Document information

<table>
<thead>
<tr>
<th>Info</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>BGU8H1, LTE, LNA</td>
</tr>
<tr>
<td>Abstract</td>
<td>This document explains the BGU8H1 LTE LNA evaluation board</td>
</tr>
<tr>
<td>Ordering info</td>
<td>Board-number: OM7886</td>
</tr>
<tr>
<td></td>
<td>12NC: 9340 686 51598</td>
</tr>
<tr>
<td>Contact info</td>
<td>For more information, please visit: http://www.nxp.com</td>
</tr>
</tbody>
</table>
Revision history

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20140423</td>
<td>First publication</td>
</tr>
</tbody>
</table>

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
1. Introduction

NXP Semiconductors’ BGU8H1 LTE LNA Evaluation Board is designed to evaluate the performance of the LTE LNA using:

- NXP Semiconductors’ BGU8H1 LTE Low Noise Amplifier
- A matching inductor
- A decoupling capacitor

NXP Semiconductors’ BGU8H1 is a low-noise amplifier for LTE receiver applications in a plastic, leadless 6 pin, extremely thin small outline SOT1232 at 1.1 x 0.7 x 0.37mm, 0.4mm pitch. The BGU8H1 features gain of 13 dB and a noise figure of 0.9 dB at a current consumption of 5 mA. Its superior linearity performance removes interference and noise from co-habitation cellular transmitters, while retaining sensitivity. The LNA components occupy a total area of approximately 4 mm².

In this document, the application diagram, board layout, bill of materials, and typical results are given, as well as some explanations on LTE related performance parameters like input third-order intercept point IIP3, gain compression and noise.

![BGU8x1 LTE LNA evaluation board](image_url)
2. General description

Modern cellular phones have multiple radio systems, so problems like co-habitation are quite common. Since the LTE diversity antenna needs to be placed far from the main antenna to ensure the efficiency of the channel, a low noise amplifier close to the antenna is used to compensate the track-losses (and SAW-filter losses when applicable) on the printed circuit board. A LTE receiver implemented in a mobile phone requires a low current consumption and low Noise Figure. All the different transmit signals that are active in smart phones and tablets can cause problems like inter-modulation and compression. Therefore also a high linearity is required.

3. BGU8H1 LTE LNA evaluation board

The BGU8H1LNA evaluation board simplifies the RF evaluation of the BGU8H1 LTE LNA applied in a LTE front-end, often used in mobile cell phones. The evaluation board enables testing of the device RF performance and requires no additional support circuitry. The board is fully assembled with the BGU8H1 including the input series inductor and decoupling capacitor. The board is supplied with two SMA connectors for input and output connection to RF test equipment. The BGU8H1 can operate from a 1.5 V to 3.1 V single supply and consumes typical 5 mA.

3.1 Application Circuit

The circuit diagram of the evaluation board is shown in Fig 2. With jumper JU1 the enable input can be connected either to Vcc or GND.

Fig 2. Circuit diagram of the BGU8x1 LNA evaluation board (used for BGU8L1, BGU8M1 and BGU8H1)
3.2 PCB Layout

A good PCB layout is an essential part of an RF circuit design. The LNA evaluation board of the BGU8H1 can serve as a guideline for laying out a board using the BGU8H1. Use controlled impedance lines for all high frequency inputs and outputs. Bypass Vcc with decoupling capacitors, preferably located as close as possible to the device. For long bias lines it may be necessary to add decoupling capacitors along the line further away from the device. Proper grounding of the GND pins is also essential for good RF performance. Either connect the GND pins directly to the ground plane or through vias, or do both, which is recommended. The material that has been used for the evaluation board is FR4 using the stack shown in Fig 4.

Fig 4. Stack of the PCB material

Material supplier is ISOLA DURAVER; $\varepsilon_r = 4.6-4.9$; $\tan \delta = 0.02$
4. Bill of materials

Table 1. BOM of the BGU8H1 LTE LNA evaluation board

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
<th>Footprint</th>
<th>Value</th>
<th>Supplier Name/type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>BGU8H1</td>
<td>1.1 x 0.7 x 0.37mm³, 0.4mm pitch</td>
<td></td>
<td>NXP</td>
<td>SOT1232</td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td>20 x 35mm</td>
<td></td>
<td>BGU8H1 LTE LNA EV Kit</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>Capacitor</td>
<td>0402</td>
<td>1nF</td>
<td>Murata GRM1555</td>
<td>Decoupling</td>
</tr>
<tr>
<td>C2</td>
<td>Capacitor</td>
<td>0402</td>
<td>1nF</td>
<td>Murata GRM1555</td>
<td>Decoupling</td>
</tr>
<tr>
<td>L1</td>
<td>Inductor</td>
<td>0402</td>
<td>3.3nH</td>
<td>Murata LQW15</td>
<td>Input matching</td>
</tr>
<tr>
<td>X1, X2</td>
<td>SMA RD connector</td>
<td>-</td>
<td>-</td>
<td>Johnson, End launch SMA 142-0701-841</td>
<td>RF input/ RF output</td>
</tr>
<tr>
<td>X3</td>
<td>DC header</td>
<td>-</td>
<td>-</td>
<td>Molex, PCB header, Right Angle, 1 row, 3 way 90121-0763</td>
<td>Bias connector</td>
</tr>
<tr>
<td>X4</td>
<td>JUMPER Stage</td>
<td>-</td>
<td>-</td>
<td>Molex, PCB header, Vertical, 1 row, 3 way 90120-0763</td>
<td>Connect Ven to Vcc or separate Ven voltage</td>
</tr>
<tr>
<td>JU1</td>
<td>JUMPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1 BGU8H1

NXP Semiconductors’ BGU8H1 LTE low noise amplifier is designed for the LTE frequency band. The integrated biasing circuit is temperature stabilized, which keeps the current constant over temperature. It also enables the superior linearity performance of the BGU8H1. The BGU8H1 is also equipped with an enable function that allows it to be controlled via a logic signal. In disabled mode it consumes less than 1 μA.

The output of the BGU8H1 is internally matched between 2300 MHz and 2690 MHz whereas only one series inductor at the input is needed to achieve the best RF performance. Both the input and output are AC coupled via an integrated capacitor.

It requires only two external components to build a LTE LNA having the following advantages:

- Low noise
- System optimized gain
- High linearity under jamming
- 1.1 x 0.7 x 0.37, 0.4mm pitch: SOT1232
- Low current consumption
- Short power settling time

4.2 Series inductor

The evaluation board is supplied with Murata LQW15 series inductor of 3.3 nH. This is a wire wound type of inductor with high quality factor (Q) and low series resistance (Rs). This type of inductor is recommended in order to achieve the best noise performance. High Q inductors from other suppliers can be used. If it is decided to use other low cost inductors with lower Q and higher Rs the noise performance will degrade.
5. Required Equipment

In order to measure the evaluation board the following is necessary:

- DC Power Supply up to 30 mA at 1.5 V to 3.1 V
- Two RF signal generators capable of generating RF signals at the LTE operating frequency between 2300 MHz and 2690 MHz.
- An RF spectrum analyzer that covers at least the operating frequency between 2300 MHz and 2690 MHz as well as a few of the harmonics. Up to 6 GHz should be sufficient.
 “Optional” a version with the capability of measuring noise figure is convenient
- Amp meter to measure the supply current (optional)
- A network analyzer for measuring gain, return loss and reverse isolation
- Noise figure analyzer and noise source
- Directional coupler
- Proper RF cables

6. Connections and setup

The BGU8H1 LTE LNA evaluation board is fully assembled and tested (see Fig 5). Please follow the steps below for a step-by-step guide to operate the LNA evaluation board and testing the device functions.

1. Connect the DC power supply to the Vcc and GND terminals. Set the power supply to the desired supply voltage, between 1.5 V and 3.1 V, but never exceed 3.1 V as it might damage the BGU8H1.

2. Jumper JU1 is connected between the Vcc terminal of the evaluation board and the Ven pin of the BGU8H1.

3. Connect the RF signal generator and the spectrum analyzer to the RF input and the RF output of the evaluation board, respectively. Do not turn on the RF output of the signal generator yet, set it to approximately -40 dBm output power at center frequency of the wanted LTE-ban and set the spectrum analyzer at the same center frequency and a reference level of 0 dBm.

4. Turn on the DC power supply and it should read approximately 4..5 mA.

5. Enable the RF output of the generator: The spectrum analyzer displays a tone around –27 dBm.

6. Instead of using a signal generator and spectrum analyzer one can also use a network analyzer in order to measure gain as well as in- and output return loss, P1dB and IP3 (see Fig 6).

7. For noise figure evaluation, either a noise figure analyzer or a spectrum analyzer with noise option can be used. The use of a 5 dB noise source, like the Agilent 364B is recommended. When measuring the noise figure of the evaluation board, any kind of adaptors, cables etc between the noise source and the evaluation board should be minimized, since this affects the noise figure (see Fig 7).
Fig 5. Evaluation board including its connections

Fig 6. 2-Tone Setup for 50Ω LNA board tests (S-Parameters, P1dB and 2-Tone-tests)
Fig 7. Setup diagram for 50Ω LNA-board NF-Measurements.
7. Evaluation Board Tests

7.1 S-Parameters

The measured S-Parameters and stability factor K are given in the figures below. For the measurements, a BGU8H1-LNA EVB is used ((see Fig 5). Measurements have been carried out using the setup shown in Fig 6.

![S-Parameter Graphs](image)

Fig 8. BGU8H1 S-Parameters (typical values). Vcc=2.8V, Pin=-45dBm.
Fig 9. BGU8H1 S-Parameters (typical values). Vcc=2.8V, Pin=-45dBm (freq. range zoomed in).
7.2 1dB gain compression

Strong in-band cell phone TX jammers can cause linearity problems and result in third-order intermodulation products in the LTE frequency band. In this chapter the effects of these strong signals is shown. For the measurements, a BGU8H1-LNA EVB is used (see Fig 5). Measurements have been carried out using the setup shown in Fig 6.

The gain as function of input power of the DUT was measured between port RF In and RF Out of the EVB at the LTE center frequencies.

The figures below show the gain compression curves at LNA-board.

Fig 10. Gain versus input power, f=2350MHz (band 40)

Fig 11. Gain versus input power, f=2655MHz (band 7)
7.3 2-Tone Test

The figures below show the spectra of the DUT caused by a 2-Tone input signal around the centre of the LTE-bands. For the measurements, a BGU8H1-LNA EVB is used (see Fig 5). Measurements have been carried out using the setup shown in Fig 6.

Fig 12. Gain versus input power, band 40

Fig 13. Gain versus input power, band 7
7.4 Enable Timing Test

The following diagram shows the setup to test LNA Turn ON and Turn OFF time. Set the waveform generator to square mode and the output amplitude at 3Vrms with high output impedance. The waveform generator has adequate output current to drive the LNA therefore no extra DC power supply is required which simplifies the test setup.

Set the RF signal generator output level to -20dBm between 2300 MHz and 2690 MHz and increase its level until the output DC on the oscilloscope is at 5mV on 1mV/division, the signal generator RF output level is approximately -3dBm.

It is very important to keep the cables as short as possible at input and output of the LNA so the propagation delay difference on cables between the two channels is minimized.

It is also critical to set the oscilloscope input impedance to 50ohm on channel 2 so the diode detector can discharge quickly to avoid a false result on the Turn OFF time testing.

The series capacitor will influence the Ton/Toff switching time. When the default value C2=1nF is used, Ton will approximately be 9µs. By reducing C2 to 100pF, Ton is reduced to approximately 4µs (see Fig 15 and Fig 16).
Fig 15. Results Enable Timing Test. Series capacitor $C_2=1\text{nF}$. $T_{on}\sim9\mu\text{s}$ (left) and $T_{off}\sim200\text{ns}$ (right).

Fig 16. Results Enable Timing Test. Series capacitor $C_2=100\text{pF}$. $T_{on}\sim4\mu\text{s}$ (left).
8. Typical LNA evaluation board results

Table 2. Typical results measured on the evaluation Board.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Freq. [MHz]</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Vcc</td>
<td>1.5</td>
<td>1.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Icc</td>
<td>4.3</td>
<td>4.8</td>
<td>5.0</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>NF</td>
<td>2350</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2655</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Power Gain</td>
<td>Gp</td>
<td>2350</td>
<td>12.7</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2655</td>
<td>11.7</td>
<td>12.0</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>RLin</td>
<td>2350</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2655</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>RLout</td>
<td>2350</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2655</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>ISOrev</td>
<td>2350</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2655</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Input 1dB Gain Compression</td>
<td>Pi1dB</td>
<td>2350</td>
<td>-11.7</td>
<td>-8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2655</td>
<td>-10.2</td>
<td>-7.0</td>
</tr>
<tr>
<td>Output 1dB Gain Compression</td>
<td>Po1dB</td>
<td>2350</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2655</td>
<td>0.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Input third order intercept point</td>
<td>IIP3</td>
<td>2350</td>
<td>-2.7</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2655</td>
<td>-0.8</td>
<td>5.0</td>
</tr>
<tr>
<td>Output third order intercept point</td>
<td>OIP3</td>
<td>2350</td>
<td>10.0</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2655</td>
<td>10.9</td>
<td>17.0</td>
</tr>
<tr>
<td>Power settling time</td>
<td>Ton</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Toff</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

[1] Including PCB losses
[2] f = f_center_band; Delta_f=10MHz
Pin_f1 = Pin_f2 = -15 dBm
9. Legal information

9.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

9.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

9.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.
10. List of figures

Fig 1. BGU8x1 LTE LNA evaluation board (used for BGU8L1, BGU8M1 and BGU8H1) 3
Fig 2. Circuit diagram of the BGU8x1 LNA evaluation board (used for BGU8L1, BGU8M1 and BGU8H1) .. 4
Fig 3. Printed-Circuit Board layout of the BGU8x1 LNA evaluation board (used for BGU8L1, BGU8M1 and BGU8H1) ... 5
Fig 4. Stack of the PCB material 5
Fig 5. Evaluation board including its connections 8
Fig 6. 2-Tone Setup for 50Ω LNA board tests (S-Parameters, P1dB and 2-Tone-tests) 8
Fig 7. Setup diagram for 50Ω LNA-board NF- Measurements ... 9
Fig 8. BGU8H1 S-Parameters (typical values). Vcc=2.8V, Pin=-45dBm 9
Fig 9. BGU8H1 S-Parameters (typical values). Vcc=2.8V, Pin=-45dBm (freq. range zoomed in). ... 10
Fig 10. Gain versus inp. power , f=2350MHz (band 40) ... 11
Fig 11. Gain versus input power , f=2655MHz (band 7) .. 12
Fig 12. Gain versus input power, band 40 13
Fig 13. Gain versus input power, band 7 13
Fig 14. Setup Enable Timing Test 14
Fig 15. Results Enable Timing Test. Series capacitor C2=1nF. Ton~9µs (left) and Toff~200ns (right). .. 15
Fig 16. Results Enable Timing Test. Series capacitor C2=100pF. Ton~4µs (left) 15
11. List of tables

Table 1. BOM of the BGU8H1 LTE LNA evaluation board .. 6
Table 2. Typical results measured on the evaluation Board .. 16
12. Contents

1. Introduction ... 3
2. General description ... 4
3. BGU8H1 LTE LNA evaluation board 4
 3.1 Application Circuit .. 4
 3.2 PCB Layout .. 5
4. Bill of materials .. 6
 4.1 BGU8H1 ... 6
 4.2 Series inductor ... 6
5. Required Equipment ... 7
6. Connections and setup 7
7. Evaluation Board Tests 10
 7.1 S-Parameters .. 10
 7.2 1dB gain compression 12
 7.3 2-Tone Test .. 13
 7.4 Enable Timing Test ... 14
8. Typical LNA evaluation board results 16
9. Legal information ... 17
 9.1 Definitions ... 17
 9.2 Disclaimers ... 17
 9.3 Trademarks .. 17
10. List of figures ... 18
11. List of tables .. 19
12. Contents ... 20