

When you buy an ebook through oreilly.com, you get lifetime access to the book, and

whenever possible we provide it to you in four, DRM-free file formats—PDF, .epub,

Kindle-compatible .mobi, and Android .apk ebook—that you can use on the devices of

your choice. Our ebook files are fully searchable and you can cut-and-paste and print

them. We also alert you when we’ve updated the files with corrections and additions.

Learn more at http://oreilly.com/ebooks/

You can also purchase O’Reilly ebooks through iTunes,

the Android Marketplace, and Amazon.com.

O’Reilly Ebooks—Your bookshelf on your devices!

http://bit.ly/oreillyapps
http://www.android.com/market/
http://amazon.com
http://oreilly.com

Programming Android
by Zigurd Mednieks, Laird Dornin, G. Blake Meike, and Masumi Nakamura

Copyright © 2011 Zigurd Mednieks, Laird Dornin, G. Blake Meike, and Masumi Nakamura. All rights
reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Brian Jepson
Production Editor: Adam Zaremba
Copyeditor: Audrey Doyle
Technical Editors: Vijay S. Yellapragada and Johan

van der Hoeven
Proofreader: Sada Preisch

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

Printing History:
July 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Android, the image of a pine grosbeak, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-38969-7

[LSI]

1310671393

Table of Contents

Preface . xiii

Part I. Tools and Basics

1. Your Toolkit . 3
Installing the Android SDK and Prerequisites 3

The Java Development Kit (JDK) 4
The Eclipse Integrated Development Environment (IDE) 5
The Android SDK 7
Adding Build Targets to the SDK 8
The Android Development Toolkit (ADT) Plug-in for Eclipse 9

Test Drive: Confirm That Your Installation Works 12
Making an Android Project 12
Making an Android Virtual Device (AVD) 16
Running a Program on an AVD 19
Running a Program on an Android Device 20
Troubleshooting SDK Problems: No Build Targets 21

Components of the SDK 21
The Android Debug Bridge (adb) 21
The Dalvik Debug Monitor Server (DDMS) 21
Components of the ADT Eclipse Plug-in 23
Android Virtual Devices 25
Other SDK Tools 26

Keeping Up-to-Date 28
Keeping the Android SDK Up-to-Date 28
Keeping Eclipse and the ADT Plug-in Up-to-Date 29
Keeping the JDK Up-to-Date 29

Example Code 30
SDK Example Code 30
Example Code from This Book 30

On Reading Code 32

v

2. Java for Android . 33
Android Is Reshaping Client-Side Java 33
The Java Type System 34

Primitive Types 34
Objects and Classes 35
Object Creation 35
The Object Class and Its Methods 37
Objects, Inheritance, and Polymorphism 39
Final and Static Declarations 41
Abstract Classes 45
Interfaces 46
Exceptions 48
The Java Collections Framework 52
Garbage Collection 55

Scope 56
Java Packages 56
Access Modifiers and Encapsulation 57

Idioms of Java Programming 59
Type Safety in Java 59
Using Anonymous Classes 62
Modular Programming in Java 65
Basic Multithreaded Concurrent Programming in Java 68
Synchronization and Thread Safety 68
Thread Control with wait() and notify() Methods 71
Synchronization and Data Structures 73

3. The Ingredients of an Android Application . 75
Traditional Programming Models Compared to Android 75
Activities, Intents, and Tasks 77
Other Android Components 78

Service 79
Content Providers 79
BroadcastReceiver 82

Static Application Resources and Context 82
Application Manifests 83
A Typical Source Tree 84
Initialization Parameters in AndroidManifest.xml 84

Resources 87
The Android Application Runtime Environment 88

The Dalvik VM 89
Zygote: Forking a New Process 89
Sandboxing: Processes and Users 89

Component Life Cycles 90

vi | Table of Contents

The Activity Life Cycle 90
Packaging an Android Application: The .apk File 92
On Porting Software to Android 93

4. Getting Your Application into Users’ Hands . 95
Application Signing 95

Public Key Encryption and Cryptographic Signing 95
How Signatures Protect Software Users, Publishers, and
Secure Communications 97
Signing an Application 98

Placing an Application for Distribution in the Android Market 105
Becoming an Official Android Developer 106
Uploading Applications in the Market 106
Getting Paid 107

Google Maps API Keys 108
Specifying API-Level Compatibility 109
Compatibility with Many Kinds of Screens 109

Testing for Screen Size Compatibility 110
Resource Qualifiers and Screen Sizes 110

5. Eclipse for Android Software Development . 111
Eclipse Concepts and Terminology 112

Plug-ins 112
Workspaces 113
Java Environments 114
Projects 115
Builders and Artifacts 115
Extensions 115
Associations 117

Eclipse Views and Perspectives 117
The Package Explorer View 118
The Task List View 118
The Outline View 119
The Problems View 120

Java Coding in Eclipse 120
Editing Java Code and Code Completion 120
Refactoring 121

Eclipse and Android 122
Preventing Bugs and Keeping Your Code Clean 122

Static Analyzers 123
Applying Static Analysis to Android Code 127
Limitations of Static Analysis 130

Eclipse Idiosyncrasies and Alternatives 130

Table of Contents | vii

6. Effective Java for Android . 133
The Android Framework 133

The Android Libraries 133
Extending Android 135

Organizing Java Source 140
Concurrency in Android 142

AsyncTask and the UI Thread 143
Threads in an Android Process 154

Serialization 156
Java Serialization 157
Parcelable 159
Classes That Support Serialization 162
Serialization and the Application Life Cycle 163

Part II. About the Android Framework

7. Building a View . 167
Android GUI Architecture 167

The Model 167
The View 168
The Controller 169
Putting It Together 169

Assembling a Graphical Interface 171
Wiring Up the Controller 176

Listening to the Model 178
Listening for Touch Events 183
Listening for Key Events 186
Alternative Ways to Handle Events 187
Advanced Wiring: Focus and Threading 189

The Menu 193

8. Fragments and Multiplatform Support . 197
Creating a Fragment 198
Fragment Life Cycle 201
The Fragment Manager 202
Fragment Transactions 203
The Compatibility Package 208

9. Drawing 2D and 3D Graphics . 211
Rolling Your Own Widgets 211

Layout 212
Canvas Drawing 217

viii | Table of Contents

Drawables 228
Bitmaps 232

Bling 234
Shadows, Gradients, and Filters 237
Animation 238
OpenGL Graphics 243

10. Handling and Persisting Data . 247
Relational Database Overview 247
SQLite 248
The SQL Language 248

SQL Data Definition Commands 249
SQL Data Manipulation Commands 252
Additional Database Concepts 254
Database Transactions 255
Example Database Manipulation Using sqlite3 255

SQL and the Database-Centric Data Model for Android Applications 258
The Android Database Classes 259
Database Design for Android Applications 260

Basic Structure of the SimpleVideoDbHelper Class 261
Using the Database API: MJAndroid 264

Android and Social Networking 264
The Source Folder (src) 265
Loading and Starting the Application 267
Database Queries and Reading Data from the Database 267
Modifying the Database 271

Part III. A Skeleton Application for Android

11. A Framework for a Well-Behaved Application . 279
Visualizing Life Cycles 280

Visualizing the Activity Life Cycle 280
Visualizing the Fragment Life Cycle 292
The Activity Class and Well-Behaved Applications 295

The Activity Life Cycle and the User Experience 296
Life Cycle Methods of the Application Class 296
A Flowing and Intuitive User Experience Across Activities 299

Multitasking in a Small-Screen Environment 299
Tasks and Applications 299
Specifying Launch and Task Behavior 300

Table of Contents | ix

12. Using Content Providers . 305
Understanding Content Providers 306

Implementing a Content Provider 307
Browsing Video with Finch 308

Defining a Provider Public API 309
Defining the CONTENT_URI 310
Creating the Column Names 312
Declaring Column Specification Strings 312

Writing and Integrating a Content Provider 314
Common Content Provider Tasks 314

File Management and Binary Data 316
Android MVC and Content Observation 318
A Complete Content Provider: The SimpleFinchVideoContentProvider
Code 319

The SimpleFinchVideoContentProvider Class and Instance Variables 319
Implementing the onCreate Method 321
Implementing the getType Method 322
Implementing the Provider API 322
Determining How Often to Notify Observers 327

Declaring Your Content Provider 327

13. Exploring Content Providers . 329
Developing RESTful Android Applications 330
A “Network MVC” 331
Summary of Benefits 333
Code Example: Dynamically Listing and Caching YouTube
Video Content 334
Structure of the Source Code for the Finch YouTube Video Example 335
Stepping Through the Search Application 336
Step 1: Our UI Collects User Input 337
Step 2: Our Controller Listens for Events 337
Step 3: The Controller Queries the Content Provider with a managedQuery
on the Content Provider/Model 338
Step 4: Implementing the RESTful Request 338

Constants and Initialization 338
Creating the Database 339
A Networked Query Method 339
insert and ResponseHandlers 352
File Management: Storing Thumbnails 353

x | Table of Contents

Part IV. Advanced Topics

14. Multimedia . 359
Audio and Video 359
Playing Audio and Video 360

Audio Playback 361
Video Playback 363

Recording Audio and Video 364
Audio Recording 365
Video Recording 368

Stored Media Content 369

15. Location and Mapping . 371
Location-Based Services 372
Mapping 373
The Google Maps Activity 373
The MapView and MapActivity 374
Working with MapViews 375
MapView and MyLocationOverlay Initialization 375
Pausing and Resuming a MapActivity 378
Controlling the Map with Menu Buttons 379
Controlling the Map with the Keypad 381
Location Without Maps 382

The Manifest and Layout Files 382
Connecting to a Location Provider and Getting Location Updates 383
Updating the Emulated Location 386

16. Sensors, NFC, Speech, Gestures, and Accessibility . 391
Sensors 391

Position 393
Other Sensors 395

Near Field Communication (NFC) 396
Reading a Tag 396
Writing to a Tag 403
P2P Mode 405

Gesture Input 406
Accessibility 407

17. Communication, Identity, Sync, and Social Media . 411
Account Contacts 411
Authentication and Synchronization 414

Authentication 415

Table of Contents | xi

Synchronization 422
Bluetooth 429

The Bluetooth Protocol Stack 429
Bluez: The Linux Bluetooth Implementation 431
Using Bluetooth in Android Applications 431

18. The Android Native Development Kit (NDK) . 445
Native Methods and JNI Calls 446

Conventions on the Native Method Side 446
Conventions on the Java Side 447

The Android NDK 448
Setting Up the NDK Environment 448
Compiling with the NDK 448
JNI, NDK, and SDK: A Sample App 449

Android-Provided Native Libraries 451
Building Your Own Custom Library Modules 453
Native Activities 456

Index . 463

xii | Table of Contents

CHAPTER 1

Your Toolkit

This chapter shows you how to install the Android software development kit (SDK)
and all the related software you’re likely to need. By the end, you’ll be able to run a
simple “Hello World” program on an emulator. Windows, Mac OS X, and Linux sys-
tems can all be used for Android application development. We will load the software,
introduce you to the tools in the SDK, and point you to sources of example code.

Throughout this book, and especially in this chapter, we refer to instructions available
on various websites for installing and updating the tools you will use for creating An-
droid programs. The most important place to find information and links to tools is the
Android Developers site:

http://developer.android.com

Our focus is on guiding you through installation, with explanations that will help you
understand how the parts of Android and its developer tools fit together, even as the
details of each part change.

The links cited in this book may change over time. Descriptions and updated links are
posted on this book’s website. You can find a link to the website on this book’s catalog
page. You may find it convenient to have the book’s website open as you read so that
you can click through links on the site rather than entering the URLs printed in this
book.

Installing the Android SDK and Prerequisites
Successfully installing the Android SDK requires two other software systems that are
not part of the Android SDK: the Java Development Kit (JDK) and the Eclipse integrated
development environment (IDE). These two systems are not delivered as part of the
Android SDK because you may be using them for purposes outside of Android software
development, or because they may already be installed on your system, and redundant
installations of these systems can cause version clashes.

3

The Android SDK is compatible with a range of recent releases of the JDK and the
Eclipse IDE. Installing the current release of each of these tools will usually be the right
choice. The exact requirements are specified on the System Requirements page of the
Android Developers site: http://developer.android.com/sdk/requirements.html.

One can use IDEs other than Eclipse in Android software development, and informa-
tion on using other IDEs is provided in the Android documentation at http://developer
.android.com/guide/developing/other-ide.html. We chose Eclipse as the IDE covered in
this book because Eclipse supports the greatest number of Android SDK tools and other
plug-ins, and Eclipse is the most widely used Java IDE, but IntelliJ IDEA is an alternative
many Java coders prefer.

The Java Development Kit (JDK)
If your system has an up-to-date JDK installed, you won’t need to install it again. The
JDK provides tools, such as the Java compiler, used by IDEs and SDKs for developing
Java programs. The JDK also contains a Java Runtime Environment (JRE), which en-
ables Java programs, such as Eclipse, to run on your system.

If you are using a Macintosh running a version of Mac OS X supported by the Android
SDK, the JDK is already installed.

If you are using Ubuntu Linux, you can install the JDK using the package manager,
through the following command:

sudo apt-get install sun-java6-jdk

If this command reports that the JDK package is not available, you may
need to enable the “partner” repositories using the Synaptic Package
Manager utility in the System→Administration menu. The “partner” re-
positories are listed on the Other Software tab after you choose Set-
tings→Repositories.

This is one of the very few places in this chapter where you will see a version number,
and it appears here only because it can’t be avoided. The version number of the JDK is
in the package name. But, as with all other software mentioned in this chapter, you
should refer to up-to-date online documentation to determine the version you will need.

If you are a Windows user, or you need to install the JDK from Oracle’s site for some
other reason, you can find the JDK at http://www.oracle.com/technetwork/java/javase/
downloads/index.html.

4 | Chapter 1: Your Toolkit

The Downloads page will automatically detect your system and offer to download the
correct version. The installer you download is an executable file. Run the executable
installer file to install the JDK.

To confirm that the JDK is installed correctly, issue this command from the command
line (Terminal on Linux and Mac; Command Prompt on Windows):

javac -version

If the javac command is not in your PATH, you may need to add the
bin directory in the JDK to your path manually.

It should display the version number corresponding to the version of the JDK you
installed. If you installed revision 20 of the Java 6 JDK, the command would display:

javac 1.6.0_20

Depending on the current version of the JDK available when you read this, version
numbers may differ from what you see here.

If it is unclear which JRE you are running, or if you think you have the
wrong JRE running on a Debian-derived Linux system, such as Ubuntu,
you can use the following command to display the available JREs and
select the right one:

sudo update-alternatives --config java

The Eclipse Integrated Development Environment (IDE)
Eclipse is a general-purpose technology platform. It has been applied to a variety of
uses in creating IDEs for multiple languages and in creating customized IDEs for many
specialized SDKs, as well as to uses outside of software development tools, such as
providing a Rich Client Platform (RCP) for Lotus Notes and a few other applications.

Eclipse is usually used as an IDE for writing, testing, and debugging software, especially
Java software. There are also several derivative IDEs and SDKs for various kinds of Java
software development based on Eclipse. In this case, you will take a widely used Eclipse
package and add a plug-in to it to make it usable for Android software development.
Let’s get that Eclipse package and install it.

Eclipse can be downloaded from http://www.eclipse.org/downloads.

You will see a selection of the most commonly used Eclipse packages on this page. An
Eclipse “package” is a ready-made collection of Eclipse modules that make Eclipse
better suited for certain kinds of software development. Usually, Eclipse users start
with one of the Eclipse packages available for download on this page and customize it
with plug-ins, which is what you will do when you add the Android Development Tools

Installing the Android SDK and Prerequisites | 5

(ADT) plug-in to your Eclipse installation. The System Requirements article on the
Android Developers site lists three choices of Eclipse packages as a basis for an Eclipse
installation for Android software development:

• Eclipse Classic (for Eclipse 3.5 or later)

• Eclipse IDE for Java Developers

• Eclipse for RCP/Plug-in Developers

Any of these will work, though unless you are also developing Eclipse plug-ins, choos-
ing either Classic or the Java Developers package (EE or Standard) makes the most
sense. The authors of this book started with the Java EE Developers package (“EE”
stands for Enterprise Edition), and screenshots of Eclipse used in this book reflect that
choice.

The Eclipse download site will automatically determine the available system-specific
downloads for your system, though you may have to choose between 32 and 64 bits to
match your operating system. The file you download is an archive. To install Eclipse,
open the archive and copy the eclipse folder to your home folder. The executable file
for launching Eclipse on your system will be found in the folder you just extracted from
the archive.

We really mean it about installing Eclipse in your home folder (or an-
other folder you own), especially if you have multiple user accounts on
your system. Do not use your system’s package manager. Your Eclipse
installation is one of a wide range of possible groupings of Eclipse plug-
ins. In addition, you will probably further customize your installation
of Eclipse. And Eclipse plug-ins and updates are managed separately
from other software in your system.

For these reasons, it is very difficult to successfully install and use Eclipse
as a command available to all users on your system, even if your system
can do this from its package manager. To successfully complete an in-
stallation as it is described here, you must install Eclipse in a folder
managed by one user, and launch it from this location.

If you are using Ubuntu or another Linux distribution, you should not install Eclipse
from your distribution’s repositories, and if it is currently installed this way, you must
remove it and install Eclipse as described here. The presence of an “eclipse” package
in the Ubuntu repositories is an inheritance from the Debian repositories on which
Ubuntu is based. It is not a widely used approach to installing and using Eclipse, be-
cause most of the time, your distribution’s repositories will have older versions of
Eclipse.

6 | Chapter 1: Your Toolkit

To confirm that Eclipse is correctly installed and that you have a JRE that supports
Eclipse, launch the executable file in the Eclipse folder. You may want to make a short-
cut to this executable file to launch Eclipse more conveniently. You should see the
Welcome screen shown in Figure 1-1.

Eclipse is implemented in Java and requires a JRE. The JDK you previously installed
provides a JRE. If Eclipse does not run, you should check that the JDK is correctly
installed.

Figure 1-1. Welcome screen that you see the first time you run Eclipse

The Android SDK
With the JDK and Eclipse installed, you have the prerequisites for the Android SDK,
and are ready to install the SDK. The Android SDK is a collection of files: libraries,
executables, scripts, documentation, and so forth. Installing the SDK means down-
loading the version of the SDK for your platform and putting the SDK files into a folder
in your home directory.

To install the SDK, download the SDK package that corresponds to your system from
http://developer.android.com/sdk/index.html.

The download is an archive. Open the archive and extract the folder in the archive to
your home folder.

Installing the Android SDK and Prerequisites | 7

If you are using a 64-bit version of Linux, you may need to install the
ia32-libs package.

To check whether you need this package, try running the adb command
(~/android-sdk-linux_*/platform-tools/adb). If your system reports
that adb cannot be found (despite being right there in the platform-
tools directory) it likely means that the current version of adb, and pos-
sibly other tools, will not run without the ia32-libs package installed.
The command to install the ia32-libs package is:

sudo apt-get install ia32-libs

The SDK contains one or two folders for tools: one named tools and, starting in version
8 of the SDK, another called platform-tools. These folders need to be on your path,
which is a list of folders your system searches for executable files when you invoke an
executable from the command line. On Macintosh and Linux systems, setting the
PATH environment variable is done in the .profile (Ubuntu) or .bash_profile (Mac OS X)
file in your home directory. Add a line to that file that sets the PATH environment variable
to include the tools directory in the SDK (individual entries in the list are separated by
colons). For example, you could use the following line (but replace both instances of
~/android-sdk-ARCH with the full path to your Android SDK install):

export PATH=$PATH:~/android-sdk-ARCH/tools:~/android-sdk-ARCH/platform-tools

On Windows systems, click Start→right-click Computer, and choose Properties. Then
click Advanced System Settings, and click the Environment Variables button. Double-
click the path system variable, and add the path to the folders by going to the end of
this variable’s value (do not change anything that’s already there!) and adding the two
paths to the end, separated by semicolons with no space before them. For example:

;C:\android-sdk-windows\tools;C:\android-sdk-windows\platform-tools

After you’ve edited your path on Windows, Mac, or Linux, close and reopen any Com-
mand Prompts or Terminals to pick up the new PATH setting (on Ubuntu, you may need
to log out and log in unless your Terminal program is configured as a login shell).

Adding Build Targets to the SDK
Before you can build an Android application, or even create a project that would try to
build an Android application, you must install one or more build targets. To do this,
you will use the SDK and AVD Manager. This tool enables you to install packages in
the SDK that will support multiple versions of the Android OS and multiple API levels.

Once the ADT plug-in is installed in Eclipse, which we describe in the next section, the
SDK and AVD Manager can be invoked from within Eclipse. It can also be invoked
from the command line, which is how we will do it here. To invoke the SDK and AVD
Manager from the command line, issue this command:

android

8 | Chapter 1: Your Toolkit

The screenshot in Figure 1-2 shows the SDK and AVD Manager, with all the available
SDK versions selected for installation.

Figure 1-2. The SDK and AVD Manager, which enables installation of Android API levels

The packages labeled “SDK platform” support building applications compatible with
different Android API levels. You should install, at a minimum, the most recent (highest
numbered) version, but installing all the available API levels, and all the Google API
add-on packages, is a good choice if you might someday want to build applications
that run on older Android versions. You should also install, at a minimum, the most
recent versions of the example applications package. You must also install the Android
SDK Platform-Tools package.

The Android Development Toolkit (ADT) Plug-in for Eclipse
Now that you have the SDK files installed, along with Eclipse and the JDK, there is one
more critical part to install: the Android Developer Toolkit (ADT) plug-in. The ADT
plug-in adds Android-specific functionality to Eclipse.

Software in the plug-in enables Eclipse to build Android applications, launch the An-
droid emulator, connect to debugging services on the emulator, edit Android XML files,
edit and compile Android Interface Definition Language (AIDL) files, create Android
application packages (.apk files), and perform other Android-specific tasks.

Installing the Android SDK and Prerequisites | 9

Using the Install New Software Wizard to download and install the ADT plug-in

You start the Install New Software Wizard by selecting Help→Install New Software
(Figure 1-3). To install the ADT plug-in, type this URL into the Work With field and
press Return or Enter: https://dl-ssl.google.com/android/eclipse/ (see Figure 1-4).

Figure 1-3. The Eclipse Add Site dialog

More information on installing the ADT plug-in using the Install New
Software Wizard can be found on the Android Developers site, at http:
//developer.android.com/sdk/eclipse-adt.html#downloading.

Eclipse documentation on this wizard can be found on the Eclipse doc-
umentation site, at http://help.eclipse.org/galileo/index.jsp?topic=/org
.eclipse.platform.doc.user/tasks/tasks-124.htm.

Once you have added the URL to the list of sites for acquiring new plug-ins, you will
see an entry called Developer Tools listed in the Available Software list.

Select the Developer Tools item by clicking on the checkbox next to it, and click on
the Next button. The next screen will ask you to accept the license for this software.
After you accept and click Finish, the ADT will be installed. You will have to restart
Eclipse to complete the installation.

10 | Chapter 1: Your Toolkit

Configuring the ADT plug-in

One more step, and you are done installing. Once you have installed the ADT plug-in,
you will need to configure it. Installing the plug-in means that various parts of Eclipse
now contain Android software development-specific dialogs, menu commands, and
other tools, including the dialog you will now use to configure the ADT plug-in. Start
the Preferences dialog using the Window→Preferences (Linux and Windows) or
Eclipse→Preferences (Mac) menu option. Click the item labeled Android in the left pane
of the Preferences dialog.

The first time you visit this section of the preferences, you’ll see a dialog
asking if you want to send some usage statistics to Google. Make your
choice and click Proceed.

A dialog with the Android settings is displayed next. In this dialog, a text entry field
labeled “SDK location” appears near the top. You must enter the path to where you
put the SDK, or you can use the file browser to select the directory, as shown in Fig-
ure 1-5. Click Apply. Note that the build targets you installed, as described in “Adding
Build Targets to the SDK” on page 8, are listed here as well.

Figure 1-4. The Eclipse Install New Software dialog with the Android Hierarch Viewer plug-in shown
as available

Installing the Android SDK and Prerequisites | 11

Your Android SDK installation is now complete.

Test Drive: Confirm That Your Installation Works
If you have followed the steps in this chapter, and the online instructions referred to
here, your installation of the Android SDK is now complete. To confirm that everything
you installed so far works, let’s create a simple Android application.

Making an Android Project
The first step in creating a simple Android application is to create an Android project.
Eclipse organizes your work into “projects,” and by designating your project as an

Figure 1-5. Configuring the SDK location into the Eclipse ADT plug-in using the Android Preferences
dialog

12 | Chapter 1: Your Toolkit

Android project, you tell Eclipse that the ADT plug-in and other Android tools are
going to be used in conjunction with this project.

Reference information and detailed online instructions for creating an
Android project can be found at http://developer.android.com/guide/de
veloping/eclipse-adt.html.

Start your new project with the File→New→Android Project menu command. Locate
the Android Project option in the New Project dialog (it should be under a section
named Android). Click Next, and the New Project dialog appears as shown in Fig-
ure 1-6.

To create your Android project, you will provide the following information:

Project name
This is the name of the project (not the application) that appears in Eclipse. Type
TestProject, as shown in Figure 1-6.

Workspace
A workspace is a folder containing a set of Eclipse projects. In creating a new
project, you have the choice of creating the project in your current workspace, or
specifying a different location in the filesystem for your project. Unless you need
to put this project in a specific location, use the defaults (“Create new project in
workspace” and “Use default location”).

Target name
The Android system images you installed in the SDK are shown in the build target
list. You can pick one of these system images, and the corresponding vendor, plat-
form (Android OS version number), and API level as the target for which your
application is built. The platform and API level are the most important parameters
here: they govern the Android platform library that your application will be com-
piled with, and the API level supported—APIs with a higher API level than the one
you select will not be available to your program. For now, pick the most recent
Android OS version and API level you have installed.

Application name
This is the application name the user will see. Type Test Application.

Package name
The package name creates a Java package namespace that uniquely identifies pack-
ages in your application, and must also uniquely identify your whole Android ap-
plication among all other installed applications. It consists of a unique domain
name—the application publisher’s domain name—plus a name specific to the ap-
plication. Not all package namespaces are unique in Java, but the conventions used
for Android applications make namespace conflicts less likely. In our example we
used com.oreilly.testapp, but you can put something appropriate for your domain

Test Drive: Confirm That Your Installation Works | 13

Figure 1-6. The New Android Project dialog

14 | Chapter 1: Your Toolkit

here (you can also use com.example.testapp, since example.com is a domain name
reserved for examples such as this one).

Activity
An activity is a unit of interactive user interface in an Android application, usually
corresponding to a group of user interface objects occupying the entire screen.
Optionally, when you create a project you can have a skeleton activity created for
you. If you are creating a visual application (in contrast with a service, which can
be “headless”—without a visual UI), this is a convenient way to create the activity
the application will start with. In this example, you should create an activity called
TestActivity.

Minimum SDK version
The field labeled Min SDK Version should contain an integer corresponding to the
minimum SDK version required by your application, and is used to initialize the
uses-sdk attribute in the application’s manifest, which is a file that stores applica-
tion attributes. See “The Android Manifest Editor” on page 24. In most cases,
this should be the same as the API level of the build target you selected, which is
displayed in the rightmost column of the list of build targets, as shown in Figure 1-6.

Click Finish (not Next) to create your Android project, and you will see it listed in the
left pane of the Eclipse IDE as shown in Figure 1-7.

Figure 1-7. The Package Explorer view, showing the files, and their components, that are part of the
project

Test Drive: Confirm That Your Installation Works | 15

If you expand the view of the project hierarchy by clicking the “+” (Windows) or tri-
angle (Mac and Linux) next to the project name, you will see the various parts of an
Android project. Expand the src folder and you will see a Java package with the name
you entered in the wizard. Expand that package and you will see the Activity class
created for you by the wizard. Double-click that, and you will see the Java code of your
first Android program:

package com.oreilly.demo.pa.ch01.testapp;

import android.app.Activity;
import android.os.Bundle;
import com.oreilly.demo.pa.ch01.R;

public class TestActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

If you’ve been following along and see the same thing on your computer, your SDK
installation is probably working correctly. But let’s make sure, and explore the SDK
just a bit further, by running your first program in an emulator and on an Android
device if you have one handy.

Making an Android Virtual Device (AVD)
The Android SDK provides an emulator, which emulates a device with an ARM CPU
running an Android operating system (OS), for running Android programs on your PC.
An Android Virtual Device (AVD) is a set of parameters for this emulator that configures
it to use a particular system image—that is, a particular version of the Android operating
system—and to set other parameters that govern screen size, memory size, and other
emulated hardware characteristics. Detailed documentation on AVDs is available at
http://developer.android.com/guide/developing/tools/avd.html, and detailed documen-
tation on the emulator is found here: http://developer.android.com/guide/developing/
tools/emulator.html.

Because we are just validating that your SDK installation works, we won’t go into depth
on AVDs, much less details of the emulator, just yet. Here, we will use the Android
SDK and AVD Manager (see Figure 1-8) to set up an AVD for the purpose of running
the program we just created with the New Android Project Wizard.

16 | Chapter 1: Your Toolkit

Figure 1-8. The SDK and AVD Manager

You will need to create an AVD with a system image that is no less recent than the
target specified for the project you created. Click the New button. You will now see
the Create New Android Virtual Device (AVD) dialog, shown in Figure 1-9, where you
specify the parameters of your new AVD.

This screen enables you to set the parameters of your new AVD:

Name
This is the name of the AVD. You can use any name for an AVD, but a name that
indicates which system image it uses is helpful.

Target
The Target parameter sets which system image will be used in this AVD. It should
be the same as, or more recent than, the target you selected as the build target for
your first Android project.

SD Card
Some applications require an SD card that extends storage beyond the flash mem-
ory built into an Android device. Unless you plan to put a lot of data in SD card
storage (media files, for example) for applications you are developing, you can
create a small virtual SD card of, say, 100 MB in size, even though most phones
are equipped with SD cards holding several gigabytes.

Test Drive: Confirm That Your Installation Works | 17

Skin
The “skin” of an AVD mainly sets the screen size. You won’t need to change the
default for the purpose of verifying that your SDK installation works, but a variety
of emulators with different screen sizes is useful to check that your layouts work
across different devices.

Hardware
The Hardware field of an AVD configuration enables you to set parameters indi-
cating which optional hardware is present. You won’t need to change the defaults
for this project.

Fill in the Name, Target, and SD Card fields, and create a new AVD by clicking the
Create AVD button. If you have not created an AVD with a system image that matches
or is more recent than the target you specified for an Android project, you won’t be
able to run your program.

Figure 1-9. Creating a new AVD

18 | Chapter 1: Your Toolkit

Running a Program on an AVD
Now that you have a project that builds an application, and an AVD with a system
image compatible with the application’s build target and API level requirements, you
can run your application and confirm that the SDK produced, and is able to run, an
Android application.

To run your application, right-click on the project you created and, in the context menu
that pops up, select Run As→Android Application.

If the AVD you created is compatible with the application you created, the AVD will
start, the Android OS will boot on the AVD, and your application will start. You should
see your application running in the AVD, similarly to what is shown in Figure 1-10.

Figure 1-10. The application you just created, running in an AVD

If you have more than one compatible AVD configured, the Android Device Chooser
dialog will appear and ask you to select among the AVDs that are already running, or
among the Android devices attached to your system, if any, or to pick an AVD to start.
Figure 1-11 shows the Android Device Chooser displaying one AVD that is running,
and one that can be launched.

Test Drive: Confirm That Your Installation Works | 19

Running a Program on an Android Device
You can also run the program you just created on most Android devices.

You will need to connect your device to your PC with a USB cable, and, if needed,
install a driver, or set permissions to access the device when connected via USB.

System-specific instructions for Windows, along with the needed driver, are available
at http://developer.android.com/sdk/win-usb.html.

If you are running Linux, you will need to create a “rules” file for your Android device.

If you are running Mac OS X, no configuration is required.

Detailed reference information on USB debugging is here: http://developer.android.com/
guide/developing/device.html.

You will also need to turn on USB debugging in your Android device. In most cases,
you will start the Settings application, select Applications and then Development, and
then you will see an option to turn USB debugging on or off.

If an AVD is configured or is running, the Android Device Chooser will appear, dis-
playing both the Android device you have connected and the AVD.

Select the device, and the Android application will be loaded and run on the device.

Figure 1-11. The Android Device Chooser

20 | Chapter 1: Your Toolkit

Troubleshooting SDK Problems: No Build Targets
If you are unable to make a new project or import an example project from the SDK,
you may have missed installing build targets into your SDK. Reread the instructions in
“Adding Build Targets to the SDK” on page 8 and make sure the Android pane in the
Preferences dialog lists build targets as installed in your SDK, as shown in Figure 1-5.

Components of the SDK
The Android SDK is made of mostly off-the-shelf components, plus some purpose-built
components. In many cases, configurations, plug-ins, and extensions adapt these com-
ponents to Android. The Android SDK is a study in the efficient development of a
modern and complete SDK. Google took this approach in order to bring Android to
market quickly. You will see this for yourself as you explore the components of the
Android SDK. Eclipse, the Java language, QEMU, and other preexisting platforms,
tools, and technologies comprise some of the most important parts of the Android SDK.

In creating the simple program that confirms that your SDK installation is correct, you
have already used many of the components of the SDK. Here we will identify and
describe the components of the SDK involved in creating your program, and other parts
you have yet to use.

The Android Debug Bridge (adb)
adb is a program that enables you to control both emulators and devices, and to run a
shell in order to execute commands in the environment of an emulator or device. adb
is especially handy for installing and removing programs from an emulator or device.
Documentation on adb can be found at http://developer.android.com/guide/developing/
tools/adb.html.

The Dalvik Debug Monitor Server (DDMS)
The Dalvik Debug Monitor Server (DDMS) is a traffic director between the single port
that Eclipse (and other Java debuggers) looks for to connect to a Java Virtual Machine
(JVM) and the several ports that exist for each Android device or virtual device, and
for each instance of the Dalvik virtual machine (VM) on each device. The DDMS also
provides a collection of functionality that is accessible through a standalone user in-
terface or through an interface embedded in Eclipse via the ADT plug-in.

When you invoke the DDMS from the command line, you will see something similar
to the window shown in Figure 1-12.

Components of the SDK | 21

Figure 1-12. The Dalvik Debug Monitor running standalone

The DDMS’s user interface provides access to the following:

A list of devices and virtual devices, and the VMs running on those devices
In the upper-left pane of the DDMS window, you will see listed the Android devices
you have connected to your PC, plus any AVDs you have running. Listed under
each device or virtual device are the tasks running in Dalvik VMs.

VM information
Selecting one of the Dalvik VMs running on a device or virtual device causes in-
formation about that VM to be displayed in the upper-right pane.

Thread information
Information for threads within each process is accessed through the “Threads” tab
in the upper-right pane of the DDMS window.

Filesystem explorer
You can explore the filesystem on a device or virtual device using the DDMS file-
system explorer, accessible through the “File explorer” menu item in the Devices
menu. It displays the file hierarchy in a window similar to the one shown in Fig-
ure 1-13.

22 | Chapter 1: Your Toolkit

Simulating phone calls
The Emulator Control tab in the upper-right pane of the DDMS window enables
you to “fake” a phone call or text message in an emulator.

Screen capture
The “Screen capture” command in the Device menu fetches an image of the current
screen from the selected Android device or virtual device.

Logging
The bottom pane of the DDMS window displays log output from processes on the
selected device or virtual device. You can filter the log output by selecting a filter
from among the buttons on the toolbar above the logging pane.

Dumping state for devices, apps, and the mobile radio
A set of commands in the Device menu enables you to command the device or
virtual device to dump state for the whole device, an app, or the mobile radio.

Detailed documentation on the DDMS is available at http://developer.android.com/
guide/developing/tools/ddms.html.

Components of the ADT Eclipse Plug-in
Eclipse enables you to create specific project types, including several kinds of Java
projects. The ADT plug-in adds the ability to make and use Android projects. When
you make a new Android project, the ADT plug-in creates the project file hierarchy and
all the required files for the minimal Android project to be correctly built. For Android
projects, the ADT plug-in enables Eclipse to apply components of the ADT plug-in to
editing, building, running, and debugging that project.

Figure 1-13. The DDMS file system explorer

Components of the SDK | 23

In some cases, components of the SDK can be used with Eclipse or in a standalone
mode. But, in most of the Android application development cases covered in this book,
the way these components are used in or with Eclipse will be the most relevant.

The ADT plug-in has numerous separate components, and, despite the connotations
of a “plug-in” as a modest enhancement, it’s a substantial amount of software. Here
we will describe each significant part of the ADT plug-in that you will encounter in
using Eclipse for developing Android software.

The Android Layout Editor

Layouts for user interfaces in Android applications can be specified in XML. The ADT
plug-in adds a visual editor that helps you to compose and preview Android layouts.
When you open a layout file, the ADT plug-in automatically starts this editor to view
and edit the file. Tabs along the bottom of the editing pane enable you to switch between
the visual editor and an XML editor.

In earlier versions of the Android SDK, the Android Layout Editor was too limited to
be of much use. Now, though, you should consider using visual editing of Android
layouts as a preferred way of creating layouts. Automating the specification of layouts
makes it more likely that your layouts will work on the widest range of Android devices.

The Android Manifest Editor

In Android projects, a manifest file is included with the project’s software and resources
when the project is built. This file tells the Android system how to install and use the
software in the archive that contains the built project. The manifest file is in XML, and
the ADT plug-in provides a specialized XML editor to edit the manifest.

Other components of the ADT Eclipse plug-in, such as the application builders, can
also modify the manifest.

XML editors for other Android XML files

Other Android XML files that hold information such as specifications for menus, or
resources such as strings, or that organize graphical assets of an application, have spe-
cialized editors that are opened when you open these files.

Building Android apps

Eclipse projects are usually built automatically. That means you will normally not en-
counter a separate step for turning the source code and resources for a project into a
deployable result. Android requires Android-specific steps to build a file you can deploy
to an Android emulator or device, and the ADT plug-in provides the software that
executes these steps. For Android projects, the result of building the project is
an .apk file. You can find this file for the test project created earlier in this chapter in
the bin subfolder of the project’s file hierarchy in your Eclipse workspace.

24 | Chapter 1: Your Toolkit

The Android-specific builders provided in the ADT plug-in enable you to use Java as
the language for creating Android software while running that software on a Dalvik
VM that processes its own bytecodes.

Running and debugging Android apps

When you run or debug an Android project from within Eclipse, the .apk file for that
project is deployed and started on an AVD or Android device, using the ADB and DDMS
to communicate with the AVD or device and the Dalvik runtime environment that runs
the project’s code. The ADT plug-in adds the components that enable Eclipse to do this.

The DDMS

In “The Dalvik Debug Monitor Server (DDMS)” on page 21 we described the Dalvik
Debug Monitor and how to invoke the DDMS user interface from the command line.
The DDMS user interface is also available from within Eclipse. You can access it by
using the Window→Open Perspective→DDMS command in the Eclipse menu. You can
also access each view that makes up the DDMS perspective separately by using the
Window→Show View menu and selecting, for example, the LogCat view.

Android Virtual Devices
AVDs are made up of QEMU-based emulators that emulate the hardware of an Android
device, plus Android system images, which consist of Android software built to run on
the emulated hardware. AVDs are configured by the SDK and AVD Manager, which
sets parameters such as the size of emulated storage devices and screen dimensions,
and which enables you to specify which Android system image will be used with which
emulated device.

AVDs enable you to test your software on a broader range of system characteristics
than you are likely to be able to acquire and test on physical devices. Because QEMU-
based hardware emulators, system images, and the parameters of AVDs are all inter-
changeable parts, you can even test devices and system images before hardware is
available to run them.

QEMU

QEMU is the basis of AVDs. But QEMU is a very general tool that is used in a wide
range of emulation systems outside the Android SDK. While you will configure QEMU
indirectly, through the SDK and AVD Manager, you may someday need to tweak em-
ulation in ways unsupported by the SDK tools, or you may be curious about the capa-
bilities and limitations of QEMU. Luckily, QEMU has a large and vibrant developer
and user community, which you can find at http://www.qemu.org.

Components of the SDK | 25

The SDK and AVD Manager

QEMU is a general-purpose emulator system. The Android SDK provides controls over
the configuration of QEMU that make sense for creating emulators that run Android
system images. The SDK and AVD Manager provides a user interface for you to control
QEMU-based Android virtual devices.

Other SDK Tools
In addition to the major tools you are likely to use in the normal course of most devel-
opment projects, there are several other tools in the SDK, and those that are used or
invoked directly by developers are described here. Still more components of the SDK
are listed in the Tools Overview article in the Android documentation found at http://
developer.android.com/guide/developing/tools/index.html.

Hierarchy Viewer

The Hierarchy Viewer displays and enables analysis of the view hierarchy of the current
activity of a selected Android device. This enables you to see and diagnose problems
with your view hierarchies as your application is running, or to examine the view hi-
erarchies of other applications to see how they are designed. It also lets you examine a
magnified view of the screen with alignment guides that help identify problems with
layouts. Detailed information on the Hierarchy Viewer is available at http://developer
.android.com/guide/developing/tools/hierarchy-viewer.html.

Layoutopt

Layoutopt is a static analyzer that operates on XML layout files and can diagnose some
problems with Android layouts. Detailed information on Layoutopt is available at http:
//developer.android.com/guide/developing/tools/layoutopt.html.

Monkey

Monkey is a test automation tool that runs in your emulator or device. You invoke this
tool using another tool in the SDK: adb. Adb enables you to start a shell on an emulator
or device, and Monkey is invoked from a shell, like this:

adb shell monkey --wait-dbg -p your.package.name 500

This invocation of Monkey sends 500 random events to the specified application
(specified by the package name) after waiting for a debugger to be attached. Detailed
information on Monkey can be found at http://developer.android.com/guide/developing/
tools/monkey.html.

26 | Chapter 1: Your Toolkit

sqlite3

Android uses SQLite as the database system for many system databases and provides
APIs for applications to make use of SQLite, which is convenient for data storage and
presentation. SQLite also has a command-line interface, and the sqlite3 command
enables developers to dump database schemas and perform other operations on An-
droid databases.

These databases are, of course, in an Android device, or they are contained in an AVD,
and therefore the sqlite3 command is available in the adb shell. Detailed directions
for how to access the sqlite3 command line from inside the adb shell are available at
http://developer.android.com/guide/developing/tools/adb.html#shellcommands. We in-
troduce sqlite3 in “Example Database Manipulation Using sqlite3” on page 255.

keytool

keytool generates encryption keys, and is used by the ADT plug-in to create temporary
debug keys with which it signs code for the purpose of debugging. In most cases, you
will use this tool to create a signing certificate for releasing your applications, as de-
scribed in “Creating a self-signed certificate” on page 99.

Zipalign

Zipalign enables optimized access to data for production releases of Android applica-
tions. This optimization must be performed after an application is signed for release,
because the signature affects byte alignment. Detailed information on Zipalign is avail-
able at http://developer.android.com/guide/developing/tools/zipalign.html.

Draw9patch

A 9 patch is a special kind of Android resource, composed of nine images, and useful
when you want, for example, buttons that can grow larger without changing the radius
of their corners. Draw9patch is a specialized drawing program for creating and pre-
viewing these types of resources. Details on draw9patch are available at http://developer
.android.com/guide/developing/tools/draw9patch.html.

android

The command named android can be used to invoke the SDK and AVD Manager from
the command line, as we described in the SDK installation instructions in “The Android
SDK” on page 7. It can also be used to create an Android project from the command
line. Used in this way, it causes all the project folders, the manifest, the build properties,
and the ant script for building the project to be generated. Details on this use of the
android command can be found at http://developer.android.com/guide/developing/other
-ide.html#CreatingAProject.

Components of the SDK | 27

Keeping Up-to-Date
The JDK, Eclipse, and the Android SDK each come from separate suppliers. The tools
you use to develop Android software can change at a rapid pace. That is why, in this
book, and especially in this chapter, we refer you to the Android Developers site for
information on the latest compatible versions of your tools. Keeping your tools up-to-
date and compatible is a task you are likely to have to perform even as you learn how
to develop Android software.

Windows, Mac OS X, and Linux all have system update mechanisms that keep your
software up-to-date. But one consequence of the way the Android SDK is put together
is that you will need to keep separate software systems up-to-date through separate
mechanisms.

Keeping the Android SDK Up-to-Date
The Android SDK isn’t part of your desktop OS, nor is it part of the Eclipse plug-in,
and therefore the contents of the SDK folder are not updated by the OS or Eclipse. The
SDK has its own update mechanism, which has a user interface in the SDK and AVD
Manager. As shown in Figure 1-14, select Installed Packages in the left pane to show a
list of SDK components installed on your system. Click on the Update All button to
start the update process, which will show you a list of available updates.

Figure 1-14. Updating the SDK with the SDK and AVD Manager

Usually, you will want to install all available updates.

28 | Chapter 1: Your Toolkit

Keeping Eclipse and the ADT Plug-in Up-to-Date
While the SDK has to be updated outside of both your operating system and Eclipse,
the ADT plug-in, and all other components of Eclipse, are updated using Eclipse’s own
update management system. To update all the components you have in your Eclipse
environment, including the ADT plug-in, use the “Check for Updates” command in
the Help menu. This will cause the available updates to be displayed, as shown in
Figure 1-15.

Figure 1-15. Updating Eclipse components and the ADT plug-in

Normally, you will want to use the Select All button to install all available updates. The
updates you see listed on your system depend on what Eclipse modules you have in-
stalled and whether your Eclipse has been updated recently.

Keeping the JDK Up-to-Date
You won’t be updating Java as much as the SDK, ADT plug-in, and other Eclipse plug-
ins. Even if Java 7 has not been released by the time you read this, it is likely to happen
soon enough to matter to Android developers. Before choosing to update the JDK, first
check the System Requirements page of the Android Developers site at http://developer
.android.com/sdk/requirements.html.

Keeping Up-to-Date | 29

If an update is needed and you are using a Mac or Linux system, check the available
updates for your system to see if a new version of the JDK is included. If the JDK was
installed on your system by the vendor, or if you installed it from your Linux distribu-
tion’s repositories, updates will be available through the updates mechanism on your
system.

Example Code
Having installed the Android SDK and tested that it works, you are ready to explore.
Even if you are unfamiliar with the Android Framework classes and are new to Java,
exploring some example code now will give you further confidence in your SDK in-
stallation, before you move on to other parts of this book.

SDK Example Code
The most convenient sample code comes with the SDK. You can create a new project
based on the SDK samples, as shown in Figure 1-16. The sample you select appears in
the left pane of the Eclipse window, where you can browse the files comprising the
sample and run it to see what it does. If you are familiar with using IDEs to debug code,
you may want to set some breakpoints in the sample code to see when methods get
executed.

In the dialog pictured in Figure 1-16, you must pick a build target before
you pick a sample. Samples are organized by API level, and if you have
not picked a build target, the drop-down list will be empty.

Each sample application that comes with the SDK corresponds to an article on the
Android Developers site. More information about each sample can be found there. All
of the samples are listed on the documentation page at http://developer.android.com/
resources/samples/index.html.

There are more than a dozen applications, one of which—the API demos application—
is a sprawling exploration of most of the Android APIs. Creating a few projects based
on these code samples will give you familiarity with how these programs work, and will
help you understand what you will read in the upcoming chapters of this book, even
if you don’t fully understand what you are looking at yet.

Example Code from This Book
Example code from this book can be downloaded from the book’s website at http://
oreilly.com/catalog/0636920010364.

30 | Chapter 1: Your Toolkit

Figure 1-16. Creating a new project using example code from the SDK

Example Code | 31

On Reading Code
Good coders read a lot of code. The example code provided by the authors of this book
is intended to be both an example of good Java coding and an example of how to use
capabilities of the Android platform.

Some examples you will read fall short of what you will need for creating the best
possible extensible and maintainable commercial software. Many example applications
make choices that make sense if the coder’s goal is to create an example in a single Java
class. In many cases, Android applications are overgrown versions of example code,
and they end up unreadable and unmaintainable. But that does not mean you should
avoid reading examples that are more expedient than a large application should be.

The next chapter will explore the Java language, with the goal of giving you the ability
to evaluate example code with good engineering and design practices in mind. We want
you to be able to take examples and make them better, and to apply the ideas in ex-
amples to code you engineer to create high-quality products.

32 | Chapter 1: Your Toolkit

You can find this at oreilly.com

in print or ebook format.

It’s also available at your favorite book retailer,

including iTunes, the Android Market, Amazon,

and Barnes & Noble.

oreilly.comSpreading the knowledge of innovators

Want to read more?

book

http://bit.ly/oreillyapps
http://www.android.com/market/
http://amazon.com
http://www.barnesandnoble.com/
http://oreilly.com
http://oreilly.com
http://oreilly.com/catalog/9781449389697

	Table of Contents
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Tools and Basics
	Chapter 1. Your Toolkit
	Installing the Android SDK and Prerequisites
	The Java Development Kit (JDK)
	The Eclipse Integrated Development Environment (IDE)
	The Android SDK
	Adding Build Targets to the SDK
	The Android Development Toolkit (ADT) Plug-in for Eclipse
	Using the Install New Software Wizard to download and install the ADT plug-in
	Configuring the ADT plug-in

	Test Drive: Confirm That Your Installation Works
	Making an Android Project
	Making an Android Virtual Device (AVD)
	Running a Program on an AVD
	Running a Program on an Android Device
	Troubleshooting SDK Problems: No Build Targets

	Components of the SDK
	The Android Debug Bridge (adb)
	The Dalvik Debug Monitor Server (DDMS)
	Components of the ADT Eclipse Plug-in
	The Android Layout Editor
	The Android Manifest Editor
	XML editors for other Android XML files
	Building Android apps
	Running and debugging Android apps
	The DDMS

	Android Virtual Devices
	QEMU
	The SDK and AVD Manager

	Other SDK Tools
	Hierarchy Viewer
	Layoutopt
	Monkey
	sqlite3
	keytool
	Zipalign
	Draw9patch
	android

	Keeping Up-to-Date
	Keeping the Android SDK Up-to-Date
	Keeping Eclipse and the ADT Plug-in Up-to-Date
	Keeping the JDK Up-to-Date

	Example Code
	SDK Example Code
	Example Code from This Book

	On Reading Code

	Chapter 2. Java for Android
	Android Is Reshaping Client-Side Java
	The Java Type System
	Primitive Types
	Objects and Classes
	Object Creation
	The Object Class and Its Methods
	Objects, Inheritance, and Polymorphism
	Final and Static Declarations
	Abstract Classes
	Interfaces
	Exceptions
	The Java Collections Framework
	Collection interface types
	Collection implementation types
	Java generics

	Garbage Collection

	Scope
	Java Packages
	Access Modifiers and Encapsulation

	Idioms of Java Programming
	Type Safety in Java
	Encapsulation
	Getters and setters

	Using Anonymous Classes
	Modular Programming in Java
	Basic Multithreaded Concurrent Programming in Java
	Synchronization and Thread Safety
	Thread Control with wait() and notify() Methods
	Synchronization and Data Structures

	Chapter 3. The Ingredients of an Android Application
	Traditional Programming Models Compared to Android
	Activities, Intents, and Tasks
	Other Android Components
	Service
	Content Providers
	Using a content provider
	Content providers and the Internet

	BroadcastReceiver

	Static Application Resources and Context
	Application Manifests
	A Typical Source Tree
	Initialization Parameters in AndroidManifest.xml

	Resources
	The Android Application Runtime Environment
	The Dalvik VM
	Zygote: Forking a New Process
	Sandboxing: Processes and Users

	Component Life Cycles
	The Activity Life Cycle

	Packaging an Android Application: The .apk File
	On Porting Software to Android

	Chapter 4. Getting Your Application into Users’
 Hands
	Application Signing
	Public Key Encryption and Cryptographic Signing
	How Signatures Protect Software Users, Publishers, and Secure Communications
	Self-signed certificates for Android software

	Signing an Application
	Debug certificates
	Creating a self-signed certificate
	Don’t lose it!
	Using a self-signed certificate to sign an application

	Placing an Application for Distribution in the Android Market
	Becoming an Official Android Developer
	Uploading Applications in the Market
	Getting Paid

	Google Maps API Keys
	Specifying API-Level Compatibility
	Compatibility with Many Kinds of Screens
	Testing for Screen Size Compatibility
	Resource Qualifiers and Screen Sizes

	Chapter 5. Eclipse for Android Software
 Development
	Eclipse Concepts and Terminology
	Plug-ins
	Workspaces
	Java Environments
	Eclipse’s Java Runtime Environment
	The Java compiler
	The application runtime

	Projects
	Builders and Artifacts
	Extensions
	Associations

	Eclipse Views and Perspectives
	The Package Explorer View
	The Task List View
	The Outline View
	The Problems View

	Java Coding in Eclipse
	Editing Java Code and Code Completion
	Refactoring

	Eclipse and Android
	Preventing Bugs and Keeping Your Code Clean
	Static Analyzers
	FindBugs

	Applying Static Analysis to Android Code
	Limitations of Static Analysis

	Eclipse Idiosyncrasies and Alternatives

	Chapter 6. Effective Java for Android
	The Android Framework
	The Android Libraries
	Extending Android
	Overrides and callbacks
	Using polymorphism and composition
	Extending Android classes

	Organizing Java Source
	Concurrency in Android
	AsyncTask and the UI Thread
	Threads in an Android Process

	Serialization
	Java Serialization
	Parcelable
	Classes That Support Serialization
	Serialization and the Application Life Cycle

	Part II. About the Android Framework
	Chapter 7. Building a View
	Android GUI Architecture
	The Model
	The View
	The Controller
	Putting It Together

	Assembling a Graphical Interface
	Wiring Up the Controller
	Listening to the Model
	Listening for Touch Events
	Listening for Key Events
	Alternative Ways to Handle Events
	Advanced Wiring: Focus and Threading

	The Menu

	Chapter 8. Fragments and Multiplatform Support
	Creating a Fragment
	Fragment Life Cycle
	The Fragment Manager
	Fragment Transactions
	The Compatibility Package

	Chapter 9. Drawing 2D and 3D Graphics
	Rolling Your Own Widgets
	Layout
	Measurement
	Arrangement

	Canvas Drawing
	Drawing text
	Matrix transformations

	Drawables
	Bitmaps

	Bling
	Shadows, Gradients, and Filters
	Animation
	Transition animation
	Background animation
	Surface view animation

	OpenGL Graphics

	Chapter 10. Handling and Persisting Data
	Relational Database Overview
	SQLite
	The SQL Language
	SQL Data Definition Commands
	SQLite types
	Database constraints

	SQL Data Manipulation Commands
	Additional Database Concepts
	Database Transactions
	Example Database Manipulation Using sqlite3

	SQL and the Database-Centric Data Model for Android Applications
	The Android Database Classes
	Database Design for Android Applications
	Basic Structure of the SimpleVideoDbHelper Class

	Using the Database API: MJAndroid
	Android and Social Networking
	The Source Folder (src)
	Loading and Starting the Application
	Database Queries and Reading Data from the Database
	Using the query method

	Modifying the Database
	Inserting data into the database
	Using the insert method
	Using the execSQL method

	Updating data already in the database
	Using the update method
	Using the execSQL method

	Deleting data in the database
	Using the delete method
	Using the execSQL method

	Part III. A Skeleton Application for
 Android
	Chapter 11. A Framework for a Well-Behaved
 Application
	Visualizing Life Cycles
	Visualizing the Activity Life Cycle
	Memory recovery and life cycles
	Life cycle methods of the Activity class
	Saving and restoring instance state
	Configuration changes and the activity life cycle
	Minor life cycle methods of the Activity class

	Visualizing the Fragment Life Cycle
	The Activity Class and Well-Behaved Applications
	The Activity Life Cycle and the User Experience

	Life Cycle Methods of the Application Class
	A Flowing and Intuitive User Experience Across Activities
	Multitasking in a Small-Screen Environment
	Tasks and Applications
	Specifying Launch and Task Behavior
	Launch mode
	Task affinity
	Other activity attributes affecting task behavior
	Modifying task behavior with intent flags

	Chapter 12. Using Content Providers
	Understanding Content Providers
	Implementing a Content Provider
	Browsing Video with Finch
	The simple video database
	Structure of the simple version of the code

	Defining a Provider Public API
	Defining the CONTENT_URI
	Creating the Column Names
	Declaring Column Specification Strings

	Writing and Integrating a Content Provider
	Common Content Provider Tasks
	Extending ContentProvider

	File Management and Binary Data
	Android MVC and Content Observation
	A Complete Content Provider: The SimpleFinchVideoContentProvider Code
	The SimpleFinchVideoContentProvider Class and Instance Variables
	Implementing the onCreate Method
	Implementing the getType Method
	Implementing the Provider API
	The query method
	The insert method
	The update method
	The delete method

	Determining How Often to Notify Observers

	Declaring Your Content Provider

	Chapter 13. Exploring Content Providers
	Developing RESTful Android Applications
	A “Network MVC”
	Summary of Benefits
	Code Example: Dynamically Listing and Caching YouTube Video Content
	Structure of the Source Code for the Finch YouTube Video Example
	Stepping Through the Search Application
	Step 1: Our UI Collects User Input
	Step 2: Our Controller Listens for Events
	Step 3: The Controller Queries the Content Provider with a managedQuery on the Content Provider/Model
	Step 4: Implementing the RESTful Request
	Constants and Initialization
	Creating the Database
	A Networked Query Method
	RESTfulContentProvider: A REST helper
	UriRequestTask
	YouTubeHandler

	insert and ResponseHandlers
	File Management: Storing Thumbnails

	Part IV. Advanced Topics
	Chapter 14. Multimedia
	Audio and Video
	Playing Audio and Video
	Audio Playback
	MediaPlayer audio playback
	AudioTrack audio playback

	Video Playback

	Recording Audio and Video
	Audio Recording
	MediaRecorder audio recording
	Intent audio recording
	AudioRecorder audio recording

	Video Recording
	MediaRecorder video recording
	Intent video recording

	Stored Media Content

	Chapter 15. Location and Mapping
	Location-Based Services
	Mapping
	The Google Maps Activity
	The MapView and MapActivity
	Working with MapViews
	MapView and MyLocationOverlay Initialization
	Pausing and Resuming a MapActivity
	Controlling the Map with Menu Buttons
	Controlling the Map with the Keypad
	Location Without Maps
	The Manifest and Layout Files
	Connecting to a Location Provider and Getting Location Updates
	Updating the Emulated Location
	Using geo to update location
	Using DDMS to update location

	Chapter 16. Sensors, NFC, Speech, Gestures, and
 Accessibility
	Sensors
	Position
	Accelerometer
	Gyroscope
	Rotation vector
	Linear acceleration
	Gravity

	Other Sensors

	Near Field Communication (NFC)
	Reading a Tag
	Writing to a Tag
	P2P Mode

	Gesture Input
	Accessibility

	Chapter 17. Communication, Identity, Sync, and Social Media
	Account Contacts
	Authentication and Synchronization
	Authentication
	Synchronization

	Bluetooth
	The Bluetooth Protocol Stack
	Bluetooth-specific protocols and adopted protocols

	Bluez: The Linux Bluetooth Implementation
	Using Bluetooth in Android Applications
	Bluetooth and related I/O classes
	The DeviceListActivity class
	The BtConsoleActivity class

	Chapter 18. The Android Native Development Kit
 (NDK)
	Native Methods and JNI Calls
	Conventions on the Native Method Side
	Conventions on the Java Side

	The Android NDK
	Setting Up the NDK Environment
	Compiling with the NDK
	JNI, NDK, and SDK: A Sample App

	Android-Provided Native Libraries
	Building Your Own Custom Library Modules
	Native Activities

	Index

