NFC NXP-NCI USB dongle
Linux quick start guide

General comments
o The NFC functionality is insured thanks to NXP PN7150 NFC Controller
e USB interfaced is provided via HID standard thanks to NXP LPC11u24 MCU
e The dongle is supported under Linux based devices through generic HID support of

this operating system
e Example is provided to demonstrate full P2P functionality (reader, P2P and card
emulation) of the NFC dongle

Quick start

e First of all permission of the dongle shall be set in Udev: Just drop the provided file
named “99-hid.rules” (optionally rename it) to “/etc/udev/rules.d” directory of the
target before plugging the dongle in the USB port.

e The dongle is detected as “LPC 12C HID” in the USB devices list, and permission to
r+w are set:

casid@casid-OptiPlex-7010: ~

casid@casid-optiPlex-7010:~% Llsusb

Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.8 root hub

Bus 001 Device 005: ID 1fc9:0088 NXP Semiconductors

Bus 001 Device 004: ID 413c:3012 Dell Computer Corp. Optical Wheel Mouse
Bus 001 Device 803: ID 413c:2003 Dell Computer Corp. Keyboard

Bus 001 Device 882: ID 8887:08024 Intel Corp. Integrated Rate Matching Hub
Bus 001 Device 001: ID 1d6b:@002 Linux Foundation 2.8 root hub

Bus 084 Device 001: ID 1d6b:®803 Linux Foundation 3.8 root hub

Bus 003 Device 002: ID 058f:6387 Alcor Micro Corp. Flash Drive
Bus 003 Device 061: ID 1d6b:8002 Linux Foundation 2.8 root hub
casid@casid-0OptiPlex-7010:~5 1ls -als /fdev/hidraw*

1 root root 244, ® mail 23 16:04 Jdev/hidraw0®

1 root root 244, 1 mail 23 16:04 fdev/hidrawil
0 crw-rw-rw- 1 root root 244, 2 mai 23 16:58 fdev/hidraw2
casid@casid-0OptiPlex-7010:~% I



http://www.nxp.com/products/identification-and-security/nfc-and-reader-ics/nfc-controller-solutions/high-performance-nfc-controller-supporting-all-nfc-forum-modes-with-integrated-firmware-and-nci-interface:PN7150B0HN?tab=Documentation_Tab
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/32kb-flash-8kb-sram-lqfp64-package:LPC11U24FBD64

e Ina Terminal window, running provided “NXP-NCI_Linux_example” executable
launches NFC discovery. Tapping a card generates such display:

casid@casid-OptiPlex-7010: ~
casid@casid-0ptiPlex-7010:~5 . /NXP-NCI Linux_example

Running the NXP-NCI project.

WAITING FOR DEVICE DISCOVERY
- POLL MODE: Remote T2T activated
SENS_RES = 0x44 ax00
NFCID = 04 88 5f d2 9c 39 88
SEL_RES = 0x00
--- NDEF record received:
URI record: http://www.nxp.com

CARD REMOVED

WAITING FOR DEVICE DISCOVERY

e While tapping a NFC phone triggers the reception of NDEF text record on the phone
and the following log:

casid@casid-OptiPlex-7010: ~
casid@casid-0ptiPlex-7010:~5 . /NXP-NCI Linux_example

Running the NXP-NCI project.

WAITING FOR DEVICE DISCOVERY

- P2P TARGET MODE: Activated from remote Initiator
--- NDEF Record sent

PEER LOST

WAITING FOR DEVICE DISCOVERY

Building and debugging the example
e Make sure the following components are installed:
o gcc/g++ (e.g. “apt-get install gcc g++)
o gdb (e.g. “apt-get install gdb)
o Eclipse CDT (e.g. “apt-get install eclipse-cdt)
o Udev (e.g. “apt-get install libudev-dev)
o pthread (e.g. “apt-get install libpthread-stubs0-dev)
e Example source code is delivered in the form of Eclipse C/C++ project
e The project must be imported into Eclipse C/C++ IDE:

o File->Import...->Existing projects into Workspace->Select archive file
o Select the NXP-NCI_example.zip package
o Tick the “NXP-NCI_Linux_example” project and click Finish button
e Build the project in “Debug” mode
e Then start “Debug As -> Local C/C++ Application”
e Note that the Debug configuration traces all NCl exchanges in the console (enabled
according to NCI_DEBUG definition inside GCC C Compiler Preprocessor defined
symbols of the project properties)


https://eclipse.org/

