
CodeWarrior Target Resident Kernel
Reference

Document Number: CWPATRKUG
Rev. 10.5.1, 01/2016

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Introduction

1.1 Overview of this Manual.. 9

1.2 Related Documentation...10

1.2.1 Other CodeWarrior Documentation...10

1.2.2 Other Documentation...11

Chapter 2
CodeWarrior TRK Concepts

2.1 CodeWarrior TRK Architecture... 13

2.1.1 CodeWarrior TRK Core...13

2.1.2 CodeWarrior TRK Execution States..14

2.1.3 Message Queues...15

2.1.4 Request and Notification Handling..16

2.2 CodeWarrior TRK Memory Layout... 16

2.2.1 CodeWarrior TRK RAM Sections...16

2.2.2 Target Application RAM Sections...17

2.3 CodeWarrior TRK Initializations... 17

Chapter 3
CodeWarrior TRK Communications

3.1 Transport Level...20

3.1.1 Serial Communications Settings.. 20

3.1.2 Data Transmission Rate... 21

3.2 Framing Level...21

3.2.1 CodeWarrior TRK Data Frames.. 22

3.2.2 Checksum Values...24

3.2.2.1 Encoding Single-Byte Checksum Values.. 24

3.2.2.2 Verifying Single-Byte Checksum Values.. 25

3.2.2.3 Using Multi-Byte Checksum Values... 26

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 3

Section number Title Page

3.2.3 Escape Sequences.. 27

3.2.4 Reliable Message Delivery.. 28

3.2.4.1 Responding to a NAK Reply Message.. 28

3.2.4.2 Responding When No Reply Message is Received... 29

3.2.4.3 Preventing Transmission Failure... 30

3.3 Debug Message Interface Level..30

3.3.1 Request and Notification Messages... 31

3.3.1.1 Alignment...31

3.3.1.2 Byte Order..31

3.3.1.3 Message Length... 32

3.3.2 Reply Messages..32

3.3.2.1 ACK Messages...32

3.3.2.2 NAK Messages.. 34

Chapter 4
Customizing CodeWarrior TRK

4.1 Customizing CodeWarrior TRK Initializations..38

4.2 Customizing Serial Communications... 38

4.2.1 Modifying Serial Communication Functions...38

4.2.2 Modifying Existing UART Drivers... 39

4.2.2.1 Building TI TL16C552a UART Driver... 40

4.2.3 Changing Data Transmission Rate...41

4.2.4 Customizing CodeWarrior TRK to be Interrupt-Driven..41

4.3 Customizing CPU Speed.. 42

4.4 Customizing Debug Services..43

4.4.1 Changing ReadMemory-Related Code.. 43

4.4.2 Changing WriteMemory-Related Code... 44

4.4.3 Changing SupportMask-Related Code...44

4.4.4 Changing Versions-Related Code..45

4.4.5 Changing Maximum Message Length... 46

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

4 Freescale Semiconductor, Inc.

Section number Title Page

4.5 Customizing Memory Locations...46

4.6 Customizing Exception Handling...47

4.7 Customizing Checksum Values.. 47

4.8 Customizing Target Board Name... 48

4.9 Customizing usr_put_config.h for Debugging... 48

Chapter 5
Debug Message Interface Reference

5.1 Command Sets.. 51

5.2 Messages Sent by Debugger... 51

5.2.1 Connect.. 52

5.2.2 Continue... 53

5.2.3 CPUType..54

5.2.4 FlushCache...55

5.2.5 ReadMemory..57

5.2.6 ReadRegisters...58

5.2.7 Reset...60

5.2.8 Step...61

5.2.9 Stop.. 63

5.2.10 SupportMask.. 64

5.2.11 Versions... 65

5.2.12 WriteMemory...66

5.2.13 WriteRegisters..68

5.3 Messages Sent by CodeWarrior TRK...70

5.3.1 NotifyException... 70

5.3.2 NotifyStopped.. 71

5.3.3 ReadFile... 72

5.3.4 WriteFile.. 73

Chapter 6
CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 5

Section number Title Page

6.1 _reset().. 75

6.2 DoConnect()..76

6.3 DoContinue().. 77

6.4 DoCPUType()...77

6.5 DoFlushCache...78

6.6 DoNotifyStopped()... 79

6.7 DoReadMemory()... 80

6.8 DoReadRegisters()..81

6.9 DoReset().. 82

6.10 DoStep()..83

6.11 DoStop()..84

6.12 DoSupportMask()... 84

6.13 DoVersions()...85

6.14 DoWriteMemory().. 86

6.15 DoWriteRegisters()... 87

6.16 InitializeIntDrivenUART()... 88

6.17 InitializeUART()...90

6.18 InterruptHandler()... 90

6.19 ReadUARTPoll().. 91

6.20 ReadUART1()...92

6.21 ReadUARTN()..92

6.22 ReadUARTString()...93

6.23 SuppAccessFile().. 94

6.24 SwapAndGo()... 95

6.25 TargetAccessMemory().. 96

6.26 TargetAddExceptionInfo()..98

6.27 TargetAddStopInfo()...98

6.28 TargetContinue()...99

6.29 TargetFlushCache()...100

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

6 Freescale Semiconductor, Inc.

Section number Title Page

6.30 TargetInterrupt()... 101

6.31 TargetAccessDefault().. 102

6.32 TargetAccessExtended1()... 103

6.33 TargetAccessExtended2()... 105

6.34 TargetAccessFP()..106

6.35 TargetSingleStep().. 107

6.36 TargetStepOutOfRange()..108

6.37 TargetSupportMask()..109

6.38 TargetVersions()... 110

6.39 TerminateUART()...111

6.40 TransportIrqHandler()...112

6.41 ValidMemory32()... 112

6.42 WriteUART1()..113

6.43 WriteUARTN()... 114

6.44 WriteUARTString().. 115

Chapter 7
AppTRK Reference

7.1 What is AppTRK?...117

7.2 Differences Between AppTRK and CodeWarrior TRK... 117

7.3 Using AppTRK... 118

7.4 Modifying AppTRK... 121

7.5 Creating AppTRK for a Non-Freescale Linux Image...122

7.6 Conditions under which AppTRK Must Be Modified..123

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 7

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

8 Freescale Semiconductor, Inc.

Chapter 1
Introduction

CodeWarrior TRK is a target-resident kernel that is an on-target debug monitor for the
CodeWarrior debugger. This manual describes CodeWarrior TRK and explains how to
customize it for use with different hardware configurations.

This chapter includes these topics:

• Overview of this Manual
• Related Documentation

1.1 Overview of this Manual

This manual describes CodeWarrior TRK and explains how to customize it for use with
your hardware configuration. The table below describes the information contained in
each chapter of this manual.

NOTE
In addition to the chapters described in the table below, this
manual may have one or more additional processor-specific
appendixes, depending on the product you purchased. Refer to
the table of contents in the front of this manual to determine
whether your version of this manual contains any processor-
specific appendixes.

Table 1-1. Contents of this Manual

Chapter Name Description

Introduction (this chapter)

CodeWarrior TRK Concepts Provides an overview of CodeWarrior TRK, describes the various tasks
CodeWarrior TRK performs, and how these tasks are implemented.

Table continues on the next page...

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 9

Table 1-1. Contents of this Manual (continued)

Chapter Name Description

CodeWarrior TRK Communications Describes the CodeWarrior TRK communication protocol. This chapter is
useful for debugging CodeWarrior TRK and for those developing software
that communicates with CodeWarrior TRK.

Customizing CodeWarrior TRK Provides details about the specific areas where you can customize or re-
target CodeWarrior TRK to work with your hardware configuration.

Debug Message Interface Reference Describes the CodeWarrior TRK debug message interface.

CodeWarrior TRK Function Reference Describes CodeWarrior TRK functions that may be relevant for developers
who wish to customize CodeWarrior TRK to work with new target boards.

AppTRK Reference Describes the Linux application version of CodeWarrior TRK (AppTRK),
how it differs from the bareboard version of CodeWarrior TRK, and how to
use AppTRK.

NOTE
For basic information about loading and using CodeWarrior
TRK with the CodeWarrior IDE (information that differs
among sets of CodeWarrior tools), refer to the Targeting
manual for your particular target processor.

If this is your first time customizing the bareboard version of CodeWarrior TRK, we
recommend you read these chapters in this order:

• CodeWarrior TRK Concepts
• CodeWarrior TRK Communications
• Customizing CodeWarrior TRK

If you have previously customized the bareboard version of CodeWarrior TRK
previously, you can proceed directly to the Customizing CodeWarrior TRK.

To learn about the Linux application version of CodeWarrior TRK, read this chapter:

• AppTRK Reference

1.2 Related Documentation

This section lists related documentation for CodeWarrior TRK. All CodeWarrior manuals
mentioned in this section reside in this directory on your CodeWarrior CD:

CodeWarriorCD\Documentation

Related Documentation

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

10 Freescale Semiconductor, Inc.

1.2.1 Other CodeWarrior Documentation

For information about using CodeWarrior and CodeWarrior TRK with a particular target
processor, see the Targeting manual for your target processor.

1.2.2 Other Documentation

You can find the RFC 1662 document, which describes the framing portion of the Point-
to-Point Protocol, in the Documentation folder of the CodeWarrior TRK distribution or on
this Web page:

http://andrew2.andrew.cmu.edu/rfc/rfc1662.html

Chapter 1 Introduction

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 11

http://andrew2.andrew.cmu.edu/rfc/rfc1662.html

Related Documentation

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

12 Freescale Semiconductor, Inc.

Chapter 2
CodeWarrior TRK Concepts

This chapter describes the architecture of CodeWarrior TRK and how CodeWarrior TRK
works. This chapter includes these topics:

• CodeWarrior TRK Architecture
• CodeWarrior TRK Memory Layout
• CodeWarrior TRK Initializations

2.1 CodeWarrior TRK Architecture

This section describes these CodeWarrior TRK components:

• CodeWarrior TRK Core
• CodeWarrior TRK Execution States
• Request and Notification Handling
• Message Queues

2.1.1 CodeWarrior TRK Core

CodeWarrior TRK contains a core component called the CodeWarrior TRK core that
controls its internal state and determines which function should handle a particular
debugger request. Around this core, CodeWarrior TRK has several other modules that
perform various tasks.

The CodeWarrior TRK core is independent of the target board configuration. However,
some handler functions that perform debugging requests are board-dependent.

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 13

2.1.2 CodeWarrior TRK Execution States

CodeWarrior TRK has two main operating states, the message-handling state and the
event-waiting state.

A Reset request or a hardware reset causes CodeWarrior TRK to enter its board
initialization state. After the board initializations complete, CodeWarrior TRK enters its
message-handling state. In this state, CodeWarrior TRK continuously services requests
from the debugger. CodeWarrior TRK is in a continuous loop, waiting for requests from
the debugger. It passes each request that it receives to an appropriate handler function.

NOTE
The target application does not execute while CodeWarrior
TRK is in the message-handling state.

When the debugger sends a Continue or Step request, CodeWarrior TRK enters its event-
waiting state. While in the event-waiting state, the target application executes rather than
CodeWarrior TRK. CodeWarrior TRK remains inactive, waiting for a relevant exception.
When one occurs, CodeWarrior TRK stops execution of the target application, resumes
control of the processor, and reenters the message-handling state.

NOTE
Usually, an exception causes CodeWarrior TRK to begin
executing again (a context switch) and to enter the message-
handling state. However, if CodeWarrior TRK currently is
processing a multiple-line step command, the target application
resumes control of the processor (resumes execution), and
CodeWarrior TRK reenters the event-waiting state.

CodeWarrior TRK again remains in the message-handling state until the debugger sends
a Continue or Step request. Then CodeWarrior TRK returns to the event-waiting state and
the target application begins executing again.

The figure below shows the state diagram for CodeWarrior TRK.

CodeWarrior TRK Architecture

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

14 Freescale Semiconductor, Inc.

Figure 2-1. CodeWarrior TRK State Diagram

2.1.3 Message Queues

While in the message-handling state, CodeWarrior TRK constantly monitors the serial
line for incoming requests and stores each one in an incoming message queue.
CodeWarrior TRK also maintains another message queue for outgoing messages. To send
a message to the debugger, CodeWarrior TRK places the message in the outgoing
message queue and continues processing. The message is sent as soon as the serial line is
free.

The message queues serve two important purposes. First, the queues are buffers between
the debugger and CodeWarrior TRK, which run on different hardware platforms. These
buffers keep faster hardware from outrunning slower hardware, which keeps requests and
replies from being dropped (lost). Second, the message queues allow CodeWarrior TRK
to use an event-driven design. The CodeWarrior TRK core centrally dispatches all
communication with the debugger, which passes first through the messages queues.

The figure below shows how data flows through CodeWarrior TRK when it is in the
message-handling state, including the message queues described in this section. In the
event-waiting state, CodeWarrior TRK is inactive while waiting for the next exception to
occur. The message queues are not dependent on the target board configuration.

Chapter 2 CodeWarrior TRK Concepts

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 15

Figure 2-2. CodeWarrior TRK Data-Flow Diagram

2.1.4 Request and Notification Handling

A set of handler functions separate from the CodeWarrior TRK core comprises another
module of CodeWarrior TRK that handles debugger requests and notifications. Board-
specific information related to handling requests and notifications is, in most cases,
encapsulated within special header files in this directory:

 CWTRKDir\Processor\
 ProcessorType\Board

For more information, see Customizing Debug Services.

2.2 CodeWarrior TRK Memory Layout

This section contains these topics:

• CodeWarrior TRK RAM Sections
• Target Application RAM Sections

CodeWarrior TRK Memory Layout

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

16 Freescale Semiconductor, Inc.

2.2.1 CodeWarrior TRK RAM Sections

The table below shows the memory sections that exist in RAM when you run
CodeWarrior TRK from ROM.

Table 2-1. CodeWarrior TRK RAM sections

RAM Section Description

Data The data section includes all read/write data in the program.
When running from a ROM-based version of CodeWarrior
TRK, CodeWarrior TRK copies any initial values from ROM to
RAM. CodeWarrior TRK uses 6KB of RAM for global data.

Exception vectors Exception vectors are sections of code executed in the event
of a processor exception. The processor determines the
location of exception vectors. For more information, see the
processor-specific appendixes in this manual.

The stack CodeWarrior TRK requires at least 8KB of RAM for its stack,
which is also the maximum amount of RAM that the stack
occupies.

2.2.2 Target Application RAM Sections

Specify target application memory sections so that they do not overwrite the
CodeWarrior TRK memory sections. For more information, see CodeWarrior TRK RAM
Sections.

One good way to specify the target application memory sections is to place the code and
data sections in low memory below the code and data sections of the CodeWarrior TRK.
You then can place the stack of the target application below the stack of CodeWarrior
TRK. You must allow enough room for the CodeWarrior TRK stack to grow downward.

For more information, see Customizing Memory Locations.

2.3 CodeWarrior TRK Initializations

CodeWarrior TRK begins initializing when _reset() executes. The _reset() function calls:

• _init_processor

Chapter 2 CodeWarrior TRK Concepts

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 17

The _ init_processor assembly language code initializes processor-specific items.
For example, _init_processor can perform such functions as clearing the cache and
the TLB (translation lookaside buffer).

• _init_board

The _in it_board assembly language code initializes board-specific items. Examples
include initializing the central control registers and disabling all interrupts.

• _start

The _start assembly language code starts the runtime code.

If needed, you can place code for other initializations in _reset() immediately before the
jump to _start. For example, sometimes (depending on the reference board for which
your default implementation of CodeWarrior TRK is targeted) _init_board moves ROM in
memory. In this case, you can directly reset the program counter in _reset() following
_init_board.

The listing below shows the preceding initialization sequence.

Listing 2-1. CodeWarrior TRK Initialization Sequence

 _reset() calls:
 init
processor
 _init_board

 (Before jump to _start, _reset() can contain other code

 performs direct initialization.)

 _start

NOTE
The _reset() function either uses the initialization sequence
described in this section or contains the initialization code
directly. In either case, the processor-specific initializations
precede the board-specific initializations. The board-specific
initializations then precede any other direct initializations to
perform before making the jump to _start. Some reference
boards use assembly language code that is labeled _reset rather
than a C function. For information about the location of _reset()
or _reset, see the processor-specific appendixes in this manual.

CodeWarrior TRK Initializations

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

18 Freescale Semiconductor, Inc.

Chapter 3
CodeWarrior TRK Communications

This chapter describes how CodeWarrior TRK communicates with the debugger. This
chapter is useful for debugging when modifying CodeWarrior TRK and for developing
debugging systems to communicate with CodeWarrior TRK.

CodeWarrior TRK continuously communicates with the debugger. This communication
has these levels:

• Transport Level
• Framing Level
• Debug Message Interface Level

NOTE
When describing CodeWarrior TRK communications, this
chapter uses the terms sender and receiver. The sender is
the software that currently is sending a message. The
receiver is the software that currently is receiving a
message. Both the debugger and CodeWarrior TRK can be
either a sender or a receiver, depending on the action each
is performing at a particular moment.

The figure below shows the interaction of the communication levels.

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 19

Figure 3-1. CodeWarrior TRK Communication Levels

3.1 Transport Level

The transport level is the level at which the host machine and the target board send
physical signals to and receive physicals signals from each other over a serial cable
connection or Ethernet connection.

For maximum portability, the low-level code that drives the serial/Ethernet controller is
separated from the CodeWarrior TRK core. CodeWarrior TRK provides a simple
interface that can work with different UART (Universal Asynchronous Receiver
Transmitter) drivers if necessary. The default implementations work with the standard
on-board serial ports. For more information, see Modifying Serial Communication
Functions.

You must configure both CodeWarrior TRK and the debugger to use the correct data
transmission rate (baud rate) for the serial connection for your target board. For more
information, see Changing the Data Transmission Rate.

This section contains these topics:

• Serial Communications Settings
• Data Transmission Rate

3.1.1 Serial Communications Settings

Transport Level

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

20 Freescale Semiconductor, Inc.

Your target board must have a serial port so that CodeWarrior TRK can communicate
with the debugger running on the host computer. For most target boards, the data
transmission rate when communicating with CodeWarrior TRK is between 300 baud and
230.4k baud. (For more information, see the Targeting manual for your target board or
the processor-specific appendixes in this manual.)

CodeWarrior TRK usually communicates using these serial settings:

• 8 data bits
• no parity
• 1 stop bit (8N1)

However, if other supported settings work better for your target board, you can use those
settings. For more information, see the Targeting manual for your target processor or the
processor-specific appendixes of this manual. If you cannot find information about your
board, contact technical support.

3.1.2 Data Transmission Rate

The default implementation of CodeWarrior TRK uses the highest data transmission rate
(baud rate) that the target board can support. The data transmission rate varies depending
on the target board or serial controller. For more information, see the Targeting manual
for your target processor.

NOTE
The maximum data transmission rate for the Solaris-hosted
CodeWarrior debugger is 38.4 kilobytes. Consequently, if you
are using the Solaris-hosted debugger, you must set the data
transmission rate in CodeWarrior TRK to 38.4 kilobytes, even
if the target board accepts a faster rate.

You can set the data transmission rate so that it is appropriate for your hardware. For
more information, see Changing the Data Transmission Rate.

3.2 Framing Level

The framing level:

• is responsible for reliably transporting messages between CodeWarrior TRK and the
debugger

Chapter 3 CodeWarrior TRK Communications

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 21

• transmits the messages as arbitrarily sized segments of data
• places each data segment in a CodeWarrior TRK data frame before transmitting the

data
• verifies the contents of each data frame using a checksum

The transmitted data consists of messages defined by the debug message interface. Each
CodeWarrior TRK data frame contains one message. (For more information, see Debug
Message Interface Level.)

NOTE
To the framing level, a CodeWarrior TRK message is a string
of data of a particular length; the framing level ignores the
internal structure of the message.

This section contains these topics:
• CodeWarrior TRK Data Frames
• Checksum Values
• Escape Sequences
• Reliable Message Delivery

3.2.1 CodeWarrior TRK Data Frames

When communicating over a serial connection, CodeWarrior TRK and the debugger
transmit all messages in a CodeWarrior TRK data frame. A CodeWarrior TRK data
frame is a data segment of arbitrary length delimited at its beginning and end by a special
framing character. The CodeWarrior TRK data frame also contains checksum
information used to verify the integrity of the data received.

Before sending a message, CodeWarrior TRK and the debugger place the message in a
CodeWarrior TRK data frame as follows:

1. Arrange the message in big-endian byte order (most significant byte first).

NOTE
Step 1 executes at the debug message interface level rather
than the framing level, as shown in the figure below.

2. Calculate a one-byte checksum value (by default) and place the checksum value in a
byte at the end of the message.

3. Apply an escape sequence to any reserved byte values contained in the message.

Framing Level

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

22 Freescale Semiconductor, Inc.

4. Add the start-frame/end-frame flag (a byte containing the value 0x7e that allows the
receiver to distinguish one frame from another) to the beginning and end of the
CodeWarrior TRK data frame.

The figure below shows how CodeWarrior TRK and the debugger create a CodeWarrior
TRK data frame.

Figure 3-2. Creating a CodeWarrior TRK Data Frame

Chapter 3 CodeWarrior TRK Communications

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 23

3.2.2 Checksum Values

The sender places a one-, two-, or four-byte checksum value immediately after the debug
message as part of the framing process. The receiver uses the checksum value to verify
the integrity of the data.

NOTE
The sender calculates checksum values for a debug message
before creating any escape sequences for the message. In
addition, the sender must create an escape sequence for any
byte in a checksum value that contains a reserved byte value.
For more information, see Escape Sequences.

By default, CodeWarrior TRK uses a single-byte checksum value. However, you can
customize CodeWarrior TRK to use a two- or four-byte checksum value. For more
information, see Customizing Checksum Values.

The sender calculates a checksum value serially, by starting at the beginning of the
message with an initial value and updating it for each successive byte of message data.

This section contains these sections, which describe how CodeWarrior TRK and the
debugger calculate one-, two-, and four-byte checksum values:

• Encoding Single-Byte Checksum Values
• Verifying Single-Byte Checksum Values
• Using Multi-Byte Checksum Values

NOTE
CodeWarrior TRK contains implementations for computing
checksum values. If you are developing your own debugger
to communicate with CodeWarrior TRK, you may want to
borrow your implementation directly from CodeWarrior
TRK. These source files implement checksums:

CWTRKDir\Export\serframe.h
CWTRKDir\Transport\protocol\rfc_1662\rfc1662.c

3.2.2.1 Encoding Single-Byte Checksum Values

Framing Level

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

24 Freescale Semiconductor, Inc.

The sender encodes a message using a one-byte checksum value as follows:

1. Specify an initial value of 0x00.
2. Add the value of each character (byte) in the debug message to the running checksum

total.
3. Complement the final value.
4. Place the checksum value immediately after the debug message in the CodeWarrior

TRK data frame.

The listing below shows a C function that sends a debug message and calculates and
sends a one-byte checksum value for the message.

Listing 3-1. Calculating a One-Byte Checksum Value

#define FCSBITSIZE FCS8
#if FCSBITSIZE == FCS8

 /* Definitions for 8-bit simple Frame Check Sequences */

 typedef unsigned char FCSType; /* 8-bit type */

 #define PPPINITFCS8 0x00 /* Initial FCS value */

 #define PPPGOODFCS8 0xFF /* Good final FCS value */

 #define PPPINITFCS PPPINITFCS8

 #define PPPGOODFCS PPPGOODFCS8

 #define PPPCOMPFCS 0xFF /* complement FCS value */

 #ifdef _cplusplus

 inline FCSType PPPFCS(FCSType fcs, unsigned char c)

 {

 return (fcs + c);

 }

 #else

 #define PPPFCS(fcs, c) (fcs + c)

 #endif

3.2.2.2 Verifying Single-Byte Checksum Values

The receiver verifies a message encoded with a one-byte checksum value as follows:

1. Specify an initial value of 0x00.
2. Until the end-frame flag arrives, add the value of each received byte to the current

checksum value, in the order received.

Chapter 3 CodeWarrior TRK Communications

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 25

3. Check whether the final calculated value is 0xFF.

If it is, the message arrived correctly. Otherwise, an error occurred in transmission.
(However, this algorithm does not find all transmission errors.)

When the end-frame flag arrives, the receiver omits its value from the checksum value.
Consequently, the last calculation adds the received checksum value to the checksum
value the receiver was calculating. The sender complemented the received checksum
value before sending it.

Adding any number to its complement yields the value 0xFF. This fact allows the
algorithm to determine whether the data arrived correctly.

The listing below shows a C function that demonstrates how to verify a message encoded
with its checksum value.

Listing 3-2. Verifying a Message Using a One-Byte Checksum Value

typedef unsigned char Boolean;
#define TRUE 1

#define FALSE 0

Boolean

VerifyMessageIntegrity()

{

 ui8 currentChar, FCS;

 /* Loop through characters until we hit the end flag */

 FCS = 0x00;

 while !EndFlag(currentChar = GetNextChar())

 {

 FCS += currentChar;

 }

 /* We have just passed over the encoded complement of the

 original FCS. If this message matched the original, the

 FCS value should now be 0xFF */

 return (FCS == 0xFF);

}

Framing Level

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

26 Freescale Semiconductor, Inc.

3.2.2.3 Using Multi-Byte Checksum Values

For multi-byte checksum values, CodeWarrior TRK uses an algorithm called FCS (Frame
Check Sequence). Similar to the one-byte checksum value algorithm, the FCS algorithms
for two- and four-byte checksum values calculate a single value over the length of the
message data. However, the two- and four-byte algorithms, while more likely to catch
communication errors, are computationally more expensive than the single-byte
algorithm.

The FCS implementations used by CodeWarrior TRK are based on the RFC 1662
standard (the framing portion of the Point-to-Point Protocol). The RFC 1662 standard is
based on the original Fast CRC (Cyclic Redundancy Check) algorithm.

The RFC 1662 document and the CodeWarrior TRK source code in this file provide
details on calculating multi-byte FCS values:

CWTRKDir\Export\serframe.h

The sender always adds multi-byte FCS values to the data frame using little-endian byte
order. For example, to send a 32-bit FCS flag with the value 0x01234567, CodeWarrior
TRK or the debugger sends these bytes in the order shown:

• 0x67

• 0x45

• 0x23

• 0x01

3.2.3 Escape Sequences

The CodeWarrior TRK communications protocol has these reserved byte values:

• 0x7e (the start-frame/end-frame flag)
• 0x7d (the escape character, which indicates the beginning of an escape sequence)

A debug message or its checksum value can contain bytes equal to these reserved values.
In this case, the sender must create an escape sequence for each such byte before sending
the message.

An escape sequence is a two-character sequence composed of a special escape character
(0x7d) followed by a transformation of the original byte value. To transform the original
character, the sender XORs the character with the value 0x20, as in this line of C code:

 escapedChar = originalChar ^ 0x20;

Chapter 3 CodeWarrior TRK Communications

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 27

NOTE
To send a byte with the value of the escape character, the
sender must first send the escape character, followed by the
transformation of the original byte.

A receiver must determine when a message contains an escape sequence. After
encountering an escape character, the receiver performs the same transformation on the
byte following the escape character to get the original value of the byte:

 originalChar = escapedChar ^ 0x20;

NOTE
The sender calculates checksum values for a debug message
before creating any escape sequences for the message. In
addition, the sender must create an escape sequence for any
byte in a checksum value that contains a reserved byte value.

3.2.4 Reliable Message Delivery

A receiver sends a reply message in response to every request or notification message
from a sender. Two kinds of reply messages exist: ACK (acknowledgment) messages and
NAK (no acknowledgment) messages.

NOTE
Although reply messages are defined on the debug message
interface level, the framing level also uses reply messages to
ensure reliable message transmission.

ACK messages confirm that the receiver correctly received the preceding message. NAK
messages indicate that the receiver did not correctly receive the preceding message. For
more information, see Reply Messages.

To ensure reliable transmission of messages, the receiver must respond correctly to
transmission failures. Two indications of a failed transmission exist:

• The receiver sends a NAK reply to the sender.
• The receiver does not send a reply to the sender.

3.2.4.1 Responding to a NAK Reply Message

The sender can receive a NAK reply for these reasons:

Framing Level

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

28 Freescale Semiconductor, Inc.

• The receiver did not receive the CodeWarrior TRK data frame correctly.
• The format of the CodeWarrior TRK data frame was incorrect.

In the first instance, the sender resends the original message. In the second instance, the
sender must correct any errors in the format of the data frame before resending the
message. For a list of possible errors, see NAK Messages.

Examine the code that creates and sends the data frame. If needed, change that code to
correct the CodeWarrior TRK data frame before resending it.

3.2.4.2 Responding When No Reply Message is Received

If the sender of a message receives no reply in response, an error occurred. Possible
reasons for the error include a crucial part of the message (such as the start-frame or end-
frame flag) being transmitted incorrectly or the receiver crashing while servicing the
request.

If the sender does not receive a reply message within a reasonable amount of time, the
sender must resend the original message. What is a reasonable amount of time to wait
before resending?

The amount of time is a sum of these items:

• Amount of time for the original message to traverse the physical link.
• Amount of time for the reply message to traverse the physical link.
• Amount of time for the receiver to process the request.

The first two items depend on setup of the serial connection.

The third item is the amount of time for the receiver (CodeWarrior TRK or the debugger)
to send an ACK or NAK reply. This amount varies on a message-by-message basis
because different requests require more or less time to complete before sending an ACK
reply. However, no request requires an amount of time that is noticeable to a human.

NOTE
For requests that require a substantial amount of time to process
(such as the Continue and Step commands), CodeWarrior TRK
sends an ACK reply before performing the request.

One-third of a second usually works well as an amount of time to wait before resending a
message when using the CodeWarrior TRK. However, this amount may sometimes
require adjustment.

Chapter 3 CodeWarrior TRK Communications

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 29

3.2.4.3 Preventing Transmission Failure

To help to prevent transmission failure, a receiver can ignore any start-frame/end-frame
flags that immediately follow each other. A sequence of two start-frame/endframe flags
often indicates that a message was sent and badly corrupted (the start-frame or end-frame
flag was lost) and a copy of the original message was resent.

Ignoring the second start-frame/end-frame flag encountered allows communications to
continue in most cases. Conversely, interpreting the second flag can disrupt the current
communications session irreparably.

3.3 Debug Message Interface Level

The debug message interface level defines these messages that CodeWarrior TRK and the
debugger exchange:

• Requests
• Notifications
• Reply messages

A request asks the receiving software to perform a task. A notification merely sends
information to the receiving software.

For example, CodeWarrior TRK can request that the debugger read information from a
file and return the information to CodeWarrior TRK by sending a ReadFile request to the
debugger. CodeWarrior TRK also can send a NotifyException notification to the
debugger to inform the debugger that an exception occurred on the target board.

The debugger also can send requests to CodeWarrior TRK. After receiving a request
from the debugger, the CodeWarrior TRK core examines the fields of the message to
determine which handler function to call. The CodeWarrior TRK core then sends the
request to the corresponding handler function, which extracts any needed values from the
message and executes the request. (Some messages contain values that CodeWarrior
TRK passes to its handler functions as parameters. For more information, see Debug
Message Interface Reference and CodeWarrior TRK Function Reference.)

Debug Message Interface Level

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

30 Freescale Semiconductor, Inc.

CodeWarrior TRK and the debugger send reply messages in response to each received
request or notification message. Some reply messages contain only an acknowledgement
and an error code; others contain additional return values. For more information, see
Reply Messages and Debug Message Interface Reference.

This section contains these topics:
• Request and Notification Messages
• Reply Messages

3.3.1 Request and Notification Messages

The debug message interface specifies the format of each request and notification
message in terms of the fields included in a message and the arrangement of the fields. In
general, a message starts with an identifier byte that identifies the message type. Zero or
more arguments follow the identifier byte, depending on the message type. (For more
information about the structure of each request and notification message, see Debug
Message Interface Reference.)

3.3.1.1 Alignment

Message fields contain no padding for alignment purposes. When one message field ends,
the next field begins on the next byte.

3.3.1.2 Byte Order

Multi-byte data in debug messages uses big-endian byte order (most significant byte
first). The table below shows examples of data arranged in big-endian byte order.

Table 3-1. Data in Big-endian Byte Order

Type Hex Value Big-Endian Byte Stream

ui8 0x12 [0x12]

ui16 0x1234 [0x12] [0x34]

ui32 0x12345678 [0x12] [0x34] [0x56] [0x78]

ui8[] {0x12,0x34} [0x12] [0x34]

ui16[] {0x1234,0x5678} [0x12] [0x34] [0x56] [0x78]

Table continues on the next page...

Chapter 3 CodeWarrior TRK Communications

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 31

Table 3-1. Data in Big-endian Byte Order (continued)

Type Hex Value Big-Endian Byte Stream

ui32[] {0x12345678,0x9ABCDEF0} [0x12] [0x34] [0x56] [0x78] [0x9A]
[0xBC] [0xDE] [0xF0]

3.3.1.3 Message Length

The maximum length of a debug message is 2176 bytes. This length includes 2048 bytes
for the data block when reading and writing from memory or registers (before adding
escape sequences) and 128 bytes for any additional items in the message.

3.3.2 Reply Messages

Usually, a reply message responds to each debug message sent. Two kinds of reply
messages exist: ACK (acknowledgment) messages and NAK (no acknowledgment)
messages.

ACK messages confirm that the receiver correctly received the preceding message. NAK
messages indicate that the receiver did not correctly receive the preceding message.

This section contains these topics:

• ACK Messages
• NAK Messages

3.3.2.1 ACK Messages

An ACK reply message:

• Confirms that the original message was successfully received.
• Contains an error code that specifies whether the receiver handled the original

request successfully. If the receiver did not handle the request successfully, this error
code specifies the problem.

• Contains any return values associated with the original request, such as register
values for a ReadRegisters request.

Debug Message Interface Level

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

32 Freescale Semiconductor, Inc.

The first byte of an ACK message is the message-type identifier, in this case the value
0x80 (kDSReplyACK as defined in the CodeWarrior TRK header file msgcmd.h).

The second byte of an ACK message is an error code specifying whether the receiver
handled the request or notification correctly. If the receiver handled the original message
successfully, the value of the error code byte is 0x00 (the CodeWarrior TRK constant
kDSReplyNoError). If the error code byte contains any other value, an error occurred.

The table below lists all possible values of the error code byte in an ACK message, which
are defined in msgcmd.h.

Table 3-2. Possible Error Codes in an ACK Reply Message

Value Error Code Name Description

0x00 kDSReplyNoError The request was handled successfully.

0x10 kDSReplyUnsupportedCommandErro
r

The request was of an invalid type. You
can query CodeWarrior TRK to
determine which requests are supported.
For more information, see SupportMask.

0x11 kDSReplyParameterError The values of one or more fields in the
message were incorrect. These
messages can return this error:

• ReadMemory
• WriteMemory
• Step

0x12 kDSReplyUnsupportedOptionError Some requests include field values that
set certain options. This error indicates
that the sender passed in an
unsupported option value. These
messages can return this error:

• ReadRegisters
• WriteRegisters
• ReadMemory
• WriteMemory
• Step

0x13 kDSReplyInvalidMemoryRange The specified memory range is invalid.
The ReadMemory and WriteMemory
messages can return this error.

0x14 kDSReplyInvalidRegisterRange The specified register range is invalid.
The ReadRegisters and WriteRegisters
messages can return this error.

0x15 kDSReplyCWDSException An exception was generated while
processing the request. These
messages can return this error:

• ReadRegisters
• WriteRegisters
• ReadMemory
• WriteMemory

0x16 kDSReplyNotStopped Some requests are valid only when the
target application is stopped. If the target
application is running, these requests
reply with the error code:

Table continues on the next page...

Chapter 3 CodeWarrior TRK Communications

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 33

Table 3-2. Possible Error Codes in an ACK Reply Message (continued)

Value Error Code Name Description

• Continue
• FlushCache
• ReadMemory
• ReadRegisters
• Step
• WriteMemory
• WriteRegisters

This applies only if CodeWarrior TRK
and the debugger are using interrupt-
driven communication. Otherwise,
CodeWarrior TRK cannot receive any
messages while the target application is
running.

0x03 kDSReplyCWDSError An unknown error occurred while
processing the request.

Some ACK replies contain only two bytes, the message-type identifier and the error code.
Replies to requests that expect return values, however, contain additional data following
the second byte. The returned data values and their format differs for each message. For
more information about return values, see the descriptions of individual debug messages
in Debug Message Interface Reference.

3.3.2.2 NAK Messages

NAK messages indicate that the receiver did not correctly receive the preceding message.
In most cases, the sender resends the message after receiving a NAK message. (For more
information, see Reliable Message Delivery.)

The identifier byte (the first byte) of a NAK message is the value 0xFF (kDSReplyNAK as
defined in the CodeWarrior TRK header file msgcmd.h). The second byte of the message is
an error code.

The table below lists all possible values of the error code byte in a NAK message, which
are defined in msgcmd.h.

Table 3-3. Possible Error Codes in a NAK Reply Message

Value Error Code Name Description

0x04 kDSReplyEscapeError An escape character was immediately
followed by a start-frame/end-frame flag.
For more information, see Escape
Sequences.

Table continues on the next page...

Debug Message Interface Level

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

34 Freescale Semiconductor, Inc.

Table 3-3. Possible Error Codes in a NAK Reply Message (continued)

Value Error Code Name Description

0x02 kDSReplyPacketSizeError The length of the received message was
zero.

0x05 kDSReplyBadFCS The contents of the CodeWarrior TRK
data frame did not match the FCS
checksum value. For more information,
see Checksum Values.

0x06 kDSReplyOverflow The message exceeded the maximum
length of the buffer. By default, the
maximum length of a debug message is
2176 bytes. This length includes 2048
bytes for the data block when reading
and writing from memory or registers
(before adding escape sequences) and
128 bytes for any additional items in the
message. You can change the maximum
length by changing the value of the
variable kMessageBufferSize in the
file msgbuf.h and recompiling
CodeWarrior TRK.

0x01 kDSReplyError Unknown problem in transmission.

0x07 kDSReplySequenceMissing Gap in reply sequence.

0x17 kDSReplyBreakpointsFull The breakpoint resources (hardware or
software) are exhausted.

0x18 kDSReplyBreakpointConflict The requested breakpoint conflicts with
an existing breakpoint.

0x20 kDSReplyOsError General OS error.

0x21 kDSReplyInvalidProcessId The request specified an invalid process.

0x22 kDSReplyInvalidThreadId The request specified an invalid thread.

Chapter 3 CodeWarrior TRK Communications

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 35

Debug Message Interface Level

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

36 Freescale Semiconductor, Inc.

Chapter 4
Customizing CodeWarrior TRK

This chapter shows how to customize CodeWarrior TRK to work with new target boards.

The table below lists the customization sections in this chapter and indicates whether
each section describes a required customization. (The table below marks customizations
that you must always do or must always examine and consider as required
customizations.)

Table 4-1. Required CodeWarrior TRK customizations

Customization Section Customization Required?

Customizing CodeWarrior TRK Initializations Yes

Modifying Serial Communication Functions Yes

Modifying Existing UART Drivers Yes

Changing the Data Transmission Rate Yes

Customizing CodeWarrior TRK to be Interrupt-Driven No

Customizing the CPU Speed Yes

Changing ReadMemory-Related Code Yes

Changing WriteMemory-Related Code Yes

Changing SupportMask-Related Code No

Changing Versions-Related Code No

Changing the Maximum Message Length No

Customizing Memory Locations No

Customizing Exception Handling No

Customizing Checksum Values No

Customizing the Target Board Name No

Customizing usr_put_config.h for Debugging No

NOTE
Supported reference boards work with CodeWarrior TRK
without modification. For information about supported
reference boards and CodeWarrior TRK implementations for
each, see the Targeting manual for your CodeWarrior product.

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 37

4.1 Customizing CodeWarrior TRK Initializations

You can customize the CodeWarrior TRK initialization sequence for new target boards as
follows:

1. Examine the existing initialization sequence for your default implementation of
CodeWarrior TRK.

2. If differences exist between the reference board and your target board, add to or
change the contents of _reset(), _init_processor, and _init_board as needed.

NOTE
This is a required customization. For more information, see
Customizing CodeWarrior TRK.

For more information, see CodeWarrior TRK Initializations.

4.2 Customizing Serial Communications

Low-level communications between CodeWarrior TRK and the debugger occur over a
standard serial connection.

This section contains these topics:

• Modifying Serial Communication Functions
• Modifying Existing UART Drivers
• Changing Data Transmission Rate
• Customizing CodeWarrior TRK to be Interrupt-Driven

4.2.1 Modifying Serial Communication Functions

The UART.h file declares a set of nine abstract functions that CodeWarrior TRK uses to
send and receive serial messages. These functions are separated from the main
CodeWarrior TRK code so that CodeWarrior TRK can function with new serial drivers
easily.

Customizing CodeWarrior TRK Initializations

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

38 Freescale Semiconductor, Inc.

CodeWarrior TRK provides configurable driver code for TI TL16C552a (works with
most 16552-compatible UARTs).

In addition, many processors include an on-chip UART. When a supported reference
board includes a connection for such a UART, CodeWarrior TRK usually provides
applicable driver code.

NOTE
This is a required customization. For more information, see
Customizing CodeWarrior TRK.

If your UART is not compatible with the supplied driver code, you must implement your
own driver. If your UART is compatible with one of the preceding drivers, see Modifying
Existing UART Drivers.

If you are using the UART library only to support CodeWarrior TRK, you must change
these UART functions for new target boards:

• InitializeUART()
• ReadUARTPoll()
• WriteUART1()

However, if you are using the UART library to allow the MSL library to send output to
the console, you must also change these functions:

• ReadUART1()
• TerminateUART()

This file prototypes the UART functions in this section:

CWTRKDir/Export/UART.h

NOTE
For information about the MSL library to use with your target
board, see the Targeting manual for your target processor.

4.2.2 Modifying Existing UART Drivers

CodeWarrior TRK provides configurable driver code for TI TL16C552a (works with
most 16552-compatible UARTs).

NOTE
This is a required customization. For more information, see
Customizing CodeWarrior TRK.

Chapter 4 Customizing CodeWarrior TRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 39

4.2.2.1 Building TI TL16C552a UART Driver

This driver is located in this directory:

CWTRKDir/Transport/uart/tl16c552a

To build the driver:

1. Include the relevant driver files in a separate library project that builds a library.
(You will include the resulting library in your CodeWarrior TRK project.)

Include these driver files:

• tl16c552a.c (main driver code)
• One of these two files:

• tl16c552a_A.c (for channel A of dual-channel UARTs)
• tl16c552a_B.c (for channel B of dual-channel UARTs)

• uart.c

• board_stub.c

2. Copy the driver configuration file tl16c552a_config_sample.h to your local project
directory.

3. Change the name of the driver configuration file tl16c552a_config_sample.h to:

tl16c552a_config.h

4. Include the renamed driver configuration file tl16c552a_config.h in your library
project.

5. Change the constant values in tl16c552a_config.h as needed for your target board.

NOTE
You can use tl16c552a_config.h to define items such as the
base addresses of the two serial ports, the speed of the
external UART clock, and the spacing (in bytes) between
UART registers. Examine tl16c552a_config.h to determine
which, if any, changes to make for your target board.

6. Ensure that this UART header file is in your include path: CWTRKDir/Export/ UART.h
7. Build your library project.

After you build your library project, you must add the library to your CodeWarrior
TRK project before building it.

NOTE
For information about building projects, see the
CodeWarrior IDE User's Guide.

Customizing Serial Communications

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

40 Freescale Semiconductor, Inc.

4.2.3 Changing Data Transmission Rate

CodeWarrior TRK can communicate with the debugger at transmission rates between
300 baud and 230.4k baud. To change the data transmission rate (baud rate), set the
transmission rate at compile time by setting the constant TRK_BAUD_RATE to a value of the
enumerated type UARTBaudRate. Then rebuild CodeWarrior TRK.

NOTE
This is a required customization. For more information, see
Customizing CodeWarrior TRK.

Set the data transmission rate to the fastest speed that your UART can use without losing
characters. If your board and UART driver support hardware or software flow control, set
TRK_BAUD_RATE to the maximum data transmission rate for the UART. However, if you
experience problems while using CodeWarrior TRK, try lowering the data transmission
rate.

NOTE
UARTBaudRate is defined in UART.h. In the default implementation,
TRK_BAUD_RATE is defined in the file target.h.

You must also set the debugger to communicate at the same data transmission rate as
CodeWarrior TRK. For more information, see the Targeting manual for your target
processor and the processor-specific appendixes in this manual.

NOTE
The maximum data transmission rate for the Solaris-hosted
CodeWarrior debugger is 38.4 KB. Consequently, if you are
using the Solaris-hosted debugger, you must set the data
transmission rate in CodeWarrior TRK to 38.4 KB, even if the
target board accepts a faster rate.

4.2.4 Customizing CodeWarrior TRK to be Interrupt-Driven

Depending on the target board, CodeWarrior TRK uses either serial polling or interrupt-
driven communication to respond to messages sent by the debugger. Interrupt-driven
communication is the default communication method for target boards for which
CodeWarrior TRK currently supports that communication method.

Chapter 4 Customizing CodeWarrior TRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 41

When using serial polling, CodeWarrior TRK does not respond to messages from the
debugger while the target application is running. However, when using interrupt-driven
communication, CodeWarrior TRK responds as follows to an interrupt received from the
debugger:

1. Stops the target application from running.
2. Places the data from the serial line in a message buffer.
3. Checks whether the received message is a request or a notification.

NOTE
Rather than accessing the message buffer directly,
CodeWarrior TRK calls TransportIrqHandler () when a
UART interrupt occurs and Read UARTPoll () when ready to
receive input.

4. Resumes running the target application.
5. For a request, executes the request received from the debugger unless the request

cannot execute while a target application executes. In this case, CodeWarrior TRK
returns an error, and the debugger must stop the target application before resending
the request.

If CodeWarrior TRK currently does not support interrupt-driven communication for a
particular target board, you can customize CodeWarrior TRK to do so.

For any target board for which CodeWarrior TRK uses interrupt-driven communication,
set the value of TRK_TRANSPORT_INT_DRIVEN to 1. In addition, depending on the target board,
you may need to define a transport interrupt key so that CodeWarrior TRK can identify
the interrupt that corresponds to the communication transport.

Ensure that the serial driver that you are using supports interrupt-driven serial input. If
you wrote your own driver code, you may have to modify it. To modify your driver code,
you must create your own implementation of these functions for your target board:

• InitializeIntDrivenUART()
• TransportIrqHandler()

You can refer to the driver code provided with some of the supported reference boards as
examples. (For more information and, for some processors, tips on implementing
interrupt-driven communication, see the processor-specific appendixes in this manual.)

4.3 Customizing CPU Speed

Customizing CPU Speed

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

42 Freescale Semiconductor, Inc.

The value of the CPU_SPEED constant in target.h indicates the CPU speed of the target
board. Set the value of the CPU_SPEED constant to the appropriate speed for your board. If
you do not know the appropriate speed or the speed is variable, a value greater than the
maximum speed is acceptable.

NOTE
This is a required customization. For more information, see
Customizing CodeWarrior TRK.

4.4 Customizing Debug Services

CodeWarrior TRK provides debug services using a debug message interface that consists
of debug requests and debug notifications. (For more information, see Debug Message
Interface Reference.)

Some debug messages require related code changes in CodeWarrior TRK so that
CodeWarrior TRK can work with your new target board. You can also perform some
optional customizations.

This section describes several customizations that you can perform, which are related to
the debug message interface:

• Changing ReadMemory-Related Code
• Changing WriteMemory-Related Code
• Changing SupportMask-Related Code
• Changing Versions-Related Code
• Changing Maximum Message Length

NOTE
If you are customizing CodeWarrior TRK, ensure that you
implement all messages in the primary command set. For
more information, see Command Sets.

4.4.1 Changing ReadMemory-Related Code

After receiving a ReadMemory request, CodeWarrior TRK reads the specified section of
memory and returns the result. To perform this task, CodeWarrior TRK calls
TargetAccessMemory() to read memory from the board.

Chapter 4 Customizing CodeWarrior TRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 43

The TargetAccessMemory() function calls another function, ValidMemory32(), that checks
whether the addresses to read are valid for the target board. The ValidMemory32() function
uses a global variable, gMemMap, to determine which memory ranges are valid. To
customize memory checks, redefine gMemMap in the memmap.h file.

NOTE
This is a required customization. For more information, see
Customizing CodeWarrior TRK.

For more information, see ReadMemory, TargetAccessMemory(), and
ValidMemory32().

4.4.2 Changing WriteMemory-Related Code

After receiving a WriteMemory request, CodeWarrior TRK writes the specified data in
memory at the specified address. To perform this task, CodeWarrior TRK calls the
function TargetAccessMemory() to write to memory.

The TargetAccessMemory() function calls another function, ValidMemory32(), that checks
whether the addresses to write to are valid for the target board. The ValidMemory32()
function uses a global variable, gMemMap, to determine which memory ranges are valid. To
customize memory checks, redefine gMemMap in the memmap.h file.

NOTE
This is a required customization. For more information, see
Customizing CodeWarrior TRK.

For more information, see WriteMemory, TargetAccessMemory(), and
ValidMemory32().

4.4.3 Changing SupportMask-Related Code

After receiving a SupportMask request, CodeWarrior TRK calls the TargetSupportMask()
function. The TargetSupportMask() function uses a set of board-specific variables defined in
this file to determine which debug messages your customized version of CodeWarrior
TRK supports:

CWTRKDir/ Portable/ default_smask.h

Customizing Debug Services

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

44 Freescale Semiconductor, Inc.

NOTE
This customization is not required. For more information, see
Customizing CodeWarrior TRK.

Thirty-two compile-time variables exist; each variable is 8 bits wide. Each variable is a
bit-vector where each bit represents one message in the debug message interface. The
first variable, DS_SUPPORT_MASK_00_07, represents the first eight messages, those with
numbers 0x00 through 0x7. The second variable, DS_SUPPORT_MASK_08_0F, represents the next
eight messages and so on through DS_SUPPORT_MASK_F8_FF, which represents messages 248
through 255.

You can remove support for debug messages that your implementation of CodeWarrior
TRK does not support by changing the value of the variables. (Changing the value of a
variable changes the value of the individual bits that correspond to the various debug
messages.)

To customize the value of the variables, cut and paste the variable definitions from
default_smask.h to target.h and change the definitions as needed.

NOTE
You can also add support for additional messages by changing
this set of board-specific variables. This ability is useful only if
you are implementing your own debugger.

For more information, see SupportMask, DoSupportMask(), and TargetSupportMask().

4.4.4 Changing Versions-Related Code

The Versions request causes CodeWarrior TRK to return the major and minor version
numbers for CodeWarrior TRK and for the messaging protocol.

NOTE
This customization is not required. For more information, see
Customizing CodeWarrior TRK.

The default implementation of CodeWarrior TRK (through the TargetVersions() function)
uses compile-time constants to specify the version numbers. To customize CodeWarrior
TRK, modify the constants.

These constants, which specify the version numbers of the kernel, reside in a processor-
specific file:

Chapter 4 Customizing CodeWarrior TRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 45

• DS_KERNEL_MAJOR_VERSION

• DS_KERNEL_MINOR_VERSION

NOTE
For more information, see the processor-specific
appendixes in this manual.

These constants, which specify the version numbers of the protocol, reside in msgcmd.h:

• DS_PROTOCOL_MAJOR_VERSION

• DS_PROTOCOL_MINOR_VERSION

NOTE
If you are using the CodeWarrior debugger, do not change
the protocol version numbers.

For more information, see Versions, DoVersions(), and TargetVersions().

4.4.5 Changing Maximum Message Length

By default, the maximum length of a debug message is 2176 bytes. This length includes
2048 bytes for the data block when reading and writing from memory or registers (before
adding escape sequences) and 128 bytes for any additional items in the message.

NOTE
This customization is not required. For more information, see
Customizing CodeWarrior TRK.

You can change the maximum length by changing the value of the variable
kMessageBufferSize in the file msgbuf.h and recompiling CodeWarrior TRK.

NOTE
If you are using the CodeWarrior debugger, do not change the
maximum message length.

4.5 Customizing Memory Locations

You can customize the memory locations of both CodeWarrior TRK and of your target
application.

Customizing Memory Locations

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

46 Freescale Semiconductor, Inc.

NOTE
This customization is not required. For more information, see
Customizing CodeWarrior TRK.

Depending on your target processor, you can customize the memory locations used by
CodeWarrior TRK by:

• Modifying variables in the Linker target settings panel in your CodeWarrior TRK
project

• Modifying the linker command file in your CodeWarrior TRK project

For more information, see the processor-specific appendixes in this manual and the
Targeting manual for your target processor.

To change the location of target application memory sections, modify your linker
command file. The linker command file is the file in your project with the extension .lcf.
For more information, see the Targeting manual for your target processor.

4.6 Customizing Exception Handling

You can customize exception handling by overriding the default exception-handling code
so that your application handles some exceptions. CodeWarrior TRK must handle certain
exceptions; in those cases, your application must accommodate CodeWarrior TRK if the
application also must handle those particular exceptions. For more information, see the
processor-specific appendixes in this manual.

NOTE
This customization is not required. For more information, see
Customizing CodeWarrior TRK.

4.7 Customizing Checksum Values

By default, CodeWarrior TRK uses a one-byte checksum value for error-checking when
it frames messages. (For more information, see Checksum Values.)

NOTE
This customization is not required. For more information, see
Customizing CodeWarrior TRK.

Chapter 4 Customizing CodeWarrior TRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 47

However, you can specify that the CodeWarrior TRK use a two- or four-byte checksum
value to increase the probability of finding transmission errors. To do so, change the
value of the FCSBITSIZE variable in this file and recompile the CodeWarrior TRK:

CWTRKDir/Export/serframe.h

NOTE
If you are using the CodeWarrior debugger, do not change the
length of the checksum value.

Using a two- or four-byte checksum value requires:

• More computation time when creating and verifying the checksum values.
• Global data space for a lookup table. (A two-byte checksum value requires 512

bytes; a four-byte checksum value requires 1024 bytes.)

4.8 Customizing Target Board Name

The name of the target board displays in the startup welcome message for CodeWarrior
TRK. To customize the target board name, define the constant DS_TARGET_NAME in target.h
as a string value that reflects the name of your target board.

NOTE
This customization is not required. For more information, see
Customizing CodeWarrior TRK.

4.9 Customizing usr_put_config.h for Debugging

The usr_put_config.h file defines values that are useful when debugging CodeWarrior
TRK.

NOTE
This customization is not required. For more information, see
Customizing CodeWarrior TRK.

You can customize these values:

• DEBUGIO_SERIAL

Customizing Target Board Name

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

48 Freescale Semiconductor, Inc.

When you define DEBUGIO_SERIAL, CodeWarrior TRK writes the debug information to a
serial port. CodeWarrior TRK uses the same serial port as the CodeWarrior TRK
requests and notifications. Consequently, this option works best when debugging
manually.

NOTE
Usually, you define only DEBUGIO_SERIAL when debugging
CodeWarrior TRK.

• DEBUGIO_RAM

When you define DEBUGIO_RAM, CodeWarrior TRK writes the debug information to a
RAM buffer on the target board. If you define DEBUGIO_RAM, you also must define these
values, which also reside in usr_put_config.h:

• DB_START

Defines the start of the RAM buffer.

• DB_END

Defines the end of the RAM buffer.

• DB_RAM_CONSOLE_DUMP

If you define DEBUGIO_RAM, you can periodically dump the contents of the RAM buffer
to the console (stdout) by defining DB_RAM_CONSOLE_DUMP. This ability is useful when
using the host plug-in to drive CodeWarrior TRK because the debugging output
displays in the console window of the debugger.

NOTE
CodeWarrior TRK currently performs a console dump only
when the debugger instructs CodeWarrior TRK to step or
execute the target application. In between, CodeWarrior
TRK stores debugging output until the next opportunity to
dump it.

Chapter 4 Customizing CodeWarrior TRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 49

Customizing usr_put_config.h for Debugging

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

50 Freescale Semiconductor, Inc.

Chapter 5
Debug Message Interface Reference

This chapter describes the debug message interface, that is, the set of debug messages
that the debugger and CodeWarrior TRK use to communicate.

This chapter contains these topics:

• Command Sets
• Messages Sent by Debugger
• Messages Sent by CodeWarrior TRK

5.1 Command Sets

Each message described in this chapter belongs to either the primary command set (level
1) or the extended command set (level 2), which the description of the command
indicates. To function properly, the debugger requires all messages in the primary
command set. However, messages in the extended command set, while useful, are
optional.

NOTE
If you are customizing CodeWarrior TRK, ensure that you
implement all messages in the primary command set.

5.2 Messages Sent by Debugger

This section describes the messages that the debugger can send to CodeWarrior TRK,
which are all requests.

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 51

NOTE
See this file for more information about these messages,
definitions of all MessageCommandID values, and message-specific
constants:

Export\msgcmd.h

The message descriptions include such information as fields
sent in the original message, the name of the handler function
for the message, and any return values. CodeWarrior TRK and
the debugger place return values for a request in a separate
reply message. For more information, see Reply Messages.

The debugger can send these messages:
• Connect
• Continue
• CPUType
• FlushCache
• Reset
• ReadMemory
• ReadRegisters
• Step
• Stop
• SupportMask
• Versions
• WriteMemory
• WriteRegisters

5.2.1 Connect

Requests that CodeWarrior TRK begin a debug session.

Command Set

Primary command set (level 1).

Fields

This message contains this field:

Field Size Description

command ui8 kDSConnect (defined in the msgcmd.h
file).

Messages Sent by Debugger

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

52 Freescale Semiconductor, Inc.

Return Values

None.

Error Codes

None.

Remarks

The debugger sends this request once at the beginning of each debug session.

Handler Function

DoConnect()

See Also

DoConnect()

5.2.2 Continue

Requests that CodeWarrior TRK start running the target application.

Command Set

Primary command set (level 1).

Fields

This message contains this field:

Field Size Description

command ui8 kDSContinue (defined in the
msgcmd.h file).

Return Values

None.

Error Codes

CodeWarrior TRK can return this error code:

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 53

Error Code Description

kDSReplyNotStopped The target application is running and must be stopped before
the debugger issues this request.

Remarks

The debugger sends this request to tell CodeWarrior TRK to resume executing the target
application. After receiving a Continue request, CodeWarrior TRK returns to the event-
waiting state, swaps in the context of the target application, and resumes executing the
target application. The target application runs until a relevant exception occurs. For more
information, see CodeWarrior TRK Execution States.

Handler Function

DoContinue()

See Also

DoContinue()

5.2.3 CPUType

Requests that CodeWarrior TRK return CPU-related information for the target board.

Command Set

Extended command set (level 2).

Fields

This message contains this field:

Field Size Description

command ui8 kDSCPUType (defined in the msgcmd.h
file).

Return Values

This message causes CodeWarrior TRK to return these values:

Return Value Field Size Description

cpuMajor ui8 The major CPU type, which indicates the
processor family of the target board.

Table continues on the next page...

Messages Sent by Debugger

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

54 Freescale Semiconductor, Inc.

Return Value Field Size Description

cpuMinor ui8 The minor CPU type, which indicates the
particular processor within the processor
family.

bigEndian ui8 A value of 1 indicates that the board
uses the big-endian byte order; a value
of 0 indicates that the board uses the
little-endian byte order.

defaultTypeSize ui8 The size of the registers in the default
register block.

fpTypeSize ui8 The size of the registers in the floating-
point register block. If there are no
floating-point registers, this return value
is 0.

extended1TypeSize ui8 The size of the registers in the first block
of extended registers. If there are no
extended registers, this return value is 0.

extended2TypeSize ui8 The size of the registers in the second
block of extended registers. If there is no
second block of extended registers, this
return value is 0.

Error Codes

CodeWarrior TRK can return these error codes:

Error Code Description

kDSReplyPacketSizeError The length of the message is less than the minimum for a
message of that type.

kDSReplyCWDSError An unknown error occurred while processing the request.

Handler Function

DoCPUType()

See Also

DoCPUType()

5.2.4 FlushCache

Requests that CodeWarrior TRK flush all cache entries corresponding to the specified
memory range and possibly others, depending on the particular target board. (For more
information, see your default implementation of CodeWarrior TRK.)

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 55

Command Set

Secondary command set (level 2).

Fields

This message contains these fields:

Field Size Description

command ui8 kDSFlushCache (defined in the
msgcmd.h file).

options ui8 This field can contain these values,
which specify the type of cache to flush:
DS_MSG_CACHE_TYPE_INSTRUCTIOND
S_MSG_CACHE_TYPE_DATADS_MSG_CA
CHE_TYPE_SECONDARY For more
information, see the msgcmd.h file.

start ui32 The starting address of the specified
memory section in the cache.

end ui32 The end address of the specified
memory section in the cache.

Error Codes

CodeWarrior TRK can return these error codes:

Error Code Description

kDSReplyPacketSizeError The length of the message does not equal the minimum for a
message of that type.

kDSReplyNotStopped The target application is running and must be stopped before
the debugger issues this request.

kDSReplyInvalidMemoryRange The specified memory range is invalid.

kDSReplyUnsupportedOptionError The specified value of the options field is unsupported.

kDSReplyCWDSError An unknown error occurred while processing the request.

Remarks

To flush more than one type of cache, the debugger can OR multiple values before
adding the options field to the message.

Handler Function

DoFlushCache()

See Also
• DoFlushCache
• msgcmd.h

Messages Sent by Debugger

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

56 Freescale Semiconductor, Inc.

5.2.5 ReadMemory

Requests that CodeWarrior TRK read a specified section of memory on the target board.

Command Set

Primary command set (level 1).

Fields

This message contains these fields:

Field Size Description

command ui8 kDSReadMemory (defined in the
msgcmd.h file).

options ui8 This field can contain one of these
values:

• DS_MSG_MEMORY_SEGMENTED
• DS_MSG_MEMORY_PROTECTED
• DS_MSG_MEMORY_USERVIEW

For more information, see the
msgcmd.h file.

length ui16 The length of the memory section (a
maximum of 2048 bytes).

start ui32 The starting address of the memory
section.

Return Values

This message causes CodeWarrior TRK to return these values:

Return Value Field Size Description

length ui16 The length of the data read (a maximum
of 2048 bytes).

data ui8[] The data read (a maximum of 2048
bytes).

Error Codes

CodeWarrior TRK can return these error codes:

Error Code Description

kDSReplyCWDSError An unknown error occurred while processing the request.

Table continues on the next page...

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 57

Error Code Description

kDSReplyCWDSException An exception was thrown while processing the request.

kDSReplyInvalidMemoryRange The specified memory range is invalid.

kDSReplyNotStopped The target application is running and must be stopped before
the debugger issues this request.

kDSReplyPacketSizeError The length of the message is less than the minimum for a
message of that type.

kDSReplyParameterError The value of the length field is greater than 2048 or the
value of the length field is not equal to the size of the data
field.

kDSReplyUnsupportedOptionError The specified value of the options field is unsupported.

Remarks

CodeWarrior TRK attempts to catch and handle any memory access exceptions that occur
while reading the data.

Handler Function

DoReadMemory()

See Also
• DoReadMemory()
• msgcmd.h

5.2.6 ReadRegisters

Requests that CodeWarrior TRK read a specified sequence of registers on the target
board.

Command Set

Primary command set (level 1).

Fields

This message contains these fields:

Field Size Description

command ui8 kDSReadRegisters (defined in the
msgcmd.h file).

options ui8 This field can contain one of these
values:

• kDSRegistersDefault

Table continues on the next page...

Messages Sent by Debugger

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

58 Freescale Semiconductor, Inc.

Field Size Description

• kDSRegistersFP
• kDSRegistersExtended1
• kDSRegistersExtended2

For more information, see the
msgcmd.h file.

firstRegister ui16 The number of the first register in the
sequence.

lastRegister ui16 The number of the last register in the
sequence.

Return Values

This message causes CodeWarrior TRK to return this value:

Return Value Field Size Description

registerData void* An array of register values. The size of
each element depends on the size of the
registers themselves. If the registers are
2 bytes wide, then a new value starts
every 2 bytes. If the registers are 4 bytes
wide, a new value starts every 4 bytes.
The maximum length of this array is
2048 bytes.

Error Codes

CodeWarrior TRK can return these error codes:

Error Code Description

kDSReplyCWDSError An unknown error occurred while processing the request.

kDSReplyCWDSException An exception was thrown while processing the request.

kDSReplyInvalidRegisterRange The specified register range is invalid.

kDSReplyNotStopped The target application is running and must be stopped before
the debugger issues this request.

kDSReplyPacketSizeError The length of the message is less than the minimum for a
message of that type.

kDSReplyUnsupportedOptionError The specified value of the options field is unsupported.

Remarks

After receiving a ReadRegisters request, CodeWarrior TRK reads the specified sequence
of registers from the processor, returning the resulting values to the debugger.
CodeWarrior TRK attempts to catch and handle any access exceptions that occur while
reading.

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 59

NOTE
For information about registers, see the processor-specific
appendixes in this manual.

Handler Function

DoReadRegisters()

See Also
• DoReadRegisters()
• msgcmd.h

5.2.7 Reset

Requests that CodeWarrior TRK reset the target board.

Command Set

Extended command set (level 2).

Fields

This message contains this field:

Field Size Description

command ui8 kDSReset (defined in the msgcmd.h
file).

Return Values

None.

Error Codes

None.

Remarks

After receiving a Reset request, CodeWarrior TRK calls its own reset code. CodeWarrior
TRK restarts and performs all hardware initializations as if the board were being
manually reset.

Handler Function

DoReset()

Messages Sent by Debugger

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

60 Freescale Semiconductor, Inc.

See Also

DoReset()

5.2.8 Step

Requests that CodeWarrior TRK let the target application run a specified number of
instructions or, alternatively, until the PC (program counter) is outside a specified range
of values.

Command Set

Extended command set (level 2).

Fields

The fields in this message differ depending on the value of the options field. If the value
of the options field is kDSStepIntoCount or kDSStepOverCount, the message contains these
fields:

Field Size Description

command ui8 kDSStep (defined in the msgcmd.h file).

options ui8 This field can contain one of these
values:

• kDSStepIntoCount
• kDSStepOverCount

For more information, see the
msgcmd.h file.

count ui8 The number of instructions to step over.

If the value of the options field is kDSStepIntoRange or kDSStepOverRange, the message contains
these fields:

Field Size Description

command ui8 kDSStep (defined in the msgcmd.h file).

options ui8 This field can contain one of these
values:

• kDSStepIntoRange
• kDSStepOverRange

For more information, see the
msgcmd.h file.

rangeStart ui32 The starting address of the specified
memory range.

Table continues on the next page...

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 61

Field Size Description

rangeEnd ui32 The end address of the specified
memory range.

Return Values

None.

Error Codes

CodeWarrior TRK can return these error codes:

Error Code Description

kDSReplyNotStopped The target application is running and must be stopped before
the debugger issues this request.

kDSReplyPacketSizeError The length of the message is less than the minimum for a
message of that type.

kDSReplyParameterError If the debugger is single stepping, this error code indicates
that the value of the count field is less than one. (The
debugger must step over one or more instructions.) If the
debugger is stepping out of range, this error code indicates
that the PC (program counter) is already outside the range
specified by the rangeStart and rangeEnd fields.

kDSReplyUnsupportedOptionError The specified value of the options field is unsupported.

Remarks

After receiving a Step request, CodeWarrior TRK steps through one or more instructions.

This message specifies

• whether CodeWarrior TRK steps through a specified number of instructions or
through all remaining instructions within a specified memory range

• whether CodeWarrior TRK steps over or into function calls

If the value of the options parameter is kDSStepIntoCount or kDSStepOverCount, CodeWarrior
TRK steps through count instructions in the target application and then returns control to
the host. If the value of the options parameter is kDSStepIntoRange or kDSStepOverRange,
CodeWarrior TRK continues running the program until it encounters an instruction
whose address is outside the range specified by rangeStart and rangeEnd. CodeWarrior
TRK then returns control to the host.

CodeWarrior TRK notifies the debugger that the end condition was reached by sending a
NotifyStopped notification. For more information, see NotifyStopped.

Messages Sent by Debugger

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

62 Freescale Semiconductor, Inc.

Using kDSStepOverCount and kDSStepOverRange causes function calls to be counted as a single
instruction. In other words, CodeWarrior TRK does not evaluate instructions executed
within a called function for the end condition of the step. Omitting the evaluation is
called stepping over a function.

This example shows some sample code:

i = 10;
i++;
DoSomeProcessing(i);
i--;

Assume the execution process is at the first line of the preceding code (i = 10;) and that
each line corresponds to a single machine instruction. In that case, a request to step over
four instructions causes CodeWarrior TRK to step past the final line of the preceding
code (i--;). The number of lines executed in the DoSomeProcessing() function does not
affect how many lines CodeWarrior TRK steps through in the main flow of execution.

NOTE
One line of code in a high-level language such as C or C++
sometimes corresponds to more than one machine instruction.

When the debugger specifies kDSStepIntoCount or kDSStepIntoRange, CodeWarrior TRK does
evaluate instructions within a called function for the end condition of the step. Evaluating
the instructions within the function is called stepping into the function.

Handler Function

DoStep()

See Also
• DoStep()
• NotifyStopped
• msgcmd.h

5.2.9 Stop

Requests that CodeWarrior TRK stop running the target application.

Command Set

Extended command set (level 2).

Fields

This message contains this field:

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 63

Field Size Description

command ui8 kDSStop (defined in the msgcmd.h file).

Return Values

None.

Error Codes

CodeWarrior TRK can return this error code:

Error Code Description

kDSReplyError Unknown problem in transmission.

Remarks

None.

Handler Function

DoStop()

See Also

DoStop()

5.2.10 SupportMask

Requests that CodeWarrior TRK return a list of supported messages.

Command Set

Primary command set (level 1).

Fields

This message contains this field:

Field Size Description

command ui8 kDSSupportMask (defined in the
msgcmd.h file).

Return Values

Messages Sent by Debugger

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

64 Freescale Semiconductor, Inc.

This message causes CodeWarrior TRK to return these values:

Return Value Field Size Description

mask ui8[32] A bit-array of 32 bytes, where each bit
corresponds to the message (which is of
type MessageCommandID) with an ID
matching the position of the bit in the
array.

protocolLevel ui8 The protocol level supported by
CodeWarrior TRK. For more information,
see Command Sets.

Error Codes

CodeWarrior TRK can return these error codes:

Error Code Description

kDSReplyCWDSError An unknown error occurred while processing the request.

kDSReplyPacketSizeError The length of the message is less than the minimum for a
message of that type.

Remarks

If the value of a bit in the mask return value field is 1, the message is available; if the value
of the bit is 0, the message is not available. For example, if kDSReset is available, the value
of the fourth bit is 1 because kDSReset is the fourth message.

For more information, see msgcmd.h. Also, for information about how the default values
are set, see target_supp_mask.h and Changing SupportMask-Related Code.

Handler Function

DoSupportMask()

See Also
• DoSupportMask()
• msgcmd.h

5.2.11 Versions

Requests that CodeWarrior TRK return version information.

Command Set

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 65

Primary command set (level 1).

Fields

This message contains this field:

Field Size Description

command ui8 kDSVersions (defined in the
msgcmd.h file).

Return Values

This message causes CodeWarrior TRK to return these values:

Return Value Field Size Description

kernelMajor ui8 The major version number for
CodeWarrior TRK. (In version 1.2, the
kernelMajor is 1.)

kernelMinor ui8 The minor version number for
CodeWarrior TRK. (In version 1.2, the
kernelMinor is 2.)

protocolMajor ui8 The major version number for the
messaging protocol. (In version 1.2, the
protocolMajor is 1.)

protocolMinor ui8 The minor version number for the
messaging protocol. (In version 1.2, the
protocolMinor is 2.)

Error Codes

CodeWarrior TRK can return these error codes:

Error Code Description

kDSReplyCWDSError An unknown error occurred while processing the request.

kDSReplyPacketSizeError The length of the message is less than the minimum for a
message of that type.

Handler Function

DoVersions()

See Also

DoVersions()

Messages Sent by Debugger

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

66 Freescale Semiconductor, Inc.

5.2.12 WriteMemory

Requests that CodeWarrior TRK write data to a specified memory location.

Command Set

Primary command set (level 1).

Fields

This message contains these fields:

Field Size Description

command ui8 kDSWriteMemory (defined in the
msgcmd.h file).

options ui8 This field can contain one of these
values:

• DS_MSG_MEMORY_SEGMENTED
• DS_MSG_MEMORY_PROTECTED
• DS_MSG_MEMORY_USERVIEW

For more information, see the
msgcmd.h file.

length ui16 The length of the data (a maximum of
2048 bytes).

start ui32 The starting address of the destination in
memory.

data ui8[] The data to write (a maximum of 2048
bytes).

Return Values

This message causes CodeWarrior TRK to return this value:

Return Value Field Size Description

length ui16 The amount of memory written.

Error Codes

CodeWarrior TRK can return these error codes:

Error Code Description

kDSReplyCWDSError An unknown error occurred while processing the request.

kDSReplyCWDSException An exception was thrown while processing the request.

kDSReplyInvalidMemoryRange The specified memory range is invalid.

Table continues on the next page...

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 67

Error Code Description

kDSReplyNotStopped The target application is running and must be stopped before
the debugger issues this request.

kDSReplyPacketSizeError The length of the message is less than the minimum for a
message of that type.

kDSReplyParameterError The value of the length field is greater than 2048 or the
value of the length field is not equal to the size of the data
field.

kDSReplyUnsupportedOptionError The specified value of the options field is unsupported.

Remarks

CodeWarrior TRK attempts to catch and handle any memory access exceptions that occur
while writing the data.

Handler Function

DoWriteMemory()

See Also
• DoWriteMemory()
• msgcmd.h

5.2.13 WriteRegisters

Requests that CodeWarrior TRK write data to a specified sequence of registers.

Command Set

Primary command set (level 1).

Fields

This message contains these fields:

Field Size Description

command ui8 kDSWriteRegisters (defined in the
msgcmd.h file).

options ui8 This field can contain one of these
values:

• kDSRegistersDefault
• kDSRegistersFP
• kDSRegistersExtended1
• kDSRegistersExtended2

Table continues on the next page...

Messages Sent by Debugger

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

68 Freescale Semiconductor, Inc.

Field Size Description

For more information, see the
msgcmd.h file.

firstRegister ui16 The number of the first register in the
sequence.

lastRegister ui16 The number of the last register in the
sequence.

registerData ui32[] An array of register values. The size of
each element depends on the size of the
registers. If the registers are 2 bytes
wide, then a new value starts every 2
bytes. If the registers are 4 bytes wide, a
new value starts every 4 bytes. The
maximum length of this array is 2048
bytes.

Return Values

None.

Error Codes

CodeWarrior TRK can return these error codes:

Error Code Description

kDSReplyCWDSError An unknown error occurred while processing the request.

kDSReplyCWDSException An exception was thrown while processing the request.

kDSReplyInvalidRegisterRange The specified register range is invalid.

kDSReplyNotStopped The target application is running and must be stopped before
the debugger issues this request.

kDSReplyPacketSizeError The length of the message is less than the minimum for a
message of that type.

kDSReplyUnsupportedOptionError The specified value of the options field is unsupported.

Remarks

After receiving a WriteRegisters request, CodeWarrior TRK writes the specified data into
the specified register sequence. CodeWarrior TRK attempts to catch and handle any
access exceptions that occur while writing.

NOTE
For information about registers, see the processor-specific
appendixes in this manual.

Handler Function

DoWriteRegisters()

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 69

See Also
• DoWriteRegisters()
• msgcmd.h

5.3 Messages Sent by CodeWarrior TRK

This section describes the messages that CodeWarrior TRK can send to the debugger.
Some messages are notifications; others are requests.

The message descriptions include such information as fields sent in the original message
and return values.

NOTE
The message descriptions omit acknowledgements and error
codes because the debugger always returns them.

CodeWarrior TRK can send these messages:
• NotifyException
• NotifyStopped
• ReadFile
• WriteFile

5.3.1 NotifyException

Notifies the debugger that an exception occurred on the target board.

Command Set

Primary command set (level 1).

Fields

This message contains these fields:

Field Size Description

command ui8 kDSNotifyException (defined in the
msgcmd.h file).

target-defined info target-specific The value of this field, which provides
state information about the target board,
differs for each target processor.

Messages Sent by CodeWarrior TRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

70 Freescale Semiconductor, Inc.

Field Size Description

Usually, this field contains information
such as the value of the PC (program
counter), the corresponding instruction,
and the exception ID. For more
information, see
TargetAddExceptionInfo().

Return Values

None.

Remarks

None.

See Also
• DoNotifyStopped
• TargetAddExceptionInfo()
• TargetAddStopInfo()
• TargetInterrupt()

5.3.2 NotifyStopped

Notifies the debugger that CodeWarrior TRK reached a breakpoint or completed a step
command.

Command Set

Primary command set (level 1).

Fields

This message contains these fields:

Field Size Description

command ui8 kDSNotifyStopped (defined in the
msgcmd.h file).

target-defined info target-specific The value of this field, which provides
state information about the target board,
differs for each target processor.
Usually, this field contains information
such as the value of the PC (program
counter) and the corresponding
instruction. For more information, see
TargetAddStopInfo().

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 71

Return Values

None.

Remarks

None.

See Also
• TargetInterrupt()
• TargetAddStopInfo()

5.3.3 ReadFile

Requests that the debugger read data from a file (for the target application). If the file is
stdin, the data is input from a console window.

Command Set

Extended command set (level 2).

Fields

This message contains these fields:

Field Size Description

command ui8 kDSReadFile (defined in the
msgcmd.h file).

file_handle ui32 The handle of the file to read. (stdin
has a predefined handle.) For more
information, see the DSFileHandle
definition in msgcmd.h.

length ui16 The length of the data to read from the
file (a maximum of 2048 bytes).

Return Values

This message causes the debugger to return these values:

Return Value Field Size Description

io_result ui8 Standard I/O result returned by the
debugger (kDSIONoError,
kDSIOError, or kDSIOEOF).

length ui16 The amount of data read.

file_data ui8[] The data (a maximum of 2048 bytes).

Messages Sent by CodeWarrior TRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

72 Freescale Semiconductor, Inc.

Remarks

The debugger can return less data than requested (but not more). For example, a console
read request usually returns as soon as the user presses Enter. After receiving the
requested data from the debugger, CodeWarrior TRK passes the data to the target
application.

See Also
• mslsupp.c

• targsupp.h

• SuppAccessFile()

5.3.4 WriteFile

Requests that the debugger write data from the target application to a file. If the file is
stdout or stderr, a console window displays the data.

Command Set

Extended command set (level 2).

Fields

This message contains these fields:

Field Size Description

command ui8 kDSWriteFile (defined in the
msgcmd.h file).

file_handle ui32 The handle of the file to write. (stdout
and stderr have predefined handles.)
For more information, see the
DSFileHandle definition in msgcmd.h.

length ui16 The length of the data to write to the file
(a maximum of 2048 bytes).

file_data ui8[] The data (a maximum of 2048 bytes).

Return Values

This message causes the debugger to return these values:

Chapter 5 Debug Message Interface Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 73

Return Value Field Size Description

io_result ui8 Standard I/O result returned by the
debugger (kDSIONoError,
kDSIOError, or kDSIOEOF).

length ui16 The amount of data written.

Remarks

The startup welcome message is sent as a kDSWriteFile message, but it is a special case and
does not require a reply.

See Also
• mslsupp.c targsupp.h

• SuppAccessFile()

Messages Sent by CodeWarrior TRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

74 Freescale Semiconductor, Inc.

Chapter 6
CodeWarrior TRK Function Reference

This chapter describes CodeWarrior TRK functions that may be relevant if you are
customizing CodeWarrior TRK for new target boards. You may have to change functions
that this chapter identifies as board-specific for new target boards.

This chapter describes these functions:

_reset() DoConnect()

DoContinue() DoCPUType()

DoFlushCache DoNotifyStopped()

DoReadMemory() DoReadRegisters()

DoReset() DoStep()

DoStop() DoSupportMask()

DoVersions() DoWriteMemory()

DoWriteRegisters() InitializeIntDrivenUART()

InitializeUART() InterruptHandler()

ReadUARTPoll() ReadUART1()

ReadUARTN() ReadUARTString()

SuppAccessFile() SwapAndGo()

TargetAccessMemory() TargetAddExceptionInfo()

TargetAddStopInfo() TargetContinue()

TargetFlushCache() TargetInterrupt()

TargetAccessDefault() TargetAccessExtended1()

TargetAccessExtended2() TargetAccessFP()

TargetSingleStep() TargetStepOutOfRange()

TargetSupportMask() TargetVersions()

TerminateUART() TransportIrqHandler()

ValidMemory32() WriteUART1()

WriteUARTN() WriteUARTString()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 75

6.1 _reset()

Resets the board and initializes CodeWarrior TRK.

Remarks

The _reset() function calls functions that initialize processor-specific and board-specific
items to reset the board. The _reset() function also can contain additional initializations.
After the initializations, _reset() jumps to _start.

NOTE
You must always examine _reset() to determine whether to
modify it when customizing CodeWarrior TRK for a new target
board. For more information, see CodeWarrior TRK
Initializations and Customizing CodeWarrior TRK
Initializations.

Source File

For source file information, see the processor-specific appendixes in this manual.

Board-specific?

Yes.

6.2 DoConnect()

Responds to a Connect request from the debugger.

 DSError DoConnect (MessageBuffer* b);

b

The message buffer that contains the Connect request and the reply to the request. The
Connect request message does not contain input arguments. For more information, see
Connect.

Returns

Returns a DSError error code.

Remarks

Sends an acknowledgment to the debugger.

Source File

DoConnect()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

76 Freescale Semiconductor, Inc.

msghndlr.c

Board-specific?

No.

See Also

Connect

6.3 DoContinue()

Responds to a Continue request from the debugger.

 DSError DoContinue (MessageBuffer* b);

b

The message buffer that contains the Continue request and the reply to the request. The
Continue request message does not contain input arguments. For more information, see
Continue.

Returns

Returns a DSError error code.

Remarks

This procedure swaps in the context of the target application and starts running it again.
Because DoContinue() is processor-specific, most of the work is done in the board-level
function TargetContinue().

Source File

msghndlr.c

Board-specific?

No.

See Also
• TargetContinue()
• Continue

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 77

6.4 DoCPUType()

Responds to a CPUType request from the debugger.

 DSError DoCPUType (MessageBuffer* b);

b

The message buffer that contains the CPUType request and the reply to the request. The
CPUType request message does not contain input arguments. For more information, see
CPUType.

Returns

Returns a DSError error code.

Remarks

The reply message for this function returns relevant information about the CPU and
registers of the target board. For more information, see CPUType.

Source File

msghndlr.c

Board-Specific?

No.

See Also

msgcmd.h

6.5 DoFlushCache

Responds to a FlushCache request from the debugger.

 DSError DoFlushCache (MessageBuffer* b);

b

The message buffer that contains the FlushCache request and the reply to the request. For
information about the arguments contained in this message, see FlushCache.

Returns

Returns a DSError error code.

DoFlushCache

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

78 Freescale Semiconductor, Inc.

Remarks

The message buffer contains values that specify the range of memory to flush. The
DoFlushCache() function calls TargetFlushCache().

Source File

msghndlr.c

Board-specific?

No.

See Also
• TargetFlushCache()
• FlushCache
• msgcmd.h

6.6 DoNotifyStopped()

Notifies the debugger that the target application stopped executing.

 DSError DoNotifyStopped(MessageCommandID command);

command

The type of message to send to the debugger, which can be one of these:

• kDSNotifyStopped

• kDSNotifyException

See msgcmd.h for more information about these messages.

Returns

Returns a DSError error code.

Remarks

To build the notification message, DoNotifyStopped() calls TargetAddStopInfo() or
TargetAddExceptionInfo(), depending on which kind of notification is being sent.

Source File

notify.c

Board-specific?

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 79

No.

See Also
• TargetAddExceptionInfo()
• TargetAddStopInfo()
• NotifyStopped
• msgcmd.h

6.7 DoReadMemory()

Reads a section of memory from the target board in response to a ReadMemory request
from the debugger.

 DSError DoReadMemory (MessageBuffer* b);

b

The message buffer that contains the ReadMemory request and the reply to the request.
For information about the arguments contained in this message, see ReadMemory.

Returns

Returns a DSError error code.

Remarks

The DoReadMemory() function checks that the specified memory addresses are within the 32-
bit range and that the range of addresses is valid for the target hardware.

NOTE
The DoReadMemory() function does not support extended memory
addresses.

The DoReadMemory() function calls TargetAccessMemory().

Source File

msghndlr.c

Board-specific?

No.

See Also
• TargetAccessMemory()
• ReadMemory

DoReadMemory()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

80 Freescale Semiconductor, Inc.

6.8 DoReadRegisters()

Reads a sequence of registers from the target board in response to a ReadRegisters
request from the debugger.

 DSError DoReadRegisters (MessageBuffer* b);

b

The message buffer that contains the ReadRegisters request and the reply to the request.
For information about the arguments contained in this message, see ReadRegisters.

Returns

Returns a DSError error code.

Remarks

The DoReadRegisters() function checks for a valid input sequence. (The number of the first
register to read must be smaller than the number of the last register to read.)

Then DoReadRegisters() checks the register type. Depending on the register type,
DoReadRegisters() calls one of these functions:

• kDSRegistersDefault

Causes DoReadRegisters() to call TargetAccessDefault().

• kDSRegistersFP

Causes DoReadRegisters() to call TargetAccessFP().

• kDSRegistersExtended1

Causes DoReadRegisters() to call TargetAccessExtended1().

• kDSRegistersExtended2

Causes DoReadRegisters() to call TargetAccessExtended2().

The msgcmd.h file defines the previously listed register type constants.

NOTE
For more information about register definitions, see the
processor-specific appendixes in this manual.

Source File

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 81

msghndlr.c

Board-specific?

No.

See Also
• TargetAccessDefault()
• TargetAccessFP()
• TargetAccessExtended1()
• TargetAccessExtended2()
• ReadRegisters
• msgcmd.h

6.9 DoReset()

The DoReset() function re-initializes CodeWarrior TRK and resets the board hardware in
response to a Reset request from the debugger.

 DSError DoReset (MessageBuffer* b);

b

The message buffer that contains the Reset request and the reply to the request. The Reset
request message does not contain input arguments. For more information, see Reset.

Returns

None.

Remarks

Calls the _reset code segment, which is the starting point for CodeWarrior TRK
initialization. Sends an acknowledgment to the debugger before resetting because
DoReset() does not resume control after calling _reset.

Source File

msghndlr.c

Board-specific?

No.

See Also

DoReset()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

82 Freescale Semiconductor, Inc.

• _reset()
• Reset

6.10 DoStep()

The DoStep() function steps into or over target application instructions as specified by the
options argument of the Step request message received from the debugger.

 DSError DoStep (MessageBuffer* b);

b

The message buffer that contains the Step request and the reply to the request. For
information about the arguments contained in this message, see Step.

Returns

Returns a DSError error code.

Remarks

This list describes what DoStep() does based on the value of the options input argument
(passed as part of the Step request message):

• kDSStepSingle

Causes DoStep() to call the processor-specific function TargetSingleStep(), which steps
the number of steps specified in the message.

• kDSStepOutOfRange

Causes DoStep() to call the processor-specific function TargetStepOutOfRange(), which
runs the code until the PC (program counter) is outside the range of values specified
in the message.

Source File

msghndlr.c

Board-specific?

No.

See Also
• TargetSingleStep()

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 83

• TargetStepOutOfRange()
• Step

6.11 DoStop()

Responds to a Stop request from the debugger.

 DSError DoStop (MessageBuffer* b);

b

The message buffer that contains the Stop request and the reply to the request. The Stop
request message does not contain input arguments. For more information, see Stop.

Returns

Returns a DSError error code.

Remarks

This function stops running the target application and sets the running flag to false. For
more information, see CodeWarrior TRK Execution States.

Source File

msghndlr.c

Board-specific?

No.

See Also

Stop

6.12 DoSupportMask()

The DoSupportMask() function sends a vector that indicates which messages CodeWarrior
TRK supports in response to a SupportMask request from the debugger.

 DSError DoSupportMask (MessageBuffer* b);

b

DoStop()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

84 Freescale Semiconductor, Inc.

The message buffer that contains the SupportMask request and the reply to the request.
The SupportMask request message does not contain input arguments. For more
information, see SupportMask.

Returns

Returns a DSError error code.

Remarks

The DoSupportMask() function calls TargetSupportMask(), which returns a 256-bit vector that
indicates which messages of the debug message interface CodeWarrior TRK supports.
Then DoSupportMask() places the vector in a reply message that CodeWarrior TRK sends to
the debugger.

In the returned bit-vector, each bit corresponds to the message (type MessageCommandID) with
an ID matching the position of the bit in the array. If the value of the bit is 1, the message
is available; if the value of the bit is 0, the message is not available.

For example, if kDSReset is available, the value of the fourth bit is 1 because kDSReset is the
fourth message.

For more information, see msgcmd.h.

Source File

msghndlr.c

Board-specific?

No.

See Also
• TargetSupportMask()
• SupportMask

6.13 DoVersions()

Replies with a set of four version numbers in response to a Versions request from the
debugger.

 DSError DoVersions (MessageBuffer* b);

b

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 85

The message buffer that contains the Versions request and the reply to the request. The
Versions request message does not contain input arguments. For more information, see
Versions.

Returns

Returns a DSError error code.

Remarks

The DoVersions() function replies to the debugger with a set of four version numbers.
These represent two attributes called kernel and protocol, each of which has a major and
a minor version number.

The kernel attribute is the version of the CodeWarrior TRK build. The protocol attribute
is the version of the debug message interface and low-level serial protocols used by
CodeWarrior TRK.

NOTE
If you change CodeWarrior TRK or its protocols, you can
update the kernel and protocol version numbers, respectively.
For more information, see Changing Versions-Related Code.

The DoVersions() function calls TargetVersions().

Source File

msghndlr.c

Board-specific?

No.

See Also
• TargetVersions()
• Versions

6.14 DoWriteMemory()

Writes values to a segment of memory on the target board in response to a WriteMemory
request from the debugger.

 DSError DoWriteMemory (MessageBuffer* b);

b

DoWriteMemory()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

86 Freescale Semiconductor, Inc.

The message buffer that contains the WriteMemory request and the reply to the request.
For information about the arguments contained in this message, see WriteMemory.

Returns

Returns a DSError error code.

Remarks

The DoWriteMemory() function checks that the specified memory addresses are within the
32-bit range and that the range of addresses is valid for the target hardware.

NOTE
The DoWriteMemory() function does not support extended memory
addresses.

The DoWriteMemory() function calls TargetAccessMemory().

Source File

msghndlr.c

Board-specific?

No.

See Also
• TargetAccessMemory()
• WriteMemory

6.15 DoWriteRegisters()

Writes values to a sequence of registers on the target board in response to a
WriteRegisters request from the debugger.

 DSError DoWriteRegisters (MessageBuffer* b);

b

The message buffer that contains the WriteRegisters request and the reply to the request.
For information about the arguments contained in this message, see WriteRegisters.

Returns

Returns a DSError error code.

Remarks

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 87

The DoWriteRegisters() function checks for a valid input sequence. (The number of the first
register must be smaller than the number of the last register in the specified sequence of
registers.)

Then DoWriteRegisters() checks the register type. Depending on the register type,
DoWriteRegisters() calls a function as shown in this list:

• kDSRegistersDefault

Causes DoWriteRegisters() to call TargetAccessDefault().

• kDSRegistersFP

Causes DoWriteRegisters() to call TargetAccessFP().

• kDSRegistersExtended1

Causes DoWriteRegisters() to call TargetAccessExtended1().

• kDSRegistersExtended2

Causes DoWriteRegisters() to call TargetAccessExtended2().

The msgcmd.h file defines the previously listed register type constants.

NOTE
For more information about register definitions, see the
processor-specific appendixes in this manual.

Source File

msghndlr.c

Board-specific?

No.

See Also
• TargetAccessDefault()
• TargetAccessExtended1()
• TargetAccessExtended2()
• TargetAccessFP()
• WriteRegisters
• msgcmd.h

InitializeIntDrivenUART()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

88 Freescale Semiconductor, Inc.

6.16 InitializeIntDrivenUART()

Initializes the UART library when using interrupt-driven I/O.

 UARTError InitializeIntDrivenUART(
 UARTBaudRate baudRate,
 unsigned char intDrivenInput,
 unsigned char intDrivenOutput,
 volatile unsigned char** inputPendingPtrRef);

baudRate

The data transmission rate (baud rate) for the UART.

intDrivenInput

Enables interrupt-driven input when set to true.

intDrivenOutput

Enables interrupt-driven output when set to true.

NOTE
CodeWarrior TRK uses interrupt-driven input but not interrupt-
driven output.

inputPendingPtrRef

On return, a pointer to an input-pending flag that the calling function can use to
determine whether input arrived. (When interrupt-driven input is disabled, the value of
this flag is always false.)

Returns

Returns a UARTError error code.

Remarks

The status of the input-pending flag can change at any time unless you mask the serial
interrupt.

Source File

For source file information, see the processor-specific appendixes in this manual.

Board-specific?

Yes.

See Also
• InterruptHandler()

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 89

• SwapAndGo()
• TransportIrqHandler()

6.17 InitializeUART()

Initializes the serial hardware on the target board.

NOTE
You must change InitializeUART() for new target boards.

 UARTError InitializeUART (UARTBaudRate baudRate);

baudRate

The rate at which CodeWarrior TRK communicates with the debugger. The UART.h file
defines the type UARTBaudRate.

Returns

Returns a UARTError error code.

Source File

uart.c

Board-specific?

Yes.

6.18 InterruptHandler()

Handles an interrupt received by CodeWarrior TRK.

 void InterruptHandler();

Returns

None.

Remarks

After receiving the interrupt, CodeWarrior TRK saves the state (context) of the target
application (which had been running). CodeWarrior TRK then restores its own state and
handles the interrupt.

InitializeUART()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

90 Freescale Semiconductor, Inc.

If the value of TRK_TRANSPORT_INT_DRIVEN is 1 (indicating that this CodeWarrior TRK is
interrupt-driven), InterruptHandler() first determines whether the interrupt is a
communication interrupt. If it is, InterruptHandler() calls TransportIrqHandler() to process
the interrupt. Otherwise, InterruptHandler() processes the non-communication interrupt
normally.

NOTE
For some target boards, InterruptHandler() is found in a C
program file; for others, InterruptHandler() resides in an
assembly language file and its name differs slightly. For more
information, see the processor-specific appendixes.

Source File

For source file information, see the processor-specific appendixes in this manual.

Board-specific?

No.

See Also
• InitializeIntDrivenUART()
• SwapAndGo()
• TransportIrqHandler()

6.19 ReadUARTPoll()

Polls the serial device to see whether there is a character to read. If there is, ReadUARTPoll()
reads it; otherwise, ReadUARTPoll() returns an error.

NOTE
You must change ReadUARTPoll() for new target boards.

 UARTError ReadUARTPoll (char* c);

c

Pointer to the output variable for the character read.

Returns

Returns one of these UARTError error codes:

• kUARTNoData

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 91

Indicates that no character was available to read.

• kUARTNoError

Indicates that no error occurred.

Source File

uart.c

Board-specific?

Yes.

6.20 ReadUART1()

Reads one byte from the serial device.

 UARTError ReadUART1 (char* c);

c

Pointer to the output variable for the character read.

Returns

Returns a UARTError error code.

Remarks

The ReadUART1() function waits until a character is available to read or an error occurs.

NOTE
You must change ReadUART1() for new target boards.

Source File

uart.c

Board-specific?

Yes.

6.21 ReadUARTN()

ReadUART1()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

92 Freescale Semiconductor, Inc.

Reads the specified number of bytes from the serial device.

 UARTError ReadUARTN (void*bytes, unsigned long limit);

bytes

Pointer to the output buffer for the data read.

limit

Number of bytes to read and size of output buffer.

Returns

Returns a UARTError error code.

Remarks

Returns after reading the specified number of bytes (or encountering an error.)

NOTE
The ReadUARTN() function calls ReadUART1(); consequently,
ReadUARTN() executes correctly as long as ReadUART1() does.

Source File

uart.c

Board-specific?

No.

See Also

ReadUART1()

6.22 ReadUARTString()

Reads a terminated string from the serial device.

 UARTError ReadUARTString(
 char* s,
 unsigned long limit,
 char termChar);

s

Pointer to the output buffer for the string read.

limit

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 93

Size of the output buffer.

termChar

Character that signals the end of the string (in the input stream.)

Returns

Returns a UARTError error code.

Remarks

The ReadUARTString() function terminates the string (in the output buffer) with a null (\0)
character. Consequently, the output buffer must be one byte longer than the length of the
string.

The ReadUARTString() function returns after reading a terminating character from the input
or when the buffer overflows. If the input stream stops, ReadUARTString() does not time-
out.

NOTE
The ReadUARTString() function calls ReadUART1(); consequently,
ReadUARTString() executes correctly as long as ReadUART1() does.

Source File

uart.c

Board-specific?

No.

See Also

ReadUART1()

6.23 SuppAccessFile()

Creates and sends a ReadFile or WriteFile message to the debugger. These messages
instruct the debugger to read data from a file or write data to a file on the host.

 DSError SuppAccessFile(
 ui32 file_handle,
 ui8* data,
 size_t* count,
 DSIOResult* io_result,
 bool need_reply,
 bool read);

SuppAccessFile()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

94 Freescale Semiconductor, Inc.

file_handle

The handle of the file to be read or written. stdin, stdout, and stderr have predefined
handles. For more information, see the definition of DSFileHandle in msgcmd.h.

data

Data to be read or written to the file.

count

Pointer to the size of the data to be read or written, in bytes. On return, points to the size
of the data that was read or written.

io_result

Pointer to storage for an I/O result error code. For more information, see the definition of
DSIOResult in msgcmd.h.

need_reply

If TRUE, SuppAccessFile() waits for an acknowledgement from the debugger. If the debugger
sends an invalid acknowledgement or SuppAccessFile() waits for the duration of the
timeout limit, SuppAccessFile() resends the message.

read

If TRUE, a ReadFile message is sent. If FALSE, a WriteFile message is sent.

Returns

Returns a DSError error code.

Remarks

None.

Source File

support.c

Board-specific?

No.

See Also

msgcmd.h

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 95

6.24 SwapAndGo()

Saves the state (context) of CodeWarrior TRK, restores the state of the target application,
and continues executing the target application from the PC (program counter).

 void SwapAndGo();

Returns

None.

Remarks

The TargetContinue() function calls SwapAndGo() to resume running the target application
after CodeWarrior TRK responds to an interrupt or a message from the debugger.

Source File

For source file information, see the processor-specific appendixes in this manual.

Board-specific?

No.

See Also
• InitializeIntDrivenUART()
• InterruptHandler()
• TransportIrqHandler()

6.25 TargetAccessMemory()

Reads from or writes to memory in response to a ReadMemory request or a
WriteMemory request.

 DSError TargetAccessMemory(
 void* Data,
 void* virtualAddress,
 size_t* memorySize,
 MemoryAccessOptions accessOptions,
 bool read);

Data

For a read operation, contains the output of the read. For a write operation, contains a
pointer to the data to write.

virtualAddress

TargetAccessMemory()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

96 Freescale Semiconductor, Inc.

The starting address in memory for the read or write operation.

memorySize

For a read operation this is, on input, the requested size of the area to read and, on output,
the size of the area read by TargetAccessMemory(). For a write operation this is, on input, the
requested amount of data to write and, on output, the amount of data written by
TargetAccessMemory().

accessOptions

A value currently not used by the TargetAccessMemory() function. (The value, while not
used by this function, is the same value specified for the options field of the
ReadMemory and WriteMemory requests. For more information, see ReadMemory and
WriteMemory.

read

A Boolean value that selects a read or write operation. A value of TRUE selects a read
operation; a value of FALSE selects a write operation.

Returns

Returns a DSError error code.

Remarks

Both DoReadMemory() and DoWriteMemory() call TargetAccessMemory() to access memory.

A Boolean parameter passed by the calling function specifies the read or write operation.
The TargetAccessMemory() function calls ValidMemory32(), which verifies the target addresses
based on the memory configuration of the board.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoReadMemory()
• DoWriteMemory()
• ValidMemory32()
• ReadMemory
• WriteMemory

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 97

6.26 TargetAddExceptionInfo()

Builds a NotifyException message when notifying the debugger that an exception occurred
on the board.

 DSError TargetAddExceptionInfo (MessageBuffer* b);

b

The message buffer that contains the NotifyException notification. For information about
the arguments contained in this message, see NotifyException.

Returns

Returns a DSError error code.

Remarks

The contents of the message buffer differs depending on the processor. Examples of
information that the message can contain follow:

• The PC (Program Counter) at the time the exception was generated
• The instruction at that value of the PC
• The exception ID

The register definition files define the specific information returned for your target
processor. For more information about the register definition files and exceptions, see the
processor-specific appendixes in this manual.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoNotifyStopped()
• NotifyException

6.27 TargetAddStopInfo()

TargetAddExceptionInfo()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

98 Freescale Semiconductor, Inc.

Builds a NotifyStopped message when notifying the debugger that the target application
stopped.

 DSError TargetAddStopInfo (MessageBuffer* b);

b

The message buffer that contains the NotifyStopped notification. For information about
the arguments contained in this message, see NotifyStopped.

Returns

Returns a DSError error code.

Remarks

The contents of the message buffer differs depending on the processor. Examples of
information that the message can contain follow:

• The PC (Program Counter) at the time the exception was generated
• The instruction at that value of the PC
• The exception ID

Examine the CodeWarrior TRK source code to see the specific information returned for
your target processor.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoNotifyStopped()
• NotifyStopped

6.28 TargetContinue()

The TargetContinue() function starts the target application running and then blocks until
control returns to CodeWarrior TRK (because a relevant exception occurred).

 DSError TargetContinue (MessageBuffer* b);

b

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 99

This message buffer has no input parameters and no reply message. For more
information, see Continue.

Returns

Returns a DSError error code.

Remarks

The TargetContinue() function starts running the program by calling SwapAndGo() and sets
the running flag to true. When CodeWarrior TRK regains control (because of an
unhandled exception or breakpoint), control returns to the CodeWarrior TRK core, which
properly handles the exception.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoContinue()
• Continue
• SwapAndGo()

6.29 TargetFlushCache()

Flushes the caches as specified by the input parameters.

 DSError TargetFlushCache(
 ui8 options
 void* start
 void* end);

options

The type of cache to flush.

start

The starting address of the memory to flush in the cache.

end

The ending address of the memory to flush in the cache.

TargetFlushCache()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

100 Freescale Semiconductor, Inc.

Returns

Returns a DSError error code.

Remarks

You may have to modify TargetFlushCache() if you create a new CodeWarrior TRK
implementation to work with a currently unsupported processor. In this case, your new
version of TargetFlushCache() must do one of these:

• Flush the caches as specified by the options, start, and end parameters
• Flush more than the specified amount of cache

For example, if you choose not to examine the options parameter to see which type of
cache to flush, you must flush all the caches on the board. If you examine the options
parameter but not the start and end parameters, you must flush the entire cache of the type
specified by the options parameter.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoFlushCache
• FlushCache

6.30 TargetInterrupt()

Handles an exception by notifying the debugger.

 DSError TargetInterrupt (NubEvent* event);

event

The original event triggered by an exception or breakpoint.

Returns

Returns a DSError error code.

Remarks

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 101

The TargetInterrupt() function, which is called when an exception or breakpoint occurs,
calls DoNotifyStopped() to notify the debugger. The TargetInterrupt() function also sets the
running flag to false unless CodeWarrior TRK is stepping through multiple lines and
stepping is not complete.

Source File

targimpl.c

Board-specific?

No.

See Also

DoNotifyStopped()

6.31 TargetAccessDefault()

Reads data from or writes data to a sequence of registers in the default register block.

 DSError TargetAccessDefault(
 unsigned int firstRegister,
 unsigned int lastRegister,
 MessageBuffer* b,
 size_t* registerStorageSize
 bool read);

firstRegister

The number of the first register in the sequence.

lastRegister

The number of the last register in the sequence.

b

The message buffer that contains the ReadRegisters or WriteRegisters request and the
reply to the request. For information about the arguments contained in this message, see
ReadRegisters or WriteRegisters.

NOTE
The DoReadRegisters() or DoWriteRegisters() functions pass the
message buffer to TargetAccessDefault().

registerStorageSize

On output, the number of bytes read or written (a maximum of 2048 bytes).

TargetAccessDefault()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

102 Freescale Semiconductor, Inc.

read

A Boolean variable that instructs CodeWarrior TRK to read the specified registers if the
variable is true. Otherwise, CodeWarrior TRK writes the specified registers.

Returns

Returns a DSError error code.

Remarks

The TargetAccessDefault() function verifies the range of the specified registers before
accessing them and attempts to catch exceptions that occur while reading or writing the
registers.

The DoReadRegisters() or DoWriteRegisters() functions, which call TargetAccessDefault(),
place the position pointer at the correct position in the message buffer before calling this
function.

NOTE
For more information about registers, see the processor-specific
appendixes in this manual.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoReadRegisters()
• DoWriteRegisters()
• ReadRegisters
• WriteRegisters

6.32 TargetAccessExtended1()

Reads data from or writes data to a sequence of registers in the extended1 register block.

 DSError TargetAccessExtended1(
 unsigned int firstRegister,
 unsigned int lastRegister,
 MessageBuffer* b,
 size_t* registerStorageSize
 bool read);

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 103

firstRegister

The number of the first register in the sequence.

lastRegister

The number of the last register in the sequence.

b

The message buffer that contains the ReadRegisters or WriteRegisters request and the
reply to the request. For information about the arguments contained in this message, see
ReadRegisters or WriteRegisters.

NOTE
The DoReadRegisters() or DoWriteRegisters() functions pass the
message buffer to TargetAccessExtended1().

registerStorageSize

On output, the number of bytes read or written (a maximum of 2048 bytes).

read

A Boolean variable that instructs CodeWarrior TRK to read the specified registers if the
variable is true. Otherwise, CodeWarrior TRK writes the specified registers.

Returns

Returns a DSError error code.

Remarks

The TargetAccessExtended1() function verifies the range of the specified registers before
accessing them and attempts to catch exceptions that occur while reading from or writing
to the registers.

NOTE
For more information about registers, see the processor-specific
appendixes in this manual.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoReadRegisters()

TargetAccessExtended1()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

104 Freescale Semiconductor, Inc.

• DoWriteRegisters()
• ReadRegisters
• WriteRegisters

6.33 TargetAccessExtended2()

Reads data from or writes data to a sequence of registers in the extended2 register block.

 DSError TargetAccessExtended2(
 unsigned int firstRegister,
 unsigned int lastRegister,
 MessageBuffer* b,
 size_t* registerStorageSize
 bool read);

firstRegister

The number of the first register in the sequence.

lastRegister

The number of the last register in the sequence.

b

The message buffer that contains the ReadRegisters or WriteRegisters request and the
reply to the request. For information about the arguments contained in this message, see
ReadRegisters or WriteRegisters.

NOTE
The DoReadRegisters() or DoWriteRegisters() functions pass the
message buffer to TargetAccessExtended2().

registerStorageSize

On output, the number of bytes read or written (a maximum of 2048 bytes).

read

A Boolean variable that instructs CodeWarrior TRK to read the specified registers if the
variable is true. Otherwise, CodeWarrior TRK writes the specified registers.

Returns

Returns a DSError error code.

Remarks

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 105

The TargetAccessExtended2() function verifies the range of the specified registers before
accessing them and attempts to catch exceptions that occur while reading the registers.

NOTE
For more information about registers, see the processor-specific
appendixes in this manual.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoReadRegisters()
• DoWriteRegisters()
• ReadRegisters
• WriteRegisters

6.34 TargetAccessFP()

Reads data from or writes data to a sequence of registers in the floating point register
block.

 DSError TargetAccessFP(
 unsigned int firstRegister,
 unsigned int lastRegister,
 MessageBuffer* b,
 size_t* registerStorageSize
 bool read);

firstRegister

The number of the first register in the sequence.

lastRegister

The number of the last register in the sequence.

b

The message buffer that contains the ReadRegisters or WriteRegisters request and the
reply to the request. For information about the arguments contained in this message, see
ReadRegisters or WriteRegisters.

TargetAccessFP()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

106 Freescale Semiconductor, Inc.

NOTE
The DoReadRegisters() or DoWriteRegisters() functions pass the
message buffer to TargetAccessFP().

registerStorageSize

On output, the number of bytes read or written (a maximum of 2048 bytes).

read

A Boolean variable that instructs CodeWarrior TRK to read the specified registers if the
variable is true. Otherwise, CodeWarrior TRK writes the specified registers.

Returns

Returns a DSError error code.

Remarks

The TargetAccessFP() function verifies the range of the specified registers before accessing
them and attempts to catch exceptions that occur while reading the registers.

NOTE
For more information about registers, see the processor-specific
appendixes in this manual.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoReadRegisters()
• DoWriteRegisters()
• ReadRegisters
• WriteRegisters

6.35 TargetSingleStep()

Steps into or over a specified number of instructions.

 DSError TargetSingleStep(
 unsigned count,
 bool stepOver);

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 107

count

The number of instructions to step over or into.

stepOver

A Boolean value that instructs CodeWarrior TRK to either step into or step over the
number of instructions specified by the count parameter. (A value of 1 indicates a request
to step over; a value of 0 indicates a request to step into.)

Returns

Returns a DSError error code.

Remarks

The TargetSingleStep() function sets up the trace exception and steps into or over the
requested number of instructions. (After each instruction, TargetSingleStep() checks
whether that instruction is the last instruction to step through.)

Source File

targimpl.c

Board-specific?

No.

See Also
• DoStep()
• Step

6.36 TargetStepOutOfRange()

Runs the target application until the PC (Program Counter) is outside a specified range of
values.

 DSError TargetStepOutOfRange(
 ui32 start,
 ui32 end
 bool stepOver);

start

The starting address of the range.

end

TargetStepOutOfRange()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

108 Freescale Semiconductor, Inc.

The ending address of the range.

stepOver

A Boolean value that instructs CodeWarrior TRK to either step into or step over
instructions until the PC (Program Counter) is outside a specified range of values. (A
value of 1 indicates a request to step over; a value of 0 indicates a request to step into.)

Returns

Returns a DSError error code.

Remarks

The TargetStepOutOfRange() function sets up the trace exception. After each instruction,
TargetStepOutOfRange() checks whether the PC is outside the specified range of values.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoStep()
• Step

6.37 TargetSupportMask()

Returns a mask that indicates which debug messages the current CodeWarrior TRK
supports.

 DSError TargetSupportMask (DSSupportMask* mask)

mask

A bit-array of 32 bytes, where each bit corresponds to the message (type MessageCommandID)
with an ID matching the position of the bit in the array. If the value of the bit is 1, the
message is available; if the value of the bit is 0, the message is not available.

For example, if kDSReset is available, the value of the fourth bit is 1 because kDSReset is the
fourth message.

For more information, see msgcmd.h.

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 109

Returns

None.

Remarks

Changing the support mask values does not require changing this function because the
values are defined in the file default_supp_mask.h. For more information, see Changing
SupportMask-Related Code.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoSupportMask()
• SupportMask

6.38 TargetVersions()

Returns a set of four version numbers for the running CodeWarrior TRK build.

 DSError TargetVersions (DSVersions* versions);

versions

Output variable containing version information for the running CodeWarrior TRK build.

Returns

Returns a DSError error code (always returns kNoError).

Remarks

The TargetVersions() function replies to the debugger with a set of four version numbers.
These represent two attributes called kernel and protocol, each of which has a major and
a minor version number.

The kernel attribute is the version of the CodeWarrior TRK build. The protocol attribute
is the version of the debug message interface and low-level serial protocols used by
CodeWarrior TRK.

TargetVersions()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

110 Freescale Semiconductor, Inc.

NOTE
If you change CodeWarrior TRK or its protocols, you can
update the kernel and protocol version numbers, respectively.
For more information, see Changing Versions-Related Code.

Source File

targimpl.c

Board-specific?

No.

See Also
• DoVersions()
• Versions
• target.h

6.39 TerminateUART()

Deactivate the serial device.

 UARTError TerminateUART (void);

Returns

Returns a UARTError error code.

Remarks

The default implementation of CodeWarrior TRK does not call this function. However,
you can run an operating system on the target board while you are debugging using
CodeWarrior TRK. When you finish debugging, you can use this function to release the
UART device so that you can run a different program on the target board.

NOTE
You must implement TerminateUART() for your target board
before attempting to call it.

Source File

uart.c

Board-specific?

Yes.

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 111

6.40 TransportIrqHandler()

Handles a UART interrupt.

NOTE
You must change TransportIrqHandler() for new target boards if
you are using interrupt-driven communication with
CodeWarrior TRK.

 asm void TransportIrqHandler(void);

Returns

None.

Remarks

The TransportIrqHandler() function is part of the UART driver code. The CodeWarrior
TRK InterruptHandler() function calls TransportIrqHandler(), which disables interrupts
while it is running. For a serial input interrupt, TransportIrqHandler() gets the incoming
characters from the UART, stores them in a buffer, and sets the input-pending flag to
true. The ReadUARTPoll() function gets the next character from the buffer and clears the
input-pending flag if the buffer becomes empty.

When creating your own implementation of TransportIrqHandler(), do not assume that the
registers hold any particular values. The TransportIrqHandler() function always must return
to the calling function.

Source File

For source file information, see the processor-specific appendixes in this manual.

Board-specific?

Yes.

See Also
• InitializeIntDrivenUART()
• InterruptHandler()
• SwapAndGo()

6.41 ValidMemory32()

TransportIrqHandler()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

112 Freescale Semiconductor, Inc.

Verifies the range of addresses for the target board when CodeWarrior TRK reads or
writes to memory.

 DSError ValidMemory32(
 const void* addr,
 size_t length,
 ValidMemoryOptions readWriteable);

addr

The starting address of the memory segment.

length

The length of the memory segment.

readWriteable

This parameter must be one of these values:

• kValidMemoryReadable

• kValidMemoryWriteable

Returns

Returns a DSError error code. If the memory segment is valid, returns kNoError, else returns
kInvalidMemory.

Remarks

The ValidMemory32() function is not board-specific. However, ValidMemory32() uses a global
variable called gMemMap, which contains board-specific memory layout information.

NOTE
To customize the memory layout information for a new target
board, change the definition of gMemMap in the memmap.h file.

Source File

targimpl.c

Board-specific?

No.

See Also

memmap.h

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 113

6.42 WriteUART1()

Writes one byte to the serial device.

NOTE
You must change WriteUART1() for new target boards.

 UARTError WriteUART1 (char c);

c

The character to write.

Returns

Returns a UARTError error code.

Source File

uart.c

Board-specific?

Yes.

See Also
• WriteUARTN()
• WriteUARTString()

6.43 WriteUARTN()

Writes n bytes to the serial device.

NOTE
The WriteUARTN() function calls WriteUART1(); consequently,
WriteUARTN() executes correctly as long as WriteUART1() does.

 UARTError WriteUARTN(
 const void* bytes,
 unsigned long length);

bytes

Pointer to the input data.

length

The number of bytes to write.

WriteUARTN()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

114 Freescale Semiconductor, Inc.

Returns

Returns a UARTError error code.

Source File

uart.c

Board-specific?

No.

See Also
• WriteUART1()
• WriteUARTString()

6.44 WriteUARTString()

Writes a character string to the serial device.

 UARTError WriteUARTString (const char* string);

string

Pointer to the input data.

Returns

Returns a UARTError error code.

Remarks

The input string must have a null termination character (\0), but this terminating null
character is not written to the serial device.

NOTE
The WriteUARTString() function calls WriteUARTN(), which calls
WriteUART1(). Consequently, WriteUARTString() executes correctly
as long as WriteUART1() does.

Source File

uart.c

Board-specific?

No.

Chapter 6 CodeWarrior TRK Function Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 115

See Also
• WriteUART1()
• WriteUARTN()

WriteUARTString()

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

116 Freescale Semiconductor, Inc.

Chapter 7
AppTRK Reference

This chapter defines what AppTRK is and explains how to use it. This chapter includes
these topics:

• What is AppTRK?
• Differences Between AppTRK and CodeWarrior TRK
• Using AppTRK
• Modifying AppTRK
• Creating AppTRK for a Non-Freescale Linux Image
• Conditions under which AppTRK Must Be Modified

7.1 What is AppTRK?

AppTRK is a program that runs on development boards that boot embedded Linux.
AppTRK is a Linux application that lets the CodeWarrior debugger control other Linux
applications running on the board. Essentially, AppTRK is CodeWarrior TRK
transformed into a Linux application-hence the name AppTRK.

7.2 Differences Between AppTRK and CodeWarrior TRK

The main difference between AppTRK and CodeWarrior TRK is that AppTRK is a
Linux application. However, there are other important differences:

• In most situations, you do not need to change AppTRK source code.

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 117

AppTRK does not interact directly with the hardware. Instead, AppTRK uses the API
of the embedded Linux operating system. As a result, once Freescale creates an
embedded Linux board support package (BSP) for a given development board,
AppTRK automatically works on this board.

• Each time you power-up your board, you must reconfigure the link between
AppTRK and the CodeWarrior debugger.

CodeWarrior TRK communicates with the debugger over a serial or Ethernet
connection using an asynchronous protocol. Once configured, this setup requires no
changes.

AppTRK communicates with the debugger over an Ethernet connection using the
TCP/IP protocol. Because the development board's Ethernet port "forgets" its IP
address each time the board is powered off, you must reassign this address each time
you power-up the board.

• Each time you reboot embedded Linux, you must launch AppTRK.

Because AppTRK is just another Linux application, you must launch AppTRK each
time you reboot the board, unless you configure the Linux to automatically start the
AppTRK. To do so, configure the IP address and start the AppTRK on a default port.

NOTE
For detailed instructions on working with the AppTRK
package, refer the SDK user manual. The document is
available in the iso/help/documents/pdf folder of the SDK
layout.

7.3 Using AppTRK

This section shows you how to set up an embedded Linux development environment,
launch AppTRK, and create a CodeWarrior project such that the CodeWarrior debugger
and AppTRK can communicate over a TCP/IP link.

To accomplish these tasks, follow these steps:

1. Build the AppTRK package.
2. Include the AppTRK package in the ramdisk

NOTE
For detailed instructions on how to install the SDK and
work with the AppTRK package, refer the SDK user

Using AppTRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

118 Freescale Semiconductor, Inc.

manual. The document is available in the iso/help/
documents/pdf folder of the SDK layout.

3. Start the Linux BSP
a. After the kernel boot is finished, start the apptrk agent apptrk :12345 &
b. Test that the network configuration is working as expected:

• Ping the Linux host machine IP from the simulated Linux, ping the
simulated IP from the Linux machine.

• From the Windows machine try telnet <IP address> 1234 where <IP address> is
the address of the Linux alias Ethernet device and 1234 is the port on which
apptrk is running

NOTE
You will see some AppTRK information after
issuing the telnet command. If no information
shows up then there might be a problem with the
whole network configuration.

4. Launch CodeWarrior.

The WorkSpace Launcher dialog box appears, prompting you to select a workspace
to use.

NOTE
Click Browse to change the default location for workspace
folder. You can also select the Use this as the default and
do not ask again checkbox to set default or selected path as
the default location for storing all your projects.

5. Click OK.

The default workspace is accepted. The CodeWarrior IDE launches and the Welcome
page appears.

NOTE
The Welcome page appears only if the CodeWarrior IDE or
the selected Workspace is opened for the first time.
Otherwise, the Workbench window appears.

6. Click Go to Workbench, on the Welcome page.

The workbench window appears.

7. Select File > New > Power Architecture Project, from the CodeWarrior IDE menu
bar.

Chapter 7 AppTRK Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 119

The New Power Architecture Project wizard launches and the Create a Power
Architecture Project page appears.

8. Specify a name for the new project in the Project name text box.

For example, enter the project name as linux_project.

9. If you do not want to create your project in the default workspace:
a. Clear the Use default location checkbox.
b. Click Browse and select the desired location from the Browse For Folder dialog

box.
c. In the Location text box, append the location with the name of the directory in

which you want to create your project.

NOTE
An existing directory cannot be specified for the
project location.

10. Click Next.

The Processor page appears.

11. Select the target processor for the new project, from the Processor list.
12. Select a processing model option from the Processing Model group.

NOTE
SMP option is disabled and cannot be selected in the
current installation.

• Select AMP (One project per core) to generate a separate project for each
selected core. The option will also set the core index for each project based on
the core selection.

• Select AMP (One build configuration per core) to generate one project with
multiple targets, each containing an .lcf file for the specified core.

13. Select Application from the Project Output group, to create an application with .elf
extension, that includes information required to debug the project.

14. Click Next.

The Build Settings page appears.

15. Select a toolchain for Linux applications from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the
new project. Each toolchain generates code targeted for a specific platform.

NOTE
The current release does not include toolchains for Linux
applications by default. To add the required Linux build

Using AppTRK

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

120 Freescale Semiconductor, Inc.

tools support, you should install the corresponding service
pack for the required target. For more information on
installing service packs, refer to the Service Pack Updater
Quickstart available in the <CodeWarrior-Install-Dir>\PA\
folder.

16. Click Next.

The Linux Application Launch Configurations page appears.

17. Select New System to create a new Remote system configuration.
• Select CodeWarrior TRK to use the CodeWarrior Target Resident Kernel (TRK)

protocol, to download and control application on the Linux host system.

NOTE
When debugging a Linux application, you must use the
CodeWarrior TRK to manage the communications
interface between the debugger and Linux system.

• In the IP Address textbox, enter the IP Address of the Linux host system, the
project executes on.

• In the Port textbox, enter the port number that the debugger will use to
communicate to the Linux host system.

• In the Remote Download Path textbox, enter the absolute path for the host
directory, into which the debugger downloads the application.

18. Click Finish.

The wizard creates a Linux application project according to your specifications. You
can access the project from the CodeWarrior Projects view on the Workbench.

That's it. You have configured your development environment on a simulator (using
Virtutech Simics) for TCP/IP communications, launched AppTRK such that it can
communicate with the CodeWarrior debugger, and created a CodeWarrior project
configured such that the CodeWarrior debugger can communicate with AppTRK.

NOTE
To start with, you can see the CodeWarrior Examples projects
included in the CodeWarrior layout. These include a Fork,
Thread, Shared Library, and some other projects.

7.4 Modifying AppTRK

Chapter 7 AppTRK Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 121

A working AppTRK is provided with each Linux BSP you obtain from Freescale. On
rare occasions, however, you may want to modify the AppTRK.

To modify AppTRK and include it in the Linux image running on your development
board, follow these steps:

1. Modify and build the libelf and AppTRK projects.

NOTE
For details on modifying and building an AppTRK
package, refer the SDK user manual. The document is
available in the iso/help/documents/pdf folder of the SDK
layout.

2. Copy the modified AppTRK.elf file to the simulated Linux filesystem.
3. Redeploy the kernel package for creating the new ramdisk with AppTRK included.
4. Boot the kernel with the new ramdisk and start the AppTRK agent.

That's it. You have modified AppTRK and included it in the Linux image running on
your development board.

7.5 Creating AppTRK for a Non-Freescale Linux Image

NOTE
For details on creating an AppTRK package for a Non-
Freescale Linux image, refer the SDK user manual. The
document is available in the iso/help/documents/pdf folder of the
SDK layout.

AppTRK is intended to be run from the command line on the target system. It accepts
one parameter which specifies either a TCP port or a serial device to be used for
communication with the host debugger. For example:

AppTRK.elf :1234

AppTRK.elf /dev/ttyS0

To set the baud rate for serial communication, use stty. Alternatively, AppTRK will use
stdin/stdout pipes for debug communication if the pipe symbol, ' |', is specified. Using
this option, AppTRK can be run under inetd. For example:

AppTRK.elf |

Creating AppTRK for a Non-Freescale Linux Image

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

122 Freescale Semiconductor, Inc.

7.6 Conditions under which AppTRK Must Be Modified

These are the conditions under which the AppTRK must be modified:

• The same gcc toolchain should be used when compiling both BSP and AppTRK.
• The user must re-build AppTRK in case a different gcc is used for building the BSP

(for example the customer uses a non -FSL Linux BSP).

In this case, the user must ensure that the drivers (ethernet/serial) are functional in his
BSP. The AppTRK communication with the target relies on drivers provided by the
BSP.

Chapter 7 AppTRK Reference

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

Freescale Semiconductor, Inc. 123

Conditions under which AppTRK Must Be Modified

CodeWarrior Target Resident Kernel Reference, Rev. 10.5.1, 01/2016

124 Freescale Semiconductor, Inc.

Index

_reset() 76

A

ACK Messages 32
Alignment 31
AppTRK Reference 117

B

Building TI TL16C552a UART Driver 40
Byte Order 31

C

Changing Data Transmission Rate 41
Changing Maximum Message Length 46
Changing ReadMemory-Related Code 43
Changing SupportMask-Related Code 44
Changing Versions-Related Code 45
Changing WriteMemory-Related Code 44
Checksum Values 24
CodeWarrior TRK Architecture 13
CodeWarrior TRK Communications 19
CodeWarrior TRK Concepts 13
CodeWarrior TRK Core 13
CodeWarrior TRK Data Frames 22
CodeWarrior TRK Execution States 14
CodeWarrior TRK Function Reference 75
CodeWarrior TRK Initializations 17
CodeWarrior TRK Memory Layout 16
CodeWarrior TRK RAM Sections 17
Command Sets 51
Conditions under which AppTRK Must Be
Modified 123
Connect 52
Continue 53
CPUType 54
Creating AppTRK for a Non-Freescale Linux Image
122
Customizing Checksum Values 47
Customizing CodeWarrior TRK 37
Customizing CodeWarrior TRK Initializations 38
Customizing CodeWarrior TRK to be Interrupt-
Driven 41
Customizing CPU Speed 42
Customizing Debug Services 43
Customizing Exception Handling 47
Customizing Memory Locations 46
Customizing Serial Communications 38
Customizing Target Board Name 48
Customizing usr_put_config.h for Debugging 48

D

Data Transmission Rate 21
Debug Message Interface Level 30
Debug Message Interface Reference 51
Differences Between AppTRK and CodeWarrior
TRK 117
DoConnect() 76
DoContinue() 77
DoCPUType() 78
DoFlushCache 78
DoNotifyStopped() 79
DoReadMemory() 80
DoReadRegisters() 81
DoReset() 82
DoStep() 83
DoStop() 84
DoSupportMask() 84
DoVersions() 85
DoWriteMemory() 86
DoWriteRegisters() 87

E

Encoding Single-Byte Checksum Values 24
Escape Sequences 27

F

FlushCache 55
Framing Level 21

I

InitializeIntDrivenUART() 89
InitializeUART() 90
InterruptHandler() 90
Introduction 9

M

Message Length 32
Message Queues 15
Messages Sent by CodeWarrior TRK 70
Messages Sent by Debugger 51
Modifying AppTRK 121
Modifying Existing UART Drivers 39
Modifying Serial Communication Functions 38

N

NAK Messages 34

Index

CodeWarrior Target Resident Kernel Reference

Freescale Semiconductor, Inc. 125

NotifyException 70
NotifyStopped 71

O

Other CodeWarrior Documentation 11
Other Documentation 11
Overview of this Manual 9

P

Preventing Transmission Failure 30

R

ReadFile 72
ReadMemory 57
ReadRegisters 58
ReadUART1() 92
ReadUARTN() 92
ReadUARTPoll() 91
ReadUARTString() 93
Related Documentation 10
Reliable Message Delivery 28
Reply Messages 32
Request and Notification Handling 16
Request and Notification Messages 31
Reset 60
Responding to a NAK Reply Message 28
Responding When No Reply Message is Received
29

S

Serial Communications Settings 20
Step 61
Stop 63
SuppAccessFile() 94
SupportMask 64
SwapAndGo() 96

T

TargetAccessDefault() 102
TargetAccessExtended1() 103
TargetAccessExtended2() 105
TargetAccessFP() 106
TargetAccessMemory() 96
TargetAddExceptionInfo() 98
TargetAddStopInfo() 98
Target Application RAM Sections 17
TargetContinue() 99
TargetFlushCache() 100
TargetInterrupt() 101
TargetSingleStep() 107
TargetStepOutOfRange() 108

TargetSupportMask() 109
TargetVersions() 110
TerminateUART() 111
TransportIrqHandler() 112
Transport Level 20

U

Using AppTRK 118
Using Multi-byte Checksum Values 27

V

ValidMemory32() 112
Verifying Single-Byte Checksum Values 25
Versions 65

W

What is AppTRK? 117
WriteFile 73
WriteMemory 67
WriteRegisters 68
WriteUART1() 114
WriteUARTN() 114
WriteUARTString() 115

Index

CodeWarrior Target Resident Kernel Reference

126 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, QorIQ, QorIQ Qonverge,
and StarCore are trademarks of Freescale Semiconductor, Inc., Reg.
U.S. Pat. & Tm. Off. All other product or service names are the property
of their respective owners. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org.

© 2009–2016 Freescale Semiconductor, Inc.

Document Number CWPATRKUG
Revision 10.5.1, 01/2016

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1​: Introduction
	Overview of this Manual
	Related Documentation
	Other CodeWarrior Documentation
	Other Documentation

	Chapter 2​: CodeWarrior TRK Concepts
	CodeWarrior TRK Architecture
	CodeWarrior TRK Core
	CodeWarrior TRK Execution States
	Message Queues
	Request and Notification Handling

	CodeWarrior TRK Memory Layout
	CodeWarrior TRK RAM Sections
	Target Application RAM Sections

	CodeWarrior TRK Initializations

	Chapter 3​: CodeWarrior TRK Communications
	Transport Level
	Serial Communications Settings
	Data Transmission Rate

	Framing Level
	CodeWarrior TRK Data Frames
	Checksum Values
	Encoding Single-Byte Checksum Values
	Verifying Single-Byte Checksum Values
	Using Multi-Byte Checksum Values

	Escape Sequences
	Reliable Message Delivery
	Responding to a NAK Reply Message
	Responding When No Reply Message is Received
	Preventing Transmission Failure

	Debug Message Interface Level
	Request and Notification Messages
	Alignment
	Byte Order
	Message Length

	Reply Messages
	ACK Messages
	NAK Messages

	Chapter 4​: Customizing CodeWarrior TRK
	Customizing CodeWarrior TRK Initializations
	Customizing Serial Communications
	Modifying Serial Communication Functions
	Modifying Existing UART Drivers
	Building TI TL16C552a UART Driver

	Changing Data Transmission Rate
	Customizing CodeWarrior TRK to be Interrupt-Driven

	Customizing CPU Speed
	Customizing Debug Services
	Changing ReadMemory-Related Code
	Changing WriteMemory-Related Code
	Changing SupportMask-Related Code
	Changing Versions-Related Code
	Changing Maximum Message Length

	Customizing Memory Locations
	Customizing Exception Handling
	Customizing Checksum Values
	Customizing Target Board Name
	Customizing usr_put_config.h for Debugging

	Chapter 5​: Debug Message Interface Reference
	Command Sets
	Messages Sent by Debugger
	Connect
	Continue
	CPUType
	FlushCache
	ReadMemory
	ReadRegisters
	Reset
	Step
	Stop
	SupportMask
	Versions
	WriteMemory
	WriteRegisters

	Messages Sent by CodeWarrior TRK
	NotifyException
	NotifyStopped
	ReadFile
	WriteFile

	Chapter 6​: CodeWarrior TRK Function Reference
	_reset()
	DoConnect()
	DoContinue()
	DoCPUType()
	DoFlushCache
	DoNotifyStopped()
	DoReadMemory()
	DoReadRegisters()
	DoReset()
	DoStep()
	DoStop()
	DoSupportMask()
	DoVersions()
	DoWriteMemory()
	DoWriteRegisters()
	InitializeIntDrivenUART()
	InitializeUART()
	InterruptHandler()
	ReadUARTPoll()
	ReadUART1()
	ReadUARTN()
	ReadUARTString()
	SuppAccessFile()
	SwapAndGo()
	TargetAccessMemory()
	TargetAddExceptionInfo()
	TargetAddStopInfo()
	TargetContinue()
	TargetFlushCache()
	TargetInterrupt()
	TargetAccessDefault()
	TargetAccessExtended1()
	TargetAccessExtended2()
	TargetAccessFP()
	TargetSingleStep()
	TargetStepOutOfRange()
	TargetSupportMask()
	TargetVersions()
	TerminateUART()
	TransportIrqHandler()
	ValidMemory32()
	WriteUART1()
	WriteUARTN()
	WriteUARTString()

	Chapter 7​: AppTRK Reference
	What is AppTRK?
	Differences Between AppTRK and CodeWarrior TRK
	Using AppTRK
	Modifying AppTRK
	Creating AppTRK for a Non-Freescale Linux Image
	Conditions under which AppTRK Must Be Modified

	Index

