

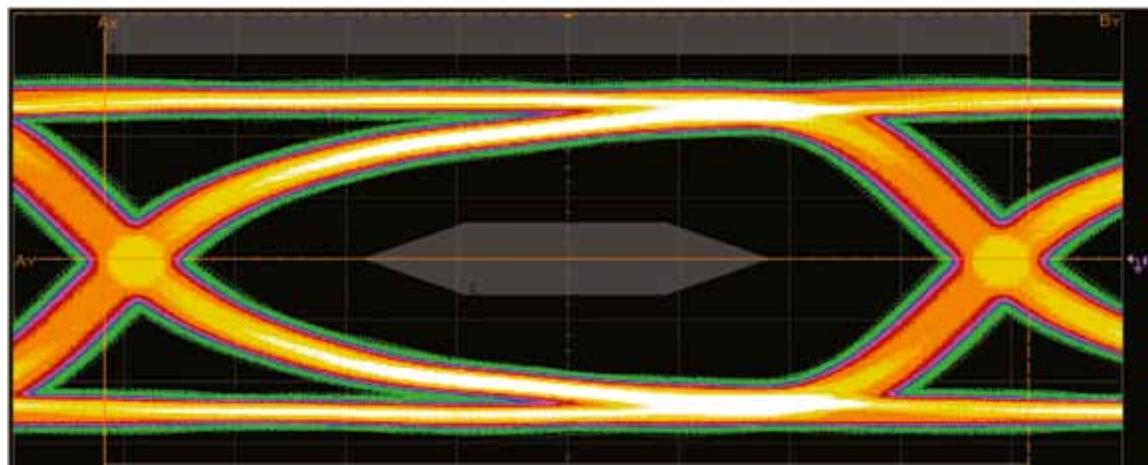
NXP High-Speed Muxes/Switches

Supporting DP/PCIe/SATA/mSATA/SAS/USB/LVDS

AC-Coupled High Speed Interfaces Summary

NXP's high-speed muxes/switches support AC-coupled and non-AC-coupled interfaces in a range of formats, from LVDS to PCI3 Gen 3. The table lists the mux/switch formats for AC-coupled interfaces.

Our portfolio covers bandwidth from 1.5 to more than 8 GHz and includes standard and custom solutions for existing and emerging architectures. Each solution builds on the expertise that comes from active support for and participation in key standard-setting committees.

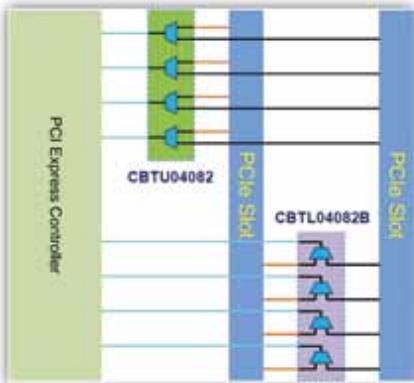

Interface	Bandwidth (per Lane)	# Diff Pairs	Side Band Signals
DisplayPort 1.1a/eDP	2.7 Gbps	1/2/4 Tx	AUX/DDC, HPD
DisplayPort 1.2/eDP	5.4 Gbps	1/2/4 Tx	FAUX/AUX/DDC, HPD
PCI Express Gen 1	2.5 Gbps	1 Tx / 1 Rx	N/A
PCI Express Gen 2	5.0 Gbps	1 Tx / 1 Rx	N/A
PCI Express Gen 3	8.0 Gbps	1 Tx / 1 Rx	N/A
SATA Gen 1	1.5 Gbps	1 Tx / 1 Rx	N/A
SATA Gen 2	3.0 Gbps	1 Tx / 1 Rx	N/A
SATA Gen 3	6.0 Gbps	1 Tx / 1 Rx	N/A
USB 3.0	5.0 Gbps	1 Tx / 1 Rx	N/A

Key Parametric Considerations

Depending on application requirements, consider the following characteristics when selecting a mux/switch:

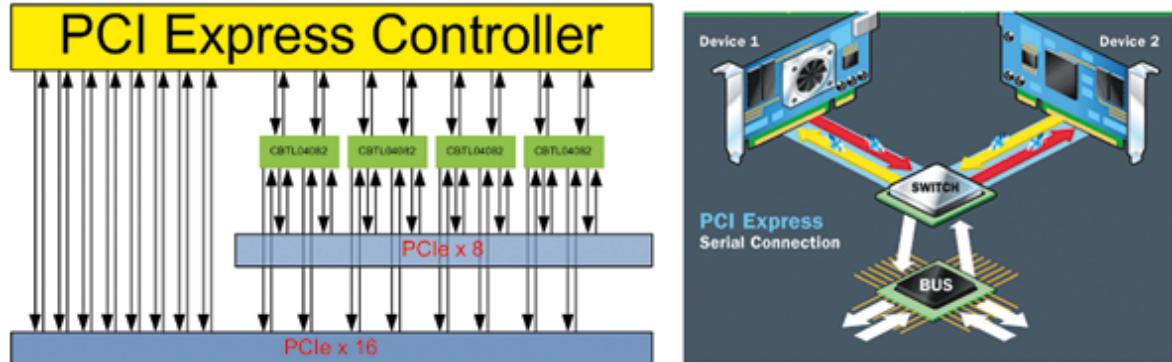
- ▶ Insertion loss and bandwidth
- ▶ Number of differential pairs
- ▶ Peak-to-peak differential voltage

- ▶ Common mode voltage
- ▶ Inter-/intra-pair skew
- ▶ Rise/fall time
- ▶ Differential mode return loss
- ▶ Common mode return loss
- ▶ Cross-talk

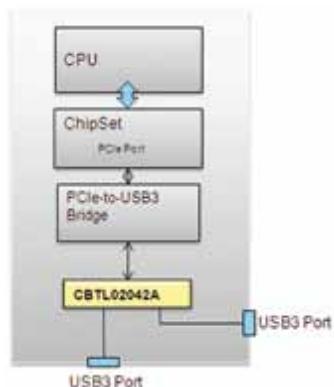

"Eye" diagram showing excellent Signal Integrity

Selection Guide: High-Speed Muxes/Switches

Device Type	Voltage	Features	Support	Package
CBTL04DP211	3.3 V	2.7 Gbps, DP1.1, eDP Panel Switch	DP1.1a	HVQFN-32
CBTL06DP211	3.3 V	2.7 Gbps, 2:1 Switchable GFX Mux/Demux, 4:1 Aux or DDC	DP1.1a	TFBGA-48
CBTL06121A	3.3 V	2.7 Gbps, 6-channel Mux/Demux, ATX	DP1.1a	QFN-56
CBTL06121B	3.3 V	2.7 Gbps, 6-channel Mux/Demux, BTX	DP1.1a	QFN-56
CBTL12131	3.3 V	Panel Switch for All-in-One PCs with Rcvr Equalizer	DP1.2	TFBGA-64w
CBTL03SB212	3.3 V	5.4 Gbps Side Band Switch for AUX, DDC, HPD	DP1.2	QFN-20
CBTL04DP212	3.3 V	5.4 Gbps, DP 1.2 eDP Panel Switch	DP1.2	HVQFN-32
CBTL06DP212	3.3 V	5.4 Gbps, 2:1 Switchable GFX Mux/Demux, 4:1 Aux or DDC	DP1.2	TFBGA-48
CBTL06122A	3.3 V	5.4 Gbps, 6-channel Mux/Demux, ATX	DP1.2	QFN-56
CBTL06122B	3.3 V	5.4 Gbps, 6-channel Mux/Demux, BTX	DP1.2	QFN-56
CBTL06123A*	3.3 V	5.4 Gbps, 6-channel Mux/Demux, ATX	DP1.2	QFN-56
CBTL06123B*	3.3 V	5.4 Gbps, 6-channel Mux/Demux, BTX	DP1.2	QFN-56
CBTU0808	1.8 V	2.5 Gbps, 4-channel Demux/Mux, or 8-channel 1:1 Bypass	PCIe1	TFBGA-48
CBTL02042A	3.3 V	5 Gbps, 2-channel Mux/Demux Flow Through Pinout	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-20
CBTL02042B	3.3 V	5 Gbps, 2-channel Mux/Demux, Wrap Around Pinout	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-20
CBTL02043A	3.3 V	8 Gbps, 2-channel Mux/Demux, Flow Through Pinout	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-20
CBTL02043B	3.3 V	8 Gbps, 2-channel Mux/Demux, Flow Through Pinout	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-20
CBTL04082A	3.3 V	5 Gbps, 4-channel Mux/Demux, Flow Through Pinout	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-42
CBTL04082B	3.3 V	5 Gbps, 4-channel Mux/Demux, Wrap Around Pinout	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-42
CBTL04083A	3.3 V	8 Gbps, 4-channel Mux/Demux, Flow Through Pinout	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-42
CBTL04083B	3.3 V	8 Gbps, 4-channel Mux/Demux, Wrap Around Pinout	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-42
CBTU04082	1.8 V	5 Gbps, 4-channel Mux/Demux	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-42
CBTU04083	1.8 V	8 Gbps, 4-channel Mux/Demux	PCIe2/DP1.1/SAS1/SATA2/mSATA/LVDS/USB 3.0	QFN-42
CBTW28DD14	1.5/1.8 V	14-bit Mux/Bus switch	DDR2/DDR3	TFBGA-48
CBTU4411	1.8 V	11-bit DDR2 SDRAM Mux/Bus Switch, with 12 ohm Ron	DDR2	LFBGA-72


* Sampling

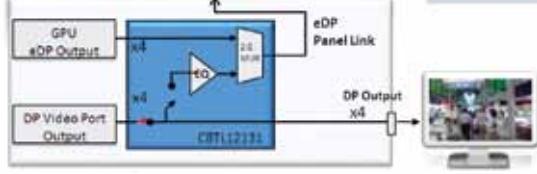
Application Example: Mux Support of Balanced or Unbalanced Propagation Delays



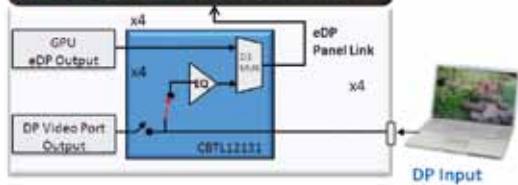
In the CBTL0408x and CBTL0204x families, two pinout configurations are available for high-speed USB, PCIe, SAS, DP, SATA, and mSATA applications. When signal propagation delay varies and trace length is not important, the flow-through pinout, designated by an "A" suffix, is recommended. For applications where balanced propagation delay is required, the wrap-around or loop-back pinout, designated by a "B" suffix, should be used.

Application Example: PCIe Slot Configuration Using CBTL04082

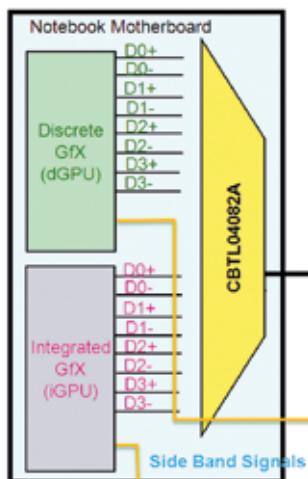
Application Example: CBTL02042A Used to Mux Between Main Laptop Motherboard and Docking Station



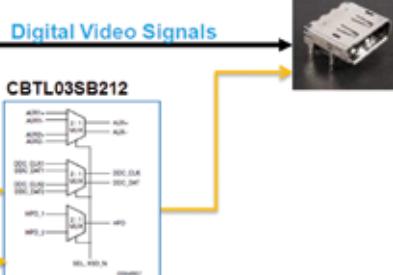
Application Example: CBTL12131 Used for All-In-One (AIO) Computers with Dual-Video Displays



- The CBTL12131 has an eDP interface for the LCD panel, and a DP input connector
- Reuse the internal LCD panel as a secondary display, driven by an external DP source


Operation Mode	DP Signal Path
DualPath Through	GPU → eDP Panel DP Port → External DP Connector

Operation Mode	DP Signal Path
ExternalSource	External DP Connector → eDP Panel



Application Example: CBTL04082A and CBTL03SB212 Providing Flexible Control in Switchable Graphics Applications

The CBTL04082A and the CBTL03SB212 provide separate layout and switching control for:

- High-speed digital video signal
- Low-speed side band signal

www.nxp.com

© 2011 NXP Semiconductors N.V.

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: January 2011

Document order number: 9397 750 17037

Printed in the Netherlands