
1 Introduction
This application note provides an overview of how to use RT500 SDK software
with EVK hardware to validate the RT500 built-in temperature sensor using
the ADC controller. The ADC input channel 7 is mapped to an internal
temperature sensor.

ADC watermark interrupt would be asserted once the number of data words
stored in the ADC Result FIFO are greater than the watermark value. In ADC ISR, the watermark flag is cleared by reading
the conversion result value. When the conversion done, two valid results are stored in the FIFO, and the temperature can be
calculated using a specific formula within two results.

2 Temperature sensor overview
The temperature sensor transducer uses an intrinsic pn-junction diode reference and outputs a CTAT voltage (Complement To
Absolute Temperature). The output voltage varies inversely with device temperature with an absolute accuracy of better than ±5
°C over the full temperature range (-40 °C to +105 °C). The temperature sensor is only approximately linear with a slight curvature.
The output voltage is measured over different ranges of temperatures and fit with linear-least-square lines.

2.1 Characteristics
The following table shows the temperature sensor static and dynamic characteristics.

2.2 Connection between ADC channel input and analog output
The following figure shows the connection between ADC channel input and analog output.
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Figure 1. ADC channel input and analog output

2.3 Registers needed for ADC temperature sensor

2.3.1 Temperature sensor control (SYSCTL0_TEMPSENSORCTL)
This register enables the on-chip temperature sensor to be measured by the ADC.

2.3.2 Run configuration register 1 clear (SYSCTL0_PDRUNCFG1_CLR)
Writing a 1 to a bit position in this register clears the corresponding position in PDRUNCFG1. This is a write-only register.
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2.4 Using typical parameter provided by the data sheet
Use the typical parameters provided by the RT500 data sheet to perform a temperature reading. An approximate transfer function
describes the temperature sensor.

Temp = 25 - ((Vtemp -Vtemp25)/m)

Where:

• Vtemp is the voltage of the temperature sensor channel at the ambient temperature.

• Vtemp25 is the voltage of the temperature sensor channel at 25ºC.

• m is the temperature sensor slope.

In application code, the user executes a conversion on the temperature sensor channel and converts the conversion result to a
voltage (VTEMP) based on the voltage reference used. The ambient temperature is then calculated using the above equation.
VTEMP25 and the temperature sensor slope values are specified constant values from the ADC Electrical information in the
device data sheet.

When converting on the temperature sensor channel, the following command selections must be configured:

• Differential mode (CMDLn[DIFF] = 0x1)

• Maximum averaging (CMDHn[AVGS] = 0x7)

• Maximum sample time (CMDHn[STS] = 0x7)

3 Demo application

3.1 Environment

3.1.1 Hardware environment
• Board

— MIMXRT595EVK

• Debugger

— Integrated CMSIS-DAP debugger on the board

• Miscellaneous

— 1 Micro USB cable

— PC
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• Board Setup

— No special settings are needed

3.1.2 Software environment
• Tool chain

— IAR embedded workbench 8.50.1 or MCUXpresso IDE v11.3.0 or Keil 5.29

• Software package

— SDK_2.9.0_EVK-MIMXRT595

3.2 Project overview
1. Follow the Getting Started with MCUXpresso SDK for MIMXRT500 (available inside SDK➜docs) to go through

the steps for opening lpadc_temperature_measurement project (SDK\boards\evkmimxrt685\driver_examples\lpadc\
temperature_measurement).

2. Open the file lpadc_temperature_measurement.c (lpadc_temperature_measurement\source) and find the values for the
temperature slope and intercept that helps to calculate the ambient temperature based on the formula that is given
in Using typical parameter provided by the data sheet. These are specified constant values from the ADC Electricals
information in the device data sheet.

#define DEMO_LPADC_TEMPERATURE_SLOPE                                  \
    -1.5738f /* Temperature sensor slope with the unit as mV/Celsius. \
             Please refer to the Data Sheet for details. */
#define DEMO_LPADC_TEMPERATURE_INTERCEPT                                                       \
809.55f /* The voltage of the temperature sensor channel at 0 Celsius with the unit as mV. 
\                 
             Please refer to the Data Sheet for details. */

3. In SYSCTL>TEMPSENSORCTL, select between the two temperatures sensors available; ADC and PMC, the ADC is
selected by default and no changes are required to use it. Note that the sensor is already enabled in the PDRUN
configuration at the beginning of the main function.

/* Power up the ADC temperature sensor via SYSCTL. */
SYSCTL0->PDRUNCFG0_CLR = SYSCTL0_PDRUNCFG0_ADC_TEMPSNS_PD_MASK;

4. The STS bits of CMDH1 register are set to 7. So, the sample time is 131 (3 + 2STS) ADCK cycles since a sample
time of over 35 is required. A long sample time allows higher impedance inputs to be accurately sampled. This is
done by modifying the smapleTimeMode which is member of conversion commands configuration structure inside
LPADC_GetDefaultConvCommandConfig function. This change is already done in the ADC configuration part of code.

g_LpadcCommandConfigStruct.sampleTimeMode = kLPADC_SampleTimeADCK131;

5. Follow the Getting Started with MCUXpresso SDK for MIMXRT500 (available inside SDK➜docs) to go through the
steps for building and running lpadc_temperature_measurement demo.

6. When running the demo, type any key in the debug console which triggers the conversion.

7. Result:
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4 Conclusion
The example shows how the SDK software with EVK hardware can be used to validate RT500 built-in temperature sensor using
the ADC controller. It also shows, how the built-in temperature sensor can be used to indicate temperature value based on ADC
output value.

5 References
1. RT500 Reference Manual

2. RT500 Data Sheet

3. MCUXpresso SDK Release Notes for EVK-MIMXRT595 (available inside SDK)

4. Getting Started with MCUXpresso SDK for EVK-MIMXRT595 (available inside SDK)

6 Revision history
Table 1. Revision history

Revision number Date Substantive changes

0 05/2021 Initial release
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