
1 Introduction
This application note provides an overview of how to use RT500 SDK software
with EVK hardware to validate the RT500 built-in temperature sensor using
the ADC controller. The ADC input channel 7 is mapped to an internal
temperature sensor.

ADC watermark interrupt would be asserted once the number of data words
stored in the ADC Result FIFO are greater than the watermark value. In ADC ISR, the watermark flag is cleared by reading
the conversion result value. When the conversion done, two valid results are stored in the FIFO, and the temperature can be
calculated using a specific formula within two results.

2 Temperature sensor overview
The temperature sensor transducer uses an intrinsic pn-junction diode reference and outputs a CTAT voltage (Complement To
Absolute Temperature). The output voltage varies inversely with device temperature with an absolute accuracy of better than ±5
°C over the full temperature range (-40 °C to +105 °C). The temperature sensor is only approximately linear with a slight curvature.
The output voltage is measured over different ranges of temperatures and fit with linear-least-square lines.

2.1 Characteristics
The following table shows the temperature sensor static and dynamic characteristics.

2.2 Connection between ADC channel input and analog output
The following figure shows the connection between ADC channel input and analog output.

Contents

1 Introduction......................................1
2 Temperature sensor overview.........1
3 Demo application.............................3
4 Conclusion.......................................5
5 References......................................5
6 Revision history...............................5

AN13209
RT500 ADC Temperature Sensor Usage
Rev. 0 — 05/2021 Application Note

pio0_5_ipp_ina_mux
pio0_12_ipp_ina_mux
pio0_19_ipp_ina_mux
pio0_26_ipp_ina_mux
pio1_8_ipp_ina_mux
pio3_23_ipp_ina_mux
pio4_18_ipp_ina_mux
pio0_6_ipp_ina_mux
pio0_13_ipp_ina_mux
pio0_20_ipp_ina_mux
pio0_27_ipp_ina_mux
pio1_9_ipp_ina_mux
pio3_24_ipp_ina_mux
pio4_19_ipp_ina_mux

ipp_ina_adp[0]
ipp_ina_adp[1]
ipp_ina_adp[2]
ipp_ina_adp[3]
ipp_ina_adp[4]
ipp_ina_adp[5]
ipp_ina_adp[6]

ipp_ina_adm[1]
ipp_ina_adm[2]
ipp_ina_adm[3]
ipp_ina_adm[4]
ipp_ina_adm[5]
ipp_ina_adm[6]

da_ip_adc

AD converter

PADS

micr_ani_mux1p8_in28fdsoi

vss_adc_ana

vdd18_adc_ana

en

sub

vss1p8
vdd1p8

in

out

micr_anl_mux1p8_in28fdsoi

ipp_ina_adp[7]

micr_ani_mux1p8_in28fdsoi

atx_ana_bus[0]

Ctrl_adc_asw

adc_ts_p

pmc_ts_p

sysctl_ts_sel

micr_ani_mux1p8_in28fdsoi
micr_ani_mux1p8_in28fdsoiadc_ts_m

pmc_ts_m

sysctl_ts_sel

adc_ts_p

adc_ts_m
vtemp_sensor_plus

vtemp_sensor_minus

ipp_ina_adm[7]

adc_tsenpd_run_cfg[22]
atx_ana_bus[1]

1

ctrl_adc_asw

ipp_ina_adm[0]

0

1

1

0

0

0

1

Figure 1. ADC channel input and analog output

2.3 Registers needed for ADC temperature sensor

2.3.1 Temperature sensor control (SYSCTL0_TEMPSENSORCTL)
This register enables the on-chip temperature sensor to be measured by the ADC.

2.3.2 Run configuration register 1 clear (SYSCTL0_PDRUNCFG1_CLR)
Writing a 1 to a bit position in this register clears the corresponding position in PDRUNCFG1. This is a write-only register.

NXP Semiconductors
Temperature sensor overview

RT500 ADC Temperature Sensor Usage, Rev. 0, 05/2021
Application Note 2 / 6

2.4 Using typical parameter provided by the data sheet
Use the typical parameters provided by the RT500 data sheet to perform a temperature reading. An approximate transfer function
describes the temperature sensor.

Temp = 25 - ((Vtemp -Vtemp25)/m)

Where:

• Vtemp is the voltage of the temperature sensor channel at the ambient temperature.

• Vtemp25 is the voltage of the temperature sensor channel at 25ºC.

• m is the temperature sensor slope.

In application code, the user executes a conversion on the temperature sensor channel and converts the conversion result to a
voltage (VTEMP) based on the voltage reference used. The ambient temperature is then calculated using the above equation.
VTEMP25 and the temperature sensor slope values are specified constant values from the ADC Electrical information in the
device data sheet.

When converting on the temperature sensor channel, the following command selections must be configured:

• Differential mode (CMDLn[DIFF] = 0x1)

• Maximum averaging (CMDHn[AVGS] = 0x7)

• Maximum sample time (CMDHn[STS] = 0x7)

3 Demo application

3.1 Environment

3.1.1 Hardware environment
• Board

— MIMXRT595EVK

• Debugger

— Integrated CMSIS-DAP debugger on the board

• Miscellaneous

— 1 Micro USB cable

— PC

NXP Semiconductors
Demo application

RT500 ADC Temperature Sensor Usage, Rev. 0, 05/2021
Application Note 3 / 6

• Board Setup

— No special settings are needed

3.1.2 Software environment
• Tool chain

— IAR embedded workbench 8.50.1 or MCUXpresso IDE v11.3.0 or Keil 5.29

• Software package

— SDK_2.9.0_EVK-MIMXRT595

3.2 Project overview
1. Follow the Getting Started with MCUXpresso SDK for MIMXRT500 (available inside SDK➜docs) to go through

the steps for opening lpadc_temperature_measurement project (SDK\boards\evkmimxrt685\driver_examples\lpadc\
temperature_measurement).

2. Open the file lpadc_temperature_measurement.c (lpadc_temperature_measurement\source) and find the values for the
temperature slope and intercept that helps to calculate the ambient temperature based on the formula that is given
in Using typical parameter provided by the data sheet. These are specified constant values from the ADC Electricals
information in the device data sheet.

#define DEMO_LPADC_TEMPERATURE_SLOPE \
 -1.5738f /* Temperature sensor slope with the unit as mV/Celsius. \
 Please refer to the Data Sheet for details. */
#define DEMO_LPADC_TEMPERATURE_INTERCEPT \
809.55f /* The voltage of the temperature sensor channel at 0 Celsius with the unit as mV.
\
 Please refer to the Data Sheet for details. */

3. In SYSCTL>TEMPSENSORCTL, select between the two temperatures sensors available; ADC and PMC, the ADC is
selected by default and no changes are required to use it. Note that the sensor is already enabled in the PDRUN
configuration at the beginning of the main function.

/* Power up the ADC temperature sensor via SYSCTL. */
SYSCTL0->PDRUNCFG0_CLR = SYSCTL0_PDRUNCFG0_ADC_TEMPSNS_PD_MASK;

4. The STS bits of CMDH1 register are set to 7. So, the sample time is 131 (3 + 2STS) ADCK cycles since a sample
time of over 35 is required. A long sample time allows higher impedance inputs to be accurately sampled. This is
done by modifying the smapleTimeMode which is member of conversion commands configuration structure inside
LPADC_GetDefaultConvCommandConfig function. This change is already done in the ADC configuration part of code.

g_LpadcCommandConfigStruct.sampleTimeMode = kLPADC_SampleTimeADCK131;

5. Follow the Getting Started with MCUXpresso SDK for MIMXRT500 (available inside SDK➜docs) to go through the
steps for building and running lpadc_temperature_measurement demo.

6. When running the demo, type any key in the debug console which triggers the conversion.

7. Result:

NXP Semiconductors
Demo application

RT500 ADC Temperature Sensor Usage, Rev. 0, 05/2021
Application Note 4 / 6

4 Conclusion
The example shows how the SDK software with EVK hardware can be used to validate RT500 built-in temperature sensor using
the ADC controller. It also shows, how the built-in temperature sensor can be used to indicate temperature value based on ADC
output value.

5 References
1. RT500 Reference Manual

2. RT500 Data Sheet

3. MCUXpresso SDK Release Notes for EVK-MIMXRT595 (available inside SDK)

4. Getting Started with MCUXpresso SDK for EVK-MIMXRT595 (available inside SDK)

6 Revision history
Table 1. Revision history

Revision number Date Substantive changes

0 05/2021 Initial release

NXP Semiconductors
Conclusion

RT500 ADC Temperature Sensor Usage, Rev. 0, 05/2021
Application Note 5 / 6

https://www.nxp.com/docs/en/reference-manual/IMXRT500RM.pdf
https://www.nxp.com/docs/en/data-sheet/IMXRT500EC.pdf

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice
to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 05/2021
Document identifier: AN13209

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Temperature sensor overview
	2.1 Characteristics
	2.2 Connection between ADC channel input and analog output
	2.3 Registers needed for ADC temperature sensor
	2.3.1 Temperature sensor control (SYSCTL0_TEMPSENSORCTL)
	2.3.2 Run configuration register 1 clear (SYSCTL0_PDRUNCFG1_CLR)

	2.4 Using typical parameter provided by the data sheet

	3 Demo application
	3.1 Environment
	3.1.1 Hardware environment
	3.1.2 Software environment

	3.2 Project overview

	4 Conclusion
	5 References
	6 Revision history

