
CodeWarrior
Development Studio for

MPC55xx/MPC56xx
Microcontrollers

Version 2.xx
Targeting Manual

 Revised: 9 February 2012

Freescale, the Freescale logo, CodeWarrior, PowerQUICC and QorIQ are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. QorIQ Qonverge and Qorivva are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.
© 2012 Freescale Semiconductor, Inc.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

6501 William Cannon Drive West

Austin, Texas 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

iTargeting MPC55xx/MPC56xx Microcontrollers

Table of Contents

1 Introduction 1
The MPC55xx/MPC56xx Platform . 1

CodeWarrior Build Tools . 6

Integrated Development Environment. 6

C/C++ Compiler . 6

Assembler . 6

Linker . 6

Libraries . 7

PC-lint . 7

Development Process . 7

Related Documentation. 8

2 Creating Projects 11
Creating a Project for a Single Core Device . 11

Creating a Project for a Multicore Device . 19

Creating a Project for a Multicore Device that Supports LSM/DPM. 23

3 Target Settings Reference 29
Target Settings Overview . 29

e200 Core Settings Panels. 31

Target Settings. 32

OSEK Sysgen . 34

EPPC Target . 38

C/C++ Preprocessor . 42

C/C++ Warnings . 44

EPPC Assembler . 49

EPPC Processor. 51

EPPC Disassembler. 60

EPPC Linker . 63

EPPC Linker Optimizations . 70

PC-lint Settings Panels . 72

PCLint Main Settings . 74

Table of Contents

ii Targeting MPC55xx/MPC56xx Microcontrollers

PCLint Options .76

A Lauterbach Debugger Adjustments 79
Modifying Configuration Files .79

Power Architecture Configuration File .79

VLE Configuration File .81

Mixed Configuration File .81

Connecting the Hardware .82

B P&E Debugger Adjustments 83
Modifying Configuration Files .83

Power Architecture Configuration File .83

VLE Configuration File .84

Target Settings for the P&E Debugger .85

Command-Line Arguments. .87

Connecting the Hardware .89

Index 91

1Targeting MPC55xx/MPC56xx Microcontrollers

1
Introduction

This manual explains how to use CodeWarrior Development Studio for MPC55xx/
MPC56xx Microcontrollers to develop software for members of the MPC55xx and
MPC56xx families of microcontrollers.

In this chapter:

• “The MPC55xx/MPC56xx Platform”

• “CodeWarrior Build Tools”

• “Development Process”

• “Related Documentation”

The MPC55xx/MPC56xx Platform
Members of the MPC55xx/MPC56xx microcontroller families have one or more Power
Architecture e200 cores (such as the e200z3 and e200z6 cores). Table 1.1 lists each
MPC55xx/MPC56xx microcontroller, along with the particular e200 core (or cores) on
this device.

NOTE In addition to an e200 core, many of the microcontrollers listed in Table 1.1
include a co-processor. This CodeWarrior product includes the build tools
required to use these co-processors.

Table 1.1 MPC55xx/MPC56xx Microcontrollers and Cores

Microcontroller
Family

Description Device
Name

Mask
Set

Cores Flash
Memory

MPC5510 Single and dual core
Power Architecture
microcontrollers for
body and gateway
applications

MPC5514E e200z1 and
e200z0

512K

MPC5514G e200z1 and
e200z0

512K

MPC5515S e200z1 768K

Introduction
The MPC55xx/MPC56xx Platform

2 Targeting MPC55xx/MPC56xx Microcontrollers

MPC5516E e200z1 and
e200z0

1M

MPC5516G e200z1 and
e200z0

1M

MPC5516S e200z1 1M

MPC5517E e200z1 and
e200z0

1.5M

MPC5517G e200z1 and
e200z0

1.5M

MPC5517S e200z1 1.5M

MPC553x Ultra low-cost 32bit
microcontrollers
targeting low-end
engine management
applications

MPC5533 e200z3 768K

MPC5534 e200z3 1M

MPC555x High performance
microcontrollers for
engine management

MPC5553 e200z6 1,5M

MPC5554 e200z6 2M

MPC556x Microcontrollers for
advanced driver
assistance engine
management, general
body

MPC5561 e200z6 1M

MPC5565 e200z6 2M

MPC5566 e200z6 3M

MPC5667 e200z6 2M

Table 1.1 MPC55xx/MPC56xx Microcontrollers and Cores

Microcontroller
Family

Description Device
Name

Mask
Set

Cores Flash
Memory

Introduction
The MPC55xx/MPC56xx Platform

3Targeting MPC55xx/MPC56xx Microcontrollers

MPC56xxB 32-bit MCU with CAN,
LIN and other
peripherals for a range
of automotive body
applications

MPC5602B *M07N e200z0h 256K

MPC5602B *M27V e200z0h 256K

MPC5602C *M07N e200z0h 256K

MPC5602C *M27V e200z0h 256K

MPC5603B *M07N e200z0h 384K

MPC5603B *M27V e200z0h 384K

MPC5603C *M07N e200z0h 384K

MPC5603C *M27V e200z0h 384K

MPC5604B *M07N e200z0h 512K

MPC5604B *M27V e200z0h 512K

MPC5604C *M07N e200z0h 512K

MPC5604C *M27V e200z0h 512K

MPC5605B e200z0h 768K

MPC5606B e200z0h 1M

MPC5607B e200z0h 1.5M

MPC5644B e200z4 1.5M

MPC5645B e200z4 2M

MPC5646B e200z4 3M

MPC5644C e200z4 and
e200z0h

1.5

MPC5645C e200z4 and
e200z0h

2M

MPC5646C e200z4 and
e200z0h

3M

Table 1.1 MPC55xx/MPC56xx Microcontrollers and Cores

Microcontroller
Family

Description Device
Name

Mask
Set

Cores Flash
Memory

Introduction
The MPC55xx/MPC56xx Platform

4 Targeting MPC55xx/MPC56xx Microcontrollers

MPC56xxP 32-bit MCU for chassis
and safety applications

MPC5601P *M07N e200z0h 192K

MPC5601P *M26V e200z0h 192K

MPC5602P *M07N e200z0h 256K

MPC5602P *M26V e200z0h 256K

MPC5603P *M07N e200z0h 384K

MPC5603P *M26V e200z0h 384K

MPC5604P *M07N e200z0h 512K

MPC5604P *M26V e200z0h 512K

MPC56xxS 32 bit MCUs for next-
generation
dashboards, with TFT-
drive. Cost-effective
for entry-level cluster
applications

MPC5606S *M07N e200z0h 1M

MPC5606S FS60X2 e200z0h 1M

MPC5645S e200z4 2M

MPC56xxM 32 bit MCU for entry
level powertrain with
on-chip emission
control.

MPC5633M e200z335 1M

MPC5634M e200z335 1.5M

MPC56xxL 32-bit system-on-chip
devices intended for
Electric Power
Steering and those
applications requiring
a high Safety Integrity
Level (SIL).

MPC5643L e200z4 (2x) 1MB

MPC56xxA 32-bit system-on-chip
devices intended for
use in mid-range
engine control and
automotive
transmission control
applications.

MPC5644A e200z4 4MB

Table 1.1 MPC55xx/MPC56xx Microcontrollers and Cores

Microcontroller
Family

Description Device
Name

Mask
Set

Cores Flash
Memory

Introduction
The MPC55xx/MPC56xx Platform

5Targeting MPC55xx/MPC56xx Microcontrollers

MPC5668E/G Dual core 32-bit MCUs
for Gateway
Applications

MPC5668E e200z6 and
e200z0

MPC5668E e200z6 and
e200z0

MPC56xxF 32-bit Power
Architecture MCU for
green powertrain
applications

MPC5674F MVx264
MVxA264

e200z7 4M

MPC56xxK 32-bit embedded
controller designed for
advanced driver
assistance systems,
motor control, and
applications that
require a high safety
integrity level

MPC5675K e200z7 (2x) 2M

MPC56xxR 32-bit dual core, dual
issue Power
Architecture
microcontroller
platform for chassis
and safety applications
including braking,
steering, domain
control, and entry level
radar.

MPC5676R e200z7 (2x) 6M

MPC56xxE 32-bit dual core, dual
issue Power
Architecture
microcontroller
platform for chassis
and safety applications
including braking,
steering, domain
control, and entry level
radar.

MPC5604E e200z0h 512K

Table 1.1 MPC55xx/MPC56xx Microcontrollers and Cores

Microcontroller
Family

Description Device
Name

Mask
Set

Cores Flash
Memory

Introduction
CodeWarrior Build Tools

6 Targeting MPC55xx/MPC56xx Microcontrollers

CodeWarrior Build Tools
CodeWarrior MPC55xx/MPC56xx build tools consist of an integrated development
environment (IDE), a compiler, an assembler, a linker, and the Main Standard Libraries
(MSL). Additionally, you can control separately purchased eTPU build tools or PC-lint
from within the CodeWarrior tools.

Integrated Development Environment
If working from the command line, you have to create, maintain, and run makefiles for
each project by hand. Alternatively, an IDE provides a graphical user interface (GUI) with
which you can use create and manage projects.

With the CodeWarrior IDE, you can perform all aspects of software development; it
controls the project manager, the source code editor, the class browser, the compiler,
assembler, linker, debugger, and more.

The project manager lets you define the source code files and build settings for a project
and automatically updates a project’s “internal makefile” as you modify the project.

See the CodeWarrior IDE User's Guide for documentation that explains how to use the
CodeWarrior IDE.

C/C++ Compiler
The CodeWarrior build tools include an ANSI-compliant C/C++ compiler for MPC55xx/
MPC56xx microcontrollers. Used with the CodeWarrior Power Architecture linker, this
compiler generates MPC55xx/MPC56xx applications and libraries that conform to the
Power Architecture Embedded Application Binary Interface (EABI) standard.

See the Build Tools Reference for instructions that explain how to use the CodeWarrior
C/C++ compiler.

Assembler
Your CodeWarrior build tools include a standalone assembler for MPC55xx/MPC56xx
microcontrollers. This assembler features an easy-to-use syntax.

See the Assembler Reference for instructions that explain how to use the CodeWarrior
assembler.

Linker
Your CodeWarrior build tools include a linker that generates Executable and Linkable
Format (ELF) binaries for MPC55xx/MPC56xx microcontrollers. This linker lets you use

Introduction
Development Process

7Targeting MPC55xx/MPC56xx Microcontrollers

absolute addressing and create multiple user-defined sections. In addition to ELF format,
the linker can output S-record format.

Libraries
The CodeWarrior Main Standard Libraries (MSL) and Embedded Warrior Libraries
(EWL) are ANSI-compliant standard C and C++ standard libraries. The CodeWarrior CD
contains the source code of these libraries. Freescale has customized these libraries and
adapted the runtime libraries for MPC55xx/MPC56xx development.

For more information on MSL, refer to MSL C Reference and MSL C++ Reference.

For more information on EWL, refer to EWL C Reference and EWL C++ Reference.

PC-lint
Your CodeWarrior build tools support separately purchased PC-lint software, which finds
errors and inconsistencies in C programs. This software verifies that your source code
conforms to any of these standards: Kernighan & Ritchie (K&R) C, ANSI C, or ANSI/ISO
C++. PC-lint also verifies conformance with such other standards as the Motor Industry
Software Reliability Association (MISRA) standard.

PC-lint checks source code more closely than the C/C++ compiler can. The tool finds
bugs, inconsistencies, non-portable constructs, redundant code, and other such problems.
For more information about the PC-lint software package, go to:

http://www.gimpel.com

Development Process
In general, when writing software for an MPC55xx/MPC56xx microcontroller, follow
these steps:

1. Connect a debug probe between your development PC and the MPC55xx/MPC56xx
board you are using.

2. Use the CodeWarrior editor to write your source code.

3. Use the CodeWarrior build tools to generate an ELF executable from your source
code.

4. Use the debugger of your choice to debug this executable.

NOTE Your CodeWarrior Build Tools product comes with the P&E In-Circuit-
Debugger (ICD).

http://www.gimpel.com

Introduction
Related Documentation

8 Targeting MPC55xx/MPC56xx Microcontrollers

Related Documentation
CodeWarrior documentation is in the \Help\pdf directory of your CodeWarrior
installation directory. Table 1.2 lists these documents, as well as non-CodeWarrior
documents that provide additional, relevant information.

Table 1.2 Related Power Architecture Documentation

Document Description

InstallDir\(CodeWarrior_Examples)
directory

CodeWarrior example projects

IDE User’s Guide, in directory
InstallDir\Help\PDF

General IDE information

CodeWarrior Development Studio for Power
Architecture Processors
Build Tools Reference, in directory
InstallDir\Help\PDF

Instructions for using the
CodeWarrior C/C++ compiler and
linker.

MSL C Reference, in directory
InstallDir\Help\PDF

Information on the CodeWarrior
standard C library

MSL C++ Reference, in directory
InstallDir\Help\PDF

Information on the CodeWarrior
standard C++ library

System V Application Binary Interface, Third
Edition, published by UNIX System
Laboratories, 1994 (ISBN 0-13-100439-5)

Power Architecture Application
Binary Interface (Power Architecture
EABI) information

System V Application Binary Interface,
PowerPC Processor Supplement, published by
Sun Microsystems and IBM (1995).

Power Architecture Application
Binary Interface (Power Architecture
EABI) information

Power Architecture Embedded Binary Interface,
32-Bit Implementation, published by Freescale
Semiconductor, Inc.; available at World Wide
Web address:
http://www.freescale.com/files/
32bit/doc/ref_manual/E500ABIUG.pdf

Power Architecture Application
Binary Interface (Power Architecture
EABI) information

EREF: A Programmer's Reference Manual for
Freescale Embedded Processors (Including the
e200 and e500 Families) (2007).

Explanation of the e500 core
complex programming model

Variable-Length Encoding (VLE) Programming
Environments Manual: A Supplement to the
EREF (2007).

Variable-Length Encoding
programming information

http://www.freescale.com/files/32bit/doc/ref_manual/E500ABIUG.pdf

Introduction
Related Documentation

9Targeting MPC55xx/MPC56xx Microcontrollers

Various Power Architecture processor manuals,
available at:
http://www.freescale.com/
powerarchitecture

Information specific to individual
processors of the Power Architecture
family

Executable and Linking Format Specification,
Version 1.2, available at:
http://refspecs.freestandards.org/
elf/elf.pdf

Documents the format of an ELF file.

DWARF Debugging Information Format
Specification, Version 2.0.0, available at:
http://dwarfstd.org/doc/dwarf-
2.0.0.pdf

Documents the DWARF 2.0 symbolic
debugging information format.

Table 1.2 Related Power Architecture Documentation

Document Description

http://refspecs.freestandards.org/elf/elf.pdf
http://refspecs.freestandards.org/elf/elf.pdf
http://dwarfstd.org/doc/dwarf-2.0.0.pdf
http://dwarfstd.org/doc/dwarf-2.0.0.pdf
http://www.freescale.com/powerarchitecture

Introduction
Related Documentation

10 Targeting MPC55xx/MPC56xx Microcontrollers

11Targeting MPC55xx/MPC56xx Microcontrollers

2
Creating Projects

This chapter explains how to create projects using the MPC55xx New Project Wizard.

The New Project Wizard makes project creation fast and easy. Just step through the
wizard's pages, choosing appropriate options for your application as you go.

Based upon your choices, the New Project Wizard generates a "stub" project that
automatically includes the correct files, libraries, and settings. To create your final
program, just add your custom code to this foundation.

Among others, the New Project Wizard lets you make these choices:

• The MPC55xx/MPC56xx device to target

• Programming language

• VLE code generation

• PC-lint support

• Floating-point support

In this chapter:

• “Creating a Project for a Single Core Device”

• “Creating a Project for a Multicore Device”

• “Creating a Project for a Multicore Device that Supports LSM/DPM”

Creating a Project for a Single Core Device
This section explains how to create a project for one of the single-core devices in the
MPC55xx or MPC56xx families.

NOTE Refer to “Creating a Project for a Multicore Device” for instructions explaining
how to create a project for a multicore device. Refer to “Creating a Project for a
Multicore Device that Supports LSM/DPM” for instructions explaining how to
create a project for a multicore device that supports LSM/DPM.

To create a project for a single-core MPC55xx/MPC56xx target board, follow these steps:

1. From the CodeWarrior IDE’s menu bar, select File > New.

The New dialog box (Figure 2.1) appears.

Creating Projects
Creating a Project for a Single Core Device

12 Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.1 New Dialog Box

2. In the Project name text box, type the name of the new project.

3. In the location text box, type the path in which to create this project.

Alternatively, click Set to display a dialog box with which to select this path.

4. Click OK.

The New Project Wizard starts and displays the microcontroller derivatives page
(Figure 2.2).

Creating Projects
Creating a Project for a Single Core Device

13Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.2 New Project Wizard — Microcontroller Derivatives Page

5. From the derivatives list of this page, select one of the single-core derivatives
listed below.

• MPC553x

• MPC555x

• MPC556x

• MPC56xxA

• MPC56xxB

• MPC56xxF

• MPC56xxM

• MPC56xxP

• MPC56xxS

• MPC5644B

• MPC5645B

• MPC5646B

Creating Projects
Creating a Project for a Single Core Device

14 Targeting MPC55xx/MPC56xx Microcontrollers

• MPC5644C

• MPC5645C

• MPC5646C

• MPC5604E

• MPC5676R

NOTE Although devices MPC5644C, MPC5645C, MPC5646C, and MPC5676R have
two cores, they are listed here because code must be generated for both cores;
as a result, the wizard does not provide the option to select which core you
want to use, just as for a real single-core device.

6. Click Next.

The languages and libraries page (Figure 2.3) appears.

NOTE The Project name and Location text boxes of this wizard page default to the
values you entered in the New dialog box.

Figure 2.3 New Project Wizard — Languages and Libraries Page

7. In the languages group of this page, select the programming language(s) you will use
in this project:

Creating Projects
Creating a Project for a Single Core Device

15Targeting MPC55xx/MPC56xx Microcontrollers

• C_ASM

ANSI-C source code with a call to an assembly language function

• C

 ANSI-C source code (default option)

• C++

C++ source code

NOTE Based on these selections, the wizard automatically includes the required
startup code in the new project.

8. Check the Use size optimized MSL libraries checkbox to configure the project to use
the size-optimized versions of the Main Standard C/C++ Libraries (MSL).

Clear this checkbox to use the time-optimized versions of these libraries.

9. Check the Use unsigned char checkbox to configure the project to use versions of the
MSL and runtime libraries that treat variables declared as type char as if declared as
type unsigned char.

Clear this checkbox to use versions of these libraries that treat variables declared as
type char as if declared signed char.

10. Check the Use VLE checkbox to configure the project to generate variable length
encoding (VLE) instructions and to use versions of the support libraries containing
VLE instructions.

Clear this checkbox to configure the project such that it does not use VLE instructions.

NOTE If the target microcontroller derivative does not support VLE, then uncheck the
Use VLE checkbox. (The MPC5553 and MPC5554 microcontroller
derivatives do not support VLE.)

11. Click Next.

If OSEKturbo is installed, the OSEK page (Figure 2.4) appears.

NOTE If OSEKturbo is not installed, the PC-lint page (Figure 2.5) appears.

Creating Projects
Creating a Project for a Single Core Device

16 Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.4 New Project Wizard — OSEKturbo Page

12. To create a project that uses OSEKturbo, select Yes; otherwise, select No.

13. Click Next.

The PC-lint page (Figure 2.5) appears.

Creating Projects
Creating a Project for a Single Core Device

17Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.5 New Project Wizard — PC-lint Page

14. To create a project that uses PC-lint, select Yes; otherwise, select No.

NOTE If you select Yes, you must install PC-lint on your development PC. To obtain
this software, visit the Gimpel Software website:
http://www.gimpel.com.

15. Click Next.

The floating-point support page (Figure 2.6) appears.

http://www.gimpel.com

Creating Projects
Creating a Project for a Single Core Device

18 Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.6 New Project Wizard – Floating-Point Support Page

16. In this page, select the type of floating-point support the new project requires:

• None

No floating-point support. Project source code files cannot contain floating-point
operations.

• Software

All floating-point operations are performed by software routines; a C/C++ runtime
library containing these routines is included in the new project.

• SPE-EFPU

Single-precision floating-point operations are performed by the e200 core’s
SPE-EFPU (Signal Processing Engine-Embedded Floating-Point Unit) auxiliary
processing unit.

Double-precision floating-point operations are performed by software routines. A
runtime library containing these routines is included in the new project.

17. Click Finish.

The wizard creates a project according to you specifications and displays it in a project
window (Figure 2.7).

Creating Projects
Creating a Project for a Multicore Device

19Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.7 Project Window

18. Select Project > Make.

The CodeWarrior IDE compiles the project’s source code and links the resulting object
code into an executable ELF file.

Use the debugger of your choice to debug this file.

Creating a Project for a Multicore Device
The CodeWarrior for MPC55xx/MPC56xx product lets you create a project that generates
a binary for each core of a multicore microcontroller.

NOTE See “Creating a Project for a Single Core Device” for instructions explaining
how to create a project for a single core device. See “Creating a Project for a
Multicore Device that Supports LSM/DPM” for instructions explaining how to
create a project for a multicore device that supports LSM/DPM.

To create a project for a multi-core MPC55xx/MPC56xx device, follow these steps:

1. From the CodeWarrior IDE’s menu bar, select File > New.

The New dialog box appears.

Creating Projects
Creating a Project for a Multicore Device

20 Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.8 New Dialog Box

2. From the list on the left side of the New dialog box, select
MPC55xx New Project Wizard.

3. In the Project name text box, type the name of the new project.

4. In the location text box, type the path in which to create the project.

Alternatively, click Set to display a dialog box with which to select this path.

5. Click OK.

The New Project Wizard starts and displays the microcontroller derivatives page
(Figure 2.9).

Creating Projects
Creating a Project for a Multicore Device

21Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.9 New Project Wizard — Microcontroller Derivatives Page

6. From the derivatives list of this page, select one of the multicore derivatives
listed below.

• MPC5514E

• MPC5514G

• MPC5516E

• MPC5516G

• MPC5517E

• MPC5517G

• MPC5668E

• MPC5668G

7. Click Next.

The multicore microcontroller page (Figure 2.10) appears.

NOTE The core names this page displays vary depending on the device chosen on the
microcontroller derivatives page. Figure 2.10 shows the multicore
microcontroller page for the MPC5668x microcontroller.

Creating Projects
Creating a Project for a Multicore Device

22 Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.10 New Project Wizard — MPC5668x Multicore Microcontroller Page

8. Select the core or cores for which to generate a binary.

For example, for the MPC5668x microcontroller, you can choose to generate a binary
for this chip’s z0 core, for its z6 core, or for both.

9. Click Next.

The languages and libraries page appears.

10. Complete the rest of the wizard by following the instructions in the topic “Creating a
Project for a Single Core Device”, starting from step 11.

11. Click Finish.

The wizard creates a project according to you specifications and displays it in a project
window (Figure 2.11).

Creating Projects
Creating a Project for a Multicore Device that Supports LSM/DPM

23Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.11 Project Window for a Multicore MPC5668E Project

12. Select Project > Make.

The IDE compiles project's source code and generates a single executable file that
contains instructions for each core you selected in the New Project Wizard's multicore
microcontroller page.

You can now use the debugger of your choice to debug this file.

Creating a Project for a Multicore Device
that Supports LSM/DPM

Some members of the MPC55xx/MPC56xx family have two cores that can be run in either
of these modes:

• Lock-Step Mode (LSM)

• Decoupled Parallel Mode (DPM)

LSM is for safety-critical systems that require redundancy. DPM provides superior
performance. The performance of a device running in DPM is about 1.6 times the
performance of this device running in LSM at the same frequency.

These devices support LSM/DPM:

• MPC5643L

• MPC5675K

e200z6 source files

e200z0 source files

Creating Projects
Creating a Project for a Multicore Device that Supports LSM/DPM

24 Targeting MPC55xx/MPC56xx Microcontrollers

NOTE Refer to “Creating a Project for a Single Core Device” for instructions
explaining how to create a project for a single core device. Refer to “Creating a
Project for a Multicore Device” for instructions explaining how to create a
project for a multicore device that does not support LSM/DPM.

To create a project for a device that supports LSM/DPM mode, follow these steps:

1. From the CodeWarrior IDE’s menu bar, select File > New.

The New dialog box appears.

Figure 2.12 New Dialog Box

2. From the list on the left side of the New dialog box, select
MPC55xx New Project Wizard.

3. In the Project name text box, type the name of the new project.

4. In the location text box, type the path in which to create the project.

Alternatively, click Set to display a dialog box with which to select this path.

5. Click OK.

The New Project Wizard starts and displays the microcontroller derivatives page
(Figure 2.13).

Creating Projects
Creating a Project for a Multicore Device that Supports LSM/DPM

25Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.13 New Project Wizard — Microcontroller Derivatives Page

6. From the derivatives list of this page, select one of the multicore derivatives listed
below. These devices support LSM/DPM.

• MPC5643L

• MPC5675K

7. Click Next.

The LSM/DPM configuration page appears.

Creating Projects
Creating a Project for a Multicore Device that Supports LSM/DPM

26 Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.14 New Project Wizard — LSM/DPM Configuration Page

8. If you want the selected device to run in LSM, select Lock-Step Mode.

If you want the device to run in DPM, select Decoupled Parallel Mode.

9. Click Next.

The languages and libraries page appears.

10. Complete the rest of the wizard by following the instructions in the topic “Creating a
Project for a Single Core Device”, starting from step 11.

11. Click Finish.

The wizard creates a project according to you specifications and displays it in a project
window (Figure 2.15).

Creating Projects
Creating a Project for a Multicore Device that Supports LSM/DPM

27Targeting MPC55xx/MPC56xx Microcontrollers

Figure 2.15 Project Window for a Multicore MPC5643L LSM/DPM Project

12. Select Project > Make.

The IDE compiles and assembles the project's source code and generates a single
executable file that runs the selected device in the selected mode, either LSM or DPM.

Creating Projects
Creating a Project for a Multicore Device that Supports LSM/DPM

28 Targeting MPC55xx/MPC56xx Microcontrollers

29Targeting MPC55xx/MPC56xx Microcontrollers

3
Target Settings Reference

This chapter documents the target settings panels that are specific to the CodeWarrior
Development Studio for MPC55xx/MPC56xx Microcontrollers product. Use these panels
to control the behavior of the compiler, linker, debugger, and other software development
tools included in this product.

NOTE For documentation of the target settings panels common to all CodeWarrior
products, refer to the IDE User’s Guide and the Power Architecture™ Build
Tools Reference.

In this chapter:

• “Target Settings Overview”

• “e200 Core Settings Panels”

• “PC-lint Settings Panels”

Target Settings Overview
In a CodeWarrior project, each build target has its own settings for compiling, linking, and
other aspects of code generation. Your controls for these settings are the target settings
panels that you access through the Target Settings window.

To open this window, select Edit > Build Target Name, where Build Target Name is a
placeholder for the project’s currently selected build target. Another way to bring up the
Target Settings window is to click the Targets tab of the project window and then
double-click one of the listed build target names.

Figure 3.1 shows the Target Settings window (see the CodeWarrior IDE User’s Guide
for a description of the window's elements). Use the list of panels on the left side of the
this window to display any settings panel. If necessary, click the expand control to see a
category’s list of panels. Clicking a panel’s name displays that panel in the right side of
the Target Settings window.

Target Settings Reference
Target Settings Overview

30 Targeting MPC55xx/MPC56xx Microcontrollers

Figure 3.1 Target Settings Window

Note these buttons, at the bottom of the window:

• Apply — Implements your changes, leaving the Target Settings window open. This
lets you bring a different target settings panel to the front of the window.

• OK — Implements your changes, closing the Target Settings window. Use this
button when you make the last of your settings changes.

• Revert — Changes panel settings back to their most recently saved values.
(Modifying any panel settings activates this button.)

• Factory Settings — Restores the original default values for the panel.

• Import Panel — Copies panel settings previously saved as an XML file.

• Export Panel — Saves settings of the current panel to an XML file.

NOTE If you use the New Project Wizard to create a new project, the wizard assigns
default values to all options of all settings panels.

Target Settings Reference
e200 Core Settings Panels

31Targeting MPC55xx/MPC56xx Microcontrollers

e200 Core Settings Panels
Table 3.1 lists the target settings panels used to control the build tools for the Power
Architecture e200 core. Each table entry includes a link or cross reference to detailed
documentation of a settings panel.

NOTE If you have the separately purchased PC-lint software package, your
CodeWarrior build tools also include two PC-lint panels. Section PC-lint
Settings Panels, at the end of this chapter, explains these additional panels.

Table 3.1 e200 Core Settings Panels

Panel Explanation

Target Settings Refer to “Target Settings”

Access Paths See CodeWarrior IDE User’s Guide

Build Extras See CodeWarrior IDE User’s Guide

File Mappings See CodeWarrior IDE User’s Guide

Source Trees See CodeWarrior IDE User’s Guide

OSEK Sysgen Refer to “OSEK Sysgen”

EPPC Target Refer to “EPPC Target”

C/C++ Language See IDE User’s Guide

C/C++ Preprocessor Refer to “C/C++ Preprocessor”

C/C++ Warnings Refer to “C/C++ Warnings”

EPPC Assembler Refer to “EPPC Assembler”

Global Optimizations See CodeWarrior IDE User’s Guide

EPPC Processor Refer to “EPPC Processor”

EPPC Disassembler Refer to “EPPC Disassembler”

EPPC Linker Refer to “EPPC Linker”

EPPC Linker Optimizations Refer to “EPPC Linker Optimizations”

Custom Keywords See CodeWarrior IDE User’s Guide

Target Settings Reference
e200 Core Settings Panels

32 Targeting MPC55xx/MPC56xx Microcontrollers

Target Settings
Configure the Target Settings panel (Figure 3.2) first, because it affects other settings
panels. Use this panel to specify the name of your build target and to select a linker. When
you select a linker, you specify the target operating system or CPU: this is the setting that
controls the availability of elements in other settings panels. Table 3.2 explains the
elements of this panel.

NOTE The Target Settings panel is not the same as the EPPC Target panel. You
specify the build target in the Target Settings panel; you set other target-
specific options for the EPPC target in the EPPC Target panel.

Figure 3.2 Target Settings Panel

Table 3.2 Target Settings Panel Elements

Element Purpose Comments

Target Name text
box

Specifies the name of the build
target: 26 or fewer characters.
This name appears
subsequently on the Targets
page of the project window.

This build-target name is not
the name of your final output
file.

Target Settings Reference
e200 Core Settings Panels

33Targeting MPC55xx/MPC56xx Microcontrollers

Linker list box Specifies the linker:

• PowerPC EABI — for
an e200 core.

• PCLint Linker — for
PC-lint source code
checking (bugs,
inconsistencies, and
non-portable
constructs).

• External Build Linker
—allows the IDE to
use an external
application to perform
the task.

This selection affects the list
of panels in the Target
Settings Panels pane.
PC-lint is a development tool
from Gimpel Software
(www.gimpel.com). You must
obtain and install a copy of
this tool before a CodeWarrior
build target can use it.

Pre-linker list box Specifies the pre-linker that
performs work on object code
before linking. Selections are
None and BatchRunner.

If you select BatchRunner, a
new panel name appears in
the Target Settings Panels
pane.

Post-linker list
box

Specifies the post-linker that
performs additional work on the
final executable. Selections are
None and BatchRunner.

If you select BatchRunner, a
new panel name appears in
the Target Settings Panels
pane.

Output Directory
text box

Specifies the directory for the
final linked output file. To specify
a non-default directory, click
Choose. To clear this text box,
click Clear.

Save project
entries using
relative paths
checkbox

Clear — Specifies minimal file
searching; each project file must
have a unique name.

Checked — Specifies relative file
searching; project may include
two or more files that have the
same name.

Table 3.2 Target Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

34 Targeting MPC55xx/MPC56xx Microcontrollers

OSEK Sysgen
Use the OSEK Sysgen panel (Figure 3.3) to control the output of the OSEK Sysgen tool.

When you build a CodeWarrior build target that contains an object implementation
language (OIL) file, the OSEK Sysgen tool compiles the OIL file and generates
C language files used in the generation of an OSEK operating system image as well as
other types of files. The OSEK Sysgen panel lets you define the names, locations, and
other attributes of these files.

Next, the CodeWarrior C compiler compiles the generated C language files, the OSEK
operating system’s source code, and any application source code files the build target
contains. Finally, the CodeWarrior linker links the resulting object code into an executable
OSEK operating system image that contains your application.

Compilation of the OSEK operating system source code depends on the definition of
several macros; the OSEK Sysgen tool helps with these macro definitions. Specifically,
the tool generates file options.h, which you must include in your build target’s prefix
file. The tool also defines macros APPTYPESH, OSPROPH, and OSCFGH, extracting
macro values from corresponding user types, property, and object-declaration files. Table
3.3 explains the elements of this panel.

NOTE We recommend that you not edit the generated files. Doing so may lead to data
inconsistency, compilation errors, or unpredictable application behavior.

Figure 3.3 OSEK Sysgen Settings Panel

Target Settings Reference
e200 Core Settings Panels

35Targeting MPC55xx/MPC56xx Microcontrollers

Table 3.3 OSEK Sysgen Settings Panel Elements

Element Purpose Comments

File Type list box Specifies the file type:

• Property file —
header file that
describes current
operating-system
configuration. Used at
compile time to build
the OS kernel;
contains preprocessor
directives #define
and #undef.

• Objects Declaration
File — header file that
contains definitions of
data types, constants,
and variable external
declarations
necessary to describe
system objects.

• Objects Definition
File — source file that
contains initialized
data and allocates
memory for system
objects.

• Stack Labels File —
file that contains
labels for the bottom
and top of the stack,
for extended tasks
implemented in the
OSEK OS.

• ORTI (OSEK Run
Time Interface) File
— file that contains
internal OSEK OS
data, available to the
ORTI Aware
Debugger.

• Sysgen Tool File —
file that specifies the
path and name of the
OSEK Sysgen utility,
which processes an
OIL file.

You can assign any path and
name to any file type, but
default names are:

Property —
{Project}gen\osprop.h,

Objects Declaration —
{Project}gen\cfg.h,

Objects Definition —
{Project}gen\cfg.c,

Stack Labels —
{Project}gen\stklabel.
s,

ORTI — same as the path
and name of the .abs file.

Sysgen Tool —
{Compiler}osek\shared\
bin\sysgen.exe,

Target Settings Reference
e200 Core Settings Panels

36 Targeting MPC55xx/MPC56xx Microcontrollers

• Sysgen Command
Line File — optional
file that contains
additional, advanced
command-line options
for the OSEK Sysgen
utility.

• User Types File —
file that contains
definitions of your
message types;
defines macro
APPTYPESH equal to
the location of this file.

• Prefix File Path (for
option.h) —
optional file that
contains a path for file
options.h, which you
must include in the
prefix file of your build
target.

Sysgen Command Line — no
default for this file type,

User Types —
{Project}Sources\
usertypes.h,

Prefix Path —
{Project}gen,

File Location text
box

Specifies the path and name for
the file that the File Type list box
specifies. Type this entry, or click
Browse, then use the
subsequent dialog box to specify
the location. Browsing works
with either an absolute path or a
location macro.

Clicking Clear removes the
contents of this text box.

To make project definitions
portable, you may use any of
these macros:

• {Compiler} —
path to the
CodeWarrior build
tools installation.

• {Project} —
path to the .mcp
file.

• {System} — path
to the operating
system.

Suppress
Warnings
checkbox

Clear — Allows warnings.
Activates the Messages button,
which you can use to suppress
individual warnings.

Checked — Suppresses all
warnings; deactivates the
Messages button.

Table 3.3 OSEK Sysgen Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

37Targeting MPC55xx/MPC56xx Microcontrollers

Messages button Suppress Messages dialog box,
which you can use to suppress
individual messages. Selecting
Enable All in this dialog box is
equivalent to clearing the
Suppress Warnings checkbox;
selecting Disable All is
equivalent to checking the
Suppress Warnings checkbox.

Generate
Absolute Paths
checkbox

Clear — Lets Sysgen generate
relative paths in the object
definition file.

Checked — Sysgen generates
absolute paths in the object
definition file.

Single Backslash
checkbox

Clear — Does not use single
backslash characters for include
path definitions.

Checked — Uses single
backslash characters for include
path definitions.

Freescale MPC targets
require single backslash
characters.

ORTI Version text
box

Lets you specify any appropriate
alternative OSEK Run Time
Interface (ORTI) version. For
information about this version,
click About; for additional
information, click Help.

Include Paths text
box

Specifies include paths for files
that the .oil file includes.

Separate each directory path
with a comma or semicolon.

Command Line
Options area

Shows a summary of options in
effect.

Table 3.3 OSEK Sysgen Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

38 Targeting MPC55xx/MPC56xx Microcontrollers

EPPC Target
Use the EPPC Target settings panel (Figure 3.4) to specify the name and configuration of
your final output file. Table 3.4 explains the elements of this panel.

Figure 3.4 EPPC Target Settings Panel

Table 3.4 EPPC Target Settings Panel Elements

Element Purpose Comments

Project Type list
box

Specifies the kind of project.
Options are:

• Application

• Library

• Partial Link

Choosing Library or Partial
Link removes from this panel
irrelevant elements Heap
Size, Stack Size, and Tune
Relocations.
Choosing Partial Link adds
to this panel elements
Optimize Partial Link,
Deadstrip Unused Symbols,
and Require Resolved
Symbols.

Target Settings Reference
e200 Core Settings Panels

39Targeting MPC55xx/MPC56xx Microcontrollers

File Name text
box

Specifies the name of the output
file. End the file name of an
executable application that the
wizard generates with extension
.out or .elf. End a library file
name with extension .a.

If you specify S-record or
Map-file generation (in the
EPPC Linker panel), the
system replaces the name
extension with .mot or .MAP.

Big Endian option
button

Specifies big endian format for
generated code and data: the
most significant byte comes first.

Little Endian
option button

Specifies little endian format for
generated code and data: the
least significant byte comes first.

Disable CW
Extensions
checkbox

Clear — Retains extensions,
minimizing C application size.
Also appropriate for assembly
files and C++ libraries.

Checked — Disables C
extensions possibly incompatible
with third-party compilers/linkers.

If checked, the CodeWarrior
linker cannot deadstrip files.
Not all third-party linkers
require checking this
checkbox.

DWARF list box Specifies the version of the
Debug With Arbitrary Record
Format.

The linker ignores debugging
information not in the
specified version.

ABI list box Specifies the Application Binary
Interface for function calls and
structure layout.

Tune Relocations
checkbox

Clear — Ignores relocation
tuning possible for EABI or SDA
PIC/PID.

Checked — For EABI, changes
14-bit branch relocations to 24
bits, if they cannot reach the
calling site from the original
location. For SDA PIC/PID,
changes absolute-addressed
data references to use a small
data register instead of r0;
changes absolute code to use
PC relative relocations.

This checkbox appears only if
the Project Type list box
specifies Application.

Table 3.4 EPPC Target Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

40 Targeting MPC55xx/MPC56xx Microcontrollers

Code Model list
box

Specifies addressing mode for
the generated executable file:
Absolute Addressing or SDA
PIC/PID.

Small Data text
box

Specifies threshold size (bytes)
for items the linker treats as
small data.

The linker stores small data
items in the Small Data
address space; the compiler
can generate faster code to
address such data.

Small Data2 text
box

Specifies threshold size (bytes)
for read-only items the linker
treats as small data.

The linker stores read-only
small data items in the Small
Data2 address space; the
compiler can generate faster
code to address such data.

Heap Size text
box

Specifies kilobytes of RAM
allocated for the heap, which
your program uses if it calls
malloc or new.

This checkbox appears only if
the Project Type list box
specifies Application.
Combined heap/stack
allocation must not exceed
available RAM.

Stack Size text
box

Specifies kilobytes of RAM
allocated for the stack.

This checkbox appears only if
the Project Type list box
specifies Application.
Combined heap/stack
allocation must not exceed
available RAM.

Optimize Partial
Link checkbox

Clear — Output file remains as if
you passed the -r argument in
the command line.

Checked — Specifies direct
downloading of partial link
output.

This checkbox appears only if
the Project Type list box
specifies Partial Link.

Text immediately after this
table explains more about
optimizing partial links.

Table 3.4 EPPC Target Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

41Targeting MPC55xx/MPC56xx Microcontrollers

Check the Optimize Partial Link checkbox to directly download the output of your
partial link. This instructs the linker to:

1. Let the project use a linker command file (LCF). This is important for correct merging
of all diverse sections into either .text, .data, or .bss sections. If you do not let
an LCF do this merge, the debugger may not be able to show source code properly.

2. Allow optional dead stripping. (This is recommended — but the project must have at
least one entry point for the linker to know how to dead strip.)

3. Collect all of the static constructors and destructors in a similar way to the tool
munch.

NOTE Do not use munch yourself, because the linker needs to put the C++ exception
handling initialization as the first constructor. If munch is in your makefile,
you need an optimized build.

4. Change common symbols to .bss symbols, letting you examine variables in the
debugger.

5. Allow a special type of partial link that has no unresolved symbols — the same as the
Diab linker's -r2 command-line argument.

Deadstrip
Unused Symbols
checkbox

Clear — Linker does not
deadstrip unused symbols.

Checked — Linker deadstrips all
unused symbols. This reduces
program size, by removing
symbols that neither the main
entry point or force-active entry
points reference.

This checkbox appears only if
the Project Type list box
specifies Partial Link.

Require
Resolved
Symbols
checkbox

Clear — Linker does not have to
resolve all symbols of the partial
link.

Checked — Linker must resolve
all symbols in the partial link.

This checkbox appears only if
the Project Type list box
specifies Partial Link.

Check this option if your
RTOS does not allow
unresolved symbols.

Table 3.4 EPPC Target Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

42 Targeting MPC55xx/MPC56xx Microcontrollers

C/C++ Preprocessor
Use the C/C++ Preprocessor settings panel (Figure 3.5) to configure preprocessing
options. Table 3.5 explains the elements of this panel.

Figure 3.5 C/C++ Preprocessor Settings Panel

Table 3.5 C/C++ Preprocessor Settings Panel Elements

Element Purpose Comments

Prefix Text area Displays all prefix text created by
option selections.

Source encoding
list box

Specifies type:

• ASCII

• Autodetect

• System

• UTF-8

• Shift-JIS

• EUC-JP

• ISO-2022-JP

Target Settings Reference
e200 Core Settings Panels

43Targeting MPC55xx/MPC56xx Microcontrollers

Emit file changes
checkbox

Clear — Compiler does not emit
file changes.

Checked — Compiler emits file
changes.

Emit #pragmas
checkbox

Clear — Compiler does not emit
pragmas.

Checked — Compiler emits
pragmas.

Show full paths
checkbox

Clear — Compiler does not show
full pathnames.

Checked — Compiler shows full
path names.

Keep comments
checkbox

Clear — Compiler does not keep
comments.

Checked — Compiler keeps
comments.

Use #line
checkbox

Clear — Compiler does not use
#lines.

Checked — Compiler uses
#lines.

Keep whitespace
checkbox

Clear — Compiler does not keep
whitespace.

Checked — Compiler keeps
whitespace.

Table 3.5 C/C++ Preprocessor Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

44 Targeting MPC55xx/MPC56xx Microcontrollers

C/C++ Warnings
Use the C/C++ Warnings settings panel (Figure 3.6) to control how the IDE displays
language-specific warnings. Table 3.6 explains the elements of this panel.

Figure 3.6 C/C++ Warnings Settings Panel

Table 3.6 C/C++ Warnings Settings Panel Elements

Element Purpose Comments

Illegal Pragmas
checkbox

Clear — Compiler does not issue
a warning if it does not recognize
a pragma keyword.

Checked — Compiler issues a
warning if it does not recognize a
pragma keyword.

Possible Errors
checkbox

Clear — Compiler does not issue
a warning if it finds inappropriate
semicolons or operators.

Checked — Compiler issues a
warning if it finds unintended
semicolons, or confusing
operators = and ==.

Target Settings Reference
e200 Core Settings Panels

45Targeting MPC55xx/MPC56xx Microcontrollers

Extended Error
Checking
checkbox

Clear — Compiler does not issue
a warning if it finds a common
type misuse.

Checked — Compiler issues a
warning if it finds a common type
misuse (which is valid C/C++
code).

Hidden Virtual
Functions
checkbox

Clear — Compiler does not issue
a warning if it finds a hidden
virtual function.

Checked — Compiler issues a
warning if it finds a hidden virtual
function.

Implicit
Arithmetic
Conversions
checkbox

Clear — Compiler does not issue
a warning if an operation’s
destination is too small.

Checked — Compiler issues a
warning if an operation’s
destination is too small for all
possible results.

Checking this checkbox
activates subordinate
checkboxes Float To Integer,
Signed/Unsigned, and
Integer To Float.

Float To Integer
checkbox

Clear — Compiler does not issue
a warning if it finds a float-to-
integer conversion.

Checked — Compiler issues a
warning if it finds a float-to-
integer conversion.

This checkbox is inactive
unless the Implicit
Arithmetic Conversions
checkbox is checked.

Signed /
Unsigned
checkbox

Clear — Compiler does not issue
a warning if it finds a signed-to-
unsigned conversion.

Checked — Compiler issues a
warning if it finds a signed-to-
unsigned conversion.

This checkbox is inactive
unless the Implicit
Arithmetic Conversions
checkbox is checked.

Table 3.6 C/C++ Warnings Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

46 Targeting MPC55xx/MPC56xx Microcontrollers

Integer To Float
checkbox

Clear — Compiler does not issue
a warning if it finds an integer-to-
float conversion.

Checked — Compiler issues a
warning if it finds an integer-to-
float conversion.

This checkbox is inactive
unless the Implicit
Arithmetic Conversions
checkbox is checked.

Pointer/Integral
Conversions
checkbox

Clear — Compiler does not issue
a warning if it finds a pointer-to-
integral conversion.

Checked — Compiler issues a
warning if it finds a pointer-to-
integral conversion.

Unused Variables
checkbox

Clear — Compiler does not issue
a warning if it finds an unused
variable.

Checked — Compiler issues a
warning if code does not use a
declared variable.

Unused
Arguments
checkbox

Clear — Compiler does not issue
a warning if it finds an unused
function argument.

Checked — Compiler issues a
warning if code does not use a
declared function argument.

Missing ‘return’
Statements
checkbox

Clear — Compiler does not issue
a warning if it detects a missing
return statement.

Checked — Compiler issues a
warning if detects a missing
return statement.

Expression Has
No Side Effect
checkbox

Clear — Compiler does not issue
a warning if it finds an
expression with no side effects.

Checked — Compiler issues a
warning if it finds an expression
with no side effects.

Table 3.6 C/C++ Warnings Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

47Targeting MPC55xx/MPC56xx Microcontrollers

Enable All button Enables (checks) all checkboxes
of the panel.

Disable All button Disables (clears) all checkboxes
of the panel.

Extra Commas
checkbox

Clear — Compiler does not issue
a warning if code contains extra
commas.

Checked — Compiler issues a
warning if code contains extra
commas.

Inconsistent
‘class’ / ‘struct’
Usage checkbox

Clear — Compiler does not issue
a warning if it finds inconsistent
use of either keyword.

Checked — Compiler issues a
warning if it finds inconsistent
use of either keyword.

Empty
Declarations
checkbox

Clear — Compiler does not issue
a warning if it finds a declaration
that does not contain a variable.

Checked — Compiler issues a
warning if it finds a declaration
that does not contain a variable.

Include File
Capitalization
checkbox

Clear — Compiler does not issue
a warning if it finds inappropriate
capitalization.

Checked — Compiler issues a
warning if it finds inappropriate
capitalization.

Pad Bytes Added
checkbox

Clear — Compiler does not issue
a warning if alignment requires
padding bytes.

Checked — Compiler issues a
warning if alignment requires
padding bytes.

Checking this checkbox may
lead to many spurious
warnings.

Table 3.6 C/C++ Warnings Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

48 Targeting MPC55xx/MPC56xx Microcontrollers

Undefined Macro
in #if checkbox

Clear — Compiler does not issue
a warning if finds an undefined
macro in an #if pragma.

Checked — Compiler issues a
warning if it finds an undefined
macro in an #if pragma.

Checking this checkbox may
lead to many spurious
warnings.

Non-Inlined
Functions
checkbox

Clear — Compiler does not issue
a warning if it finds a non-inlined
function.

Checked — Compiler issues a
warning if it finds a non-inlined
function.

Checking this checkbox may
lead to many spurious
warnings.

Treat All
Warnings As
Errors checkbox

Clear — Compilation continues,
despite warnings.

Checked — Compilation stops
upon warnings. You must
resolve warnings, just as errors,
before compilation can continue.

Table 3.6 C/C++ Warnings Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

49Targeting MPC55xx/MPC56xx Microcontrollers

EPPC Assembler
Use the EPPC Assembler settings panel (Figure 3.7) to define the syntax that the EPPC
assembler will accept for certain language elements, such as labels. Table 3.7 explains the
elements of this panel.

Figure 3.7 EPPC Assembler Settings Panel

Table 3.7 EPPC Assembler Settings Panel Elements

Element Purpose Comments

Labels Must End
With ‘:’ checkbox

Clear — Source-file labels need
not end with colon characters.

Checked — Source-file labels
must end with colon characters.

Directives Begin
With ‘.’ checkbox

Clear — Assembly directives
need not begin with period
characters.

Checked — Assembly directives
must begin with period
characters.

Target Settings Reference
e200 Core Settings Panels

50 Targeting MPC55xx/MPC56xx Microcontrollers

Check the GNU compatible syntax checkbox to indicate that your application uses GNU-
compatible assembly syntax. This compatibility allows:

• Redefining all equates, regardless if from the .equ or .set directives.

• Ignoring the .type directive.

• Treating undefined symbols as imported.

• Using GNU-compatible arithmetic operators — symbols < and > mean left-shift and
right-shift instead of less than and greater than; the symbol ! means bitwise-or-not
rather than logical not

• Using GNU-compatible precedence rules for operators

• Implementing GNU-compatible numeric local labels, from 0 to 9

Case Sensitive
Identifiers
checkbox

Clear — Assembler ignores case
in identifiers.

Checked — Case matters in
identifiers.

Allow Space In
Operand Field
checkbox

Clear — Spaces are not allowed
in fields.

Checked — Spaces are allowed
in fields.

GNU Compatible
Syntax checkbox

Clear — Indicates that your
application does not use GNU-
compatible syntax.

Checked — Indicates that your
application does use GNU-
compatible syntax.

Text immediately after this
table explains more about
GNU-compatible syntax.

Generate Listing
File checkbox

Clear — Specifies no listing file.

Checked — Assembler
generates a listing file that
includes files source, line
numbers, relocation information,
and macro expansions.

Prefix File text
box

Specifies a file automatically
included in all project assembly
files.

Put common definitions in a
prefix file, to avoid repeating
them in all assembly files.

Table 3.7 EPPC Assembler Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

51Targeting MPC55xx/MPC56xx Microcontrollers

• Treating numeric constants beginning with 0 as octal

• Using semicolons as statement separators

• Using a single unbalanced quote for character constants — for example, .byte 'a.

EPPC Processor
The EPPC Processor settings panel (Figure 3.8) controls processor-dependent code-
generation settings. Table 3.8 explains the elements of this panel.

Figure 3.8 EPPC Processor Settings Panel

Table 3.8 EPPC Processor Settings Panel Elements

Element Purpose Comments

Struct Alignment
list box

Specifies appropriate
alignment for compatibility
with Power Architecture EABI
and third-party object code.

If you choose a different
alignment value, your code may
not work correctly.

Target Settings Reference
e200 Core Settings Panels

52 Targeting MPC55xx/MPC56xx Microcontrollers

Function
Alignment list box

Specifies function alignment
(bytes) to the width of
multiple-instruction hardware
fetches. Possible values
range from 4 to 128.

(Does not affect boards not
capable of multiple-
instruction fetches.)

The st_other field of .symtab
(ELF) entries has been
overloaded, so function dead-
stripping does not interfere with
this alignment. This may result in
code that is incompatible with
some third-party linkers.

Processor list box Specifies the individual
processor for which the
system will tailor code.

Specifying Generic results in
code that runs on any Power
Architecture processor.

Section Processor Selection,
after this table, explains
additional effects of this
selection.

Floating Point list
box

Specifies how the compiler
handles floating-point
operations in your code.
Possible values are:

• None

• Software

• Hardware

• SPFP (single-
precision floating-
point)

• DPFP (double-
precision floating-
point)

Also activates the Relax HW
IEEE checkbox (and, in turn, its
subordinate checkboxes).
Hardware and DPFP selections
do not pertain to MPC55xx/
MPC56xx processors.

Section Floating Point
Operations, after this table,
provides additional information.

Vector Support
list box

Specifies generation of
instructions for the target
processor’s type of vector
execution. Possible values
are:

• None

• Altivec

• SPE

• SPE Addl

• SPE2

Selecting Altivec activates the
checkboxes of the Altivec
Options area.

Section Vector Operations
provides additional information.

Table 3.8 EPPC Processor Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

53Targeting MPC55xx/MPC56xx Microcontrollers

Relax HW IEEE
checkbox

Clear — Maintains strict
IEEE floating-point
requirements; deactivates
subordinate checkboxes.

Checked — Activates
subordinate checkboxes;
permits generation of faster
code by ignoring the
corresponding strict IEEE
floating-point requirements.

This checkbox is active only if
the Floating Point list box
specifies Hardware.

Use Fused Mult-
Add/Sub
checkbox

Clear — Does not generate
Power Architecture Fused
Multi-Add/Sub instructions.

Checked — Generates
PowerPC Fused Multi-Add/
Sub instructions, resulting in
smaller, faster floating-point
code.

This checkbox is active only if
the Relax HW IEEE checkbox is
active and checked.

Calculations with this option are
slightly more accurate, due to an
extra rounding bit, so may lead to
unexpected results.

Generate FSEL
Instruction
checkbox

Clear — Maintains standard
FSEL instructions.

Checked — For floating-point
values x and y, lets the
compiler optimize the pattern
x = (condition ? y :
z), resulting in a faster-
executing FSEL instruction.

This checkbox is active only if
the Relax HW IEEE checkbox is
active and checked.

FSEL is not accurate for
denormalized numbers, and may
adversely affect unordered
compares.

Assume Ordered
Compares
checkbox

Clear — Maintains strict
IEEE floating-point
compares: all compares
against NAN except not-
equal-to return FALSE.

Checked — Lets the compiler
ignore unordered-number
issues with floating-point
compares. This permits
conversion of if (a <= b)
to if (a > b),

This checkbox is active only if
the Relax HW IEEE checkbox is
active and checked.

Table 3.8 EPPC Processor Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

54 Targeting MPC55xx/MPC56xx Microcontrollers

Generate
VRSAVE
Instructions
checkbox

Clear — Does not generate
VRSAVE instructions.

Checked — Generates
instructions to save/restore
bit settings of the VRSAVE
register, and related non-
volatile vector register
values.

This checkbox is active only if
the Vector Support list box
specifies Altivec.

This option is not appropriate for
MPC55xx/MPC56xx
microcontrollers, which do not
have Altivec vector execution
units.

Altivec Structure
Moves checkbox

Clear — Does not use Altivec
instructions to copy
structures.

Checked — Uses Altivec
instructions to copy
structures.

This checkbox is active only if
the Vector Support list box
specifies Altivec.

This option is not applicable for
MPC55xx/MPC56xx
microcontrollers, which do not
have Altivec vector execution
units.

Make Strings
ReadOnly
checkbox

Clear — Stores string
constants in the ELF-file data
section.

Checked — Stores string
constants in the read-only
.rodata section. Also
activates the subordinate
checkbox Linker Merges
String Constants.

Corresponds to pragma
readonly_strings.

Linker Merges
String Constants
checkbox

Clear — Keeps individual the
strings of each file. (This
permits deadstripping of
unused strings.)

Checked — Compiler pools
strings of a file.

This checkbox is active only if
the Make Strings ReadOnly
checkbox is checked.

Pool Data
checkbox

Clear — Maintains default
data organization, permitting
stripping of unused data.

Checked — Organizes some
data of sections .data,
.bss, and .rodata for
faster program access.

This option affects only data
defined in the current source file.
This option is not compatible with
tentative data: it warns that you
must force tentative data into the
common section.

Table 3.8 EPPC Processor Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

55Targeting MPC55xx/MPC56xx Microcontrollers

Linker Merges FP
Constants
checkbox

Clear — Compiler does not
name floating-point constants
for automatic merging.

Checked — Compiler names
floating-point constants so
that names contain
constants.

This option lets the linker
automatically merge floating-
point constants.

Use Common
Section checkbox

Clear — Two variables with
the same name leads to a
link error.

Checked — Compiler places
global uninitialized data in the
common section — multiple
variables with the same
name share the same
storage address if at least
one is in the common
section.

Clear is appropriate for
development. But after you
debug your program, change
names of especially large
variables to be the same,
initialize them before use, and
check this checkbox.

Use LMW &
STMW checkbox

Clear — Compiler does not
use LMW or STMW
instructions; code executes
faster, even if it is larger.

Checked — Lets the compiler
use single Load-
Multiple-Word and
Store_Multiple_Word
Power Architecture
instructions for register loads
and stores. This leads to
smaller (but slower
executing) code.

LMW and STMW instructions are
not compatible with little-endian
code: for such code, the compiler
ignores this checkbox.

If a smaller function fits better in
microcontroller cache lines, it is
possible that the function using
LMW/STMW executes faster than
one using multiple LWZ/STW
instructions. To see if this is the
case, you may use pragmas
no_register_save_helpers
and use_lmw_stmw.

Table 3.8 EPPC Processor Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

56 Targeting MPC55xx/MPC56xx Microcontrollers

Inlined
Assembler Is
Volatile checkbox

Clear — Compiler does not
treat asm blocks as if the
volatile keyword were
present. This permits
optimization of asm blocks.

Checked — Compiler treats
all asm blocks (including
inline asm blocks) as if the
volatile keyword were
present.

Checking this checkbox prevents
optimization of asm blocks.
To enable asm block optimization
selectively, use the
.nonvolatile directive.

Instruction
Scheduling
checkbox

Clear — Compiler does not
perform this optimization.

Checked — Optimizes
scheduling of instructions for
the processor that the
Processor list box specifies.

This optimization changes
instruction execution order, so
can make source-level
debugging difficult. You may find
it helpful to clear this checkbox
until most debugging is done.

Peephole
Optimization
checkbox

Clear — Compiler does not
perform this optimization.

Checked — Compiler
performs small, local
optimizations that can lead to
reductions of multiple
instructions into one,
elimination of some compare
instructions, and
improvement of branch
sequences.

Checking this checkbox
corresponds to using pragma
peephole.

Profiler
Information
checkbox

Clear — Does not generate
profiler information.

Checked — Generates
special object code during
runtime, to collect information
for a code profiler.

Checking this checkbox
corresponds to using pragma
profile.

Table 3.8 EPPC Processor Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

57Targeting MPC55xx/MPC56xx Microcontrollers

Processor Selection
Your selection in the Processor list box has significance in these areas:

• Instruction scheduling — If you check the Instruction Scheduling checkbox, the
processor selection helps determine how the compiler makes scheduling
optimizations.

• Preprocessor symbol generation — The system defines a preprocessor symbol based
on your target processor. It conforms to:

#define __PPCnumber__ 1

where number is the four-digit processor number: For the 5561 processor, for
instance, the symbol is __PPC5561__. If you specify Generic, the symbol is
__PPCGENERIC__.

• Floating-point support — The Floating Point list box lets you specify the None,
Software, or Hardware value, regardless of the target processor you specify, even if
this processor lacks a floating-point unit. If the processor does not support floating-
point exception handling, however, you should select None or Software. (Not
selecting Hardware deactivates the Use FusedMult-Add/Sub checkbox.

Generate ISEL
Instruction
checkbox

Clear — Does not generate
ISEL instructions.

Checked — Generates
Integer Select (ISEL)
instructions, which pertain
only to MPC55xx/MPC56xx
targets.

Generate VLE
instructions
checkbox

Clear — Does not generate
VLE instructions.

Checked — Generates
Variable-Length Encoding
instructions.

Translate PPC
Asm to VLE Asm
checkbox

Clear — Does not translate
PPC Asm to VLE Asm.

Checked — Translates PPC
Asm to VLE Asm.

.

Table 3.8 EPPC Processor Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

58 Targeting MPC55xx/MPC56xx Microcontrollers

Floating Point Operations
Your selection in the Floating Point list box defines how the compiler handles floating-
point operations. You must also include in your project the runtime library that
corresponds to your selection. For example, if you select the None option, you must also
include the library Runtime.PPCEABI.N.a.

Your list-box options are:

• None — Prevents floating-point operations.

• Software — Emulates floating-point operations in software.

(This floating-point emulation generates calls defined in the C runtime library, so
you must include the appropriate C runtime file in your project. Otherwise, enabling
software emulation causes link errors.)

• Hardware — Performs hardware floating-point operations. The e200z cores does not
implement the floating-point instructions as they are defined in Book E. The
Hardware option does not apply to MPC55xx/MPC56xx processors.

Also activates the Relax HW IEEE checkbox (checking this checkbox activates its
subordinate checkboxes Use Fused Mult-Add/Sub, Generate FESL Instruction,
and Assume Ordered Compares).

(Do not select the Hardware option if your target processor lacks a Book E hardware
floating-point unit.)

• SPFP — Single-precision Floating-Point Performs floating-point operations by the
e200 core’s.

• DPFP — Double-precision floating-point performs operations by software routines.
(A runtime library containing these routines have to be included in the new project).
Use hardware for both single float and double float arithmetic. This is only for
processors that support hardware DPFP instructions.

• SPFP only — Built-in types doubles and long doubles will be treated as if they are
only 4 bytes in size. This means that double is considered the same type as float that
they are both 4 bytes and have the same encoding and precision for single floating
point numbers. This option is only supported for e200 (Zen or VLE) and e500v1
processors that support the SPFP APU.

The DPFP option does not apply to MPC55xx/MPC56xx processors.

Vector Operations
Your selection in the Vector Support list box specifies generation of instructions for the
target processor’s type of vector execution.

The list-box options are:

• None — Prevents vector support.

Target Settings Reference
e200 Core Settings Panels

59Targeting MPC55xx/MPC56xx Microcontrollers

• Altivec — Enables use of vector data types for writing AltiVec-specific code.

This option enables the Altivec Options panel in the EPPC Processor Settings
panel. The Altivec Options panel has the following checkboxes:

– Generate VRSAVE Instructions

– Altivec Structure Moves

NOTE These options are not appropriate for MPC55xx/MPC56xx microcontrollers,
which do not have Altivec vector execution units.

• SPE — Enables the SPE vector support. This option needs to be enabled when the
floating point is set to SPFP or DPFP as both these options require support from the
SPE vector unit. If the option is not turned on, the compiler generates a warning and
automatically enables the SPE vector generation.

• SPE Addl — Enables the additional SPE vector support. The e200 z3 and z6 cores
support eight additional SPE-fused multiply-add and multiply-subtract instructions.
This option tells the compiler to generate the additional SPE instructions, when
appropriate, for more optimized codes and also turns on the SPE option.

• SPE2 —Enables the SPE2 vector support. This option is supported for e200 z7 core
only. When the SPE2 option is selected, the -pragma fp_contract off
directive is used to disable the SPE additional-fused multiply-add instruction
generation. By turning off this optimization, the floating point accuracy is
maintained.

Target Settings Reference
e200 Core Settings Panels

60 Targeting MPC55xx/MPC56xx Microcontrollers

EPPC Disassembler
Use the EPPC Disassembler settings panel (Figure 3.9) to control display of disassembler
information. (To see this information, select Project > Disassemble from the
CodeWarrior main menu bar.) Table 3.9 explains the elements of this panel.

Figure 3.9 EPPC Disassembler Settings Panel

Table 3.9 EPPC Disassembler Settings Panel Elements

Element Purpose Comments

Show Headers
checkbox

Clear — Disassembled output
does not include ELF-header
information.

Checked — Assembled file lists
any ELF header information in
the disassembled output.

Show Symbol
Table checkbox

Clear — Disassembler does not
list the symbol table.

Checked — Disassembler lists
the symbol table for the
disassembled module.

Target Settings Reference
e200 Core Settings Panels

61Targeting MPC55xx/MPC56xx Microcontrollers

Show Code
Modules
checkbox

Clear — Does not provide ELF
code sections; disables
subordinate checkboxes.

Checked — Provides ELF code
sections in module
disassembled output. Activates
subordinate checkboxes Use
Extended Mnemonics, Show
Source Code, and Only Show
Operands and Mnemonics.

Use Extended
Mnemonics
checkbox

Clear — Disassembler does not
list extended mnemonics.

Checked — Disassembler lists
extended mnemonics for each
instruction.

This checkbox is active only if
the Show Code Modules
checkbox is checked.

Show Source
Code checkbox

Clear — Disassembler does not
show source code.

Checked — Disassembler does
show source code.

This checkbox is active only if
the Show Code Modules
checkbox is checked.

Only Show
Operands and
Mnemonics
checkbox

Clear — Lists offsets for any
functions in the disassembled
module.

Checked — Does not list offsets.

This checkbox is active only if
the Show Code Modules
checkbox is checked.

Show Data
Modules
checkbox

Clear — Does not provide ELF
data sections.

Checked — Disassembler
provides ELF data sections,
such as .rodata and .bss, in
the disassembled module
output. Activates subordinate
checkbox Disassemble
Exception Table.

Table 3.9 EPPC Disassembler Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

62 Targeting MPC55xx/MPC56xx Microcontrollers

Disassemble
Exception Tables
checkbox

Clear — Does not provide C++
exception tables.

Checked — Disassembler
provides C++ exception tables in
the disassembled module
output.

This checkbox is active only if
the Show Data Modules
checkbox is checked.

Show DWARF
Info checkbox

Clear — Does not include
DWARF symbol information.

Checked — Disassembler
includes DWARF symbol
information in disassembled
output. Activates subordinate
checkbox Relocate DWARF
Info.

Relocate DWARF
Info checkbox

Clear — Does not relocate
addresses.

Checked — Displays relocated
addresses inside debug
sections.

Pertains to DWARF 1 debug
information. This checkbox is
active only if the Show
DWARF Info checkbox is
checked.

Verbose Info
checkbox

Clear — Does not display
additional information.

Checked — Displays additional
ELF-file information, such as
descriptive constants and
numeric equivalents in the
.symtab section. Shows
.line, .debug, .extab, and
.extabindex sections with an
unstructured hexadecimal dump.

Table 3.9 EPPC Disassembler Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

63Targeting MPC55xx/MPC56xx Microcontrollers

EPPC Linker
Use the EPPC Linker settings panel (Figure 3.10) to control settings related to linking
your object code into executable, library, or other final form. Table 3.10 explains the
elements of this panel.

Figure 3.10 EPPC Linker Settings Panel

Table 3.10 EPPC Linker Settings Panel Elements

Element Purpose Comments

Link Mode list box Specifies how much memory the
linker uses to write output to the
hard disk. Possible values are:

• Use Less RAM —
writes output file
directly to disk, without
using a buffer.

• Normal — Writes to a
512-byte buffer, then
writes the buffer to
disk.

• Use More RAM —
Writes each segment
to its own buffer, then
flushes all buffers to
the disk.

Linking requires enough RAM
space for all input files and
numerous housekeeping
structures.
Normal is the best choice for
most projects; Use More
RAM is appropriate for small
projects.

Target Settings Reference
e200 Core Settings Panels

64 Targeting MPC55xx/MPC56xx Microcontrollers

Generate DWARF
Info checkbox

Clear — Does not generate
debugging information;
deactivates the subordinate
checkbox.

Checked — Generates
debugging information in the
linked ELF file. Activates
subordinate checkbox Use Full
Path Names.

Use Full Path
Names checkbox

Clear — Linker uses only file
names.

Checked — Linker includes path
names in the linked ELF file.

This checkbox is active only if
the Generate DWARF Info
checkbox is checked.

Clear this checkbox if you
build/debug on a different
computer or platform, to help
the debugger find your source
code.

Generate Link
Map checkbox

Clear — Does not generate a
map file.

Checked — Linker generates a
link map — showing every
object/function definition and
address, memory map of
sections, and values of linker-
generated symbols. Activates
subordinate checkboxes.

If you used a non-
CodeWarrior compiler to build
the relocatable file, the map
file also lists unused but
unstripped symbols.
Map files have the extension
.MAP.

List Closure
checkbox

Clear — Map does not list
functions that the program
starting point calls.

Checked — Map file lists all
functions that the program
starting point calls.

This checkbox is active only if
the Generate Link Map
checkbox is checked.

List Unused
Objects checkbox

Clear — Map does not list
unused objects.

Checked — Map lists unused
objects; useful for revealing that
objects you expected to be used
are not.

This checkbox is active only if
the Generate Link Map
checkbox is checked.

Table 3.10 EPPC Linker Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

65Targeting MPC55xx/MPC56xx Microcontrollers

List DWARF
Objects checkbox

Clear — Map does not list
DWARF debugging objects.

Checked — Map lists all DWARF
debugging objects in section
area.

This checkbox is active only if
the Generate Link Map
checkbox is checked.

Suppress
Warning
Messages
checkbox

Clear — Linker displays
warnings in the CodeWarrior
message window.

Checked — Linker does not
display warnings in the
CodeWarrior message window.

Heap Address
checkbox

Clear — Makes the top of the
heap equal the bottom of the
stack.

Checked — Specifies memory
location for program heap.
Activates the associated text
box, which you use to enter the
RAM address of the bottom of
the heap.

Subsection Heap Information,
after this table provides
additional heap guidance.

Stack Address
checkbox

Clear — Linker uses default
stack address 0x003DFFF0.

Checked — Specifies memory
location for program stack.
Activates the associated text
box, which you use to enter the
RAM address for the top of the
stack.

Subsection Stack Information,
after this table provides
additional stack guidance.

Generate ROM
Image checkbox

Clear — Does not generate
ROM image; deactivates
subordinate checkboxes.

Checked — Linker creates a
ROM image. Activates
subordinate checkboxes RAM
Buffer Address and ROM Image
Address.

Table 3.10 EPPC Linker Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

66 Targeting MPC55xx/MPC56xx Microcontrollers

RAM Buffer
Address
checkbox

Clear — Does not let you specify
a RAM buffer address.

Checked — Activates the text
box, letting you specify the
address of a RAM buffer for a
flash programmer to use.

Many other flash programmers
use the specified, separate,
buffer to load all binary
segments into consecutive
addresses in flash ROM. At
runtime, however, the system
loads these segments into
addresses that the linker
command file or the Code
Address text box specify.

This checkbox is active only if
the Generate ROM Image
checkbox is checked.
For the CodeWarrior flash
programmer, the RAM buffer
address and the ROM image
address must be the same.

The linker generates symbols
for ROM and execution
addresses. file installDir
\PowerPC_EABI_Support\
Runtime\Include
__ppc_eabi_linker.h
provides more information
about such symbols.

ROM Image
Address
checkbox

Clear — Does not let you specify
a destination address.

Checked — Activates the text
box, letting you specify flash
ROM destination address for
your binary.

This checkbox is active only if
the Generate ROM Image
checkbox is checked.
For the CodeWarrior flash
programmer, the ROM image
address and the RAM buffer
address must be the same.

Use Linker
Command File
checkbox

Clear — Lets you specify
addresses via other checkboxes
of the Segment Addresses
area; ignores any linker
command file.

Checked — Tells the linker to
find segment addresses in the
linker command file.

Must be clear if you check
any other Segment
Addresses checkboxes.
If you check this checkbox but
the linker command file does
not specify segment
addresses, the system issues
an error message.

Table 3.10 EPPC Linker Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

67Targeting MPC55xx/MPC56xx Microcontrollers

Code Address
checkbox

Clear — Accepts linker
command file address
specification.

Checked — Activates the
corresponding text box, letting
you specify the hexadecimal
address for executable code.

Must be clear if the Use
Linker Command File
checkbox is checked.
If both this and the Use
Linker Command File
checkboxes are clear, uses
default address
0x00010000, which may not
be suitable for boards with a
small amount of RAM.
(Stationery projects include
examples with better
addresses for such boards,)

Data Address
checkbox

Clear — Accepts linker
command file address
specification.

Checked — Activates the
corresponding text box, letting
you specify the hexadecimal
address for global data.

Must be clear if the Use
Linker Command File
checkbox is checked.
If both this and the Use
Linker Command File
checkboxes are clear, the
linker uses the address after
sections .text, .rodata,
extab, and extabindex,)

Small Data
checkbox

Clear — Accepts linker
command file address
specification.

Checked — Activates the
corresponding text box, letting
you specify the hexadecimal
RAM address for the first small
data section. This address must
not conflict with the target-
hardware memory map; target
hardware must support this
address.

Must be clear if the Use
Linker Command File
checkbox is checked.
If both this and the Use
Linker Command File
checkboxes are clear, the
linker places the first small
data section immediately after
the .data section.

Table 3.10 EPPC Linker Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

68 Targeting MPC55xx/MPC56xx Microcontrollers

Small Data2
checkbox

Clear — Accepts linker
command file address
specification.

Checked — Activates the
corresponding text box, letting
you specify the hexadecimal
RAM address for the second
small data section. This address
must not conflict with the target-
hardware memory map; target
hardware must support this
address.

Must be clear if the Use
Linker Command File
checkbox is checked.
If both this and the Use
Linker Command File
checkboxes are clear, the
linker places the second small
data section immediately after
the .sbss section.

Binary File list
box

Creates binary file(s). It has the
following choices:

• None — No binary file

• One — One binary file

• Multiple — Multiple
binary files

Default option is None. No
binary file will be created
unless explicitly One or
Multiple option is selected
from the Binary File list box.

Generate S-
Record File
checkbox

Clear — Does not generate an
S-record file.

Checked — Generates an S3 S-
record file, based on the
application object image.
Activates subordinate elements.

The name extension of the S-
record file is .mot.

Sort S-Record
checkbox

Clear — Does not sort S-record
files.

Checked — Sorts generated S-
record files in ascending address
order.

This checkbox is active only if
the Generate S-Record File
checkbox is checked.

Max Length text
box

Specifies maximum S-record
length (256 bytes or fewer) for
the system. (For a non-
CodeWarrior tool, you may need
to reduce this value.)

This text box is active only if
the Generate S-Record File
checkbox is checked.

Table 3.10 EPPC Linker Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

69Targeting MPC55xx/MPC56xx Microcontrollers

Heap Information
Your program uses a heap if it calls malloc or new. If you use the Main Standard
Libraries (MSL), your program may use a heap implicitly. However MSL allocation
routines do not require a heap below the stack.

If you do specify a heap address, check the Heap Address checkbox, then enter a
hexadecimal address in the text box. This address is the bottom of the heap; if necessary,
the system aligns it up to the nearest 8-byte boundary. The top of the heap is Heap Size
kilobytes above the Heap Address (the Heap Size text box of the EPPC Target settings
panel specifies the Heap Size value). The possible address values depend on your target
hardware platform and how memory is mapped. The heap must reside in RAM; the heap
address may be any place in RAM that does not overlap other sections. The MSL also
permit multiple memory pools, which can increase the total size of the heap.

If you clear the checkbox, the top of the heap equals the bottom of the stack:

_stack_end = _stack_addr - (stack_size * 1024);
_heap_end = _stack_end;
_heap_addr = _heap_end - (heap_size * 1024);

You can clear the Heap Address checkbox if your code does not make use of a heap.

NOTE If there is not enough free space available in your program, malloc returns
zero. If you do not call malloc or new, consider setting Heap Size (k) to 0 to
maximize the memory available for code, data, and the stack.

EOL Character
list box

Specifies the end-of-line
character for the S-record file:

• DOS — <cr> <lf>

• Unix — <lf>

• Mac — <cr>

This list box is active only if
the Generate S-Record File
checkbox is checked.

Entry Point text
box

Specifies the program starting
point — the function that the
linker uses first when you launch
the program.

This default function (in file
__start.c) is bootstrap/
glue code that sets up the
EABI environment, then calls
function main().

Table 3.10 EPPC Linker Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
e200 Core Settings Panels

70 Targeting MPC55xx/MPC56xx Microcontrollers

Stack Information
The Stack Address checkbox and text box let you specify the top of the stack. The
address you enter must be in RAM, and in hexadecimal notation. The stack grows down
from that address; its size is the value of the Stack Size text box (of the EPPC Target
settings panel). If necessary, the system aligns your address value up to the nearest 16-
byte boundary. The possible address values depend on your target hardware platform and
how the memory is mapped.

NOTE An alternative way to specify the stack address is by entering a value for the
symbol _stack_addr in a linker command file.

If you do not specify a stack address, the linker uses 0x003DFFF0. But this default value
may not be suitable for boards that have only a small amount of RAM. If you have such a
board, see the stationery projects for examples that have suitable addresses.

NOTE As the stack grows downward, it is common to place the stack as high as
possible. CodeWarrior TRK, for example, puts its data in high memory,
placing the stack at default address 0x003DFFF0. CodeWarrior TRK also
uses memory from 0x00000100 through 0x00002000 for exception
vectors

EPPC Linker Optimizations
Use the EPPC Linker Optimizations settings panel (Figure 3.11) to specify a batch file
that CodeWarrior build tools should run before linking your project. Table 3.11 explains
the elements of this panel.

Target Settings Reference
e200 Core Settings Panels

71Targeting MPC55xx/MPC56xx Microcontrollers

Figure 3.11 EPPC Linker Optimizations Settings Panel

Table 3.11 EPPC Linker Optimizations Settings Panel Elements

Element Purpose Comments

Code Merging list
box

Controls merging optimization.
Selections are:

• Off

• Safe Functions

• All Functions

Off deactivates subordinate
checkboxes Aggressive
Merging and VLE Enhance
Merging. Other selections
activate these checkboxes.

Aggressive
Merging checkbox

Clear — Does not implement
aggressive merging.

Checked — Implements
aggressive merging.

This checkbox is active only if
the Code Merging list box
specifies Safe Functions
or All Functions.

VLE Enhance
Merging checkbox

Clear — Does not implement
VLE enhance merging.

Checked — Implements VLE
enhance merging.

This checkbox is active only if
the Code Merging list box
specifies Safe Functions
or All Functions.

Target Settings Reference
PC-lint Settings Panels

72 Targeting MPC55xx/MPC56xx Microcontrollers

PC-lint Settings Panels
PC-lint is a third-party software development tool that checks C/C++ source code for
bugs, inconsistencies, non-portable constructs, redundant code, and additional problems.
CodeWarrior Development Studio for MPC55xx/MPC56xx Microcontrollers include
target settings panels and plug-ins that let you configure and use PC-lint from within the
CodeWarrior IDE.

However, this CodeWarrior product does not include the PC-lint software. You must
obtain and install a copy of PC-lint before you can use it with the CodeWarrior IDE.
Among other places, PC-lint is available from its developers, Gimpel Software:
http://www.gimpel.com.

NOTE To use the default CodeWarrior PC-lint configuration as is, install PC-lint in
the \Lint subdirectory of the CodeWarrior installation directory.
Alternatively, you can install PC-lint anywhere and then adjust the
CodeWarrior configuration to match.

Once you have installed PC-lint, you can configure any build target of any CodeWarrior
project to use this software. To do this, follow these steps:

1. Open a project.

2. Select the build target with which you will use PC-lint.

3. Bring up the Target Settings window for this build target.

4. Display the Target Settings panel in the Target Settings window.

Far to Near
Addressing
checkbox

Clear — Does not implement far-
to-near addressing optimization.

Checked — Implements far-to-
near addressing optimization.

VLE Shorten
Branches
checkbox

Clear — Does not implement
VLE shorten branches
optimization.

Checked — Implements VLE
shorten branches optimization.

.

Table 3.11 EPPC Linker Optimizations Settings Panel Elements (continued)

Element Purpose Comments

http://www.gimpel.com

Target Settings Reference
PC-lint Settings Panels

73Targeting MPC55xx/MPC56xx Microcontrollers

5. From the Linker list box, select PCLint Linker, as shown in Figure 3.12.

New panel names appear in the Target Settings Panels pane: PCLint Main Settings
and PCLint Options. (Names of panels that pertain to ELF generation disappear from
this pane.)

6. Use these new panels to specify PC-lint configuration options appropriate for your
build target.

The sections that follow document each of the PC-lint target settings panels.

Figure 3.12 Selecting PCLint Linker

Target Settings Reference
PC-lint Settings Panels

74 Targeting MPC55xx/MPC56xx Microcontrollers

PCLint Main Settings
Use the PCLint Main Settings panel (Figure 3.13) to provide the path to the PC-lint
executable and to define the compiler-option/prefix files. Table 3.12 documents the
elements of this panel.

Figure 3.13 PCLint Main Settings Panel

Table 3.12 PCLint Main Settings Panel Elements

Element Purpose Comments

PC-lint
Executable text
box

Specifies the PC-lint executable
file. If you did not install PC-lint
on the default path, enter the
actual path and filename.

Click Choose — a
subordinate dialog box
appears, that you can use to
specify the file. Click OK to
return to this settings panel,
placing the specified path
name in the text box.

Display
generated
commandlines ...
checkbox

Clear — There is not display of
the command line the IDE
passes to PC-lint.

Checked — IDE Errors and
Warnings window displays the
command line the IDE passes to
PC-lint.

Target Settings Reference
PC-lint Settings Panels

75Targeting MPC55xx/MPC56xx Microcontrollers

No inter-module
checks checkbox

Clear — Linker uses only file
names.

Checked — Linker includes path
names in the linked ELF file.

This checkbox is active only if
the Generate DWARF Info
checkbox is checked.

Clear this checkbox if you
build/debug on a different
computer or platform, to help
the debugger find your source
code.

Additional Path
to ... text box

Specifies the path to the PC-lint
option files. To configure a build
target to use an additional option
file, enter the path to the
directory.
(You can leave this text box
empty.)

Click Choose — a
subordinate dialog box
appears that you can use to
specify the directory. Click
OK to return to this settings
panel, placing the specified
path name in the text box.

Compiler Option
list box

Lists compiler option files of the
directory that the Additional Pat
to ... text box specifies. Select
the appropriate file.

This text box is active only if
there are option files in the
specified directory.

Display default ...
files too checkbox

Clear — Does not include default
.lnt files in the configuration.

Checked — Includes default
.lnt files to the configuration,
along with alternate .lnt files
that previous text boxes specify.

Prefix File text
box

Specifies an optional prefix file to
pass to PC-lint: enter the path
and filename.
(You can leave this text box
empty.)

Click Choose — a
subordinate dialog box
appears that you can use to
specify the file. Click OK to
return to this settings panel,
placing the specified path
name in the text box.

Table 3.12 PCLint Main Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
PC-lint Settings Panels

76 Targeting MPC55xx/MPC56xx Microcontrollers

PCLint Options
Use the PCLint Options settings panel (Figure 3.14) to define the syntax rules,
environment options, and other settings PC-lint uses to validate source files and perform
additional error checking. Table 3.13 documents the elements of this panel.

Figure 3.14 PCLint Options Settings Panel

Table 3.13 PCLint Options Settings Panel Elements

Element Purpose Comments

Scott Meyers
(Effective C++)
checkbox

Clear — PC-lint does not verify
adherence to Effective C++
syntax.

Checked — PC-lint verifies that
your code conforms to Effective
C++ syntax rules.

(You may check none, any
one, any two, or all three
checkboxes of this group.)

Dan Saks
checkbox

Clear — PC-lint does not verify
adherence to Dan Saks
recommendations.

Checked — PC-lint verifies that
your code adheres to syntax
rules Dan Saks recommends.

(You may check none, any
one, any two, or all three
checkboxes of this group.)

Target Settings Reference
PC-lint Settings Panels

77Targeting MPC55xx/MPC56xx Microcontrollers

MISRA checkbox Clear — PC-lint does not verify
conformity with MISRA
guidelines.

Checked — PC-lint verifies that
your code adheres to C
guidelines of the Motor Industry
Software Reliability Association.

(You may check none, any
one, any two, or all three
checkboxes of this group.)

Active Template
Library checkbox

Clear — PC-lint does not
validate Active X Template
Library (ATL) code.

Checked — PC-lint validates
your ATL code.

Standard
Template Library
checkbox

Clear — PC-lint does not
validate Standard Template
Library (STL) code.

Checked — PC-lint validates
your STL code.

Open Inverter
Library checkbox

Clear — PC-lint does not
validate open inverter library
code.

Checked — PC-lint validates
your open inverter library code.

Windows 16-bit
checkbox

Clear — PC-lint does not
validate 16-bit API calls.

Checked — PC-lint validates
your 16-bit Windows API calls.

Windows 32-bit
checkbox

Clear — PC-lint does not
validate 32-bit API calls.

Checked — PC-lint validates
your 32-bit Windows API calls.

Windows NT
checkbox

Clear — PC-lint does not
validate NT API calls.

Checked — PC-lint validates
your Windows NT API calls.

Table 3.13 PCLint Options Settings Panel Elements (continued)

Element Purpose Comments

Target Settings Reference
PC-lint Settings Panels

78 Targeting MPC55xx/MPC56xx Microcontrollers

MFC checkbox Clear — PC-lint does not
validate Microsoft Foundation
Classes (MFC) code.

Checked — PC-lint validates
your MFC code.

CORBA checkbox Clear — PC-lint does not
validate Common Object
Request Broker Architecture
(CORBA) code.

Checked — PC-lint validates
your COBRA code.

Warnings list box Specifies the kinds of messages
PC-lint displays.

Library Warnings
list box

Specifies the kinds of messages
PC-lint displays for libraries.

Additional
Options text box

Specifies command-line
switches for the IDE to pass to
PC-lint.

PC-lint manuals list the
possible switches.

Table 3.13 PCLint Options Settings Panel Elements (continued)

Element Purpose Comments

79Targeting MPC55xx/MPC56xx Microcontrollers

A
Lauterbach Debugger
Adjustments

One of the debuggers you can use with your MPC55xx/MPC56xx projects is the
Lauterbach TRACE32 system. This appendix explains the changes you must make to
accommodate the Lauterbach debugger.

In this appendix:

• “Modifying Configuration Files”

• “Connecting the Hardware”

NOTE If you use a debugger from a different manufacturer, that debugger’s user
documentation may provide corresponding guidance. Another possible source
of such guidance is the manufacturer’s customer support department.

Modifying Configuration Files
You need a host-system configuration file to set up the target system to work with the
Lauterbach debugger. The examples of this section show the settings for a simple
application.

For more complex applications, refer to the Lauterbach documentation. For detailed
explanations of embedded Power Architecture registers, see the “Related Documentation”
section.

Power Architecture Configuration File
The usual filename extension for the configuration file is .cmm. Listing A.1 shows a
configuration file for a regular Power Architecture application. When you specify an
executable file to be loaded, you must provide its location as a path relative to that of the
configuration file.

Lauterbach Debugger Adjustments
Modifying Configuration Files

80 Targeting MPC55xx/MPC56xx Microcontrollers

Listing A.1 Example .cmm File for Lauterbach Debugger

SYStem.RESet
SYStem.CPU 55XX
SYStem.BdmClock 4.MHz
SYStem.UP

; initialize internal SRAM
Data.Set EA:0x40000000--0x4003FFFF %quad 0

; set MMU TLB1: Map SRAM (A:0x40000000) to 0x00000000
MMU.TLB1.SET 1 0x80000400 0x00000000 0x4000003f

Data.Load.ELF bin/ppc_app.elf /GlobTypes

Data.List

The first few commands make microcontroller-specific settings, such as the target’s
microcontroller type and the debug-interface-to-target transfer clock.

The command

SYStem.UP

restarts the microcontroller, with debug mode enabled.

The next part of the configuration file sets up target-specific items. The command
initializes SRAM with zeros, setting the address range as the interval between two
physical addresses:

Data.Set EA:0x40000000-0x4003FFFF %quad 0

The next command sets up the MMU:

MMU.TLB1.SET 1 0x80000400 0x00000000 0x4000003f

This command initializes the first translation lookaside buffer (TLB). The first parameter
is the index of the TLB entry being set up (in this case, the first). The other parameters are
the MAS1, MAS2 and MAS3 (MMU Assist) registers:

• MAS1: sets the VALID bit, marking the TLB entry 1 as valid

• MAS1: sets the TSIZE field to 4, page size is set to 256 kilobytes

• MAS2: sets the effective page number to 0, the start of the virtual address space for
the application

• MAS3: sets the real page number to 0x40000000, the start of the real address for the
application

• MAS3: sets PERMIS bits to 0x3f to enable all permissions

Lauterbach Debugger Adjustments
Modifying Configuration Files

81Targeting MPC55xx/MPC56xx Microcontrollers

This command loads the executable image relative to the directory on the host where the
configuration file resides:

Data.Load.ELF bin/ppc_app.elf /GlobTypes

The GlobTypes parameter must be set when the debug information is shared across
different modules (such as application and runtime files that reside in different
directories).

VLE Configuration File
If you use the Lauterbach TRACE32 debugger to debug a variable length encoded (VLE)
Power Architecture application, you need a configuration file similar to that of Listing
A.1. However, the MAS2 value must set the VLE flag (bit 58). Listing A.2 is an example.

Listing A.2 Example VLE .cmm File for Lauterbach Debugger

SYStem.RESet
SYStem.CPU 5534
SYStem.BdmClock 4.MHz
SYStem.UP

; initialize internal SRAM
Data.Set EA:0x40000000--0x4003FFFF %quad 0

; set MMU TLB1: Map SRAM (A:0x40000000) to 0x00000000
MMU.TLB1.SET 1 0x80000400 0x00000020 0x4000003f

Data.Load.ELF bin/vle_app.elf /GlobTypes

Data.List

Mixed Configuration File
Listing A.3 is an example configuration file for Lauterbach debugging of an application
that uses both VLE and regular Power Architecture instruction encoding.

Note the two entries for the first TLB:

• One to specify a 4-kilobyte page for regularly encoded Power Architecture
instructions,

• A second to specify a 4-kilobyte page for VLE instructions.

Also note that the Power Architecture and VLE code must reside in different pages. You
may want to use a linker control file to specify this code layout in the executable image.

Lauterbach Debugger Adjustments
Connecting the Hardware

82 Targeting MPC55xx/MPC56xx Microcontrollers

Listing A.3 Example Mixed Configuration File

SYStem.RESet
SYStem.CPU 5534
SYStem.BdmClock 4.MHz
SYStem.UP

; initialize internal SRAM
Data.Set EA:0x40000000--0x4000FFFF %quad 0

;set up MMU
; TLB1, 0x40000000--0x40000fff
MMU.TLB1.Set 1 0xC0000100 0x40000000 0x4000003F

; TLB2, 0x40001000--0x40001fff
MMU.TLB1.Set 2 0xC0000100 0x40001020 0x4000103F

Data.LOAD.ELF bin/ppc_vle_app.elf /GlobTypes

Data.List

Connecting the Hardware
Follow these steps to connect the Lauterbach TRACE32 Debugger hardware to your host
and target systems:

1. Make sure the target system power is off.

2. Disconnect the debug cable from the target system.

3. Connect the Lauterbach TRACE32 hardware and the debug cable to the host system.

4. On the host system, start the TRACE32 software.

5. Reconnect the debug cable to the target system.

6. Switch on the target system power.

To disconnect the Lauterbach hardware, follow these steps:

1. Switch off the target power.

2. Disconnect the debug cable from the target system.

(For more details, refer to Lauterbach documentation.)

83Targeting MPC55xx/MPC56xx Microcontrollers

B
P&E Debugger Adjustments

One of the debuggers you can use with your MPC55xx/MPC56xx projects is the
P&E ICDPPCNEXUS™ debugger. This appendix explains how to set up the P&E
debugger to work with projects built with the CodeWarrior IDE.

In this appendix:

• “Modifying Configuration Files”

• “Command-Line Arguments”

• “Connecting the Hardware”

NOTE If you use a debugger from a different manufacturer, that debugger’s user
documentation may provide corresponding guidance. Another possible source
of such guidance is the manufacturer’s customer support department.

Modifying Configuration Files
You need a host-system configuration file to set up the target system to work with the
P&E debugger. The examples in this section show the settings required for a simple
application.

For more complex applications, refer to the P&E documentation. For a detailed
documentation of Power Architecture registers, see the “Related Documentation” section.

Power Architecture Configuration File
The usual filename extension for the configuration or macro file is .mac. When you
specify an executable file to be loaded, you must provide its location as a path relative to
that of the configuration file. For more information about a regular Power Architecture
configuration file, see the MPC5516_booke.mac file, located in the
InstallDir\pemicro directory.

The MPC5516_booke.mac file configures the memory management unit (MMU) for
Periph B modules, internal flash memory, external memory, and internal SRAM. For
example, Listing B.1 shows the commands required to set up the third translation
lookaside buffer (TLB) entry for internal SRAM.

P&E Debugger Adjustments
Modifying Configuration Files

84 Targeting MPC55xx/MPC56xx Microcontrollers

Listing B.1 .mac file for P&E Debugger

REM Set up MMU for Internal SRAM
REM Base address = $4000_0000
REM TLB3, 256 KByte Memory Space, Not Guarded, Don't Cache, All Access,
VLE
spr 624t $10030000 ; MAS0
spr 625t $C0000400 ; MAS1
spr 626t $40000008 ; MAS2
spr 627t $4000003F ; MAS3
execute_opcode $7C0007A4 ; tlbwe

VLE Configuration File
To use the P&E ICDPPCNEXUS debugger to debug a variable length encoding (VLE)
Power Architecture application, you must configure the MPC5516_vle.mac file located
in the InstallDir\pemicro directory.

NOTE The MAS2 value must set the VLE flag (bit 58).

Table B.1 Macro Files for Various Targets

Microcontroller Macro File Notes

mpc551x • mpc5516_booke.mac

• mpc5516_vle.mac

Only the p0 core can run in
BookE mode.

Core(s) running in VLE mode.

mpc553x

mpc555x

mpc556x

• mpc5500_booke.mac

• mpc5500_vle.mac

Microcontrollers running in
BookE mode.

Microcontrollers running in
VLE mode

mpc560xB

mpc560xP

mpc560xS
mpc560xE

• mpc5600_z0h_vle.mac These Microcontrollers are
VLE only.

mpc563xm • mpc5633m_booke.mac

• mpc5633m_vle.mac

Core(s) running in BookE
mode.

Core(s) running in VLE mode.

P&E Debugger Adjustments
Modifying Configuration Files

85Targeting MPC55xx/MPC56xx Microcontrollers

Target Settings for the P&E Debugger
If you are using a P&E debugger, use the Build Extras setting panel (Figure B.1) to
specify debugger settings. To open this window, select Edit > Target Settings from the
main-window menu bar. Table B.2 explains the elements that you need to specify for
using an external debugger. For more information on the Build Extras target setting
panel, see the CodeWarrior IDE User’s Guide.

mpc5668 • mpc5668_booke.mac

• mpc5668_vle.mac

Only the p0 core can run in
BookE mode

Core(s) running in VLE mode

mpc5674F • mpc5674F_booke.mac

• mpc5674F_vle.mac

Core(s) running in BookE
mode

Core(s) running in VLE mode

mpc5643L • mpc5643L_booke.mac

• mpc5643L_vle.mac

Core(s) running in BookE
mode

Core(s) running in VLE mode

mpc564xA • mpc564xA_booke.mac

• mpc564xA_vle.mac

Core(s) running in BookE
mode

Core(s) running in VLE mode

mpc5645S • mpc5645S_booke.mac

• mpc5645S_vle.mac

Core(s) running in BookE
mode

Core(s) running in VLE mode

mpc567xK • mpc567xK_booke.mac

• mpc567xK_vle.mac

Core(s) running in BookE
mode

Core(s) running in VLE mode

mpc564xB /
mpc564xC

• mpc564xB_booke.mac

• mpc564xB_vle.mac

Core(s) running in BookE
mode

Core(s) running in VLE mode

mpc5676R • mpc5676R_booke.mac

• mpc5676R_vle.mac

Core(s) running in BookE
mode

Core(s) running in VLE mode

Table B.1 Macro Files for Various Targets (continued)

Microcontroller Macro File Notes

P&E Debugger Adjustments
Modifying Configuration Files

86 Targeting MPC55xx/MPC56xx Microcontrollers

Figure B.1 Build Extras Setting Panel

Table B.2 Build Extras Settings Panel — Elements that Pertain to the P&E Debugger

Element Purpose Comment

Application Specifies the external
debugger application. In this
case, the P&E debugger.

Click Browse to select the
P&E debugger application
(provide the full path to the
P&E debugger executable
file). Alternatively, enter the
path to the P&E debugger.

Arguments Specifies the command-line
arguments to pass to the
P&E debugger.

Type any command-line
arguments to pass to the
P&E debugger when the
IDE transfers control.

For more information, see
“Command-Line
Arguments”.

Initial Directory Specifies the initial directory
for the P&E debugger.

Click Browse to select an
initial directory for the P&E
debugger. Alternatively,
enter the path to the initial
directory.

P&E Debugger Adjustments
Command-Line Arguments

87Targeting MPC55xx/MPC56xx Microcontrollers

Command-Line Arguments
When the CodeWarrior IDE transfers control to the P&E debugger, the debugger uses the
arguments specified in the Build Extras target setting panel.

Table B.3 explains the P&E debugger command-line arguments:

Table B.3 P&E Debugger Command-Line Arguments

Argument Description

FILETOLOAD Optional.

Specifies the full path to the debug/object
files to load at startup. If you are using
FILETOLOAD argument, then this argument
must be the first argument.

In addition, you must include either the
LOADTORAM or LOADTOFLASH argument in
the command line.

LOADTOFLASH Optional.

Loads the debug/object files into the
microcontroller’s flash memory.

You can use the FALGORITHM and the
FBASEADDR arguments to select an
appropriate flash programming algorithm and
the base address.

If you do not specify either the FALGORITHM
or the FBASEADDR argument, the debugger
uses settings from the previous load. If the
debug/object file is loading for the first time,
the debugger loads a default algorithm
based on the detected microcontroller.

LOADTORAM Optional.

Loads the debug/object files into the
microcontroller’s RAM memory.

P&E Debugger Adjustments
Command-Line Arguments

88 Targeting MPC55xx/MPC56xx Microcontrollers

LOADGOTILMAIN Optional.

If you are using the LOADGOTILMAIN
argument with the FILETOLOAD argument,
the LOADGOTILMAIN argument instructs the
debugger to run the microcontroller until it
reaches the main() function in the source
code.

The debugger runs code, if there is a debug
label called main.

FALGORITHM “ALGORITHMPATH” Optional.

Specifies the flash programming algorithm
file to be used if LOADTOFLASH is set.

FBASEADDR “BASEADDR” Optional.

Specifies the base address for FLASH
programming.

-SCRIPTFILE “MACROFILEPATH” Optional.

Specifies a startup macro file to run each
time the ICD starts up.

-RESETFILE “RESETFILEPATH” Optional.

Specifies a reset macro file to run each time
the microcontroller is reset.

-RESETFILEOFF Optional.

Disables running the reset macro file.

-SOURCEPATH
“sourcepath1;sourcepath2…”

Optional.

Specifies the directories that contain the
source files. The debugger uses this
argument to find the source code files to
display.

Table B.3 P&E Debugger Command-Line Arguments

Argument Description

P&E Debugger Adjustments
Connecting the Hardware

89Targeting MPC55xx/MPC56xx Microcontrollers

Connecting the Hardware
Follow these steps to connect the P&E USB-ML-PPCNEXUS, USB-ML-UNIVERSAL,
or Cyclone MAX debugger hardware to your host and target systems:

1. Make sure the target system power is off.

2. Disconnect the debug cable from the target system.

3. Connect the P&E hardware and the debug cable to the host system.

4. On the host system, from the CodeWarrior IDE, select Project > Debug to start the
P&E ICDPPCNEXUS software.

5. Reconnect the debug cable to the target system.

6. Switch on the target system power.

To disconnect the P&E hardware, follow these steps:

1. Switch off the target system power.

2. Disconnect the debug cable from the target system.

For more information, refer to P&E debugger documentation.

P&E Debugger Adjustments
Connecting the Hardware

90 Targeting MPC55xx/MPC56xx Microcontrollers

91Targeting MPC55xx/MPC56xx Microcontrollers

Index

A
ABI list box (EPPC target settings panel) 39
active template library checkbox (PCLint options

settings panel) 77
additional options text box (PCLint options

settings panel) 78
additional path to ... checkbox (PCLint main

settings panel) 75
adjustments, Lauterbach 79–82
adjustments, P&E 83–89
aggressive merging checkbox (EPPC linker

optimizations settings panel) 71, 84
allow space in operand field checkbox (EPPC

assembler settings panel) 50
Altivec structure moves checkbox (EPPC

processor settings panel) 54
Application Directory text box (Build Extras

setting panel) 86
Application text box (Build Extras setting

panel) 86
Arguments text box (Build Extras setting

panel) 86
assembler, MPC55xx 6
assume ordered compass checkbox (EPPC

processor settings panel) 53

B
big endian option button (EPPC target settings

panel) 39
Build Extras setting panel

Application Directory text box 86
Application text box 86
Arguments text box 86

build tools, CodeWarrior 6, 7

C
C/C++ preprocessor panel 42–43
C/C++ preprocessor target settings panel

emit #pragmas checkbox 43
emit file changes checkbox 43
prefix text area 42

show full paths checkbox 43
source encoding list box 42

C/C++ warnings panel 44–48
C/C++ warnings settings panel

disable all button 47
empty declarations checkbox 47
enable all button 47
expression has no side effect checkbox 46
extended error checking checkbox 45
extra commas checkbox 47
float to integer checkbox 45
hidden virtual functions checkbox 45
illegal pragmas checkbox 44
implicit arithmetic conversions checkbox 45
include file capitalization checkbox 47
integer to float checkbox 46
missing "return" statements checkbox 46
non-inlined functions checkbox 48
pad bytes added checkbox 47
pointer/integral conversions checkbox 46
possible errors checkbox 44
signed/unsigned checkbox 45
treat all warnings as errors checkbox 48
undefined macro in #if checkbox 48
unused arguments checkbox 46
unused variables checkbox 46

case sensitive identities checkbox (EPPC
assembler settings panel) 50

code address checkbox (EPPC linker settings
panel) 67

code development process 7
code merging list box (EPPC linker optimizations

settings panel) 71, 84
code model list box (EPPC target settings

panel) 40
CodeWarrior build tools 6, 7

assembler 6
compiler 6
IDE 6
linker 6
MSL 7
PC-lint 7

92 Targeting MPC55xx/MPC56xx Microcontrollers

command line options area (OSEK sysgen
panel) 37

compiler option list box (PCLint main settings
panel) 75

compiler, MPC55xx 6
configuration file

mixed 81, 82
Power Architecture 81, 83
VLE 81, 84

connecting hardware
Lauterbach Debugger 82
P&E Debugger 89

CORBA checkbox (PCLint options settings
panel) 78

core panels 31–72
creating a multicore project 19, 23
creating a project 11–19
Creating MPC55xx Projects 11–23

D
Dan Saks checkbox (PCLint options settings

panel) 76
data address checkbox (EPPC linker settings

panel) 67
deadstrip unused symbols checkbox (EPPC target

settings panel) 41
development process 7
directives begin with ’.’ checkbox (EPPC

assembler settings panel) 49
disable all button (C/C++ warnings settings

panel) 47
disable CW extensions checkbox (EPPC target

settings panel) 39
disassemble exception tables checkbox (EPPC

disassembler settings panel) 62
display default ... files too checkbox (PCLint

main settings panel) 75
display generated commandlines ... checkbox

(PCLint main settings panel) 74
documentation 8, 9
DWARF list box (EPPC target settings panel) 39

E
e200 core panels 31–72

emit #pragmas checkbox (C/C++ preprocessor
target settings panel) 43

emit file changes checkbox (C/C++ preprocessor
target settings panel) 43

empty declarations checkbox (C/C++ warnings
settings panel) 47

enable all button (C/C++ warnings settings
panel) 47

entry point text box (EPPC linker settings
panel) 69

EOL character list box (EPPC linker settings
panel) 69

EPPC assembler panel 49–51
EPPC assembler settings panel

allow space in operand field checkbox 50
case sensitive identities checkbox 50
directives begin with ’.’ checkbox 49
generate listing file checkbox 50
GNU compatible syntax checkbox 50
labels must end with ’:’ checkbox 49
prefix file text box 50

EPPC disassembler panel 60–62
EPPC disassembler settings panel

disassemble exception tables checkbox 62
only show operands and mnemonics

checkbox 61
relocate DWARF info checkbox 62
show code modules checkbox 61
show data modules checkbox 61
show DWARD info checkbox 62
show headers checkbox 60
show source code checkbox 61
show symbol table checkbox 60
use extended mnemonics checkbox 61
verbose info checkbox 62

EPPC linker optimizations panel 70–72
EPPC linker optimizations settings panel

aggressive merging checkbox 71, 84
code merging list box 71, 84
far to near addressing checkbox 72, 84
VLE enhance merging checkbox 71
VLE shorten branches checkbox 72

EPPC linker panel 63–70
EPPC linker settings panel

93Targeting MPC55xx/MPC56xx Microcontrollers

code address checkbox 67
data address checkbox 67
entry point text box 69
EOL character list box 69
generate DWARF info checkbox 64
generate link map checkbox 64
generate ROM image checkbox 65
generate S-record file checkbox 68
heap address checkbox 65
heap information 69
link mode list box 63
list closure checkbox 64
list DWARF objects checkbox 65
list unused objects checkbox 64
max length checkbox 68
RAM buffer address checkbox 66
ROM image address checkbox 66
small data checkbox 67
small data2 checkbox 68
sort S-record file checkbox 68
stack address checkbox 65
stack information 70
suppress warning messages checkbox 65
use full path names checkbox 64
use linker command file checkbox 66

EPPC processor panel 51–57
EPPC processor settings panel

Altivec structure moves checkbox 54
assume ordered compass checkbox 53
floating point list box 52
floating point operations 58
function alignment list box 52
generate FSEL instruction checkbox 53
generate ISEL instruction checkbox 57
generate VRSAVE instructions checkbox 54
inlined assembler is volatile checkbox 56
instruction scheduling checkbox 56
linker merges FP constants checkbox 55
linker merges string constants checkbox 54
make strings readonly checkbox 54
peephole optimization checkbox 56
pool data checkbox 54
processor list box 52
processor selection 57

profiler information checkbox 56
relax HW IEEE checkbox 53
struct alignment list box 51
use common selection checkbox 55
use fused multi-add/sub checkbox 53
use LMW & STMW checkbox 55
vector support list box 52

EPPC target panel 38–41
EPPC target settings panel

ABI list box 39
big endian option button 39
code model list box 40
deadstrip unused symbols checkbox 41
disable CW extensions checkbox 39
DWARF list box 39
file name text box 39
heap size text box 40
inconsistent ’class’/’struct’ usage

checkbox 47
keep comments checkbox 43
keep whitespace checkbox 43
little endian option button 39
optimize partial link checkbox 40
project type list box 38
require resolved symbols checkbox 41
small data text box 40
small data2 text box 40
stack size text box 40
tune relocations checkbox 39
use #line checkbox 43

expression has no side effect checkbox (C/C++
warnings settings panel) 46

extended error checking checkbox (C/C++
warnings settings panel) 45

extra commas checkbox (C/C++ warnings
settings panel) 47

F
far to near addressing checkbox (EPPC linker

optimizations settings panel) 72, 84
figures

C/C++ preprocessor settings panel 42
C/C++ warnings settings panel 44
EPPC assembler settings panel 49

94 Targeting MPC55xx/MPC56xx Microcontrollers

EPPC disassembler settings panel 60
EPPC linker optimizations settings panel 71
EPPC linker settings panel 63
EPPC processor settings panel 51
EPPC target settings panel 38
new project wizard, floating-point support

page 18
new project wizard, languages and libraries

page 14
new project wizard, multicore processor

page 22
new project wizard, PC-lint page 17
new project wizard, processor derivatives

page 13, 21, 25
OSEK sysgen settings panel 34
PC-lint main settings panel 74
PC-lint options settings panel 76
project window 19
project window, multicore 23
selecting PC-lint linker 73
target settings panel 32
target settings window 30

file location text box (OSEK sysgen panel) 36
file name text box (EPPC target settings

panel) 39
file type list box (OSEK sysgen panel) 35, 36
float to integer checkbox (C/C++ warnings

settings panel) 45
floating point list box (EPPC processor settings

panel) 52
floating point operations (EPPC processor

settings panel) 58
function alignment list box (EPPC processor

settings panel) 52

G
generate absolute paths checkbox (OSEK sysgen

panel) 37
generate DWARF info checkbox (EPPC linker

settings panel) 64
generate FSEL instruction checkbox (EPPC

processor settings panel) 53
generate ISEL instruction checkbox (EPPC

processor settings panel) 57

generate link map checkbox (EPPC linker settings
panel) 64

generate listing file checkbox (EPPC assembler
settings panel) 50

generate ROM image checkbox (EPPC linker
settings panel) 65

generate S-record file checkbox (EPPC linker
settings panel) 68

generate VRSAVE instructions checkbox (EPPC
processor settings panel) 54

GNU compatible syntax checkbox (EPPC
assembler settings panel) 50

H
heap address checkbox (EPPC linker settings

panel) 65
heap information (EPPC linker settings panel) 69
heap size text box (EPPC target settings panel) 40
hidden virtual functions checkbox (C/C++

warnings settings panel) 45

I
IDE 6
illegal pragmas checkbox (C/C++ warnings

settings panel) 44
implicit arithmetic conversions checkbox (C/C++

warnings settings panel) 45
include file capitalization checkbox (C/C++

warnings settings panel) 47
include paths text box (OSEK sysgen panel) 37
inconsistent ’class’/’struct’ usage checkbox

(EPPC target settings panel) 47
inlined assembler is volatile checkbox (EPPC

processor settings panel) 56
instruction scheduling checkbox (EPPC processor

settings panel) 56
integer to float checkbox (C/C++ warnings

settings panel) 46
introduction 1–9

K
keep comments checkbox (EPPC target settings

panel) 43

95Targeting MPC55xx/MPC56xx Microcontrollers

keep whitespace checkbox (EPPC target settings
panel) 43

L
labels must end with ’:’ checkbox (EPPC

assembler settings panel) 49
Lauterbach adjustments 79–82
Lauterbach Debugger configuration file

Power Architecture 79
Lauterbach debugger configuration files

modifying 79–82
Lauterbach debugger hardware, connecting 82
library warnings text box (PCLint options settings

panel) 78
link mode list box (EPPC linker settings

panel) 63
linker list box (target settings panel) 33
linker merges FP constants checkbox (EPPC

processor settings panel) 55
linker merges string constants checkbox (EPPC

processor settings panel) 54
linker, MPC55xx 6
list closure checkbox (EPPC linker settings

panel) 64
list DWARF objects checkbox (EPPC linker

settings panel) 65
list unused objects checkbox (EPPC linker

settings panel) 64
listings

example .cmm file for Lauterbach
debugger 80

example mixed configuration file 82
example VLE .cmm file for Lauterbach

debugger 81
little endian option button (EPPC target settings

panel) 39

M
main standard libraries 7
make strings readonly checkbox (EPPC processor

settings panel) 54
max length checkbox (EPPC linker settings

panel) 68
messages button (OSEK sysgen panel) 37

MFC checkbox (PCLint options settings
panel) 78

MISRA checkbox (PCLint options settings
panel) 77

missing "return" statements checkbox (C/C++
warnings settings panel) 46

mixed configuration file 81, 82
modifying configuration files (Lauterbach

Debugger) 79–82
modifying configuration files (P&E

Debugger) 83–86
MPC55xx

assembler 6
compiler 6
development process 7
linker 6

MPC55xx platform 1
MPC55xx projects

creating 11–23
MSL 7

N
no inter-module checks checkbox (PCLint main

settings panel) 75
non-inlined functions checkbox (C/C++ warnings

settings panel) 48

O
only show operands and mnemonics checkbox

(EPPC disassembler settings panel) 61
open inverter library checkbox (PCLint options

settings panel) 77
optimize partial link checkbox (EPPC target

settings panel) 40
ORTI version text box (OSEK sysgen panel) 37
OSEK sysgen settings panel

command line options area 37
file location text box 36
file type list box 35, 36
generate absolute paths checkbox 37
include paths text box 37
messages button 37
ORTI version text box 37
single backslash checkbox 37

96 Targeting MPC55xx/MPC56xx Microcontrollers

suppress warnings checkbox 36
output directory text box (target settings

panel) 33
overview, target settings 29, 30

P
P&E adjustments 83–89
P&E debugger command-line arguments

FALGORITHM 88
FBASEADDR 88
FILETOLOAD 87
LOADGOTILMAIN 88
LOADTOFLASH 87
LOADTORAM 87
RESETFILE 88
RESETFILEOFF 88
SCRIPTFILE 88
SOURCEPATH 88

P&E Debugger configuration files
modifying 83–86

P&E Debugger hardware, connecting 89
P&E Debugger, Build Extras panel 85
P&E Debugger, target settings 85
pad bytes added checkbox (C/C++ warnings

settings panel) 47
panels

C/C++ preprocessor 42–43
C/C++ warnings 44–48
e200 core 31–72
EPPC assembler 49–51
EPPC disassembler 60–62
EPPC linker 63–70
EPPC linker optimizations 70–72
EPPC processor 51–57
EPPC target 38–41
PC-lint 72–78
PClint main settings 74–75

PC-lint 7
PC-lint executable text box (PCLint main settings

panel) 74
PCLint main settings panel

additional path to ... checkbox 75
compiler options list box 75
display default ... files too checkbox 75

display generated commandlines ...
checkbox 74

no inter-module checks checkbox 75
PC-lint executable text box 74
prefix file checkbox 75

PClint main settings panel 74–75
PCLint options settings panel

active template library checkbox 77
additional options text box 78
CORBA checkbox 78
Dan Saks checkbox 76
library warnings text box 78
MFC checkbox 78
MISRA checkbox 77
open inverter library checkbox 77
Scott Meyers (effective C++) checkbox 76
standard template library checkbox 77
warnings list box 78
Windows 16-bit checkbox 77
Windows 32-bit checkbox 77
Windows NT checkbox 77

PC-lint panels 72–78
peephole optimization checkbox (EPPC processor

settings panel) 56
platform, MPC55xx 1
pointer/integral conversions checkbox (C/C++

warnings settings panel) 46
pool data checkbox (EPPC processor settings

panel) 54
possible errors checkbox (C/C++ warnings

settings panel) 44
post-linker list box (target settings panel) 33
Power Architecture configuration file 81, 83
Power Architecture configuration file (Lauterbach

Debugger) 79
prefix file checkbox (PCLint main settings

panel) 75
prefix file text box (EPPC assembler settings

panel) 50
prefix text area (C/C++ preprocessor target

settings panel) 42
pre-linker list box (target settings panel) 33
procedures

connecting Lauterbach hardware 82

97Targeting MPC55xx/MPC56xx Microcontrollers

connecting P&E hardware 89
creating a project 11–19
creating multicore project 19, 24
disconnecting Lauterbach hardware 82
disconnecting P&E hardware 89
PC-lint configuration 72, 73

processor list box (EPPC processor settings
panel) 52

processor selection (EPPC processor settings
panel) 57

profiler information checkbox (EPPC processor
settings panel) 56

project
creating 11–19
creating, multicore 19, 23

project type list box (EPPC target settings
panel) 38

projects, creating 11–23

R
RAM buffer address checkbox (EPPC linker

settings panel) 66
reference, target settings 29–78
related documentation 8, 9
relax HW IEEE checkbox (EPPC processor

settings panel) 53
relocate DWARF info checkbox (EPPC

disassembler settings panel) 62
require resolves symbols checkbox (EPPC target

settings panel) 41
ROM image address checkbox (EPPC linker

settings panel) 66

S
save project entries ... checkbox (target settings

panel) 33
Scott Meyers (effective C++) checkbox (PCLint

options settings panel) 76
show code modules checkbox (EPPC

disassembler settings panel) 61
show data modules checkbox (EPPC disassembler

settings panel) 61
show DWARD info checkbox (EPPC

disassembler settings panel) 62

show full paths checkbox (C/C++ preprocessor
target settings panel) 43

show headers checkbox (EPPC disassembler
settings panel) 60

show source code checkbox (EPPC disassembler
settings panel) 61

show symbol table checkbox (EPPC disassembler
settings panel) 60

signed/unsigned checkbox (C/C++ warnings
settings panel) 45

single backslash checkbox (OSEK sysgen
panel) 37

small data checkbox (EPPC linker settings
panel) 67

small data text box (EPPC target settings
panel) 40

small data2 checkbox (EPPC linker settings
panel) 68

small data2 text box (EPPC target settings
panel) 40

sort S-record file checkbox (EPPC linker settings
panel) 68

source encoding list box (C/C++ preprocessor
target settings panel) 42

stack address checkbox (EPPC linker settings
panel) 65

stack information (EPPC linker settings panel) 70
stack size text box (EPPC target settings

panel) 40
standard template library checkbox (PCLint

options settings panel) 77
struct alignment list box (EPPC processor settings

panel) 51
suppress warning messages checkbox (EPPC

linker settings panel) 65
suppress warnings checkbox (OSEK sysgen

panel) 36

T
tables

C/C++ preprocessor settings panel
elements 42, 43

C/C++ warnings settings panel elements 44–
48

98 Targeting MPC55xx/MPC56xx Microcontrollers

e200 core settings panels 31
EPPC assembler settings panel elements 49,

50
EPPC disassembler settings panel

elements 60–62
EPPC linker optimizations settings panel

elements 71, 72, 84
EPPC linker settings panel elements 63–69
EPPC processor settings panel elements 51–

57
EPPC target settings panel elements 38–41
MPC55xx processors and cores 1
OSEK sysgen settings panel elements 35–37
PC-lint main settings panel elements 74, 75
PC-lint options settings panel elements 76–

78
target settings panel elements 32

target name text box (target settings panel) 32
Target Setting for P&E Debugger 85
target settings

output directory text box 33
target settings overview 29, 30
target settings panel

linker list box 33
post-linker list box 33
pre-linker list box 33
save project entries ... checkbox 33
target name text box 32

target settings reference 29–78
treat all warnings as errors checkbox (C/C++

warnings settings panel) 48
tune relocations checkbox (EPPC target settings

panel) 39

U
undefined macro in #if checkbox (C/C++

warnings settings panel) 48
unused arguments checkbox (C/C++ warnings

settings panel) 46
unused variables checkbox (C/C++ warnings

settings panel) 46
use #line checkbox (EPPC target settings

panel) 43

use common selection checkbox (EPPC processor
settings panel) 55

use extended mnemonics checkbox (EPPC
disassembler settings panel) 61

use full path names checkbox (EPPC linker
settings panel) 64

use fused multi-add/sub checkbox (EPPC
processor settings panel) 53

use linker command file checkbox (EPPC linker
settings panel) 66

use LMW & STMW checkbox (EPPC processor
settings panel) 55

V
vector support list box (EPPC processor settings

panel) 52
verbose info checkbox (EPPC disassembler

settings panel) 62
VLE configuration file 81, 84
VLE enhance merging checkbox (EPPC linker

optimizations settings panel) 71
VLE shorten branches checkbox (EPPC linker

optimizations settings panel) 72

W
warnings list box (PCLint options settings

panel) 78
Windows 16-bit checkbox (PCLint options

settings panel) 77
Windows 32-bit checkbox (PCLint options

settings panel) 77
Windows NT checkbox (PCLint options settings

panel) 77

	Introduction
	The MPC55xx/MPC56xx Platform
	CodeWarrior Build Tools
	Integrated Development Environment
	C/C++ Compiler
	Assembler
	Linker
	Libraries
	PC-lint

	Development Process
	Related Documentation

	Creating Projects
	Creating a Project for a Single Core Device
	Creating a Project for a Multicore Device
	Creating a Project for a Multicore Device that Supports LSM/DPM

	Target Settings Reference
	Target Settings Overview
	e200 Core Settings Panels
	Target Settings
	OSEK Sysgen
	EPPC Target
	C/C++ Preprocessor
	C/C++ Warnings
	EPPC Assembler
	EPPC Processor
	EPPC Disassembler
	EPPC Linker
	EPPC Linker Optimizations

	PC-lint Settings Panels
	PCLint Main Settings
	PCLint Options

	Lauterbach Debugger Adjustments
	Modifying Configuration Files
	Power Architecture Configuration File
	VLE Configuration File
	Mixed Configuration File

	Connecting the Hardware

	P&E Debugger Adjustments
	Modifying Configuration Files
	Power Architecture Configuration File
	VLE Configuration File
	Target Settings for the P&E Debugger

	Command-Line Arguments
	Connecting the Hardware

	Index

