

Introduction
This technical note shows an I2C slave software example for the Philips Semiconductors LPC2000
microcontroller family. The software is written for the LPC2138 and tested on an MCB2130 board. It
supports interrupt driven I2C slave message transfers.

I2C slave demo
I2C slave mode functions are very specific to the system design, and therefore, very difficult to make
generic. In the example below an I2C interrupt is generated if the interface recognizes its own slave address
(0x20 or 0x21). When addressed as “slave transmitter”, byte SlaveSnd (which is actually the analog value at
AIN1 = P0.28) is transmitted. When addressed as “slave receiver”, byte SlaveRcv from the bus master is
received. This byte is reflected to port pins P1.16 to P1.23.

 TN06005
 LPC2000 I2C slave code example
 Paul Seerden – 2006 April 21 Technical note

SLAVE ADDRESSS 0 A SlaveRcv A P

SlaveSnd PS 1 A 1SLAVE ADDRESS

Slave Receiver

Slave Transmitter

SLAVE ADDRESSS 0 A SlaveRcv A P

SlaveSnd PS 1 A 1SLAVE ADDRESS

Slave Receiver

Slave Transmitter

#include "LPC213x.h"

extern void I2C0_Init(void);
extern unsigned char SlaveSnd;

static unsigned char ADC_Read(void)
{
 unsigned int i;

 AD0CR = 0x00200302; // Init ADC (Pclk = 12MHz) and select channel AD0.1
 AD0CR |= 0x01000000; // Start A/D Conversion
 do
 {
 i = AD0DR; // Read A/D Data Register
 } while ((i & 0x80000000) == 0); // Wait for end of A/D Conversion

 return (i >> 8) & 0x00FF; // bit 8:15 is 8-bit AD value
}

void main(void)
{
 PINSEL1 |= 0x01000000; // P0.28 = AD0.1
 IODIR1 = 0x00FF0000; // P1.16..23 defined as Outputs
 I2C0_Init(); // initialize I2C bus

 while (1)
 {
 SlaveSnd = ADC_Read(); // convert and send channel AD0.1
 }
}

Philips Semiconductors TN06005
 LPC2000 I2C slave code example

© Philips Electronics N.V. 2006
Application information — Applications that are described herein for any of these
products are for illustrative purposes only. Philips Semiconductors make no
representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

#include "LPC213x.h"

unsigned char SlaveRcv = 0xAA;
unsigned char SlaveSnd;

void I2C0_Isr(void) __irq
{
 unsigned char st;

 st = I2C0STAT;
 I2C0CONCLR = 0x2C; // clear STA, AA and SI
 switch(st)
 {
 case 0x60: // own SLA+W received, Ack returned (slave receiver)
 case 0x68: // Addressed as slave
 I2C0CONSET = 0x04; // set AA, return ACK on first byte
 break;
 case 0x80: // Data received, ACK returned
 SlaveRcv = I2C0DAT; // read and store data, NACK on next byte
 IOCLR1 = 0x00FF0000; // Turn off LEDs P1.16..23
 IOSET1 = SlaveRcv << 16; // Turn on LED
 break;
 case 0x88: // data received, NACK returned
 case 0xA0: // STOP or REP.START received while addressed as slave
 case 0xC0: // Data transmitted, NOT ACK received
 case 0xC8: // Last data transmitted, ACK received
 I2C0CONSET = 0x04; // set AA, switch to not addressed slave mode
 break;
 case 0xA8: // own SLA+R received, Ack returned (slave transmitter)
 case 0xB8: // Data transmitted, ACK received
 I2C0DAT = SlaveSnd; // Transmit last data AA = 0
 break;
 default:
 break;
 }
 VICVectAddr = 0; // reset VIC
}

void I2C0_Init(void)
{
 PINSEL0 |= 0x50; // P0.3 = SDA, P0.2 = SCL
 I2C0ADR = 0x20; // set I2C slave address
 I2C0CONSET = 0x44; // enable I2C hardwar and set AA (ack)

 VICVectAddr0 = (unsigned int) &I2C0_Isr;
 VICVectCntl0 = 0x29; // Channel1 on Source#9 ... enabled
 VICIntEnable |= 0x200; // 9th bit is the I2C
}

