SPIFI API
Dec 1, 2011
This document describes the support functions for the SPI Flash Interface (SPIFI) provided for NXP microcontrollers that include SPIFI.

Supported Devices

Serial flash devices having all of the following features are supported:

· Read JEDEC ID
· page programming
· at least one erase command having uniform erase size throughout the device.
The following devices lack one or more of these features and so are not supported: Elite F25L004, F25L008, F25L016; Eon 25B64; SST 25VF512, 25WF512, 25VF010, 25WF010, 25LF020, 25VF020, 25WF020, 25VF040, 25WF040, 25VF080, 25WF080, 25VF016, 25VF032.
Hardware Overview

Any MCU that includes the SPIFI defines a base address for the SPIFI registers and a base address for the memory area in which the serial Flash connected to the SPIFI can be read. The memory map should include enough room at the latter base address, to accommodate the largest serial Flash device that is likely to be introduced in the lifetime of the MCU.

The first operation with the serial Flash will always be “Read JEDEC ID”, which is imple​mented by most serial Flash devices. Depending on the device-identity code returned by the serial Flash in this operation, device-specific commands are used to accomplish further operation. Programming and other operations on the serial Flash can be done by API calls as described in this document.
Application Program Interface (API)
Be sure to compile any module that calls the SPIFI API with your compiler set for ARM ABI compatibility. This is the default in most compilers.
int spifi_init (SPIFIobj *obj, unsigned csHigh, unsigned options, unsigned MHz)
Starting with the April 8, 2011 release, the caller is responsible for setting the SPIFI serial clock and setting the I/O configuration so that the SPIFI controls the necessary pins, before calling this function.

This call sends the standardized Read JEDEC ID command to the (presumably) attached serial Flash device. If a serial flash responds, it is set up for reading in ARM memory space.
obj should point to an area of memory large enough to receive the object created by spifi_init (see “SPIFIobj Structure” near the end of this document).
csHigh should be one less than the minimum number of clock cycles with the CS pin high, that the SPIFI should maintain between commands. Compute this from the SPIFI clock period and the minimum high time of CS from the serial flash data sheet:

csHigh = ceiling(min CS high / SPIFI clock period) - 1
where ceiling means round up to the next higher integer if the argument isn’t an integer.

options contains bits controlling the binary choices shown in the following table. It can be 0 to select no options, or one of the names in the table, or more that one name separated by + or | signs. The names in the optional column need not be specified, but can be used to improve documentation for people in the future.

	name
	operation if included
	optional name
(value=0)
	default operation

	S_FULLCLK
	Data from the serial flash is sampled on falling edges on the SCL output, allowing a full clock period for the serial flash to present each bit or group of bits.
	S_HALFCLK
	Data from the serial flash is sampled on rising edges of the SCL output, as in classic SPI applications. Suitable for slower clock rates.

	S_RCVCLK
	Data is sampled using the SCL clock fed back from the pin. This allows more time for the serial flash to present each bit or group of bits, but when used with S_FULLCLK can endanger hold time for data from the flash.
	S_INTCLK
	Data is sampled using the internal clock from which the SCL pin is driven.

	S_MODE3
	The SCL output is high when a frame/ command is not in progress. Note that S_MODE3+ S_FULLCLK+S_RCVCLK will not work. Use S_MODE0 or S_INTCLK.
	S_MODE0
	SCL is low when a frame/command is not in progress.

	S_MINIMAL
	SPI mode and the slowest, most basic/ compatible read operation will be used.
	S_MAXIMAL
	The fastest read operation provided by the device will be used.

	S_DUAL
	If the connected device can operate in dual mode (2 bits per clock), dual mode will be used, else SPI mode.
	
	If the device can operate in quad mode, quad mode will be used, else SPI mode.

MHz should be the serial clock rate divided by 1000000, rounded to an integer. It is used for devices that allow a variable number of dummy bytes between the address and the read data in a memory read command. As of May 2011, this operand is only required for some Numonyx and Winbond quad devices, but it is good practice to include it in all spifi_init calls.
A return value of zero indicates success. Non-zero error codes include:
0x2000A
No operative serial flash (JEDEC ID all zeroes or all ones)

0x20009
Unknown manufacturer code
0x20008
Unknown device type code

0x20007
Unknown device ID code

0x20006
Unknown extended device ID value (only for Spansion 25FL12x in the initial API)

0x20005
Device status error

0x20004
Operand error: S_MODE3+S_FULLCLK+S_RCVCLK in options
After a spifi_init call that returns one of the “unknown” error codes, the caller can read and check the SPIFI memory area, but should not issue any spifi_program or spifi_erase calls because not enough is known about the device to accomplish these tasks. In this case, software should do programming and erasing using a newer spifi_init routine that resides on the serial flash itself.
spifi_init can be called repeatedly in order to change some of its operands. The subsequent call need not use the same SPIFIobj, and need not use the same version of the driver as the preceding call. The only case in which problems should arise with re-initing is if the SPIFI and MCU hardware has been reset but the serial flash hardware has not (since most serial flashes don’t have a Reset pin).
SPIFIopers: operands for program and erase
SPIFIopers is a C struct that contains operands for the spifi_program() and spifi_erase() calls.

typedef struct {

 char *dest;

/* starting address for programming or erasing */
 unsigned length;
/* number of bytes to be programmed or erased */
 char *scratch;
/* address of work area or NULL */
 int protect;

/* protection to apply after programming/erasing is done */
 unsigned options;
/* see the table below */
} SPIFIopers;

dest specifies the first address to be programmed or erased, either in the SPIFI memory area or as a zero-based device address. If dest is not a multiple of the smallest sector size that’s uniformly available throughout the serial flash, the first part of the first sector is

1. preserved, if a scratch address is provided and/or an erase isn’t needed for the first sector, or

2. erased to all ones, if scratch is NULL and an erase is needed for the first sector.

Similarly, if dest plus length is not a multiple of the sector size, the last part of the last sector is

1. preserved, if scratch is non-zero and/or an erase isn’t needed for the last sector, or

2. erased to all ones, if scratch is zero and an erase is needed for the last sector.

For either spifi_program or spifi_erase, scratch should be NULL or the address of an area of RAM that the SPIFI driver can use to save data during erase operations. If provided, the scratch area should be as large as the smallest erase size that’s available throughout the serial flash device. If scratch is NULL (zero) and an erase is necessary, any bytes in the first erase block before dest are left in erased state (all ones), as are any bytes in the last erase block after dest+length.

The driver uses the least number of bytes possible in the scratch area. If dest and dest+length-1 are in separate erase blocks, it will use the larger of (the number of bytes before dest in the first erase block) and (the number of bytes after (dest+length) in the last erase block). If only one erase block is involved, it will use the sum of these two numbers.

options contains bits controlling the choices shown in the following table. It can be 0 for no options, or one of the names in the table, or more that one name separated by + or | signs. The “optional” names in the table need not be specified, but can be used to provide better documentation for people in the future.

	name
	operation if included
	optional name
(value=0)
	default operation

	S_FORCE_ERASE
	All sectors in dest to dest+length will be erased.
	S_ERASE_AS_REQD
	Erasing is done when necessary.

	S_CALLER_ERASE

	Erasing is handled by the caller not by the driver.
	
	

	S_VERIFY_PROG
	Data will be read back and checked after programming.
	S_NO_VERIFY
	No reading or checking
will be done.

	S_VERIFY_ERASE
	Sectors will be read back and checked for 0xFF after erasing.
	
	

	S_CALLER_PROT
	Write protection is handled by the caller not by the driver.
	S_DRIVER_PROT
	The driver removes protection before the operation, and sets it as specified thereafter.

Unless options includes S_CALLER_PROT, the driver attempts to remove write-protection on the sector(s) implied by dest and length.
The protect operand indicates whether the driver should protect the sector(s) after programming is completed. See the following section “Protection” for details of the protect value.

int spifi_program (SPIFIobj *obj, char *source, SPIFIopers *opers)
This call programs opers.length bytes in the serial flash. obj should point to the object returned by the preceding spifi_init call. source is the address of the data to be programmed, in RAM or other memory.
A spifi_program call with source equal to opers.dest and opers.options not including S_FORCE_ERASE will not do any erasing nor programming, since the data at opers.dest is equal to the data at source. Such a call can be used to protect or unprotect sector(s) depending on the value of opers.protect.

spifi_program does not return until programming and erasure have been completed, or an error is encountered. A return value of zero indicates success. Error codes include:
0x20007
Programming and erasure cannot be done because the serial flash was not identified in the spifi_init operation.

0x20005
Device status error

0x20004
Operand error: the dest and/or length operands were out of range. See Address operands and checking below.
0x20003
Timeout waiting for program or erase to begin: protection could not be removed.

0x20002
Internal error in API code.

0x20001
Device error (not operating per specifications)

0x2000B
S_CALLER_ERASE is included in options, and erasure is required.

other
Other non-zero values can occur if options selects verification. They will be the address in the SPIFI memory area at which the first discrepancy was found.
See “Programming Details” below for details of the programming procedure.
Performance hint: checking for whether programming or erasure is necessary is faster if the source and opers.dest addresses have the same alignment, that is, if bits 1:0 of the addresses are equal. The most common way to ensure this is to have both at word boundaries (bits 1:0 = 00).

int spifi_erase (SPIFIobj *obj, SPIFIopers *opers)
This function is not necessary because spifi_program automatically erases as necessary. obj should point to the object returned by the preceding spifi_init call.
The code will use the largest unit(s) of erasure it can to accomplish the indicated operation, and will use the opers.scratch area only when required by a starting or ending address that is not a multiple of the smallest available erase size. The driver will attempt to remove any protection on the sector(s) indicated by opers.dest and opers.length. If this removal succeeds, the opers.protect value determines the protection of the sector(s) on return, as described in “Protection” below. Return values are the same as for spifi_program.

In opers.options, S_FORCE_ERASE has no effect and S_VERIFY_PROG and S_CALLER_ERASE apply only to any necessary re-programming of saved data if opers.scratch is non-zero.

For large areas, spifi_erase may be faster than the erasing done by spifi_program.
Calling the SPIFI Driver via a ROM Dispatch Table

NXP microcontrollers that include a SPIFI interface also include the SPIFI driver in ROM. To call the SPIFI driver in ROM, include the following near the start of your program:

#include "spifi_rom_api.h"

…

define_spifi_romPtr(spifi);
/* defines the symbol "spifi" */

spifiObj obj;

/* or spifiObj *obj = malloc(sizeof(spifiObj)); */

 /* v—--------- if malloc is used, omit this ampersand */

int rc = spifi->spifi_init(&obj, csHigh, options, MHz);

if (rc) {

printf ("spifi_init returned error %X\n", rc);

/* exit or ?? */

}

spifi_rom_api.h and its companion file spifi_sys_config.h are available from NXP – the latter contains a symbol SPIFI_ROM_PTR that may be specific to the microcontroller you're using, so be sure to get the version for your device.
Address operands and checking

For both spifi_program and spifi_erase, the opers.dest value can be either the (zero-based) address within the serial flash or an address in the SPIFI memory area. opers.dest and opers.length operands are always checked against the device size; when verification is requested they are also checked against the allocated size of the SPIFI memory area.
Protection

Serial flash devices provide write-protection in several ways. Most devices simply have 2 to 5 bits in their status registers that specify what fraction of the device is write protected, possibly in conjunction with a “fraction at top or bottom” bit and/or a “fraction is protected/unprotected” bit. For such devices, at the start of spifi_program() or spifi_erase() the driver simply saves the status byte, then clears all of the 2 to 5 bits so that the whole device is write-enabled.
The opers.protect value of a spifi_program or spifi_erase on such a device can be 0 to leave the device fully write-enabled, -1 to restore the protection status saved at the start of the call, or any other non-zero value to set the protection status to that value. (Consult the device data sheet for the content of the latter value.)

Some serial flash devices use individual protection bits for each sector. These include SST quad devices, Atmel devices, and Macronix devices that provide a “WPSEL” command and on which such a command has been executed (Setting WPSEL is an irrevocable operation). Similarly to “status register protection” devices, -1 in the opers.protect value makes the driver restore protection to the state in effect before the call. 0 leaves the programmed/erased sector(s) write-enabled, and 1 write-protects them. For small (high and low) sectors on SST quad devices only, opers.protect can be 3 to read- and write-protect the sectors, or 2 to read-protect but write-enable them (Write Only Memory!). 2 and 3 work like 0 and 1 respectively for other sectors and other devices.
Programming Details

During spifi_program, for each erase-block (sector) affected by opers.dest and opers.length:

1. If opers.options include S_FORCE_ERASE, the code skips to step 3.

2. The program code checks the data at source and opers.dest to determine whether the requested programming needs to switch any bits from 0 to 1. If not, the code skips to step 7.

3. If opers.options include S_CALLER_ERASE, spifi_program returns with the code ERR_SPIFI_ERASE_NEEDED (0x2000B).

4. If opers.scratch is non-zero, the code copies any data in the sector that is not covered by opers.dest and opers.length to the opers.scratch area.

5. The code sends an erase command for the sector to the serial flash.

6. When erasure (if any) is completed, if opers.options include S_VERIFY_ERASE, the sector is read and checked for containing all 0xFF, and if not, spifi_program returns the address in the SPIFI memory area at which the first discrepant data was found.

7. The program code checks the data at source and opers.dest to determine whether the requested programming needs to switch any bits from 1 to 0. If not, the code skips to step 10.

8. The code sends one or more program command(s) to the serial flash, possibly using data at both source and opers.scratch.

9. When programming (if any) is completed, if opers.options include S_VERIFY_PROG the programmed data is read and checked against the source data, and if a discrepancy is found, spifi_program returns the address in the SPIFI memory area at which the first discrepant data was found.

10. If opers.length extends into another sector, control returns to step 1 for the next sector.

SPIFIobj structure
#define uc unsigned char

typedef union {

unsigned short hw;

uc byte[2];

} stat_t;
typedef struct {

unsigned base, regbase, devSize, memSize;

uc mfger, devType, devID, busy;

stat_t stat;

unsigned short reserved;

unsigned short set_prot, write_prot;

unsigned mem_cmd, prog_cmd;

unsigned short sectors, protBytes;

unsigned opts, errCheck;

uc erase_shifts[4], erase_ops[4];

protEnt *protEnts;

char prot[LONGEST_PROT];

} SPIFIobj;
base is the start of the memory area occupied by the serial flash.
regbase is the start of the SPIFI registers.
devSize is the size of the serial flash, in bytes.

memSize is the smaller of devSize and the allocated size of the SPIFI memory area.

mfger, devType, and devID are the codes returned by the “Read JEDEC ID” command.

stat.byte[0] contains the primary status of the device.

stat.byte[1] contains the secondary status or configuration of the device (if any).

write_prot contains the bits in the status register that, when zero, enable writing everywhere.

set_prot contains the bits in the status register, and optionally (in its MSByte) the configuration register, that can be set by a spifi_program or spifi_erase call.
mem_cmd contains the command that is used for accesses to the SPIFI memory area.

prog_cmd contains the command used for programming.
opts contains bits indicating characteristics of the device and its status.

erase_ops[] contains the opcode(s) of the erase command(s) that apply uniformly throughout the serial flash.

erase_shifts[] contains the number of bytes that each command erases, expressed as a power of 2. The entries are arranged by size, with the smallest uniform erase operation in the [0] entries. Zero in an entry of erase_shifts[] indicates an unused entry in erase_shifts[] and erase_ops[].
The length of a SPIFIobj is 128 bytes at the time this document is written.
Open Issues
As of December 1, 2011, the driver does not use/handle the SPM1 protection mode on the Numonyx N25Q032A and N25Q064, because the writer could not make it work correctly. The mode is used and seems to function correctly on the M25PX series and the N25Q128A.
� For backward compatibility, S_ERASE_NOT_REQD is a synonym for S_CALLER_ERASE

