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Overview
Freescale’s Smart Speed technology architecture is an intelligent integrative approach that uses hardware 
accelerators to offload the CPU and a Smart Speed switch to bring parallelism to the system. The 6x5 Smart Speed 
crossbar switch nearly eliminates wait states. This results in fewer effective cycles per instruction (eCPI) required, 
enabling Freescale Mobile eXtreme Convergence (MXC) cellular architecture and i.MX applications processors to drive 
equivalent performance to processors with higher clock speeds, but without the power consumption penalty that goes 
with higher operating frequencies. This paper discusses the theory and implementation of Smart Speed technology, 
including how the eCPI measurement can be used to compare the true processing speeds of very different processor 
architectures.  
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1 The Portable Power Problem 
Historically, processor technology has been driven by wired devices such as the personal computer. Cranking up 
processor clock speeds was once adequate to support new applications and hardware, although these higher clock 
rates greatly increased the need for power. As mobile devices began to surge in popularity and capability, many silicon 
providers took the same “speeds and feeds” approach to mobile solutions, but at great expense: users could never 
travel too far from an alternate energy source because battery life was too short. With the rise of mobile computing, 
handheld devices have taken the lead in driving new processor technology. Semiconductor manufacturers’ attention 
has now turned to delivering better performance with minimal power drain.  

As wireless handheld devices once only thought about in science fiction become reality, the capabilities of 
architectures—not the speed of their clocks—will be the key to increased functionality. Consider that the computing 
capability that required a room full of machinery less than 30 years ago can easily fit in your pocket today. Cell phones 
today can replace laptop computers, just as laptops are replacing desktop computers. But to move mobile capabilities 
forward for the next 30 years, design philosophies must change, or else our pocket-sized mobile devices will become 
wired once again to large packs of energy and cooling equipment.  

To achieve this goal, Freescale Semiconductor decided to rethink processor architectures. From the transistor level to 
memory accesses, software builds and power-saving modes, innovative thinking and engineering resulted in 
processors with Smart Speed technology. These processors enable wireless mobile devices to deliver longer play 
times with the level of performance to drive power-hungry applications, such as videoconferencing and 3-D gaming. 

2 Device Capabilities: Power Curve Relativity 
Because batteries have only improved their capacity about five percent every two years [1], mobile devices need to 
become more power efficient in every product cycle. Factors that can greatly change the power curve include these 
system changes:  

•  Efficient architecture 

•  Efficient design 

•  Intelligent power management solutions 

•  Energy management systems 

Figures 1a, 1b and 1c illustrate these necessary changes. Figure 1a shows the energy gap between the battery and 
capabilities based on using a traditional architecture and just increasing the clock speed, while still using the same 
battery. Figure 1b shows the energy gap based on the system changes for efficient energy management listed above. 
As these figures show, the challenge is to build a solution that is more in line with the available energy capabilities. The 
two to five percent energy source increase from improving battery technology slightly decreases the burden. However, 
Figure 1c shows that ever-faster over-the-air speeds are enabling new power-hungry features such as mobile TV and 
broadcast multimedia. At some point, traditional power architectures may not be able to keep up with the features that 
the mobile marketplace demands.  

This paper will concentrate on some of the architectural and design aspects used to close the energy gap. The 
expectation to continually add features without making large demands on the available energy source requires a 
dramatic paradigm shift from “speeds and feeds” design to Smart Speed technology. 
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Figure 1a: Energy gap based on system, battery and features without Smart Speed technology 
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Figure 1b: Energy gap targets based on Smart Speed technology implementations 
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Figure 1c: Performance and energy requirements needed for mobile applications 
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3 Processing Elements: Choosing an Architecture 
Microprocessors generally have been measured solely on clock speeds—kilohertz, megahertz and gigahertz. When 
processors were still fairly simple machines, this measure was close enough. Unfortunately, using clock speed as a 
measurement has long been outdated, and a new measurement is necessary. 

If the same architecture is used between two devices, measurements such as clock speed (MHz) and instruction count 
(MIPS) are practical. But the diversity of portable products being designed will place many limits on those designs. As 
designs change with new innovations, the measurement must reflect the benefits of the innovations relative to previous 
offerings. The measurement of Cycles per Instruction (CPI) has been applied to measure dissimilar architectures. But 
even this technique falls a bit short.  

This paper expands upon the proposal to add a minor modification to the CPI metric—using Effective Cycles per 
Instruction (eCPI) to measure the differences between architectures [9]. To show how eCPI works, we will use three 
different popular architecture types to demonstrate how the comparisons can be done, with results of the differences 
measured for some popular use cases. 

3.1 General-purpose Processor Approach 

Architecture A uses the philosophy that a general purpose processor is the heart of the system. To make the system 
faster, the clock needs to be turned up. Without going into details, as the clock speed rises, the amount of processing 
accomplished does not increase linearly; therefore, the eCPI does not tend to lower linearly. So, to make a processor 
that halves the eCPI, for example, the clock speed may need to rise by a factor of 2.5. And, to make further speed 
improvements, the internals may need to change dramatically to support the same instruction set architecture (ISA).  

The big benefit, though, is the ease of backward compatibility. Since the same instructions are used, we only need to 
change application software if there are problems introduced due to timing. In many cases, the architecture can handle 
that. The result of running the software can produce the data for the metric, where one would need to measure the 
number of clock cycles used and the number of instructions needed to create the application. We can obtain the 
numbers using a simulator or development system, and this can lead us to the eCPI measurement of architecture A. 

eCPIA = 
)(#
)(

AnsInstructio
AsClockCycle

3.2 Two-processor Approach 

Architecture B adds a second general purpose processor to the system. A general purpose processor for this purpose 
can consist of either a RISC- or CISC-based processor or a DSP. Since there are many types of general purpose 
execution units (GEU), they will require the instructions for the software to run, as well as the data, to be retrieved from 
memory. Some are more efficient than others, and as we mix and match we can begin to see the benefits of using 
eCPI.

In general, RISC machines will require more instructions to execute a job, and therefore are a good choice for the 
baseline architecture for determining the number of instructions it takes to perform a task. However, this is more to make 
the measurement graphs look nicer—the baseline can be obtained from any of the architectures. The key is to use a 
consistent baseline. To determine the baseline, simply run the task on the chosen baseline GEU, and record the number 
of clock cycles used as well as the number of instructions.  In the case of architecture B, the task should be rewritten to 
take advantage of the two GEUs. Though this will introduce additional overhead for inter-processor communication, this 
should allow the task to be performed more quickly (although there are cases where this is not true). Since architecture B 
is now introducing some level of parallelism into the system, by taking the measurement of the number of clock cycles 
we can determine the relative eCPI of architecture B. The eCPI of architecture B can then be calculated to measure 
against architecture A. 

eCPIB = 
)(#
)(

AnsInstructio
BsClockCycle
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3.3 Specialized Execution Unit Approach 

In the design of architecture C, it was decided to introduce specialized execution units (SEU) in order to run the task 
more efficiently. Specialized execution units have the advantage of needing little to no instructions transferred from 
memory, and are more efficient at using memory for performing a task. They also use less power than GEUs in 
performing the task, thereby dramatically increasing the overall performance of the architecture. Architecture C also 
offers the benefits of parallelism that architecture B was able to achieve, but in most cases with less inter-processor 
communication. Again, as we did for architecture B, we rewrite the code to take advantage of the one or more SEUs 
added to the system, run the task, and record the number of clock cycles needed to perform the task. As we have done 
with the previous architectures, we can find the eCPI of architecture C. 

eCPIC = 
)(#
)(

AnsInstructio
CsClockCycle

3.4 Comparing eCPI Measurements 

Once we have computed the eCPIs of the architectures, we make a simple comparison where the lower number is 
best. In general, eCPIA would be closer to the 1.2 to 1.7 range. Most RISC processors for portable hardware fall into 
that range. Although most processors will tout that an instruction is completed each clock cycle, the eCPI will take into 
account the need to stall the pipeline based on requiring data from a previous instruction, and the need to wait for 
instructions and data to be retrieved from memory. Architecture B should allow for an eCPI closer to 1 to be achieved, 
though this depends on the ability to split the task among the multiple GEUs. Use caution here: if you use 
multiprocessor computing systems built with GEUs of the past as a benchmark, the use of more than four processors 
typically marked a point of diminishing returns for processing capabilities for generic operating systems, and much care 
is needed to ensure that the memory subsystem will be able to feed the processors. Beyond that, the inter-processor 
communication outweighed any gain of adding a GEU. This rule of thumb can be changed when the application and 
architecture is specifically tuned, but may not show a benefit in a general computing environment. This can be seen as 
many tasks reach diminishing returns at three processors. In a majority of cases, architecture C can achieve an eCPI of 
well below 1. This can be accomplished because architecture C lowers the number of memory transactions and can 
more efficiently handle the task being performed. Unlike the RISC or DSP architecture, it is tuned to the task and will 
therefore perform more of the needed computation per clock cycle. 

The eCPI measures the efficiency of the architecture for the given task, but in creating a portable design, you must take 
the clock speed into account relative to the eCPI. If the eCPI of architecture A is 1.5, and the eCPI of architecture C is 
0.25, it may be possible to use only 1/6th the MHz rating for architecture C to equal the speed of architecture A. One still 
needs to take memory speed requirements into account, but in general this comparison shows how MHz and MIPS are 
impractical methods of measuring different processors. 

A proof point of this compares architecture A with architecture C; this shows the effectiveness of the approach most 
quickly.  From MPEG4 tests, it has been measured that the decoding of a stream on a RISC-based processing element 
takes about 217 million cycles to run 138 million instructions [3]. It has been further shown that a larger clip in software 
on the GEU takes about 2.644 seconds at 266 MHz, or 703.30 million cycles. The number of instructions would change 
linearly, thus requiring 447.26 million instructions.  

3.5 eCPI Measurements in Freescale Processors 

The same case was run on the Freescale i.MX21 applications processor integrating a Hantro MPGE4 hardware 
decoder, where the use case was completed in about 0.5 seconds or 133.00 million cycles [4]. The SEU was actually 
only running at 133 MHz in the system, and not the 266 MHz execution speed of the GEU. However, since eCPI 
measures the system or SoC cycles, the same measurement point in the system should be applied, and therefore the 
0.5 seconds are multiplied by the 266 MHz used as the measuring point in the previous case. 

Smart Speed Technology: Driving the Mobile Future
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Table1: eCPI measurements based on MPEG4 decode use case 

Architecture A Architecture C 

Cycles required (millions) 703.30 133.00 

Instructions executed (millions) 447.26 447.26 

 03.0 75.1 IPCe

Equation 1: Effective MHz rating of Architecture C with SEU for MPEG4 decode 

1.57 (eCPIA) / 0.30 (eCPI C) * 266 MHz = 1392 MHz (equivalence) 

Using this use case, it can be shown that the i.MX21 SoC has the same capability of a 1.4 GHz GEU. Of course, the 
i.MX21 processor has additional SEUs that incorporate capabilities such as video pre- and post-processing and video 
encoding, that when used all together would rival GEUs of much higher MHz ratings. In addition, this use case does not 
recognize that the CPU is essentially idle, so yet more processing can be done in parallel, without an impact to the 
cycles required, though the number of instructions executed could increase greatly. It also shows that since the duty 
cycle can be decreased to 20 percent, the system can be put into low power modes to save energy. Within Freescale’s 
Mobile eXtreme Convergence (MXC) and i.MX families of processors, many SEUs are added to decrease the eCPI of 
the system, for functions such as video pre- and post-processing, video processing, graphics and baseband functions. 
The ability to provide parallelism in the system using a combination of GEU and SEU for performance and flexibility aids 
these families of products to close the energy gap for the capabilities required in mobile consumer devices. 

This analysis can be extended further as newer family members have superior capabilities than that of the i.MX21 
processor. The i.MX31 applications processor, for instance, has the ability to encode VGA MPEG4 video, and the 
MXC91321 and i.MX21 processors also have the ability to encode CIF MPEG4. Using the same method as before, we 
develop Table 2, based on CIF encoding. It has been measured that for an encode case the CPU can perform about 
311 million instructions in 421 million cycles. This is based on a QCIF video encode that would use the on-chip cache 
more efficiently than would be the case for a larger CIF video used in the follow-on measurement, thus skewing the 
eCPI of architecture A downward. Even with this change in the favor of Architecture A, we can see the benefit of the 
SEU as shown in Table 2 and Equation 2. 

Table 2: eCPI measurements based on MPEG4 encode use case 

Architecture A Architecture C 

Cycles Required (millions) 2797.26 313.88 

Instructions Executed (millions) 2066.38 2066.38 

 51.0 53.1 IPCe

Equation 2: Effective MHz rating of Architecture C with SEU for MPEG4 encode 

1.35 (eCPIA) / 0.15 (eCPI C) * 266 MHz = 2394 MHz (equivalence) 

As can be seen from this more complex use case, the benefit of an architecture like Architecture C is that its 
performance is equivalent to a 2.4 GHz CPU.  Going to higher video encoding capabilities would further increase the 
difference in eCPI, thus demonstrating a much more efficient architecture for this use case. In addition, steps to 
increase the video quality that are optional for MPEG4 have been added to the hardware in the i.MX31 such as 
deblocking and deringing along with the needed color space conversion. These would further increase the difference in 
eCPI, resulting in a much higher equivalence rating. Using all the SEUs within each processor of the MXC and i.MX 
family would greatly enhance the overall equivalence ratings when used in parallel. 

In addition, it can be seen that even more generic, programmable SEUs can achieve a similar benefit. For this, a test 
based on a floating point intensive routine run on the ARM11™ simulator was created [5]. The test used the Color 
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Space Conversion equations as defined in [6] to generate the needed C floating point routines. The input and output 
was fairly minimal to concentrate more on the floating point routines. This allows for the output to be essentially generic. 
Once you have a percentage of the code that would use the routine, you can get the overall benefit of the addition of 
the floating point unit by multiplying the percentage of the code receiving the benefit by the inverse of the percentage 
increase, and add back the percentage of the code which did not receive the benefit. From the example of data 
obtained from this test case, it can be seen that the additional floating point hardware gave an 825 percent performance 
improvement over floating point software. If 50 percent of the code in a test case is floating point-intensive, the benefit 
can be obtained by using Equation 3 and the data of Table 3. 

Table 3: Summary of improvements over software floating-point [5] 

Improvements over floating-point software Floating-point hardware 
improvement percentage 

Fixed-point software 
improvement percentage 

  % 738  % 528 selcyc noitacilppA

 * % 397  % 5251 selcyc noitaluclac tniop gnitaolF

Instructions issued for floating-  * % 329 % 3222 snoitaluclac tniop

 % 88 % 38 sgnivas ygrene noitacilppA

 *% 88 % 19 sgnivas ygrene noitaluclac tniop gnitaolF

 % 61 % 61 sgnivas tnirptoof yromem edoC

 .nim 021~ .nim 51 emit tnempoleved edoc citemhtirA

* Results are not just isolated arithmetic, but also contain I/O requirements for use of the data structures, as opposed to the

calculations used for floating-point arithmetic. 

Equation 3: Use case improvement percentage calculation 

)()1(
PercentCodeImproved

PercentCodeImproveddtCyclesUseCasePercen +–=

So, for a system that is 50 percent floating point-intensive, Equation 3 would show: 

)
%1525

%50
(%)501( +–=dtCyclesUseCasePercen

%53%)3(%)50( =+=dtCyclesUseCasePercen

For this use case, the number of effective cycles is held constant to compute a relative CPI of this use case, which 
would be 0.53. From the tests, it was shown that the test code used 24.3 million cycles to perform 19.8 million 
instructions. This gives the CPU-only architecture an eCPI of 1.23. The CPU with floating point was based on 2.9 
million cycles for an eCPI of 0.15, which equates to the ImprovementPercentage of 1525 percent as shown in the table. 
So the use case from a 50 percent floating point-intensive algorithm would only use the 53 percent cycles, using either 
measurement method. This allows for the eCPI to be calculated by multiple means. 

From the examples shown, we see that SEUs can be either hardwired state machines or programmable engines to 
achieve a benefit. Neither of the cases shown really took advantage of parallelism, but it can be deduced from the final 
test that if the floating point unit is used in parallel to the CPU, the 50 percent CPU usage would be the dominating 
factor, and could drive the CasePercentCyclesUsed to be 50 percent. 

Smart Speed Technology: Driving the Mobile Future
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4 System Parallelism: Effective Communication between 
Execution Units 

In looking at the eCPI, parallelism in the system was briefly discussed. In the previously defined architectures, there are 
various levels of system parallelism that can be taken into account. In the case of architecture A, the GEU will most 
likely be a pipelined architecture. For example, if it is a RISC processor, it may likely have fetch, decode, execute, 
memory and write stages. Each stage performs its portion of the task while all the other stages perform their portion. 
The processor can effectively perform five parallel functions, one for each stage. Other GEUs may have more pipeline 
stages, further increasing the parallel capabilities. Once the pipeline is filled, the processor should be able to complete 
an instruction each clock cycle. Of course, if the pipeline needs to be flushed, as may happen for a branch instruction, 
the penalty of having to refill the pipeline will occur. This same kind of parallelism can also happen within an SEU. But 
of course, parallelism within either the GEU or SEU is just scratching the surface. 

A greater benefit of parallelism is that once multiple execution units (EU)—which can be either GEUs or SEUs—are put 
in a system, tasks can be completed much more quickly and efficiently. Multiple pipeline stages are effective for 
increasing system clock speed, since less of the computation is performed within the shorter amount of time, but the 
best that can be hoped for is still one instruction per clock cycle. Multiple EUs takes us to the next level where it is 
possible to complete more than one instruction per clock cycle, and thus achieve an eCPI of less than one as shown in 
the eCPI calculation above. But having the execution units in the system alone is not enough to ensure that all the EUs 
are functioning to full potential. 

In order to achieve the full potential of the various EUs, a system structure must be created to support such a system. A 
bus structure that only allows a single transaction at a time can cause the other EUs to sit idle in wait states, defeating 
the point of having multiple EUs. To gain the benefits of parallelism, the bus architecture must be built to support 
parallelism. There are a variety of methods to accomplish this goal, one of which is to add a crossbar switch, which 
creates point-to-point access between bus masters and slaves. The crossbar switch allows all of the items connected 
on one side (master side) to talk to all of the items connected on the other side (slave side). This allows for multiple 
transactions to occur simultaneously—up to a number that matches the side with fewer connections. So, if the bus 
speed is set to 133 MHz, and the crossbar switch supports up to five simultaneous transactions, the crossbar can 
achieve the effective throughput of a 665 MHz bus. This in turn allows the EUs to consume more data, thus realizing 
and optimizing the benefits of multiple execution units. 

Other bus topologies can also be implemented to achieve parallelism. An easy, but in many ways less efficient method 
is to introduce multiple buses within the system. The architect should take great care to ensure items that need to 
transfer data to each other most often share the same bus. But that tends to be difficult, so to make it more efficient, the 
multiple buses can be configured into a mesh network. This allows for multiple paths to be created among various EUs. 
By necessity, this topology also adds overhead to ensure the best possible data path is chosen based on distance and 
load. The maximum speed of the mesh network can be calculated by adding the total number of networks that make up 
the mesh. This method of calculation is accurate only if the transactions are connected on the same network. It may be 
invalid if a perpendicular network is also used to enable data to reach its destination, since this is now using more than 
one network of the mesh to transmit the data. For instance, from Figure 2 b, transactions across W-A, Z-B, Y-C, and X-
D will allow four simultaneous transactions, but once a connection such as A-B, C-D W-X and Y-Z is used, only two 
simultaneous transactions are possible. Using perpendicular networks decreases the total possible throughput and 
makes the routing more complex. 

Smart Speed Technology: Driving the Mobile Future
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Figure 2: Networking topologies supporting parallelism 
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Along with the single bus, these are just building blocks that can be used within a system. The system may contain 
multiple instances of these depending on need and the ability to isolate the data between the various execution units. 
Key to greater parallelism is to make sure the EUs that exchange data most have a clear path with as few interruptions 
as possible. 

Of course, the true potential of the bus topology depends upon limiting how many EUs are requesting the services of 
the same EUs or other resources. This is especially true for the resource that is the interface to the memory subsystem. 
Clearly, in a system that is using multiple I/O devices, a bus topology that supports parallelism greatly improves the 
total system throughput, having the greatest effect on lowering the overall eCPI. 

5 Extending Battery Life in Your Portable Design 
Unlike other systems, portable designs need to take into account a limited energy source. Battery life is critical, and if it 
is not being enhanced by the choice of EUs in the architecture, then adding certain EUs can be counterproductive. One 
of the things to look at is the overall affect on the following power equation: 

fcvP 2=

As we see from the power equation, the easiest way to lower the overall power requirements without having to change 
the process technology which would change the capacitance (c) and voltage (v), is to lower the frequency (f ) of the 
system. This can also result in less heat being generated by the device, allowing the portable design to forgo heat sinks 
and fans. As we have seen, this can be done as we add EUs to the system and gain parallelism. As this is being done, 
it is necessary to find out what benefits are gained by adding the EUs with respect to the amount of energy that can be 
saved. The problem faced is how one can estimate the benefits with respect to energy even before the various EUs are 
available to put into conventional power measuring tools. This can be considered at the silicon level of the processor, or 
at the board level when designing a portable solution. To obtain a good relative measurement, the following equation is 
proposed to find the percentage of energy savings an EU can provide. 

%100*)))1(*
1

(1( Y
X

rgySavingsPercentEne +–=

In this equation, X is a cycle reduction multiplier, and Y is the additional logic adder. The best way to see how this 
works is to give an example. If we take a GEU and want to add an SEU to the system, we can run test cases to see 
how much performance improvement can be obtained. By running the case in the GEU, just as we did to find the eCPI 
of architecture A before, we can get a baseline. We can then run the case as we did for architecture C with the SEU 
and find the performance improvement. Again, we can use the data from Table 3 for this use case. When this was done 
for a test that had heavy floating point content, it was found that the GEU alone required about eight times the number 
of clock cycles to process the given task than what was required when the SEU was added, making X equal to 8. 
Assuming that adding the SEU to the system will add a logic block about a third the size of the GEU to perform the task, 
Y will equal 0.33. The numbers can then be plugged into the equation. 



Freescale Semiconductor, Inc. Smart Speed™ Technology: Driving the Mobile Future 9 

%38.83%100*)))33.01(*
8
1

(1( =+–=rgySavingsPercentEne

So, by adding the SEU to the system and performing tasks that used the SEU, the overall energy saving estimate is 
about 83 percent, even though the overall size of the silicon was increased. After building the system, it was found that 
the computational savings of the SEU was closer to 11 times using the GEU, resulting in an even greater energy 
savings. But with the SEUs not being used all the time, and the total amount of silicon being added, care must be taken 
so that the benefits of multiple EUs in parallel are achieved without wasting energy. To do this, multiple power saving 
modes can be implemented in the system to ensure peak performance is realized, with minimal energy consumption. 

Since we have a limited energy source to consume in a portable design, we can use different power saving techniques to 
extend the useful time of the portable design. Part of this is to use fast transistors in the critical speed path of the design,
but use low-power transistors wherever possible to achieve power savings. An active well-biasing technique can be 
incorporated so that the transistors can achieve the best power for the performance needed. When the transistor is 
needed for speed, it will usually incur a larger energy leakage; otherwise, it can be tuned to save leakage energy. Active 
well-biasing is the technique that allows this to happen automatically, resulting in an efficient use of energy. Other 
techniques include creating separate power domains within the design, so that the areas that are not being used at the 
current time may be shut off. For example, when an SEU is added to the system, it may not be used all the time. When 
not in use, the power to that portion may be shut down in order to achieve the desired energy savings.  

Another option is to use less power to a subsystem. For example, since the GEU is not needed as much because of the 
abilities of the SEUs that have been added to the system, the voltage and frequency of the GEU may be lowered, thus 
requiring much less power. Of course, since the SEUs allow the system to complete the job more quickly and efficiently, 
the processor may not be needed all the time, so the entire processor may be powered down. 

These techniques have been implemented in various MXC and i.MX processors from Freescale. In [2,7], more data can 
be found on the accompanying power management solutions that make up the full solution for energy-efficient solutions 
for mobile devices. This includes the hardware to provide the power and switch between the voltages needed for the 
various power states, including powering down the various domains and switching the frequency as needed. In 
addition, Freescale’s eXtreme Energy Conservation [8] software enhances the overall efficiency of the system by 
adding configuration and control of the energy management. 

6 Smart Speed Technology: Tying it All Together 
Now that the groundwork has been laid, we see what Smart Speed technology means. Instead of the old way of 
thinking, of just building a processor with a faster clock to get speed, the speed is now determined by the set of tasks to 
be performed. From the set of tasks, it can be determined which EUs are needed to make the system work more 
efficiently. One principle of Smart Speed technology is to have a system that works smarter, not harder. By using 
efficient (and possibly) multiple EUs in the system, we can achieve this principle. But even efficient EUs aren’t enough if 
they are in a wait state.  

The second principle of Smart Speed technology is to have the various EUs working in parallel. As we saw before, 
pipelining is one method of parallelism. When using multiple EUs to perform a task, another level of parallelism is 
invoked to make sure the various portions of the task are broken down. This is to ensure that the EUs can be used in a 
parallel fashion, instead of them doing a task and shutting down while the next element is performing the next step of 
the task. Otherwise, we are defeating the purpose of having the multiple EUs. Another key aspect is being able to feed 
the multiple EUs in the system with an efficient bus structure. The common shared bus is not efficient, because multiple 
EUs are trying to send the data between themselves. As we have seen, other bus structures such as the crossbar or 
mesh allow for true system parallelism to happen. 

The third principle of Smart Speed technology introduced here is efficient energy use. As we have seen, we can easily 
show the performance gain in the system by measuring the eCPI of the solution, but in addition, we can estimate the 
power savings that can be gained by adding the EUs. We can now make tradeoffs between power and performance at 
early stages of system design to maximize the resources that the portable design can use. Once resources are 
maximized we can apply other power saving techniques such as power gating, dynamic voltage and frequency scaling, 
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and active well-biasing to ensure efficient utilization of the limited energy source. This results in “performance with 
stamina”—higher performance with longer usage time. 

6.1 Smart Speed Technology in a Nutshell 

The paradigm has forever shifted from running the clock faster to achieve performance. “Performance with stamina” is 
now the mantra. Smart Speed technology is driving the industry toward processors that optimize mobile device 
performance and maximize battery life. 

Smart Speed can be summarized in these three principles: 

•  Work smarter, not harder. 

•  Use parallelism instead of brute force. 

•  Use the limited energy source efficiently. 

By using these simple principles, Smart Speed technology can enable portable devices to run longer, retain smaller 
form factors and support more innovative applications without substantial increases in battery power. A shift in thought 
away from raw power and towards intelligent use of resources is critical to support the current and coming generations 
of small, smart wireless devices.  
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8 Further Reading 
The authors suggest the following books for further reading. 

System Design: A Practical Guide with SpecC, by Gerstlauer, Dömer, Peng, and Gajski, available from Kluwer 
Academic Publishers. 

SpecC: Specification Language and Methodology, by Gajski, Zhu, Dömer, Gerstlauer, and Zhao, available from Kluwer 
Academic Publishers. 

Computer Organization and Design: The Hardware/Software Interface, by Patterson and Hennessy, available from 
Morgan Kaufmann Publishers, Inc. 
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