The MCF5206e integrated microprocessor combines a ColdFire® core with several peripheral functions such as a DRAM controller, timers, parallel and serial interfaces, and system integration. This device is an enhanced version of the MCF5206, which is in production today. Not only does the MCF5206e provide a performance upgrade to the MCF5206 due to the increased 4-Kbyte I-cache, 8-Kbyte SRAM and increased frequency, but this device also integrates an additional multiply accumulate (MAC) unit, hardware divide, and two-channel DMA to the device while maintaining pin compatibility with the MCF5206.

The revolutionary ColdFire architecture gives cost-sensitive, high-volume markets new levels of price and performance. Based upon the concept of variable-length RISC technology, the ColdFire core combines the architectural simplicity of conventional 32-bit RISC with a memory-saving, variable-length instruction set. In defining the ColdFire architecture for embedded processing applications, Motorola incorporated RISC architecture for peak performance and a simplified version of the variable-length instruction set found in the M68000 family for code density.

By using a variable-length instruction set architecture, embedded processor designers using ColdFire processors will enjoy significant system-level advantages over conventional fixed-length RISC architectures. The denser binary code for ColdFire uses less memory than fixed-length instruction processors available. This improved code density means more efficient system memory usage for a given application, and allows for slower, less costly memory to help achieve a target price/performance level for embedded processing applications.

The MCF5206e Version 2 core delivers enhanced performance while maintaining low system costs. The addition of a MAC module and hardware divide to the core increases performance of complex arithmetic functions normally used in DSP applications. To speed program execution, the on chip instruction cache and SRAM provides one-cycle access to critical code and data. The MCF5206e processor greatly reduces the time required for system design and implementation by packaging common system functions on chip and providing glueless interfaces to 8 bit, 16 bit and 32 bit DRAM, SRAM, ROM and I/O devices.

The integrated peripheral functions provide high performance and flexibility. The DRAM controller supports up to 512 Mbytes of DRAM. The MCF5206e processor supports both fast page-mode and extended-data-out DRAMs. The DMA controller provides two fully programmable channels that support both single and dual addressing modes. The serial interfaces consists of two independent UARTs and a separate I²C-compatible Motorola bus (M-Bus interface). Two 16-bit general-purpose multimode timers provide separate input and output signals. For system protection, the processor includes a programmable 16-bit software
Freescale Semiconductor, Inc.

MCF5206e Overview

watchdog timer and several bus monitors. In addition, common system functions such as chip-selects, interrupt control, bus arbitration and IEEE 1149.1 Test (JTAG) support are included.

A sophisticated debug interface supports both background-debug mode and real-time trace. The interface is common to all ColdFire-based processors and allows emulator support across the entire ColdFire family.

1.1 MCF5206e Overview

This section gives a brief overview of the MCF5206e processor. Figure 1 is a block diagram of the MCF5206e processor.

![Figure 1. MCF5206e Block Diagram](image)

1.1.1 Features List

The following are the primary features of the MCF5206e integrated processor:

- ColdFire Version 2 core
 - Variable-length RISC
 - 32-bit internal address bus with 28-bit external bus; chip select and DRAM decoding use internal 32 bit
 - 32-bit data base

For More Information On This Product, Go to: www.freescale.com

MCF5206e Integrated ColdFire® Microprocessor Product Brief
MOTOROLA
MCF5206e Overview

— 16 user-visible 32-bit wide registers
— Supervisor and user modes for system protection
— Vector base register to relocate exception-vector table
— Optimized for high level language constructs
— 50 MIPS at 54 MHz

• Multiply accumulate
— High speed, complex arithmetic functions for signal processing applications
— Single clock issue rate with 3-stage execution pipeline
— One MAC cycle for 16x16 and 32x32 multiplies, all with 32-bit accumulate
— Four-Kbyte direct-mapped instruction cache
— Eight-Kbyte on-chip SRAM that provides one-cycle access to critical code and data

• DRAM controller
— Programmable refresh timer provides CAS before RAS refresh
— Support for 2 separate memory banks
— Support for fast page mode DRAMs and extended-data-out (EDO) DRAMs
— External bus master access

• DMA controller
— Two fully programmable channels with external request pins supporting dual-address and
single address transfers with 32-bit capability
— Two address pointers per channel that can increment or remain constant
— 16-bit transfer counter per channel
—Operand packing and unpacking
— Auto-alignment transfers for efficient block movement
— Bursting and cycle stealing
— Two clock-cycle internal access

• Two universal synchronous/asynchronous receiver/transmitters (UARTs)
— Full duplex operation
— Baud-rate generator
— Modem control signals (CTS, RTS)
— Processor-interrupt capability

• Dual 16-bit general-purpose multimode timers
— 8-bit prescaler
— Timer input and output pins
— 12 ns resolution with 54 MHz system clock
— Processor interrupt capability

• Motorola bus (M-Bus) module
— Interchip bus interface for EEPROMs, LCD controllers, A/D converters, keypads
— Compatible with industry-standard I^2^C bus

For More Information On This Product,
Go to: www.freescale.com
MCF5206e Overview

- Master or slave modes supporting multiple masters
- Automatic interrupt generation with programmable level

- System interface
 - Glueless bus interface to 8 bit, 16 bit, and 32 bit DRAM, SRAM, ROM, and I/O devices
 - Eight programmable chip selects and programmable wait states and port sizes allowing external bus masters to access chip selects
 - Programmable external interrupts
 - 8-bit general-purpose I/O interface
 - System protection
 - 16-bit software watchdog timer with prescaler
 - Double bus fault monitor
 - Bus timeout monitor
 - Spurious interrupt monitor
 - Programmable interrupt controller (low interrupt latency, 3 external interrupt inputs, and programmable interrupt priority and autovector generator)
 - IEEE 1149.1 test (JTAG) support

- System debug interface
 - Real-time trace
 - Background debug mode (BDM)

- Fully static 3.3-volt operation with 5-volt tolerant inputs
- 160-pin QFP package; pin-compatible with MCF5206

1.1.2 ColdFire Version 2 Core

The ColdFire processor core consists of two independent, decoupled pipeline structures that maximize performance while minimizing core size. The instruction fetch pipeline (IFP) is a two-stage pipeline for prefetching instructions. The prefetched instruction stream is then gated into the two-stage operand execution pipeline (OEP), which decodes the instruction, fetches the required operands and then executes the required function. The IFP and OEP pipelines are decoupled by an instruction buffer that serves as a FIFO queue, the IFP can prefetch instructions in advance of their actual use by the OEP, thereby minimizing time stalled waiting for instructions. The OEP is implemented in a two-stage pipeline featuring a traditional RISC datapath with a dual-read-ported register file feeding an arithmetic/logic unit.

1.1.3 Instruction Cache

The instruction cache improves system performance by providing cached instructions to the execution unit in a single clock. The MCF5206e processor uses a 4-Kbyte, direct-mapped instruction cache to achieve 50 MIPS at 54 MHz. The cache is accessed by physical addresses, where each 16-byte line consists of an address tag and a valid bit. The instruction cache also includes a bursting interface for 32-bit, 16-bit, and 8-bit port sizes to fill cache lines quickly.
1.1.4 Internal SRAM

The 8-Kbyte on-chip SRAM provides one clock-cycle access for the ColdFire core. The SRAM can store processor stack and critical code or data segments to maximize performance.

1.1.5 DRAM Controller

The MCF5206e DRAM controller provides a glueless interface for up to 2 banks of DRAM, each of which can range from 128 Kbytes to 256 Mbytes. The controller supports an 8-, 16-, or 32-bit data bus. A unique addressing scheme allows for increases in system memory size without rerouting address lines and rewiring boards. The controller operates in fast page or regular mode and supports extended-data-out (EDO) DRAMs.

1.1.6 MAC Module

The MAC unit provides high performance digital signal processing capabilities for the MCF5206e. Integrated as an execution unit in the processor’s operand execution pipeline, the MAC unit implements a three-stage arithmetic pipeline with sustained instruction issue rate of one MAC cycle for 16x16 operations (while also supporting 32x32 operations). The MAC opcodes provide a full feature set of extensions to the standard ColdFire instruction set for signed and unsigned operands. In addition to executing the MAC-specific instructions, this unit also performs all integer multiply opcodes, providing higher performance for this class of operation.

1.1.7 DMA Controller

The MCF5206e provides two fully programmable DMA channels for quick data transfer (32 bits, with packing and unpacking supported). Each channel has an external request pin associated with it. Single and dual address mode is supported with the ability for program bursting and cycle stealing. With auto-alignment enabled, efficient block transfers of up to 128 bits can be achieved.

1.1.8 Dual UART Modules

The UART modules contain independent receivers and transmitters that are clocked by the UART internal timer. This timer is clocked by the system clock or an external clock supplied by the TIN pin. Data formats can be 5, 6, 7 or 8 bits with even, odd, or no parity, and as many as two stop bits in 1/16 increments. Four-byte receive buffers and 2-byte transmit buffers minimize CPU service calls. The UART modules also provide several error-detection and maskable-interrupt capabilities. Modem support includes request-to-send (RTS) and clear-to-send (CTS) signals.

The system clock provides the clocking function via a programmable prescaler. Select full duplex, autoecho loopback, local loopback, and remote loopback modes. The programmable UARTs can interrupt the CPU on various normal or error condition events.

1.1.9 Dual Timer Module

The timer module includes two general-purpose timers, each of which contains a free-running 16-bit timer for use in any of the three modes. One mode captures the timer value with an external event; another mode triggers an external signal or interrupts the CPU when the timer reaches a set value, while a third mode counts external events. The timer unit has an 8-bit prescaler that allows programming of the clock input.
frequency, which is derived from the system clock. The programmable timer-output pin generates either an active low-pulse or toggles the output.

1.1.10 Motorola Bus (M-Bus) Module

The M-Bus interface is a two-wire, bidirectional serial bus that exchanges data between devices and is compatible with the I\(^2\)C bus standard. The M-Bus minimizes the interconnection between devices in the end system and is best suited for applications that need occasional bursts of rapid communication over short distances among several devices. Bus capacitance and the number of unique addresses limit the maximum communication length and the number of devices that can be connected.

1.1.11 System Interface

The MCF5206e processor provides a glueless interface to 8-, 16-, and 32-bit port size SRAM, ROM, and peripheral devices with independent programmable control of the assertion and negation of chip-selects and write-enables. Programmable address and data-hold times can be extended for a compatible interface to external devices and memory. The MCF5206e also supports bursting ROMs.

1.1.11.1 External Bus Interface

The bus interface controller transfers information between the ColdFire core and memory, peripherals, or other masters on the external bus. The external bus interface provides as much as 28 bits of address bus space, a 32-bit data bus, and all associated control signals. This interface implements an extended synchronous protocol that supports bursting operations. For nonsynchronous external memory and peripherals, the MCF5206e processor provides an alternate asynchronous bus transfer acknowledgment signal.

Simple two-wire request/acknowledge bus arbitration between the MCF5206e processor and another bus master, such as the DMA device, is glueless with arbitration handled internal to the MCF5206e processor. Alternately, an external bus arbiter can control more complex three-wire (request, grant, busy) multiple-master bus arbitration, allowing overlapped bus arbitration with one clock-bus handovers.

1.1.11.2 Chip Selects

Eight programmable chip select outputs provide signals that enable external memory and peripheral circuits for automatic wait-state insertion. These signals also interface to 8-, 16-, 32-bit ports. In addition, other external bus masters can access chip selects. The other four chip-selects are multiplexed with A[27:24] of the address bus and four write-enable signals. The base address, access permissions, and timing waveforms are all programmable using configuration registers.

Except for fast page mode, all operations are available to other external bus masters. The DRAM controller can generate RAS and CAS for an external master and can continue to generate refresh requests.

1.1.11.3 8-Bit Parallel Port Interface

An 8-bit general-purpose programmable parallel port serves as either an input or output on a bit-by-bit basis. The parallel port is multiplexed with the PST[3:0] and DDATA[3:0] debug signals.
1.1.11.4 Interrupt Controller
The interrupt controller provides user-programmable control of 3 or 7 external interrupt to any one of 7
interrupt levels and 4 priority levels. The 3 external interrupt signals can be configured as either fixed
interrupt levels 1, 4, and 7, or as a 7-level encoded interrupt. The external interrupts can also be programmed
to any one of the four priority levels within the respective interrupt levels.

1.1.11.5 System Protection
The MCF5206e processor contains a 16-bit software watchdog timer with an 8-bit prescaler. The
programmable software watchdog timer provides either a level 7 interrupt or a hardware reset on timeout.
The MCF5206e processor also contains a reset status register that indicates the cause of the last reset.

1.1.11.6 JTAG
To help with system diagnostics and testing during manufacture, the MCF5206e processor includes
dedicated user-accessible test logic that complies with the IEEE 1149.1 standard for boundary scan
testability, often referred to as Joint Test Action Group, or JTAG. For more information, refer to the IEEE
1149.1 standard.

1.1.12 System Debug Interface
The ColdFire interface supports real-time trace and background debug mode. A 4-pin background debug
mode (BDM) interface provides system debug. The BDM is a superset of the BDM interface provided on
Motorola’s 683xxx family of parts.

In real-time trace, 4 status lines provide information on processor activity in real time (PST pins). A 4-bit
wide debug data bus (DDATA) displays operand data, which helps track the machine’s dynamic execution
path as the change-of-flow instructions execute. These signals are multiplexed with the 8-bit parallel port
for application development which does not use real-time trace.

1.1.13 System Diagrams
This section includes system and pinout diagrams. Figure 2 shows the system of the MCF5206e device.
Figure 2. MCF5206e System Diagram
Figure 3 shows the MCF5206e pinout that is supplied in a 160-pin plastic quad flat pack.

MCF5206e Overview

Figure 3. MCF5206e Pinout Diagram
1.1.14 QFP Packages and Operating Frequencies

Table 1 identifies the packages and operating frequencies available for the MCF5206e processor.

<table>
<thead>
<tr>
<th>Package</th>
<th>Frequency</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Quad Flat Pack 160 lead</td>
<td>40, and 54 MHz</td>
<td>0 to 70 °C</td>
</tr>
<tr>
<td>Plastic Quad Flat Pack 160 lead</td>
<td>40 MHz</td>
<td>-40 to +85 °C</td>
</tr>
</tbody>
</table>

1.1.15 Document Availability

Table 2 provides information on documentation available for the MCF5206e microprocessor.

<table>
<thead>
<tr>
<th>Document Order Number</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF5206EPB/D</td>
<td>MCF5206e Integrated Microprocessor Product Brief</td>
</tr>
<tr>
<td>MCF5206EUM/D</td>
<td>MCF5206e User’s Manual</td>
</tr>
</tbody>
</table>

1.1.16 Development Tools

Development tools for the MCF5206e processor consist of a complete suite of compilers and debuggers available from third-party developers, as shown in Table 3. Any development tool that generates code for the Motorola ColdFire MCF5206 can do the same for the MCF5206e processor.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Company Phone Number</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diab Data</td>
<td>415-571-1700</td>
<td>Now</td>
</tr>
<tr>
<td>Software Development Systems</td>
<td>708-368-0400</td>
<td>Now</td>
</tr>
<tr>
<td>Integrated Systems</td>
<td>408-542-1781</td>
<td>Now</td>
</tr>
<tr>
<td>Embedded System Product</td>
<td>617-828-5588</td>
<td>Now</td>
</tr>
<tr>
<td>Wind River Systems</td>
<td>510-748-5588</td>
<td>Now</td>
</tr>
<tr>
<td>Yokogawa/Orion Instruments</td>
<td>408-747-0440</td>
<td>Now</td>
</tr>
<tr>
<td>Embedded Support Tools (EST)</td>
<td>617-828-5588</td>
<td>Now</td>
</tr>
<tr>
<td>Noral Micrologics</td>
<td>508-647-1013</td>
<td>Now</td>
</tr>
<tr>
<td>Lauterbach</td>
<td>508-620-4521</td>
<td>Now</td>
</tr>
<tr>
<td>Microtek</td>
<td>503-645-7333</td>
<td>Now</td>
</tr>
</tbody>
</table>
1.1.17 Revision History

Table 4. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev 1</td>
<td>1998</td>
<td>Initial Release</td>
</tr>
<tr>
<td>Rev 2</td>
<td>1/2002</td>
<td>New product brief format.</td>
</tr>
<tr>
<td>Rev 2.1</td>
<td>3/2002</td>
<td>In the system diagram on page 8:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added MTMOD signal to JTAG block.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrected signal direction arrow on ATM pin to indicate output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrected signal direction arrow on CS[7:4]/A[27:24]/WE[3:0] pins to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>indicate input/output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed interrupt controller pins names to IRQ7/IPL2,IRQ4/IPL1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRQ1/IPL0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrected signal direction arrow on TT[1:0] signals to indicate output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Revision History section.</td>
</tr>
</tbody>
</table>
Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2002