

© 2021 NXP B.V.

i.MX RT500 DSP Enablement
XOS use cases

1. Introduction
The i.MX RT500 includes a DSP processor core which
is Cadence Xtensa Fusion F1 Audio DSP processor,
running at frequencies of up to 200 MHz. The Cadence
Xtensa Fusion F1 Audio DSP engine is a highly
optimized audio processor designed especially for
Lowest Energy Voice Trigger DSP for always-on
listening and Audio codec pre- and post-processing
modules.
The XOS embedded kernel from Cadence is designed
for efficient operation on embedded system built using
the Xtensa architecture. Although various parts of
XOS continue to be tuned for efficient performance on
the Xtensa hardware, most of the code is written in
standard C and is not Xtensa-specific.
XOS provides for core system and thread management
operations and a list of modules supported. In this
application note, we give some examples to show how
to use below modules and what need to take care in the
special cases.

• Condition

• Event

• Interrupt

• Semaphore

• Message Queue

NXP Semiconductors Document Number: AN13159

Application Note Rev.0 , 02/2021

1. Introduction .. 1
2. Abbreviations ... 2
3. The XOS System Module ... 2
4. Condition .. 4
5. Event ... 5
6. Timer Interrupt ... 6
7. Semaphore .. 8
8. Message Queue ... 10
9. XOS Initialization Sample Code 12
10. References .. 14
11. Revision History ... 14

 Contents

The XOS system module

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

2. Abbreviations
This chapter provides an overview of the abbreviations as used in this document.

Abbreviations Description

• Tensilica It is a part of Cadence Design Systems

• TIE Tensilica Instruction Extension

• XOS Xtensa Embedded OS

• Xplorer Integrated Development Environment, based on Eclipse platform

• Xtensa i.MXRT500 DSP is based on Xtensa architecture

3. The XOS system module
XOS is built as a library and statically linked to the application code to generate a single executable file.

Make sure that the library is included in Xplorer if you want to use it.

Figure 1. XOS library

The XOS system module

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

XOS code runs at the same privilege level as the application code, and there is no protection for XOS
data from accidental or malicious corruption by application code. XOS system calls are regular function
calls, not traps. This makes execution faster and code size smaller.
Application threads can be created without the limitation of the number – this is limited only by memory
available for thread control blocks and thread stacks.
Thread can exist in one of three possible states – Ready, Running, or Blocked. When a thread is created,
it is put into either the Ready state or the Blocked state, depending on what was specified during
creation.

• A thread in the Ready state is placed at the end of the ready queue for its priority level, and
eventually will get to run, at which time it goes into the Running state.

• A Running thread may execute a blocking system call and go into the Blocked state. It can also
be pre-empted by a thread at a higher priority and go back into the Ready state.

• A thread in the Blocked state does not go back into the Ready state until the blocking condition
is satisfied.

Figure 2. XOS thread states

The brief description of thread functions as below
• xos_start() Init XOS and start multithreading.
• xos_start_main() Init XOS and convert main() into a thread.
• xos_thread_create() Create a new thread.
• xos_threadp_set_cp_mask() Set the coprocessor mask for a thread, in thread creation parameters.
• xos_threadp_set_preemption_priority() Set the preemption priority for a thread, in thread

creation parameters.
• xos_threadp_set_exit_handler() Set the exit handler function for a thread, in thread creation

parameters.
• xos_thread_delete() Destroy the thread, free up resources.
• xos_thread_abort() Force the thread to terminate.
• xos_thread_exit() Exit the current thread.
• xos_thread_join() Wait for a specified thread to terminate.
• xos_thread_yield() Yield the CPU.
• xos_thread_suspend() Suspend the specified thread.
• xos_thread_resume() Resume (make ready) the specified thread.
• xos_thread_get_priority() Get current priority of thread.

Condition

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

• xos_thread_set_priority() Set current priority of thread.
• xos_thread_set_exit_handler() Set exit handler function for thread.
• xos_thread_id() Return ID (handle) of current thread.
• xos_thread_get_name() Return thread name.
• xos_thread_set_name() Set thread name.
• xos_thread_cp_mask() Get list of CPs that this thread can touch.
• xos_thread_get_wake_value() Get last wake value for the thread.
• xos_thread_get_event_bits() Get current value of event bits for the thread.
• xos_thread_get_state() Get the state of the thread.
• xos_preemption_disable() Disable thread preemption.
• xos_preemption_enable() Re-enable thread preemption.
• xos_thread_get_stats() Get runtime statistics for the thread.
• xos_get_cpu_load() Calculate and return the CPU use % for all threads in the system.

Note: Thread stack is allocated by the caller. The size at least should be able to save coprocessor state,
non-coprocessor TIE state and allocate an interrupt/exception frame plus whatever the thread actually
needs. XOS supports multiple priority levels is configurable at build time, and zero is the lowest priority
level.

4. Condition
Condition objects (or condition variables) allow thread to block and wait for a specific condition to
become true. The condition is evaluated by a supplied condition function, and the evaluation is
performed every time the condition object is signaled by another thread or by an interrupt handler.
The brief description of condition functions as below

• xos_cond_create() Initialize the condition object.
• xos_cond_delete() Destroy the condition object. Any waiting threads are unblocked.
• xos_cond_wait() Wait on the condition for it to become true.
• xos_cond_signal() Signal the condition, wake all waiting threads.
• xos_cond_signal_one() Signal the condition, wake one waiting thread.
• xos_cond_wait_mutex() Atomically release mutex and wait on condition.
• xos_cond_wait_mutex_timeout() As above, except a timeout can be specified for the wait.

In xos_condition example code, there are two condition objects initiated and two threads created. In the
beginning of thread1_fun(), it needs to wait cond_1. When thread[0] runs thread0_fun() and signaled
cond_1, it will wake up all threads waiting on this condition and also pass “value” to all waiters. So in
thread1_fun() when ret got the default value 1234, then it can do ret+111 and wake up cond_0 then pass
1345 to waiter. This example is not only helping user to know how to use basic condition functions but
also going to show how multiple threads wait/signal conditions and pass value to waiter. Below is code
snippet and log for reference.
… Log:
int thread0_fun(void * arg, int32_t unused) start XOS_COND_EX
{... thread0 created successfully
 xos_thread_yield(); thread1 created successfully
 xos_cond_signal(&cond_1, value); thread_func():Thread0 starting
 ret = xos_cond_wait(&cond_0, 0, 0); thread_func():Thread1 starting

Event

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

…} signal cond1
int thread1_fun(void * arg, int32_t unused) cond1 triggered and got ret=1234
{... cond0 triggered and got ret=1345
 ret = xos_cond_wait(&cond_1, 0, 0);
 xos_cond_signal(&cond_0, ret + 111); terminate Thread0, code=0
...} terminate Thread1, code=0
… XOS_COND_EX finished

Below flowchart also shows context switch between threads of xos_condition example.
Time Thread0 Thread1

 xos_thread_yield();

 ret = xos_cond_wait(&cond_1,0,0) ;

 xos_cond_signal(&cond_1, value);

 ret = xos_cond_wait(&cond_0,0,0) ;

 xos_cond_signal(&cond_0, ret + 111);

5. Event
An event is a group of bits that can be set, cleared, and waited upon in various combinations. Events can
be used for synchronization between threads, or between threads and interrupt handlers. XOS event
objects can be both waited upon and signaled by multiple threads concurrently.
The brief description of event functions as below

• xos_event_create() Create the event object. Specify the group of valid bits.
• xos_event_delete() Destroy an event object. Will unblock all waiting threads.
• xos_event_set() Set the specified group of bits.
• xos_event_clear() Clear the specified group of bits.
• xos_event_clear_and_set() Clear one group and set another group, as one action. The groups

may overlap.
• xos_event_get() Read the state of the event bits without blocking.
• xos_event_wait_all() Wait for all of a group of bits to be set.
• xos_event_wait_all_timeout() Like xos_event_wait_all(), except that a timeout can be specified

for the wait.
• xos_event_wait_any() Wait for any of a group of events to be set.
• xos_event_wait_any_timeout() Like xos_event_wait_any(), except that a timeout can be

specified for the wait.
• xos_event_set_and_wait() Atomically set a group of bits and wait on another group of bits.

In xos_event example code, there are three threads created. Thread0 first clear all bits and set bits 0-3
(0xf) then wait for bits 8-11 (0xf00). Thread1 runs case1 and wait for bits 0-3 but because bits 0-3 are
set by thread0, it can move further then set bits 16-19. Thread2 runs case2 and bits 16-19 are set, so it
does not need to wait and it can move further and set bits 8-11. At which time the waiting thread0 will
be waked up. The purpose of this example is to show the interactions between multiple threads set the
specified group of bits and wait for all of a group of bits to be set. Below is code snippet and log for
reference.
… Log:
int thread_func(void * arg, int32_t unused) start XOS_EVENT_EX thread_func() cnt = 2 - Thread Thread2

Timer interrupt

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

{... Thread0 ret = 0 created successfully thread_func() cnt = 2 - Thread Thread0
 switch(flag) { Thread1 ret = 0 created successfully thread_func() cnt = 3 - Thread Thread1
 case 0: // Clear all, set bits 0-3, wait on bits 8-11 Thread2 ret = 0 created successfully thread_func() cnt = 3 - Thread Thread2
 xos_event_clear(&event, 0xffffffff); thread main prepare to do thread_func() cnt = 3 - Thread Thread0
 xos_event_set(&event, 0xf); thread_func():Thread0 starting thread_func() cnt = 4 - Thread Thread1
 xos_event_wait_all(&event, 0xf00); thread_func():Thread1 starting thread_func() cnt = 4 - Thread Thread2

case 1: // Wait on bits 0-3, then set bits 16-19 thread_func() cnt = 1 - Thread Thread1 thread_func() cnt = 4 - Thread Thread0
 xos_event_wait_all(&event, 0xf); thread_func() cnt = 5 - Thread Thread1
 xos_event_clear(&event, 0xf); thread_func():Thread2 starting thread_func() cnt = 5 - Thread Thread2
 xos_event_set(&event, 0xf0000); thread_func() cnt = 1 - Thread Thread2 thread_func() cnt = 5 - Thread Thread0
 case 2: // Wait on bits 16-19, then set bits 8-11 terminate Thread0, code=5
 xos_event_wait_all(&event, 0xf0000); thread_func() cnt = 1 - Thread Thread0 terminate Thread1, code=5
 xos_event_clear(&event, 0xf0000); thread_func() cnt = 2 - Thread Thread1 terminate Thread2, code=5
 xos_event_set(&event, 0xf00); XOS_EVENT_EX finished

}
}…

Below flowchart also shows context switch between threads of xos_event example.
Time Thread0 Thread1 Thread2

 xos_event_clear(&event, 0xffffffff);
xos_event_set(&event, 0xf);

 xos_event_wait_all(&event, 0xf00);
 xos_event_wait_all(&event, 0xf);

xos_event_clear(&event, 0xf);
xos_event_set(&event, 0xf0000);
//loop again, count=1
xos_event_wait_all(&event, 0xf);
 xos_event_wait_all(&event, 0xf0000);

xos_event_clear(&event, 0xf0000);
xos_event_set(&event, 0xf00);
//loop again, count=1
xos_event_wait_all(&event, 0xf0000)

//loop again, loop count=1
xos_event_clear(&event, 0xffffffff);
xos_event_set(&event, 0xf);

 xos_event_wait_all(&event, 0xf00);
xos_event_clear(&event, 0xf);
xos_event_set(&event, 0xf0000);
//loop again, loop count=2
xos_event_wait_all(&event, 0xf);

xos_event_clear(&event, 0xf0000);
xos_event_set(&event, 0xf00);
//loop again, loop count=2
xos_event_wait_all(&event, 0xf0000)

 ……(and so on)

6. Timer interrupt
The interrupt and exception dispatch mechanism in XOS was designed to make dispatching as fast as
possible while still retaining flexibility for users to install their own customer handlers.
XOS supports nested interrupt handling. While an interrupt is being handled, if another interrupt at a
higher priority level is asserted then the higher priority one is taken immediately, and it preempts the
handling of the lower priority interrupt. If multiple interrupts at the same priority level are asserted at the
same time, then the numerically highest one is handled first.

Timer interrupt

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

XOS uses a separate dedicated stack for interrupt processing. It switches to this stack when taking a
interrupt handlers and functions called by these handlers use the interrupt stack, so the sizing of the
interrupt stack is very import.
Threads have time-related services such as timed delays and timer callback functions. It provides the
default preemption source, as the timer interrupt is used to trigger scheduling and time slicing.
The Xtensa processor can be configured with up to three internal timers. The system tick count is
maintained as a 64-bit counter. All internal time tracking is done in terms of CPU clock cycles.
The brief description of time functions as below

• xos_set_clock_freq() Set system clock frequency.
• xos_get_clock_freq() Get current system clock frequency.
• xos_start_system_timer() Initialize timer support and start system timer.
• xos_get_system_timer_num() Get the ID of the system timer.
• xos_timer_init() Initialize a timer object.
• xos_timer_start() Start the timer object.
• xos_timer_stop() Stop the timer object.
• xos_timer_restart() Restart timer with new duration/period.
• xos_timer_is_active() Check if the timer is active.
• xos_timer_get_period() Get the repetition period for a periodic timer.
• xos_timer_set_period() Set the repetition period for a periodic timer.
• xos_get_system_cycles() Get current system cycle count.
• xos_thread_sleep() Suspend thread for specified number of CPU cycles.
• xos_thread_sleep_msec() Suspend thread for specified number of msec.
• xos_thread_sleep_usec() Suspend thread for specified number of usec.
• xos_timer_wait() Block calling thread on timer until it expires.
• gettimeofday() Get time and timezone information.
• settimeofday() Set time and timezone information.

In xos_interrupt example code, start the timer and call timer_fun() when the timer expires. By default,
XOS uses the CCOUNT special register to count CPU clock cycles. The timer can be periodic
(XOS_TIMER_PERIODIC) or the number of cycles from now(XOS_TIMER_DELTA). Below is code
snippet and log for reference.
…
void timer_fun(void * arg) Log:
{... start XOS_INTERRUPT_EX
t2 = xos_get_ccount(); timer_fun(): t1=2844683683, t2=3444684435, diff is 600000752
PRINTF("timer_fun(): t1=%u, t2=%u, diff is %u\r\n", timer_fun(): t1=2844683683, t2=4044684901, diff is 1200001218

(*t1), t2, (unsigned int)(t2-(*t1)));
} timer_fun(): t1=2844683683, t2=349718069, diff is 1800001682
int XOS_INTERRUPT_EX(void) timer_fun(): t1=2844683683, t2=949718539, diff is 2400002152
{... timer_fun(): t1=2844683683, t2=1549719007, diff is 3000002620
 t1 = xos_get_ccount(); timer_fun(): t1=2844683683, t2=2149719475, diff is 3600003088
 timer_fun(): t1=2844683683, t2=2749719943, diff is 4200003556
 // Set a timer for the near future. timer_fun(): t1=2844683683, t2=3349720411, diff is 505036728
 //xos_timer_start(&timer, delta, XOS_TIMER_DELTA, timer_fun(): t1=2844683683, t2=3949720877, diff is 1105037194

timer_fun, (void*)&t1); ...
xos_timer_start(&timer, delta, XOS_TIMER_PERIODIC,

timer_fun, (void*)&t1);
...
}

Semaphore

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

7. Semaphore
Semaphores are construct that can be used to control access to a common resource from multiple
threads. Semaphores have an associated count that controls the degree of access to the shared resource.
XOS semaphores can be both waited upon and signaled by multiple threads concurrently.

The brief description of semaphore functions as below
• xos_sem_create() Create the semaphore and specify its properties.
• xos_sem_delete() Delete the semaphore. Will unblock all waiting threads.
• xos_sem_get() Decrement the semaphore count or block until able to do so.
• xos_sem_get_timeout() Like xos_sem_get(), except that a timeout can be specified for the wait.
• xos_sem_put() Signal the semaphore (increment count).
• xos_sem_put_max() Signal the semaphore only if the specified max count is not exceeded.
• xos_sem_tryget() Try to decrement the semaphore count but return immediately if failed.
• xos_sem_test() Check the value of the semaphore, but do not attempt to decrement it.

The well-known Producer-Consumer problem is a classic example of multiple threads to use
semaphores for mutual exclusion and synchronization. The problem describes two threads the producer
and the consumer, who generate data and put into the buffer (increase semaphore counter) and consume
the data (decrease semaphore counter). When increasing the semaphore counter, it may wake up a
waiting thread and if that thread is higher priority then there is an immediate context switch. But if
decreasing the semaphore counter, it may block until the decrement is possible. In xos_semaphore
example code, it provided an unbalanced producing and consuming so user can watch the changes of
counter step by step. Below is code snippet and log for reference.
… Log:
int32_t consumer_thread(void * arg, int32_t unused) start XOS_SEM_EX
{... consumer_thread0 ret = 0 created successfully

{//Signal the semaphore (increment count) consumer_thread1 ret = 0 created successfully
ret = xos_sem_put(&semaphore_producer); consumer_thread2 ret = 0 created successfully

producer_thread created successfully
//Decrement the semaphore count or block until able to do so thread_func():consumer_thread0 starting
ret = xos_sem_get(&semaphore_consumer); consumer_thread0: semaphore_producer count = 1

}... thread_func():consumer_thread1 starting
} consumer_thread1: semaphore_producer count = 2
int32_t producer_thread(void * arg, int32_t unused) thread_func():consumer_thread2 starting
{... consumer_thread2: semaphore_producer count = 3

{//Signal 3 times just want to observe the behavior thread_func():producer_thread starting
ret = xos_sem_put(&semaphore_consumer); producer_thread: semaphore_consumer count = 3
ret = xos_sem_put(&semaphore_consumer); producer_thread: Producer accepted item.
ret = xos_sem_put(&semaphore_consumer); consumer_thread0: Consumer accepted item.

 //Decrement the semaphore count or block until able to do so consumer_thread1: Consumer accepted item.
 ret = xos_sem_get(&semaphore_producer); consumer_thread2: Consumer accepted item.
 ... producer_thread: semaphore_consumer count = 3
} producer_thread: Producer accepted item.

consumer_thread0: semaphore_producer count = 2
consumer_thread0: Consumer accepted item.
consumer_thread1: semaphore_producer count = 3
consumer_thread1: Consumer accepted item.
consumer_thread2: semaphore_producer count = 4
consumer_thread2: Consumer accepted item.
producer_thread: semaphore_consumer count = 3
producer_thread: Producer accepted item.
consumer_thread0: semaphore_producer count = 4

Semaphore

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

consumer_thread0: Consumer accepted item.
consumer_thread1: semaphore_producer count = 5
consumer_thread1: Consumer accepted item.
consumer_thread2: semaphore_producer count = 6
consumer_thread2: Consumer accepted item.
producer_thread: semaphore_consumer count = 3
producer_thread: Producer accepted item.
consumer_thread0: semaphore_producer count = 6
consumer_thread0: Consumer accepted item.
consumer_thread1: semaphore_producer count = 7
consumer_thread1: Consumer accepted item.
consumer_thread2: semaphore_producer count = 8
consumer_thread2: Consumer accepted item.
producer_thread: semaphore_consumer count = 3
producer_thread: Producer accepted item.
consumer_thread0: semaphore_producer count = 8
consumer_thread0: Consumer accepted item.
consumer_thread1: semaphore_producer count = 9
consumer_thread1: Consumer accepted item.
consumer_thread2: semaphore_producer count = 10
consumer_thread2: Consumer accepted item.
terminate consumer_thread0, code=0
terminate consumer_thread1, code=0
terminate consumer_thread2, code=0
terminate producer_thread, code=0
XOS_SEM_EX finished

Below flowchart also shows context switch between threads of xos_semaphore example. Note:
consumer is abbreviated as ‘c”, producer is abbreviated as ‘p’ and semaphore is abbreviated as ‘sem’.
Time C_thread0 C_thread1 C_thread2 P_thread

 //sem_p count=0+1=1

xos_sem_put(&sem_p);

//block her, bcz sem_c=0

 xos_sem_get(&sem_c);

 //sem_p count=1+1=2

xos_sem_put(&sem_p);

//block her, bcz sem_c=0

 xos_sem_get(&sem_c);

 //sem_p count=2+1=3

xos_sem_put(&sem_p);

//block her, bcz sem_c=0

 xos_sem_get(&sem_c);

 //sem_c count=1+1+1=3

xos_sem_put(&sem_c);

 xos_sem_put(&sem_c);

 xos_sem_put(&sem_c);

 //accepted, sem_p count=2

 xos_sem_get(&sem_p);

Message queue

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

 xos_thread_yield();

 //accepted, sem_c count=2

 xos_thread_yield();

 //accepted, sem_c count=1

 xos_thread_yield();

 //accepted, sem_c count=0

 xos_thread_yield();

//sem_c count=1+1+1=3

xos_sem_put(&sem_c);

 xos_sem_put(&sem_c);

 xos_sem_put(&sem_c);

 //accepted, sem_p count=1

 xos_sem_get(&sem_p);

 xos_thread_yield();

 //sem_p count=1+1=2

xos_sem_put(&sem_p);

//accepted, sem_c count=2

 xos_sem_get(&sem_c);

 //sem_p count=2+1=3

xos_sem_put(&sem_p);

//accepted, sem_c count=1

 xos_sem_get(&sem_c);

 //sem_p count=3+1=4

xos_sem_put(&sem_p);

//accepted, sem_c count=0

 xos_sem_get(&sem_c);

//sem_c count=1+1+1=3

xos_sem_put(&sem_c);

 xos_sem_put(&sem_c);

 xos_sem_put(&sem_c);

 //accepted, sem_p count=3

 xos_sem_get(&sem_p);

 xos_thread_yield();

……(and so on)

8. Message queue
The message queue module implements a multi-writer multi-reader queue. It is thread-safe and can be
used by interrupt handlers. Messages are copied into the queue so the message can be freed or reused as

Message queue

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

soon as the API calls return. The queue contains storage for a fixed number of messages, this number
being defined at queue creation time.

The brief description of message queue functions as below
• xos_msgq_create() Initialize a message queue.
• xos_msgq_delete() Delete a message queue.
• xos_msgq_put() Put a message into the specified queue, wait until space is available.
• xos_msgq_put_timeout() Like xos_msgq_put(), except that a timeout can be specified for the

wait.
• xos_msgq_get() Get a message from the specified queue, wait until a message is available.
• xos_msgq_get_timeout() Like xos_msgq_get(), except that a timeout can be specified for the

wait.
• xos_msgq_empty() Check if the message queue is empty.
• xos_msgq_full() Check if the message queue is full.

In xos_queue example code, if PUTGET_BALANCE defined, it is very straightforward to observe put
and get message sequentially. Three threads are created to put messages into the queue and three threads
are created to get message from the queue. However, if PUTGET_BALANCE undefined, it shows that
put message is faster than get message, because it put 3 messages but only get a message in one round.

NOTE
In this example, it tries to put message 1~10 to queue. Once message
queue (ex: max data number is 10) is full, then thread waits here until
space is available.

Below is code snippet and log for reference.
int put_func(void * arg, int32_t unused) Log:
{... start XOS_QUEUE_EX Message Queue is full,
 ret = xos_msgq_put(msgqueue, (uint32_t *)psrc); put_thread0: put_idx=0 thread will wait here
} put 0 until space is available

put_thread1: put_idx=1 get_thread0: get_idx=5
int get_func(void * arg, int32_t unused) put 1 get 5
{... put_thread2: put_idx=2 put_thread0: put_idx=17
 ret = xos_msgq_get(msgqueue, (uint32_t *)&recv); put 2 put 17
} get_thread0: get_idx=0 get_thread0: get_idx=6

get 0 get 6
int XOS_QUEUE_EX(void) put_thread0: put_idx=3 put_thread0: put_idx=18
{... put 3 put 18
 ret = xos_thread_create(&thread[0], 0, put_func, 0, put_thread1: put_idx=4 get_thread0: get_idx=7
 ret = xos_thread_create(&thread[1], 0, put_func, 0, put 4 get 7
 ret = xos_thread_create(&thread[2], 0, put_func, 0, put_thread2: put_idx=5 put_thread0: put_idx=19

put 5 put 19
 ret = xos_thread_create(&thread[3], 0, get_func, 0, get_thread0: get_idx=1 get_thread0: get_idx=8
#if 0 //PUTGET_BALANCE get 1 get 8
 ret = xos_thread_create(&thread[3], 0, get_func, 0, put_thread0: put_idx=6 terminate put_thread0, code=0
 ret = xos_thread_create(&thread[3], 0, get_func, 0, put 6 put 14
#endif put_thread1: put_idx=7 get_thread0: get_idx=9
... put 7 get 9
} put_thread2: put_idx=8 put 16
 put 8 get_thread0: get_idx=10

get_thread0: get_idx=2 get 10
get 2 terminate put_thread1, code=0
put_thread0: put_idx=9 terminate put_thread2, code=0
put 9 get_thread0: get_idx=11

XOS initialization sample code

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

put_thread1: put_idx=10 get 11
put 10 get_thread0: get_idx=12
put_thread2: put_idx=11 get 12
put 11 get_thread0: get_idx=13
get_thread0: get_idx=3 get 13

 get 3 get_thread0: get_idx=14
put_thread0: put_idx=12 get 15

 put 12 get_thread0: get_idx=15
put_thread1: put_idx=13 get 17
put 13 get_thread0: get_idx=16
put_thread2: put_idx=14 get 18

 Message Queue is full, get_thread0: get_idx=17
thread will wait here get 19

 until space is available get_thread0: get_idx=18
 get_thread0: get_idx=4 get 14
 get 4 get_thread0: get_idx=19
 put_thread0: put_idx=15 get 16
 put 15 terminate get_thread0, code=0
 put_thread1: put_idx=16

Below flowchart also shows context switch between threads of xos_queue example. Note: While
creating the message queue object, memory and size for the queue must be allocated by the caller,
either statically or via dynamic allocation.
Time Thread0 Thread1 Thread2 Thread3
 xos_msgq_put(0);
 xos_msgq_put(1);
 xos_msgq_put(2);

xos_msgq_get(0) ;
 xos_msgq_put(3);
 xos_msgq_put(4);
 xos_msgq_put(5);

xos_msgq_get(1) ;
 ……(and so on)

9. XOS initialization sample code
Here are two small examples to illustrate XOS initialization and startup.
The first one illustrates the case when main() is not converted into a thread.

#define STACK_SIZE (XOS_STACK_MIN_SIZE + 0x1000)

XosThread thread_tcb;

uint8_t thread_stack[STACK_SIZE];

int32_t thread_func(void * arg, int32_t unused)

{

 int32_t count = 0;

 puts("Thread starting.");

 while (1) {

XOS initialization sample code

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

 xos_thread_sleep(1000);

 count++;

 printf("Count = %dnn", count);

 }

return 0;

}

int main()

{

 int32_t ret;

 // Set clock frequency before calling xos_start().

 xos_set_clock_freq(XOS_CLOCK_FREQ);

 // Select and start system timer.

 xos_start_system_timer(-1, 0);

 // Create at least one thread before calling xos_start().

 ret = xos_thread_create(&thread_tcb, 0, thread_func, 0, "demo", thread_stack, STACK_SIZE, 7, 0, 0);

 // Start multitasking.

 xos_start(0);

 // Should never get here.

 return -1;

}

Second example illustrates the case where main() is converted into a thread.

#define STACK_SIZE (XOS_STACK_MIN_SIZE + 0x1000)

XosThread thread_tcb;

uint8_t thread_stack[STACK_SIZE];

int32_t thread_func(void * arg, int32_t unused)

{

 int32_t count = 0;

 puts("Thread starting.");

 while (1) {

 xos_thread_sleep(1000);

 count++;

 printf("Count = %dnn", count);

 }

 return 0;

}

Revision history

i.MX RT500 DSP Enablement, Application Note, Rev.0, 02/2021

int main()

{

 int32_t ret;

 // Set clock frequency before calling xos_start_main().

 xos_set_clock_freq(XOS_CLOCK_FREQ);

 // Select and start system timer.

 xos_start_system_timer(-1, 0);

 // Start multitasking.

 xos_start_main("main", 5, 0);

 // Create a thread after control returns.

 ret = xos_thread_create(&thread_tcb, 0, thread_func, 0, "demo", thread_stack, STACK_SIZE, 7, 0, 0);

 // Do not return from here.

 while (1);

 return 0;

}

10. References
1. i.MX RT500 Data Sheet
2. i.MX RT500 Reference Manual
3. Xtensa Software Development Toolkit User’s Guide
4. Xtensa XOS Reference Manual
5. Xtensa System Software Reference Manual

11. Revision history

Revision number Date Substantive changes
0 02/2021 Initial release

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be provided in
NXP data sheets and/or specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP does not
convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s
applications and products, and NXP accepts no liability for any vulnerability that is discovered.
Customers should implement appropriate design and operating safeguards to minimize the
risks associated with their applications and products.

NXP, NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,
MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient
Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor
Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a
Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS,EdgeScale,
EdgeLock, eIQ, and Immersive 3D are trademarks of NXP B.V. All other product or service
names are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan,
Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of
Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE,
CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and
Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org.

© 2021 NXP B.V.

Document Number: AN13159
Rev.0

02/2021

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Abbreviations
	3. The XOS system module
	4. Condition
	5. Event
	6. Timer interrupt
	7. Semaphore
	8. Message queue
	9. XOS initialization sample code
	10. References
	11. Revision history

