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Chapter 1
Overview
This document outlines the key tasks required for porting the VGLite driver to a specific OS platform. With the provided reference 
implementation for FreeRTOS, it is straight forward to port the VGLite driver to other OS platforms. Users need to implement the 
HAL porting layer and the OS Abstraction layer (OSA) to make VGLite work on a specific OS platform.

VGLite software includes a lightweight API capable of running on various Vivante GC hardware.

 
This document contains copyright material disclosed with permission of

VeriSilicon Microelectronics.

  NOTE  

 
The document is intended for use with Vivante GC Cores and is compatible with software release versions starting 
from 3.0.0.

  NOTE  

1.1 Requirements/Dependencies
Linux, FreeRTOS, Windows, or other OS-less environment.

VGLite software revision: 3.0.0, releases from November 2019 or later.

1.2 Software architecture
The VGLite API driver is organized into the following components:

• User API functions

• Kernel driver

• Kernel HAL layer

• Kernel OSA Layer

1.3 VGLite driver folder organization
<Root_Dir>/inc/... VGLite header files

<Root_Dir>/VGLite/... VGLite API functions

<Root_Dir>/VGLite/rtos/... VGLite FreeRTOS specific OSA implementation

<Root_Dir>/VGLiteKernel/... VGLite Kernel driver

<Root_Dir>/VGLiteKernel/rtos/... VGLite FreeRTOS platform-specific HAL implementation

1.3.1 User API
The User APIs and related enumerations are defined in <Root_Dir>/inc/vg_lite.h. The application must include this file for 
development. Refer to the Vivante VGLite Graphics API reference manual for more details on the APIs.

The User API functions implement the VGLite APIs as specified in the VGLite Graphics API reference manual. The application 
calls VGLite APIs. The User API functions call the underlying kernel functions to drive the GPU hardware.

Refer to subdirectory <Root_Dir>/VGLite for User API functions.
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1.3.2 Kernel driver
The VGLite Kernel driver receives calls from User API functions and communicates with the GPU hardware to perform VGLite 
API operations. In a VGLite Linux implementation, the Kernel driver accepts ioctl commands from the User API functions 
to perform different operations. In the FreeRTOS implementation, the “Kernel” driver accepts direct function calls to perform 
different operations.

 
Kernel resource is shared (includes the hardware states), so it must be guaranteed that the kernel module and 
hardware are initialized only once. Any initialization calls after that must be ignored and counted. The same 
convention is also applied to destroy. The last destroy call eventually releases the kernel and hardware resource. 
All "destroy" calls before that are ignored and counted.

  NOTE  

For Kernel Driver functions, refer to subdirectory <Root_Dir>/VGLiteKernel.

1.3.3 Kernel HAL driver
The Kernel HAL Layer abstracts some basic hardware operations for the Kernel driver to communicate with GCNanoLiteV 
hardware. The operations include initialization and de-initialization of hardware, memory allocation and free, register read/write, 
and CPU/GPU synchronization. The HAL layer is OS independent so it can be supported on different platforms.

For HAL Layer functions, refer to <Root_Dir>/inc/vg_lite_hal.h.

1.3.4 Kernel OSA layer
The OS abstraction layer provides support for several OS services required by the VGLite kernel, such as synchronization objects 
(for example, mutexes, semaphores), work queues, tasks/threads, events, and OS memory management. When an operating 
system is present, the OSA layer only abstracts (hides) calls to the existing OS services. For the situations when no operating 
system is present, the OSA layer must implement these services itself.
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Chapter 2
Porting the VGLite driver
The VGLite driver includes the HAL and OSA layers implementations for FreeRTOS. To port the VGLite driver to a new OS 
platform, implement the Kernel HAL and OSA layers to enable VGLite to work on that specific platform.

In some RTOS systems, such as FreeRTOS, there is no concept of User mode and Kernel mode. In these environments, the 
VGLite API functions call the “Kernel” functions in the same memory address space directly.

For a HAL layer implementation for FreeRTOS, check subdirectory <Root_Dir>/VGLiteKernel/rtos.

The corresponding OSA layer for FreeRTOS is available in the <Root_Dir>/VGLite/rtos subdirectory.

2.1 VGLite HAL interface
This section is dedicated to the details of VGLite HAL interface.

2.1.1 Initialization

void vg_lite_hal_initialize 
     void
);

This function is called by the VGLite kernel before the GCPU hardware is initialized to allow SOC to turn on the power or initialize 
the clocks. The implementation must make sure that on the exit of this function the power and clock to GPU hardware is turned 
on and stable.

2.1.2 Deinitialization

void vg_lite_hal_deinitialize(
      void
);

This function is called by the VGLite kernel after the GPU hardware is uninitialized by the VGLite kernel, to allow SOC to perform 
system power control. On exit of this function, it is normal to have the power/clock to GPU hardware turned off.

2.1.3 Allocate/Free contiguous video memory

vg_lite_error_t vg_lite_hal_allocate_contiguous(
      unsigned long       size,
      void **             logical,
      int32_t *           physical,
      void **             node
);
void vg_lite_hal_free_contiguous(
      void *              memory_handle
);

This pair of HAL functions is used to dynamically allocate/free a buffer of contiguous video memory from the platform’s memory 
system. Any memory buffer that GPU hardware operates on must be allocated as a contiguous memory buffer. The allocated 
memory buffer is referenced by the VGLite driver through an opaque handle, usually a pointer to an opaque structure. The platform 
porting layer can put the necessary information inside this structure.
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2.1.4 Register access

uint32_t vg_lite_hal_peek(
       uint32_t           address
);
void vg_lite_hal_poke(
       uint32_t           address,
       uint32_t           data
);

This pair of HAL functions reads data from a GPU register and writes data to a GPU register. The Vivante GPU register memory 
space must be mapped into a unified address space in the implementation so it can be accessed like a generic memory space.

2.1.5 Map/Unmap memory

void* vg_lite_hal_map(
       unsigned long      size,
       void *             logical,
       uint32_t           physical,
       uint32_t *         gpu
);
void vg_lite_hal_unmap(
      void *              memory_handle
);

This pair of HAL functions is used to map/unmap a contiguous logical or physical system memory buffer into the GPU device 
memory space. Any system memory buffer, such as a frame buffer or some pre-allocated image or path data, must be mapped into 
the GPU address space and referenced by a memory handle. It allows the GPU hardware to access the memory buffer directly. 
Either a logical or a physical address of a system memory buffer can be passed into the vg_lite_hal_map function.

Not all OS platforms must implement these functions. For example, on some RTOS OS all the memory buffers are statically 
pre-allocated. In such cases, the map/unmap functions can be empty.

2.1.6 Wait interrupt

int32_t vg_lite_hal_wait_interrupt(
      uint32_t            timeout,
      uint32_t            mask,
      uint32_t *          value
);

This function waits until an interrupt from the GPU hardware has been received. This HAL API is synchronous, which means it 
does not return until GPU hardware generates an interrupt, and the interrupt has been received by the operating system.

The function should wait for the specified number of milliseconds for the interrupt to occur. If the interrupt does not occur in the 
specified timeout period, the function returns with a timeout error.

2.1.7 Memory barrier

void vg_lite_hal_barrier(
      void
);

Some OS systems require a memory barrier to make sure all store operations by the CPU have been handled. This is the wrapper 
function for a platform specific memory barrier function.
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2.2 VGLite OSA interface
This section describes the VGLite OS abstraction layer interface.

2.2.1 Initialization

int32_t vg_lite_os_initialize(void);
void vg_lite_os_deinitialize(void);

This pair of functions is used to initialize / to clean up the resources required by the OSA layer. They are called by the HAL layer 
after the initialization or deinitialization of the GPU hardware respectively.

 void vg_lite_os_sleep(uint32_t msec);

This function is required to suspend the execution of the current task for a specified number of milliseconds. It is required by the 
implementation of the “HAL delay” service.

2.2.2 Allocate/Free heap memory

 void * vg_lite_os_malloc(uint32_t size);       

This function provides support for the allocation of heap memory. Heap memory may be managed by the operating system. It is 
required by the implementation of the HAL memory allocator.

 void vg_lite_os_free(void * memory);        

This function is called to release heap memory that was previously allocated using the vg_lite_os_malloc API. It is required by 
the implementation of the HAL memory allocator.

2.2.3 Exclusive access
The VGLite kernel is counting on a global mutex to implement critical sections. Because all the VGLite compatible GPUs are 
equipped with a single core, the critical sections are protecting code paragraphs that are working directly with the GPU hardware.

int32_t vg_lite_os_lock(void);        

This function should lock the GPU resource for the exclusive use of the current task/thread. It is used by the VGLite kernel during 
the configuration of the various GPU features.

int32_t vg_lite_os_unlock(void);        

This function should unlock the GPU resource so that other tasks/threads may access it.

2.2.4 Task local storage
Task local storage support is required for the management of multiple drawing contexts. Each task is allowed to have one single 
VGLite context at any given time, created/destroyed using the vg_lite_init / vg_lite_close APIs.

int32_t vg_lite_os_set_tls(void* tls);      

This function should save a provided pointer into the current Task Local Storage so that the VGLite HAL and kernel can later 
recover it by calling vg_lite_os_get_tls.

void * vg_lite_os_get_tls(void);             
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This function should return the pointer saved into the current Task Local Storage by a previous call to vg_lite_os_set_tls or 
NULL if no TLS pointer was saved by the current task.

void vg_lite_os_reset_tls(void);  

This function should reset the pointer saved into the current Task Local Storage to NULL.

2.2.5 Synchronization
The VGLite HAL and kernel require task synchronization objects to correctly communicate with the GPU hardware.

int32_t vg_lite_os_init_event(vg_lite_os_async_event_t    *event,
                              uint32_t             semaphore_id,
                              int32_t              state);  

This function should perform the following actions:

• check the consistency of the provided event

• create the binary semaphore designated by the provided semaphore_id

• link the binary semaphore to the provided event object

• set the state of the event attribute to the provided state. 

int32_t vg_lite_os_delete_event(vg_lite_os_async_event_t *event); 

This function should recycle all the resources allocated for the specified event and reset its attributes.

 int32_t vg_lite_os_wait_event(vg_lite_os_async_event_t *event);

This function should try to take ownership of the semaphore associated with the provided event. The function is expected to 
suspend the current task / thread until the event becomes available.

  int32_t vg_lite_os_wait(uint32_t timeout, vg_lite_os_async_event_t *event);

This function is used to wait for the GPU hardware to signal that the work is done. For that purpose the function is expected to wait 
a specified amount of time to get access to a specified event’s semaphore and then check whether the state of the event is set to 
VG_LITE_HW_FINISHED. In case of success the function is expected to return the value VG_LITE_SUCCESS. If the event could not 
be accessed in time or if its state shows that the GPU did not successfully complete its task, the function is expected to return the 
value VG_LITE_TIMEOUT.

 int32_t vg_lite_os_signal_event(vg_lite_os_async_event_t *event);

This function is expected to release the semaphore associated with a specified event so that the tasks / threads waiting for it (that 
is, blocked in a vg_lite_os_wait_event() or vg_lite_wait() call) can be woken up.

2.3 VGLite API and HAL header files
In the VGLite source code:

• The Vivante VGLite API is defined in the file: <Root_Dir>/inc/vg_lite.h

• The VGLite HAL interface is defined in the file: <Root_Dir>/inc/vg_hal_lite.h

• The VGLite OSA layer interface is defined in the file: <Root_Dir>/VGLite/<os>/vg_lite_os.h
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2.4 References
For details on the VGLite API, refer to the VGLite API Reference Manual, which is available in the i.MXRT platforms 
documentation package.
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Chapter 3
Revision history
Table 1. Revision history

Revision number Date Substantive Changes

1.00 11 February 2021 Initial version.
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