

Freescale MQX™ RTOS
MFS User’s Guide for Kinetis

Software Development Kit
(KSDK)

MQXMFSKSDKUG
Rev. 2.9
04/2015

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
© 2009-2015 Freescale Semiconductor, Inc.

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions

Document Number: MQXMFSKSDKUG
Rev. 2.9, 04/2015

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 5

Chapter 1
Before You Begin

1.1 About This Book .9
1.2 Where to Look for More Information .9
1.3 Typographic Conventions .9
1.4 Other Conventions .10

Chapter 2
Using MFS

2.1 MFS at a Glance .11
2.2 MS-DOS File System Characteristics .11
2.3 High-Level Formatting .13
2.4 Version of MFS .14
2.5 Customizing MFS .14
2.6 Partition Manager Device Driver .15
2.7 Working with Removable Media .16

Chapter 3
Reference: Functions

3.1 In This Chapter .19
3.2 _io_mfs_install .20
3.3 _io_mfs_uninstall .22
3.4 _io_part_mgr_install .23
3.5 _io_part_mgr_uninstall .24
3.6 close .25
3.7 open .26
3.8 ioctl .29

Chapter 4
Reference: Data Types

4.1 In This Chapter .49
4.2 _mfs_cache_policy .49
4.3 MFS_DATE_TIME_PARAM .50
4.4 MFS_FILE_ATTR_PARAM .51
4.5 MFS_GET_LFN_STRUCT .52
4.6 MFS_IOCTL_FORMAT_PARAM .53
4.7 MFS_RENAME_PARAM .54
4.8 MFS_SEARCH_PARAM .55

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

6 Freescale Semiconductor

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 7

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to freescale.com and navigate to Design Resources>Software and Tools>All Software
and Tools>Freescale MQX Software Solutions.

The following revision history table summarizes changes contained in this document.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
© Freescale Semiconductor, Inc., 2008-2014. All rights reserved.

Revision
Number

Revision
Date Description of Changes

Rev. 0 01/2009 Initial Release coming with MQX software version 3.0

Rev. 0B 04/2009 Text edited and formatting changed for MQX RTOS 3.1 release.

Rev. 2 01/2010
Updated for MQX software version 3.5. New configuration options described
(MFSCFG_READ_ONLY_CHECK and similar).

Rev. 2.1 03/2010 Example for IO_IOCTL_GET_DATE_TIME corrected.

Rev. 2.2 08/2010 Chapter 3.8.1.9 IO_IOCTL_FIND_NEXT_FILE updated.

Rev. 2.3 07/2011 Chapter 3.8.1.15 IO_IOCTL_FREE_SPACE updated.

Rev. 2.4 08/2012 Partition Manager Device Driver - related parts of the Chapter 3 updated.

Rev. 2.5 11/2012 Minor changes in _io_part_mgr_install section.

Rev. 2.6 06/2013
Language improvements and editing for MQX software version 4.0.2 Beta1
release.

Rev. 2.7 10/2013 Updated content to reflect the switch from MQX RTOS types to C99 types.

Rev. 2.8 12/2014 Updated for Kinetis SDK 1.1.0 release.

Rev. 2.9 04/2015 Updated for Kinetis SDK 1.2.0 release.

http://www.freescale.com

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

8 Freescale Semiconductor

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 9

Chapter 1 Before You Begin

1.1 About This Book
This book is a guide and a reference manual for using the MQX™ RTOS MFS Embedded File System
which is a part of Freescale MQX Real-Time Operating System distribution.

This document is written for experienced software developers who have a working knowledge of the C
language and the target processor.

1.2 Where to Look for More Information
• Release Notes, accompanying Freescale MQX release, provide information that was not available

at the time this User Guide was published.

• The Freescale MQX™ RTOS User’s Guide (document MQXUG) describes how to create
embedded applications that use MQX RTOS.

• The Freescale MQX™ RTOS Reference Manual (document MQXRM) describes prototypes for the
MQX API.

1.3 Typographic Conventions
Throughout this book, we use typographic conventions to distinguish terms.

1.3.1 Example: Prototype Definition, Including Symbolic Parameters
uint32_t _io_mfs_install(

Font style Usage Example

Bold Function families The _io_mfs family of functions.

Bold Function names _io_mfs_install()

Italic Data types (simple) uint32_t

Data types (complex) See following example.

Constant-width Code and code fragments —

Data types in prototype definitions See following example.

Directives #include “mfs.h”

Code and code fragments

Italic Filenames and path names part_mgr.h

Italic Symbolic parameters that you
substitute with your values.

See following example.

UPPERCASE Italic Symbolic constants MFS_NO_ERROR

Before You Begin

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

10 Freescale Semiconductor

 int dev_fd,
 char * identifier,
 uint32_t partition_num)

1.3.2 Example: Complex Data Types and their Field Names

The structure MFS_DATE_TIME_PARAM contains the following fields:

• DATE_PTR

• TIME_PTR

1.4 Other Conventions

1.4.1 Cautions

Cautions tell you about commands or procedures that could have unexpected or undesirable side effects or
could be dangerous to your files or your hardware.

CAUTION If an application calls read and write functions with the partition manager,
the file system will be corrupted.

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 11

Chapter 2 Using MFS

2.1 MFS at a Glance
MFS provides a library of functions that is compatible with the Microsoft MS-DOS file system.
The functions let an embedded application access the file system in a manner that is compatible with
MS-DOS Interrupt 21 functions. All the functions guarantee that the application task has a mutually
exclusive access to the file system.

MFS is a device driver that an application must install over a lower-level device driver. Examples of
lower-level drivers are drivers for memory devices, flash disks, floppy disks, or partition-manager devices.
MFS uses the lower-level driver to access the hardware device.

MFS functions do the following:

• Traverse MS-DOS directory structure.

• Create and remove subdirectories.

• Find files.

• Create and delete files.

• Open and close files.

• Read from files and write to files.

• View and modify file characteristics.

• Get the amount of free space in the file system.

2.2 MS-DOS File System Characteristics

2.2.1 Directory Path Names

MFS allows an application to traverse a directory tree. When you specify a directory path, you can use
\ and / as directory separators.

You can specify a directory path in one of two ways:

• By starting with a directory separator — the path is assumed to be an absolute path.

• By starting without a directory separator — the path is assumed to be relative to the current
directory.

2.2.2 File Attributes

Each file entry in the MS-DOS file system has an attribute byte associated with it. The attribute byte is
described in more detail in the following table.

Using MFS

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

12 Freescale Semiconductor

2.2.2.1 Bit Number

The volume-label and directory-name bits are mutually exclusive.

2.2.2.2 Volume Label

A file entry can be marked as a volume label. There can be only one volume label in a file system and it
must reside in the root directory. Also, that label cannot act as a directory name.

2.2.3 File Time

Each file entry has a 16-bit write time field associated with it. In MFS, the time is written into the field
when the file entry is created, when the file is closed, and as a result of calling
IO_IOCTL_SET_DATE_TIME. The format of the time field is as follows:

2.2.4 File Date

Each file entry has a 16-bit write date field associated with it. In MFS, the date is written into the field
when the file entry is created, when the file is closed, and as a result of calling
IO_IOCTL_SET_DATE_TIME. The format of the date field is as follows:

7 6 5 4 3 2 1 0 Meaning if bit is set to one.

x Read-only file

x Hidden file

x System file

x Volume label

x Directory name

x Archived file

x x RESERVED

Element Bits used Values

Seconds 0 – 4 0 – 29
(multiply by two for seconds)

Minutes 5 – 10 0 – 60

Hours 11 – 15 0 – 24
(24-hour clock)

Element Bits used Values

Days 0 – 4 1 – 31

Months 5 – 8 1 – 12

Year 9 – 15 0 – 119
(1980 – 2099)

Using MFS

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 13

In addition to mandatory write time and write date a FAT filesystem may contain also optional creation
time and date and last access time and date. These optional time stamps are not supported by MFS.

2.2.5 File Allocation Table

The MS-DOS file system can have multiple copies of the file allocation table. MFS updates as many FATs
as it is configured for. It only reads from the first FAT.

2.2.6 Filename Wildcards

The characters * and ? are treated as wildcards in a filename.

2.3 High-Level Formatting
An application can perform high-level formatting on a disk by calling ioctl(). The function writes a new
boot sector, deallocates all clusters in the file allocation table, and deletes all entries in the root directory.

There is one input/output control command that formats the disk, and one that formats and checks for bad
clusters.

The MFS_IOCTL_FORMAT_PARAM structure is used:

typedef struct mfs_ioctl_format
{
 MFS_FORMAT_DATA_PTR FORMAT_PTR;
 uint32_t * COUNT_PTR; /* To count bad clusters */
} MFS_IOCTL_FORMAT_PARAM, * MFS_IOCTL_FORMAT_PARAM_PTR;

The first variable is a pointer to a MFS_FORMAT_DATA structure described below. The second is
uint32_t * that points to the uint32_t variable which is used to contain the count of bad sectors. It is used
only if the IO_IOCTL_FORMAT_TEST function is used.

typedef struct mfs_format_data
{
 unsigned char PHYSICAL_DRIVE;
 unsigned char MEDIA_DESCRIPTOR;
 uint16_t BYTES_PER_SECTOR;
 uint16_t SECTORS_PER_TRACK;
 uint16_t NUMBER_OF_HEADS;
 uint32_t NUMBER_OF_SECTORS;
 uint32_t HIDDEN_SECTORS;
 uint16_t RESERVED_SECTORS;
} MFS_FORMAT_DATA, * MFS_FORMAT_DATA_PTR;

The MFS_FORMAT_DATA structure has the following fields:

• PHYSICAL_DRIVE
— 0x00 for floppy disks; 0x80 for hard disks.

• MEDIA_DESCRIPTOR
— 0xFD for 5.25" 360 K diskettes.

— 0xF9 for 5.25" 1200 K diskettes.

Using MFS

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

14 Freescale Semiconductor

— 0xF9 for 3.5" 720 K diskettes.

— 0xF0 for 3.5" 1440 K diskettes and other removable media.

— 0xF8 for hard disk and other non-removable media.

• BYTES_PER_SECTOR
— Size of a block in bytes (usually 512).

• SECTORS_PER_TRACK
— Number of sectors in a track.

• NUMBER_OF_HEADS
— Number of disk heads.

• NUMBER_OF_SECTORS
— Total number of sectors on the disk including reserved sectors.

• HIDDEN_SECTORS
— For hard disks, it is the number of sectors from the beginning of the disk to the beginning of

the partition. This is the same number as the relative sectors field in a hard disk partition table. For
floppy disks, the field is zero.

• RESERVED_SECTORS
— Number of sectors from the beginning of the file system to the first FAT sector. It is usually one.

2.4 Version of MFS
The constant MFS_VERSION defines the version and revision numbers for MFS.

2.5 Customizing MFS
The following constant definitions can be overridden to customize MFS. To override any of these
definitions, simply define the desired value in the /config/<board>/user_config.h file.

#define MFSCFG_MINIMUM_FOOTPRINT 1
— Normally not defined. Define to build MFS for small memory devices.

#define MFSCFG_READ_ONLY 0
— Set to one to build MFS in read-only mode without create, write, or format capability. This reduces the

code size and may be useful in certain applications such as boot loaders. Set to one to enable write
functionality.

#define MFSCFG_READ_ONLY_CHECK 1
— This compilation option is obsolete and does not have any effect on resulting code. Runtime read-only

checks are integral parts of write support so they are always present unless MFSCFG_READ_ONLY
compilation option is set.

#define MFSCFG_READ_ONLY_CHECK_ALLWAYS 0
— This compilation option is obsolete and it is no more used.

#define MFSCFG_ENABLE_FORMAT 1
— Set to one to build MFS with the format command, zero otherwise.

#define MFSCFG_CALCULATE_FREE_SPACE_ON_OPEN 1

Using MFS

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 15

— Set to one to calculate the available free space on the drive when the drive is mounted. Calculating the
available free space is time-consuming on large drives, as the entire FAT must be read. When set to
zero, this operation is deferred until the first time the free space is required which may be never.

#define MFSCFG_MINIMUM_FOOTPRINT 1
— Set to one to build MFS for small-memory devices, zero otherwise.

#define MFSCFG_MAX_READ_RETRIES 1
#define MFSCFG_MAX_WRITE_RETRIES 1
— Number of times MFS attempts to read or write to the device unsuccessfully before it reports an error.

#define MFSCFG_FAT_CACHE_SIZE 2
— This compilation option is obsolete. Dedicated FAT cache is no longer used. Access to FAT sectors is

performed through common sector cache.

#define MFSCFG_SECTOR_CACHE_SIZE
— Defines number of sectors which MFS is able to keep in cache at a time. Minimum is 2 sectors.

Maximum recommended size of sector cache for typical embedded applications is 16.

#define MFSCFG_NUM_OF_FATS 2
— This parameter is only used when formatting and specifies the number of file allocation tables that is

placed on the drive. One is required. The first FAT is used by MFS. The others are backups. Microsoft
Windows® operating system uses two as its standard. If you choose one, MFS operates somewhat faster
when it writes to the disk because it has half the number of FAT write operations to do.

#define MFSCFG_HANDLE_INITIAL 4
#define MFSCFG_HANDLE_GROW 4
#define MFSCFG_HANDLE_MAX 0
— These compilation options are obsolete and they are no longer used.

#define MFSCFG_FIND_TEMP_TRIALS 300
— This compilation option is obsolete and it is no longer used. MFS no longer generates file names for

temporary files. The application must generate a unique file name for a temporary file according to the
use case.

Functions are described in “Reference: Functions”

2.6 Partition Manager Device Driver
The partition manager device driver is designed to be installed under the MFS device driver. It lets
the MFS work independently of the multiple partitions on a disk. It also enforces mutually exclusive
access to the disk which means that two concurrent write operations from two different MFS devices
cannot be in conflict. The partition manager device driver can remove partitions as well as create new ones.

The partition manager device driver creates multiple primary partitions. It does not support extended
partitions.

Table 2-1. Summary: MFS Functions

_io_mfs_install Installs MFS.

_io_mfs_uninstall Uninstalls MFS.

ioctl Issues a control command.

Using MFS

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

16 Freescale Semiconductor

The partition manager device driver is installed and opened like other devices. It must also be closed and
uninstalled when an application no longer needs it.

An application follows these steps to use the partition manager. Functions are described in Chapter 3,
“Reference: Functions.”

1. Installs the partition manager (_io_part_mgr_install()).

2. Opens the partition manager (open()).

3. Issues input/output control commands (ioctl()).

4. Closes the partition manager (close()).

5. Uninstalls the partition manager device driver (_io_part_mgr_uninstall()).

2.7 Working with Removable Media
Removable-media devices are a class of device, in which the medium, upon which files are written to and
read from, can be inserted and removed. Examples include:

• USB mass storage devices (flast drives, and so on)

• ATA PCMCIA (PC card) flash cards

• SD Cards

• removable hard drives

• floppy-disk drives

An application that installs MFS on the removable media must take some standard precautions.

2.7.1 Buffering and Caching

MFS features scalable sector caching. The number of sectors which may be kept in the memory at a
moment is defined by MFSCFG_SECTOR_CACHE_SIZE compilation option.

When writing, an application can control how the buffers are flushed. There are three modes:

• WRITE_THROUGH — the buffer contents are immediatly written to disk when modified.

• WRITE_BACK — the buffer contents are written to disk on application command, or when MFS
device is closed.

CAUTION If an application calls read and write functions with the partition manager,
the file system will be corrupted.

Table 2-2. Summary: Partition Manager Device Driver Functions

_io_part_mgr_install Installs the partition manager device driver.

_io_part_mgr_uninstall Uninstalls the partition manager device driver.

close Closes the partition manager.

open Opens the partition manager.

ioctl Issues a control command to the partition manager.

Using MFS

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 17

• MIXED_MODE — the buffer contents are written to disk on application command or when a file
is closed.

If MFS detects that the lower-layer device is removable, the FAT cache will be placed in write through
mode, and the directory and file caches will be placed in mixed mode. If the lower-layer device is not
removable, all caches will be placed in write back mode.

An application can modify the cache modes with the appropriate ioctl() calls. When using removable
media, the application must ensure that all files are closed and the MFS device itself is closed before the
media is removed. These steps ensure that the caches are flushed and the media is updated.

2.7.2 Writing to Media

Writing to the media, either to partition the media, format the media, or write a file, must be completed
before the media is removed. If the media is removed during a write operation, the media may be
corrupted.

2.7.3 Hotswapping

With MFS, an application can implement hotswapping. To properly implement hotswapping, however, the
lower-layer device must support a mechanism for notifying the application that the media is removed or
inserted.

When an application detects that the media has been inserted, it must do the following:

1. Open the lower-layer device.

2. Optionally install the partition manager on the device.

3. If the partition manager is installed, open the partition manager.

4. Install MFS on the device or on the partition manager if the partition manager is installed.

5. Open the MFS device.

When an application detects that the media has been removed, it must do the following:

1. Close all files that are open on the device.

2. Close the MFS device.

3. Uninstall the MFS device.

4. If the partition manager is installed, close it.

5. If the partition manager is installed, uninstall it.

6. Close the lower-layer device.

2.7.3.1 Example: Hotswapping

For an example that demonstrates hotswapping with a USB flash drive, see: mfs/example/mfs_usb.

Using MFS

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

18 Freescale Semiconductor

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 19

Chapter 3 Reference: Functions

3.1 In This Chapter
Alphabetically sorted prototype definitions for MFS and the partition manager device driver.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

20 Freescale Semiconductor

3.2 _io_mfs_install
Install MFS.

Synopsis

uint32_t _io_mfs_install(
 /*[IN] the device on which to install MFS */
 int dev_fd,
 /*[IN] Name to be given to MFS (e.g., "C:", "MFS1:") */
 /* The name must end in a colon ":" */
 char * identifier,
 /*[IN] Partition number to install MFS on. */
 /* 0 for no partitions */
 uint32_t partition_num)

Description

The function initializes MFS and allocates memory for all of the internal MFS data structures. It also reads
some required drive information from the disk, on which it is installed. MFS supports FAT12, FAT16,
and FAT32 file systems. If the disk has a different file system or if it is unformatted, you can use MFS to
format it to one of the supported file systems.

If the application uses a partitioned disk, you must install MFS on a partition manager device driver. The
partition manager device driver can create partitions on the disk if there are none. It can also remove
partitions.

Usage of partition_num parameter is deprecated - _io_mfs_install should obtain handle to partition
manager associated with particular partition as dev_fd. partition_num parameter should be set to 0 which
instructs MFS to simply use the dev_fd as underlying device.

Return Codes

Returns an error code.

• IO_EOF
— The FILE_PTR passed into _io_mfs_install() was NULL. The error is returned by the input/output

subsystem of the MQX Real-Time Operating System.

• MFS_ERROR_UNKNOWN_FS_VERSION
— MFS was installed on a disk using the FAT32 file system, and the FAT32 version is incompatible with

the MFS FAT32 version (version zero).

• MFS_INSUFFICIENT_MEMORY
— MFS could not allocate memory for required structures.

• MFS_NO_ERROR
— The function call was successful.

• MFS_NOT_A_DOS_DISK
— The device, on which MFS is being installed is not a valid DOS device. The device must be formatted

(by an input/output control command).

• MFS_NOT_INITIALIZED

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 21

— The MFS device name did not end with colon (:).

• MFS_READ_FAULT
— The lower-level device driver could not read from the disk. The error is returned from the device, over

which MFS is installed.

• MFS_SECTOR_NOT_FOUND
— The error is returned from the device, over which, MFS is installed.

• PGMR_INVALID_PARTITION
— The partition number specified was that of an invalid partition. The partition does not exist.

Example

Install MFS on a RAM disk with no partitions.

/* Install the memory device: */
 error_code = _io_mem_install("mfsram:",
 NULL, MFS_format.BYTES_PER_SECTOR * RAMDISK_LENGTH1);
 if (error_code != MQX_OK) {
 printf("Error installing device.\nError: %d\n", error_code);
 _mqx_exit(1);
 }

 /* Open the device on which MFS will be installed: */
 dev_handle1 = open("mfsram:", 0);
 if (dev_handle1 < 0) {
 printf("\nUnable to open RAM disk device");
 _task_block();
 }

 /* Install MFS: */
 error_code = _io_mfs_install(dev_handle1, "MFS1:", 0);
 if ((error_code != MFS_NO_ERROR) &&
 (error_code != MFS_NOT_A_DOS_DISK)) {
 printf("FATAL error while initializing: \n");
 _mqx_exit(1);
 } else {
 printf("Initialized MFS1%s\n");
 }

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

22 Freescale Semiconductor

3.3 _io_mfs_uninstall
Uninstall MFS.

Synopsis

uint32_t _io_mfs_uninstall(
 /*[IN] String that identifies the device driver */
 /* to uninstall. Must be identical to the string */
 /* that was used to install the MFS device driver */
 char * identifier)

Description

This function uninstalls the MFS device driver and frees the memory allocated for it. Before you call the
function, you must close the MFS device driver by calling fclose().

Return Codes

Returns a uint32_t error code.

• MFS_INVALID_PARAMETER
— The identifier passed to the function is invalid.

• MFS_SHARING_VIOLATION
— There are files still open on the device, or the MFS device is still open.

Example

error_code = _io_mfs_uninstall("MFS1:");

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 23

3.4 _io_part_mgr_install
Installs the partition manager device driver.

Synopsis

int32_t _io_part_mgr_install(
 /*[IN] Handle of the device on which to install */
 /* the partition manager */
 int dev_fd,
 /*[IN] New name of the partition manager device */
 char * identifier,
 /*[IN] Size of sectors in bytes on the lower level device */
 uint32_t sector_size)

Description

This function initializes the partition manager device driver and allocates the memory for its internal
structures.

The first parameter is the handle acquired by opening the lower-level device driver using open() (for
example, dev_fd = open("flashdisk",0)).

The second parameter is the identifier, under which the partition manager is to be installed.

The third parameter is the sector size of the disk. If you specify zero, the partition manager queries the disk
for the sector size. If the query fails, the partition manager uses a default sector size, as defined by
PMGR_DEFAULT_SECTOR_SIZE. The default is 512 bytes.

Errors

• PMGR_INSUF_MEMORY
— Partition manager could not allocate memory for its internal data.

Example

Install the partition manager as "PM:" and let it determine the sector size.
error_code = _io_part_mgr_install(dev_fd, "PM:", 0);

Obtain the handle to the partition manager without selecting a particular partition, . with access to the
whole underlying device.
pm_fd = open("PM1:",0);

Obtain the handle to the partition manager with the first partition selected, i.e., the read/write access is
limited to the first partition.
part_fd = open("PM1:1",0);

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

24 Freescale Semiconductor

3.5 _io_part_mgr_uninstall
Uninstalls the partition manager.

Synopsis

int32_t _io_part_mgr_uninstall(
 /*[IN] Identifier string of the device */
 char * identifier)

Description

You must close the partition manager before you uninstall it. The first parameter is the same identifier that
is used with _io_part_mgr_install(). All handles associated with a given partition manager have to be
closed prior to calling the function. Otherwise, the function fails.

Errors

• IO_EOF
— Incorrect identifier.

• IO_ERROR_DEVICE_BUSY
— There are still open handles associated with the partition manager instance.

Example

error_code = _io_part_mgr_uninstall("PM:");

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 25

3.6 close
Closes the device or file.

Synopsis

int close(
 /* [IN] File descriptor to close */
int fd)

Description

This function frees the memory allocated for the given file descriptor (which was returned when the
application called open() on a file). It also updates the date, time, and size of the file on the disk.

When the application no longer needs to use the device driver, it can close the device driver and uninstall it.
The function close() is used to close the device driver if the device driver file descriptor is passed as a
parameter. The function fails if any files are still open on the device.

Return Codes for MFS

• IO_EOF
— file_ptr was invalid.

• MFS_SHARING_VIOLATION
— Files are open on the device.

Example: MFS

See open().

Example: Partition Manager Device Driver

pmgr_fd = open("PM:", NULL);
...
...
/* End of application. */
close(pmgr_fd);
_io_part_mgr_uninstall("PM:");

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

26 Freescale Semiconductor

3.7 open
Opens the device or file.

Synopsis

int open(
 /*[IN] Name of the device or file to open */
 /* Must be identical to the name that was used */
 /* to install the device driver */
 char * name_ptr,
 /*[IN] Open flags*/
 int flags)

Description

This function opens the specified device driver for MFS or the partition manager. You must install the
device driver before you call the function. Opening the device returns a file descriptor for the device that
can be used in input/output control commands (see Section 3.8, “ioctl”).

The first time open() is called on the device driver, it opens the device driver. Each subsequent call is used
to open a file. This means that you must first call open() with the device name (just once to open
the device), and then every other call will be to open a file. Each of these other calls should include the
device name, along with a specific flag on the device.

Opening a file returns a file descriptor for that file. This is used to read and write to the file. Standard
read(), write() and lseek() functions are then used for reading and writing data from/to the file.

NOTE
Note: If standard library functions are compiled in then it is possible to use
stream API to work with files: fopen() , fclose(), fread(), fwrite(), fseek()
and it is also possible to use formatted IO, e.g., fprintf().

To open a file, you must pass the name of the device followed by the name of the file. To open the file
data.txt in the current directory:

To open the file March2000results.data in the MFS1:\data\march directory:
fd = open(“MFS1:\data\march\March2000results.data , O_RDWR”);

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 27

The following table lists the supported open mode flags and their meanings. Multiple flags may be
combined by using bitwise OR:

Returns

Returns a file descriptor of the file or device on success.

Returns -1 on failure and sets errno to the error code.

Example: MFS

Open the MFS device driver and open a file on the device.

char buffer[100] = "This a test file";
char buffer2[100];
/* Open the MFS device driver: */
mfs_fd = open("MFS1:", 0);
if (mfs_fd < 0) {
 printf("Error opening the MFS device driver!");
 _mqx_exit(1);
}
/* Open file on disk in the current directory and write to it: */
fd = open("MFS1:myfile.txt", O_RDWR | O_CREAT);
write(fd, buffer, strlen(buffer));
read(fd, buffer2, strlen(buffer));

/* Close the file: */
error_code = close(fd_ptr);

/* Open other files, create directories, and so on. */

/* The application has done all it needs. */
/* Close the MFS device driver and uninstall it: */
error_code = close(mfs_fd);
if (!error_code) {
 error_code = _io_mfs_uninstall("MFS1:");
} else if (error_code == MFS_SHARING VIOLATION) {
printf("There are open files on the device. Call close on their
 handles before attempting to fclose the device driver");
 }

Flag Description

O_RDONLY File must be opened in read only mode.

O_WRONLY File must be opened in write only mode

O_RDWR File must be opened in read/write mode

O_CREAT File must be created if it does not exist

O_EXCL If used with O_CREAT adn if the file already exists, the open operation fails

O_TRUNC Truncates the file when the file is opened for writing

O_APPEND Opens the file in append mode - seeking to the end of the file is done atomically
prior to each write operation

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

28 Freescale Semiconductor

Example: Partition Manager Device Driver

The example shows how to directly open the first partition on the drive. It assumes that the partition
manager is already installed.
pmgr_fd = open("PM: 1",O_RDWR);

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 29

3.8 ioctl
Issues a control command.

Synopsis

int ioctl(
 /*[IN] Stream to perform the operation on */
 int fd,
 /*[IN] I/O control command */
 unsigned long int request,
 /*[IN] I/O control-command parameters */
 ...)

Description

The first parameter is a file descriptor, returned by calling open() for the device driver, which can either
be the handle of a specific file, or the handle of the device driver itself. It varies depending on which
command is used. Further parameters are specific to particular IOCTL requests and they are typically
pointers to memory locations for passing parameters and results.

3.8.1 Input/Output Control Commands for MFS

Together with the MQX input/output control commands, MFS also includes the following input/output
control commands.

3.8.1.1 IO_IOCTL_BAD_CLUSTERS

This command gets the number of bad clusters on the drive.

result = ioctl(mfs_fd,
 IO_IOCTL_BAD_CLUSTERS,

 (uint32_t *) &bad_clusters);

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the MFS device driver.
The mfs_fd_ptr must correspond to the disk, on which the bad clusters are to be counted. The third
parameter is a pointer to the unsigned 32 bit word where the number of bad clusters is stored.

3.8.1.2 IO_IOCTL_CHANGE_CURRENT_DIR

This command changes the current directory.

error_code = ioctl(mfs_fd,
 IO_IOCTL_CHANGE_CURRENT_DIR,
 (char *) pathname);

If pathname begins with a directory separator, it is assumed that pathname represents the complete
directory name. If pathname does not begin with a directory separator, pathname is assumed to be relative
to the current directory. The third parameter is a char * (to a directory name) cast to a uint32_t *.

CAUTION
The parameters passed to ioctl function vary with the IOCTL request. You
must ensure that the ioctl call is used correctly for the specified control
command.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

30 Freescale Semiconductor

The directory path must exist for the change to succeed.

Errors

• MFS_INVALID_LENGTH_IN_DISK_OPERATION
— Path name is too long. The full path name, including the filename, cannot be any longer than 260

characters.

Example

char pathname = "\\docs";
error_code = ioctl(mfs_fd, IO_IOCTL_CHANGE_CURRENT_DIR,

pathname);

3.8.1.3 IO_IOCTL_CREATE_SUBDIR

This command creates a subdirectory in the current directory.

error_code = ioctl(mfs_fd,
IO_IOCTL_CREATE_SUBDIR,
“\temp\newdir”);

A path name can be specified to create the subdirectory in a different directory. The parameter mfs_fd is
the file descriptor returned when open() was called on the MFS device driver corresponding to the disk on
which to operate. The third parameter is a char * (to a directory name) cast to a uint32_t *

All directories in the path, except the last one, must exist. The last directory in the path must not exist as
either a directory or a file.

Errors

• MFS_CANNOT_CREATE_DIRECTORY
— There was an error creating the subdirectory.

3.8.1.4 IO_IOCTL_DEFAULT_FORMAT

This command formats the drive by using default parameters.

error_code = ioctl(mfs_fd,
 IO_IOCTL_DEFAULT_FORMAT,
 NULL);

The command deletes all files and subdirectories on the drive. The parameter mfs_fd_ptr is the FILE_PTR
returned when fopen() was called on the MFS device driver, which corresponds to the disk on which to
operate. The default parameters are:

• PHYSICAL_DRIVE = 0x80

• MEDIA_DESCRIPTOR = 0xf8

• BYTES_PER_SECTOR = device sector size

• SECTORS_PER_TRACK = 0x00

• NUMBER_OF_HEADS = 0x00

• NUMBER_OF_SECTORS = number of device sectors - RESERVED_SECTORS

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 31

• HIDDEN_SECTORS = 0

• RESERVED_SECTORS = 1 if NUMBER_OF_SECTORS < 2097152, 32 otherwise

Errors

• MFS_SHARING_VIOLATION
— Some files are open on the drive.

Example
error_code = ioctl(mfs_fd, IO_IOCTL_FORMAT,NULL);

3.8.1.5 IO_IOCTL_DELETE_FILE

This command deletes a file on the disk. Wildcard characters are not valid in the filename.

error_code = ioctl(mfs_fd,
IO_IOCTL_DELETE_FILE,
“filename”);

The mfs_fd is the file descriptor returned from open() that opened the MFS device. The third parameter
points to a filename which can include a path (for example \backup\oldfiles\myfile.txt). Long filenames and
long path names are supported. The file must reside on the drive that corresponds to mfd_fd.

Any currently open handles to this file become invalid, that is, subsequent file operations using a file
handle of a deleted file result in an error.

Errors

• MFS_OPERATION_NOT_ALLOWED

3.8.1.6 IO_IOCTL_FAT_CACHE_OFF

Obsolete. MFS does not use dedicated FAT buffers anymore.

3.8.1.7 IO_IOCTL_FAT_CACHE_ON

Obsolete. MFS does not use dedicated FAT buffers anymore.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

32 Freescale Semiconductor

3.8.1.8 IO_IOCTL_FIND_FIRST_FILE, IO_IOCTL_FIND_NEXT_FILE

The IO_IOCTL_FIND_FIRST_FILE command searches for a file on the disk.

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the MFS device driver.
The third parameter is a pointer to the MFS_SEARCH_PARAM structure. See structure definitions for
details.

If a file is found, use the input/output control command, IO_IOCTL_FIND_NEXT_FILE, to keep
searching for more files which match the same criteria.The third parameter for the
IO_IOCTL_FIND_NEXT_FILE is a pointer to the MFS_SEARCH_DATA structure used in the
IO_IOCTL_FIND_FIRST_FILE command. The filename can include wildcard search characters.

When searching for files, the file path search string that is passed in the MFS_SEARCH_PARAM structure
is used. Therefore, it must not be freed or changed if you plan to subsequently
use IO_IOCTL_FIND_NEXT_FILE.

The search criteria for the attribute field of the MFS_SEARCH_PARAM structure is defined in the
following table:

The search bit mask can be a combination of all search attributes. The evaluation of the bit mask is done
in the following order:

1. If mask includes MFS_SEARCH_ANY, then all disk entries match.

2. If mask includes MFS_SEARCH_VOLUME, then only the volume label entry matches.

3. If mask includes MFS_SEARCH_EXCLUSIVE, then there must be an exact match of the
remaining attributes.

4. If mask is MFS_SEARCH_NORMAL, then all non-system, non-hidden files and directories,
match.

5. If mask is MFS_SEARCH_SUBDIR, then all non-system, non-hidden directories, match.

6. Otherwise mask must be subset of disk entry attributes to produce a match.

Attribute: Return these types of entries:

MFS_SEARCH_NORMAL Non-hidden non-system files and directories

MFS_SEARCH_READ_ONLY Read only files and directories

MFS_SEARCH_HIDDEN Hidden files and directories

MFS_SEARCH_SYSTEM System files and directories

MFS_SEARCH_VOLUME Volume label only

MFS_SEARCH_SUBDIR Non-hidden non-system directories

MFS_SEARCH_ARCHIVE Archive files and directories

MFS_SEARCH_EXCLUSIVE Match exactly all remaining attributes

MFS_SEARCH_ANY All files and directories

MFS_SEARCH_LFN Extract long filename

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 33

The search results are written into the MFS_SEARCH_DATA structure addressed by the
SEARCH_DATA_PTR member of the MFS_SEARCH_PARAM structure. Results of the repetitive
execution of the IO_IOCTL_FIND_NEXT command overwrite the previous results.

MFS_SEARCH_DATA Fields

ATTRIBUTE

File entry attribute byte.

TIME

File entry time, as described in IO_IOCTL_GET_DATE_TIME.

DATE

File entry date, as described in IO_IOCTL_GET_DATE_TIME.

FILE_SIZE

Size of the file in bytes.

NAME[24]

The short name of the file in the format filename.filetype as a null terminated string in the UTF-8 encoding.
In addition, when the MFS_SEARCH_LFN attribute is set, the long filename is extracted to the caller
allocated buffer specified by the LFN_BUF and LFN_BUF_LEN of the MFS_SEARCH_PARAM
structure. The long filename is stored as a null-terminated string in the UTF-8 encoding. If the buffer is
not sufficient length, the long filename is not extracted.

Errors

• MFS_INVALID_MEMORY_BLOCK_ADDRESS
— The MFS_SEARCH_DATA_PTR in the MFS_SEARCH_PARAM is invalid.

Example

List all files and subdirectories in a directory.
MFS_SEARCH_DATA search_data;
MFS_SEARCH_PARAM search;
char filepath = “*.*”;

search.ATTRIBUTE = MFS_SEARCH_ANY;
search.WILDCARD = filepath;
search.SEARCH_DATA_PTR = &search_data;

error_code = ioctl(mfs_fd, IO_IOCTL_FIND_FIRST_FILE,
&search);

while (error_code == MFS_NO_ERROR) {
 printf ("%-12.12s %6lu %02lu-%02lu-%04lu %02lu:%02lu:%02lu
 \n", search_data.NAME, search_data.FILE_SIZE,
 (uint32_t)(search_data.DATE & MFS_MASK_MONTH) >>
 MFS_SHIFT_MONTH,
 (uint32_t)(search_data.DATE & MFS_MASK_DAY) >>
 MFS_SHIFT_DAY,

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

34 Freescale Semiconductor

 (uint32_t)((search_data.DATE & MFS_MASK_YEAR) >>
 MFS_SHIFT_YEAR) + 1980,
 (uint32_t)(search_data.TIME & MFS_MASK_HOURS) >>
 MFS_SHIFT_HOURS,
 (uint32_t)(search_data.TIME & MFS_MASK_MINUTES) >>
 MFS_SHIFT_MINUTES,
 (uint32_t)(search_data.TIME & MFS_MASK_SECONDS) << 1);

 error_code = ioctl(mfs_fd, IO_IOCTL_FIND_NEXT_FILE,
&search_data);

 }

3.8.1.9 IO_IOCTL_FLUSH_FAT

Obsolete. MFS does not use dedicated FAT buffers anymore.

3.8.1.10 IO_IOCTL_FORMAT

This command formats the drive according to the given specifications.

error_code = ioctl(mfs_fd,
IO_IOCTL_FORMAT,
&format_struct);

The command deletes all files and subdirectories on the drive. The parameter mfs_fd_ptr is the FILE_PTR
returned when fopen() was called on the MFS device driver, which corresponds to the disk on which
to operate. The third parameter is a pointer to the MFS_IOCTL_FORMAT_PARAM structure. The only
field in the MFS_IOCTL_FORMAT_PARAM structure that must be initialized is the FORMAT_PTR field.
See the structure descriptions for details.

Errors

• MFS_SHARING_VIOLATION
— Some files are open on the drive.

Example

MFS_IOCTL_FORMAT_PARAM format_struct;
MFS_FORMAT_DATA MFS_format =
{
 /* PHYSICAL_DRIVE; */ PHYSICAL_DRI,
 /* MEDIA_DESCRIPTOR; */ MEDIA_DESC,
 /* BYTES_PER_SECTOR; */ BYTES_PER_SECT,
 /* SECTORS_PER_TRACK; */ SECTS_PER_TRACK,
 /* NUMBER_OF_HEADS; */ NUM_OF_HEADS,
 /* NUMBER_OF_SECTORS; */ 1000, /* depends on drive */
 /* HIDDEN_SECTORS; */ HIDDEN_SECTS,
 /* RESERVED_SECTORS; */ RESERVED_SECTS
};
format_struct.FORMAT_PTR = &MFS_format;
error_code = ioctl(mfs_fd, IO_IOCTL_FORMAT,

&format_struct);

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 35

3.8.1.11 IO_IOCTL_FORMAT_TEST

This command formats the drive and counts the bad clusters on a disk.

error_code = ioctl(mfs_fd,
IO_IOCTL_FORMAT_TEST,
&format_struct);

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the MFS device driver,
which corresponds to the device on which to operate. The third parameter is a pointer to
the MFS_IOCTL_FORMAT_PARAM structure cast to the uint32_t *. Both fields of
the MFS_IOCTL_FORMAT_PARAM structure must be initialized (FORMAT_PTR and COUNT_PTR).
See structure descriptions for details.

Errors

• MFS_SHARING_VIOLATION
— Files are open on the drive.

Example

uint32_t bad_cluster_count;
MFS_IOCTL_FORMAT_PARAM format_struct;
MFS_FORMAT_DATA MFS_format =
{
 /* PHYSICAL_DRIVE; */ PHYSICAL_DRI,
 /* MEDIA_DESCRIPTOR; */ MEDIA_DESC,
 /* BYTES_PER_SECTOR; */ BYTES_PER_SECT,
 /* SECTORS_PER_TRACK; */ SECTS_PER_TRACK,
 /* NUMBER_OF_HEADS; */ NUM_OF_HEADS,
 /* NUMBER_OF_SECTORS; */ 1000, /* depends on disk */
 /* HIDDEN_SECTORS; */ HIDDEN_SECTS,
 /* RESERVED_SECTORS; */ RESERVED_SECTS
};
format_struct.FORMAT_PTR = &MFS_format;
format_struct.COUNT_PTR = &bad_cluster_count;
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_FORMAT,
 (uint32_t *) &format_struct);
if (!error_code)
printf(“The count of bad clusters is: %d\n”, bad_cluster_count);

3.8.1.12 IO_IOCTL_FREE_SPACE, IO_IOCTL_FREE_CLUSTERS

This command gets the count of free space on the disk in bytes or in clusters.

result = ioctl(mfs_fd_ptr,
 IO_IOCTL_FREE_SPACE,
 &space_64);

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the MFS device driver.
It should correspond to the disk on which the free space is to be calculated. The third parameter is a pointer
to uint64_t which is filled with 64-bit value representing free space in bytes.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

36 Freescale Semiconductor

Alternatively, a combination of IO_IOCTL_FREE_CLUSTERS and IO_IOCTL_GET_CLUSTER_SIZE
may be used to determine the free space size of the drive in bytes by using long (64-bit) arithmetic.

3.8.1.13 IO_IOCTL_GET_CLUSTER_SIZE

This command gets the size of clusters in bytes.

result = ioctl(mfs_fd,
 IO_IOCTL_GET_CLUSTER_SIZE,
 &cluster_size);

The parameter mfs_fd is the file descriptor returned when open() was called on the MFS device driver. It
should correspond to the disk for which the cluster size should be returned. The third parameter is a pointer
to a uint32_t * to pre-allocated space in which to store the cluster size.

3.8.1.14 IO_IOCTL_GET_CURRENT_DIR

This command gets the path name of the current directory on the MFS device.

error_code = ioctl(mfs_fd,
IO_IOCTL_GET_CURRENT_DIR,
pathname);

The drive and drive separator are not included in the filename (for example, "d:" is not returned). The
parameter mfs_fd is the file descriptor returned when open() was called on the MFS device driver
corresponding to the disk on which to operate. The third parameter is a char *, pointer to the allocated
space in which to store the current directory.

Example

char pathname[261];
error_code = ioctl(mfs_fd, IO_IOCTL_GET_CURRENT_DIR,

pathname);
printf(“The current directory is: %s\n”, pathname);

3.8.1.15 IO_IOCTL_GET_DATE_TIME

This command gets the current date and time associated with the file.

error_code = ioctl(fd,
IO_IOCTL_GET_DATE_TIME,
&date);

The first parameter is the file descriptor of the file for which the date or time is to be retrieved. The third
parameter is a pointer to a MFS_DATE_TIME_PARAM structure. Both fields of the structure must be
filled in. See structure definitions for details.

The bits of the date and time words are defined as follows:

Time word Date word

Bits Meaning Bits Meaning

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 37

Example

uint32_t error_code;
uint16_t date_word, time_word;
MFS_DATE_TIME_PARAM date;

date.DATE_PTR = &date_word;
date.TIME_PTR = &time_word;

error_code = ioctl(fd, IO_IOCTL_GET_DATE_TIME,

&date);
if (!error_code)
printf ("%02lu-%02lu-%04lu %02lu:%02lu:%02lu \n",
 (uint32_t)(date_word & MFS_MASK_MONTH) >> MFS_SHIFT_MONTH,
 (uint32_t)(date_word & MFS_MASK_DAY) >> MFS_SHIFT_DAY,
 (uint32_t)((date_word & MFS_MASK_YEAR) >> MFS_SHIFT_YEAR)
 + 1980,
 (uint32_t)(time_word.TIME & MFS_MASK_HOURS) >>
 MFS_SHIFT_HOURS,
 (uint32_t)(time_word.TIME & MFS_MASK_MINUTES) >>
 MFS_SHIFT_MINUTES,
 (uint32_t)(time_word.TIME & MFS_MASK_SECONDS) << 1);

3.8.1.16 IO_IOCTL_GET_DEVICE_HANDLE

This command gets the handle of the low-level device which this instance of the file system is operating
on.
result = ioctl(mfs_fd,
 IO_IOCTL_GET_DEVICE_HANDLE,
 &handle);

The parameter mfs_fd is the file descriptor returned when open() was called on the MFS device driver. The
third parameter is a pointer to a int which points to pre-allocated space in which to store the device handle.

3.8.1.17 IO_IOCTL_GET_FAT_CACHE_MODE,
IO_IOCTL_SET_FAT_CACHE_MODE

Obsolete. MFS does not use dedicated FAT buffers anymore.

3.8.1.18 IO_IOCTL_GET_FILE_ATTR, IO_IOCTL_SET_FILE_ATTR

These commands get or set the attributes of the file on disk.

error_code = ioctl(mfs_fd,
IO_IOCTL_GET_FILE_ATTR,

4 – 0 0 – 29, 2 second
increments

4 – 0 1 – 31 days

10 – 5 0 – 59 minutes 8 – 5 1 – 12 month

15 – 11 0 – 23 hours 15 – 9 0 – 119 year
(1980 – 2099)

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

38 Freescale Semiconductor

&attr);
error_code = ioctl(mfs_fd,

IO_IOCTL_SET_FILE_ATTR,
&attr);

An application cannot set the volume or directory bits of the attribute char. The first parameter is the file
descriptor of the MFS device driver that corresponds to the disk on which the file whose attributes are to
be read or written is located. The third parameter is a pointer to a MFS_FILE_ATTR_PARAM structure.
Both fields of the structure must be filled in. See the structure definitions for details.

Example

MFS_FILE_ATTR_PARAM attr;
uint32_t error_code;
char filepath = “\temp\myfile.txt”;
unsigned char attribute;

attr.ATTRIBUTE_PTR = &attribute;
attr.PATHNAME = filepath;

/* Get the attribute: */
error_code = ioctl(mfs_fd, IO_IOCTL_GET_FILE_ATTR,

&attr);

if (error_code == MFS_NO_ERROR) {
 printf ("Attributes of %s: %s%s%s%s%s%s\n",
 filepath,
 (attribute & MFS_ATTR_READ_ONLY) ? "R/O ":"",
 (attribute & MFS_ATTR_HIDDEN_FILE) ? "HID ":"",
 (attribute & MFS_ATTR_SYSTEM_FILE) ? "SYS ":"",
 (attribute & MFS_ATTR_VOLUME_NAME) ? "VOL ":"",
 (attribute & MFS_ATTR_DIR_NAME) ? "DIR ":"",
 (attribute & MFS_ATTR_ARCHIVE) ? "ARC ":"");
}
/* Set file’s attributes: */
if (!error_code) {
attribute = MFS_ATTR_READ_ONLY | MFS_ATTR_HIDDEN_FILE;
error_code = ioctl(mfs_fd, IO_IOCTL_SET_FILE_ATTR,

&attr);
}

3.8.1.19 IO_IOCTL_GET_LFN

This command gets the long filename where the path name is in 8.3 representation.
error_code = ioctl(mfs_fd,

IO_IOCTL_GET_LFN,
&lfn_struct);

The first parameter is the file descriptor of the MFS device driver that corresponds to the disk on which
the operation is to take place. The third parameter is the char * to the path name of the of file which we
want the long filename of.

Example

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 39

MFS_GET_LFN_STRUCT lfn_struct;
char lfn[FILENAME_SIZE + 1];
char filepath = “\\temp\longfi~1.txt”;
uint32_t error_code;

lfn_struct.PATHNAME = filepath;
lfn_struct.LONG_FILENAME = lfn;

error_code = ioctl(mfs_fd, IO_IOCTL_GET_LFN,

&lfn_struct);

if (!error_code) {
 printf("%s\n", lfn);
}

3.8.1.20 IO_IOCTL_GET_VOLUME

This command gets the volume label.

error_code = ioctl(mfs_fd,
IO_IOCTL_GET_VOLUME,
label);

The first parameter is the file descriptor of the MFS device driver that corresponds to the disk on which
the operation is to take place. The third parameter is a char * to an allocated space with 12 free bytes in
which the volume label will be written.

Example

charlabel[12];
error_code = ioctl(mfs_fd, IO_IOCTL_GET_VOLUME,

label);
if (!error_code) {
printf(“The volume label is: %d\n”, label);

/* Now set the volume label */
strcpy(label, “newlabel”);
error_code = ioctl(mfs_fd, IO_IOCTL_SET_VOLUME,

label);
}

3.8.1.21 IO_IOCTL_GET_WRITE_CACHE_MODE,
IO_IOCTL_SET_WRITE_CACHE_MODE

This command gets or sets the current mode of the data and directory caches.

result = ioctl(mfs_fd,
 IO_IOCTL_GET_WRITE_CACHE_MODE,
 &mode);

The parameter mfs_fd_ptr is the file descriptor returned when open() was called on the MFS device driver.
The third parameter is a _mfs_cache_policy pointer which points to a pre-allocated space in which to store
(when using get) or obtain (when using set) the mode of the write caches.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

40 Freescale Semiconductor

3.8.1.22 IO_IOCTL_LAST_CLUSTER

This command gets the number of clusters on a drive.

result = ioctl(mfs_fd,
IO_IOCTL_LAST_CLUSTER,
(uint32_t *) &last_cluster);

The parameter mfs_fd is the file descriptor returned when open() was called on the MFS device driver. The
third parameter is a pointer to the 32 bit word where the number of the last cluster is stored.

3.8.1.23 IO_IOCTL_REMOVE_SUBDIR

This command removes a the subdirectory in the current directory.

error_code = ioctl(mfs_fd,
IO_IOCTL_REMOVE_SUBDIR,
“\temp\deldir”);

A path name can be specified to remove the subdirectory in a different directory. The subdirectory must
be empty and cannot be the current directory or the root directory. The parameter mfs_fd is the file
descriptor returned when open() was called on the MFS device driver corresponding to the disk on which
to operate. The third parameter is the char * (to a directory name).

Errors

• MFS_ATTEMPT_TO_REMOVE_CURRENT_DIR
— The directory specified is the current directory. No changes took place.

3.8.1.24 IO_IOCTL_RENAME_FILE

This command renames a file or moves a file if path names are specified.

error_code = ioctl(mfs_fd,
IO_IOCTL_RENAME_FILE,
&rename_struct);

No wildcard characters are allowed in the path names. The parameter mfs_fd is the file descriptor returned,
when open() was called on the MFS device driver corresponding to the drive on which to operate. The
third parameter is a pointer to the MFS_RENAME_PARAM structure. Both fields in this structure must be
filled out. See structure definitions for details.

A file is moved if the directory paths are different and the file names are the same. A file is renamed if the
directory paths are the same and the file names are different.

A directory can be renamed, but cannot be moved.

Example

MFS_RENAME_PARAM rename_struct;
char oldpath[PATHNAME_SIZE + 1],
 newpath[PATHNAME_SIZE + 1];
uint32_t error_code;

rename_struct.OLD_PATHNAME = oldpath;

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 41

rename_struct.NEW_PATHNAME = newpath;

/* Rename a file: */
strcpy(oldpath, “myfile.txt”);
strcpy(newpath, “myfile.bak”);
error_code = ioctl(mfs_fd, IO_IOCTL_RENAME_FILE,

&rename_struct);

/* Move the file: */
if (!error_code) {
strcpy(oldpath, “myfile.bak”);
 strcpy(newpath, “\temp\temp.tmp”);
 error_code = ioctl(mfs_fd, IO_IOCTL_RENAME_FILE,

&rename_struct);
}

3.8.1.25 IO_IOCTL_SET_DATE_TIME

This command sets the time and date of an open file.

error_code = ioctl(fd,
IO_IOCTL_SET_DATE_TIME,
&date);

The first parameter is the file descriptor of the file for which to set the date. The third parameter is a pointer
to the MFS_DATE_TIME_PARAM structure. Both fields of the structure must be filled in. See the structure
definitions for more information.

Example

See IO_IOCTL_GET_DATE_TIME for details.

MFS_DATE_TIME_PARAM date_time;
 uint32_t error_code;
 uint16_t date_word, time_word;

date.DATE_PTR = &date_word;
date.TIME_PTR = &time_word;

error_code = ioctl(fd, IO_IOCTL_GET_DATE_TIME,

&date);

3.8.1.26 IO_IOCTL_SET_VOLUME

This command sets the volume label.

error_code = ioctl(mfs_fd,
IO_IOCTL_SET_VOLUME,
label);

The first parameter is the file descriptor of the MFS device driver that corresponds to the disk on which
the operation is to take place. The third parameter is the char * to the new volume name to be set with a
maximum of 11 characters.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

42 Freescale Semiconductor

3.8.1.27 IO_IOCTL_TEST_UNUSED_CLUSTERS

This command tests the unused clusters on the drive for bad clusters.

error_code = ioctl(mfs_fd,
 IO_IOCTL_TEST_UNUSED_CLUSTERS,
 &count_of_unused_clusters);

The parameter mfs_fd is the file descriptor returned when open() was called on the MFS device driver
corresponding to the drive, on which to test the unused clusters. The third parameter is the uint32_t * to a
variable, in which the count of bad clusters is stored. The bad clusters are marked in the file allocation table
so that they will not be used to store data.

3.8.1.28 IO_IOCTL_WRITE_CACHE_ON, IO_IOCTL_WRITE_CACHE_OFF

Deprecated: use IO_IOCTL_SET_WRITE_CACHE_MODE.

3.8.2 Input/Output Control Commands for the Partition Manager Device
Driver

In addition to the MQX input/output control commands, the partition manager device driver includes the
following.

3.8.2.1 IO_IOCTL_CLEAR_PARTITION

This command removes a partition from the disk.

The third ioctl() parameter is a pointer to the uint32_t variable and contains the number of the partition
to remove. This IOCTL call is valid only if no partition is currently selected, i.e., the handle allows for
access to the whole underlying device.

Example

Remove the third partition from the disk.

uint32_t part_num;
part_num = 3;
error_code = ioctl(pmgr_fd, IO_IOCTL_CLEAR_PARTITION,
 &part_num);

3.8.2.2 IO_IOCTL_GET_PARTITION

This command gets partition information to the disk.

The third ioctl() parameter is the PMGR_PART_INFO_STRUCT pointer. The only field in the structure
that must be filled in is the SLOT field. It must contain a value between zero and four and represents the
partition number for which information is requested. If the SLOT field is zero then information about
currently selected partition is retrieved. The other fields are overwritten with the retrieved data. HEADS,
CYLINDERS, and SECTORS are set to zero, because such information cannot be retrieved from the disk.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 43

3.8.2.3 IO_IOCTL_SET_PARTITION

This command sets partition information to the disk.

The third ioctl() parameter is the PMGR_PART_INFO_STRUCT pointer.
typedef struct pmgr_part_info_struct

{
 /* Partition slot (1 to 4) */
 unsigned char SLOT;
 /* Heads per Cylinder */
 unsigned char HEADS;

 /* Sectors per head */
 unsigned char SECTORS;

 /* Cylinders on the device */
 uint16_t CYLINDERS;
 /* Partition type (0 not used, 1 FAT 12 bit, 4 FAT 16 bit, */
 /* 5 extended, 6 huge - DOS 4.0+, other = unknown OS) */

unsigned char TYPE;
 /* Start sector for partition, relative to beginning of disk */
 uint32_t START_SECTOR;
 /* Partition length in sectors */
 uint32_t LENGTH;
} PMGR_PART_INFO_STRUCT, * PMGR_PART_INFO_STRUCT_PTR;

The SLOT field must be filled in with the partition number to set.

The HEADS, SECTORS, and CYLINDERS fields are optional. They represent data that the partition
manager uses to write the partition, but the data is used only by MS-DOS operating systems. Because
Microsoft Windows operating system does not use the fields on the disk, fill in the fields only if the disk
is to be used with the MS-DOS operating system.

The TYPE field must be set to one of the following. Types that are marked with + are recommended when
you create a partition.

The START_SECTOR field must be filled in. It is the physical sector on the device where the partition
should start. For the first partition, is it generally sector 32 (for FAT32) or sector one (for FAT16 and
FAT12). For partitions other than the first, it is the next sector after the end of the previous partition.
You can leave unused sectors between partition, but they amount to wasted space.

The LENGTH field must be filled in. It contains the length in sectors of the new partition that is to
be created.

+ PMGR_PARTITION_FAT_12_BIT

PMGR_PARTITION_FAT_16_BIT Old FAT16 (MS-DOS 3.3 and previous)

PMGR_PARTITION_HUGE Modern FAT16 (MS-DOS 3.3 and later)

PMGR_PARTITION_FAT32 Normal FAT32

+ PMGR_PARTITION_FAT32_LBA FAT32 with LBA

+ PMGR_PARTITION_HUGE_LBA FAT16 with LBA

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

44 Freescale Semiconductor

This IOCTL call is valid only if no partition is currently selected, i.e., the handle allows for access to the
whole underlying device and there is only a single open handle to the partition manager instance. This is
to prevent possible inconsistence of data if more than one handle to the partition manager exists.

The partition manager checks validity of the partition table before writing it to the device. It is thus
impossible to create a partition which overlaps another partition. Partitions which would collide with the
new one have to be removed first.

Example

Create two partitions on a disk. The example assumes that the partition manager is installed and open.

PMGR_PART_INFO_STRUCT part_info;

/* Create a 42-Megabyte partition: */
part_info.SLOT = 1;
part_info.TYPE = PMGR_PARTITION_HUGE_LBA;
part_info.START_SECTOR = 32;
part_info.LENGTH = 84432;

error_code = ioctl(pm_fd, IO_IOCTL_SET_PARTITION,
&part_info);

if (error_code) {
 printf("\nError creating partition %d!\n Error code: %d",
 1, error_code);
 _mqx_exit(1);
}/* Endif */

/* Create a 5-Megabyte partition: */
part_info.SLOT = 2;
part_info.TYPE = PMGR_PARTITION_FAT_12_BIT;
part_info.START_SECTOR = 84464;
part_info.LENGTH = 10000;

error_code = ioctl(pm_fd, IO_IOCTL_SET_PARTITION,
&part_info);

if (error_code) {
 printf("\nError creating partition %d!\n Error code: %d",
 2, error_code);
 _mqx_exit(1);
}/* Endif */

3.8.2.4 IO_IOCTL_USE_PARTITION

This command directly sets partition parameters to use with the handle.

The third ioctl() parameter is the PMGR_PART_INFO_STRUCT pointer.

The information passed to this IOCTL call directly sets partition information associated with the handle
without touching the underlying device. This provides with possibility to restrict access through the handle
to certain part of the underlying device even for media without partition table in the first sector, i.e., the
device may be partitioned in software.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 45

Seek to the beginning of the just defined partition is performed when this IOCTL gets executed.

3.8.2.5 IO_IOCTL_SEL_PART

This command selects partition to use with the handle.

The third ioctl() parameter points to uint32_t number which has to be between zero and four and represents
the number of partition to select. If zero is specified no partition will be selected, i.e., whole device will be
accessible through the handle.

It is not possible to directly select another partition if there is a partition already selected. Partition has to
be deselected first, i.e., IO_IOCTL_SEL_PART has to be executed with pointer to zero as third parameter.

Seek to the beginning of the just selected partition or the device is performed when this IOCTL gets
executed.

3.8.2.6 IO_IOCTL_VAL_PART

This command validates partition table and checks partition type.

The third ioctl() parameter may be either NULL or pointer to uint32_t number which has to be between
zero and four.

The IOCTL call checks partition table for validity. Then, it optionally checks type of partition whether it
matches one of the FAT partition types. If the third parameter is pointer to zero only the partition table
validity check is performed. If the third parameter is NULL, the type check is performed on a currently
selected partition.

The IOCTL call with non-NULL third parameter is valid only if no partition is selected, i.e., the whole
device is accessible through the handle.

If the partition type is checked and does not match any of the FAT partition types,
PMGR_UNKNOWN_PARTITION is returned which indicates that the partition is valid but does not match
any of the FAT types.

3.8.3 Return Codes for MFS
• MFS_ACCESS_DENIED

— Application attempted to modify a read-only file or a system file.

• MFS_ALREADY_ASSIGNED

• MFS_ATTEMPT_TO_REMOVE_CURRENT_DIR

• MFS_BAD_DISK_UNIT
— Operation on a file failed because that file is corrupted.

• MFS_BAD_LFN_ENTRY
— MFS failed to find a complete long file name within two clusters.

• MFS_CANNOT_CREATE_DIRECTORY

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

46 Freescale Semiconductor

— MFS was unable to create the requested long directory name, usually because an invalid (illegal)
directory name was specified.

• MFS_DISK_FULL
— Disk is full.

• MFS_DISK_IS_WRITE_PROTECTED
— Disk is write protected and could not be written to.

• MFS_EOF
— End of the file has been reached during a read. This is not a failure; it is only a warning.

• MFS_ERROR_INVALID_DRIVE_HANDLE
— The MFS FILE_PTR was invalid.

• MFS_ERROR_INVALID_FILE_HANDLE
— The MFS FILE_PTR was invalid.

• MFS_ERROR_UNKNOWN_FS_VERSION
— The drive contains an advanced FAT32 version. The MFS FAT32 version is not compatible. (There is

currently only one FAT32 version, but this could change in the future.)

• MFS_FAILED_TO_DELETE_LFN
— MFS failed to completely delete a long file name. This results when MFS cannot locate all of the long

file name entries associated with a file.

• MFS_FILE_EXISTS
— File already exists with the specified name.

• MFS_FILE_NOT_FOUND
— File specified does not exist.

• MFS_INSUFFICIENT_MEMORY
— MFS memory allocation failed. (MQX RTOS is out of memory or it has a corrupted memory pool.)

• MFS_INVALID_CLUSTER_NUMBER
— A cluster number was detected that exceeds the maxumum number of clusters on the drive

(or partition). This may be a result of a corrupted directory entry.

• MFS_INVALID_DEVICE
— The underlying block mode driver does not support the block size command, or the block size is

not legal (neither one of 512, 1024, 2048, or 4096 bytes).

• MFS_INVALID_FUNCTION_CODE
— Not currently used.

• MFS_INVALID_HANDLE
— One of the fields in a given FILE_PTR structure was invalid.

• MFS_INVALID_LENGTH_IN_DISK_OPERATION
— Requested directory exceeds maximum in change-directory operation.

• MFS_INVALID_MEMORY_BLOCK_ADDRESS
— SEARCH_DATA_PTR is NULL on find-first or fine-next file operation.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 47

• MFS_INVALID_PARAMETER
— One or more of the parameters passed to _io_ioctl() is invalid.

• MFS_LOST_CHAIN
— This is not a critical error. It means there is a lost cluster chain which results in some wasted space.

Operations on the drive continue normally.

• MFS_NO_ERROR
— Function call was successful.

• MFS_NOT_A_DOS_DISK
— Disk is not formatted at FAT12, FAT16, or FAT32 file system.

• MFS_NOT_INITIALIZED
— Not currently returned.

• MFSOPERATION_NOT_ALLOWED
— Returned when attempting a write operation when MFS is built in read-only mode, or a format

operation when MFS is built without format functionality, or an attempt to rename a file to the same
name.

• MFS_PATH_NOT_FOUND
— Path name specified does not exist.

• MFS_READ_FAULT
— An error occurred reading from the disk.

• MFS_ROOT_DIR_FULL
— Root directory on the drive has no more free entries for new files.

• MFS_SECTOR_NOT_FOUND
— An error occurred while writing to the disk. The drive was formatted with incorrect parameters, or the

partition table specified incorrect values.

• MFS_SHARING_VIOLATION
— Produced by one of:

– An attempt to close or format a drive that currently has files open.

– An attempt to open a file to write that is already opened.

• MFS_WRITE_FAULT
— An error occurred while writing to the disk.

3.8.4 Return Codes for the Partition Manager Device Driver
• PMGR_INVALID_PARTITION

— The specified partition slot does not describe a valid partition.

• PMGR_INSUF_MEMORY
— Attempt to allocate memory failed. MQX RTOS is out of memory or it has a corrupt memory pool.

Reference: Functions

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

48 Freescale Semiconductor

3.8.5 Other Error Codes

An error was returned from the lower-level device driver.

Reference: Data Types

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 49

Chapter 4 Reference: Data Types

4.1 In This Chapter
Alphabetically sorted data-type descriptions for MFS.

4.2 _mfs_cache_policy
typedef enum {
 MFS_WRITE_THROUGH_CACHE=0, // No write caching (only read caching)
 MFS_MIXED_MODE_CACHE=1, // Write Caching allowed on file write only
 MFS_WRITE_BACK_CACHE=2 // Write Caching fully enabled
} _mfs_cache_policy;

Reference: Data Types

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

50 Freescale Semiconductor

4.3 MFS_DATE_TIME_PARAM
typedef struct mfs_date_time_param
{
 uint16_t * DATE_PTR;
 uint16_t * TIME_PTR;
} MFS_DATE_TIME_PARAM, * MFS_DATE_TIME_PARAM_PTR;

A pointer to the structure is used in IO_IOCTL_GET_DATE_TIME and IO_IOCTL_SET_DATE_TIME
commands.

The first field is the uint16_t * to uint16_t variable in which the date is to be stored (for get) or read
from (for set). The second field is the uint16_t * to uint16_t variable, in which the time is to be stored
(for get) or read from (for set). See the ioctl description for details.

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 51

4.4 MFS_FILE_ATTR_PARAM
typedef struct mfs_file_attr_param
{
 char * PATHNAME;
 /* Path name and filename of the file */
 unsigned char * ATTRIBUTE_PTR;
 /* pointer to the attribute variable */
} MFS_FILE_ATTR_PARAM, * MFS_FILE_ATTR_PARAM_PTR;

A pointer to the structure is used in IO_IOCTL_GET_FILE_ATTR and IO_IOCTL_SET_FILE_ATTR
commands.

The first field is the char * to the path name and filename of the file for which you want to get or set the
attribute. The second field is the unsigned char * to the char variable in which the attribute is read from
(for set), or in which the attribute is stored (for get).

Reference: Data Types

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

52 Freescale Semiconductor

4.5 MFS_GET_LFN_STRUCT
typedef struct mfs_get_lfn_struct
{
 char * PATHNAME;
 /* Path name of the 8.3 name */
 char * LONG_FILENAME;
 /* pointer to memory block in which to store the long name */
} MFS_GET_LFN_STRUCT, * MFS_GET_LFN_STRUCT_PTR;

A pointer to this structure is used in IO_IOCTL_GET_LFN commands.

The first field is the char * to the path name or file name of the file that we want to get the long
file name of. The second field is the char * to pre-allocated space in which to store the long file name of
the requested file.

Reference: Data Types

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 53

4.6 MFS_IOCTL_FORMAT_PARAM
typedef struct mfs_ioctl_format
{
 MFS_FORMAT_DATA_PTR FORMAT_PTR; /* Points to format data */
 uint32_t * COUNT_PTR; /* Count the bad clusters */
} MFS_IOCTL_FORMAT_PARAM, * MFS_IOCTL_FORMAT_PARAM_PTR;

A pointer to the structure is used in calls to IO_IOCTL_FORMAT and IO_IOCTL_FORMAT_TEST
commands.

The first field is a pointer to the MFS_FORMAT_DATA structure, which is explained at the beginning of
this document. The second field is used only for the IO_IOCTL_FORMAT_TEST command. It is a pointer
to the uint32_t variable in which the count of bad clusters is stored.

Reference: Data Types

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

54 Freescale Semiconductor

4.7 MFS_RENAME_PARAM
typedef struct mfs_rename_param
{
 char * OLD_PATHNAME;
 char * NEW_PATHNAME;
} MFS_RENAME_PARAM, * MFS_RENAME_PARAM_PTR;

A pointer to the structure used in IO_IOCTL_RENAME_FILE commands.

The first field is the char * to a string that contains the path name and file name of the file to move
or rename. The second field is the char * to the new path name or filename.

Reference: Data Types

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

Freescale Semiconductor 55

4.8 MFS_SEARCH_PARAM
typedef struct mfs_search_param
{
uint32_t ATTRIBUTE;
 char *WILDCARD;
 char *LFN_BUF;
 uint32_t LFN_BUF_LEN;
 MFS_SEARCH_DATA_PTR
} MFS_SEARCH_PARAM, * MFS_SEARCH_PARAM_PTR;

A pointer to the structure is used in IO_IOCTL_FIND_FIRST_FILE commands.

a) The attribute field unsigned char contains the search attributes specifying types of directory
entries which are retrieved during the search. The WILDCARD field contains a path and a
specific filename or the wildcard mask. It can include wildcard characters. The LFN_BUF and
LFN_BUF_LEN specify an address and length of the optional caller-allocated buffer to
retrieve long filenames of the directory entities found. The SEARCH_DATA_PTR is a pointer
to the caller-allocated SEARCH_DATA structure to return the retrieved data. See the
IO_IOCTL_FIND_FIRST_FILE, IO_IOCTL_FIND_NEXT_FILE command explanation
for details.

Reference: Data Types

Freescale MQX™ RTOS MFS™ User’s Guide for Kinetis Software Development Kit (KSDK), Rev. 2.9

56 Freescale Semiconductor

	Freescale MQX™ RTOS MFS User’s Guide for Kinetis Software Development Kit (KSDK)
	Chapter 1 Before You Begin
	1.1 About This Book
	1.2 Where to Look for More Information
	1.3 Typographic Conventions
	1.3.1 Example: Prototype Definition, Including Symbolic Parameters
	1.3.2 Example: Complex Data Types and their Field Names

	1.4 Other Conventions
	1.4.1 Cautions

	Chapter 2 Using MFS
	2.1 MFS at a Glance
	2.2 MS-DOS File System Characteristics
	2.2.1 Directory Path Names
	2.2.2 File Attributes
	2.2.3 File Time
	2.2.4 File Date
	2.2.5 File Allocation Table
	2.2.6 Filename Wildcards

	2.3 High-Level Formatting
	2.4 Version of MFS
	2.5 Customizing MFS
	2.6 Partition Manager Device Driver
	2.7 Working with Removable Media
	2.7.1 Buffering and Caching
	2.7.2 Writing to Media
	2.7.3 Hotswapping

	Chapter 3 Reference: Functions
	3.1 In This Chapter
	3.2 _io_mfs_install
	3.3 _io_mfs_uninstall
	3.4 _io_part_mgr_install
	3.5 _io_part_mgr_uninstall
	3.6 close
	3.7 open
	3.8 ioctl
	3.8.1 Input/Output Control Commands for MFS
	3.8.2 Input/Output Control Commands for the Partition Manager Device Driver
	3.8.3 Return Codes for MFS
	3.8.4 Return Codes for the Partition Manager Device Driver
	3.8.5 Other Error Codes

	Chapter 4 Reference: Data Types
	4.1 In This Chapter
	4.2 _mfs_cache_policy
	4.3 MFS_DATE_TIME_PARAM
	4.4 MFS_FILE_ATTR_PARAM
	4.5 MFS_GET_LFN_STRUCT
	4.6 MFS_IOCTL_FORMAT_PARAM
	4.7 MFS_RENAME_PARAM
	4.8 MFS_SEARCH_PARAM

