
CodeWarrior Development Studio for
StarCore 3900FP DSP Architectures

Simulator User Guide

Document Number: CWSCSIMUG
Rev. 10.9.0, 06/2015

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Introduction

1.1 Overview...7

1.2 Accompanying Documentation.. 8

1.3 Simulator System Requirements...8

Chapter 2
Accessing Simulators

2.1 runsim... 11

2.1.1 Using runsim with Simulator... 13

2.1.2 Using CheckPoint Feature... 14

2.1.2.1 Usage..15

2.1.2.1.1 Examples...16

2.1.2.2 Benefits.. 17

2.1.2.3 Limitations... 17

2.1.3 Using Hardware Port Feature...18

2.1.3.1 Usage..19

2.1.3.1.1 Examples...19

2.1.3.1.1.1 Configuring multiple files for sequential reading.. 20

2.1.3.1.1.2 Configuring Hardware Port for reading... 21

2.1.3.2 Benefits.. 21

2.1.3.3 Limitations... 22

2.2 CCSSIM..22

2.2.1 Running a Simulator Remotely..23

Chapter 3
Simulator Models for SC3900 Architecture

3.1 Single Core SC3900 Simulators... 25

3.1.1 Supported Simulator Functions..26

3.1.2 Peripherals and Components..27

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 3

Section number Title Page

3.2 B4860 System on Chip Simulators...28

3.2.1 Supported Simulator Functions..29

3.2.2 Peripherals and Components..30

3.2.3 B4860 ISS MAPLE B3 Support.. 32

3.2.3.1 Memory Map..33

3.2.3.2 PSIF3 Registers..33

3.2.3.3 eTVPE2..34

3.2.3.4 eFTPE2...34

3.2.3.5 DEPE2..34

3.2.3.6 EQPE..35

3.2.3.7 EQPE2..35

3.2.3.8 PDPE2..35

3.2.3.9 PDPE2Rev2... 35

3.2.3.10 PUPE2..36

3.2.3.11 PUPE2Rev2... 36

3.2.3.12 DL2.. 36

3.2.3.13 ULF2.. 36

3.2.3.14 ULB2..36

3.2.3.15 CGPE Registers..37

3.2.3.16 TCPE Registers.. 37

3.2.3.17 Buffer Descriptor (BD) Programming Model..37

3.2.3.18 Flexible Interrupt Scheme..37

3.2.3.19 CRPE..38

3.2.4 Configuring B4860 Simulator..39

3.2.4.1 Configure B4860 Simulator Options... 39

3.2.4.2 Configuration Files.. 41

3.2.4.2.1 Examples...42

3.2.5 Running U-Boot and Linux on B4860 Simulator.. 43

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

4 Freescale Semiconductor, Inc.

Section number Title Page

Chapter 4
Using Traffic IO

4.1 Import net_demo Utility Project... 45

4.2 Configure Windows TCP/IP settings ...49

4.3 Execute net_demo Utility Project... 51

Chapter 5
Tradeoff Analysis with Simulators

5.1 combine_dicho..59

5.1.1 Example... 60

5.2 tradeoff.pl..61

5.2.1 Tradeoff Constraints.. 61

5.2.2 Tradeoff Usage...62

5.2.3 Example... 62

Chapter 6
Accuracy Benchmarks

6.1 sc3850plat_pacc..67

6.1.1 M2 Tests...67

6.1.2 M3 Tests...68

6.2 sc3850plat_pacc, DDR Memory...69

Chapter 7
Speed Benchmarks

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 5

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

6 Freescale Semiconductor, Inc.

Chapter 1
Introduction

This manual describes the software simulation models released with CodeWarrior
Development Studio for StarCore Architecture.

This chapter describes:

• Overview
• Accompanying Documentation
• Simulator System Requirements

1.1 Overview

This section provides details about the simulator models supported by CodeWarrior
Development Studio for StarCore Architecture.

Following is the list of supported simulator models:

• Instruction Set Simulators (ISS): The output and behavior of the instruction-set
simulators matches that of the architecture respectively. These models can execute 10
to 100 times faster than the cycle-accurate models (in case a corresponding cycle
accurate model exists). However, these models do not produce cycle counts, which
are useful for system performance analysis. The instruction-set simulators supported
by the CodeWarrior Development Studio for StarCore DSPs are:

• SC3850_Platform_ISS
• SC3900_Platform_ISS
• B4860 ISS
• B4420 ISS
• MSC8154_ISS simulator for SC3850 DSP platforms
• MSC8156_ISS simulator for SC3850 DSP platforms
• MSC8157_ISS simulator for SC3850 DSP platforms
• MSC8158_ISS simulator for SC3850 DSP platforms

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 7

• Performance Accurate Simulators (PACC): These are clock-accurate platform
simulators. For 3850, the clock difference between PACC and the corresponding
chip is about 5%. Refer the Accuracy Benchmarks section for more information. The
performance-accurate simulators supported by the CodeWarrior Development Studio
for StarCore DSPs are:

• SC3850_Platform_PACC
• SC3900plat_PACC

• Unified simulators: These simulators allow switching between platform PACC and
platform ISS modes during the application execution. These devices resolve the
typical disadvantages of platform ISS (absent of clock accuracy) and platform PACC
(slow speed). The unified simulators supported by the CodeWarrior Development
Studio for StarCore DSPs are:

• SC3850plat

NOTE
The current release may not support all simulator
targets referenced in this document.

1.2 Accompanying Documentation

The Documentation Roadmap page describes the documentation included in this version
of CodeWarrior Development Studio for StarCore DSP Architectures.

You can access Documentation Roadmap by:

• Clicking a shortcut link on the Desktop that the installer creates by default
• Opening START_HERE.html in CWInstallDir\SC\Help folder

1.3 Simulator System Requirements

This section lists the system requirement for installing simulators.

Accompanying Documentation

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

8 Freescale Semiconductor, Inc.

The following table lists the system requirements.

Table 1-1. Simulator System Requirement

Operating System Hardware, Software

Windows IBM®-x86-compatible host computer: 2 gigahertz with 4GB
RAM

32-bit and 64-bit x86 compatible workstations are supported

Microsoft® Windows 7 Home Premium, Professional, Ultimate
Operating System

Microsoft® Windows Vista® (SP2) Home Basic, Home
Premium, Business, Enterprise, Ultimate Operating System

Windows Server 2012 R2

Linux IBM®-x86-compatible host computer: 2 gigahertz with 4GB
RAM

32-bit and 64-bit x86 compatible workstations are supported

Red Hat® Enterprise Linux (RHEL) 5 or Later

NOTE
For more information on installing simulator tools, refer to
Quick Start for StarCore DSPs at the following location:

<CWInstallDir>\SC, where CWInstallDir is the StarCore
installation folder.

Chapter 1 Introduction

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 9

Simulator System Requirements

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

10 Freescale Semiconductor, Inc.

Chapter 2
Accessing Simulators

This chapter explains ways to access the ISS and PACC simulators.

• From the command line using section runsim.
• From the CodeWarrior IDE using section CCSSIM.

The following table lists a summary of features of the ISS and PACC described in this
manual.

Table 2-1. Simulator Features

Simulators Speed Cycle Accuracy

ISS Fast N/A

PACC Medium <95-105% cycle accurate

2.1 runsim

runsim is a command-line simulator used to perform various tasks.

Following tasks are performed by runsim, such as:

• Execute an application and display program output in the command window. This
execution is much faster than interactive execution with the debugger, so is
particularly appropriate for long execution runs.

• Direct an alternate device, such as a different simulator, to execute your application.
• Apply many options to application execution, such as outputting time information or

callback messages, printing program flow, printing values of some registers, and
performing a bus trace.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 11

• Collect and output high-level profiling information, such as function size and the
number of times functions are called.

• Collect and output low-level profiling information, such as the number of times an
assembler instruction is executed. This task is not supported for sc3900plat_pacc
device.

NOTE
By default, runsim stops at the ___crt0_end label, which the C
compiler automatically generates. If application is written
in assembly language then the ___crt0_end label needs to be
entered manually.

NOTE
Also, the default entry point is the value specified by
symbol ___crt0_start, generated by the C compiler as well.
If this symbol is not available then the ELF's entry point is
used. Entry point overriding can be done by using
command line option -startlbl <start_label | start_addr>.
Whether the argument represents a label or a number, it is
detected automatically.

The format for the runsim command is:

runsim <options> <file.eld>

where:

<options> are one or more of the runsim flags, and

<file.eld> is the .eld format file to be executed.

NOTE
Some of the command-line options may not be supported by a
CodeWarrior build tool simulator model. For example, the
command-line option -nc for multicore is only valid for the
MSC8154ISS, MSC8151ISS, MSC8152ISS, MSC8156ISS, and
MSC8157ISS simulators.

The following command runs the file.eld application on device, <device_name>, which is
supported by runsim:

runsim <-d <device_name>> <file.eld>

runsim

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

12 Freescale Semiconductor, Inc.

The -d argument is used to select the device. The below table lists the various devices that
you can specify with the -d argument in the runsim command. You can view the flags and
devices supported by the runsim command using the help flag, -h:

runsim -h

Table 2-2. Supported Devices

Argument for -d Option Device

sc3850plat_iss SC3850 instruction accurate platform model

sc3850plat_pacc SC3850 performance accurate platform model

msc8157iss MSC8157 chip instruction accurate simulator

msc8158iss MSC8158 chip instruction accurate simulator

msc8156iss MSC8156 chip instruction accurate simulator

msc8154iss MSC8154 chip instruction accurate simulator

msc8256iss MSC8256 chip instruction accurate simulator

msc8254iss MSC8254 chip instruction accurate simulator

msc8252iss MSC8252 chip instruction accurate simulator

msc8251iss MSC8251 chip instruction accurate simulator

msc8151iss MSC8151 chip instruction accurate simulator

msc8152iss MSC8152 chip instruction accurate simulator

sc3850plat StarCore SC3850 unified iss and pacc model. Available in
Gearshift Mode.

sc3900plat_iss SC3900 instruction accurate platform model

sc3900plat_pacc SC3900 performance accurate platform model

b4860iss B4860 functional SoC model

b4420iss B4420 functional SoC model

2.1.1 Using runsim with Simulator

This section describes the steps to run your application using runsim.

runsim is a simple, generic command-line simulator front end that can run target
application programs. It provides standard host I/O capabilities, such as printf() and
general file I/O handling.

Perform the following steps to run your application using runsim :

1. Make sure that the SC\ccs\bin folder is included in the PATH environment variable
(Windows) or in the PATH and LD_LIBRARY_PATH environment variables (Unix/Linux).

Chapter 2 Accessing Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 13

NOTE
The runsim command-line simulator can be accessed from
the following location:

<CWInstallDir>\SC\ccs\bin

where CWInstallDir is the CodeWarrior installation
directory.

2. Open a command window.
a. Select Start > Run.

The Run dialog box appears.

b. In the Open text box, enter cmd.
c. Click OK.

A command window appears, showing the default directory and the > prompt.

3. Run your application.
a. Enter the command cd, followed by the path to the <CWInstallDir>\SC\ccs\bin

folder, where CWInstallDir is the CodeWarrior installation directory
b. Press the Enter key.

The command window changes to the CodeWarrior Tools SC\ccs\bin directory.

c. Enter the command runsim, followed by appropriate options and the name of
the .eld file to be executed.

d. Press the Enter key.

The execution starts and the program results appear in the command window,
below the runsim command.

Following are the examples of the runsim command:

• runsim executes delta.eld using sc3850 platform simulator, providing an output
profiling table that compares function size and execution cycles.

runsim -d sc3850plat_pacc -p file_trace_size_cycle.rep delta.eld

2.1.2 Using CheckPoint Feature

runsim

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

14 Freescale Semiconductor, Inc.

The CheckPoint feature allows you to stop the simulator that is running and then save the
simulator state. A checkpoint is created for saving the simulator state and you can restart
the simulation later from this checkpoint.

You can switch between the ISS and PACC simulation models on the checkpoints. For
example, you can start running sc3850plat_iss, create a checkpoint, and run the simulation
again using sc3850plat_pacc.

The CheckPoint feature is supported only for the following single-core simulators:

• sc3850plat_iss

• sc3850plat_pacc

NOTE
The CheckPoint feature is currently supported only with
runsim.

Following sections describe the usage, benefits and limitations of the CheckPoint feature:

• Usage
• Benefits
• Limitations

2.1.2.1 Usage

A checkpoint is set by putting the target into the debug mode. Then, all the registers and
memory are dumped to the checkpointing file.

You can specify a checkpoint using the following three methods:

• By address-Use it for selecting only one checkpoint. A break point is put at the
specified address.

• By cycle number-Use it to select one or more checkpoints. After the given cycle
number, the core is put into the debug mode by setting the core to STEP mode and
then flushing the pipe only after it exits any hardware loops.

• By time-Use it to select multiple check points. Similar to the By cycle number
method, the core is put into the debug mode. You can have all the checkpoints in the
command line.

You can resume from a checkpoint by recreating the original state. You can recreate the
original state by reading the registers and memory location from the file. You can create a
checkpoint with a device (-d option) and restore the checkpoint with another device that
is compatible with the first one.

Chapter 2 Accessing Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 15

The below table lists the runsim flags used to activate the CheckPoint feature.

Table 2-3. Flags used to activate the CheckPoint feature

Flag Description

-checkpoint_file <fname> Sets the checkpoint file.

-checkpoint_addr [hex] Specifies the program's check point by the PC address; that
is, the StarCore core register, which points to the next
Variable Length Execution Set (VLES) to be executed. A
breakpoint will be put there.

-checkpoint_count [dec] Specifies the number of hits at given checkpoint_addr
before creating the checkpoint.

-checkpoint_cycle [dec] Specifies the cycle number at which the program will be
checkpointed. You can give multiple check point cycles.

-checkpoint_cycle_inc [dec] Increments the first given checkpointing cycle number (by the
number specified in decimals) to define the new
checkpointing cycle.

-checkpoint_time_start [dec] Enables the checkpoint after the first
checkpoint_time_start minutes. The default is 0, which
specifies the start of the program.

-checkpoint_time_min [dec] Takes a new checkpoint from every checkpoint_time_min
minutes (specified in decimals) after
checkpoint_time_start minutes from the start of the
program.

-checkpoint_overwrite Overwrites the previous checkpoint file with the last one. In
the default behavior, the next file will have the counter
appended to the end of its name (file_0, file_1).

-checkpoint_stop_execution Exits after taking the first checkpoint.

-checkpoint_restore Restores from the checkpoint.

NOTE
The state of the simulator is written to the file specified by the
checkpoint_file parameter. If multiple checkpoints are set while
the application is running, the overwriting policy is selected
with the checkpoint_overwrite parameter. The default is no
overwriting.

2.1.2.1.1 Examples

• The following command checkpoints the program at address, 0xdb52 for titanium_iss:

runsim -checkpoint_file test -checkpoint_addr 0xdb52 -d titanium_iss test.eld

• The following command resumes the program from the last checkpoint made for
titanium_pacc:

runsim -checkpoint_file test -checkpoint_restore -d titanium_pacc

runsim

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

16 Freescale Semiconductor, Inc.

• The following command specifies the number of hits at address, 0xdb52 for sc3850issp:

runsim -checkpoint_file test -checkpoint_addr 0xdb52 -checkpoint_count 7 -d sc3850issp

test.eld

• The following command specifies the cycle number 1500000 at which the program
sc3850issp will be checkpointed:

runsim -checkpoint_file test -checkpoint_cycle 1500000 -d sc3850issp test.eld.

• The following command increments the first given checkpointing cycle number
1000000 by 500000:

runsim -checkpoint_file test -checkpoint_cycle 1000000 -checkpoint_cycle_inc 500000 -d

sc3850issp test.eld

2.1.2.2 Benefits

This section lists the benefits of using CheckPoint feature.

Following list describes the benefits:

• Speed up the performance analysis and profiling

Some applications have a huge initialization part which makes performance analysis
slower. Using the CheckPoint feature, you can run plat_iss faster until initialization
part gets completed, create a check point, and then restart the application running
with slower plat_pacc.

• Speed up debugging

CheckPoint feature helps in speeding up debugging when an application fails after
running for long. You can create the check point exactly before the problem case and
then start running the simulator with trace, exactly before the problem case.

• Generate problem report

External customers may not want to provide the binary.eld files due to some IP
security issues. In such a case, they can get the file with the checkpoint status only,
along with other input files that the application is using, and then run the simulator
from the checkpoint file for the problem debugging.

Chapter 2 Accessing Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 17

2.1.2.3 Limitations

This section provides details on the limitations of CheckPoint feature.

Following is the list of limitations:

• It can be used only for SC platform simulators or SC core simulators.
• It has limited support for the targets: 8158, 8157, 8156, 8154, 8151, 8152, B4860,

and B4420.
• It does not support additional runsim command-line parameters.

NOTE
It is not advisable to use non standard arguments on runsim
command line when using parameters related to
checkpointing. The name of the parameters related to
checkpointing starts with checkpoint_. You can use -acccfg
parameter to change cfg.so file for plat pacc.

• Caches get flushed before checkpointing and empty after restarting.
• DPU counters are reset after restarting from checkpointing.
• Valid result for any performance measurement is not guaranteed.
• The checkpointing file has to have the same relative path as the .eld file that was

checkpointed to the files used while the application was running.

2.1.3 Using Hardware Port Feature

The Hardware Port feature allows memory mapping of some addresses into input / output
files. If you have files formatted to one 32bit hexadecimal number per line, you can
easily read(write) from(to) a variable by having it always pointing to the next value in the
files.

The applications, using Hardware Port feature, run significantly faster than the same
applications, using standard C input/output library functions.

NOTE
For 3850 based devices, entering debug mode may result in the
Hardware Port to return a wrong value because of access to the
files that is used to read the values from, resulting in a
desynchronization with the input files.

Following sections describe the usage, benefits and limitations of the Hardware Port
feature:

runsim

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

18 Freescale Semiconductor, Inc.

• Usage
• Benefits
• Limitations

2.1.3.1 Usage

To activate Hardware Port feature, you need to use runsim flag.

The following runsim flag is used to activate the Hardware Port feature:

-smodel "<port_type> [-v] [endianness] <address> [config_file] <path> [non_recursive]"

The following table describes the -smodel parameters used to activate the Hardware Port
feature.

Table 2-4. Parameters used to activate the Hardware Port feature

Parameter Description

<port_type> Differentiates whether the other parameters are declared for
reading or writing to a port. The supported options are:

• Rx_port, for reading
• Tx_port, for writing.

NOTE: Each line needs to be 12 Bytes long, for example
"0x12345678\r\n", in the files used by Rx_port.

[-v] Displays the debugging information for Hardware Port.

[endianness] Sets the type of endianness to be used, depending on your
system. The supported options are:

• big-endian
• little-endian

NOTE: The default value is big-endian.

<address> Represents the physical address of the variable used for
porting. For example, 0x10001338. NOTE: The address can
be upto 64 bits long.

[config_file] Represents the name of the configuration file used by the
application. It should remain same for all the directories. If
[config_file] name is not provided then the config
name will be used.

<path> Specifies the entry point, where the Hardware Port feature
starts looking for files to read from. The value specified should
be an absolute path. NOTE: If you are using the writing port
then <path> cannot point to a directory!

[non_recursive] Represents an option used to specify that the path provided
for Rx_port cannot be a recursive folder.

Chapter 2 Accessing Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 19

2.1.3.1.1 Examples

This section describes some examples on how to configure a Hardware Port.

• Configuring multiple files for sequential reading
• Configuring Hardware Port for reading

2.1.3.1.1.1 Configuring multiple files for sequential reading

To setup multiple files for reading, you must provide configuration files (named config or
the one specified in the config_file parameter) in each folder of interest. These
configuration files must contain directories and files of interest in their current directory
on each line. Starting from the specified <path>, the program will recursively look in all
directories of interest and creates the list of files based on the config files.

The following listing shows an example config file for <path> folder.

Listing 2-1. Example config file for <path> folder

folder1
file3

folder2

folder4

The following listing shows an example config file for folder1.

Listing 2-2. Example config file for folder1

File1.1
File1.2

The following listing shows an example config file for folder2.

Listing 2-3. Example config file for folder2

File2.1
File2.2

According to the above listings, the order of the configuration files will be:

file1.1, file1.2, file3, file 2.1, file2.2

NOTE
The paths, folder names and file names should not contain any
white spaces.

If the configuration file has an entry that is not a valid file or a
folder then the loading of files into the queue will stop there.

runsim

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

20 Freescale Semiconductor, Inc.

NOTE
Make sure if the <path> for the Rx_port is a folder it should not
ended with \ or /.

2.1.3.1.1.2 Configuring Hardware Port for reading

To configure the Hardware Port for reading a file, perform the following:

1. Declare a global volatile 32bit variable, for example data_addr, within your
application.

2. Read the variable address and ensure that it is not inside a cacheable segment in the
MMU.

3. Convert your Virtual Address to the Physical Address, because this is the one you'll
need to pass to -smodel later. For example, 0x10001338.

4. Within your application reading file section, write the assignment, for example
*your_buffer = data_addr; [etc]. Now everytime you read from data_addr you'll receive
the next value from the file.

5. If you need to read from a sequence of files instead of just one, you will need to add
configuration files to your folder as described in Configuring multiple files for
sequential reading section.

6. To start your application with runsim simply add -smodel to the list of commands. For
example, runsim.exe -smodel "Rx_port 0x10001338 big-endian d:/../foldername" -d
devicename testname.eld.

7. Alternatively, if you use the CodeWarrior CCSSIM2 ISS connection, you will have
to edit the CCS server start-up by appending -smodel "Rx_port 0x10001338 big-endian
d:/../foldername" to the CCS executable path.

NOTE
CCS executable must be version XX.XX and above.

2.1.3.2 Benefits

This section lists the benefits of using the Hardware Port feature.

Following list describes the benefits:

• Speed up of file input and output

Chapter 2 Accessing Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 21

Some applications heavily use file I/O function fscanf() and sscanf(). By using this
simple feature the speed is exponentially improved as the feature helps read files in
binary mode and converts them internally.

• No crash

If you encountered problems using fscanf() and sscanf() many times. This feature
should help you with a fix.

• You can use both reading and writing ports at the same time as long as they don't use
the same file

Your application can use one Rx_port and one Tx_port independently. However, rules
for opening the same file or non-existing file do apply.

• Supports both big endian and little endian input and output.

2.1.3.3 Limitations

This section provides details on the limitations of using the Hardware Port feature.

Following is the list of limitations:

• Used only for SC platform simulators or SC core simulators.
• Not supported for all platforms precedent to 3900.
• You need to manually write the list of files that need to be read from.
• Supports only one kind of format for the files - each line needs to be 12 Bytes long,

for example: 0x12345678\r\n.

NOTE
Do not add \r when writing the input file unless it's in
binary mode.

2.2 CCSSIM

CCSSIM enables remote access to simulators through the CCS protocol. To run the
simulator on a remote computer, execute ccssim2 on the remote machine, using the
command prompt.

CCSSIM

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

22 Freescale Semiconductor, Inc.

To start the generic CCS Remote Connection executable, start ccssim2 from CWInstall/
starcore_support/ccs/bin. The simulator can interact with the hardware I/O through
CCSSIM.

2.2.1 Running a Simulator Remotely

To run your application on the simulator:

1. Build your source code using the StarCore Build Tools (compiler, assembler, and
linker).

2. Run ccssim2 to execute the server. The ccssim2 server is located at the path CWInstall/
starcore_support/ccs/bin.

3. Use CodeWarrior debugger to debug the application using ccssim through remote
connection.

NOTE
For more information, Refer to Targeting StarCore DSPs
manual.

Chapter 2 Accessing Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 23

CCSSIM

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

24 Freescale Semiconductor, Inc.

Chapter 3
Simulator Models for SC3900 Architecture

This chapter explains all the simulator functions and models that are supported by the
StarCore SC3900 architecture.

The simulator models supported in this release are:

• Single Core SC3900 Simulators
• B4860 System on Chip Simulators

3.1 Single Core SC3900 Simulators

This section explains how the single core SC3900 simulators are intended for developing
part of application, while running on single SC3900 core.

Following simulator models are supported in this release:

• SC3900 Single Core Platform ISS
• SC3900 Single Core Platform PACC

NOTE
SC3900 Single Core Platform ISS and PACC simulators
are functional models of SC3900 FVP subsystem. For more
information, refer to SC3900 FVP Subsystem Reference
Manual.

Both SC3900 and SC3900fp are supported for this release. Use the following parameters
to select SC3900 simulator:

• With runsim: runsim -imodel "sc3900rev1" -d sc3900plat_pacc <eld-file>
• With CodeWarrior: ccssim2 -imodel "sc3900rev1"

Run runsim -v option to check the number of the revision used.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 25

Currently, the following functions and components are supported by SC3900 simulators:

• Supported Simulator Functions
• Peripherals and Components

3.1.1 Supported Simulator Functions

The following table lists the functions supported by the PACC and ISS simulators.

Table 3-1. Functions supported by SC3900 Single Core Simulators

Function PACC ISS

Planned Current Status Planned Current Status

Windows Yes Yes Yes Yes

Linux32 Yes Yes Yes Yes

Linux64 Yes Yes Yes Yes

Cycle_Aware Yes Not verified; PACC
accuracy was verified
only for hot cache
(noL1) mode (Only CAS
+ Address queue +
SRAM contention stalls
are calculated)

No No

Cache_Support Yes L1 only No No

MMU_Support Yes Not fully verified Yes Yes

Single-Core_Processor Yes Yes Yes Yes

Multi-core_Processor No No No No

Measure_Cache Hits/
Misses

Yes Not supported No No

Queue_Holds Yes Yes No No

Instruction_Cache Yes L1 only No No

Data_Cache Yes L1 only No No

Memory_Translation Yes Yes Yes Yes

Memory_Protection Yes Not fully verified Yes Yes

DTU Yes Not supported Yes Not fully verified

Epic Yes Not fully verified Yes Not fully verified

Timers Yes Not fully verified Yes Not fully verified

CME Yes Functional model is
supported

Yes Functional model is
supported

Debug API with
CodeWarrior

Yes Yes Yes Yes

FSL DBG API for
breakpoint

Yes Not supported Yes Not fully verified

Table continues on the next page...

Single Core SC3900 Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

26 Freescale Semiconductor, Inc.

Table 3-1. Functions supported by SC3900 Single Core Simulators (continued)

Function PACC ISS

Planned Current Status Planned Current Status

FSL DBG API for cache
control

Yes Not supported No No

Hardware ports Yes Yes Yes Yes

Check Points Yes Not supported Yes Not supported

TLM2 Support Yes Yes Yes Yes

3.1.2 Peripherals and Components

The following table lists aspects that you may need while using the SC3900 Platform ISS
and PACC simulators.

Table 3-2. SC3900 Single Core Simulator Aspects

Aspect Description

Core Simulators Following core simulators are supported:
• ISS - Supports SC3900 functional accuracy and is used

for SC3900 platform ISS device.
• CAS - Provides clock accuracy on VLES and bus level.

This simulator is functional and clock accurate.

NOTE: CAS does not provide accuracy for entering to or exit
from the debug mode.

CME The CME model for this release is functional one. There are
no debugging features. The current CME features are:

• Memory mapped registers (read only with the below
exceptions, if not supported it will return 0 on read
instruction).

External CME Programming - External CME
programming is done using four registers:

CME_CA

CME_CC

CME_CS (read/write)

CME_CR (read)

External Query Channel - External query
programming is done using two registers:

CME_QCC (contains query's controls)

CME_QCA (contains query address)

The query result is sampled in the CME_QU1 and
CME_QU2 registers.

Table continues on the next page...

Chapter 3 Simulator Models for SC3900 Architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 27

Table 3-2. SC3900 Single Core Simulator Aspects (continued)

Aspect Description

Debug Channel - Debug programming is done using
two registers:

CME_DCC (contains debug instruction controls)

CME_DCA (contains debug address)

The query result is sampled in the CME_DQU1 and
CME_DQU2 registers.

CME_CTR register

• Block cache instructions are supported
• DQUERY and PQUERY instructions are supported
• Suspend/resume functionality is supported
• In case of MMU error the CME is suspended. All

channels can also be reset through CME_CTR and can
reprogram CME again.

MMU Full featured and verified with SC3900 subsystem tests.

EPIC Full featured and partially verified.

Timer Full featured and partially verified.

DTU DTU is partially featured and partially verified. Currently, DTU
is connected only with SC3900 Platform ISS simulator. The
current DTU limitations are:

• No debug exceptions.
• No dynamic partition allocation.
• No PC/Addr at stage S registers.
• No Exp detector.
• Only RZ0 counter is supported.
• Always using the triad A configuration for both triads.

Connection with L2 caches (KIBO) L2 cache is not provided with this release. The KIBO model is
being simulated by "KIBO stub" which provides the ELink-
TLM connectivity to L1 cache and SGB. The KIBO stub uses
a write through policy (always cache miss) and writes/reads
from the system memory implemented by runsim/CW.
Supported links are: DLink,ILink,RLink,Clink (Clink is never
returned by the KIBO stub as a response). Only single beat
and single link (only Clink or only RLink) responses are
supported.

Scalable Platform PACC device The SC3900 platform PACC simulator is scalable and
supports the following performance modes:

• Simulate clocks of core and address queue and can be
used for optimization of the core pipeline stalls and
performance analysis.

• Simulate clocks of core, address queue and L1 cache.
• Simulate clocks of full system, including core, address

queue, L1, L2, L3, DDR components.

Hardware breakpoint Provides support for the following hardware breakpoints:
• Instruction address breakpoint
• Instruction address range breakpoint
• Data address range breakpoint

B4860 System on Chip Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

28 Freescale Semiconductor, Inc.

3.2 B4860 System on Chip Simulators

B4860 System on Chip (SoC) ISS is a B4860 functional simulator. This simulator is
intended for development of full chip applications.

For more information, refer PSC9164 SOC Architecture Specification.

NOTE
B4860 SoC ISS simulator is now supported on both Linux 64
bit and Windows OS.

Following features and components are supported by B4860 SoC ISS:

• Supported Simulator Functions
• Peripherals and Components
• B4860 ISS MAPLE B3 Support
• Configuring B4860 Simulator
• Running U-Boot and Linux on B4860 Simulator

3.2.1 Supported Simulator Functions

This section lists the functions supported by the B4860 instruction set simulator.

The below table provides the list of functions that are currently supported by B4860 ISS.

Table 3-3. Functions supported by B4860 Instruction Set Simulator

Function B4860 ISS

Planned Current Status

Windows Yes Yes

Linux32 Yes Not Supported

Linux64 Yes Yes

SC3900 Platform ISS Yes Yes

MPIC Yes Yes

MAPLE3 Yes Yes

Virtual Interrupt (VI) Yes Yes

e6500 cores No Yes

CCM Yes Yes

CPC Yes Yes

BMAN Yes Yes

QMAN Yes Yes

Table continues on the next page...

Chapter 3 Simulator Models for SC3900 Architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 29

Table 3-3. Functions supported by B4860 Instruction Set Simulator (continued)

Function B4860 ISS

Planned Current Status

FMAN Yes Yes

CAAM Yes Yes

I2C Yes Yes

PBL Yes Yes

Connection with CodeWarrior for
StarCore and Power Architecture®

Yes Yes

Traffic IO Support Yes Yes

Hardware memory mapped ports for fast
IO with files

Yes Yes

Check Points Yes Not Supported

3.2.2 Peripherals and Components

This section lists the aspects that you may need while using the B4860 instruction set
simulator

The below table lists the aspects and their description.

Table 3-4. B4860 Instruction Set Simulator Aspects

Aspect Description

e6500 Cores • Functional Model only, No timing.
• Debug Registers/Interrupts are not supported.
• Performanced Management Registers/Interrupts/mtpmr/

mfpmr are not supported.
• Timers are approximate since functional model does

not model time.
• DCache is not modeled. DCBZ/DCBA clear memory.

Rest of DCache instructions are nopped.
• ICache is not modeled. ICache instructions are nopped.
• Altivec Assist interrupt is not modeled.
• Altivec mvidsplt instruction is not modeled.
• Hardware Table Walk on ITLB misses is minimally

testing.
• Hardware Table Walk on Cache misses is not

supported.
• Minimal testing of LRAT and Hardware Table Walk.
• SCCSBAR register does not mirror shifted CCSBAR.

CCM • Secure boot not supported
• Stashing not supported

CPC • Write back cache and I/O stash are not supported.
• ATQ priority arbitration (CSSA) is not supported.

Table continues on the next page...

B4860 System on Chip Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

30 Freescale Semiconductor, Inc.

Table 3-4. B4860 Instruction Set Simulator Aspects (continued)

Aspect Description

• Interrupts are not supported.
• Decoration storage through ReadU, WriteU and Notify

is not supported.

BMAN No error interrupts.

QMAN • CEETM is not supported.
• CS tail drop rejections (part of congestion management)

are not modeled.
• Avoid Blocking FQD control bit is not supported.
• Query WQ length command is not supported.
• Query Congestion State and CGR Test Write

commands are not supported.
• Congestion state change notification (functional)

interrupts are not supported.
• Error interrupts are not modeled.
• Debug interface is not modeled.
• Performance monitor interface is not supported.
• Dynamic debug interface is not supported.
• QCSP0-9_EQCR_CI_CENA/CINH: PB field is not

supported.
• QMAN_HID_CFG: Only SRPP, SECO, IRPA, DFTD,

and SFTD fields are supported.

MPIC • Shared Message Signaling Interrupt is not supported.
• Timers are not supported.
• No behavioral difference between edge and level

sensitive interrupts. Level behavior is not modeled.

I2C • I2C device as Master Mode is supported, Slave mode is
NOT supported.

• Only Register accesses and EEPROM R/W supported

IFC ECC encoding and decoding in NAND-FCM mode are not
supported. Buffer control (BCTL) enable/disable support in
NAND-FCM, NOR-FCM and GPCM mode are not supported.
Address shift mode in NOR-FCM is not supported. Burst
mode for multi-beat reads in NOR-FCM mode is not
supported. Parity checking in GPCM mode is not supported.
Address Data multiplexing shift in GPCM mode is not
supported. Ready-Busy status indication for each bank is not
supported. NAND Flash timeout error, ECC error, and
interrupt generation are not supported. NAND Flash Page
read completion status are not supported. NOR Flash
command sequence timeout error and interrupt generation
are not supported. GPCM timeout error and interrupt
generation are not supported. Loop (Multi-Page) feature in
NAND-FCM is not supported. IOBIST modes are not
supported. Software reset functionality are not supported.

PBL • PBL assumes that only IFC-NOR interface is used as
RCW source, PBL source and as Boot location.

• PBL Interface with IFC-NAND is not supported.
• PBL Interface with I2C is not supported.
• PBL Interface with SPI is not supported.
• PBL Interface with SDHC is not supported.
• PBL Hard coded RCWs is not supported.

Table continues on the next page...

Chapter 3 Simulator Models for SC3900 Architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 31

Table 3-4. B4860 Instruction Set Simulator Aspects (continued)

Aspect Description

Frame Manager Frame Manager SWSIM is a software simulators package
which currently includes a simulation module for P4080/
P3040/P5020/P1023/P2040 Frame Manager hardware block.
For more information, refer Frame Manager Software
Simulator Release Notes.

Virtual Interrupt Virtual Interrupts are implemented, but not really tested with
sc3900 interrupts: It gets interrupts from the program and
transmits them to the 6 sc3900 cores.

MAPLE3 Support Refer the B4860 ISS MAPLE B3 Support section for details.

3.2.3 B4860 ISS MAPLE B3 Support

This section lists the supported Maple Processing Elements or Maple components.

NOTE
By default the MAPLE mode is REV2. For REV1 support, add
the following flag:

-imodel "-MAPLE3_REV1"

The base addresses of MAPLE is fixed as:

• MAPLE extended to 36 bit addressing and 0xF prefix could be added in MSB 32 bits.
• MBus could be changed in cfg file in the ccm.laws field.
• SBus could be changed by CCSR base value change.

a. MBus0 0xFA0000000 (default 0xE0000000)
b. MBus1 0xFA0400000 (default 0xE0400000)
c. MBus2 0xFA0800000 (default 0xE0800000)
d. SBus0 0xFfe800000 (default 0xFE800000)
e. SBus1 0xFfe810000 (default 0x FE810000)
f. SBus2 0xFfe820000 (default 0x FE820000)

Following are the Maple Processing Elements or Maple components:

• Memory Map
• PSIF3 Registers
• eTVPE2
• eFTPE2
• DEPE2
• EQPE

B4860 System on Chip Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

32 Freescale Semiconductor, Inc.

• EQPE2
• PDPE2
• PDPE2Rev2
• PUPE2
• PUPE2Rev2
• DL2
• ULF2
• ULB2
• CGPE Registers
• TCPE Registers
• Buffer Descriptor (BD) Programming Model
• Flexible Interrupt Scheme
• CRPE

3.2.3.1 Memory Map

The memory model of Maple is represented as:

• Three MAPLE 3 elements are implemented including two LW and one W.
• SBus memory is implemented at address 0x[F]fe800000 and can be configured by

CCSRBAR.
• MBus memory is implemented at address 0x[F]fa000000 including:

• DRAM
• eTVPE2 registers
• DEPE2 registers
• EQPE2 registers
• PDPE2 registers
• PUPE2 registers
• eFTPE2 registers (both in L&W) (LTE WCDMA)

In MAPLE3 following registers are implemented in memory map:

• DL2 registers
• ULF2 registers
• ULB2 registers
• CGPE registers (W)
• TCPE registers (W)

Chapter 3 Simulator Models for SC3900 Architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 33

3.2.3.2 PSIF3 Registers

Following features are implemented in PSIF3 registers:

• Four RISC cores are simulated, including registers on the SBus memory
• Internal DMA is partially simulated including MMU
• DTU is simulated
• PIC is simulated
• Scheduler is simulated

3.2.3.3 eTVPE2

Following features are implemented in eTVPE2 registers:

• Register's memory map is implemented with reset values
• Pipeline mode is not supported
• Passes the basic tests for 3GLTE and UMTS
• Some modes do not support. eTVPE2::UMTS::EDCH separated vector (Not

implemented in model)
• Qualifies the SmartDSP OS eFVPE2 test and some tests vectors
• Qualifies SmartDSP OS Single core tests
• Full SmartDSP OS test on Multicore is not supported

NOTE
MAPLE3 support is not yet fully tested with SmartDSP OS
multi-core support. Some of the tests may pass on reduced
number of iterations.

3.2.3.4 eFTPE2

Following features are implemented for eFTPE2:

• Register's memory map is implemented with reset values
• Qualifies the SmartDSP OS eFTPE2 test and some test vectors

3.2.3.5 DEPE2

B4860 System on Chip Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

34 Freescale Semiconductor, Inc.

Following features are implemented for DEPE2:

• Register's memory map is implemented with reset values
• Failed on full SmartDSP OS test (iterations)
• Qualifies the SmartDSP OS DEPE2 test and some tests vectors

NOTE
MAPLE3 support is not yet fully tested with SmartDSP OS
multi-core support. Some of the tests may pass on reduced
number of iterations.

3.2.3.6 EQPE

Following features are implemented for EQPE:

• Register's memory map is implemented with reset values
• Testing is in progress

3.2.3.7 EQPE2

Following features are implemented for EQPE2:

• Register's memory map is implemented with reset values
• Testing is in progress
• Qualifies basic tests

3.2.3.8 PDPE2

Following are the new features implemented for PDPE2:

• Register's memory map is implemented with reset values
• Qualifies the SmartDSP OS PDPE2 test and some tests vectors

3.2.3.9 PDPE2Rev2

Chapter 3 Simulator Models for SC3900 Architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 35

Following are the new features implemented for PDPE2Rev2:

• Register's memory map is implemented with reset values
• Qualifies basic tests

3.2.3.10 PUPE2

Following are the new features implemented for PUPE2:

• Register's memory map is implemented with reset values
• Testing is in progress

3.2.3.11 PUPE2Rev2

Following are the new features implemented for PUPE2Rev2:

• Register's memory map is implemented with reset values
• Testing is in progress
• Qualifies basic tests

3.2.3.12 DL2

Following are the new features implemented for DL2:

• Register's memory map is implemented with reset values
• Testing is in progress

3.2.3.13 ULF2

Following features are implemented for ULF2:

• Register's memory map is implemented with reset values
• Testing is in progress

B4860 System on Chip Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

36 Freescale Semiconductor, Inc.

3.2.3.14 ULB2

Following features are implemented for ULB2:

• Register's memory map is implemented with reset values
• Testing is in progress

3.2.3.15 CGPE Registers

Following features are implemented for CGPE:

• Register's memory map is implemented with reset values
• Testing is in progress

3.2.3.16 TCPE Registers

Following features are implemented for TCPE registers:

• Register's memory map is implemented with reset values
• Testing is in progress

3.2.3.17 Buffer Descriptor (BD) Programming Model

Following feature is implemented for BD Programming Model:

• For multiple master support, up to 8 High Priority BD rings and 8 Low Priority BD
rings are there for each processing element

3.2.3.18 Flexible Interrupt Scheme

Following feature is implemented for Flexible interrupt scheme:

• Supports BD interrupts mapped from IRQ_242 and above

Chapter 3 Simulator Models for SC3900 Architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 37

3.2.3.19 CRPE

Following features are implemented for CRPE:

• Currently only the CPRI-CRPE interactions are supported, full CPRI data path does
not get simulated.

• Partially registers are implemented in order to perform WCDMA demo
• Only CPRI 0 registers are supported at the moment (although there are six CPRI

modules)
• Qualifies SmartDSP OS Single core tests
• The CRPE put and get data to and from files in predefined format:

• For UpLink up to 24 antenna files

The data structure for ant 0 file for OVS 2 is:

chip 0 phaze 0 <8I,8Q>

chip 0 phaze 1 <8I,8Q>

chip 1 phaze 0 <8I,8Q>

chip 1 phaze 1 <8I,8Q>

The data structure for ant 0 file for no OVS is:

chip 0 phaze 0 <8I,8Q>

chip 1 phaze 0 <8I,8Q>

• For DownLink only in CPRI mode in CRPE-DL, upto16 antenna output files (or
less), <16I,16Q>

The data structure is:

chip 0 <16I,16Q>

chip 1 <16I,16Q>

NOTE
DL writes out to file every 2083 system clocks.

UL reads from file every 2083*16 system clocks.

CPRI Timer Interrupts feature is still not implemented
where each 10ms CPRI should produce interrupts.

B4860 System on Chip Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

38 Freescale Semiconductor, Inc.

3.2.4 Configuring B4860 Simulator

This section discuss the configuration options supported by B4860 ISS.

B4860 instruction set simulator supports the following initialization and configuration
files:

• b4860iss.ini - Required for StarCore components initialization. This file is loaded at
startup.

• b4860iss_sim_init_params.cfg - Provides default or configurable simulator initialization
parameters. This file is loaded at startup.

Following sections discuss various configuration options supported by B4860 ISS:

• Configure B4860 Simulator Options
• Configuration Files

3.2.4.1 Configure B4860 Simulator Options

This section provides details on configuring B4860 simulator options. It also has a table
that lists the various options available.

The simulator can run with the following configuration options:

• ./runsim -imodel "option=value -option... " -smodel "option=value -option... " -d

b4860iss -nc 1 test.eld

• ./ccssim2 -imodel "option=value -option... " -smodel "option=value -option... " -port

41475

where,

• -imodel - Required during the StarCore simulator initialization (Initialization Model).
• -smodel - Required after the initialization of the simulator, and before starting the

execution of the simulator (Start Model).

NOTE
Runsim and ccssim2 can run without -imodel and -smodel
options. In this case the default values are used ./runsim -d
b4860iss -nc 1 test.eld and ./ccssim2 -port 41475.

Chapter 3 Simulator Models for SC3900 Architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 39

The below tables lists the various options available:

Table 3-5. Main Options

Name imodel smodel Description

sc_pa_maple_run=n1:n2:
n3

Yes Yes Enables the execution phase
at the startup of StarCore,
PowerArchitecture, and Maple
cores. Default value is: 0:0:1.

sc_pa_maple_ratios=n1:
n2:n3

Yes Yes Sets the execution phase
cycle ratios for StarCore,
PowerArchitecture, and
Maple. This parameter can be
used to configure the speed/
synchronization/execution
tunings of the simulator. Zero
means no execution cycles for
the corresponding
component. Default value is:
20:1:10.

sc_pa_maple_sync_exec=
n1:n2:n3

Yes Yes Enables or disables
synchronization of MAPLE
execution with StarCore and
PA cores execution. Currently
only the StarCore cores are
taken into account and
therefore, MAPLE doesn't get
cycles when all StarCore
cores are stopped. Default
value is: 1:0:1

sim_tio_hub=tio_server
_name:tio_server_port

Yes No Enables the TIO support in
B4860 simulator and
configures TIO server name
and port. The value is set in
b4860iss_sim_init_para
ms.cfg file.

sim_pa_run_vcores=<ena
ble_mask>

Yes No Enables/disables (1/0) run at
reset for a PA virtual cores
(PA core thread0 or thread1).
10101010 enables run at
reset for all main threads
(thread0 of all PA cores).
Default value is: 10000000. It
enables run at reset for the
1'st virtual core (PA core0 /
thread0).

- MULTITHREAD Yes No Enables multithreading: 1
thread for StarCore, 1 thread
for PA cores, and 1 thread for
each MAPLE3 (A, B, C).
Default value is:

• Enabled, if the host PC
is a multicore machine

• Disabled, if the host PC
is a singlecore machine

Table continues on the next page...

B4860 System on Chip Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

40 Freescale Semiconductor, Inc.

Table 3-5. Main Options (continued)

Name imodel smodel Description

- NOMULTITHREAD Yes No Disables multithreading.
Default value is:

• Disabled, if the host PC
is a multicore machine

• Enabled, if the host PC
is a singlecore machine

Table 3-6. Advanced Options

Name imodel smodel Description

sim_log_level=<level> Yes Yes Sets the specified log level.
Supported log levels are
NONE=0, ERROR=1,
WARNING=2, INFO=3,
DEBUG=4, TRACE=5. The
specified level must be a
positive integer (Level >=0).
Default value is: 1

sim_log_file=<sim.log> Yes Yes Writes log to the specified log
file.

ipmodels_log_level=<le
vel>

Yes Yes Sets log level for ipmodels
components. The specified
level must be a positive
integer (Level >=0). Default
Value is: 0

pa_sim_config_file=<te
st.cfg>

Yes Yes Sets the configuration file
loaded at startup. It can be
used to load binary images,
and write memory mapped
registers.

mapletrace_file
<maple.trc>

No Yes Specifies the maple trace file.

mapletrace start/stop No Yes Starts/Stops maple ucode
trace.

- cpricfg
<cpri_config.xml>

Yes No Loads the specified CPRI
configuration file.

3.2.4.2 Configuration Files

This section provides details on the various initialization parameters along with certain
examples.

Chapter 3 Simulator Models for SC3900 Architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 41

The following table lists the various initialization parameters that can be changed in the
configuration file b4860iss_sim_init_params.cfg.

Table 3-7. Initialization Parameters

Name Description

sim.enable_fman_tio Enables FMAN TIO support. When this option is enabled you
could use fm_tio_inject and fm_tio_capture
applications to inject pcap files. Default value is: False

sim.jit_run_quanta Sets the maximum number of instructions to be executed on
the execution phase for PA cores. Default value is: 1000

sim.clock_dpa Enables DPAA clock. Default value is: False

sim.dpa_clock_divisor Configures the DPAA clock ratio. The value of dpa_clock is
sim.jit_run_quanta / sim.dpa_clock_divisor.
Default value is: 100

fman0.log_filename Set log filename for FMAN0. Default value is: fman.log

fman0.log_level Set log level for FMAN0. Default value is: 0

sim.dpa_bman_log_levelsim.dpa_qman_log_levels
im.dpa_caam_log_levelsim.dpa_fman0_log_level

Sets log level for BMAN, QMAN, CAAM, FMAN wrapper.
Default value is: 0 (for all)

configunit.model_p5020 Sets configunit.model_p5020=1 for old images/use-
cases (p5020) Default value is: 0

ccm.laws Configures custom LAW entries. The values are set in the
b4860iss_sim_init_params.cfg file.

3.2.4.2.1 Examples

Run the following commands, if you want to enable the execution only on StarCore:

./runsim -smodel "sc_pa_maple_run=0:0:0 sc_pa_maple_ratios=1:0:0" -d
b4860iss -nc 1 test.eld

./ccssim2 -smodel "sc_pa_maple_run=0:0:0 sc_pa_maple_ratios=1:0:0" -
port 41475

Run the following commands if you want to enable the execution only on StarCore and
Maple:

./runsim -smodel "sc_pa_maple_run=0:0:1 sc_pa_maple_ratios=20:0:10" -d
b4860iss -nc 1 test.eld

./ccssim2 -smodel "sc_pa_maple_run=0:0:1 sc_pa_maple_ratios=20:0:10" -
port 41475

Run the following commands if you want to enable TIO support:

B4860 System on Chip Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

42 Freescale Semiconductor, Inc.

./runsim -imodel "sim_tio_hub=10.1.171.5:42476" -d b4860iss -nc 1
test.eld

./ccssim2 -imodel "sim_tio_hub=10.1.171.5:42476" -port 41475

Run the following commands if you want to change CCSR value:

./runsim -imodel "ccm.ccsrbarh=0x0" -d b4860iss -nc 1 test.eld

./ccssim2 -imodel "ccm.ccsrbarh=0xf ccm.ccsrbarl=0xfe000000" -port
41475

Run the following command if you want to change RCW (recommended for SmartDSP
OS)

./ccssim2 -imodel "ccm.ccsrbarh=0xf" -smodel "pa_sim_config_file=./
rcw/test_rcw_sdos.cfg"

Run the following command if you want to run MAPLE3 in REV1 mode (since the
default mode is REV2)

./ccssim2 -imodel "-MAPLE3_REV1"

3.2.5 Running U-Boot and Linux on B4860 Simulator

Follow the steps given in this section to run U-Boot and Linux on B4860 simulator.

For booting Linux with ccssim2, ccs and tio_console or with runsim and tio_console, refer to
the readme.txt.

To access the readme.txt file, follow the steps given below:

1. Extract the archive files available at <CWInstallDir>\SC\ccs\bin

\linux64\sc_swsim_linux64.tgz, where <CWInstallDir> is the path to your CodeWarrior
installation.

2. Select linux64\linux_ir0\readme.txt.

The file contains all the steps required to run U-Boot and Linux on B4860 Simulator.

Chapter 3 Simulator Models for SC3900 Architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 43

B4860 System on Chip Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

44 Freescale Semiconductor, Inc.

Chapter 4
Using Traffic IO

This chapter explains the usage of Traffic IO using the net_demo SmartDSP OS utility
project.

This chapter explains:

• Import net_demo Utility Project
• Configure Windows TCP/IP settings
• Execute net_demo Utility Project

4.1 Import net_demo Utility Project

This section lists the steps required to import the net_demo utility project.

NOTE
The procedure of importing the net_demo utility project
assumes that you have the Windows Packet Capture Library
(WinPcap) installed. For more details on WinPcap, visit http://
www.winpcap.org/install/default.htm.

To import the net_demo utility project, perform these steps:

1. Select Start > Programs > Freescale CodeWarrior > CodeWarrior for
StarCore< number> > CodeWarrior, where number is the version number of your
product.

The IDE launches and the WorkSpace Launcher dialog appears, asking you to select
a workspace to use.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 45

http://www.winpcap.org/install/default.htm
http://www.winpcap.org/install/default.htm

NOTE
You can select the Use this as the default and do not ask
again checkbox to set default/selected path as a default
location for storing all your projects.

Figure 4-1. Workspace Launcher Dialog Box
2. Click OK to accept the default workspace. To use a different workspace, click

Browse and specify the desired location.

The IDE initializes and displays the Workbench window.

NOTE
The Welcome page is displayed when CodeWarrior is run
for the first time. You can always return to this page by
selecting Help > Welcome from the CodeWarrior IDE
menu bar.

3. From the CodeWarrior IDE menu bar, select File > Import.

The Import wizard appears.

4. Expand the General tree item.
5. Select Existing Projects into Workspace to import an existing SmartDSP OS demo

application as shown below.

Import net_demo Utility Project

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

46 Freescale Semiconductor, Inc.

Figure 4-2. Import Wizard - Select Existing Projects into Workspace
6. Click Next.

The Import Projects page appears.

7. Select the Select root directory option.

The wizard enables the corresponding Browse button.

8. Click Browse.

The Browse For Folder dialog box appears.

9. Use the dialog box to navigate to the net_demo utility project.

NOTE
The net_demo utility project is installed as a part of
CodeWarrior installation and is available in the
<CWInstallDir>\SC\StarCore_Support \SmartDSP\demos\starcore

Chapter 4 Using Traffic IO

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 47

\msc815x\net_demo folder, wherelt;CWInstallDir> is the path to
your CodeWarrior installation.

10. Click OK.

The Browse For Folder dialog box closes. The path to the demo project appears in
the Select root directory text box as shown below.

Figure 4-3. Import Wizard - Import Existing Projects
11. Ensure that the net_demo utility project displayed in the Projects text box is

checked.
12. Click Finish.

The Import wizard closes and C/C++ perspective appears. The CodeWarrior Projects
view shows the net_demo utility project as displayed in the below figure.

Import net_demo Utility Project

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

48 Freescale Semiconductor, Inc.

Figure 4-4. CodeWarrior Projects-net_demo SmartDSP OS Utility Project
13. Select Project > Build Project from the CodeWarrior IDE menu bar to build the

project.

4.2 Configure Windows TCP/IP settings

This section lists the steps required to configure TCP/IP settings.

To configure TCP/IP, follow these steps:

Chapter 4 Using Traffic IO

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 49

1. Select Start > Control Panel.

The Control Panel window appears.

2. Select Network and Internet Connections.

The Network and Internet Connections window appears.

3. Select Network Connections.
4. Right-click the network connection that you want to configure, select Properties

from the context menu that appears.
5. The Local Area Connection Properties dialog box appears as shown below.

Figure 4-5. Local Area Connection Properties Dialog Box
6. Select Internet Protocol (TCP/IP), and then click Properties.

The Internet Protocol (TCP/IP) Properties dialog box appears.

7. Select the General tab.
8. Select Use the following IP address option.
9. Specify 10.0.0.100 as IP address and 255.0.0.0 as Subnet mask.

Configure Windows TCP/IP settings

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

50 Freescale Semiconductor, Inc.

NOTE
Do not specify any value in the Preferred DNS server and
Alternate DNS server text boxes.

Figure 4-6. Internet Protocol (TCP/IP) Properties Dialog Box
10. Click OK to close the Internet Properties (TCP/IP) Properties dialog box.
11. Click Close to save and close the Local Area Connection Properties dialog box.

NOTE
This procedure will result in loss of Internet connectivity.
To re-connect select the Obtain an IP address
automatically option from the Internet Protocol
(TCP/IP) Properties dialog box.

4.3 Execute net_demo Utility Project

This section lists the steps required to execute the net_demo utility project.

Chapter 4 Using Traffic IO

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 51

To execute the net_demo utility project, perform the following steps:

1. Select the net_demo utility project in the CodeWarrior Projects view.
2. Select Run > Debug Configurations.

The Debug Configurations dialog box appears as shown in the below figure.

3. Expand the CodeWarrior Download configuration.
4. From the expanded list, select the debug configuration that you want to modify. For

example, select core 0.

Figure 4-7. Debug Configurations Dialog Box
5. Select the net_demo - Core0 - Debug remote system from the System dropdown list.
6. Click Edit.

The Properties for net_demo window appears as shown below.

7. Select CSSIM2 ISS from the Connection type drop down list.
8. Select the Connection tab.
9. Select the Automatic launch option.

10. Modify the Server port number to 40969.

Execute net_demo Utility Project

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

52 Freescale Semiconductor, Inc.

NOTE
If you use a custom port, modify the Server port number
appropriately.

11. Check CCS executable to specify the server executable file path.

Figure 4-8. Properties for net_demo Window
12. Click OK.
13. Click Apply to save the changes.
14. Click Close to save and close the Debug Configurations dialog box.

NOTE
To change the network interface configuration modify the
net_demo.c file in the net_demo utility project and rebuild

Chapter 4 Using Traffic IO

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 53

the project. By default, the net_demo utility project uses
ucc1 slot.

15. Select Start > Run.

The Run dialog box appears.

16. Specify cmd.exe in the Open text box to launch the command prompt window.
17. Navigate to the <CWInstall>\SC\ccs\bin. Where <CWInstall> is the path to your

CodeWarrior installation. For example, in the command prompt type, cd C:\Program
Files\Freescale\CW SC v10.4\SC\ccs\bin

18. Launch ccssim2 server using -tio argument. ccssim2.exe -tio
19. Launch tio_bridge. tio_bridge.exe -ser ucc1 -flags update_ip_header_checksum

NOTE
Do not close the command prompt window. The Traffic IO
log appears in this window once the project is debugged
successfully.

20. From the CodeWarrior IDE menu bar, select Run > Debug Configurations.
CodeWarrior IDE uses the settings in the launch configuration to generate debugging
information and initiate communications with the target board.

The Debug Configurations dialog box appears. The left pane of this dialog box has
a list of debug configurations that apply to the current application.

NOTE
For more information on how to use the debugger, refer to
the CodeWarrior Development Studio Common Features
Guide.

21. Expand the Launch Group configuration.
22. From the expanded list, select the launch group that you want to debug. For example,

select Net demo - Debug.

The below figure displays the Debug Configurations dialog box with the selected
launch group.

Execute net_demo Utility Project

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

54 Freescale Semiconductor, Inc.

Figure 4-9. Debug Configurations Dialog Box
23. Select the cores that you want to debug.
24. Click Debug.

The debugger downloads the selected cores and switches to the Debug perspective.

Debugger halts execution at first statement of main(). The Debug view displays all
the threads associated with the core.

Chapter 4 Using Traffic IO

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 55

Figure 4-10. Debug Perspective
25. Click Multicore Resume in the Debug view to resume all cores.
26. Select main on the call stack in the Debug view.
27. Click Multicore Resume again.
28. Switch to the command prompt window and wait until the following messages

appear in the window:

Added new mac c2:c3:c4:c5:c6:cc serial=ucc1

Added new mac c2:c3:c4:c5:c6:c9 serial=ucc1

Added new mac c2:c3:c4:c5:c6:ca serial=ucc1

Added new mac c2:c3:c4:c5:c6:cb serial=ucc1

Added new mac c2:c3:c4:c5:c6:c8 serial=ucc1

Added new mac c2:c3:c4:c5:c6:c7 serial=ucc1

29. Launch a separate command window and ping all the IP addresses ranging from
10.0.0.1 to 10.0.0.6.

Execute net_demo Utility Project

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

56 Freescale Semiconductor, Inc.

The below listing displays the ping output for IP address 10.0.0.1.

Listing 4-1. Ping IP address output

C:\>ping 10.0.0.1
Pinging 10.0.0.1 with 32 bytes of data:

Reply from 10.0.0.1: bytes=32 time<1ms TTL=128

Reply from 10.0.0.1: bytes=32 time<1ms TTL=128

Reply from 10.0.0.1: bytes=32 time<1ms TTL=128

Reply from 10.0.0.1: bytes=32 time<1ms TTL=128

Ping statistics for 10.0.0.1:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

30. Select Run > Multicore Terminate.
31. The debugger terminates the active debug session. The threads associated with each

core in the Debug view disappear.

Chapter 4 Using Traffic IO

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 57

Execute net_demo Utility Project

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

58 Freescale Semiconductor, Inc.

Chapter 5
Tradeoff Analysis with Simulators

The CodeWarrior for Build Tools compiler is mostly used with compiler options in the
command line, such as size-oriented compilation (-Os option) and cycle-oriented
compilation. In size-oriented compilation, the size is minimized regardless of the
performance of the code. A cycle-oriented compilation tries to minimize the cycles at
runtime, without considering the source code size. The result is two executables with
different outputs.

In real time, you may want to get good performance without sacrificing the source code
size. Using a compilation configuration file, you may choose the functions that will use
size-oriented compilation and the ones that will use a cycle-oriented compilation. This
results in an executable with tradeoff between source code optimized for the size, and
source code optimized for performance.

The choice of the compilation mode of each function can be done manually. You may
choose a size-oriented compilation for control functions, and a cycle-oriented
compilation for computation functions. However, you can also make use of the profiler
information during a simulation. The profiler returns values on the size and consumed
cycles of each function. The goal is to extract this information to automatically generate a
configuration file that is stressed on the size of large functions and the cycles of time-
consuming functions.

To extract the profiler information automatically for driving the compilation option, use
the following tools:

• combine_dicho - this tool returns a configuration file, if profiler information is
provided.

• tradeoff.pl - this tool is used to test different tradeoff strategies available in the
combine_dicho tool.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 59

5.1 combine_dicho

The combine_dicho tool automatically generates a configuration file output that is a tradeoff
between source code size and execution speed with respect to the other two tested
configurations. The goal of this application is to generate a compilation configuration that
is cycle-oriented for functions which are time consuming, and size-oriented for functions
that generate large source code.

The inputs to this application are:

• The Result Name. Two files are output: <resname>.appli, the configuration file that
corresponds to the tradeoff, and <resname>.opt_level, a synthetic view of the
optimization level used to compile each function. This last file is used by a recursive
call of combine_dicho.

• The file with suffix, _size_cycle.rep, as generated by the profiler when the application
is compiled with options that are cycle-oriented, and is executed.

• The file with suffix, _size_cycle.rep, as generated by the profiler when the application
is compiled with options that are size-oriented, and is executed.

• The file with suffix, .opt_level, as created by a previous call to combine_dicho, that
corresponds to the compilation of the cycle-oriented compilation. Use the word none
if non-applicable.

• The file with suffix, .opt_level, as created by a previous call to combine_dicho, that
corresponds to the compilation of the size-oriented compilation. Use the word none if
non-applicable.

5.1.1 Example

This example shows two source files, file1.c and file2.c. The output will show the
tradeoff between a -O3 compilation (cycle-oriented), and a -O3 -Os compilation (size-
oriented).

Given below are the steps:

1. Compile the application using cycle-oriented compilation. Use option -Xllt -
profile_level1 in order to generate profiling information of inlined functions:

• scc -O3 -Xllt -profile_level1 -o exec_perf.eld file1.c file2.c

2. Run this application using the profiler, runsim. The generated file prof_perf_size_cycle
will be used during the combination of cycle results and size results:

• runsim -p prof_perf exec_perf.eld

3. Compile using size-oriented option, and run the application with the profiler:

combine_dicho

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

60 Freescale Semiconductor, Inc.

• scc -O3 -Os -Xllt -profile_level1 -o exec_size.eld file1.c file2.c

• runsim -p prof_size exec_size.eld

4. Combine the profiling results to generate a conf.appli file:
• combine_dicho conf prof_perf_size_cycle.rep prof_size_size_cycle.repnone

5. Compile the application with the new configuration. Do not specify the -Os option:
• scc -O3 -ma conf.appli -o exec_conf.eld file1.c file2.c

5.2 tradeoff.pl

The objective of the tool is to return data (number of consumed cycles; size of the
executable) so that you can choose the best tradeoff between speed and size that fits its
constraints.

For example, you may want to obtain the best performances, with a source code size
lower than a given threshold.

This tool runs an automatic process that:

• Compiles the application with cycle-oriented and size-oriented options.
• Runs the profiler to profile this application. The output file used by combine_dicho is

_size_cycle.rep.

• Run the combine_dicho tool for the number of tries specified by the user. The output
file is _size_cycle.rep. The application is compiled using the obtained configuration
files. The source code size and the run time of the application are then stored.

For each tested configuration file, the source code size and run time is saved in a file
named profile/result_tradeoff_<target>, where <target> is the target to compile in the
makefile. Using the resulting data, you can choose the tradeoff configuration that best
suits its needs.

5.2.1 Tradeoff Constraints

Compilation must be called through a makefile that contains:

• A target to clean previous compilation results; that is, .obj, .eln and .eld files. By
default, this target is clean, but any other name can be specified as it will be
described in the command line of the tool, tradeoff.pl.

• A directive to pass extra compilation options. It is useful to be able to specify -Os and
-ma options.

Chapter 5 Tradeoff Analysis with Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 61

Moreover, compilation is performed using gmake, that is make from GNU.

cygwin users should have the make package installed; 'gmake' should be a symbolic link
for /usr/bin/make as accomplished by running:

ln -s /usr/bin/make /usr/bin/gmake

Solaris users should have GNU make installed and available in PATH.

5.2.2 Tradeoff Usage

The following are the arguments that can be passed through tradeoff.pl.

• General options
• -h: displays the tool's help.
• -depth <depth>: recursive depth in the dichotomist tree. A depth of 0 returns 3

points, a depth of 1 returns 5 points, a depth of 2 returns 9 points, a depth of 3
returns 17 points in the series. Default value is 2.

• Options related with the makefile
• -f <makefile>: the default name of the makefile is Makefile. The -f option allows

you to call another makefile.
• -clean <clean>: target in the makefile to clean for the compilation. Default value

is clean.
• -cflags <cflags>: flag in the makefile to pass additional options (like -Os or -ma

options) to the compilation. Default value is CFLAGS.
• -options <options>: Default compilation options to be passed to the makefile.

Default value is -O3 -Og.
• Mandatory parameters

• <target>: the target to compile in the makefile.
• <exe>: name of the executable that is built by the makefile.
• <list of runtime arguments>: list of the arguments to be passed when running the

executable. Tradeoff.pl will run the following command:

runsim -t -p profile/profileres <exe> <list of runtime arguments>.

• Results are saved in the file
• profile/result_tradeoff_<target>

5.2.3 Example

tradeoff.pl

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

62 Freescale Semiconductor, Inc.

The example has one source file jpeg.c. The application takes no argument in the runtime.
Follow the given steps to use tradeoff.pl:

1. Create a makefile (makefile.jpeg) to be able to compile the application. It contains a
clean target (myclean), a target to compile the application (comp). You can pass
additional options through the OPTION flag. The name of the executable is bin/jpeg.eld.
Below is the makefile associated with the application:

Listing 5-1. Tradeoff example

CC = scc
CFLAGS = -mb ${OPTION}
comp:

 $(CC) $(CFLAGS) -o bin/jpeg.eld jpeg.c

myclean:
 rm -f jpeg.eln bin/jpeg.eld

2. To have the tradeoff in global optimization using -O3 option, and to have a series
computed with a depth of 1, run the following command: tradeoff.pl -depth 1 -f
makefile.jpeg -cflags OPTION\-clean myclean -options "-O3" comp bin/jpeg.eld

3. The results can be read in the file profile/result_tradeoff_comp as shown in the below
listing Result of an Application .

Figure 5-1. Tradeoff result

In the tradeoff result as shown above, each line represents a trial.

• The first column is a binary code of one trial - the greater the source code, the better
should be the size of the executable.

• The second column shows the number of cycles of the execution of this trial.
• The third column shows the size (in bytes) of the executable.
• Last column shows the command line used to compile the trial.

You can choose the strategy best suited to your requirement.

In the below listing, the results obtained on the coder of the EFR (the compilation line
has been removed from the following trace) is displayed.

Listing 5-2. Result of an Application

Code Cycles Size Compilation line
00000000 3918826 47152

00001000 4051866 46112

Chapter 5 Tradeoff Analysis with Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 63

00010000 4481293 45184

00010010 4505771 44576

00100000 5598560 40304

00100101 5573863 40016

00101000 6251150 39760

00101010 6470126 39552

01000000 6634867 39216

01010110 6786902 38752

01011000 6935248 38640

01011011 7257258 38448

01100000 7775553 38368

01101110 7812573 38336

01110000 7812573 38336

01111000 7812573 38336

10000000 9334324 36864

The below figure shows the normalized representation of the application result.

tradeoff.pl

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

64 Freescale Semiconductor, Inc.

Figure 5-2. Normalized Representation

Chapter 5 Tradeoff Analysis with Simulators

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 65

tradeoff.pl

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

66 Freescale Semiconductor, Inc.

Chapter 6
Accuracy Benchmarks

The timing of the cache commands introduced in this release has not been fully verified.

This chapter describes:

• sc3850plat_pacc
• sc3850plat_pacc, DDR Memory

6.1 sc3850plat_pacc

The golden results for the sc3850plat_pacc simulator are received from an MSC8156
ADS board running at 1Ghz frequency. Same applications are linked to M2, M3, and
DDR memory and the results are compared. All results are taken from dpu measures.

6.1.1 M2 Tests

Benchmark Test Diff %

benchmark-C_OPT_telecom_autcor00_DATA1_19 0.17

benchmark-C_OPT_telecom_autcor00_DATA2_21 -0.08

benchmark-C_OPT_telecom_autcor00_DATA3_23 2.37

benchmark-C_OPT_telecom_conven00_DATA1_25 -0.04

benchmark-C_OPT_telecom_conven00_DATA2_27 0.04

benchmark-C_OPT_telecom_conven00_DATA3_29 0.04

benchmark-C_OPT_telecom_fbital00_DATA2_31 0.00

benchmark-C_OPT_telecom_fbital00_DATA3_33 0.00

benchmark-C_OPT_telecom_fbital00_DATA6_35 0.00

benchmark-C_OPT_telecom_fft00_DATA1_37 5.00

Table continues on the next page...

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 67

Benchmark Test Diff %

benchmark-C_OPT_telecom_viterb00_DATA1_43 -9.49

benchmark-networking_routelookup_54 -0.03

benchmark-telecom_autcor00_DATA1_18 -0.02

benchmark-telecom_autcor00_DATA2_20 -0.02

benchmark-telecom_autcor00_DATA3_22 -2.11

benchmark-telecom_conven00_DATA1_24 -0.01

benchmark-telecom_conven00_DATA2_26 -0.01

benchmark-telecom_conven00_DATA3_28 -0.01

benchmark-telecom_fbital00_DATA2_30 0.00

benchmark-telecom_fbital00_DATA3_32 -0.02

benchmark-telecom_fbital00_DATA6_34 -0.00

benchmark-telecom_fft00_DATA1_36 6.1

benchmark-telecom_viterb00_DATA1_42 3.17

benchmark-telecom_viterb00_DATA2_44 3.17

benchmark-telecom_viterb00_DATA3_46 3.17

benchmark-telecom_viterb00_DATA4_48 3.17

benchmark-mac_hs-mac_hs_exec_3 -0.21

benchmark-pstone-auto_4 -0.32

benchmark-pstone-blit_5 -1.76

benchmark-pstone-compress_6 -1.8

benchmark-pstone-des_7 0.1

benchmark-pstone-dhry21_8 -2.1

benchmark-pstone-engine_9 -0.06

benchmark-pstone-eval2_10 -11.12

benchmark-pstone-g3fax_12 -0.02

benchmark-pstone-pocsag_14 -0.26

benchmark-pstone-summin_15 -0.19

benchmark-pstone-ucbqsort_16 0.3

benchmark-pstone-v42bis_17 -0.44

benchmark-sc_ffl-deblock_hor_chr_59 -0.1

6.1.2 M3 Tests

Benchmark Test Diff %

benchmark-pstone-auto_4 0.38

benchmark-pstone-blit_5 1.87

benchmark-pstone-compress_6 -1.41

Table continues on the next page...

sc3850plat_pacc

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

68 Freescale Semiconductor, Inc.

Benchmark Test Diff %

benchmark-pstone-des_7 -0.39

benchmark-pstone-dhry21_8 5.40

benchmark-pstone-engine_9 0.23

benchmark-pstone-eval2_10 -0.71

benchmark-pstone-g3fax_12 -0.02

benchmark-pstone-pocsag_14 0.27

benchmark-pstone-summin_15 -1.02

benchmark-pstone-ucbqsort_16 0.37

benchmark-pstone-v42bis_17 0.08

benchmark-sc_ffl-find_r16_abs_max_55 6.09

benchmark-sc_ffl-find_r16_abs_max_pos_56 5.12

benchmark-sc_ffl-find_r16_max_57 5.43

benchmark-sc_ffl-find_r16_max_pos_58 5.11

6.2 sc3850plat_pacc, DDR Memory

This section lists the benchmarks for sc3850plat_pacc.

Benchmark Diff %

benchmark-C_OPT_telecom_autcor00_DATA1_19 -3.24

benchmark-C_OPT_telecom_autcor00_DATA2_21 -1.06

benchmark-C_OPT_telecom_autcor00_DATA3_23 1.59

benchmark-C_OPT_telecom_conven00_DATA1_25 -0.29

benchmark-C_OPT_telecom_conven00_DATA2_27 -0.5

benchmark-C_OPT_telecom_conven00_DATA3_29 -0.29

benchmark-C_OPT_telecom_fbital00_DATA2_31 -0.04

benchmark-C_OPT_telecom_fbital00_DATA3_33 -0.29

benchmark-C_OPT_telecom_fbital00_DATA6_35 -0.04

benchmark-C_OPT_telecom_fft00_DATA1_37 4.54

benchmark-C_OPT_telecom_viterb00_DATA1_43 9.34

benchmark-networking_routelookup_54 0.01

benchmark-telecom_autcor00_DATA1_18 -2.5

benchmark-telecom_autcor00_DATA2_20 -0.23

benchmark-telecom_autcor00_DATA3_22 1.9

benchmark-telecom_conven00_DATA1_24 -0.16

benchmark-telecom_conven00_DATA2_26 -0.11

benchmark-telecom_conven00_DATA3_28 -0.19

Table continues on the next page...

Chapter 6 Accuracy Benchmarks

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 69

Benchmark Diff %

benchmark-telecom_fbital00_DATA2_30 -0.02

benchmark-telecom_fbital00_DATA3_32 -1.94

benchmark-telecom_fbital00_DATA6_34 -0.26

benchmark-telecom_fft00_DATA1_36 5.54

benchmark-telecom_viterb00_DATA1_42 3.08

benchmark-telecom_viterb00_DATA2_44 3.09

benchmark-telecom_viterb00_DATA3_46 3.11

benchmark-telecom_viterb00_DATA4_48 3.12

benchmark-mac_hs-mac_hs_exec_3 -0.81

benchmark-pstone-auto_4 -2.32

benchmark-pstone-blit_5 0.16

benchmark-pstone-compress_6 -3.86

benchmark-pstone-des_7 -0.55

benchmark-pstone-dhry21_8 -4.25

benchmark-pstone-engine_9 -1.34

sc3850plat_pacc, DDR Memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

70 Freescale Semiconductor, Inc.

Chapter 7
Speed Benchmarks

Speed benchmark tests were done on a computer with the following configuration:

Windows XP SP2, Intel® Pentium DualCore Processor, 2.4GHz, 1Gb RAM.

NOTE
The performance of various simulator models observed on
Linux machine is lower than on Windows.

Table 7-1. Tests done on ISS and PACC Models

Test src.eld

model sc3850plat_iss sc3850plat_pacc

Windows (Kinstr/sec) 772.2 26.76

Networking Look-Up algorithm.

Route Look-Up is a distillation of the fundamental operation of IP datagram routers:
receiving and forwarding IP datagrams, implementing an IP lookup mechanism based on
a Patricia Tree (or trie).

Table 7-2. Networking Look-Up Tests

Test benchmark-networking_routelookup_54/networking_routelookup.eld

model sc3850plat_iss sc3850plat_pacc

Windows (Kinstr/sec) 1231.5 46.5

Telecom Bit Allocation Transform.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

Freescale Semiconductor, Inc. 71

Bit Allocation benchmark tests the ability of the target processors to spread a stream of
data over a series of buffers, which it then modulates and transmits on a telephone line in
ADSL applications.

Table 7-3. Bit Allocation benchmark Tests

Test benchmark-telecom_fbital00_DATA2_30/telecom_fbital00_DATA2.eld

model sc3850plat_iss sc3850plat_pacc

Windows (Kinstr/sec) 1456.48 58.3

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide, Rev.
10.9.0, 06/2015

72 Freescale Semiconductor, Inc.

Index

A

Accessing Simulators 11
Accompanying Documentation 8
Accuracy Benchmarks 67

B

B4860 ISS MAPLE B3 Support 32
B4860 System on Chip Simulators 29
Benefits 17, 21
Buffer Descriptor (BD) Programming Model 37

C

CCSSIM 22
CGPE Registers 37
combine_dicho 60
Configuration Files 41
Configure B4860 Simulator Options 39
Configure Windows TCP/IP settings 49
Configuring B4860 Simulator 39
Configuring Hardware Port for reading 21
Configuring multiple files for sequential reading 20
CRPE 38

D

DEPE2 34
DL2 36

E

eFTPE2 34
EQPE 35
EQPE2 35
eTVPE2 34
Example 60, 62
Examples 16, 20, 42
Execute net_demo Utility Project 51

F

Flexible Interrupt Scheme 37

I

Import net_demo Utility Project 45
Introduction 7

L

Limitations 18, 22

M

M2 Tests 67
M3 Tests 68
Memory Map 33

O

Overview 7

P

PDPE2 35
PDPE2Rev2 35
Peripherals and Components 27, 30
PSIF3 Registers 34
PUPE2 36
PUPE2Rev2 36

R

Running a Simulator Remotely 23
Running U-Boot and Linux on B4860 Simulator 43
runsim 11

S

sc3850plat_pacc 67
sc3850plat_pacc, DDR Memory 69
Simulator Models for SC3900 Architecture 25
Simulator System Requirements 8
Single Core SC3900 Simulators 25
Speed Benchmarks 71
Supported Simulator Functions 26, 29

T

TCPE Registers 37
tradeoff.pl 61
Tradeoff Analysis with Simulators 59
Tradeoff Constraints 61
Tradeoff Usage 62

U

ULB2 37
ULF2 36
Usage 15, 19

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide

Freescale Semiconductor, Inc. 73

Using CheckPoint Feature 14
Using Hardware Port Feature 18
Using runsim with Simulator 13
Using Traffic IO 45

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Simulator User Guide

74 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, QorIQ, StarCore are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
QorIQ Qonverge is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective
owners. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2007–2015, Freescale Semiconductor, Inc.

Document Number CWSCSIMUG
Revision 10.9.0, 06/2015

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	Overview
	Accompanying Documentation
	Simulator System Requirements

	Chapter 2: Accessing Simulators
	runsim
	Using runsim with Simulator
	Using CheckPoint Feature
	Usage
	Examples

	Benefits
	Limitations

	Using Hardware Port Feature
	Usage
	Examples
	Configuring multiple files for sequential reading
	Configuring Hardware Port for reading

	Benefits
	Limitations

	CCSSIM
	Running a Simulator Remotely

	Chapter 3: Simulator Models for SC3900 Architecture
	Single Core SC3900 Simulators
	Supported Simulator Functions
	Peripherals and Components

	B4860 System on Chip Simulators
	Supported Simulator Functions
	Peripherals and Components
	B4860 ISS MAPLE B3 Support
	Memory Map
	PSIF3 Registers
	eTVPE2
	eFTPE2
	DEPE2
	EQPE
	EQPE2
	PDPE2
	PDPE2Rev2
	PUPE2
	PUPE2Rev2
	DL2
	ULF2
	ULB2
	CGPE Registers
	TCPE Registers
	Buffer Descriptor (BD) Programming Model
	Flexible Interrupt Scheme
	CRPE

	Configuring B4860 Simulator
	Configure B4860 Simulator Options
	Configuration Files
	Examples

	Running U-Boot and Linux on B4860 Simulator

	Chapter 4: Using Traffic IO
	Import net_demo Utility Project
	Configure Windows TCP/IP settings
	Execute net_demo Utility Project

	Chapter 5: Tradeoff Analysis with Simulators
	combine_dicho
	Example

	tradeoff.pl
	Tradeoff Constraints
	Tradeoff Usage
	Example

	Chapter 6: Accuracy Benchmarks
	sc3850plat_pacc
	M2 Tests
	M3 Tests

	sc3850plat_pacc, DDR Memory

	Chapter 7: Speed Benchmarks
	Index

