
QCVS Hardware Device Tree Editor User
Guide

NXP Semiconductors Document Number: QCVS_HWDT_User_Guide

User's Guide Rev. 4.x, 02/2017

Contents

Chapter 1 Hardware Device Tree Editor..3
1.1 Introduction.. 3
1.2 Using Hardware Device Tree Editor... 4

1.2.1 Create a new project... 4
1.2.2 Import device tree files.. 9

1.2.2.1 Standard DTS files.. 9
1.2.2.2 C-preprocessing support...9

1.2.3 Modify hardware device trees..12
1.2.3.1 GUI editor.. 12
1.2.3.2 Text editor..20

1.2.4 Perform validation..23
1.2.4.1 Syntax validation... 23
1.2.4.2 Property constraints.. 24

1.2.5 Search in hardware device trees... 26
1.2.6 Generate device tree blob... 28

1.3 Known issues and limitations... 29

Contents

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
2 NXP Semiconductors

Chapter 1
Hardware Device Tree Editor

This document introduces the Hardware Device Tree component of QorIQ Configuration and Validation Suite (QCVS).

The document describes how to create a new QorIQ configuration project and use the Hardware Device Tree component.

The Hardware Device Tree component of QCVS is only available for projects created with B, P, or

T family of processors.

 NOTE

This chapter is divided into the following sections:

• Introduction on page 3

• Using Hardware Device Tree Editor on page 4

• Known issues and limitations on page 29

1.1 Introduction
The hardware device tree editor is a GUI editor that allows you to view and manage the structure of a hardware device
tree.

A hardware device tree is a tree data structure with nodes and properties that describes the physical devices in a system,
such as Direct Memory Access, Universal Serial Bus Interface, Frame Manager, and Security Monitor.

The ePAPR standard describes the logical structure of the hardware device tree and specifies a base set of required nodes
and properties. This set is minimal, but complete enough to boot a simple operating system.

The following are some basic terms related to the hardware device trees:

• Device Tree Syntax (DTS) is the textual representation of a hardware device tree, which is input to a DTC

• Device Tree Compiler (DTC) is an open source tool used to create DTB files from DTS files

• Device Tree Blob (DTB) is a compact binary representation of the hardware device tree that is input to U-Boot and
operating system

You can find the details of hardware device trees in:

• Power.org™ Standard for Embedded Power Architecture™ Platform Requirements (ePAPR), version 1.0

• Booting the Linux/ppc kernel without Open Firmware

• 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>, IBM Corp.

• 2005 Becky Bruce <becky.bruce at freescale.com>, Freescale Semiconductor, FSL SOC and 32-bit additions.

• 2006 MontaVista Software, Inc., Flash chip node definition.

Hardware device trees represent one of the most difficult configuration elements on QorIQ family because of the complexity
of the processors and its format. Presently, the modification of hardware device trees is done through text editors. A dedicated
device tree tool in the form of a GUI editor is required that represents its tree like structure graphically and facilitates its
handling.

Hardware Device Tree Editor

Introduction

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 3

1.2 Using Hardware Device Tree Editor
The Hardware Device Tree Editor provides you a graphical interface to edit the standard ePAPR device trees and helps
you to configure the processor during the bootstrap processes.

The Hardware Device Tree Editor is used to:

• Define the devices that need initialization

• Support the U-Boot’s plug and play functionality

• Discover additional capabilities through PCI bus

• Configure cache memory, CPU cores and specific MMU configuration of the processor

• Check for syntactic and semantic errors and data validation

The dts format is complex for inexperienced users to read and modify as it is a textual representation of the hardware device
tree where each node has a different set of properties and values describing the characteristics of the device. The Hardware
Device Tree Editor offers support for both interpreting and writing hardware device trees.

This section contains the following subsections:

• Create a new project on page 4

• Import device tree files on page 9

• Modify hardware device trees on page 12

• Perform validation on page 23

• Search in hardware device trees on page 26

• Generate device tree blob on page 28

1.2.1 Create a new project
The hardware device tree project is created using the New QorIQ Configuration Project wizard.

You can import an existing hardware device tree file or generate a default one.

To create a new QorIQ configuration project for configuring hardware device tree, follow these steps:

1. Choose File > New > QorIQ Configuration Project. Follow the steps in the New QorIQ Configuration Project wizard.

2. Enter project name and click Next.

3. Select the required target SoC and click Next.

4. Select Device Tree Editor in the Toolset selection page.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
4 NXP Semiconductors

Figure 1. Select Device Tree Editor

5. Click Next. The Device Tree Configuration screen appears where you can select from three actions:

• Import configuration from an existing device tree file: Allows you to import device tree configuration from an existing
device tree file (.dts). The file that you import is validated before you proceed to next step. The file that you import must
have .dts extension and must be compatible with the selected SoC. A compatible file is a .dts file which specifies the
"model" property containing the selected SoC. The figure below shows an example where the imported device tree file
does not match with the chosen SoC.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 5

Figure 2. Import configuration from device tree file

• Use default device tree configuration (default option): The default hardware device trees are .dts files from existing
BSPs, as shown in the figure below

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
6 NXP Semiconductors

Figure 3. Default device tree file configuration

• Empty configuration: Allows you to create your own configuration of a hardware device tree with an empty tree data
structure with no nodes

6. If no default hardware device tree exists for the selected SoC, the associated option, Use default device tree
configuration, becomes disabled.

7. Click Finish.

The project is created, and the hardware device tree (HWDeviceTree) component is added to the project under the
Components folder, as shown in the figure below. In addition, the data from the device tree file is loaded into the component.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 7

Figure 4. Hardware Device Tree project

This operation may take time depending on the size of the file. A dialog appears as shown below on the screen indicating
the progress of the procedure.

Figure 5. Hardware Device Tree progress monitor

The original file used to create the HWDeviceTree component is added to the Imported_Files folder. A new device tree file
is generated under the Sources folder based on the imported file. At this moment, the two files are identical. You will work
with the generated one and the former will remain untouched. There can be more than one HWDeviceTree component per
project.

Follow these tips while working on the hardware device tree project:

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
8 NXP Semiconductors

• Enable Project > Build Automatically setting to always have everything in sync.

• Save your session before leaving the application in case you still need it. When you close the Processor Expert, a pop-
up dialog appears allowing you to save the changes.

• When HWDeviceTree component is removed from the project, the generated device tree file is also removed.

1.2.2 Import device tree files
The Hardware Device Tree Editor allows you to import an existing device tree file.

To import a device tree configuration from an existing device tree file, click the Import button (as shown below) and select
a .dts file compatible with the existing SoC. A compatible file is a .dts file that specifies the "model" property containing the
selected SoC. A minimal validation is performed for the imported files.

Figure 6. Import new device tree

This section contains the following subsections:

• Standard DTS files on page 9

• C-preprocessing support on page 9

1.2.2.1 Standard DTS files
A standard DTS file is a file that contains the textual representation of a device tree, which is input to a DTC.

The standard DTS files can also be used as an input to DTC, without any processing by the Hardware Device Tree tool.

1.2.2.2 C-preprocessing support
Some of the DTS files may contain C-preprocessor syntax that is not supported by the DTC tool.

This syntax is supported in the preprocessing phase by the Hardware Device Tree tool. The #define directives or other C-
preprocessor syntax should be defined in the included C-header files. During import, the identifiers are replaced with some
defined values.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 9

Figure 7. C-header file that defines directives

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
10 NXP Semiconductors

Figure 8. Original DTS files that contain C-preprocessor syntax

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 11

Figure 9. Generated DTS file input to DTC

1.2.3 Modify hardware device trees
You can work on the hardware device tree component and modify it along with its properties using the GUI editor as well
as the text editor.

This section contains the following subsections:

• GUI editor on page 12

• Text editor on page 20

1.2.3.1 GUI editor
The GUI editor represents the hardware device tree component graphically.

When the HWDeviceTree component is selected in the Project Explorer, the Component Inspector opens displaying the
GUI editor and the hardware device tree properties.

This view is split into two parts:

• A tree structure that handles the nodes

• The Device Tree Properties view that handles the properties

The figure below shows the Device Tree GUI editor.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
12 NXP Semiconductors

Figure 10. Device Tree GUI editor - DeviceTree and Device Tree Properties views

The hardware device tree nodes are represented in a tree structure. Each node selection makes the corresponding properties
display in the Device Tree Properties view. The Device Tree Properties view displays a list of properties along with the
short details of the node. You can activate the dynamic context help by pressing F1 key after selecting the required node for
which you want to view the dynamic context help.

Figure 11. Device Tree Properties Custom View

The Properties table contains two columns: Name and Value. All values in the Value column are discarded of any type-
specific symbols. For example, <0x1 0x2> cell list appears as 0x1 0x2, that is without the angular brackets. A string list

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 13

appears without the quotation marks. This is applicable in the graphical editor only, the text editor displays all values in the
complete form. The supported property types are shown in the table below.

Table 1. Supported property types

Type Example

BYTELIST [AB CD 01]

CELLLIST <0x1 0x2 0x800 &mpic>

EMPTY empty value

PHANDLE &mpic

STRINGLIST "fsl,p5020", "fsl,p4080"

U32 <ox1>

STRING memory

EMPTY no value

You can perform the following actions in the GUI editor using the View toolbar.

Figure 12. View toolbar

• Import a new device tree file

• Include a device tree file

• Perform validation against the hardware device tree

• Tree navigation using Go back and Go forward icons from the View toolbar

• Expand/collapse nodes from the toolbar or using the context menu

• Sort the nodes in ascending/descending order

• Context help support for hardware device tree nodes:

Select the required node in the tree structure and open the Eclipse context help by pressing F1 on Windows and Ctrl+F1
on Linux host. The nodes that have no documentation available are marked in the Device Tree Properties view.

Figure 13. Node with no documentation available

You can edit existing documentation or add missing documentation by performing the following steps:

1. Edit existing file or create a new html file at the location <layout>eclipse/plugins/
com.freescale.processorexpert.doc.qoriq.dt/html keeping the same format; the name of the file must be identical with
the name of the node, that is <node-name>.html.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
14 NXP Semiconductors

2. If you are creating a new html file, add a new entry in <layout>eclipse/plugins/
com.freescale.processorexpert.doc.qoriq.dt/contexts.xml for the new file.

3. Close the Eclipse IDE.

4. Open Command Prompt and launch Eclipse using the following command:

>eclipse.exe --clean

Following are major components of Device Tree GUI editor:

• Include tree on page 15

• Interrupts view on page 16

• Memory Map view on page 17

1.2.3.1.1 Include tree
The Include tree tab in the Component Inspector represents the hierarchy of the included hardware device tree files.

The Include tree tab allows easy navigation among all hardware device tree fragments: dts or dtsi.

Figure 14. Include tree tab in Component Inspector

The Include tree tab displays three types of files:

• Merged hardware device tree file, which represents the all-in-one file merging all nodes and properties from multiple
hardware device trees in a single file

• Top-level hardware device tree file, which is the first dts including other hardware device tree(s)

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 15

• Included files representing fragments with /include/ statement, usually dtsi files

1.2.3.1.2 Interrupts view
The Interrupts view of the hardware device tree contains a logical interrupt tree that represents the hierarchy and routing
of the interrupts in the platform hardware.

You can view this interrupt tree in the Component Inspector when selecting an existing hardware device tree component.

Figure 15. Interrupts view in Component Inspector

The left side of the Interrupts view displays the actual representation of the Interrupt tree, starting from the root interrupt
controller. When you select an element in the Interrupt tree, a table appears on the right side listing the interrupt sources
for the selected hardware device tree node. Each row in the table provides a user-friendly view of a decoded interrupt specifier,
and each column in the table represents a specific cell of the interrupt specifier.

You can edit the Interrupts table for each node selected from the hardware device tree. An interrupt tree may contain special
nodes called interrupt nexuses that map from one interrupt domain to another interrupt domain. When you select an interrupt
nexus node in the Interrupt tree, the Domain map table appears below the Interrupts table on the right side. The Domain
Map table allows you to perform interrupt domain mapping for the selected interrupt nexus.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
16 NXP Semiconductors

Figure 16. Interrupts tree - Nexus nodes and domain map

1.2.3.1.3 Memory Map view
The Memory Map view displays the decoded memory blocks associated with a hardware device component.

You can view a hardware device tree as a representation of different Local Access Windows (LAWs) within a device. For
example, according to the P4080 Reference Manual, you can define the p4080 address map using a set of maximum 32
LAWs. An example of such window is the Configuration Control and Status Register (CCSR) area defined by soc node in the
hardware device tree. All LAWs can be relocated within the entire address space of the platform. Each of these LAWs maps
a programmable 4 KB to 64 GB region of the local 36-bit address space to a specified target interface, such as DDR Controller,
Localbus, and PCI Express Controller.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 17

Figure 17. LAW defined inside Hardware Device Tree

Each hardware device tree node having reg and ranges properties defines memory ranges inside or outside CCSR window.
The following figures show an example of such node.

Figure 18. reg property definition inside Hardware Device Tree

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
18 NXP Semiconductors

Figure 19. ranges property definition inside Hardware Device Tree

In (Figure 17. LAW defined inside Hardware Device Tree on page 18), pci2 has one block of memory mapped register starting
at F_FE20_2000 with size 4-Kbyte in the SoC. There are two pci2 ranges (see Figure 19. ranges property definition inside
Hardware Device Tree on page 19) within the entire address space which can be accessed by a load or store operation. The
first pci2 memory block starts at 0xC_4000_0000 with size of 512-MByte; the second pci2 block starts at address
0xF_F802_0000 with size of 64-Kbyte.

Once all memory blocks are decoded and gathered, they can be visually represented in the Memory Map view. The Memory
Map view pops-up automatically with the created memory block areas when a hardware device tree component is selected
in the Component Inspector . The Memory Map view displays its content created on the basis of DTS file that comes with
the component. Block highlighting is available in the Memory Map view. Moreover, selecting a block in the Memory Map
view triggers a node selection in the graphical hardware device tree.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 19

Figure 20. Hardware Device Tree Memory Map view

1.2.3.2 Text editor
The text editor is the textual interpretation of the hardware device tree component.

The text editor of HWDeviceTree component involves syntax highlighting and provides support of expanding/collapsing
nodes. The hardware device tree GUI editor and the text editor are synchronized. Therefore, when you select a node in the
GUI editor, the node is selected automatically in the text editor also. The vice versa is also true. The figure below shows that
after selecting the SoC node in the GUI editor, the corresponding entry in the text editor is automatically selected.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
20 NXP Semiconductors

Figure 21. Hardware Device Tree text editor

If inclusions exist, the merged file, DTHWDeviceTree.dts, will have hovering support in the text editor. When mouse cursor
hovers over properties and nodes, a tooltip appears displaying initial locations of the files in the Include Tree.

The merged file is read-only; it gets updated based on other files. Therefore, you can edit only the top-level and the included
files to automatically propagate changes in the final merged file.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 21

Figure 22. Origin of included files

Hyperlink detection is also supported for /include/ declarations and hardware device tree references. Use CTRL+left click
combination on these statements to change the context in the referred file or node.

Figure 23. Hyperlink detection

Tips:

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
22 NXP Semiconductors

• To see the line numbers in the text editor, choose the Window > Preferences > General > Editors > Text Editors >
show line numbers option.

• Use the workbench views as per your project needs and customize the perspective. To save the customized
perspective, choose Window->Save Perspective As.

1.2.4 Perform validation
The Hardware Device Tree Editor allows you to verify the syntax of a hardware device tree and check if it conforms to the
set of defined constraints.

There are two approaches to display errors: using markers in the Eclipse Problems view or using decorators in the
Properties custom view table.

This section contains the following subsections:

• Syntax validation on page 23

• Property constraints on page 24

1.2.4.1 Syntax validation
You can check errors and validate syntax in the text editor using markers.

Using markers, the error checking is performed for the following:

• Syntax errors (inappropriate format)

• More than one root node

• Duplicate node labels

• Undefined node reference

• Node properties that do not preced sub-nodes

In case of inaccuracies, the text editor displays the markers on the incorrect lines. The markers are also visible in the
Problems view.

Figure 24. Error detection using markers

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 23

You can turn on/off the validation against the device tree bindings in the Device Tree Settings page (Figure 31. Device Tree
Settings page on page 28). If it is enabled, the validation starts automatically whenever changes occur in the hardware
device tree. You can also perform validation manually using the third option in the View toolbar (Figure 12. View toolbar on
page 14).

1.2.4.2 Property constraints
You can set property constraints of the hardware device tree node using XML binding.

Each hardware device tree node is completed and distinguished by an XML "binding". The binding describes which properties
are required, which are optional, what each property means and what constraints are to be met. The repository of hardware
device tree bindings is stored in \ProcessorExpert\Beans\HWDeviceTree\dts_bindings.

The xml binding keeps information about the list of devices supported by the node, node instances, sub-nodes, properties,
constraints, and example. The following figure shows the structure of a node and a property.

Figure 25. XML node and property schema

Following are the types of constraints that can be assigned to a property:

• <type> - specifies the type of a property value

• <editable> - specifies whether or not the property can be modified

• <min-size>, <max-size> - specifies the minimum and maximum number of items allowed in a property cell

• <value-list> - specifies a set of allowed values for a property

• <range> - bounds a numeric value between minimum and maximum values; it can also force a property value to match a
regular expression.

Take an example where you have the dma-channel@0 node as follows:

dma-channel@0 {
compatible = "fsl,p5020-dma-channel", "fsl,eloplus-dma-channel";
reg = <0x0 0x80>;
cell-index = <0>;
interrupts = <28 2 0 0>;
};

dma-channel@100 {
compatible = "fsl,p5020-dma-channel", "fsl,eloplus-dma-channel";
reg = <0x100 0x80>;
cell-index = <2>;

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
24 NXP Semiconductors

interrupts = <30 2 0 0>;
};

Assume you want to define the following constraints:

• restrict the type of interrupts property to EMPTY for all dma-channel instances

• for dma-channel@0, define reg property

• to have at least 3 items in its value

• first item to be in [0xA, 0xC] range

• second item to be in [0x0, 0x400] range

• for dma-channel@100

• compatible property to be non-editable

• to have exactly 3 items in its value

Then the dma-channel.xml file will be modified as shown in the following figure. Using this representation, you can compare
the values set against the device tree bindings.

Figure 26. Example of defining a constraint

Non-editable properties are disabled in the graphical editor, as shown in the following figure. They can be changed only
through the text editor.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 25

Figure 27. Hardware Device Tree property constraints for non-editable properties

Setting these constraints produce the following warnings in the Problems view:

• "interrupts" does not meet <type> constraint for all dma-channel instances from all dma nodes (4 instances x 2 nodes)

• "reg" does not meet <min-size> constraint at dma-channel@0 and dma-channel@100 instances (there are 2 items and the
constraint requires minimum 3)

• "reg" does not meet <min-value> constraint at index 0 at dma-channel@0 instances: item at index 0 is 0x0 and the constraint
requires a value between 0xA, 0xC

Figure 28. Hardware Device Tree property constraint warnings

1.2.5 Search in hardware device trees
Use the Search view to search for the required information in the project's device tree files.

The Search view can be opened in three ways:

• Select Search > Search > Device Tree Search in the main menu bar.

• Search option from the context menu of the hardware device tree graphical editor.

• Use the shortcut CTRL+ALT+H.

There are three options that specify the criteria based on which you can search the text:

• Case sensitive

• Whole word

• Regular expression

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
26 NXP Semiconductors

Figure 29. Hardware Device Tree Search view

By default, searching is performed in the whole workspace and all encountered dts files. To restrict searching to a particular
project or working set, use the Scope feature in the Search dialog, which provides the following options:

• Workspace - is the default option; when selected, searches in all open projects

• Selected resources - searches in the selected resource if applicable; it is a hardware device tree file or contains hardware
device tree files

• Enclosing projects - searches in the selected project only

• Working set - allows you to create a custom working set with the desired resources

The results appear in the Search view.

Figure 30. Device Tree Search view results

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 27

1.2.6 Generate device tree blob
The Hardware Device Tree Editor enables you to generate device tree binaries if a device tree compiler is available.

You can find the DTC settings in the Device Tree Compiler page of the Preferences dialog, as shown below, which appears
on selecting Window > Preferences > Processor Expert > Device Tree Settings.

You can change the default settings. If this functionality is not required, it can be switched off by clearing the Configure
arguments to generate device trees checkbox.

Figure 31. Device Tree Settings page

To generate DTB files, select Project > Generate Processor Expert Code from the IDE menu bar. The code is generated
per project, therefore, the device tree blobs are created for all encountered device tree sources in the opened projects. The
resultant device tree blob files are added to the Generated_Code folder, as shown in the following figure.

Hardware Device Tree Editor

Using Hardware Device Tree Editor

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
28 NXP Semiconductors

Figure 32. Generate DTB file

1.3 Known issues and limitations
To find a list of known issues and limitations, see the ReadMe.html file.

Hardware Device Tree Editor

Known issues and limitations

QCVS Hardware Device Tree Editor User Guide, Rev. 4.x, 02/2017
NXP Semiconductors 29

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers

to use NXP products. There are no express or implied copyright licenses granted hereunder

to design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products

for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters that may be provided in

NXP data sheets and/or specifications can and do vary in different applications, and actual

performance may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customer's technical experts. NXP does not convey

any license under its patent rights nor the rights of others. NXP sells products pursuant to

standard terms and conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo, CodeWarrior, QorIQ, and Processor Expert

are trademarks of NXP B.V. All other product or service names are the property of their

respective owners. All rights reserved.

Ⓒ 2017 NXP B.V.

QCVS_HWDT_User_Guide
Rev. 4.x
02/2017

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Hardware Device Tree Editor
	1.1 Introduction
	1.2 Using Hardware Device Tree Editor
	1.2.1 Create a new project
	1.2.2 Import device tree files
	1.2.2.1 Standard DTS files
	1.2.2.2 C-preprocessing support

	1.2.3 Modify hardware device trees
	1.2.3.1 GUI editor
	Include tree
	Interrupts view
	Memory Map view

	1.2.3.2 Text editor

	1.2.4 Perform validation
	1.2.4.1 Syntax validation
	1.2.4.2 Property constraints

	1.2.5 Search in hardware device trees
	1.2.6 Generate device tree blob

	1.3 Known issues and limitations

