
NXP Semiconductors Document Number: PEXLVHBRIDGEPUG
User’s guide Rev. 1.0, 2/2016

© 2016 NXP B.V.

Contents
1 General Info . 2

2 Embedded Component Description . 2
2.1 Component API . 2
2.2 Events . 4
2.3 Methods . 4
2.4 Properties . 8

3 Typical Usage . 11

4 User Types . 16

LVHBridge Programming Guide

General Info

2 NXP Semiconductors

LVHBridge Programming Guide, Rev. 1.0

1 General Info

This documentation introduces LVHBridge Processor Expert component. LVHBridge is a software
driver for DC brush motor and stepper motor control. This component creates a layer between
hardware and user application and enables rapid application development by providing an easy to use
interface. The component provides two sets of methods, one set per motor type. For DC brush motor
control a single H-Bridge device is sufficient. The component utilizes to ways for DC motor control.
The first way uses a timer device (TimerUnit LDD component) which besides a simple on/off state
switching also allows speed adjustment. The other way utilizes GPIO pins (BitIO LDD components)
which enable basic state control, switch a motor on or off. Stepper motors require a dual H-Bridge
model to generate four output signals. The component provides both, full-stepping and micro-stepping
control types, which enable precise motor control. This component supports and provides flexible
software solution for these analog parts:

NXP MPC17C724: 0.4 A Dual H-Bridge Motor Driver

NXP MPC17510: 1.2 A 15 V H-Bridge Motor Driver

NXP MPC17511: 1.0 A 6.8 V H-Bridge Motor Driver

NXP MPC17529: 0.7 A Dual H-Bridge Motor Driver with 3.0V/5.0V Compatible Logic I/O

NXP MPC17531A: 0.7 A Dual H-Bridge Motor Driver with 3.0 V Compatible Logic I/O

NXP MPC17533: 0.7 A 6.8 V Dual H-Bridge Motor Driver

NXP MC34933: 1.4 A Dual H-Bridge Driver Compatible with 3.0 V Logic

NXP offers following board solutions based on these chips:

FRDM-17C724-EVB

FRDM-17510EJ-EVB

FRDM-17511EP-EVB

FRDM-17511EV-EVB

FRDM-17529EV-EVB

FRDM-17531EP-EVB

FRDM-17531EV-EVB

FRDM-17533EV-EVB

FRDM-34933EP-EVB

Detailed description can be found in related hardware user guides and datasheets.

2 Embedded Component Description

2.1 Component API

LVHBridge component provides API, which can be used for dynamic real-time configuration of device
in user code. Available methods and events are listed under component selection Some of those
methods/events are marked with ticks and other ones with crosses, it distinguishes which
methods/events are supposed to be generated or not. You can change this setting in Processor Expert
Inspector. Note that methods with grey text are always generated because they are needed for proper
functionality. This forced behavior depends on various combinations of settings of component
properties. For summarization of available API methods and events and their descriptions, see Table 1
LVHBridge Component API

Table 1

Method Description
Init Initializes the device. Allocates memory for the device data

structure, sets HBridge device mode, etc. This method
can be called only once. Components linked by HBridge

1
2
2.1

Embedded Component Description

LVHBridge Programming Guide, Rev. 1.0
NXP Semiconductors 3

SetMode This method sets HBridge device mode using enable pin.
SetGateDriver This method controls Gate Driver Input (GIN) pin. It is avail-

able only for MPC17510 and MPC17511.
RotateProportional This method starts rotation of brush motor. The method allows

control of motor speed.
RotateFull This method starts rotation of brush motor. The method is

intended for state motor control (on/off) and is available only
when property ”Control Mode” is set to ”State Control”.

SetTriState This method sets output of specified HBridge to tristate (high
impedance) using input control pins.

SetDirection This method sets direction of brush motor. In forward direction
the first IN pin is set to high (or PWM) and the second IN pin
to low. In reverse direction the first IN is set to low and the sec-
ond IN to high (or PWM). Change of the direction is applied
when you start rotation (not when the motor is running).

SetFullStepSpeed Set speed of fullstep mode. Unit is number of fullsteps per sec-
ond. It is not allowed to change speed while motor is running.

SetMicroStepSpeed Set speed of microstep mode. Unit is number of microsteps per
second. Size of microstep depends on setting in Processor Ex-
pert (number of microsteps per fullstep). It is not allowed to
change speed while motor is running.

MoveSteps This method moves the motor by specified number of fullsteps.
When the rotor is not at physical fullstep position then the
method sets the nearest fullstep position without correction.
Note that number of steps returned by method [GetFullStep-
Position] are updated before they are executed. For example an
user calls the method [MoveSteps] with parameter Steps equal
to 100. Certain number of these steps are counted before they
are physically executed (for example 64 steps when ”Output-
Control” property is set to PWM and FTM device is used).
Note that you must wait for completion of this action before
you can run motor again (use method [GetMotorStatus] or event
[OnActionComplete]).

MoveMicroSteps Moves motor by specified number of microsteps. When the ro-
tor is not at physical microstep position then the method sets
nearest microstep without correction. For example the size is
initialized to 32 microsteps per one fullstep and the motor exe-
cuted three microsteps. Then user changes microstep size to 2
microsteps per one fullstep and starts motor movement (previ-
ous three microsteps are not visible). Note that you must wait
for completion of this action beforeyou can run motor again (use
method [GetMotorStatus] or event [OnActionComplete]).

MoveContinual Moves motor continually in fullstep mode. You can stop mo-
tor by calling [StopContinualMovement] method. When rotor
is not at physical fullstep position then the method sets nearest
fullstep without correction. This method is not available when
acceleration ramp is used.

MoveMicroContinual This method moves motor continually in microstep mode. You
can stop motor by calling [StopContinualMovement] method.
When the rotor is not at physical microstep position then the
method sets nearest microstep without correction. For example
the size is initialized to 32 microsteps per one fullstep and the
motor executed three microsteps. Then user changes microstep
size to 2 microsteps per one fullstep and starts motor movement
(previous three microsteps are not visible). This method is not
available when the acceleration ramp is used.

Embedded Component Description

4 NXP Semiconductors

LVHBridge Programming Guide, Rev. 1.0

StopContinualMovement This method is intended to stop continual movement of step-
per motor. The method does not stop motor immediately, mo-
tor can execute several steps. In microstep mode the motor
does not have to stop at fullstep position (can stop anywhere).
This method is not available when acceleration ramp is used or
method [MoveContinual] or [MoveMicroContinual] is not en-
abled. Note that you must wait for completion of this action
before you can run motor again (use method [GetMotorStatus]
or event [OnActionComplete]).

GetMotorStatus This method returns status of stepper motor control. Possible
values are defined in TMotorStatus enumeration in header file.

AlignRotor Align rotor to a fullstep position. The method executes 4 full-
steps forward (one electrical revolution) at minimum speed (see
”component name” MIN FULLSTEP SPEED constant). These
steps are not counted to the number of fullsteps. Note that you
must wait for completion of this action before you can run mo-
tor again (use method [GetMotorStatus] or event [OnAction-
Complete]).

SetMicroStepSize This method serves to change size of microstep. Note that the
size of microstep is initialized to value set in Processor Expert
property ”Microsteps per Step”. The motor must not be run-
ning when you call this method. The method is available only
when microstepping is enabled.

GetFullStepPosition This method returns current fullstep position. Position is set to
zero when initialization of HBridge component occurs. It can be
reset by method [ResetFullStepPosition].

GetMicroStepPosition This method returns current microstep position. Size of mi-
crostep depends on property ”Microsteps per Step” in Processor
Expert component GUI. Position is set to zero when initializa-
tion of HBridge component occurs. It can be reset by method
[ResetFullStepPosition].

ResetFullStepPosition This method sets counter of fullsteps to zero.
DisableMotor The method sets IN pins output value to LOW. The method

can be used to stop the stepper motor. Output value of the pins
are not changed immediately, because the counter registers are
updated after the counter overflows (at the beginning of the
next counter period). Note that default behavior of the motor
control is to hold position when a movement is completed.

2.2 Events

OnActionComplete -This event is called when the motor reaches desired number of steps or the
motor is stopped by method [StopContinualMovement]. The handler is available only for stepper motor.

ANSI C prototype:void OnActionComplete(LDD TUserData *UserDataPtr)

LDD TUserData : Pointer to UserDataPtr - Pointer to the user data. The pointer passed as the
parameter of Init method.

2.3 Methods

Init -Initializes the device. Allocates memory for the device data structure, sets H-Bridge device mode,
etc. This method can be called only once. Components linked by H-Bridge (TimerUnitLDD) are not
initialized here.

ANSI C prototype:void Init(LDD TUserData *UserDataPtr)

LDD TUserData : Pointer to UserDataPtr - Pointer to the user data. This pointer will be passed
as an event or callback parameter.

SetMode -This method sets H-Bridge device mode using enable pin.

ANSI C prototype:void SetMode(bool Active)

2.2
2.3

Embedded Component Description

LVHBridge Programming Guide, Rev. 1.0
NXP Semiconductors 5

bool :Active- Desired H-Bridge mode. Put FALSE to set power save mode, TRUE for normal
operational mode.

SetGateDriver -This method controls Gate Driver Input (GIN) pin. It is available only for
MPC17510 and MPC17511.

ANSI C prototype:void SetGateDriver(bool OutputHigh)

bool :OutputHigh- TRUE to set GOUT pin to High, FALSE for Low.

RotateProportional -This method starts rotation of brush motor. The method allows control of
motor speed.

ANSI C prototype:LDD TError RotateProportional(uint8 t PWMDuty,THBridge Bridge)

uint8 t :PWMDuty- Value of PWM duty. Value have to be in range 0..100.

THBridge :Bridge- Selection of H-Bridge interface. Only hbBRIDGE 1 value is correct when single
H-Bridge model is used.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR PARAM VALUE :
Invalid value of parameter PWMDuty or parameter Bridge. Other error codes are defined by
TimerUnit LDD. For more details see the TimerUnit LDD documentation.

RotateFull -This method starts rotation of brush motor. The method is intended for state motor
control (on/off) and is available only when property ”Control Mode” is set to ”State Control”.

ANSI C prototype:LDD TError RotateFull(bool Rotate,THBridge Bridge)

bool :Rotate- TRUE for rotation, FALSE for stop.

THBridge :Bridge- Selection of H-Bridge interface. Only hbBRIDGE 1 value is correct when single
H-Bridge model is used.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR PARAM VALUE :
Invalid value of parameter Bridge.

SetTriState -This method sets output of specified H-Bridge to tri-state (high impedance) using input
control pins.

ANSI C prototype:LDD TError SetTriState(THBridge Bridge)

THBridge :Bridge- Selection of H-Bridge interface. Only hbBRIDGE 1 value is correct when single
H-Bridge model is used.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR PARAM VALUE :
Invalid value of parameter Bridge.

SetDirection -This method sets direction of brush motor. In forward direction the first IN pin is set
to high (or PWM) and the second IN pin to low. In reverse direction the first IN is set to low and the
second IN to high (or PWM). Change of the direction is applied when you start rotation (not when the
motor is running).

ANSI C prototype:LDD TError SetDirection(bool Forward,THBridge Bridge)

bool :Forward - Motor direction.

THBridge :Bridge- Selection of H-Bridge interface. Only hbBRIDGE 1 value is correct when single
H-Bridge model is used.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR PARAM VALUE :
Invalid value of parameter Bridge.

SetFullStepSpeed -Set speed of full-step mode. Unit is number of full-steps per second. It is not
allowed to change speed while motor is running.

ANSI C prototype:LDD TError SetFullStepSpeed(uint16 t StepsSec)

uint16 t :StepsSec- Motor speed in number of full-steps per second. Minimal and maximal speed is
defined by constants ”component name” MIN FULLSTEP SPEED and
”component name” MAX FULLSTEP SPEED placed in header file.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR BUSY : Motor is
running. ERR PARAM VALUE : Invalid value of parameter StepsSec. Other error codes are
defined by TimerUnit LDD. For more details see the TimerUnit LDD documentation.

Embedded Component Description

6 NXP Semiconductors

LVHBridge Programming Guide, Rev. 1.0

SetMicroStepSpeed -Set speed of micro-step mode. Unit is number of micro-steps per second. Size of
micro-step depends on setting in Processor Expert (number of micro-steps per full-step). It is not
allowed to change speed while motor is running.

ANSI C prototype:LDD TError SetMicroStepSpeed(uint16 t MicroStepsSec)

uint16 t :MicroStepsSec- Motor speed in number of micro-steps per second. Minimal and maximal
speed is defined by constants ”component name” MIN MICROSTEP SPEED,
”component name” MAX MICROSTEP SPEED.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR BUSY : Motor is
running. ERR PARAM VALUE : Invalid value of parameter MicroStepsSec. Other error codes are
defined by TimerUnit LDD. For more details see the TimerUnit LDD documentation.

MoveSteps -This method moves the motor by specified number of full-steps. When the rotor is not at
physical full-step position then the method sets the nearest full-step position without correction. Note
that number of steps returned by method [GetFullStepPosition] are updated before they are executed.
For example an user calls the method [MoveSteps] with parameter Steps equal to 100. Certain number
of these steps are counted before they are physically executed (for example 64 steps when
”OutputControl” property is set to PWM and FTM device is used). Note that you must wait for
completion of this action before you can run motor again (use method [GetMotorStatus] or event
[OnActionComplete]).

ANSI C prototype:LDD TError MoveSteps(Boolean Forward,32bit unsigned Steps)

Boolean :Forward - Motor direction.

32bit unsigned :Steps- Number of full-steps to be performed. Maximal value is 100 000 000.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR BUSY : Motor is
running. ERR PARAM VALUE : Invalid number of steps. ERR FAILED : Invalid value of
TimerUnit LDD input frequency (see setting Counter frequency of TimerUnit LDD component).
Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

MoveMicroSteps -Moves motor by specified number of micro-steps. When the rotor is not at physical
micro-step position then the method sets nearest micro-step without correction. For example the size is
initialized to 32 micro-steps per one full-step and the motor executed three micro-steps. Then user
changes micro-step size to 2 micro-steps per one full-step and starts motor movement (previous three
micro-steps are not visible). Note that you must wait for completion of this action beforeyou can run
motor again (use method [GetMotorStatus] or event [OnActionComplete]).

ANSI C prototype:LDD TError MoveMicroSteps(Boolean Forward,32bit unsigned MicroSteps)

Boolean :Forward - Motor direction.

32bit unsigned :MicroSteps- Number of micro-steps to be performed. Maximal value is 100 000
000.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR BUSY : Motor is
running. ERR PARAM VALUE : Invalid number of steps. ERR FAILED : Invalid value of
TimerUnit LDD input frequency (see setting Counter frequency of TimerUnit LDD component).
Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

MoveContinual -Moves motor continually in full-step mode. You can stop motor by calling
[StopContinualMovement] method. When rotor is not at physical full-step position then the method
sets nearest full-step without correction. This method is not available when acceleration ramp is used.

ANSI C prototype:LDD TError MoveContinual(bool Forward)

bool :Forward - Motor direction.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR BUSY : Motor is
running. ERR FAILED : Invalid value of TimerUnit LDD input frequency (see setting Counter
frequency of TimerUnit LDD component). Other error codes are defined by TimerUnit LDD. For
more details see the TimerUnit LDD documentation.

Embedded Component Description

LVHBridge Programming Guide, Rev. 1.0
NXP Semiconductors 7

MoveMicroContinual -This method moves motor continually in micro-step mode. You can stop
motor by calling [StopContinualMovement] method. When the rotor is not at physical micro-step
position then the method sets nearest micro-step without correction. For example the size is initialized
to 32 micro-steps per one full-step and the motor executed three micro-steps. Then user changes
micro-step size to 2 micro-steps per one full-step and starts motor movement (previous three
micro-steps are not visible). This method is not available when the acceleration ramp is used.

ANSI C prototype:LDD TError MoveMicroContinual(Boolean Forward)

Boolean :Forward - Motor direction.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR BUSY : Motor is
running. ERR FAILED : Invalid value of TimerUnit LDD input frequency (see setting Counter
frequency of TimerUnit LDD component). Other error codes are defined by TimerUnit LDD. For
more details see the TimerUnit LDD documentation.

StopContinualMovement -This method is intended to stop continual movement of stepper motor.
The method does not stop motor immediately, motor can execute several steps. In micro-step mode the
motor does not have to stop at full-step position (can stop anywhere). This method is not available
when acceleration ramp is used or method [MoveContinual] or [MoveMicroContinual] is not enabled.
Note that you must wait for completion of this action before you can run motor again (use method
[GetMotorStatus] or event [OnActionComplete]).

ANSI C prototype:LDD TError StopContinualMovement(void)

Return value:LDD TError - Error code. ERR OK : No problem detected ERR FAILED : Motor is
not running or not running in continuous mode.

GetMotorStatus -This method returns status of stepper motor control. Possible values are defined in
TMotorStatus enumeration in header file.

ANSI C prototype:TMotorStatus GetMotorStatus(void)

Return value:TMotorStatus - Motor status.

AlignRotor -Align rotor to a full-step position. The method executes 4 full-steps forward (one
electrical revolution) at minimum speed (see ”component name” MIN FULLSTEP SPEED constant).
These steps are not counted to the number of full-steps. Note that you must wait for completion of this
action before you can run motor again (use method [GetMotorStatus] or event [OnActionComplete]).

ANSI C prototype:LDD TError AlignRotor(void)

Return value:LDD TError - Error code. ERR OK : No problem detected ERR BUSY : Motor is
running. ERR FAILED : Invalid value of TimerUnit LDD input frequency (see setting Counter
frequency of TimerUnit LDD component). Other error codes are defined by TimerUnit LDD. For
more details see the TimerUnit LDD documentation.

SetMicroStepSize -This method serves to change size of micro-step. Note that the size of micro-step
is initialized to value set in Processor Expert property ”Micro-steps per Step”. The motor must not be
running when you call this method. The method is available only when micro-stepping is enabled.

ANSI C prototype:LDD TError SetMicroStepSize(uint8 t Size)

uint8 t :Size- Number of micro-steps per one full-step. Possible values are 2, 4, 8, 16, 32. For
example put 16 to set 16 micro-steps per one full-step.

Return value:LDD TError - Error code. ERR OK : No problem detected ERR BUSY : Motor is
running. ERR PARAM VALUE : Invalid value of parameter Size.

GetFullStepPosition -This method returns current full-step position. Position is set to zero when
initialization of H-Bridge component occurs. It can be reset by method [ResetFullStepPosition].

ANSI C prototype:int32 t GetFullStepPosition(void)

Return value:int32 t - Current position of rotor in number of full-steps taken from initial position.

GetMicroStepPosition -This method returns current micro-step position. Size of micro-step depends
on property ”Micro-steps per Step” in Processor Expert component GUI. Position is set to zero when
initialization of H-Bridge component occurs. It can be reset by method [ResetFullStepPosition].

ANSI C prototype:int32 t GetMicroStepPosition(void)

Embedded Component Description

8 NXP Semiconductors

LVHBridge Programming Guide, Rev. 1.0

Return value:int32 t - Current position of rotor in number of micro-steps taken from initial
position.

ResetFullStepPosition -This method sets counter of full-steps to zero.

ANSI C prototype:LDD TError ResetFullStepPosition(void)

Return value:LDD TError - Error code. ERR OK : No problem detected ERR BUSY : Motor is
running.

DisableMotor -The method sets IN pins output value to LOW. The method can be used to stop the
stepper motor. Output value of the pins are not changed immediately, because the counter registers are
updated after the counter overflows (at the beginning of the next counter period). Note that default
behavior of the motor control is to hold position when a movement is completed.

ANSI C prototype:LDD TError DisableMotor(void)

Return value:LDD TError - Error code. Error code values are defined by TimerUnit LDD. For
more details see the TimerUnit LDD documentation.

2.4 Properties

Component Name - Name of the component.

H-Bridge Model - H-Bridge model.

ActiveMode - Selection of H-Bridge operating mode.

There are 2 options:

yes

no

Enable Pins - The settings of H-Bridge enable pins.

The following items are available only if the group is enabled (the value is ”Enabled”):

Pin for PSAVE - Pin for logic input enable control of H-Bridges to save power (active-high).

PSAVE Linked - Inherited component for one-bit Input/Output to control PSAVE pin.

Pin for OE - Pin for logic output Enable control of H-Bridges (active-high).

OE Linked - Inherited component for one-bit Input/Output component to control OE pin.

Pin for EN - Enable control signal input pin (active-low).

EN Linked - Inherited component for one-bit Input/Output component to control EN pin.

Pin for GIN - Gate Driver Input pin to control GOUT pin (active-low). GIN is initialized to
HIGH, so default value of GOUT is LOW.

GIN Linked - Inherited component for one-bit Input/Output component to control GIN pin.

Motor Control - Select type of motor you want to use. DC brush motor is controlled by two
input pins. Stepper motor is controlled by 4 input pins and can be used only with dual H-Bridge
model.

Timer Settings - The setings of timer devices, which are used to generate control signal.
LVHBridge component sets automatically this item.
The following items are available only if the group is enabled (the value is ”Enabled”):

Primary Timer Component - Reference to TimerUnit LDD component, which is used
to generate signal for motor control. This timer is the source for global time base when
property ”Secondary Timer” is enabled.

Primary Timer Device - Name of a counter used by TimerUnit LDD component. The
counter must provide the source for the global time base (see datasheet of used MCU) if
secondary timer is used (property ”Secondary Timer” enabled).

Secondary Timer - Secondary timer can be used to generate signal for motor control.
Enable the item when Input Control Pins aren’t connected to one timer device. This timer
is synchronized with Primary Timer Device. This setting is available only when property
”Output Control” in ”Stepper Motor” group is set to ”PWM” or property ”Control Mode”
in ”DC Brush” group is set to ”Speed Control”.
The following items are available only if the group is enabled (the value is ”Enabled”):

2.4

Embedded Component Description

LVHBridge Programming Guide, Rev. 1.0
NXP Semiconductors 9

Secondary Timer Component - Reference to TimerUnit LDD component, which is
used to generate signal for motor control. This timer is synchronized with the global
time base (Primary Timer Device).

Secondary Timer Device - Name of a counter used by TimerUnit LDD component.

Stepper Motor - Stepper motor settings.

Output Control - Stepper control method.

There are 2 options:

PWM: All four IN pins are controlled by PWM signal (TimerUnit LDD channels).

GPIO: All four IN pins are controlled by GPIO (BitIO LDD).

Manual Timer setting - The setting ”Counter frequency” of linked TimerUnit LDD
component is automaticaly set when ”Manual timer setting” is set to ”Disable”. You can
change the timer frequency when you enable the manual setting. For more information see
component user guide.

There are 2 options:

Enabled

Disabled

Motor Control Mode - Stepper motor control mode. Micro-stepping is available only
when output control is set to ”PWM”.

Full-step Configuration - Configuration of full-stepping.

Speed - Motor speed in full-step mode. The speed can be changed later in C code.
Unit is number of full-steps per second.

Acceleration - Fluent acceleration to desired speed and decelaration to zero. Put 0
value to disable ramp. Unit is full-steps per second per second.

Micro-step Configuration - Configuration of micro-stepping.

PWM Frequency - PWM frequency for micro-stepping. Maximum value is 20 kHz.

Micro-steps per Step - Number of micro-steps per one full-step. The size can be
changed later in C code. Note that micro-stepping table generated to C code contains
only necessary number of items.

There are 5 options:

2 Micro-steps

:

32 Micro-steps

Speed - Motor speed in micro-step mode. The speed can be changed later in C code.
Unit is number of micro-steps per second. Size of micro-step depends on property
”Micro-steps per step”.

Acceleration - Fluent acceleration to desired speed and decelaration to zero. Put 0
value to disable ramp. Unit is micro-steps per second per second. Size of micro-step
depends on Micro-steps per Step setting.

H-Bridge 1 MCU Interface - Configuration of H-Bridge interface to MCU. If the H-Bridge
model has two independent interfaces (dual H-Bridge model) then this is interface 1.

DC brush - Configuration of DC Brush motor.

Control Mode - Motor can be controlled by PWM signal from linked TimerUnit LDD
(speed control) or by GPIO pins (state control). In state control you can only switch the
motor on or off.

PWM Frequency - PWM frequency for speed motor control. Maximum value is 20
kHz.

Direction Control - Motor speed can be controlled in forward or reverse direction.
You can set Bidirectional option to control speed in forward and reverse direction.
This setting is available only when property ”Control Mode” is set to ”Speed control”.

There are 3 options:

Bidirectional

Forward

Reverse

Init. Direction - Initial direction of brushed DC motor. Forward means that first IN
pin is set to high and second IN pin to low. In reverse direction first IN pin is low and
second IN high. Direction can be changed later in C code.

Embedded Component Description

10 NXP Semiconductors

LVHBridge Programming Guide, Rev. 1.0

There are 2 options:

Forward

Reverse

Input Control Pins - Control mode for IN1 and IN2 pin. This attribute is set
automatically by the component.

Pin for IN1 - Control signal input IN1 pin to control output OUT1.

IN1 Component - Inherited component for one-bit Input/Output component to
control IN1 pin.

Pin for IN2 - Control signal input IN2 pin to control output OUT2.

IN2 Component - Inherited component for one-bit Input/Output component to
control IN2 pin.

Input Control Pins - Control mode for IN1A and IN1B pin. This attribute is set
automatically by the component.

Pin for IN1A - Control signal input IN1A pin to control output OUT1A.

IN1A Component - Inherited component for one-bit Input/Output component to
control IN1A pin.

Pin for IN1B - Control signal input IN1B pin to control output OUT1B.

IN1B Component - Inherited component for one-bit Input/Output component to
control IN1B pin.

H-Bridge 2 MCU Interface - Configuration of H-Bridge interface to MCU. If the H-Bridge
model has two independent interfaces (dual H-Bridge model) then this is interface 2.
The following items are available only if the group is enabled (the value is ”Enabled”):

DC brush - Configuration of DC Brush motor.

Control Mode - Motor can be controlled by PWM signal from linked TimerUnit LDD
(speed control) or by GPIO pins (state control). In state control you can only switch the
motor on or off.

PWM Frequency - PWM frequency for speed motor control. Maximum value is 20
kHz. This property is set automatically when ”Control Mode” property in ”H-Bridge
1 MCU Interface” group is ”Speed Control”.

Direction Control - Motor speed can be controlled in forward or reverse direction.
You can set Bidirectional option to control speed in forward and reverse direction.
This setting is available only when property ”Control Mode” is set to ”Speed control”.

There are 3 options:

Bidirectional

Forward

Reverse

Init. Direction - Initial direction of brushed DC motor. Forward means that first IN
pin is set to high and second IN pin to low. In reverse direction first IN pin is low and
second IN high. Direction can be changed later in C code.

There are 2 options:

Forward

Reverse

Input Control Pins - Control mode for IN2A and IN2B pin. This attribute is set
automatically by the component.

Pin for IN2A - Control signal input IN2A pin to control output OUT2A.

IN2A Component - Inherited component for one-bit Input/Output component to
control IN2A pin.

Pin for IN2B - Control signal input IN2B pin to control output OUT2B.

IN2B Component - Inherited component for one-bit Input/Output component to
control IN2B pin.

Auto Initialization - Automated initialization of the component. The component Init method is
automatically called from CPU component initialization function PE low level init().

There are 2 options:

yes

Typical Usage

LVHBridge Programming Guide, Rev. 1.0
NXP Semiconductors 11

no

Primary Timer Allocator - The component is used to manage allocation of primary TimerUnit LDD
component channels.

Secondary Timer Allocator - The component is used to manage allocation of secondary
TimerUnit LDD component channels.

3 Typical Usage

Examples of typical settings and usage of LVHBridge component.

The state control of DC brushed motor

Required component setup:

Motor Control: Brushed

ActiveMode: yes

Set properties under group H-Bridge 1 MCU Interface. Set also H-Bridge 2 MCU Interface if you
are using dual H-Bridge model:

Control Mode: State Control

Init. Direction: Forward

Auto Initialization: no

Methods: Init, RotateFull, SetDirection, SetTriState

Note: ”LVH1” is name of LVHBridge component.

Content of main.c:

Listing 1: Source code

void main (void)
{

. . .

/∗ I n i t i a l i z a t i o n o f LVHBridge component must be done maunually here ,
∗ because auto i n i t i a l i z a t i o n i s d i s ab l ed . I t i s p o s s i b l e to pass po in t e r
∗ to your own data (or NULL) , which i s then s to r ed in dev i c e data
s t r u c tu r e . ∗/

LVH1 Init(&UserData) ;

/∗ Run motor in forward d i r e c t i o n . ∗/
i f (LVH1 RotateFull (TRUE, hbBRIDGE 1) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Note : i n s e r t here a wai t ing command to see the change . ∗/

/∗ Set H−Bridge output to t r i−s t a t e . Motor should s l ow ly stop . ∗/
i f (LVH1 SetTriState (hbBRIDGE 1) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Note : i n s e r t here a wai t ing command to see the change . ∗/

/∗ Change d i r e c t i o n to ” r e v e r s e ” . ∗/
i f (LVH1 SetDirection (FALSE, hbBRIDGE 1) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Run motor in r e v e r s e d i r e c t i o n . ∗/
i f (LVH1 RotateFull (TRUE, hbBRIDGE 1) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Note : i n s e r t here a wai t ing command to see the change . ∗/

3

Typical Usage

12 NXP Semiconductors

LVHBridge Programming Guide, Rev. 1.0

/∗ Stop motor . ∗/
i f (LVH1 RotateFull (FALSE, hbBRIDGE 1) != ERR OK) {

/∗ Handle e r r o r . ∗/
}

. . .
}

Speed control of DC brushed motor

Required component setup:

Motor Control: Brushed

ActiveMode: yes

Set properties under group H-Bridge 1 MCU Interface. Set also H-Bridge 2 MCU Interface if you
are using dual H-Bridge model:

Control Mode: Speed Control

Direction Control: Bidirectional

Init. Direction: Reverse

Auto Initialization: yes

Methods: Init, RotateProportional, SetDirection

Note: example also shows how to change motor direction. The method ”Init” is called from
”PE low level init” function automatically due to auto initialization.

Content of main.c:

Listing 2: Source code

void main (void)
{

. . .

/∗ Run motor in r e v e r s e d i r e c t i o n with PWM duty s e t to 75%. ∗/
i f (LVH1 RotateProportional (75 , hbBRIDGE 1) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Note : i n s e r t here a wai t ing command to see the change . ∗/

/∗ Stop motor . ∗/
i f (LVH1 RotateProportional (0 , hbBRIDGE 1) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Note : i n s e r t here a wai t ing command to see the change . ∗/

/∗ Set forward d i r e c t i o n . ∗/
i f (LVH1 SetDirection (TRUE, hbBRIDGE 1) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Run motor in forward d i r e c t i o n with PWM duty s e t to 75%. ∗/
i f (LVH1 RotateProportional (75 , hbBRIDGE 1) != ERR OK) {

/∗ Handle e r r o r . ∗/
}

. . .
}

Stepper motor control

This example demonstrates usage of full-step and micro-step mode without acceleration ramp.

Required component setup:

Typical Usage

LVHBridge Programming Guide, Rev. 1.0
NXP Semiconductors 13

H-Bridge Model: MC34933, MPC17529, MPC17C724, MPC17531A or MPC17533

ActiveMode: yes

Motor Control: Stepper

Primary Timer Device: Select Timer Device (TPM, FTM). Note that the counter must provide
the source for the global time base (see datasheet of used MCU) if secondary timer is used
(property ”Secondary Timer” enabled).

Secondary Timer: Enable Secondary Timer if H-Bridge input control pins are not connected to one
timer device. You must set Secondary Timer Device when the Secondary Timer is enabled.

Output Control: PWM

Motor Control Mode: Full-step and Micro-step

Full-step Configuration

Speed: for example 20

Acceleration: 0

Micro-step Configuration

PWM Frequency: for example 20 kHz

Micro-steps per Step: for example 4 Micro-steps

Speed: for example 50

Acceleration: 0

Set properties under groups H-Bridge 1 MCU Interface and H-Bridge 2 MCU Interface:

Auto Initialization: yes

Methods: Init, SetMode, AlignRotor, GetMotorStatus, SetFullStepSpeed, SetMicroStepSpeed,
MoveSteps, MoveMicroSteps, MoveMicroContinual, GetMicroStepPosition,
StopContinualMovement

Micro-stepping uses a table with PWM duty cycle values corresponding to micro-steps. The table is
defined in LVH1.c file (LVH1 is name of the LVHBridge component).

Content of main.c:

Listing 3: Source code

void main (void)
{

. . .

/∗ Align the ro to r to a f u l l −s tep po s i t i o n (4 f u l l −s t ep s in forward
d i r e c t i o n) . ∗/

i f (LVH1 AlignRotor () != ERR OK) {
/∗ Handle e r r o r . ∗/

}
whi le (LVH1 GetMotorStatus () == msRUNNING) {

/∗ Wait un t i l motor s tops . ∗/
}
/∗ Check p o s s i b l e e r r o r . ∗/
i f (LVH1 GetMotorStatus () == msERROR) {

/∗ Handle e r r o r . ∗/
}

/∗ Change f u l l −s t epp ing speed to 50 f u l l −s t ep s per second . ∗/
i f (LVH1 SetFullStepSpeed (50) != ERR OK) {

/∗ Handle e r r o r . ∗/
}

/∗ Execute 25 f u l l −s t ep s in forward d i r e c t i o n . ∗/
i f (LVH1 MoveSteps (TRUE, 25) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
whi le (LVH1 GetMotorStatus () == msRUNNING) {

Typical Usage

14 NXP Semiconductors

LVHBridge Programming Guide, Rev. 1.0

/∗ Wait un t i l motor s tops . ∗/
}
/∗ Check p o s s i b l e e r r o r . ∗/
i f (LVH1 GetMotorStatus () == msERROR) {

/∗ Handle e r r o r . ∗/
}

/∗ Change micro−s t epp ing speed to 100 micro−s t ep s per second . ∗/
i f (LVH1 SetMicroStepSpeed (100) != ERR OK) {

/∗ Handle e r r o r . ∗/
}

/∗ Execute 100 micro−s t ep s in r eve r s ed d i r e c t i o n . ∗/
i f (LVH1 MoveMicroSteps (FALSE, 100) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
whi le (LVH1 GetMotorStatus () == msRUNNING) {

/∗ Wait un t i l motor s tops . ∗/
}
/∗ Check p o s s i b l e e r r o r . ∗/
i f (LVH1 GetMotorStatus () == msERROR) {

/∗ Handle e r r o r . ∗/
}

/∗ Run motor in cont inua l mode in forward d i r e c t i o n (i . e . u n t i l you
∗ stop motor us ing method StopContinualMovement) . ∗/
i f (LVH1 MoveMicroContinual (TRUE) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
whi le (LVH1 GetMicroStepPosition () < 50) {

/∗ Wait un t i l motor execute s at l e a s t 50 micro−s t ep s . ∗/
}
/∗ Stop motor . ∗/
i f (LVH1 StopContinualMovement () != ERR OK) {

/∗ Handle e r r o r . ∗/
}
whi le (LVH1 GetMotorStatus () == msRUNNING) {

/∗ Wait un t i l motor s tops . ∗/
}
/∗ Check p o s s i b l e e r r o r . ∗/
i f (LVH1 GetMotorStatus () == msERROR) {

/∗ Handle e r r o r . ∗/
}

. . .
}

Stepper motor control with acceleration ramp

This example demonstrates usage of full-step and micro-step mode with enabled acceleration ramp.
Event handler OnActionComplete is used to detect movement completion instead of polling (i.e. calling
method GetMotorStatus periodically).

Required component setup:

H-Bridge Model: MC34933, MPC17529, MPC17C724, MPC17531A or MPC17533

ActiveMode: yes

Motor Control: Stepper

Primary Timer Device: Select Timer Device (TPM, FTM). Note that the counter must provide
the source for the global time base (see datasheet of used MCU) if secondary timer is used
(property ”Secondary Timer” enabled).

Typical Usage

LVHBridge Programming Guide, Rev. 1.0
NXP Semiconductors 15

Secondary Timer: Enable Secondary Timer if H-Bridge input control pins are not connected to one
timer device. You must set Secondary Timer Device when the Secondary Timer is enabled.

Output Control: PWM

Motor Control Mode: Full-step and Micro-step

Full-step Configuration

Speed: for example 200

Acceleration: 100

Micro-step Configuration

PWM Frequency: for example 20 kHz

Micro-steps per Step: for example 4 Micro-steps

Speed: for example 400

Acceleration: 200

Set properties under groups H-Bridge 1 MCU Interface and H-Bridge 2 MCU Interface:

Auto Initialization: yes

Methods: Init AlignRotor, GetMotorStatus, MoveSteps, MoveMicroSteps

Note that name of the LVHBridge component is LVH1 (this shortcut is used as prefix in LVHBridge
methods).

Content of main.c ():

Listing 4: Source code

void main (void)
{

. . .

/∗ Note : OnActionComplete Event handler w i l l be c a l l e d when al ignment
∗ o f r o t o r i s completed . ∗/
i f (LVH1 AlignRotor () != ERR OK) {

/∗ Handle e r r o r . ∗/
}

. . .
}

Content of Events.c ():

Listing 5: Source code

. . .

/∗ This enumeration d e f i n e s t e s t ca s e s executed in OnActionComplete event
handler . ∗/

typede f enum {
/∗ 1 s t t e s t case : t e s t o f f u l l −s tep mode with a c c e l e r a t i o n and
d e c e l e r a t i o n ramp . ∗/

stcFULLSTEP RAMP = 0 ,

/∗ 2nd t e s t case : t e s t o f micro−s tep mode with the ramp . ∗/
stcMICROSTEP RAMP,

/∗ Al l t e s t case are completed in t h i s s t a t e . ∗/
stcTESTS COMPLETE,

} TStepperTestCase ;

. . .

void LVH1 OnActionComplete (LDD TUserData ∗UserDataPtr)
{

User Types

16 NXP Semiconductors

LVHBridge Programming Guide, Rev. 1.0

/∗ Error code . ∗/
LDD TError Error = ERR OK;
s t a t i c TStepperTestCase TestCase = stcFULLSTEP RAMP;

/∗ Check i f an e r r o r occurred during prev ious motor movement . ∗/
i f (LVH1 GetMotorStatus () == msERROR) {

/∗ Handle e r r o r . ∗/
}

switch (TestCase) {
case stcFULLSTEP RAMP:

/∗ Switch to next t e s t case . ∗/
TestCase = stcMICROSTEP RAMP;

/∗ Run motor in forward d i r e c t i o n . The f u l l −s tep mode i s used and
number

∗ o f f u l l −s t ep s are 200 (1 mechanical r e vo l u t i on) . ∗/
i f (LVH1 MoveSteps (TRUE, 200) != ERR OK) {

/∗ Handle e r r o r . ∗/
}

break ;

case stcMICROSTEP RAMP:
/∗ Switch to next t e s t case . ∗/
TestCase = stcTESTS COMPLETE;

/∗ Run motor in r eve r s ed d i r e c t i o n . The micro−s tep mode i s used and
number

∗ o f micro−s t ep s are 800 (1 mechanical r e vo l u t i on) . ∗/
i f (LVH1 MoveMicroSteps (FALSE, 800) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
break ;

case stcTESTS COMPLETE:
/∗ Do nothing . ∗/

d e f au l t :
break ;

}
}

4 User Types

ComponentName THBridge = enum { hbBRIDGE 1, hbBRIDGE 2} Type

ComponentName TMotorStatus = enum { msRUNNING, msSTOP, msERROR} Type

4

Information in this document is provided solely to enable system and software implementers to use NXP

products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any

integrated circuits based on the information in this document. NXP reserves the right to make changes without

further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular

purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and

specifically disclaims any and all liability, including without limitation, consequential or incidental damages.

"Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating parameters, including "typicals," must be

validated for each customer application by the customer's technical experts. NXP does not convey any license

under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of

sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

How to Reach Us:
Home Page:
NXP.com

Web Support:
http://www.nxp.com/support

NXP, the NXP logo, Freescale and the Freescale logo are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. All rights reserved.

© 2016 NXP B.V.

Document Number: PEXLVHBRIDGEPUG
Rev. 1.0

2/2016

http://www.nxp.com/terms-of-use.html
http://www.nxp.com/
http://www.nxp.com/support

	LVHBridge Programming Guide
	General Info
	Embedded Component Description
	Component API
	Events
	Methods

	Typical Usage
	User Types

