High PF, low output ripple, double stage led-driver SSL2109 design

Date: 10 June 2014

Status:

<table>
<thead>
<tr>
<th>Design Idea</th>
<th>Design Concept</th>
<th>Design Prototype</th>
<th>Demo Board</th>
<th>Reference Design</th>
</tr>
</thead>
</table>

See appendix for explanation

Keywords
Power Factor, THDi, ripple, Buck, LED, SSL2109, SSL5015, SSL5018

NXP device(s)
SSL2109AT

Description of Application
The application in this solution brief is an LED driver with double stage topology (one boost stage and one buck stage), while only one IC is used for the implementation. The application realizes high PF and low THDi, while low output current ripple can be realized.

Features and Specifications
- Typical operating (source) voltage: 230 V (AC)
- Typical LED current: 152 mA
- Excellent output current regulation
- Efficiency 84% - 87%
- Power Factor 0.95
- Output ripple 30% with 2.2 µF output capacitor
- Output ripple 5% with 47 µF output capacitor
- Input power 11.6 Watt, output power 10 Watt
- No mains dimming
- 34 external components
Component List

Table 1: component list

<table>
<thead>
<tr>
<th>Part ref.</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Package</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14</td>
<td>47 nF</td>
<td>Ycap 250 VAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>10 nF</td>
<td>Ycap, 250 VAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>33 nF</td>
<td></td>
<td>≥350 VDC</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>100 pF</td>
<td>≥450 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>2.2 µF or 47 µF</td>
<td></td>
<td>30% or 5% output current ripple</td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>4.4 µF</td>
<td>450 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>100 nF</td>
<td>50 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D11,D12,D13,D14,D19</td>
<td>1N4007</td>
<td>slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D15,D16,D17</td>
<td>GSD2004W-V</td>
<td>fast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D18</td>
<td>6.2 V</td>
<td>¼ Watt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>5.6 mH</td>
<td>Isat ≥ 0.2 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>2.7 mH</td>
<td>Isat ≥ 0.4 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>1.8 mH</td>
<td>Isat ≥ 0.4 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>2N60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2A, Q3A</td>
<td>BC847B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>10 Ω</td>
<td>Fusible resistor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3, R4</td>
<td>10 kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>100 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6, R8</td>
<td>1.1 MΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>39 kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>1 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>22 kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>1.8 Ω</td>
<td>1% tolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>47 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>SSL2109AT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Optional additional components (see figure 2)

<table>
<thead>
<tr>
<th>Part ref.</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Package</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>D21</td>
<td>75 V</td>
<td></td>
<td>¼ Watt</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>BT169D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>10 kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R14</td>
<td>33 Ω</td>
<td></td>
<td>1 Watt</td>
<td></td>
</tr>
</tbody>
</table>

Operation and Performance

In this application, the SSL2109AT is used in a double stage Boost - Buck topology instead of the designated Buck topology. There are two reasons why this is done:

- With a boost stage at the input side, the input capacitance of the system can keep at a minimum, allowing high power factor.
- With a buck stage at output side, the output ripple can be low due to the stable bus voltage supplied by the prior boost stage.

With this buck-boost application, only one switching FET is required to draw current through the Boost and through the Buck stage. The switching current of the boost stage, plus the switching current of the buck stage is flowing through the same switching FET. The IC senses the current through the sense resistor (R11) and switches off when the peak current is reached. The peak current through the sense resistor flows mainly through the output LEDs. The Boost current follows a different return path through R9 and only slightly effects the peak current through the sense resistor (R11), therefore the output current can be calculated similarly as an SSL2109AT Buck converter (formula 1; also see UM10482).
The input current waveform is shaped by the return current of the boost stage, therefore the power factor and THDi depend on the ratio between the Boost inductor (L2) and the Buck inductor (L3). Smaller ratio of Lboost/Lbuck will generally provide higher PF and lower THDi, but also higher bus voltage (i.e. the voltage on C22). In the realized application Lboost > Lbuck; otherwise the ripple voltage on the bus capacitor comes too close to its voltage rating of 450 V. Table 2 shows an example of these the Lboost/Lbuck dependencies.

Table 2: Inductor ratio dependencies

<table>
<thead>
<tr>
<th>Lboost (mH)</th>
<th>Lbuck (mH)</th>
<th>PF</th>
<th>THDi (%)</th>
<th>Bus Voltage @ 230 VAC (VDC)</th>
<th>Class C compliant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>1.8</td>
<td>0.95</td>
<td>32</td>
<td>400 typical</td>
<td>no</td>
</tr>
<tr>
<td>1.8</td>
<td>1.8</td>
<td>0.96</td>
<td>27</td>
<td>410 typical</td>
<td>yes</td>
</tr>
<tr>
<td>1.8</td>
<td>2.7</td>
<td>0.97</td>
<td>22</td>
<td>430 typical</td>
<td>yes</td>
</tr>
</tbody>
</table>

The output current ripple is mainly ripple at the switching frequency (~90 kHz). A small portion of the output ripple is low frequent ripple (2 * F_mains, i.e. 100 Hz). The magnitude of the output current ripple is mainly dependent on the output capacitance (C21) and the LED impedance. Ripple was measured at 30 % with an output capacitor of 2.2 μF. Lower output ripple, down to 5%, can be realized by implementing an output capacitor (C21) of ~47 μF; actual capacitor size depends on the LED impedance. The residual 5% current ripple is than mainly low frequent (100 Hz).

The voltage rating of the output capacitor can be limited to 100 V, but some extra components (figure 2; D21, Q4, R13, R14) are then recommended in order to protect the output capacitor for potential high voltages. The circuit provides low impedance in case the output voltage exceeds the zener voltage of D21. The IC is able to detect this as a short at the output, and will then go in output short protection (latched protection).

Additional protections are embedded for input over voltage protection (R8, R6, R7, R10, D18, Q2A) and over current protection for the Boost stage (R9, Q3A). The input over voltage protection turns off the IC when too high bus voltage is on C22. The input over voltage protection pulls the VCC voltage down in case the bus voltage exceeds a limit. The limit can be tuned with the ratio between R8, R6 and R7. It is essential that the limit is tuned below the maximum voltage rating of the bus capacitor (C22). The protection will restart automatically when the input voltage is reduced.

Formula 1

\[
I_{\text{out}} = \frac{1}{2} I_{\text{peak}} \frac{t_{\text{ch}} + t_{\text{dch}}}{t_{\text{ch}} + t_{\text{dch}} + t_{\text{ring}}} \approx \frac{0.26}{R_{\text{sense}}}
\]

Fig 2: Over voltage protection circuit diagram
The over current protection for the Boost stage (R9, Q3A) pulls down the VCC voltage in case the Boost peak current exceeds $V_{th}/R9$, where V_{th} is the threshold voltage of Q3A. This circuit is not active under typical conditions, but the circuit is recommended since the IC will not be able to detect too high peak currents of the Boost stage in this topology.

Literature
- SSL2109T / SSL2109AT; NXP datasheet
- AN10876; NXP Application Note
- AN11041; NXP Application Note
- AN11136; NXP Application Note
- UM10482; User Manual of a buck converter based on SSL21081
Appendix

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
</table>
| Design Idea | • Principle application design
 • Based upon native behavior of the constituting components and the elementary interactions
 • No or only coarse dimensioning of components
 • Not implemented and tested |
| Design Concept | • Principle application design
 • Based upon building blocks that are known to operate correctly and that are known to interact without conflicts
 • At least coarse dimensioning of components
 • All individual building blocks were individually implemented and tested but not in the presented configuration |
| Design Prototype | • Full implementation of an application principle
 • Implemented on a breadboard or prototype PCB
 • (Basic) operation verified and evaluated
 • Proper dimensioning of components, but not optimized
 • (Limited) operational performance data available |
| Demo Board Design | • Full implementation of an application
 • Implemented on a PCB
 • Operation and performance under typical conditions verified
 • Optimal component dimensioning for typical operation
 • The demo board is intended for evaluation and offers the possibility to experiment with various implementation options; the demo board can be a versatile starting point for developing an end-application
 • The design and the PCB are not meant as a blueprint for an end-application or mass production |
| Reference Design | • Full implementation of an application
 • Implemented on a PCB that conforms to the requirements in the specific application segment (form factor, UL requirements, manufacturability, etc.)
 • Operation and performance under all required conditions verified
 • Optimal component dimensioning for operation under all required conditions
 • Full documentation (User Manual) available
 • The design and the PCB can be used as a blueprint for an end-application or mass production |
Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out of the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Safety of high-voltage evaluation products — The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire. This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel that is qualified according to local requirements and labor laws.
to work with non-insulated mains voltages and high-voltage circuits.

The product does not comply with IEC 60950 based national or regional safety standards. NXP Semiconductors does not accept any liability for damages incurred due to inappropriate use of this product or related to non-insulated high voltages. Any use of this product is at customer's own risk and liability. The customer shall fully indemnify and hold harmless NXP Semiconductors from any liability, damages and claims resulting from the use of the product.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

GreenChip — is a trademark of NXP Semiconductors N.V.

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com