

JN-AN-1069 (v4.0) 10-Feb-2017 © NXP Laboratories UK 2017 1

Application Note: JN-AN-1069
IEEE 802.15.4 Serial Cable Replacement

This Application Note describes how to create a wireless UART link between the
UARTs of two NXP JN516x or JN517x wireless microcontrollers on modules fitted to
carrier boards. The features of the application include:

• Replacement of serial cables with wireless connectivity
• Quick addition of low-cost wireless connectivity to products using a UART

link for communications
• UART flow control using hardware with the RTS/CTS lines or software with

the XON/XOFF protocol to control the flow of data into and out of the UART
• Radio flow control using a protocol to control the flow of data over the

radio
This application was developed using APIs from the NXP IEEE 802.15.4 Software
Developer's Kit (SDK) [JN-SW-4163 for JN516x, JN-SW-4263 for JN517x], available
free-of-charge via the Wireless Connectivity area of the NXP web site.

1 Application Overview
The application uses a pair of NXP JN516x or JN517x modules fitted to carrier boards
(DR1174 for JN516x, OM15028 for JN517x) to form a wireless network. The required
hardware is available in NXP kits, including JN516x-EK001, JN516x-EK004 and
JN517x-DK005.

Data received by a UART on one JN516x/7x module is transmitted via the wireless radio link
to the second JN516x/7x module, where it is output by the second module's UART, and vice
versa. This allows two devices (such as PCs) to communicate via a wireless radio link. This
is illustrated in the figure below:

User Device
(e.g. PC)

JN516x
or

JN517x

UART

Radio

UART

User Device
(e.g. PC)

JN516x
or

JN517x

UART

Radio

UART

Wireless Data Link

 IEEE 802.15.4 Serial Cable Replacement

2 © NXP Laboratories UK 2017 JN-AN-1069 (v4.0) 10-Feb-2017

Two applications, Coordinator and End Device, are provided as part of this demonstration:

1. The Coordinator initially creates the network, then runs in the same way as the End
Device.

2. The End Device initially joins the network, then runs in the same way as the
Coordinator.

It is assumed that a permanent power source is available at both ends of the wireless link,
allowing the radio to always be active and ready to transmit or receive data.

2 Running the Demonstration
This section describes how to use the supplied pre-built binaries to run the demonstration.

2.1 Loading the Applications
The table below lists the application binary files supplied with this Application Note and
indicates the hardware components with which the binaries can be used. These files are
located in the Build directories for the relevant applications.

Application JN5168 Binary File Hardware (e.g. from JN516x-EK001)
Coordinator Coordinator_JN5168.bin DR1174 Carrier Board with JN5168 module

DR1215 LCD Expansion Board (optional) *
End Device EndDevice_JN5168.bin DR1174 Carrier Board with JN5168 module

DR1215 LCD Expansion Board (optional) *
Application JN5169 Binary File Hardware (e.g. from JN516x-EK004)
Coordinator Coordinator_JN5169.bin DR1174 Carrier Board with JN5169 module
End Device EndDevice_JN5169.bin DR1174 Carrier Board with JN5169 module
Application JN5179 Binary File Hardware (e.g. from JN517x-DK005)
Coordinator Coordinator_JN5179.bin OM15028 Carrier Board with JN5179 module
End Device EndDevice_JN5179.bin OM15028 Carrier Board with JN5179 module

Table 1: Application Binaries and Hardware Components
* For information on using the LCD Expansion Board, refer to Section 2.4.

A binary file can be loaded into the Flash memory of a JN516x/7x device using the JN51xx
Flash Programmer (JN-SW-4107), available via the NXP web site. This software tool is
described in the JN51xx Production Flash Programmer User Guide (JN-UG-3099).

 Note: You can alternatively load a binary file into a JN516x/7x module
using the Flash programmer built into the relevant IDE (see Section 5).

To load an application binary file into a JN516x/7x module, follow the instructions below:

1. Connect a USB port of your PC to the USB Mini B port on the carrier board using a
‘USB A to Mini B’ cable. At this point, you may be prompted to install the driver for the
cable.

2. Determine which serial communications port on your PC has been allocated to the USB
connection.

3. On your PC, open a command window.

4. In the command window, navigate to the Flash Programmer directory:

C:\NXP\ProductionFlashProgrammer

IEEE 802.15.4 Serial Cable Replacement

JN-AN-1069 (v4.0) 10-Feb-2017 © NXP Laboratories UK 2017 3

5. Run the Flash programmer to download your binary file to JN516x/7x Flash memory by
entering a command with the following format at the command prompt:

JN51xxProgrammer.exe –s <comport> -f <path to .bin file>

 where <comport> is the number of the serial communications port.

6. Once the download has successfully completed, disconnect the USB cable and, if
required, reset the board or module to run the application.

2.2 Starting the Applications
Connect each carrier board to a PC using a ‘USB A to Mini B’ cable. UART0 on the
JN516x/7x device is used by default.

• When the boards are first powered on, LEDs 0 and 1 (marked as D6 and D3 on the
DR1174 board, and as D3 and D2 on the OM15028 board) flash alternately while the
node is creating or joining the network.

• Once the node is a member of a network, LEDs 0 and 1 flash together while the node
attempts to pair with another node in the network.

• When the node has paired, LED 0 is illuminated while transmit is enabled on the UART
and LED 1 is illuminated while receive is enabled on the UART.

2.3 Using the Applications

! Caution: Ensure the JN51xx Flash Programmer software is disconnected
from the serial port on the PC, if using the same serial port for
programming and running the application.

A terminal emulator can be used to send data between the nodes. The serial connection is
115200 bps, 8 data bits, no parity, and 1 stop bit with hardware flow control, by default.

Data entered into one node's terminal emulator is passed to the node’s UART and then
transmitted over the radio to the other node. Here, it is received and passed via the node's
UART to that node’s terminal emulator.

Whenever data is transmitted, LED 0 is extinguished while the node waits for an
acknowledgement from its paired node.

2.4 Using the LCD Expansion Board
When the Coordinator or End Device binary file is loaded into a JN516x/7x module on a
carrier board that is also fitted with an LCD Expansion Board (DR1215), the LCD screen will
display a looping count of the data bytes transmitted and received by the various modules of
the application, along with the rate of throughput (bytes per second) of the queues.

Only the JN516x-EK001 evaluation kit (containing JN5168 modules) includes the LCD
Expansion Board. Therefore, the option to display this information on the LCD screen is
enabled by default only for JN5168 applications. You can use the LCD Expansion Board with
the hardware from the JN516x-EK004 and JN517x-DK005 kits but the LCD display option
must be enabled for a JN5169 or JN517x application – in the header file wuart.h, the define
WUART_LCD for the relevant chip type must be changed from FALSE to TRUE. You will
then need to rebuild the application as described in Section 6.

 IEEE 802.15.4 Serial Cable Replacement

4 © NXP Laboratories UK 2017 JN-AN-1069 (v4.0) 10-Feb-2017

3 Software Design
This Application Note was created using the C function APIs (Application Programming
Interfaces) of the NXP IEEE 802.15.4 SDK (JN-SW-4163 for JN516x, JN-SW-4263 for
JN517x), which contain software libraries and tools for developing wireless networking
applications to run on the JN516x/7x wireless microcontrollers.

The main APIs used were as follows:

• The IEEE 802.15.4 APIs provide functions for controlling the wireless network.

• The JN516x or JN517x Integrated Peripherals API provides functions for controlling
the on-chip hardware peripherals of the JN516x/7x devices.

A User Guide (JN-UG-3024) and other detailed information about IEEE 802.15.4 can be
found in the Wireless Connectivity area of the NXP web site.

Apart from the creation and joining of the network, the software contained in each node is
identical.

3.1 Overview of Software Modules
The source files required to build the application are described below:

3.1.1 config.h
This file contains definitions controlling the operation of the radio network, including the
channels to be used to form the network and the PAN ID of the network to be formed.

3.1.2 crd_coordinator.c/h
The Coordinator node is responsible for creating the network and allowing other nodes to
join the network as children of the Coordinator.

crd_coordinator.c contains the standard set of functions for starting and running an
IEEE 802.15.4 Coordinator node.

3.1.3 ed_enddevice.c/h
An End Device node can join the network created by the Coordinator node.

ed_enddevice.c contains the standard set of functions for starting and running an
IEEE 802.15.4 End Device node.

3.1.4 node.c/h
node.c provides networking code common to both the Coordinator and End Device nodes.

Functions are provided to initialise the stack and application, maintain a timer for the
application and transmit data via the network.

The data used by this module is held in the global NODE_sData structure defined in node.h.

IEEE 802.15.4 Serial Cable Replacement

JN-AN-1069 (v4.0) 10-Feb-2017 © NXP Laboratories UK 2017 5

3.1.5 wuart.c/h
This module provides the main functionality of this wireless UART application.

The module runs a state machine when the node becomes a member of the network. This
state machine initially acts to form a pairing with another unpaired node in the network. Once
paired, the state machine manages the exchange of data between the paired nodes forming
a wireless UART. Further detail on this state machine is provided in the Wireless UART
State Machine section of this document.

Two circular queues (implemented by queue.c) are allocated:

1. The receive queue is filled with data received by the UART (in uart.c). This module
takes the data from the receive queue and transmits it over the radio to the paired
node.

2. The transmit queue is filled with data received over the radio by this module. The
data in the transmit queue is then transmitted by the UART (in uart.c).

Flow control over the radio is maintained by this module:

• When the transmit queue becomes almost full (usually because the UART is not
allowed to transmit due to flow control being asserted on the UART), the node
indicates this over the radio to its paired node, which stops transmitting further data.

• When the transmit queue begins to empty again, the node indicates this over the
radio to its paired node which is then permitted to transmit further data.

When exchanging data between the paired nodes, a single message is used to:

• Indicate the current status of the node (if it is able to transmit and receive, if the
receive state is changed, if the node is simply checking the connection).

• Acknowledge data and status changes in the previously received message.

• Send new data to the other device.

In this way, when the nodes are sending data to each other, they will alternate their
transmissions, sending both data and acknowledgements in a single message, thus
maximising the throughput of data.

The data used by this module is held in the global WUART_sData structure defined in
wuart.h.

This module acts as the hub for the communications between the UART and the radio
transceiver, and allocates the queue storage. There are many defines in wuart.h to
configure the UART port settings, and the sizes and fill levels of the queues.

When WUART_STATS is set to TRUE in wuart.h, statistics on the data being transmitted
and received over the radio will be maintained.

When WUART_LCD is set to TRUE in wuart.h, the statistics collected by the various
modules will be displayed on the LCD screen of the LCD Expansion Board (DR1215), for
monitoring purposes, if available.

 IEEE 802.15.4 Serial Cable Replacement

6 © NXP Laboratories UK 2017 JN-AN-1069 (v4.0) 10-Feb-2017

3.1.6 uart.c/h
This module provides a high-level interface to the UART hardware, running the UART in an
interrupt-driven mode.

The serial queues (allocated in wuart.c) are used by the UART code:

• When data is received by the UART, it is added to the receive queue. If the queue
becomes almost full, the flow control protocol being used is asserted to prevent the
attached device sending any further data. When the queue starts to empty again, the
flow control protocol being used is de-asserted allowing further data to be received.

• The UART also monitors the transmit queue, outputting any data in the transmit
queue to the attached device. The flow control protocol being used is also monitored
- if the attached device indicates that it is not able to receive further data, this
condition is detected and no further data is transmitted by the UART until the
condition is cleared.

The data used by this module is held in the private asUart structure array defined in uart.h.

When UART_STATS is set to TRUE in uart.h, statistics on the data being transmitted and
received over the UART will be maintained.

3.1.7 queue.c/h
queue.c provides code to manage circular queues.

Each queue is maintained using a QUEUE_tsData structure along with a data buffer. These
are allocated in wuart.c and passed as pointers into uart.c during initialisation, so that they
can be accessed by both the radio and UART code. The queue functions operate on
pointers to a queue and provide the following features:

• Add data to and remove data from a queue.

• Monitor when a queue is almost full and is emptying, to allow flow control to be
applied.

• When QUEUE_STATS is set to TRUE in queue.h, statistics on the amount of data
and throughput of the queue are calculated.

3.1.8 lcd.c/h
This module provides a high-level interface to display text and numeric values on the LCD
screen of the LCD Expansion Board (DR1215), if available.

Code in wuart.c gathers the statistics from the other modules in the application and displays
them using the functions in lcd.c, when the WUART_LCD define is set to TRUE in wuart.h.

3.1.9 rnd.c/h
This module provides a set of random number generating functions, using the hardware
random number generator of the JN516x/7x device.

3.1.10 dbg.c/h
This module provides functions allowing debug information to be output to a serial port.

IEEE 802.15.4 Serial Cable Replacement

JN-AN-1069 (v4.0) 10-Feb-2017 © NXP Laboratories UK 2017 7

3.2 Functional Overview

3.2.1 Message Format
All messages sent by the application over the radio have the same basic format:
Start SeqTx SeqRx Command [Data] End

where:

Start is a single character indicating the start of the message, always ‘!’.

SeqTx is a single character (‘!’ through to ‘~’) that increments with each message
transmission, and can be used to detect message received multiple times.

SeqRx is a single character (‘!’ through to ‘~’) that indicates the SeqTx in the previous
message which this message is responding to. Space is used when the message is not a
response.

Command is a single character indicating the command being sent. For messages that are
commands, these are all upper-case characters, whilst messages that are sent in reply to
commands, they are lower-case characters.

Data is additional data which may be included depending on the command being sent.

End is a single character indicating the end of the message - always 0 (null terminator).

3.2.2 Pairing
Once a node is in the network, it must find another node with which to pair in order to
exchange data.

While a node is unpaired, it will regularly broadcast an idle query message to the network.
Any other unpaired node that receives such a message will send an idle response message
back to the broadcasting node.

Upon receiving an idle response, an unpaired node will exchange a sequence of messages
with the other unpaired node in order to form a pair. These messages reflect the steps that a
standard dial-up modem follows when negotiating a connection and are illustrated in the
Wireless UART State Machine section of this document.

3.2.3 Data Message Format
Once paired together, the paired nodes exchange data using only the data command
message. This message may form both a query and reply in a single message. The data
command is represented by the command character being ‘D’.

The data portion of the message then has the following format:
Status Acks [DataSeq] [Data]

where:

Status is a single character (‘0’ through to ‘?’) with the least significant four bits indicating
the status of the node:

0x01 – Tx enabled, the node is permitted to transmit data over the radio.

0x02 – Rx enabled, the node is able to receive data over the radio.

0x04 – Rx changed, the node has changed its Rx enabled state and requires an
acknowledgement.

 IEEE 802.15.4 Serial Cable Replacement

8 © NXP Laboratories UK 2017 JN-AN-1069 (v4.0) 10-Feb-2017

0x08 – Ping, the node has not sent or received data recently, is checking for the
presence of its paired node and requires an acknowledgement.

Acks is a single character (‘0’ through to ‘?’) with the least significant four bits indicating
acknowledgements of the paired node’s previous message:

0x01 – Data ack, the node accepted the previously sent packet of data.

0x02 – Data nak, the node was not able to accept the previously sent packet of data.

0x04 – Rx change ack, the node is acknowledging the previously sent Rx changed
status flag.

0x08 – Ping ack, the node is acknowledging the previously sent ping status flag.

DataSeq is a single character (‘!’ through to ‘~’) that increments with each transmission that
includes data. Can be used to ensure data that is resent over the radio is not added to the
receiving node’s UART output queue a second time. Only included when data is present in
the message.

Data is data to be output on the receiving node’s UART. Only included when data is present
in the message.

If both nodes need to transmit data at the same time, a node is able to include its next data
message with the acknowledgement of the other node's previous message. This results in
an efficient use of the radio, as each node alternates its data transmissions.

If a node fails to get a response from its paired node after a number of attempts, it will return
to an unpaired state and re-start the process of finding another node to pair with.

3.2.4 Flow Control
End-to-end flow control between two nodes A and B, where A is transmitting to B, works as
follows:

1. Node B is instructed by the attached device not to transmit any more data from its
UART.

2. Node B's UART transmit queue begins to fill and eventually becomes low on free space.

3. Node B indicates to node A that it is not able to receive further data over the radio.

4. Node A acknowledges that it will not transmit further data to node B.

5. Node B receives the acknowledgement and checks that node A has indicated that it will
not transmit further data – if this is not the case then node A sends another status
message to node B.

6. Node A is still receiving data on its UART from its attached device.

7. Node A's UART receive queue begins to fill and eventually becomes low on free space.

8. Node A instructs the attached device to stop transmitting data.

Therefore, as the queues begin to fill, the flow control works its way through the system as
required. When node B is once again allowed to transmit data to its attached device, the
queues will begin to empty and the flags are reversed through the system in a similar way,
allowing data to flow once again.

IEEE 802.15.4 Serial Cable Replacement

JN-AN-1069 (v4.0) 10-Feb-2017 © NXP Laboratories UK 2017 9

3.2.5 Wireless UART State Machine
The main transitions of the state machine implemented in wuart.h are shown in the figure
below.

• The black state transition arrows represent transactions caused by network changes or
receiving data from any node.

• The green transitions represent data received only from the paired node or the node
currently being paired with.

• The red transitions represent transitions caused by the state timing out, either on a
regular basis or due to not receiving the expected data.

The following error case transitions are not shown in the figure:

• All the green coloured states timeout to the IDLE state if the expected data is not
received. The ACK state only times out to the IDLE state after a number of resends
have failed.

• If an unexpected message is received from the paired node in any of the green
coloured states, the node returns to the IDLE state responding with an ERROR
message.

• If the ERROR message is received from the paired node in any of the green coloured
states, the node returns to the IDLE state.

• If messages are received from nodes other than the paired node while in a green
coloured state, an ERROR message is returned but the receiving node’s state remains
unchanged.

 IEEE 802.15.4 Serial Cable Replacement

10 © NXP Laboratories UK 2017 JN-AN-1069 (v4.0) 10-Feb-2017

IEEE 802.15.4 Serial Cable Replacement

JN-AN-1069 (v4.0) 10-Feb-2017 © NXP Laboratories UK 2017 11

4 Compatibility
The software provided with this Application Note is intended to be used with the following
NXP hardware and software products:

Product Type Part Number Version
Hardware Kit JN516x-EK001

JN516x-EK004
JN517x-DK005

-

IEEE 802.15.4 SDK JN-SW-4163 (for JN516x)
JN-SW-4263 (for JN517x)

1416
1546

Toolchain JN-SW-4141 (for JN516x)
LPCXpresso (for JN517x)

1308
See SDK Release Notes

For more information on the software requirements for developing with this Application Note,
refer to Section 5.

5 Software Requirements for Development
In order to use this Application Note to develop and build your own applications, you need to
install the Eclipse-based Integrated Development Environment (IDE) and Software
Developer’s Kit (SDK) that are appropriate for the chip family which you are using - either
JN516x or JN517x:

• JN516x: If developing for the JN516x microprocessors, you will need:

• ‘BeyondStudio for NXP’ IDE (JN-SW-4141)

• JN516x IEEE 802.15.4 SDK (JN-SW-4163)

 For installation instructions, refer to the BeyondStudio for NXP Installation and User
Guide (JN-UG-3098).

• JN517x: If developing for the JN517x microprocessors, you will need:

• LPCXpresso IDE

• JN517x IEEE 802.15.4 SDK (JN-SW-4263)

For installation instructions, refer to the JN517x LPCXpresso Installation and User
Guide (JN-UG-3109).

The LPCXpresso software can be obtained as described in the JN517x IEEE 802.15.4 SDK
Release Notes, which indicate the version that you will need.

All other resources are available via the IEEE 802.15.4 for JN516x and JN517x page of the
NXP web site.

 Note: The code in this Application Note can be used in either
BeyondStudio or LPCXpresso and the process for importing the
application into the development workspace is the same for both.

 Note: Prebuilt JN5168, JN5169 and JN5179 application binaries are
supplied in this Application Note package, but the applications can be
rebuilt for other JN516x and JN517x devices (see Section 6).

 IEEE 802.15.4 Serial Cable Replacement

12 © NXP Laboratories UK 2017 JN-AN-1069 (v4.0) 10-Feb-2017

6 Building and Loading the Application

6.1 Pre-requisites
It is assumed that you have installed the relevant NXP development software on your PC, as
detailed in Section 0.

In order to build the application, this Application Note [JN-AN-1069] must be unzipped into
the directory:

<IDE installation root>\workspace
where <IDE Installation root> is the path in which the IDE was installed. By default, this is:

• C:\NXP\bstudio_nxp for BeyondStudio

• C:\NXP\LPCXpresso_<version>_<build>\lpcxpresso for LPCXpresso

The workspace directory is automatically created when you start the IDE.

All files should then be located in the directory:

…\workspace\JN-AN-1069-IEEE-802.15.4-Serial-Cable-Replacement
There is a sub-directory for each application, each having Source and Build sub-directories.
There will also be sub-directories JN516x and JN517x containing the project definition files.

6.2 Build Instructions
The software provided with this Application Note can be built for both JN516x and JN517x.

The applications can be built from the command line using the makefiles or from the IDE –
makefiles and Eclipse-based project files are supplied.

• To build using makefiles, refer to Section 6.2.1.

• To build using the IDE, refer to Section 6.2.2.

6.2.1 Using Makefiles
This section describes how to use the supplied makefiles to build the applications. Each
application (e.g. for Coordinator or End Device) has its own Build directory, which contains
the makefiles for the application.

The following command line options can be used to configure the built devices:

• JENNIC_CHIP_FAMILY=JN516x to build for JN516x microcontrollers

• JENNIC_CHIP_FAMILY=JN517x to build for JN517x microcontrollers

• JENNIC_CHIP=JN5169 to build for a JN5169 microcontroller

• JENNIC_CHIP=JN5168 to build for a JN5168 microcontroller

• JENNIC_CHIP=JN5164 to build for a JN5164 microcontroller

• JENNIC_CHIP=JN5161 to build for a JN5161 microcontroller

• JENNIC_CHIP=JN5179 to build for a JN5179 microcontroller

• JENNIC_CHIP=JN5178 to build for a JN5178 microcontroller

• JENNIC_CHIP=JN5174 to build for a JN5174 microcontroller

IEEE 802.15.4 Serial Cable Replacement

JN-AN-1069 (v4.0) 10-Feb-2017 © NXP Laboratories UK 2017 13

To build an application and load it into a JN516x/7x module, follow the instructions below:

1. Ensure that the project directory is located in

<IDE installation root>\workspace

2. Start an MSYS shell by following the Windows Start menu path:
All Programs > NXP > MSYS Shell

3. Navigate to the Build directory for the application to be built and at the command
prompt enter an appropriate make command for your chip type, as illustrated below.

 For example, for JN5169:
 make JENNIC_CHIP_FAMILY=JN516x JENNIC_CHIP=JN5169 clean all

For example, for JN5179:
 make JENNIC_CHIP_FAMILY=JN517x JENNIC_CHIP=JN5179 clean all

 The binary file will be created in the Build directory, the resulting filename indicating the
chip type (e.g. 5169) for which the application was built.

4. Load the resulting binary file into the board. You can do this from the command line
using the JN51xx Production Flash Programmer (described in the JN51xx Production
Flash Programmer User Guide (JN-UG-3099)) – refer to Section 2.1.

6.2.2 Using the IDE (BeyondStudio for NXP or LPCXpresso)
This section describes how to use the IDE to build the demonstration application.

To build the application and load it into JN516x/7x modules, follow the instructions below:

1. Ensure that the project directory is located in

<IDE installation root>\workspace

2. Start the IDE and import the relevant project as follows:

a) In the IDE, follow the menu path File>Import to display the Import dialogue box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory and browse to the workspace directory.

d) In the Projects box, select the project to be imported, only select the project file
appropriate for the chip family and IDE you are using and click Finish.

3. Build an application. To do this, ensure that the project is highlighted in the left panel of

the IDE and use the drop-down list associated with the hammer icon in the toolbar
to select the relevant build configuration – once selected, the application will
automatically build. Repeat this to build the other applications.

 The binary files will be created in the relevant Build directories for the applications.

4. Load the resulting binary files into the board. You can do this using the integrated Flash
programmer, as described in the User Guide for the IDE that you are using.

 IEEE 802.15.4 Serial Cable Replacement

14 © NXP Laboratories UK 2017 JN-AN-1069 (v4.0) 10-Feb-2017

7 Application Code Sizes

7.1 JN516x Applications
The applications of this Application Note have the following memory footprints on the
JN5168 and JN5169 devices, when using the JN516x IEEE 802.15.4 SDK (JN-SW-4163):

Application Text Size
(Bytes)

Data Size
(Bytes)

BSS Size
(Bytes)

Coordinator_JN5168 38108 288 26787
EndDevice_JN5168 38647 288 27795
Coordinator_JN5169 35792 280 25487
EndDevice_JN5169 36462 284 26503

7.2 JN517x Applications
The applications of this Application Note have the following memory footprints on the
JN5179 device, when using the JN517x IEEE 802.15.4 SDK (JN-SW-4263):

Application Text Size
(Bytes)

Data Size
(Bytes)

BSS Size
(Bytes)

Coordinator_JN5179 38012 664 25519
EndDevice_JN5179 38708 664 26535

IEEE 802.15.4 Serial Cable Replacement

JN-AN-1069 (v4.0) 10-Feb-2017 © NXP Laboratories UK 2017 15

Revision History
Version Notes

1.0 First release
2.0 Re-written for improved performance. JN5148 support added.
3.0 JN5168 and JN5169 support added. JN5148 and JN5139 support dropped.
4.0 JN517x support added.

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any
products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	1 Application Overview
	2 Running the Demonstration
	2.1 Loading the Applications
	2.2 Starting the Applications
	2.3 Using the Applications
	2.4 Using the LCD Expansion Board

	3 Software Design
	3.1 Overview of Software Modules
	3.1.1 config.h
	3.1.2 crd_coordinator.c/h
	3.1.3 ed_enddevice.c/h
	3.1.4 node.c/h
	3.1.5 wuart.c/h
	3.1.6 uart.c/h
	3.1.7 queue.c/h
	3.1.8 lcd.c/h
	3.1.9 rnd.c/h
	3.1.10 dbg.c/h

	3.2 Functional Overview
	3.2.1 Message Format
	3.2.2 Pairing
	3.2.3 Data Message Format
	3.2.4 Flow Control
	3.2.5 Wireless UART State Machine

	4 Compatibility
	5 Software Requirements for Development
	6 Building and Loading the Application
	6.1 Pre-requisites
	6.2 Build Instructions
	6.2.1 Using Makefiles
	6.2.2 Using the IDE (BeyondStudio for NXP or LPCXpresso)

	7 Application Code Sizes
	7.1 JN516x Applications
	7.2 JN517x Applications

	Revision History

