files
on page 341 chapter of this manual.

 NOTE

If necessary, you can have the CodeWarrior debugger execute a memory configuration file immediately before
the debugger downloads a bareboard binary to a target board. The memory configuration file defines the memory
access rules (restrictions, translations) used each time the debugger needs to access memory on the target
board.

Assign a memory configuration file to bareboard build targets only. The memory of a
board that boots embedded Linux® is already set up properly. A memory configuration
file defines memory access rules for the debugger; the file has nothing to do with the
OS running on a board. If needed, a memory configuration file should be in place at all
times. The Linux Kernel Aware Plugin performs memory translations automatically,
relieving the user from specifying them in the memory configuration file. In addition, for
certain processors, the debugger can automatically read the translations from the target
in a bareboard scenario, relieving the user from specifying them in the memory
configuration file. For more information, see Memory translations on page 155.

 NOTE

This chapter explains:

• Using memory configuration files on page 355

• Memory configuration commands on page 356

10.1 Using memory configuration files
This section describes how to configure the CodeWarrior debugger to use a specific memory configuration
file.

A memory configuration file contains memory access rules that the CodeWarrior debugger uses each time the
build target, the configuration file is assigned to, is debugged.

You specify a memory configuration file in the Memory tab of the remote system configuration (shown in the
figure below).

Memory Configuration Files
Using memory configuration files

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 355

Figure 132: Specifying a memory configuration file

You can also write your own memory configuration files. The next section documents the commands that can
appear in such files.

10.2 Memory configuration commands
This section describes for each memory configuration command a brief statement of what the command
does, the command's syntax, a definition of each argument that can be passed to the command, and
examples showing how to use the command.

In general, the syntax of memory configuration commands follows these rules:

• Spaces and tabs (white space) are ignored

• Character case is ignored

• Unless otherwise noted, values may be specified in hexadecimal, octal, or decimal:

• Hexadecimal values are preceded by 0x (for example, 0xDEADBEEF)

• Octal values are preceded by 0 (for example, 01234567)

• Decimal values start with a non-zero numeric character (for example, 1234)

• Addresses are values that might be prefixed with the memory space command line prefix:
[<MemSP>:]<value>. For example: p:0x80000004 or 0x80000004.

• Comments start with standard C and C++ comment characters, and continue to the end of the line

Listed below are the commands that can appear in a memory configuration file:

• autoEnableTranslations on page 357

• range on page 357

• reserved on page 358

• reservedchar on page 358

• translate on page 359

Memory Configuration Files
Memory configuration commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
356 NXP Semiconductors

10.2.1 autoEnableTranslations
The autoEnableTranslations command configures if the translate commands are considered by the
debugger or not.

Syntax

 autoEnableTranslations enableFlag

Arguments

enableFlag

Pass true to instruct the debugger to consider the translate commands.

If this command is not present, the translations will not be considered, so this command should usually be present
and have a "true" argument.

Examples

This command enables the debugger to consider the translate commands:

 AutoEnableTranslations true

10.2.2 range
The range command sets debugger access to a block of memory.

The range command must have both the loAddress and hiAddress in the same memory
space.

 NOTE

Syntax

 range
 loAddress hiAddress size access

Arguments

loAddress

the starting address of the memory range

hiAddress

the ending address of the memory range

size

the size, in bytes, the debug monitor or emulator uses for memory accesses

access

controls what type of access the debugger has to the memory block - supply one of: Read, Write, or ReadWrite

Examples

To set memory locations 0xFF000000 through 0xFF0000FF to read-only with a size of 4 bytes:

 range 0xFF000000 0xFF0000FF 4 Read

Memory Configuration Files
Memory configuration commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 357

To set memory locations 0xFF0001000 through 0xFF0001FF to write-only with a size of 2 bytes:

 range 0xFF000100 0xFF0001FF 2 Write

To set memory locations 0xFF0002000 through 0xFFFFFFFF to read and write with a size of 1 byte:

 range 0xFF000200 0xFFFFFFFF 1 ReadWrite

10.2.3 reserved
The reserved command allows you to specify a reserved range of memory.

If the debugger attempts to read reserved memory, the resulting buffer is filled with the reserved character. If
the debugger attempts to write to reserved memory, no write takes place. Note that the reserved command
must have both the loAddress and hiAddress in the same memory space.

For information showing how to set the reserved character, see reservedchar on page
358.

 NOTE

Syntax

 reserved
 loAddress hiAddress

Arguments

loAddress

the starting address of the memory range

hiAddress

the ending address of the memory range

Examples

To reserve memory starting at 0xFF000024 and ending at 0xFF00002F:

 reserved 0xFF000024 0xFF00002F

10.2.4 reservedchar
The reservedchar command sets the reserved character for the memory configuration file.

When the debugger attempts to read a reserved or invalid memory location, it fills the buffer with this character.

Syntax

 reservedchar rChar

Arguments

rChar

the one-byte character the debugger uses when it accesses reserved or invalid memory

Example

Memory Configuration Files
Memory configuration commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
358 NXP Semiconductors

To set the reserved character to "×":

 reservedchar 0x78

10.2.5 translate
The translate command lets you configure how the debugger performs virtual-to-physical memory address
translations.

Typically, you use address translations to debug programs that use a memory management unit (MMU) that
performs block address translations.

Using the translate commands in the memory configuration file prevents the
debugger from automatically reading the translations from the target MMU. For more
information, see Memory translations on page 155.

 NOTE

Syntax

 translate
 virtualAddress
 physicalAddress
 numBytes

Arguments

virtualAddress

the address of the first byte of the virtual address range to translate

physicalAddress

the address of the first byte of the physical address range to which the debugger translates virtual addresses

numBytes

the size (in bytes) of the address range to translate

Example

The following translate command:

• Defines a one-megabyte address range (0x100000 bytes is one megabyte)

• Instructs the debugger to convert a virtual address in the range 0xC0000000 to 0xC0100000 to the
corresponding physical address in the range 0x00000000 to 0x00100000

 translate v:0xC0000000 p:0x00000000 0x100000

Memory Configuration Files
Memory configuration commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 359

Memory Configuration Files
Memory configuration commands

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
360 NXP Semiconductors

Chapter 11
Working with Hardware Tools
This chapter explains how to use the CodeWarrior hardware tools. Use these tools for board bring-up, test, and
analysis.

In this chapter:

• Flash programmer on page 361

• Flash File to Target on page 370

• Hardware diagnostics on page 372

• Import/Export/Fill memory on page 380

11.1 Flash programmer
Flash programmer is a CodeWarrior plug-in that lets you program the flash memory of the supported target
boards from within the IDE.

The flash programmer can program the flash memory of the target board with code from a CodeWarrior IDE
project or a file. You can perform the following actions on a flash device using the flash programmer:

• Erase/Blank check actions on page 365

• Program/Verify actions on page 366

• Checksum actions on page 367

• Diagnostics actions on page 367

• Dump Flash actions on page 368

• Protect/Unprotect actions on page 368

• Secure/Unsecure actions on page 369

Click the Save button or press Ctrl+S to save task settings.

 NOTE

The flash programmer runs as a target task in the Eclipse IDE. To program the flash memory on a target board,
you need to perform the following tasks:

• Create a flash programmer target task on page 361

• Configure flash programmer target task on page 363

• Execute flash programmer target task on page 369

11.1.1 Create a flash programmer target task
You can create a flash programmer task using the Create New Target Task wizard.

1. Choose Window > Show View > Other from the CodeWarrior IDE menu bar.

The Show View dialog appears.

Working with Hardware Tools
Flash programmer

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 361

Figure 133: Show View dialog

2. Expand the Debug group and select Target Tasks.

3. Click OK.

The Target Tasks view appears.

Figure 134: Target Tasks view

4. Click the Create a new Target Task button in the Target Tasks view toolbar.

The Create New Target Task wizard appears.

Working with Hardware Tools
Flash programmer

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
362 NXP Semiconductors

Figure 135: Create New Target Task window

5. In the Task Name textbox, enter a name for the new flash programming target task.

6. Choose a launch configuration from the Run Configuration pop-up menu.

• Choose Active Debug Context when flash programmer is used over an active debug session.

• Choose a project-specific debug context when flash programmer is used without an active debug
session.

7. Choose Flash Programmer from the Task Type pop-up menu.

8. Click Finish.

The target task is created and the Flash Programmer Task editor window appears. You use this window to
configure the flash programmer target task.

• Flash Devices - Lists the devices added in the current task.

• Target RAM - Lets you specify the settings for Target RAM.

• Flash Program Actions - Displays the programmer actions to be performed on the flash devices.

11.1.2 Configure flash programmer target task
You can add flash devices, specify Target RAM settings, and add flash program actions to a flash
programmer task to configure it.

This topic contains the following sub-topics:

• Add flash device on page 364

• Specify target RAM settings on page 364

Working with Hardware Tools
Flash programmer

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 363

• Add flash programmer actions on page 364

11.1.2.1 Add flash device
This topic explain how to add a flash device.

To add a flash device to the Flash Devices table:

1. Click the Add Device button.

The Add Device dialog appears.

2. Select a flash device from the device list.

3. Click the Add Device button.

The flash device is added to the Flash Devices table in the Flash Programmer Task editor window.

You can select multiple flash devices to add to the Flash Devices table. To select
multiple devices, hold down the Control key while selecting the devices.

 NOTE

4. Click Done.

The Add Device dialog closes and the flash device appears in the Flash Devices table in the Flash
Programmer Task editor window.

For NOR flashes, the base address indicates the location where the flash is mapped in
the memory. For SPI and NAND flashes, the base address is usually 0x0.

 NOTE

11.1.2.2 Specify target RAM settings
The Target RAM is used by Flash Programmer to download its algorithms.

The Target RAM memory area is not restored by flash programmer. If you are using
flash programmer with Active Debug Context, it will impact your debug session.

 NOTE

The Target RAM (Add flash device on page 364) group contains fields to specify settings for the Target RAM.

• Address textbox: Use it to specify the address from the target memory. The Address textbox should contain
the first address from target memory used by the flash algorithm running on a target board.

• Size textbox: Use it to specify the size of the target memory. The flash programmer does not modify any
memory location other than the target memory buffer and the flash memory.

• Verify Target Memory Writes checkbox: Select this checkbox to verify all write operations to the hardware
RAM during flash programming.

11.1.2.3 Add flash programmer actions
This section lists the various Flash Programmer actions avalable in the Flash Programmer Task editor
window.

In the Flash Programmer Actions group in the Flash Programmer Task editor window (Create a flash programmer
target task on page 361), you can add following actions on the flash device.

• Erase/Blank check actions on page 365

• Program/Verify actions on page 366

• Checksum actions on page 367

Working with Hardware Tools
Flash programmer

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
364 NXP Semiconductors

• Diagnostics actions on page 367

• Dump Flash actions on page 368

• Protect/Unprotect actions on page 368

• Secure/Unsecure actions on page 369

The Flash Programmer Actions group contains the following UI controls to work with flash programmer actions:

• Add Action pop-up menu

• Erase/Blank Check Action: Allows you to add erase or blank check actions for a flash device.

• Program/Verify Action: Allows you to add program or verify flash actions for a flash device.

• Checksum Action: Allows you to add checksum actions for a flash device.

• Diagnostics Action: Lets you add a diagnostics action.

• Dump Flash Action: Lets you add a dump flash action.

• Protect/Unprotect Action: Lets you add protect or unprotect action.

• Secure/Unsecure Action: Lets you add secure or unsecure action.

• Duplicate Action button: Allows you to duplicate a flash program action in the Flash Programmer Actions
table.

• Remove Action button: Allows you to remove a flash program action from the Flash Programmer Actions
table.

• Move Upbutton: Allows you to move up the selected flash action in the Flash Programmer Actions table.

• Move Down button: Allows you to move down the selected flash action in the Flash Programmer Actions
table.

Actions can also be enabled or disabled using the Enabled column. The Description
column contains the default description for the flash programmer actions. You can also
edit the default description.

 NOTE

This section includes:

• Erase/Blank check actions on page 365

• Program/Verify actions on page 366

• Checksum actions on page 367

• Diagnostics actions on page 367

• Dump Flash actions on page 368

• Protect/Unprotect actions on page 368

• Secure/Unsecure actions on page 369

• Duplicate action on page 369

• Remove action on page 369

11.1.2.3.1 Erase/Blank check actions
The Erase action erases sectors from the flash device.

You can also use the erase action to erase the entire flash memory without selecting sectors. The blank check
action verifies if the specified areas have been erased from the flash device.

Working with Hardware Tools
Flash programmer

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 365

Flash Programmer will not erase a bad sector in the NAND flash. After the erase action
a list of bad sectors is reported (if any).

 NOTE

To add an erase/blank check action:

1. Choose Erase/Blank Check Action from the Add Action pop-up menu.

The Add Erase/Blank Check Action dialog appears.

2. Select a sector from the Sectors table and click the Add Erase Action button to add an erase operation on
the selected sector.

Press the Control or the Shift key for selecting multiple sectors from the Sectors table.

 NOTE

3. Click the Add Blank Check button to add a blank check operation on the selected sector.

4. Select the Erase All Sectors Using Chip Erase Command checkbox to erase the entire flash memory.

After selecting the Erase All Sectors Using Chip Erase Command checkbox, you need
to add either erase or blank check action to erase all sectors.

 NOTE

5. Click Done.

The Add Erase/Blank Check Action dialog closes and the added erase/blank check actions appear in the
Flash Programmer Actions table in the Flash Programmer Task editor window.

11.1.2.3.2 Program/Verify actions
The Program action allows you to program the flash device and the verify action verifies the programmed
flash device.

The program action will abort and fail if it is performed in a bad block for NAND flashes.

 NOTE

To add a program/verify action:

1. Choose Program/Verify Action from the Add Action pop-up menu.

The Add Program/Verify Action dialog appears.

2. Select the file to be written to the flash device.

3. Select the Use File from Launch Configuration checkbox to use the file from the launch (run) configuration
associated with the task.

4. Specify the file name in the File textbox. You can use Workspace, File System, or Variables buttons to
select the desired file.

5. Choose a file type from the File Type pop-up menu. You can select any one of the following file types:

• Auto - Detects the file type automatically.

• Elf - Specifies executable in ELF format.

• Srec - Specifies files in Motorola S-record format.

• Binary - Specifies binary files.

6. Select the Erase sectors before program checkbox to erase sectors before program.

7. [Optional] Select the Verify after program checkbox to verify after the program.

Working with Hardware Tools
Flash programmer

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
366 NXP Semiconductors

The Verify after program checkbox is available only with the processors supporting it.

 NOTE

8. Select the Restricted To Address in this Range checkbox to specify a memory range. The write action is
permitted only in the specified address range. In the Start textbox, specify the start address of the memory
range sector and in the End textbox, specify the end address of the memory range.

9. Select the Apply Address Offset checkbox and set the memory address in the Address textbox. Value is
added to the start address of the file to be programmed or verified.

10.Click the Add Program Action button to add a program action on the flash device.

11.Click the Add Verify Action button to add a verify action on the flash device.

12.Click Done.

The Add Program/Verify Action dialog closes and the added program/verify actions appear in the Flash
Programmer Actions table in the Flash Programmer Task editor window.

11.1.2.3.3 Checksum actions
The checksum can be computed over host file, target file, memory range or entire flash memory.

To add a checksum action:

1. Choose Checksum Action from the Add Action pop-up menu.

The Add Checksum Action dialog appears.

2. Select the file for checksum action.

3. Select the Use File from Launch Configuration checkbox to use the file from the launch (run) configuration
associated with the task.

4. Specify the filename in the File textbox. You can use the Workspace, File System, or Variables buttons to
select the desired file.

5. Choose the file type from the File Type pop-up menu.

6. Select an option from the Compute Checksum Over options. The checksum can be computed over the
host file, the target file, the memory range, or the entire flash memory.

7. Specify the memory range in the Restricted To Addresses in this Range group. The checksum action is
permitted only in the specified address range. In the Start textbox, specify the start address of the memory
range sector and in the End textbox, specify the end address of the memory range.

8. Select the Apply Address Offset checkbox and set the memory address in the Address textbox. Value is
added to the start address of the file to be programmed or verified.

9. Click the Add Checksum Action button.

10.Click Done.

The Add Checksum Action dialog closes and the added checksum actions appear in the Flash Programmer
Actions table in the Flash Programmer Task editor window.

11.1.2.3.4 Diagnostics actions
The diagnostics action generates the diagnostic information for a selected flash device.

Flash Programmer will report bad blocks, if they are present in the NAND flash.

 NOTE

To add a diagnostics action:

Working with Hardware Tools
Flash programmer

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 367

1. Choose Diagnostics from the Add Action pop-up menu.

The Add Diagnostics Action dialog appears.

2. Select a device to perform the diagnostics action.

3. Click the Add Diagnostics Action button to add diagnostic action on the selected flash device.

Select the Perform Full Diagnostics checkbox to perform full diagnostics on a flash
device.

 NOTE

4. Click Done.

The Add Diagnostics Action dialog closes and the added diagnostics action appears in the Flash Programmer
Actions table in the Flash Programmer Task editor window.

11.1.2.3.5 Dump Flash actions
The dump flash action allows you to dump selected sectors of a flash device or the entire flash device.

To add a dump flash action:

1. Choose Dump Flash Action from the Add Action pop-up menu.

The Add Dump Flash Action dialog appears.

2. Specify the file name in the File textbox. The flash is dumped in this selected file.

3. Choose the file type from the File Type pop-up menu. You can choose any one of the following file types:

• Srec: Saves files in Motorola S-record format.

• Binary: Saves files in binary file format.

4. Specify the memory range for which you want to add dump flash action.

• Enter the start address of the range in the Start textbox.

• Enter the end address of the range in the End textbox.

5. Click the Add Dump Flash Action button to add a dump flash action.

6. Click Done.

The Add Dump Flash Action dialog closes and the added dump flash action appear in the Flash Programmer
Actions table in the Flash Programmer Task editor window.

11.1.2.3.6 Protect/Unprotect actions
The protect/unprotect actions allow you to change the protection of a sector in the flash device.

To add a protect/unprotect action:

1. Choose the Protect/Unprotect Action from the Add Action pop-up menu.

The Add Protect/Unprotect Action dialog appears.

2. Select a sector from the Sectors table and click the Add Protect Action button to add a protect operation on
the selected sector.

Press the Control or Shift key for selecting multiple sectors from the Sectors table.

 NOTE

3. Click the Add Unprotect Action button to add an unprotect action on the selected sector.

4. Select the All Device checkbox to add action on full device.

Working with Hardware Tools
Flash programmer

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
368 NXP Semiconductors

5. Click Done.

The Add Protect/Unprotect Action dialog closes and the added protect or unprotect actions appear in the
Flash Programmer Actions table in the Flash Programmer Task editor window.

11.1.2.3.7 Secure/Unsecure actions
The secure/unsecure actions help you change the security of a flash device.

The Secure/Unsecure flash actions are not supported for StarCore devices.

 NOTE

To add a secure/unsecure action:

1. Choose the Secure/Unsecure Action from the Add Action pop-up menu.

The Add Secure/UnSecure Action dialog appears.

2. Select a device from the Flash Devices table.

3. Click the Add Secure Action button to add Secure action on the selected flash device.

a. Enter password in the Password textbox.

b. Choose the password format from the Format pop-up menu.

4. Click the Add Unsecure Action button to add an unprotect action on the selected sector.

5. Click Done.

The Add Secure/UnSecure Action dialog closes and the added secure or unsecure action appears in the
Flash Programmer Actions table in the Flash Programmer Task editor window.

11.1.2.3.8 Duplicate action
You can duplicate a flash programmer action from the Flash Programmer Actions table.

1. Select the action in the Flash Programmer Actions table.

2. Click the Duplicate Action button.

The selected action is copied in the Flash Programmer Action table.

11.1.2.3.9 Remove action
You can remove a flash programmer action from the Flash Programmer Actions table.

1. Select the action in the Flash Programmer Actions table.

2. Click the Remove Action button.

The selected action is removed from the Flash Programmer Action table.

11.1.3 Execute flash programmer target task
You can execute the flash programmer tasks using the Target Tasks view.

To execute the configured flash programmer target task, select a target task and click the Execute button in the
Target Tasks view toolbar. Alternatively, right-click on a target task and choose Execute from the shortcut menu.

Working with Hardware Tools
Flash programmer

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 369

Figure 136: Execute target task

You can use predefined target tasks for supported boards. To load a predefined target
task, right-click in the Target Tasks view and choose Import Target Task from the
shortcut menu. To save your custom tasks, right-click in the Target Tasks view and then
choose Export Target Task from the shortcut menu.

 NOTE

You can check the results of flash batch actions in the Console view. The green color indicates the success and
the red color indicates the failure of the task.

Figure 137: Console view

11.2 Flash File to Target
You can use the Flash File to Target feature to perform flash operations such as erasing a flash device or
programming a file.

You do not need any project for using Flash File to Target feature, only a valid Remote System is required.

To open the Flash File to Target dialog, click the Flash Programmer button on the IDE toolbar.

Working with Hardware Tools
Flash File to Target

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
370 NXP Semiconductors

• Connection pop-up menu- Lists all run configurations defined in Eclipse. If a connection to the target has
already been made the control becomes inactive and contains the text Active Debug Configuration.

• Flash Configuration File pop-up menu - Lists predefined target tasks for the processor selected in the
Launch Configuration and tasks added by user with the Browse button. The items in this pop-up menu are
updated based on the processor selected in the launch configuration. For more information on launch
configurations, see product's Targeting Manual.
• Unprotect flash memory before erase checkbox - Select to unprotect flash memory before erasing the

flash device. This feature allows you to unprotect the flash memory from Flash File To Target dialog.

• File to Flash group - Allows selecting the file to be programmed on the flash device and the location.

• File textbox - Used for specifying the filename. You can use the Workspace, File System, or Variables
buttons to select the desired file.

• Offset:0x textbox - Used for specifying offset location for a file. If no offset is specified the default value of
zero is used. The offset is always added to the start address of the file. If the file does not contain address
information then zero is considered as start address.

• Save as Target Task - Select to enable Task Name textbox.

• Task Name textbox - Lets you to save the specified settings as a Flash target task. Use the testbox to
specify the name of the target task.

• Erase Whole Device button - Erases the flash device. In case you have multiple flash blocks on the device,
all blocks are erased. If you want to selectively erase or program blocks, use the Flash programmer on
page 361 feature.

• Erase and Program button - Erases the sectors that are occupied with data and then programs the file. If
the flash device can not be accessed at sector level then the flash device is completely erased.

This feature helps you perform these basic flash operations:

• Erasing flash device on page 371

• Programming a file on page 372

11.2.1 Erasing flash device
This topic explains how to erase a flash device.

To erase a flash device, follow these steps:

1. Click the Flash Programmer button on the IDE toolbar.

The Flash File to Target dialog appears.

2. Choose a connection from the Connection pop-up menu.

If a connection is already established with the target, this control is disabled.

 NOTE

The Flash Configuration File pop-up menu is updated with the supported configurations for the processor
from the launch configuration.

3. Choose a flash configuration from the Flash Configuration File pop-up menu.

4. Select the Unprotect flash memory before erase checkbox to unprotect flash memory before erasing the
flash device.

5. Click the Erase Whole Device button.

Working with Hardware Tools
Flash File to Target

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 371

11.2.2 Programming a file
This topic explains how to program a file using Falsh prgrammer.

1. Click the Flash Programmer button on the IDE toolbar.

The Flash File to Target dialog appears.

2. Choose a connection from the Connection pop-up menu.

If a connection is already established with the target, this control is disabled.

 NOTE

The Flash Configuration File pop-up menu is updated with the supported configurations for the processor
from the launch configuration.

3. Choose a flash configuration from the Flash Configuration File pop-up menu.

4. Select the Unprotect flash memory before erase checkbox to unprotect flash memory before erasing the
flash device.

5. Type the file name in the File textbox. You can use the Workspace, File System, or Variables buttons to
select the desired file.

6. Type the offset location in the Offset textbox.

7. Click the Erase and Program button.

11.3 Hardware diagnostics
The Hardware Diagnostics utility lets you run a series of diagnostic tests that determine if the basic hardware
is functional.

These tests include:

• Memory read/write: This test only makes a read or write access to the memory to read or write a byte, word
(2 bytes) and long word (4 bytes) to or from the memory. For this task, the user needs to set the options in
the Memory Access group.

• Scope loop: This test makes read and write accesses to memory in a loop at the target address. The time
between accesses is given by the loop speed settings. The loop can only be stopped by the user, which
cancels the test. For this type of test, the user needs to set the memory access settings and the loop speed.

• Memory tests: This test requires the user to set the access size and target address from the access settings
group and the settings present in the Memory Tests group.

This topic contains the following sub-topics:

• Creating hardware diagnostics task on page 372

• Working with Hardware Diagnostic Action editor on page 373

• Memory test use cases on page 379

11.3.1 Creating hardware diagnostics task
You can create a hardware diagnostic task using the Create New Target Task wizard.

To create a task for hardware diagnostics:

1. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

Working with Hardware Tools
Hardware diagnostics

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
372 NXP Semiconductors

2. Expand the Debug group and select Target Tasks.

3. Click OK.

4. Click the Create a new Target Task button on the Target Tasks view toolbar. Alternatively, right-click in the
Target Tasks view and choose New Task from the shortcut menu.

The Create a New Target Task wizard appears.

5. Type name for the new task in the Task Name textbox.

6. Choose a launch configuration from the Run Configuration pop-up menu.

If the task does not successfully launch the configuration that you specify, the Execute
button on the Target Tasks view toolbar stays unavailable.

 NOTE

7. Choose Hardware Diagnostic from the Task Type pop-up menu.

8. Click Finish.

A new hardware diagnostic task is created in the Target Tasks view.

You can perform various actions on a hardware diagnostic task, such as renaming,
deleting, or executing the task, using the shortcut menu that appears on right-clicking
the task in the Target tasks view.

 NOTE

11.3.2 Working with Hardware Diagnostic Action editor
The Hardware Diagnostic Action editor is used to configure a hardware diagnostic task.

To open the Hardware Diagnostic Action editor for a particular task, double-click the task in the Target Tasks
view.

The following figure shows the Hardware Diagnostics Action editor.

Working with Hardware Tools
Hardware diagnostics

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 373

Figure 138: Hardware Diagnostics Action editor

The Hardware Diagnostics Action editor window includes the following groups:

• Action Type on page 374

• Memory Access on page 374

• Loop Speed on page 375

• Memory Tests on page 376

11.3.2.1 Action Type
The Action Type group in the Hardware Diagnostics Action editor window is used for selecting the action type.

You can choose any one of the following actions:

• Memory read/write - Enables the options in the Memory Access group.

• Scope loop - Enables the options in the Memory Access and the Loop Speed groups.

• Memory test - Enables the access size and target address from the access settings group and the settings
present in the Memory Tests group.

11.3.2.2 Memory Access
The Memory Access pane configures diagnostic tests for performing memory reads and writes over the
remote connection interface.

The table below lists and describes the items in the pane.

Working with Hardware Tools
Hardware diagnostics

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
374 NXP Semiconductors

Table 138: Memory Access Pane Items

Item Description

Read Select to have the hardware diagnostic tools perform read tests.

Write Select to have the hardware diagnostic tools perform write tests.

1 unit Select to have the hardware diagnostic tools perform one memory unit access size
operations.

2 units Select to have the hardware diagnostic tools perform two memory units access size
operations.

4 units Select to have the hardware diagnostic tools perform four memory units access size
operations.

Target Address Specify the address of an area in RAM that the hardware diagnostic tools should
analyze. The tools must be able to access this starting address through the remote
connection (after the hardware initializes).

Value Specify the value that the hardware diagnostic tools write during testing. Select the
Write option to enable this textbox.

Verify Memory Writes Select the checkbox to verify success of each data write to the memory.

11.3.2.3 Loop Speed
The Loop Speed pane configures diagnostic tests for performing repeated memory reads and writes over the
remote connection interface.

The tests repeat until you stop them. By performing repeated read and write operations, you can use a scope
analyzer or logic analyzer to debug the hardware device. After the first 1000 operations, the Status shows the
estimated time between operations.

For all values of Speed, the time between operations depends heavily on the processing
speed of the host computer.

 NOTE

For Read operations, the Scope Loop test has an additional feature. During the first read operation, the hardware
diagnostic tools store the value read from the hardware. For all successive read operations, the hardware
diagnostic tools compare the read value to the stored value from the first read operation. If the Scope Loop test
determines that the value read from the hardware is not stable, the diagnostic tools report the number of times
that the read value differs from the first read value. Following table lists and describes the items in Loop Speed
pane.

Table 139: Loop Speed Pane Items

Item Description

Set Loop Speed Enter a numeric value between 0 to 1000 in the textbox to adjust the speed.
You can also move the slider to adjust the speed at which the hardware
diagnostic tools repeat successive read and write operations. Lower speeds
increase the delay between successive operations. Higher speeds decrease
the delay between successive operations.

Working with Hardware Tools
Hardware diagnostics

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 375

11.3.2.4 Memory Tests
The Memory Tests pane lets you perform three hardware tests, Walking Ones, Bus Noise, and Address.

You can specify any combination of tests and number of passes to perform. For each pass, the hardware
diagnostic tools performs the tests in turn, until all passes are complete. The tools compare memory test failures
and display them in a log window after all passes are complete. Errors resulting from memory test failures do
not stop the testing process; however, fatal errors immediately stop the testing process.

The following table explains the items in the Memory Tests pane.

Table 140: Memory Tests pane items

Item Explanation

Walking 1's Select the checkbox to have the hardware diagnostic tools perform the Walking
Ones on page 377 test. Deselect to have the diagnostic tools skip the Walking
Ones on page 377 test.

Address Select to have the hardware diagnostic tools perform the Address on page 377
test. Deselect to have the diagnostic tools skip the Address on page 377 test.

Bus Noise Select to have the hardware diagnostic tools perform the Bus noise on page 378
test. Deselect to have the diagnostic tools skip the Bus noise on page 378 test.

Test Area Size Specify the size of memory to be tested. This setting along with Target Address
defines the memory range being tested.

Number of Passes Enter the number of times that you want to repeat the specified tests.

Use Target CPU Select to have the hardware diagnostic tools download the test code to the
hardware device. Deselect to have the hardware diagnostic tools execute the test
code through the remote connection interface. Execution performance improves
greatly if you execute the test code on the hardware CPU, but requires that the
hardware has enough stability and robustness to execute the test code.

The option is not applicable for CodeWarrior StarCore
devices.

 NOTE

Download Algorithm to
Address

Specify the address where the test driver is downloaded in case the Use target
CPU is selected.

The option is not applicable for CodeWarrior StarCore
devices.

 NOTE

This section includes:

• Walking Ones on page 377

• Address on page 377

• Bus noise on page 378

• Address lines on page 378

• Data lines on page 378

Working with Hardware Tools
Hardware diagnostics

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
376 NXP Semiconductors

11.3.2.4.1 Walking Ones
This section provides details on the Walking Ones test.

This test detects these memory faults:

• Address Line: The board or chip address lines are shorting or stuck at 0 or 1. Either condition could result in
errors when the hardware reads and writes to the memory location. Because this error occurs on an
address line, the data may end up in the wrong location on a write operation, or the hardware may access
the wrong data on a read operation.

• Data Line: The board or chip data lines are shorting or stuck at 0 or 1. Either condition could result in
corrupted values as the hardware transfers data to or from memory.

• Retention: The contents of a memory location change over time. The effect is that the memory fails to retain
its contents over time.

The Walking Ones test includes four sub-tests:

• Walking Ones: This subtest first initializes memory to all zeros. Then the subtest writes, reads, and verifies
bits, with each bit successively set from the least significant bit (LSB) to the most significant bit (MSB). The
subtest configures bits such that by the time it sets the MSB, all bits are set to a value of 1. This pattern
repeats for each location within the memory range that you specify. For example, the values for a byte-
based Walking Ones subtest occur in this order:

0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF

• Ones Retention: This subtest immediately follows the Walking Ones subtest. The Walking Ones subtest
should leave each memory location with all bits set to 1. The Ones Retention subtest verifies that each
location has all bits set to 1.

• Walking Zeros: This subtest first initializes memory to all ones. Then the subtest writes, reads, and verifies
bits, with each bit successively set from the LSB to the MSB. The subtest configures bits such that by the
time it sets the MSB, all bits are set to a value of 0. This pattern repeats for each location within the memory
range that you specify. For example, the values for a byte-based Walking Zeros subtest occur in this order:

0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80, 0x00

• Zeros Retention: This subtest immediately follows the Walking Zeros subtest. The Walking Zeros subtest
should leave each memory location with all bits set to 0. The Zeros Retention subtest verifies that each
location has all bits set to 0.

11.3.2.4.2 Address
This section provides details on the Address test. This test detects memory aliasing.

Memory aliasing exists when a physical memory block repeats one or more times in a logical memory space.
Without knowing about this condition, you might conclude that there is much more physical memory than what
actually exists.

The address test uses a simplistic technique to detect memory aliasing. The test writes sequentially increasing
data values (starting at one and increasing by one) to each successive memory location. The maximum data
value is a prime number and its specific value depends on the addressing mode so as to not overflow the memory
location.

The test uses a prime number of elements to avoid coinciding with binary math boundaries:

• For byte mode, the maximum prime number is 28-5 or 251.

• For word mode, the maximum prime number is 216-15 or 65521.

Working with Hardware Tools
Hardware diagnostics

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 377

• For long word mode, the maximum prime number is 232-5 or 4294967291.

If the test reaches the maximum value, the value rolls over to 1 and starts incrementing again. This sequential
pattern repeats throughout the memory under test. Then the test reads back the resulting memory and verifies
it against the written patterns. Any deviation from the written order could indicate a memory aliasing condition.

11.3.2.4.3 Bus noise
This test stresses on the memory system by causing many bits to flip from one memory access to the next
(both addresses and data values).

Bus noise occurs when many bits change consecutively from one memory access to another. This condition
can occur on both address and data lines.

11.3.2.4.4 Address lines
This section provides details on the Address lines test.

To force bit flips in address lines, the test uses three approaches:

• Sequential- This approach works sequentially through all of the memory under test, from lowest address to
highest address. This sequential approach results in an average number of bit flips from one access to the
next.

• Full Range Converging- This approach works from the fringes of the memory range toward the middle of the
memory range. Memory access proceeds in this pattern, where + number and - number indicate the next
item location (the specific increment or decrement depends on byte, word, or long word address mode):

• the lowest address

• the highest address

• (the lowest address) + 1

• (the highest address) - 1

• (the lowest address) + 2

• (the highest address) - 2

• Maximum Invert Convergence- This approach uses calculated end point addresses to maximize the number
of bits flipping from one access to the next. This approach involves identifying address end points such that
the values have the maximum inverted bits relative to one another. Specifically, the test identifies the lowest
address with all 0x5 values in the least significant nibbles and the highest address with all 0xA values in
the least significant nibbles. After the test identifies these end points, memory access alternates between
low address and high address, working towards the center of the memory under test. Accessing memory in
this manner, the test achieves the maximum number of bits flips from one access to the next.

11.3.2.4.5 Data lines
This section provides details on the Data Lines test.

To force bit flips in data lines, the test uses two sets of static data, a pseudo-random set and a fixed-pattern set.
Each set contains 31 elements-a prime number. The test uses a prime number of elements to avoid coinciding
with binary math boundaries. The sets are unique to each addressing mode so as to occupy the full range of
bits.

• The test uses the pseudo-random data set to stress the data lines in a repeatable but pattern-less fashion.

• The test uses the fixed-pattern set to force significant numbers of data bits to flip from one access to the
next.

The sub-tests execute similarly in that each subtest iterates through static data, writing values to memory. The
test combines the three address line approaches with the two data sets to produce six unique sub-tests:

Working with Hardware Tools
Hardware diagnostics

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
378 NXP Semiconductors

• Sequential with Random Data

• Sequential with Fixed Pattern Data

• Full Range Converging with Random Data

• Full Range Converging with Fixed Pattern Data

• Maximum Invert Convergence with Random Data

• Maximum Invert Convergence with Fixed Pattern Data

11.3.3 Memory test use cases
Memory tests are the complex tests that can be executed in two modes: Host based and Target based
depending upon the selection made for the Use Target CPU checkbox.

The memory read /write and scope loop tests are host based tests. The host machine issues read and write
action to the memory through the connection protocol. For example CCS.

• Selected: Target Based

• Deselected: Host Based

The Host Based tests are slower than the Target Based tests.

This section explains the following use case scenerios:

• Use Case 1: Execute host-based Scope Loop on target on page 379

• Use Case 2: Execute target-based Memory Tests on target on page 379

11.3.3.1 Use Case 1: Execute host-based Scope Loop on target
This use case scenerio explains the steps required to execute the host based scope loop on the target.

Perform the following steps:

1. Select Scope loop in the Action Type.

2. Set Memory Access settings from the Memory Access section.

3. Set the speed used for the scope loop diagnostic from the Loop Speed section.

4. Save the settings.

5. Press Execute to execute the action.

11.3.3.2 Use Case 2: Execute target-based Memory Tests on target
This use case scenerio explains the steps required to execute the target based memory test on the target.

Perform the following steps:

1. Select Memory Test in the Action Type.

2. Specify Target Address and Access Size settings from the Memory Access section.

3. Specify the following settings for Memory Tests section:

• Test Area Size: The tested memory region is computed from Target Address until Target Address + Test
Area Size.

• Tests to Run: Select tests to run on the target.

• Number of passes: Specify number of times a test will be executed.

• Use Target CPU: set the Address to which the test driver (algorithm) is to be downloaded.

4. Save the settings.

Working with Hardware Tools
Hardware diagnostics

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 379

5. Press Execute to execute the action.

11.4 Import/Export/Fill memory
The Import/Export/Fill Memory utility lets you export memory contents to a file and import data from a file into
memory.

The utility also supports filling memory with a user provided data pattern.

This section explain the following topics:

• Creating task for import/export/fill memory on page 380

• Importing data into memory on page 382

• Exporting memory to file on page 384

• Fill memory on page 386

11.4.1 Creating task for import/export/fill memory
You can use the Import/Export/Fill Memory utility to perform various tasks on memory.

The utility can be accessed from the Target Tasks view.

To open the Target Tasks view:

1. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

2. Expand the Debug group.

3. Select Target Tasks.

4. Click OK.

The first time it opens, the Target Tasks view contains no tasks. You must create a task to use the Import/Export/
Fill Memory utility.

To create a task:

1. Click the Create a new Target Task button on the toolbar of the Target Tasks view. Alternatively, right-click
the left-hand list of tasks and choose New Task from the shortcut menu that appears.

The Create a New Target Task page appears.

Working with Hardware Tools
Import/Export/Fill memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
380 NXP Semiconductors

Figure 139: Create New Target Task Window

2. In the Task Name textbox, enter a name for the new task.

3. Use the Run Configuration pop-up menu to specify the configuration that the task launches and uses to
connect to the target.

If the task does not successfully launch the configuration that you specify, the Execute
button of the Target Tasks view toolbar stays unavailable.

 NOTE

4. Use the Task Type pop-up menu to specify Import/Export/Fill Memory.

5. Click Finish.

The Import/Export/Fill Memory target task is created and it appears in the Import/Export/Fill Memory Action
editor.

Working with Hardware Tools
Import/Export/Fill memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 381

Figure 140: Import/Export Memory Action editor

11.4.2 Importing data into memory
You can import the encoded data from a user specified file, decode it, and copy it into a user specified
memory range.

Select the Import memory option from the Import/Export/Fill Memory Action editor to import data into memory.

Working with Hardware Tools
Import/Export/Fill memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
382 NXP Semiconductors

Figure 141: Import/Export Memory Action editor - Importing data into memory

The following table explains the import memory options.

Table 141: Controls used for importing data into memory

Item Explanation

Memory space and address Enter the literal address and memory space on which the data transfer is
performed. The Literal address field allows only decimal and hexadecimal
values.

Expression Enter the memory address or expression at which the data transfer starts.

Access Size Denotes the number of addressable units of memory that the debugger
accesses in transferring one data element. The default values shown are 1,
2, and 4 units. When target information is available, this list shall be filtered
to display the access sizes that are supported by the target.

Select file Enter the path to the file that contains the data to be imported. Click the
Workspace button to select a file from the current project workspace. Click
the System button to select a file from the file system the standard File Open
dialog. Click the Variables button to select a build variable.

Table continues on the next page...

Working with Hardware Tools
Import/Export/Fill memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 383

Table 141: Controls used for importing data into memory (continued)

Item Explanation

File Type Defines the format in which the imported data is encoded. By default, the
following file types are supported:

• Signed decimal Text

• Unsigned decimal Text

• Motorola S-Record format

• Hex Text

• Annotated Hex Text

• Raw Binary

Number of Elements Enter the total number of elements to be transferred.

Verify Memory Writes Select the checkbox to verify success of each data write to the memory.

11.4.3 Exporting memory to file
You can read data from a user specified memory range, encode it in a user specified format, and store this
encoded data in a user specified output file.

Select the Export memory option from the Import/Export/Fill Memory Action editor to export memory to a file.

Working with Hardware Tools
Import/Export/Fill memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
384 NXP Semiconductors

Figure 142: Exporting memory

The following table explains the export memory options.

Table 142: Controls used for exporting data from memory into file

Item Explanation

Memory space and address Enter the literal address and memory space on which the data transfer is
performed. The Literal address field allows only decimal and hexadecimal
values.

Expression Enter the memory address or expression at which the data transfer starts.

Access Size Denotes the number of addressable units of memory that the debugger
accesses in transferring one data element. The default values shown are 1,
2, and 4 units. When target information is available, this list shall be filtered
to display the access sizes that are supported by the target.

Select file Enter the path of the file to write data. Click the Workspace button to select
a file from the current project workspace. Click the System button to select a
file from the file system the standard File Open dialog. Click the Variables
button to select a build variable.

Table continues on the next page...

Working with Hardware Tools
Import/Export/Fill memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 385

Table 142: Controls used for exporting data from memory into file (continued)

Item Explanation

File Type Defines the format in which encoded data is exported. By default, the
following file types are supported:

• Signed decimal Text

• Unsigned decimal Text

• Motorola S-Record format

• Hex Text

• Annotated Hex Text

• Raw Binary

Number of Elements Enter the total number of elements to be transferred.

11.4.4 Fill memory
You can fill a user specified memory range with a user specified data pattern.

Select the Fill memory option from the Import/Export/Fill Memory Action editor window to fill memory.

Figure 143: Fill memory

The following table explains the fill memory options.

Working with Hardware Tools
Import/Export/Fill memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
386 NXP Semiconductors

Table 143: Controls used for filling memory with data pattern

Item Explanation

Memory space and
address

Enter the literal address and memory space on which the fill operation is
performed. The Literal address field allows only decimal and hexadecimal values.

Expression Enter the memory address or expression at which the fill operation starts.

Access Size Denotes the number of addressable units of memory that the debugger accesses
in modifying one data element. The default values shown are 1, 2, and 4 units.
When target information is available, this list shall be filtered to display the access
sizes that are supported by the target.

Fill Pattern Denotes the sequence of bytes, ordered from low to high memory mirrored in the
target. The field accept only hexadecimal values. If the width of the pattern exceeds
the access size, an error message.

Number of Elements Enter the total number of elements to be modified.

Verify Memory Writes Select the checkbox to verify success of each data write to the memory.

Working with Hardware Tools
Import/Export/Fill memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 387

Working with Hardware Tools
Import/Export/Fill memory

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
388 NXP Semiconductors

Chapter 12
Making a Custom MSL C Library
This chapter describes porting a main standard libraries (MSL) C library to the GNU compiler collection (GCC)
tool to support bareboard applications that execute on the Power Architecture - based boards.

If you target P10*0 or P20*0 bareboard application using CodeWarrior toolchain, you
use Embedded Warrior Library (EWL) instead of MSL. The CodeWarrior stationery
wizard is already setup to automatically configure the correct library and toolchain
depending on the target processor selected. For more information on EWL, see EWL
C Reference.

 NOTE

Occasionally you must create bareboard applications that, while invoking the services of the MSL C Library,
must execute on new Power Architecture-based boards. You can manage this by using the GCC tool to
customize the MSL C library for the new board's hardware configuration.

The location of the customized library installation must differ from the existing MSL libraries to ensure that it
does not affect the creation of new projects for the Linux operating system. Otherwise, every time you run the
wizard to create a new bareboard application, the CodeWarrior IDE would automatically use the customized C
library.

The custom MSL C Library discussed in this chapter is already installed as a part of the
CodeWarrior installation process and can be located under the ..\PA\PA_Support
\MSL directory.

 NOTE

This chapter explains:

• Source library modifications on page 389

• Modifications to avoid errors from GCC LD tool on page 391

• Software floating point emulation support on page 392

• Building a custom MSL C library on page 392

12.1 Source library modifications
This section describes the modifications done to the existing MSL C library sources to make them compatible
with the GCC compiler.

The existing MSL C library sources, when built with GCC compiler, generate error messages due to language
syntax and implementation differences. To overcome these errors, some modifications to the existing library
sources are necessary. The modifications handled by the conditional directive _GCCPORT_ are summarized
below:

• CodeWarrior directives, such as _option, _has_intrinsic, _has_feature, and _suppports are treated as
macros to the equivalent GCC directives. Therefore, _has_intrinsic, _has_feature and _suppports
have been set to false. Equivalent GCC options are used to replace the various capabilities provided by
the _option directive.

• The declspec keyword has been replaced with _attribute_.

• The _MSL_INLINE_ declaration becomes _inline under CodeWarrior. To avoid multiple definition errors
generated by the GCC linker, replace _inline with with _attribute_((weak)).

Making a Custom MSL C Library
Source library modifications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 389

• For function definitions under CodeWarrior, the function attribute _MSL_CANT_THROW follows the function
name. For instance, isalnum(int c) _MSL_CANT_THROW{...... To avoid an error message under GCC,
the function attribute must be moved before the function name. For instance, _MSL_CANT_THROW
isalnum(int c) {......

• GCC does not allow pointer arithmetic unless it results in a lvalue. Otherwise, the compiler issues an error.
For example, l1 = *(++((int*)(left)));

is an error in GCC. To overcome this error, split the pointer arithmetic by introducing temporary pointers of the
appropriate type.

• In the math_api.h file, certain function definitions are located under a conditional statement, #if
_MSL_USE_INLINE. If this condition is not set, the code for these functions is not generated. The result is a
linker error for all the function definitions that fall under this conditional statement. To prevent the error,
enable the declaration _GCCPORT_.

• GCC requires explicit declarations of global arrays. For instance, static const mem_size
fix_pool_sizes[] = {4, 12, 20, 36, 52, max_fix_pool_size};

is an invalid declaration under GCC, although max_fix_pool_size is a globally initialized variable. To prevent
this error, replace the variable max_fix_pool_size with an exact value. So, the code becomes:

static const mem_size fix_pool_sizes[] = {4, 12, 20, 36, 52, 6};

• In CodeWarrior, the variables, _heap_addr, _heap_end, _stack_addr, and _stack_end, are initialized by
preference panels. To work with GCC, you provide the definitions of these variables through a linker
command file (LCF), gccport.lcf.

• The GCC definitions va_list, va_start, va_end, va_arg, and va_copy replace/override the CodeWarrior
definitions.

• The nofralloc directive is not available in GCC. The functions requiring such a directive have been
rewritten in the assembly.

This section contains the following subsection:

• Files modified on page 390

12.1.1 Files modified
This section describes the source library files modified to make a custom MSL C library.

A new file, msl_c_directives_to_gcc.h, has been added to the MSL C library sources. This file is used as a
prefix to build all the libraries. This header file maps the features of CodeWarrior tools and maps them to the
features of the GCC tools.

Following files from the MSL C Library are modified:

• ansi_parms.h

• cctype.h

• cinttypes.h

• cmath.h

• cwctype.h

• math_api.h

• wstdio.h

• alloc.c

• math_api.c

Making a Custom MSL C Library
Source library modifications

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
390 NXP Semiconductors

• math_double.c

• math_float.c

• math_fma.c

• math_longdouble.c

• mem_funcs.c

• string.c

• fminmaxdim.c

• math_sun.c

• ansi_prefix.

• PPCEABI.bare.h

• stdarg.EPPC.h

• math_ppc.c

12.2 Modifications to avoid errors from GCC LD tool
This section talks about modifications done to avoid getting errors from the GCC linker load (LD) tool.

The GCC LD tool throws errors for the _rom_copy_info and _bss_init_info symbols when used with the run-
time libraries built with CodeWarrior. This is because the CodeWarrior linker stores the symbols internally and
so they are not available for the GCC LD. To overcome this problem, a new LCF file, gccport.lcf, which
contains the symbols required by the GCC LD, has been introduced, without changing the MSL C library sources.
The modifications are summarized below:

• The call to _rom_copy_info from _init_data has been commented out.

• The stack is always aligned to 16 bytes.

• Two new symbols, _fsl_bss_start and _fsl_bss_end, have been introduced in the _ppc_eabi_linker.h
file. The values of these symbols are set by the gccport.lcf file.

This section contains the following subsection:

• Files modified on page 391

12.2.1 Files modified
This section describes the files modified to avoid getting errors from the GCC LD tool.

The gccport.lcf file provides definitions for the following symbols:

• _stack_addr

• _stack_end

• _heap_addr

• _heap_end

• _SDA_BASE_

• _SDA2_BASE_

• _fsl_bss_start

• _fsl_bss_end

Making a Custom MSL C Library
Modifications to avoid errors from GCC LD tool

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 391

Following files are modified:

• _start.c

• _ppc_eabi_linker.h

12.3 Software floating point emulation support
This section tells how to access the emulation functions needed by the GCC compiler.

The GCC compiler generates calls to the emulation functions found in the libgcc.a archive. You can access
this archive from the following path:

 /opt/freescale/gcc-4.9.2-Ee500v2-eabispe/lib/gcc/powerpc-eabispe/4.9.2/nof/libgcc.a

12.4 Building a custom MSL C library
A custom MSL C library can be built with the makefile, MSL_C.EPPC.GNU.mak, which was derived from the
MSL C For ARM implementation.

To build a custom MSL C library:

1. Change directory to $<CWInstallDir>/PA_Support/MSL/MSL_C/PPC_EABI/Project

2. Invoke make as follows:

$> make -f MSL_C.EPPC.GNU.mak TARGETS= MSL_C_LINUXABI_bare_N_UC

The make file generates MSL_C_LINUXABI_bare_N_UC.a in the $<CWInstallDir>/ PA_Support/MSL/
MSL_C/PPC_EABI/Lib folder.

Change the environment variable of $<CWInstallDir>/GCC accordingly. Some
developers use an underscore to change the name of the GCC built library so that it is
different from the library built by the CodeWarrior tools.

 NOTE

3. CodeWarrior run-time libraries built with CodeWarrior are provided as Build Runtime Libraries.

The _start.o and _ppc_eabi_init.o files are to be included individually.
Otherwise, the linker wont be able to locate the _start function the in _start.o file.

 NOTE

4. Reuse the pre-built libgcc.a archive.

5. To build an application:

a. Use the below files:

• The MSL header files

• The gccport.lcf linker command file

b. Set up the definitions for _GCCPORT_, _POWERPC_, _PPC_EABI_, and _MWERKS_

c. Use the following compiler options to build the libraries, with the appropriate processor and compiler
settings, and to specify the include files:

Making a Custom MSL C Library
Software floating point emulation support

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
392 NXP Semiconductors

• -nostdinc

• $(INCLUDE) -include msl_c_directives_to_gcc.h

• -fno-builtin

• -mcpu=e500mc -c

$(INCLUDE) denotes the path of the MSL header files.

 NOTE

6. With the program's object file generated, invoke the linker with the following options:

• -nostdlib

• -nostartfiles

• -nostdlib

• -static

• -T gccport.lcf

• -e _start

7. And link it with the following files:

a. _start.o

b. _ppc_eabi_init.o

c. syscall.a

d. MSL_C_PPCEABI_bare_N_UC.a

e. Runtime.PPCEABI.N.UC.a.

8. Use the gccport.lcf file as an input to the linker. The generated ELF file can be run on Simics.

Making a Custom MSL C Library
Building a custom MSL C library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 393

Making a Custom MSL C Library
Building a custom MSL C library

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
394 NXP Semiconductors

Chapter 13
Debugger Limitations and Workarounds
This chapter describes processor-specific CodeWarrior debugger limitations and workarounds. The chapter
includes the following sections:

• PowerQUICC II processors on page 395

• PowerQUICC II Pro processors on page 395

• PowerQUICC III processors on page 396

• QorIQ communications processors on page 398

• T-series processors on page 399

• QorIQ Qonverge processors on page 401

• Generic processors on page 402

13.1 PowerQUICC II processors
This section talks about the limitations and workarounds of the CodeWarrior debugger for the PowerQUICC II
processors.

The PowerQUICC II processor family includes G2: 8250 processors.

Working with watchpoints

G2 cores do not support watchpoints.

Working with hardware breakpoints

G2 cores implement one address instruction breakpoint (hardware breakpoint) that can be used in a debug
session.

Working with memory-mapped registers

For G2 cores, you must provide the internal memory map base address before the CodeWarrior debugger can
access the internal memory-mapped registers (MMR). There are two ways to provide this address:

• Use the setMMRBaseAddr command in a target initialization file.

• During a debug session, in the Debugger Shell issue this command: cmdwin::eppc::setMMRBaseAddr.

13.2 PowerQUICC II Pro processors
This section talks about the limitations and workarounds of the CodeWarrior debugger for the PowerQUICC II
Pro processors.

The PowerQUICC II Pro processor family includes these processors:

• e300c2: 8323

• e300c3: 8306 and 8309

• e300c4: 8377

Single-stepping exception generating instructions (e300c2-c4 cores)

Debugger Limitations and Workarounds
PowerQUICC II processors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 395

When single-stepping a branch instruction (for example, blr) to an address for which the translation is
unavailable, an I-TLB miss exception is generated. However, the run-control stops the target while being in an
incomplete state. The PC points to the requested address instead of the I-TLB interrupt vector, the SRR0 and
SRR1 do not contain the values of PC and MSR at the time of the exception, just the IMISS register is updated
correctly. The further execution is not possible because of the incomplete state. The user has to manually adjust
the aforementioned registers to their intended values: PC <= I-TLB miss vector address (0x1100), SRR0 <= the
value of PC at the time of the exception, SRR1 <= the interrupt-specific information and MSR bit values.

Working with watchpoints

• Resuming execution after a watchpoint is hit: When a target is under the debugger's control and a
watchpoint (data breakpoint) condition is met, the core stops execution at the instruction that generated the
data access. This instruction is called the watchpoint hit instruction. Unfortunately, when an e300 core hits a
watchpoint, the debugger cannot determine the circumstances under which the target stopped because
these cores do not update the necessary status registers. As a result, it is impossible to resume (run or
step) the target after a watchpoint has been hit because the debugger cannot temporarily disable the
watchpoint generated by the hit instruction. As a result, for an e300 core, you must manually disable a
watchpoint before you can resume execution from the watchpoint hit instruction.

• 64-bit alignment: The e300 core implements two data address registers. The CodeWarrior debugger uses
both registers to place a single watchpoint on a variable or memory range. Any watchpoint set on a variable
or memory address is equivalent to a watchpoint set on an aligned address and a range of 64-bit multiple.
This limitation stems from the e300 cores' data breakpoints implementation.

Working with hardware breakpoints

The e300 core implements two address instruction breakpoints (hardware breakpoints) that can be used in a
debug session.

Working with memory-mapped registers

e300 cores have an internal memory-mapped registers base address register (IMMRBAR). This is a memory-
mapped register that relocates with the whole internal memory map.

Further, the debugger uses the special purpose memory base address register (MBAR) to store the base address
of the internal memory-mapped registers.

Each time the location of the internal memory map changes, you must maintain the correspondence between
the IMMRBAR and MBAR registers.

13.3 PowerQUICC III processors
This section describes the limitations and workarounds of the CodeWarrior debugger for the PowerQUICC III
processors.

The PowerQUICC III processor family includes these processors:

• e500: 8560

• e500v2: 8536, 8548, 8568, 8569, 8572, C29x, and G1110

MMU configuration through JTAG

For e500 cores, the debugger is able to read the L2 MMU TLBs registers without using dedicated processor
instructions. For e500v2 cores, the debugger can read and write the L2 MMU TLB registers. You can access
these registers from the debugger's Registers View or using commands in a target initialization script or the
Debugger Shell.

For more information on the TLB register structure, see the README.txt file that is included in the default
CodeWarrior project for each supported target board.

Debugger Limitations and Workarounds
PowerQUICC III processors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
396 NXP Semiconductors

Reset workaround

To put the e500 and e500v2 cores in debug mode at reset, you must ensure that the core is running. The target
initialization file sets a hardware breakpoint at the reset address. The core is stopped at the reset address to be
put in the debug mode.

Working with breakpoints

For e500 and e500v2 cores, the debugger implements software and hardware breakpoints by using debug
exceptions and the corresponding interrupt handler. Therefore, MSR[DE] bit must remain set to allow debug
interrupts to be taken. When a debug exception is encountered, the target is expected to stop at the debug
exception handler pointed by IVPR+IVOR15.

However, for e500 and e500v2 cores, there is a chance that the first few instructions of the debug exception
handler are fetched and even executed before processor halts.

As a result, the core must be able to fetch and execute valid instructions from the interrupt handler location
pointed by IVPR+IVOR15 without raising a TLB miss exception or any other exception. Also, the first few
instructions of the debug interrupt handler must not perform any Load or Store operations that would corrupt the
application's context if executed. If any of these conditions is not satisfied, the breakpoints will not work.

Working with watchpoints

The e500 and e500v2 cores implement two data address compare registers. The CodeWarrior debugger uses
both these registers to place a single watchpoint on any variable or memory range. The variable or memory
range is 1-byte aligned.

Working with hardware breakpoints

The e500 core implements two address instruction breakpoints (hardware breakpoints) that can be used in a
debug session.

Debugging interrupt handlers

The e500v2 debug support in CodeWarrior relies on Debug Interrupt functionality. Due to interrupt priority levels,
debugging Machine Check interrupt handlers is not possible. Also, debugging Critical interrupt handlers is
supported only in the range after the prolog saves the values of CSSR0 and CSRR1 registers, and before the
epilogue restores the aforementioned registers. Otherwise, hitting a breakpoint outside of this range will result
in CSRR registers being overwritten, thus causing incorrect return address for the interrupt.

Using memory configuration files for bareboard debugging

When debugging bareboard applications, CodeWarrior needs to be informed of the actual MMU configuration
regarding translated areas. For example:

// Translate virtual address to corresponding physical cacheable (p:) address
translate v:0xFE000000 p:0xFFE000000 0x00100000

For e500v2 cores, the debugger can also automatically read the translations from the
target MMU. To have this behavior, all translate directives need to be removed from
the memory configuration file. For more information, see Memory translations on page
155.

 NOTE

Debugger Limitations and Workarounds
PowerQUICC III processors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 397

13.4 QorIQ communications processors
This section talks about the limitations and workarounds of the CodeWarrior debugger for the QorIQ
communications processors.

The QorIQ processor family includes the following processors:

• e500v2: P1010/11/12/13/14/15/16/17, P1020/21/22/23/24/25, and P2020/10

• e500mc: P2041/0, P3041, and P4080/40

• e5500: P5010, P5020, P5021, and P5040

For e500v2 processors, see PowerQUICC III processors on page 396. All the
information from PowerQUICC III processors on page 396 related to e500v2 cores also
applies to QorIQ processors based on e500v2 core.

 NOTE

MMU configuration through JTAG

For e500mc and e5500 cores, the debugger is able to read and write the L2 MMU TLBs registers without using
dedicated processor instructions. You can access these registers from the debugger's Registers view or using
commands in a target initialization script.

For more information on the TLB register structure, see the README.txt file that is included in the default
CodeWarrior project for each supported target board.

Using memory configuration files for bareboard debugging

For e500mc and e5500 cores, it is critical to use the correct cacheable or cache-inhibited attribute for physical
memory accesses. Failing to do so can lead to unreliable memory access (stale data, data corruption). For more
information, see Viewing memory on page 193.

When debugging bareboard applications, CodeWarrior needs to be informed of the actual MMU configuration
regarding translated areas and cacheable/cache-inhibited attribute of the memory ranges. For example:

// Translate virtual addresses to corresponding physical cacheable (p:) or cache-
inhibited (i:) addresses
translate v:0x00000000 p:0x00000000 0x80000000
translate v:0xE0000000 i:0xE0000000 0x10000000
translate v:0xF4000000 p:0xF4000000 0x00100000
translate v:0xF4100000 i:0xF4100000 0x00100000
translate v:0xF4200000 p:0xF4200000 0x00100000
translate v:0xF4300000 i:0xF4300000 0x00100000
translate v:0xFE000000 i:0xFE000000 0x01000000
translate v:0xFFFFF000 i:0xFFFFF000 0x00001000

See translate on page 359 for more information on the translate command.

The debugger can also automatically read the translations from the target MMU. To
have this behavior, all translate directives need to be removed from the memory
configuration file. For more information, see Memory translations on page 155.

 NOTE

Working with software breakpoints

For e500mc and e5500 cores, the debugger implements software breakpoints by using the dedicated debug
notify halt (dnh) instruction. When the dnh opcode is encountered, the target stops without taking an exception.

Debugger Limitations and Workarounds
QorIQ communications processors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
398 NXP Semiconductors

Working with watchpoints

The e500mc and e5500 cores implement two data address compare registers. The CodeWarrior debugger uses
both these registers to place a single watchpoint on any variable or memory range. The variable or memory
range is 1-byte aligned.

Working with hardware breakpoints

The e500mc and e5500 cores implement two address instruction breakpoints (hardware breakpoints) that can
be used in a debug session.

Cross triggering

The cross triggering (halt groups) functionality is only available when debugging e500mc, e5500, and e6500
processors through a JTAG connection.

Individual hardware breakpoints and watchpoints halt contexts are not working on current e500mc, e5500, and
e6500 processors. The workaround is to enable all halt contexts for a group (SW BP + HW BP + WP), thus
defining a general debug stop halt group.

The number of multicore groups that can be defined depends on the actual configuration of the halt contexts
defined for each group. Each defined group consumes internal EPU resources. There is not a simple formula
to estimate in advance the number of available groups. The groups will be configured in the same order as they
are defined. In case of running out of resources, an error will be shown.

The cross triggering functionality is "edge-based" rather than "state-based", which means that only transitions
from running to stopped state will be considered as triggers. This has the downside that if any core from the
group is already halted when a trigger is happening on another running core, the cross trigger will not activate
for the group. To work around this limitation, it is advisable to control the group synchronously by using the
multicore commands (Multicore Run and Multicore Suspend).

Maintaining core time base synchronization

For e500mc and e5500 processors, the CTBHLTCRL register in RCPM block is modified by the debugger
unconditionally on any connection to the target and after any Reset action, to enable correct time base handling
during multi-core debugging, specifically during Linux kernel debugging. Changing the register value set by the
debugger can cause the target software behave unexpectedly during debug sessions, if the target software relies
on time base synchronization.

P2020 ComExpress (Linux kernel debug)

Linux kernel debug using download launch configuration is not supported. The workaround is to use Linux kernel
debug with attach configuration. For early boot debug, set a hardware breakpoint at address 0 (debugger shell:
bp -hw 0x0) then start the kernel from u-boot console. After the breakpoint is hit, the kernel can be debugged
from the entry point.

13.5 T-series processors
This section describes the limitations and workarounds of the CodeWarrior debugger for the T-series
processors.

The T-series processor family includes the following processors:

• e5500: T1013, T1014, T1020, T1022, T1023, T1024, T1040, and T1042

• e6500: T2080, T2081, T4160, and T4240

Debugger Limitations and Workarounds
T-series processors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 399

For e5500 processors, see QorIQ communications processors on page 398. All the
information from QorIQ communications processors on page 398 related to e5500 cores
also applies to T-series processors based on e5500 core.

 NOTE

MMU configuration through JTAG

For e6500 cores, the debugger is able to read and write the L2 MMU TLB and LRAT registers without using
dedicated processor instructions. You can access these registers from the debugger's Registers View or using
commands in a target initialization script or Debugger Shell.

For more information on the TLB register structure, see the README.txt file that is included in the default
CodeWarrior project for each supported target board.

Using memory configuration files for bareboard debugging

For e6500 cores, it is critical to use the correct cacheable or cache-inhibited attribute for physical memory
accesses. Failing to do so can lead to unreliable memory access (stale data, data corruption). For more
information, see Viewing memory on page 193.

When debugging bareboard applications, CodeWarrior needs to be informed of the actual MMU configuration
regarding translated areas and cacheable/cache-inhibited attribute of the memory ranges. For example:

// Translate virtual addresses to corresponding physical cacheable (p:) or cache-
inhibited (i:) addresses
translate v:0x00000000 p:0x00000000 0x80000000
translate v:0xE0000000 i:0xE0000000 0x10000000
translate v:0xF4000000 p:0xF4000000 0x00100000
translate v:0xF4100000 i:0xF4100000 0x00100000
translate v:0xF4200000 p:0xF4200000 0x00100000
translate v:0xF4300000 i:0xF4300000 0x00100000
translate v:0xFE000000 i:0xFE000000 0x01000000
translate v:0xFFFFF000 i:0xFFFFF000 0x00001000

See translate on page 359 for more information on the translate command.

The debugger can also automatically read the translations from the target MMU. To
have this behavior, all translate directives need to be removed from the memory
configuration file. For more information, see Memory translations on page 155.

 NOTE

For more information, see Viewing memory on page 193.

Working with software breakpoints

For e6500 cores, the debugger implements software breakpoints by using the dedicated debug notify halt (dnh)
instruction. When the dnh opcode is encountered, the target stops without taking an exception.

Working with watchpoints

The e6500 cores implement two data address compare registers. The CodeWarrior debugger uses both these
registers to place a single watchpoint on any variable or memory range. The variable or memory range is 1-byte
aligned.

As opposed to hardware, simulators are not usually limited by the available comparator resources and allow a
much higher number of watchpoints (1024).

Working with hardware breakpoints

The e6500 cores implement eight address instruction breakpoints (hardware breakpoints) that can be used in
a debug session.

Debugger Limitations and Workarounds
T-series processors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
400 NXP Semiconductors

As opposed to hardware, simulators are not usually limited by the available comparator resources and allow a
much higher number of hardware breakpoints(1024).

Thread representation of multi-threaded processor

The e6500 core is multi-threaded implementation of the resources for embedded processors defined by the
Power ISA. The core supports the simultaneous execution of two threads. CodeWarrior shows each thread as
a separate core, thus "core(2n)" corresponds to thread#0 of the physical core#n, "core(2n+1)" corresponds to
thread#1 of physical core#n.

Individual thread control

For e6500 multi-threaded processors, the EDBCR0[DIS_CTH] register is modified by the debugger unconditionally
on any connection to the target and after any Reset action, to disable cross-thread halt to allow individual thread
control during multi-threaded debugging. Changing the register value set by the debugger can cause the
debugger behave unexpectedly.

Maintaining thread time base synchronization

For e6500 processors, the TTBHLTCR register in RCPM block is modified by the debugger unconditionally on
any connection to the target and after any Reset action, to enable correct time base handling during multi-core
debugging, specifically during Linux kernel debugging. Changing the register value set by the debugger can
cause the target software behave unexpectedly during debug sessions, if the target software relies on time base
synchronization.

13.6 QorIQ Qonverge processors
This section talks about the limitations and workarounds of the CodeWarrior debugger for the QorIQ
Qonverge processors.

The Qonverge processor family includes the following processors:

• e500v2: BSC9131 and BSC9132

• e6500: B4420, B4460, B4860, and G4860

For e500v2 processors, see PowerQUICC III processors on page 396. All the
information from PowerQUICC III processors on page 396 related to e500v2 cores also
applies to Qonverge processors based on e500v2 core. Similarly, for e6500 processors,
see T-series processors on page 399.

 NOTE

Choosing appropriate target type

Qonverge processors bundle together the cores of different architectures, for example, BSC9131 includes a
Power e500v2 core and a StarCore SC3850 core. The JTAG topology can be configured to either include cores
of both architectures in the same daisy-chain, or to access only the Power cores on the JTAG port.

To distinguish between the two modes in which the processor can be configured, the debugger uses two different
target types (and consequently two sets of launch configurations referencing the two different systems). For
example, the BSC9131 target type/debug configuration is used when the processor/board is configured for both
the PA and the SC cores in chained mode (Dual TAP mode on Power Architecture JTAG port) and BSC9131PA
target type/debug configuration is used when the processor/board is configured only for the PA core on the
Power Architecture JTAG port (Single TAP modes).

Preventing debug halt requests caused by cross triggering cores

For BSC9132 processors, the Halted to Halt Request Mask register,
GUTS_HALTED_TO_HALT_REQ_MASK_REG, is modified by the debugger unconditionally on any connection

Debugger Limitations and Workarounds
QorIQ Qonverge processors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 401

to the target and after any Reset action, to prevent debug halt requests caused by cross triggering cores.
Changing the register value set by the debugger can cause the debugger behave unexpectedly.

13.7 Generic processors
This section talks about the limitations and workarounds of the CodeWarrior debugger for generic Power
Architecture processors.

Working with uninitialized stack

Debugging while the stack is not initialized can cause uninitialized memory accesses errors. This situation occurs
when the debugger tries to construct the stack trace.

To avoid this problem, stop the debugger from constructing a stack trace by adding a command to your target
initialization file that sets the stack pointer (SP) register to an unaligned address.

For example, you could put this command in your target initialization file:

writereg SP 0x0x0000000F

Secure debug

If the processor is in the Secure Debug mode and if the unlock key is not provided, then a popup is displayed
requesting the unlock key. If a wrong unlock key is provided in the Debugger settings, and an unlock sequence
is initiated by the debugger, you will receive a Secure debug violation error and the connection to the target will
fail.

For the P4080 processor, after this error is encountered, you will not be able to successfully unlock the processor
even with a correct key. In such a scenario, the board should be hard reset first.

For the P1010 processor, if you have one failed attempt with a wrong key then a subsequent unlock sequence
with a valid key will succeed. But, if you provide a wrong key twice, you will need to hard reset the board before
the next attempt.

Hypervisor debug

Kernel download over Hypervisor does not work correctly. For example the kernel is not stopped at entry point
or the kernel module information is incorrect. The workaround is to use the attach configuration. If you want to
debug early phases of the kernel initialization, after attach, set a hardware breakpoint at address 0x0 or at any
kernel function (for example, start_kernel). Then, in the Hypervisor console restart the partition (for example,
partition 1) with the following commands:

stop 1
start load 1

This is equivalent to download with stop at entry point.

Stepping in interrupt handler

An error sometimes occurs when stepping in an interrupt handler. The workaround to avoid this problem is to
use the default memory configuration file.

Debugger Limitations and Workarounds
Generic processors

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
402 NXP Semiconductors

Index

.cfg target initialization commands 343

.tcl target initialization commands 353

A
Accompanying documentation 12
Action Type 374
Actions 169
Add flash device 364
Add Flash Programmer Actions 364
Adding a Register Group 172
Adding CodeWarrior HyperTRK Debug Stub Support in
Hypervisor for Linux Kernel Debugging 313
Adding Memory Monitor 194
Address 377
Address lines 378
Advanced tab 155
alternatePC 344
ANDmem.l 344
ANDmmr 345
Applying New HyperTRK Patches from CodeWarrior Install
Layout 314
Arbitrary TAP state move test 152
Architecture 76
Arguments 97
Assembler 14
Attaching Core to the Debug Application 330
Auto-Build Mode 41
autoEnableTranslations 357

B
Bit Fields 168
Build Properties 45
Build Properties for Power Architecture 46
Build Settings Page 24, 32
Build the executable 251
Build the shared library 251
Building a custom MSL C library 392
Building Projects 40
Bus noise 378
Bypass scan test 151

C
C/C++ compiler 14
C/C++ Language 66
Cache Symbolics Between Sessions is Disabled 290
Cache Symbolics Between Sessions is Enabled 290
Cache View 196
Cache View Toolbar Menu 197
CCSSIM2 ISS 122

Changing Bit Fields 168
Changing Bit Value of a Register 166
Changing Build Properties 45
Changing Program Counter Value 204
Checksum actions 367
Code editing 17
CodeWarrior Bareboard Project Wizard 19
CodeWarrior Build Tool Settings 48
CodeWarrior Command-Line Debugger 156
CodeWarrior Development Studio tools 13
CodeWarrior IDE 16
CodeWarrior Linux Project Wizard 29
CodeWarrior Profiling and Analysis tools 16
CodeWarrior TAP 145
Common 117
Compiling 17
Compiling the DTS file 300
Components of Cache View 199
Configurations Page 26, 208
Configure flash programmer target task 363
Configure hardware to use U-Boot image 257
Configure Linux Process Signal Policy 234
Configure the executable build configuration 250
Configure the launch configuration 251
Configure the shared library build configuration 250
Configure U-Boot and build U-Boot images with
CodeWarrior debugger support 257
Configuring a Download Kernel Debug Scenario 291
Configuring an Attach Kernel Debug Scenario 291
Configuring and Building U-Boot 262
Configuring the Build Tool 287
Configuring the kernel project for debugging 290
Configuring the Linux Kernel 287
Configuring the Modules' Symbolics Mapping 310
Connection types 122
Consistent debug control 122
Contents of this manual 11
Create a CodeWarrior Bareboard Project Page 20
Create a CodeWarrior Download Launch Configuration for
the Linux Application 230
Create a CodeWarrior Linux Project Page 29
Create a CodeWarrior project to debug U-Boot 257
Create a flash programmer target task 361
Create an example project 247
Create launch configurations for U-Boot debug stages 260
Creating a CodeWarrior Project from the Linux Kernel
Image 308
Creating a CodeWarrior Project to Debug U-Boot 264
Creating a CodeWarrior Project using the Linux Kernel
Image 289

Index

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 403

Creating a Download Launch Configuration to Debug a
Linux Partition from an Entry Point or a User-Defined
Function 318
Creating an Attach Launch Configuration to Debug a Linux
Partition after Kernel Boot 315
Creating CodeWarrior Bareboard Library Project 37
Creating CodeWarrior Bareboard Project 35
Creating CodeWarrior Linux Application Project 39
Creating hardware diagnostics task 372
Creating Projects 34
Creating task for import/export/fill memory 380
Customizing Debug Configurations 118

D
Data lines 378
Debug 99
Debug Configurations 91
Debug Target Settings Page 22, 207
Debug the Executable File 214
Debug the Linux Application 236
Debug the shared library 253
Debugger 15, 98
Debugger Limitations and Workarounds 395
Debugger Shell Cache Line Commands 201
Debugger Shell Global Cache Commands 200
Debugging 17, 50, 84
Debugging a CodeWarrior project 121
Debugging a Linux Application 227
Debugging a shared library 247
Debugging All Cores when Starting the Guest Applications
328
Debugging AMP/SMP Guest Linux Kernels Running Under
Hypervisor 315
Debugging applications that use fork() and exec() system
calls 237
Debugging Embedded Linux Software 227
Debugging Externally Built Executable Files 209
Debugging Hypervisor after Release of Secondary Cores
326
Debugging Hypervisor During the Boot and Initialization
Process 322
Debugging Hypervisor from Relocation Till Release of
Secondary Cores 325
Debugging Hypervisor from the Entry Point 323
Debugging Hypervisor Guest Applications 312
Debugging Loadable Kernel Modules 307
Debugging Multi-Core Projects 215
Debugging Multiple Cores 218
Debugging the Application from the main() Function 330
Debugging the Hypervisor Partition Manager 328
Debugging the Hypervisor Partitions Image Loading
Process 328
Debugging the Hypervisor Partitions Initialization Process
327

Debugging the Kernel after the MMU is Enabled 304
Debugging the kernel based on MMU initialization 302
Debugging the Kernel before the MMU is Enabled 302
Debugging the kernel by attaching to a running U-Boot 305
Debugging the kernel to download the kernel, RAM disk,
and device tree 301
Debugging the Kernel while the MMU is being Enabled 304
Debugging the Linux Kernel 283
Debugging the P4080 Embedded Hypervisor 320
Debugging U-Boot after switching back to initial address
space 271, 277, 281
Debugging U-Boot before switching address space 268,
274, 279
Debugging U-Boot in RAM 272, 278, 282
Debugging U-Boot in translated address space 269, 275,
279
Debugging U-Boot using Flash Devices 267
Debugging U-Boot using NAND flash 278
Debugging U-Boot using NOR flash 268
Debugging U-Boot using NOR, NAND, SPI, and SD
Card/MMC Flash Devices 262
Debugging U-Boot using SPI and SD/MMC flash 273
Default Signal Policy 234
Deleting Projects 43
Description 170
Diagnostics actions 367
Disassembler Settings 71, 89
Download 102
Dump Flash actions 368
Duplicate action 369

E
e500 Registers 178
e500mc Registers 184
e500v2 Registers 181
e5500 Registers 187
e6500 Registers 189
Eclipse IDE 14
Edit the Launch Configuration 211
Editing a Register Group 173
Editing remote system configuration 152
Editing the DTS File 299
Enabling HyperTRK Debug Support Directly in Build Tool
314
Environment 116
EPPC Exceptions 101
Erase/Blank check actions 365
Erasing flash device 371
Establishing a Console Connection 285
Ethernet TAP 124
Execute flash programmer target task 369
Execute host-based Scope Loop on target 379
Execute target-based Memory Tests on target 379
Exporting memory to file 384

Index

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
404 NXP Semiconductors

F
Files modified 390, 391
Fill Memory 386
Flash File to Target 370
Flash programmer 361
Flattened Device Tree Initialization 295

G
GCC Build Tool Settings 73
General 53, 70, 77, 87
Generic processors 402
Gigabit TAP 133
Gigabit TAP + Trace 128

H
Hard resetting 204
Hardware diagnostics 372
Hypervisor - An Introduction 312

I
Import a CodeWarrior Executable file Page 205
Import a CodeWarrior Executable file Wizard 204
Import an Executable File 209
Import C/C++/Assembler Executable Files Page 205
Import/Export/Fill memory 380
Importing Classic CodeWarrior Projects 42
Importing data into memory 382
Includes 82
IncorMMR 345
Initialization tab 153
Initializing TLB Registers 177
Input 51, 58, 69
Install BSP 256
Install CodeWarrior TRK on Target System 228
Installing the Board Support Package (BSP) 286
Introduction 11
IR scan test 151

J
JTAG configuration file syntax 333
JTAG Configuration Files 333
JTAG diagnostics tests 150

L
Libraries 77
Link Order 53
Linker 15
Linking 17
Linux Application Launch Configurations Page 206
Linux Application Page 33

Loadable Kernel Modules - An Introduction 307
Loop Speed 375

M
Main 92
Main standard libraries 15
Making a Custom MSL C Library 389
Manual-Build Mode 41
Memory Access 374
Memory configuration commands 356
Memory Configuration Files 355
Memory tab 154
Memory test use cases 379
Memory Tests 376
Memory translations 155
Messages 50
Miscellaneous 78, 86
Modifications to avoid errors from GCC LD tool 391
Modifying a DTS file 300
Modifying and Building the HyperTRK Manually 314
Modifying Signal Policy 234
Multi-Core Commands in CodeWarrior IDE 221
Multi-Core Commands in Debugger Shell 222
Multi-Core Debugging 215
Multi-Core Debugging Commands 221

O
Obtaining a DTS File 297
Optimization 62, 83
ORmem.l 346
OS Awareness 110
Other Executables 107
Output 54

P
PIC 104
Points to remember 267
Power at probe test 151
PowerPC Assembler 68, 86
PowerPC Compiler 57, 80
PowerPC CPU 49
PowerPC Disassembler 70, 88
PowerPC Embedded Application Binary Interface 12
PowerPC Environment 79
PowerPC Linker 51, 76
PowerPC Preprocessor 72, 87
PowerQUICC II Pro processors 395
PowerQUICC II processors 395
PowerQUICC III processors 396
Preparing Connection to P4080DS Target 314
Preparing U-Boot for debugging 255
Preprocessor 58, 80

Index

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 405

Preprocessor Settings 72, 88
Prerequisites 315
Prerequisites for Debugging a Guest Application 313
Processor 62
Processor Page 21, 31, 206
Processor-Specific Cache Features 201
Program/Verify actions 366
Programming file 372
Project files 17
Protect/Unprotect actions 368

Q
QorIQ communications processors 398
QorIQ Qonverge processors 401

R
range 357
Reading JTAG IDCODEs test 152
Reading TLB Registers from Debugger Shell 175
Registers View Context Menu 170
Regular Initialization 296
Release notes 11
Remove action 369
Remove Breakpoints using Breakpoints View 162
Remove Breakpoints using Marker Bar 161
Remove Hardware Breakpoints using Debugger Shell 162
Remove Hardware Breakpoints using the IDE 162
Removing a Register Group 173
Removing Breakpoints 161
Removing Hardware Breakpoints 162
Removing Watchpoints 165
reserved 358
reservedchar 358
reset 346
resetCoreID 347
Restoring Build Properties 46
Reverting Debug Configuration Settings 120
run 347

S
Secure/Unsecure actions 369
Serial Connections 229
setCoreID 347
Setting Breakpoints 159
Setting Hardware Breakpoints 161
Setting Launch Configurations 215
Setting Stack Depth 204
Setting up a remote system to use a JTAG configuration
file 337
Setting up RAM disk 294
Setting Up the Target Hardware 284
Setting Watchpoints 163

Shared Library Settings 79
Signal Inheritance 234
Simics 138
sleep 347
Software floating point emulation support 392
Source 114
Source library modifications 389
Specify Console I/O Redirections for the Linux Application
233
Specify launch configuration settings 258
Specify target RAM settings 364
Specify the Source Lookup Path 212
Specifying the Launch Configuration Settings 265
Start CodeWarrior TRK on Target System 228
stop 348
Symbolics 108
Symbols 81
System Call Services 105

T
T-series processors 399
Target initialization commands 343
Target Initialization Files 341
TCF 140
TCP/IP Connections 228
Testing a DTB File 300
TLB Register Details 177
Trace and Profile 113
Trace Configuration Page 28
translate 359

U
Updating the Linux Kernel Image 290
USB TAP 141
USB TAP Connections 285
User Space Debugging with On-Chip Debug 329
Using a JTAG configuration file to override RCW 334
Using a JTAG configuration file to specify multiple linked
devices on a JTAG chain 335
Using Debug Configurations Dialog Box 91
Using Debugger Shell to Set Hardware Breakpoints 161
Using Debugger Shell to View Caches 199
Using IDE to Set Hardware Breakpoints 161
Using memory configuration files 355
Using Open Firmware Device Tree Initialization method
297
Using target initialization files 341

V
Viewing Cache 196
Viewing memory 193
Viewing multiple processes and threads 236

Index

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
406 NXP Semiconductors

Viewing Register Details 167
Viewing TLB Registers in Registers view 174

W
Walking Ones 377
Warnings 59, 85
Working with Breakpoints 158
Working with Debugger 121
Working with Hardware Diagnostic Action editor 373
Working with Hardware Tools 361
Working with IMMR 193
Working with Projects 19
Working with Register Groups 172
Working with Registers 165
Working with TLB Registers 173
Working with Watchpoints 163
writemem.b 348
writemem.l 349
writemem.w 348
writemmr 349
writereg 350
writereg128 351
writereg192 352
writereg64 350
writespr 352
Writing configuration words in U-Boot code 264

Index

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
NXP Semiconductors 407

Index

CodeWarrior Development Studio for Power Architecture Processors Targeting Manual, Rev. 10.5.1, 01/2016
408 NXP Semiconductors

How To Reach Us
Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system
and software implementers to use Freescale products. There are
no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information
in this document. Freescale reserves the right to make changes
without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose,
nor does Freescale assume any liability arising out of the
application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that
may be provided in Freescale data sheets and/or specifications can
and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must
be validated for each customer application by customer's technical
experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the
following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, QorIQ, QorIQ
Qonverge, and StarCore are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners. The
Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service
marks licensed by Power.org.

Ⓒ 2008-2016 Freescale Semiconductor, Inc.

CWPADBGUG
Rev. 10.5.1

01/2016

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Release notes
	1.2 Contents of this manual
	1.3 Accompanying documentation
	1.4 PowerPC Embedded Application Binary Interface
	1.5 CodeWarrior Development Studio tools
	1.5.1 Eclipse IDE
	1.5.2 C/C++ compiler
	1.5.3 Assembler
	1.5.4 Linker
	1.5.5 Debugger
	1.5.6 Main standard libraries
	1.5.7 CodeWarrior Profiling and Analysis tools

	1.6 CodeWarrior IDE
	1.6.1 Project files
	1.6.2 Code editing
	1.6.3 Compiling
	1.6.4 Linking
	1.6.5 Debugging

	2 Working with Projects
	2.1 CodeWarrior Bareboard Project Wizard
	2.1.1 Create a CodeWarrior Bareboard Project Page
	2.1.2 Processor Page
	2.1.3 Debug Target Settings Page
	2.1.4 Build Settings Page
	2.1.5 Configurations Page
	2.1.6 Trace Configuration Page

	2.2 CodeWarrior Linux Project Wizard
	2.2.1 Create a CodeWarrior Linux Project Page
	2.2.2 Processor Page
	2.2.3 Build Settings Page
	2.2.4 Linux Application Page

	2.3 Creating Projects
	2.3.1 Creating CodeWarrior Bareboard Application Project
	2.3.2 Creating CodeWarrior Bareboard Library Project
	2.3.3 Creating CodeWarrior Linux Application Project

	2.4 Building projects
	2.4.1 Manual-Build Mode
	2.4.2 Auto-Build Mode

	2.5 Importing Classic CodeWarrior Projects
	2.6 Deleting Project

	3 Build Properties
	3.1 Changing Build Properties
	3.2 Restoring Build Properties
	3.3 Build Properties for Power Architecture
	3.3.1 CodeWarrior Build Tool Settings
	3.3.1.1 PowerPC CPU
	3.3.1.2 Debugging
	3.3.1.3 Messages
	3.3.1.4 PowerPC Linker
	Input
	Link Order
	General
	Output

	3.3.1.5 PowerPC Compiler
	Preprocessor
	Input
	Warnings
	Optimization
	Processor
	C/C++ Language

	3.3.1.6 PowerPC Assembler
	Input
	General

	3.3.1.7 PowerPC Disassembler
	Disassembler Settings

	3.3.1.8 PowerPC Preprocessor
	Preprocessor Settings

	3.3.2 GCC Build Tool Settings
	3.3.2.1 Architecture
	3.3.2.2 PowerPC Linker
	General
	Libraries
	Miscellaneous
	Shared Library Settings
	PowerPC Environment

	3.3.2.3 PowerPC Compiler
	Preprocessor
	Symbols
	Includes
	Optimization
	Debugging
	Warnings
	Miscellaneous

	3.3.2.4 PowerPC Assembler
	General

	3.3.2.5 PowerPC Preprocessor
	Preprocessor Settings

	3.3.2.6 PowerPC Disassembler
	Disassembler Settings

	4 Debug Configurations
	4.1 Using Debug Configurations Dialog Box
	4.1.1 Main
	4.1.2 Arguments
	4.1.3 Debugger
	4.1.3.1 Debug
	4.1.3.2 EPPC Exceptions
	4.1.3.3 Download
	4.1.3.4 PIC
	4.1.3.5 System Call Services
	4.1.3.6 Other Executables
	4.1.3.7 Symbolics
	4.1.3.8 OS Awareness

	4.1.4 Trace and Profile
	4.1.5 Source
	4.1.6 Environment
	4.1.7 Common

	4.2 Customizing Debug Configurations
	4.3 Reverting Debug Configuration Settings

	5 Working with Debugger
	5.1 Debugging a CodeWarrior Project
	5.2 Consistent debug control
	5.3 Connection types
	5.3.1 CCSSIM2 ISS
	5.3.2 Ethernet TAP
	5.3.3 Gigabit TAP + Trace
	5.3.4 Gigabit TAP
	5.3.5 Simics
	5.3.6 TCF
	5.3.7 USB TAP
	5.3.8 CodeWarrior TAP

	5.4 JTAG diagnostics tests
	5.4.1 Power at probe test
	5.4.2 IR scan test
	5.4.3 Bypass scan test
	5.4.4 Arbitrary TAP state move test
	5.4.5 Reading JTAG IDCODEs test

	5.5 Editing remote system configuration
	5.5.1 Initialization tab
	5.5.2 Memory tab
	5.5.3 Advanced tab

	5.6 Memory translations
	5.7 CodeWarrior Command-Line Debugger
	5.8 Working with Breakpoints
	5.8.1 Setting Breakpoints
	5.8.2 Setting Hardware Breakpoints
	5.8.2.1 Using IDE to Set Hardware Breakpoints
	5.8.2.2 Using Debugger Shell to Set Hardware Breakpoints

	5.8.3 Removing Breakpoints
	5.8.3.1 Remove Breakpoints using Marker Bar
	5.8.3.2 Remove Breakpoints using Breakpoints View

	5.8.4 Removing Hardware Breakpoints
	5.8.4.1 Remove Hardware Breakpoints using the IDE
	5.8.4.2 Remove Hardware Breakpoints using Debugger Shell

	5.9 Working with Watchpoints
	5.9.1 Setting Watchpoints
	5.9.2 Removing Watchpoints

	5.10 Working with Registers
	5.10.1 Changing Bit Value of a Register
	5.10.2 Viewing Register Details
	5.10.2.1 Bit Fields
	5.10.2.2 Changing Bit Fields
	5.10.2.3 Actions
	5.10.2.4 Description

	5.10.3 Registers View Context Menu
	5.10.4 Working with Register Groups
	5.10.4.1 Adding a Register Group
	5.10.4.2 Editing a Register Group
	5.10.4.3 Removing a Register Group

	5.10.5 Working with TLB Registers
	5.10.5.1 Viewing TLB Registers in Registers View
	5.10.5.2 Reading TLB Registers from Debugger Shell
	5.10.5.3 Initializing TLB Registers
	5.10.5.4 TLB Register Details
	e500 Registers
	e500v2 Registers
	e500mc Registers
	e5500 Registers
	e6500 Registers

	5.10.6 Working with IMMR

	5.11 Viewing Memory
	5.11.1 Adding Memory Monitor

	5.12 Viewing Cache
	5.12.1 Cache View
	5.12.2 Cache View Toolbar Menu
	5.12.3 Components of Cache View
	5.12.4 Using Debugger Shell to View Caches
	5.12.5 Debugger Shell Global Cache Commands
	5.12.6 Debugger Shell Cache Line Commands
	5.12.7 Processor-Specific Cache Features

	5.13 Changing Program Counter Value
	5.14 Hard Resetting
	5.15 Setting Stack Depth
	5.16 Import a CodeWarrior Executable file Wizard
	5.16.1 Import a CodeWarrior Executable file Page
	5.16.2 Import C/C++/Assembler Executable Files Page
	5.16.3 Processor Page
	5.16.4 Linux Application Launch Configurations Page
	5.16.5 Debug Target Settings Page
	5.16.6 Configurations Page

	5.17 Debugging Externally Built Executable Files
	5.17.1 Import an Executable File
	5.17.2 Edit the Launch Configuration
	5.17.3 Specify the Source Lookup Path
	5.17.4 Debug the Executable File

	6 Multi-Core Debugging
	6.1 Debugging Multi-Core Projects
	6.1.1 Setting Launch Configurations
	6.1.2 Debugging Multiple Cores

	6.2 Multi-Core Debugging Commands
	6.2.1 Multi-Core Commands in CodeWarrior IDE
	6.2.2 Multi-Core Commands in Debugger Shell

	7 Debugging Embedded Linux Software
	7.1 Debugging a Linux Application
	7.1.1 Install CodeWarrior TRK on Target System
	7.1.2 Start CodeWarrior TRK on Target System
	7.1.2.1 TCP/IP Connections
	7.1.2.2 Serial Connections

	7.1.3 Create a CodeWarrior Download Launch Configuration for the Linux Application
	7.1.4 Specify Console I/O Redirections for the Linux Application
	7.1.5 Configure Linux Process Signal Policy
	7.1.5.1 Signal Inheritance
	7.1.5.2 Default Signal Policy
	7.1.5.3 Modifying Signal Policy

	7.1.6 Debug the Linux Application

	7.2 Viewing multiple processes and threads
	7.3 Debugging applications that use fork() and exec() system calls
	7.4 Debugging a shared library
	7.4.1 Create an example project
	7.4.2 Configure the shared library build configuration
	7.4.3 Configure the executable build configuration
	7.4.4 Build the shared library
	7.4.5 Build the executable
	7.4.6 Configure the launch configuration
	7.4.7 Debug the shared library

	7.5 Preparing U-Boot for debugging
	7.5.1 Install BSP
	7.5.2 Configure U-Boot and build U-Boot images with CodeWarrior debugger support
	7.5.3 Configure hardware to use U-Boot image
	7.5.4 Create a CodeWarrior project to debug U-Boot
	7.5.5 Specify launch configuration settings
	7.5.6 Create launch configurations for U-Boot debug stages

	7.6 Debugging U-Boot using NOR, NAND, SPI, and SD Card/MMC Flash Devices
	7.6.1 Configuring and Building U-Boot
	7.6.1.1 Writing configuration words in U-Boot code

	7.6.2 Creating a CodeWarrior Project to Debug U-Boot
	7.6.3 Specifying the Launch Configuration Settings
	7.6.4 Debugging U-Boot using Flash Devices
	7.6.4.1 Points to remember
	7.6.4.2 Debugging U-Boot using NOR flash
	Debugging U-Boot before switching address space
	Debugging U-Boot in translated address space
	Debugging U-Boot after switching back to initial address space
	Debugging U-Boot in RAM

	7.6.4.3 Debugging U-Boot using SPI and SD/MMC flash
	Debugging U-Boot before switching address space
	Debugging U-Boot in translated address space
	Debugging U-Boot after switching back to initial address space
	Debugging U-Boot in RAM

	7.6.4.4 Debugging U-Boot using NAND flash
	Debugging U-Boot before switching address space
	Debugging U-Boot in translated address space
	Debugging U-Boot after switching back to initial address space
	Debugging U-Boot in RAM

	7.7 Debugging the Linux Kernel
	7.7.1 Setting Up the Target Hardware
	7.7.1.1 Connect USB TAP
	7.7.1.2 Establish a Console Connection

	7.7.2 Installing the Board Support Package (BSP)
	7.7.3 Configuring the Build Tool
	7.7.4 Configuring the Linux Kernel
	7.7.5 Creating a CodeWarrior Project using the Linux Kernel Image
	7.7.5.1 Updating the Linux Kernel Image
	Cache Symbolics Between Sessions is Enabled
	Cache Symbolics Between Sessions is Disabled

	7.7.6 Configuring the kernel project for debugging
	7.7.6.1 Configuring a download kernel debug scenario
	7.7.6.2 Configure an attach kernel debug scenario
	7.7.6.3 Setting up RAM disk
	Flattened Device Tree Initialization
	Regular Initialization

	7.7.6.4 Using Open Firmware Device Tree Initialization method
	Obtain a DTS file
	Edit DTS file
	Compile DTS file
	Test DTB file
	Modify a DTS file

	7.7.7 Debugging the kernel to download the kernel, RAM disk, and device tree
	7.7.8 Debugging the kernel based on MMU initialization
	7.7.8.1 Debugging the Kernel before the MMU is Enabled
	7.7.8.2 Debugging the Kernel while the MMU is being Enabled
	7.7.8.3 Debugging the Kernel after the MMU is Enabled

	7.7.9 Debugging the kernel by attaching to a running U-Boot

	7.8 Debugging Loadable Kernel Modules
	7.8.1 Loadable Kernel Modules - An Introduction
	7.8.2 Creating a CodeWarrior Project from the Linux Kernel Image
	7.8.3 Configuring Symbolics Mappings of Modules

	7.9 Debugging Hypervisor Guest Applications
	7.9.1 Hypervisor - An Introduction
	7.9.2 Prerequisites for Debugging a Guest Application
	7.9.3 Adding CodeWarrior HyperTRK Debug Stub Support in Hypervisor for Linux Kernel Debugging
	7.9.3.1 Enabling HyperTRK Debug Support Directly in Build Tool
	7.9.3.2 Applying New HyperTRK Patches from CodeWarrior Install Layout
	7.9.3.3 Modifying and Building HyperTRK Manually

	7.9.4 Preparing Connection to P4080DS Target
	7.9.5 Debugging AMP/SMP Guest Linux Kernels Running Under Hypervisor
	7.9.5.1 Prerequisites for Debugging AMP/SMP Guest Linux Kernels
	7.9.5.2 Creating an Attach Launch Configuration to Debug a Linux Partition after Kernel Boot
	7.9.5.3 Creating a Download Launch Configuration to Debug a Linux Partition from an Entry Point or a User-Defined Function

	7.10 Debugging the P4080 Embedded Hypervisor
	7.10.1 Debugging Hypervisor During the Boot and Initialization Process
	7.10.1.1 Debugging Hypervisor from the Entry Point
	7.10.1.2 Debugging Hypervisor from Relocation till Release of Secondary Cores
	7.10.1.3 Debugging Hypervisor after Release of Secondary Cores
	7.10.1.4 Debugging the Hypervisor Partitions Initialization Process
	7.10.1.5 Debugging the Hypervisor Partitions Image Loading Process
	7.10.1.6 Debugging All Cores when Starting the Guest Applications
	7.10.1.7 Debugging the Hypervisor Partition Manager

	7.11 User Space Debugging with On-Chip Debug
	7.11.1 Attaching Core to Debug Application
	7.11.2 Debugging Application from main() Function

	8 JTAG Configuration Files
	8.1 JTAG configuration file syntax
	8.2 Using a JTAG configuration file to override RCW
	8.3 Using a JTAG configuration file to specify multiple linked devices on a JTAG chain
	8.4 Setting up a remote system to use a JTAG configuration file

	9 Target Initialization Files
	9.1 Using target initialization files
	9.2 Target initialization commands
	9.2.1 .cfg target initialization commands
	9.2.1.1 alternatePC
	9.2.1.2 ANDmem.l
	9.2.1.3 ANDmmr
	9.2.1.4 IncorMMR
	9.2.1.5 ORmem.l
	9.2.1.6 reset
	9.2.1.7 run
	9.2.1.8 setCoreID
	9.2.1.9 resetCoreID
	9.2.1.10 sleep
	9.2.1.11 stop
	9.2.1.12 writemem.b
	9.2.1.13 writemem.w
	9.2.1.14 writemem.l
	9.2.1.15 writemmr
	9.2.1.16 writereg
	9.2.1.17 writereg64
	9.2.1.18 writereg128
	9.2.1.19 writereg192
	9.2.1.20 writespr

	9.2.2 .tcl target initialization commands

	10 Memory Configuration Files
	10.1 Using memory configuration files
	10.2 Memory configuration commands
	10.2.1 autoEnableTranslations
	10.2.2 range
	10.2.3 reserved
	10.2.4 reservedchar
	10.2.5 translate

	11 Working with Hardware Tools
	11.1 Flash programmer
	11.1.1 Create a flash programmer target task
	11.1.2 Configure flash programmer target task
	11.1.2.1 Add flash device
	11.1.2.2 Specify target RAM settings
	11.1.2.3 Add flash programmer actions
	Erase/Blank check actions
	Program/Verify actions
	Checksum actions
	Diagnostics actions
	Dump Flash actions
	Protect/Unprotect actions
	Secure/Unsecure actions
	Duplicate action
	Remove action

	11.1.3 Execute flash programmer target task

	11.2 Flash File to Target
	11.2.1 Erasing flash device
	11.2.2 Programming a file

	11.3 Hardware diagnostics
	11.3.1 Creating hardware diagnostics task
	11.3.2 Working with Hardware Diagnostic Action editor
	11.3.2.1 Action Type
	11.3.2.2 Memory Access
	11.3.2.3 Loop Speed
	11.3.2.4 Memory Tests
	Walking Ones
	Address
	Bus noise
	Address lines
	Data lines

	11.3.3 Memory test use cases
	11.3.3.1 Use Case 1: Execute host-based Scope Loop on target
	11.3.3.2 Use Case 2: Execute target-based Memory Tests on target

	11.4 Import/Export/Fill memory
	11.4.1 Creating task for import/export/fill memory
	11.4.2 Importing data into memory
	11.4.3 Exporting memory to file
	11.4.4 Fill memory

	12 Making a Custom MSL C Library
	12.1 Source library modifications
	12.1.1 Files modified

	12.2 Modifications to avoid errors from GCC LD tool
	12.2.1 Files modified

	12.3 Software floating point emulation support
	12.4 Building a custom MSL C library

	13 Debugger Limitations and Workarounds
	13.1 PowerQUICC II processors
	13.2 PowerQUICC II Pro processors
	13.3 PowerQUICC III processors
	13.4 QorIQ communications processors
	13.5 T-series processors
	13.6 QorIQ Qonverge processors
	13.7 Generic processors

	Index

