

AN10995
LPC1100 secondary bootloader

Rev. 1 — 13 October 2010 Application note

Document information
Info Content
Keywords M0, LPC1100, IAP, Bootloader, XMODEM-1K

Abstract This application note and associated example source code demonstrates
how to create a secondary bootloader for a LPC1100 Microcontroller.

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 2 of 13

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20101013 Initial version.

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

1. Introduction
All devices within the LPC1100 family of Microcontrollers contain on-chip flash memory
for the storage of application code and data. There are a number of mechanisms built
into these devices that allow the contents of this memory to be updated in the field:
• In-System Programming (ISP) - Allows reprogramming of the on-chip flash memory

using the devices primary bootloader and UART0. The primary bootloader is
firmware that resides in the Microcontroller’s ROM memory and is executed at
power-up or when the device is reset.

• In-Application Programming (IAP) - Functions contained within the ROM allow the
on-chip flash memory to be programmed or erased under control of the user’s
application.

• Serial Wire Debug (SWD) – The on-chip flash can be reprogrammed using the 2-pin
debug interface.

In addition to these mechanisms a secondary bootloader can be created. This is a piece
of software, residing in on-chip flash, which allows new application code to be
downloaded using interfaces other than ISP/UART0 or SWD.

This application note describes how to create a secondary bootloader for the LPC1100.
An example is provided that uses UART0 and the XMODEM-1K protocol to download
new application firmware. Note that the software has been designed so that it is easily
modified to use a different interface/protocol.

2. Background
This section presents background information about the LPC1100 that is relevant to the
operation of a secondary bootloader.

2.1 Startup Sequence
Before a secondary bootloader can be designed the startup sequence of the ARM
Cortex-M0 based LPC1100 must be understood. Following a power-on or reset the
Cortex-M0 processor begins execution at address 0 in the memory map. Note that the
LPC1100 is able to remap the memory that is located at address 0. This functionality is
controlled by the SYSMEMREMAP register, see Fig 1.

Fig 1. System remap register bit description (SYSMEMREMAP, address 0x4004 8000)

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 3 of 13

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

Initially the interrupt vectors are mapped to the Boot ROM causing the primary
bootloader to be executed. Once this is complete the primary bootloader maps the
interrupt vectors to on-chip flash and execution of the application begins.

The Cortex-M0 core expects the code located at the start address to be organized as
illustrated in Fig 2. The first location contains the address of the top of the stack; this
value is loaded into the stack pointer register by the processor. The next location
contains the address of the reset handler; this is the address from which the processor
will start executing code. Note that LSB of this address must be set to 1, indicating to the
processor that this is Thumb code.

Fig 2. Interrupt vector table

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 4 of 13

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

2.2 Handling interrupts
The LPC1100 contains a NVIC (Nested Vectored Interrupt Controller) that handles all
interrupts. When an interrupt occurs the processor uses the vector table to locate the
address of the handler. The organization of the vector table can be seen in Fig 2.

2.3 In-Application Programming (IAP)
The boot ROM contains a number of routines that allow the on-chip flash memory to be
programmed and erased. These routines are called In-Application Programming (IAP)
functions and are provided so that user application code can erase and write to the on-
chip flash memory. Note that flash memory is not accessible during a write or erase
operation. Therefore IAP commands, which result in a flash write/erase operation, use 32
bytes of space in the top portion of the on-chip RAM for execution. The user application
should not use this space if IAP flash programming is used. Further details regarding IAP
can be found in the LPC1100 User Manual [2].

3. Secondary boot loader design
The LPC1100 on-chip flash memory is divided into 4 kB sectors. These sectors represent
the minimum amount of memory that can be individually erased. The secondary
bootloader occupies the first sector of flash memory, starting at address 0. The remaining
sectors are available for the storage of the application code and data. The location of the
secondary bootloader means that, following a reset or power-on, it is executed first
(before the application). The secondary bootloader operation is summarized in Fig 3.

Secondary Bootloader

App
Valid?

Primary (ROM)
Bootloader

Download
Application

Execute
Application

Power-On
Reset

Fig 3. Secondary bootloader flow chart

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 5 of 13

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

Upon startup the secondary bootloader checks if there is a valid application stored in the
flash memory, and if so this application is executed. Section 0 contains details of this
integrity check. If no application is found, then the secondary bootloader attempts to
download one using UART0 and the XMODEM-1K protocol.

3.1 Handling interrupts
When an application is developed, the contents of the interrupt vector table are created
at build time. The vector table is then placed in memory at a fixed location (known to the
processor) when the application is programmed into the flash.

On the LPC1100 the vector table is located in the same area of flash memory as the
secondary bootloader. The secondary bootloader is designed to be permanently resident
in flash memory and therefore it is not possible to update the contents of the vector table
every time a new application is downloaded.

The Cortex-M3 core allows the vector table to be remapped; however this is not the case
with the Cortex-M0. Because of this, the secondary bootloader has been designed to
redirect the processor to the handler listed in a vector table located in the application
area of flash memory, see Fig 4.

Fig 4. Interrupt Redirection

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 6 of 13

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

When an interrupt occurs the CPU gets the address of the interrupt handler from the
vector table located in sector 0 (this is the bootloader vector table shown in 0). The
addresses contained in this table point to a series of re-direct functions. These functions
obtain the address of the interrupt handler from the vector table located in the application
area (the Application Vector Table shown in Fig 4). An example of one of these functions
is shown in Fig 5.

void SysTick_Handler(void)
{
 /* Re-direct interrupt, get handler address from
 application vector table */
 asm volatile("ldr r0, =0x103C");
 asm volatile("ldr r0, [r0]");
 asm volatile("mov pc, r0");
}

Fig 5. Interrupt re-direct function

When an interrupt occurs, the handler pointed to by the relevant entry in the application
vector table is executed.

3.2 Application integrity check
Following a reset the secondary bootloader checks if there is a valid image contained
within the application flash sectors. It does this by generating a 16-bit CRC of the
application flash sectors and comparing it to the value stored in the last 2 bytes of flash
memory. If the two values match then the secondary bootloader executes the application,
if not the process of downloading a new application is started.

3.3 XMODEM-1K protocol
XMODEM-1K is a simple file transfer protocol based on the original XMODEM protocol.
The primary difference between the two is that the 1K variant supports both 128 and
1024 byte packets (the original XMODEM protocol supported only 128 byte packets).

The secondary bootloader acts as a client and the equipment to which it is connected
(usually a PC) acts as the server. The client initiates a transfer by sending the ASCII
character ‘C’ to the server. Once the initialization phase is complete the server transfers
the file data to the client one packet at a time. Upon reception the client checks the
packet CRC and sends an ACK or NACK back to the server. This process continues until
the entire file has been transferred.

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 7 of 13

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

4. Application firmware development
When building an application that will reside in flash memory alongside the secondary
bootloader, the linker settings must be modified so that it is placed at the correct location.
The following section details how this can be achieved.

4.1 LPCXpresso application development
The most straightforward way to modify the linker settings when developing an
application using LPCXpresso is to replace the following files with those from the
example application:

LinkerFiles\Application\Release\application_Release_mem.ld
LinkerFiles\Application\Debug\application_Debug_mem.ld

The project settings then need to be altered so that these linker files are used instead of
those generated by the toolchain. To do this open the application project using
LPCXpresso, right click on the project and select properties. Then ensure that the “MCU
Settings” and “Tool Settings” match those shown in Fig 6 and Fig 7.

Fig 6. LPCXpresso linker script control

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 8 of 13

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

Fig 7. LPCXpresso linker script selection

In addition the application project settings should be modified to ensure that a binary file
is created. To do this simple add the following command to the post build steps shown in
Fig 8:

arm-none-eabi-objcopy -O binary ${BuildArtifactFileName} ${BuildArtifactFileBaseName}.bin;

Fig 8. LPCXpresso post build steps

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 9 of 13

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

5. LPCXpresso demonstration
The software accompanying this application note consists of a secondary bootloader and
an example application. The following set of steps describes how to use this software to
demonstrate the operation of the secondary bootloader (note that this demonstration
requires the use of an LPCXpresso target board and an Embedded Artists base board):
1. Build the release target of both the Bootloader and Application projects using the

LPCXpresso toolchain. This should result in the creation of the following binary files:
\Application\Release\Application.bin
\Bootloader\Release\Bootloader.bin

2. Program the bootloader binary file into the target hardware using a tool such as
Flash Magic. Alternatively the object file (Bootloader.axf) maybe programmed into
the hardware using the LPCXpresso toolchain.

3. Connect the Base Board to a PC via the mini-USB connector X3. Start a terminal
emulator application on the PC that is capable of communication using the
XMODEM-1K protocol (HyperTerminal is used in this example). The terminal
emulator should be configured to communicate at 9600-8-N-1.

4. Reset the target hardware and it should then start periodically transmitting the ‘C’
character to the PC – indicating it is ready to begin a transfer using the XMODEM-1K
protocol. Note that when using HyperTerminal the board should be reset before it is
connected to the PC – otherwise it may enter ISP mode.

5. Now the application binary file can be transmitted to the target hardware, where the
secondary bootloader will program it into flash. To start this process use
HyperTerminal to send the file Application.bin using the XMODEM-1K protocol.

6. Once the transfer is complete the target hardware should be reset and LED2 (on the
LPCXpresso board) will begin to flash (if using HyperTerminal remember to
disconnect before pressing the base board reset button – otherwise the LPC1100 will
enter ISP mode).

The application code can initiate a new download simply by invalidating the CRC that is
stored in the last location of flash memory. This can be done by writing all zero’s to this
location using the IAP calls and then re-invoking the secondary bootloader by resetting
the device. The example application contains a function that implements this when pin
P0.1 is taken low (this is connected to SW3 on the Embedded Artists base board).
Pressing this button when the application is running (LED2 is flashing) will re-invoke the
secondary bootloader and allow a new application to be downloaded.

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 10 of 13

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 11 of 13

6. References

[1] Cortex-M0 Devices Generic User Guide DUI0497A, ARM Limited

[2] LPC111x User Manual UM10398, NXP Semiconductors

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

 AN10995 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 13 October 2010 12 of 13

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of

NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

7.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10995
 LPC1100 secondary bootloader

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an please send an email to:
salesaddresses@nxp.com

Date of release: 13 October 2010
Document identifier: AN10995

8. Contents

1. Introduction ...3
2. Background ...3
2.1 Startup Sequence ..3
2.2 Handling interrupts ...5
2.3 In-Application Programming (IAP)......................5
3. Secondary boot loader design...........................5
3.1 Handling interrupts ...6
3.2 Application integrity check..................................7
3.3 XMODEM-1K protocol..7
4. Application firmware development....................8
4.1 LPCXpresso application development8
5. LPCXpresso demonstration10
6. References...11
7. Legal information ..12
7.1 Definitions ..12
7.2 Disclaimers...12
7.3 Trademarks ..12
8. Contents...13

	1. Introduction
	2. Background
	2.1 Startup Sequence
	2.2 Handling interrupts
	2.3 In-Application Programming (IAP)

	3. Secondary boot loader design
	3.1 Handling interrupts
	3.2 Application integrity check
	3.3 XMODEM-1K protocol

	4. Application firmware development
	4.1 LPCXpresso application development

	5. LPCXpresso demonstration
	6. References
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Trademarks

	8. Contents

