

Document Number: NWDBGWP
Rev 0
4/2008

White Paper

The New Debugging

Robert Redfield
Green Hills Software

Overview
Are you growing weary of claims of “next generation”, “revolutionary” and “innovative” from embedded software tools
providers? Are you discovering these to be nothing but marketing fluff and re-wrapped features? Need a dose of true
innovation that solves real software development challenges you face while creating software for your i.MX-based
products?

Freescale Semiconductor’s i.MX27 and i.MX31 applications processors enable a new era of software development
tools. It’s a powerful marriage of silicon and software technology that produces hardware trace-assisted debugging and
profiling. It’s The New Debugging.

Contents
1 The Old Debugging 1
2 Introducing “The New Debugging” 1

2.1 You Can’t Fix (Or Improve)
What You Can’t See 2
2.2 I’ve Mastered My Debugger and
Profiler, Don’t Make Me Learn
Something New 2
2.3 Do No Harm 6
2.4 A Thousand Deaths No More 7

3 Components of New Debugging 7

Freescale Semiconductor, Inc. The New Debugging 1

1 The Old Debugging
Before we cover New Debugging, take a look at old debugging. It’s what we do today.

! Day 1: Your colleagues in the test group claim that your work is “acting strangely” and “they didn’t change
anything.” You stop working on some optimization improvements (your manager still wants ten percent speed
improvement) to investigate their claim. You spend time watching the test behavior, check that the test folks
have your latest work and double-check that they are using the same hardware prototype that you used. It’s
different, but a couple calls around the company confirm that it shouldn’t be a problem. Reluctantly, you spend
a day in the test room to determine if the problem is your code or code from other newly integrated
components. You spend the last couple hours of the day researching what these other new components do, at
a high level at least, by looking at the code and calling the authors. The other code, written by your global
counterparts, is not available in source form today. You must wait until tomorrow for their help and hopefully,
source code.

! Day 2: The system works right the first time. Then it fails. Then it just hangs. So, your trusted debugger comes
out. You recompile the application with the debug switch turned on. In the debugger you step through the
source code while the program runs on the target. You perform this repeatedly focusing where you see
something suspicious, but then you realize the abnormality is because your debugger intrudes and changes
the task interaction in the RTOS.

! Day 3: Not only are you not able to locate an obvious problem, but other application functionality changes
because the system now runs more slowly. You recompile again (with the debugging switch turned off) and
carefully apply some printfs. Fortunately, your JTAG connection will support this, but this technique really
interferes with the timing.

! Day 4: Next, you instrument the code to write very small (and arcane) data to a memory location that you can
read with an external device, a logic analyzer for example. Program behavior is fairly consistent in that it now
fails as it does for the test group. It’s difficult to interpret the many trace listings and you can’t add bigger data
dumps. A colleague who is good with low-level debugging and logic analyzers might be able to assist, but you
would need to get his manager’s approval.

! Day 5: You’ve been involved with these kinds of issues before and you know that there will be false hopes,
more people involved and nervous management breathing down your neck. The problem could be bad code in
an interrupt service routine, a time or heat-sensitive hardware error, or memory corruption between software
tasks. If only you could simply stay in your debugger and profiler without slowing down the processor, without
setting up an elaborate test structure, without recompilation and without changing a line of code.

2 Introducing “The New Debugging”
Hardware trace is the first step. It brings non-intrusive visibility into the actual execution of your program through a raw
history of what the microprocessor does as it runs. It may include a list of the instructions that were executed, the
memory that was read or written as well as other information about the state of the processor. On Freescale’s i.MX31
and i.MX27 applications processors, the trace data is collected on-chip in the embedded trace macrocell (ETM) without
slowing down or intruding on the ARM® core. But hardware trace data is only the first portion of the New Debugging.
The second necessary ingredient is a new software technical innovation that automatically transforms hardware trace to
existing tools already known and used by software developers.

2 The New Debugging Freescale Semiconductor

2.1 You Can’t Fix (Or Improve) What You Can’t See
Studies show that 50 percent of product development time is spent in debugging. We debug code to either make it 1)
work correctly, or 2) work better (optimize). In either scenario, the more visibility you have into exactly what the code is
doing on the processor in real-time, the better.

Debugging code has evolved, of course. Our predecessors patched cables and watched blinking lights. Then came
program punch cards, CRTs for looking at the mountains of assembly, single-line source level debugging, full program
source level debugging with fancy windows, and finally multi-threaded multi-core debugging. However, today’s
debugging and analysis is essentially a repeated trial-and-error experiment observing veiled symptoms and side effects
of your code’s operation. In 2003, the next debugging step arrived: hardware trace-assisted development tools.

Table 1. Debugging and profiling methods available today

Debugging/profiling
technique

Visibility into code and processor operation Changes program behavior?

Run your application None No

Profiler Fair to good but performance is averaged across
iterations which hides spikes and valleys, often
evidence of a bug

Some

Debugger Excellent Yes: halts processor or
requires intrusive run-time
monitor

Printfs Limited amount of data; requires source code Yes, and requires
recompilation

Logic analyzer and software
trace listings

Lots of raw data but not easy to understand with
respect to your code

No

Hardware trace-assisted Excellent None

2.2 I’ve Mastered My Debugger and Profiler, Don’t Make Me Learn Something New
Hardware trace has been available on some embedded microprocessors for nearly ten years and logic analyzers have
been widely available even longer. Why haven’t they been widely adopted by embedded software teams?

! Raw trace listings are difficult to use and understand with respect to the application

! Requires training and the mastering of another expertise

! Expensive hardware

Early trace tools did not translate the raw trace data output by the processor into the high-level software concepts that
software engineers use to construct their programs. Rather, most tools simply display a list of the instructions that the
processor executed and force the software engineer to manually sift through thousands or millions of instructions. Thus,
most software engineers only take advantage of trace tools when they have exhausted all other debugging techniques.

Freescale Semiconductor, Inc. The New Debugging 3

Figure 1. A traditional trace listing shows thousands or millions of instructions that are difficult to use in the
normal debugging cycle. Sophisticated triggers to filter the data are helpful, but require tedious trial-and-
error.

On Freescale’s i.MX31 and i.MX27 applications processors, hardware trace data can be captured, transformed and fed
to several tools already familiar to software developers.

In the trace-assisted debugger, called TimeMachine, you simply step forward and backward through your code, set
breakpoints (forward or backward in program execution), look at variables, registers, call stacks and memory locations
in the same way you always do with a traditional debugger. This is one component of the New Debugging.

A traditional profiler profits greatly when trace-assisted because its biggest drawback, intrusion, is eliminated.
Traditional profilers give you statistical information about how often each part of your program ran. This data is collected
by either periodically sampling the program counter or by instrumenting the object code. An array of the program
counters is incremented for each program location as it is encountered. This raw information is then correlated to the
time spent in each task, function and source code line in your program.

However, this information comes with costs that often disqualify it as an everyday debugging tool:

! A traditional profiler halts your system periodically to sample the program counter or modifies your executable,
thereby changing the behavior of your program

! Storing the profiling information on embedded systems is often a challenge because either additional memory
or a way to transmit this information as the system runs is required

! Your code size may be increased, potentially making it too large to fit into the limited memory available on
many embedded systems

! Samples are averaged, veiling the actual code performance

4 The New Debugging Freescale Semiconductor

Figure 2. A debugger with reverse execution. Note the
blue arrow icons on the top of the debugger that are

the reverse execution equivalent of the traditional
(forward) green arrow icons. Other than that, it’s the

same debugger with the same features that you’re
already comfortable with.

Here’s an example showing how statistical sampling
veils the view of actual execution from you. If a
function executes 100 times, taking 100 cycles for 99
times it’s executed, and then taking 10,100 cycles the
final time, the traditional profiler will say that the
function takes an average of 20,000/100 = 200 cycles
per call. The one unusual run that took 10,100 cycles
is veiled and chances are good that your bug is
associated with that one unusual run.

In contrast, trace-assisted profiling removes these drawbacks
because the data has these characteristics:

! Collected in real-time

! Does not slow down the processor

! Does not require instrumentation

! Samples are not averaged

As we’ve seen, you gain unprecedented visibility into your
code through a trace-assisted debugger and profiler.
However, the i.MX trace data now enables two more powerful
views of execution.

PathAnalyzer shows a graphical view of your program’s call
stack over time and over number of instructions. Because the
data is graphically represented and time stamped, anomalies
often arise in unexpected areas of your code. For example, a
developer uses iterative calls to perform a routine
quicksort_r and observes that the application suspiciously runs much faster than expected. Why? She scans the
PathAnalyzer graph, shown in Figure 4. It shows her that the sorting took 6,200 instructions. She then sees something
odd in the quicksort region. Each inverted orange peak (red X) marks a sorted item in the list, and she sees far fewer
of these than expected. That’s her clue. She clicks one of the peaks, which puts her in the debugger at that exact line of
code and execution point. She views variables and memory, steps backward, views them again and solves the problem.

Figure 3. Trace-assisted debugging lets you see registers, variables and call stacks at any point in
execution.

Freescale Semiconductor, Inc. The New Debugging 5

As with the trace-assisted debugger and profiler, there is no processor intrusion, recompilation or instrumentation
necessary.

Figure 4. The PathAnalyzer shows the function stack (y-axis) versus time. The graphical representation
often reveals software flaws not visible in a debugger or profiler.

Another new trace-assited view into your application shows RTOS tasks, kernel calls, context switches, semaphores
and more, versus time. It’s called EventAnalyzer. As with PathAnalyzer there is no processor intrusion, recompilation or
instrumentation and you can go forward and backward in program execution. EventAnalyzer is especially powerful for
multicore applications running multiple tasks.

6 The New Debugging Freescale Semiconductor

Figure 5. The EventAnalyzer charts RTOS-level events (y-axis) versus time. Shown here is an RTOS
semaphore.

2.3 Do No Harm
Software trace and code instrumentation that produce software trace logs have been around a long while. This type of
instrumentation is effective for certain applications but hardware trace has several advantages and no downside,
especially for embedded systems.

First, software trace requires you to instrument your code. If you have an existing code base that does not have trace
instrumentation, it will take days of trial-and-error to find the right locations, the right values and right volume of
reporting. If you neglect to instrument some functions, you may spend a good deal of time investigating the wrong
cause of your bug. And what if you don’t even have source code available?

A second advantage of hardware trace is that it often has the ability to provide data values along with each instruction
that is executed. This allows you to see the values that caused the program to take the incorrect execution path, which
gives you more insight into what caused the problem and how to fix it. While you can certainly log values with software
trace, it is impractical to log more than a few. If a bug occurs and you did not instrument one necessary value, then you
may not be able to find the cause of your bug.

Finally, the most important advantage that hardware trace data has over instrumentation, especially for embedded
systems, is that it does not require changing any aspect of your program to collect the data. This is vital for applications
that may involve timing errors, interrupt latency issues or other bugs that only appear in certain combination of events.

Freescale Semiconductor, Inc. The New Debugging 7

Additionally, it is often impractical to instrument code in interrupt handlers or other timing-sensitive code. In nearly all
high-reliability applications, you must certify and test the final code without any instrumentation, and software trace
almost certainly cannot be enabled in production code, making it impossible to use software trace to track down bugs
that appear in the production version of the code.

2.4 A Thousand Deaths No More
One of the insidious traits of debugging without trace is the need to repeatedly run the program in order to reproduce
the problem within the debugger or custom test harness.

Some bugs take several minutes, hours, or even days to reproduce. Other bugs don’t even repeat reliably and you
must try certain sequences many times in trial-and-error fashion. If you step past the bug in the debugger, you have to
start all over again. In contrast, New Debugging captures the bug (and your program state) at the time of execution and
stores it away for you. You then use the trace-assisted tools to zero in by running backward and forward until you see
the issue and then, the bug itself.

3 Components of New Debugging
The main components of trace-assisted debugging on the Freescale i.MX31 and i.MX27 applications processors are:

Hardware

! i.MX27 or i.MX31 ADS board

! SuperTrace Probe

Software

! MULTI™ IDE

! TimeMachine™ Debugger, Profiler and PathAnalyzer

! EventAnalyzer

For more information, visit the Green Hills website at www.ghs.com.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008.

Document Number: NWDBGWP
REV 0

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

 Information in this document is provided solely to enable system and software implementers
to use Freescale Semiconductor products. There are no express or implied copyright
license granted hereunder to design or fabricate any integrated circuits or integrated circuits
based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor
the rights of others. Freescale Semiconductor products are not designed, intended, or
authorized for use as components in systems intended for surgical implant into the body, or
other applications intended to support or sustain life, or for any other application in which
the failure of the Freescale Semiconductor product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Freescale Semiconductor
products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that
Freescale Semiconductor was negligent regarding the design or manufacture of the part.

