
1 Introduction
i.MXRT595 is a dual-core microcontroller combined a graphics engine and
a streamlined Cadence® Tensilica® Fusion F1 DSP core with Arm® Cortex®
M33 core. It offers an embedded solution for smart watch or other display
device due to the role of GPU.

Power consumption and frame rate are the considerations for performance
evaluation during pushing screen. These two points are affected by many
factors, such as the number and location of frame buffer and complexity of graphics. This document illustrates graphics drawing
methods and performance comparisons under different conditions.

2 System architecture
The system is composed of i.MXRT595 - the main processor, a display module and several on-chip memories. On i.MXRT595
EVK, both PSRAM (APS6408L) and octal NOR flash (MX25UW51345) are connected to FLEXSPI interface as shown in block
diagram (Figure 1). Also, the i.MXRT595 EVK board can be connected to display panels of different interface types. This document
mainly concerns a 1.2-inch wearable display (G1120B0MIPI) with MIPI DSI interface, and its internal controller is RM67162.

Figure 1. i.MXRT595 EVK Block Diagram (on-chip memory and display)

Contents

1 Introduction......................................1
2 System architecture.........................1
3 Graphics drawing and display......... 2
4 Performance evaluation.................. 9
5 Conclusion.....................................15
6 References....................................15
7 Revision history.............................15

AN13509
Analysis of screen pushing scene based on i.MXRT595 MIPI DSI
Controller
Rev. 0 — 09 February 2022 Application Note

i.MXRT595 offers several types of peripherals supporting graphics display, including 2D Vector Graphics Processing Unit, LCD
Display Interface, FLEXIO configured to 8/10/16/24-bit parallel interface and MIPI DSI Interface. Among them, GPU can render
scalable vector graphics and compose and manipulate bitmaps.

APS6408L PSRAM which has octal SPI interface supports maximum 200 MHz DDR access. It is used mostly for data storage,
especially those big and infrequent access data.

MU25UM1345G NOR flash is used for code execution and persistent data storage.

G1120B0MIPI is a 1.2 inch wearable display with 1-lane MIPI interface, 392x392 resolution. It is used for data and image
displaying with MIPI DSI interface.

3 Graphics drawing and display

3.1 MIPI DSI and G1120B0MIPI module

3.1.1 Feature and layer
The MIPI DSI module in i.MXRT595 contains the MIPI DSI Controller and D-PHY. It provides a high-speed serial interface between
the host processor and the display module. And it implements all layers and protocol functions defined in MIPI DSI specification.
The features of MIPI DSI module are shown in Table 1.

Table 1. MIPI DSI module feature

Feature Support Remark

Operation

Mode

Command

Mode

Video

Mode

Actual mode depends on

display module

Data Lane Support One or Two Lane(s) Lane 0 - bidirectional or unidirectional

Lane 1 - unidirectional

Transfer

Mode

High-speed Mode Low-power

Mode

Video mode only matches with

High-speed mode

Flexible

Packet

APB interface option Status and control

DPI-2 option Display Pixel Interface Core

Command Mode refers to that the host processor sends pixel information or instructions to a display module which incorporates a
display controller in a serial manner, and reads the status or information from the display controller. The information is transmitted
in a packet format and it requires a bidirectional interface. Video Mode refers to operation in which transfers from the host
processor to the peripheral take the form of a real-time pixel stream.

MIPI DSI protocol contains below four layers in order from top to bottom layer, corresponding to D-PHY, DSI, DCS specifications.

1. Application

2. Low-Level Protocol

3. Lane Management

4. PHY Layer

Among them, MIPI DSI controller core realizes the upper three layers and MIPI DSI D-PHY provides a physical layer
implementation for DSI.

NXP Semiconductors
Graphics drawing and display

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 2 / 16

G1120B0MIPI module incorporates a display controller which contains local registers and internal buffer. It is 1.2 inch circular
AMOLED display, 392 * 392 pixels, with a 1-lane MIPI interface. And, its driver IC is RM67162, touch panel IC is FT3267.

3.1.2 Clock distribution
The display module used in this document is G1120B0MIPI. DPHY on i.MXRT595 supports up to 895.1 MHz bit clock. When
choosing the clock frequency, consider the panel frame rate and resolution. From the RM67162 data sheet, the controller
maximum bit rate is 320 Mbps when using 16-bit data format.

G1120B0MIPI module uses one pair of MIPI lanes. To get better performance, the MIPI clock source can be set to AUX1 PLL.
Moreover, the clock source can use FRO for power optimization. See section 3.1.2.3 for details.

3.1.2.1 DSI host clock

The DSI Host Controller requires clocks as shown in Table 2.

Table 2. DSI Host Clock

Clock type Clock alias Description

Reference clock ref_clk
Input clock of the D-PHY PLL module to generate the High-Speed MIPI clock

and High-Speed Data Lane signaling

Byte clock clk_byte Generated by the DPHY DLL module, used for packet generation and transfer to the DPHY

LP mode clock
clk_tx_esc

For internal LPDT state machines and low-power transmissions
clk_rx_esc

Note:

1. CLOCKDPHY PLL = High-speed bit of the data lanes

2. CLOCKclk_byte = 1/8 * (DPHY High-Speed data lane)

3. In this document, the DPHY PLL module is not used, so there is no need to consider ref_clk and the internal parameters
of the DPHY PLL module. This is equivalent to distributing the clock to the output part of the DPHY PLL module, namely
CLOCKDPHY PLL.

3.1.2.2 D-PHY clock

The clock bus and data bus of D-PHY are differential structures. It supports two transmission modes, namely High-speed(HS) and
Low-power(LP) mode. The application scenarios of different modes are shown in Table 3.

Table 3. D-PHY transmission mode

Transmission Mode Application scenarios

HS mode High-speed synchronous data transmission

LP mode
Control command transmission

Low-speed asynchronous data transmission

Table 4 lists the clock signals of the D-PHY module.

NXP Semiconductors
Graphics drawing and display

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 3 / 16

Table 4. D-PHY clock

Clock type Description

clk_byte HS mode byte transmission clock. All data lanes share this signal

clk_tx_esc Transmit clock in LP mode, 12 MHz-20 MHz

clk_rx_esc Receive clock in LP mode, Maximum is 60 MHz

3.1.2.3 Clock distribution example

1. AUX1 PLL as MIPI clock source

Example 1 shows the results of each clock distribution with AUX1 PLL as the clock source.

• DPHY PLL(Input clock) = 316.8 M

• BitClock = 316.8 M

• RxClkEsc = 39.6 M

• TxClkEsc = 19.8 M

Example 1: AUX1 PLL as clock source

POWER_DisablePD(kPDRUNCFG_APD_MIPIDSI_SRAM);
POWER_DisablePD(kPDRUNCFG_PPD_MIPIDSI_SRAM);
POWER_DisablePD(kPDRUNCFG_PD_MIPIDSI);
POWER_ApplyPD();
CLOCK_AttachClk(kAUX1_PLL_to_MIPI_DPHY_CLK);
/* PFD value is in the range of 12~35. */
CLOCK_InitSysPfd(kCLOCK_Pfd3, 30);
/*DPHY PLL = 316.8MHz. */
CLOCK_SetClkDiv(kCLOCK_DivDphyClk, 1);
/* RxClkEsc max 60MHz, TxClkEsc 12 to 20MHz. */
CLOCK_AttachClk(kAUX1_PLL_to_MIPI_DPHYESC_CLK);
/* RxClkEsc = 316.8MHz / 8 = 39.6MHz. */
CLOCK_SetClkDiv(kCLOCK_DivDphyEscRxClk, 8);
/* TxClkEsc = 316.8MHz / 8 / 2 = 19.8MHz. */
CLOCK_SetClkDiv(kCLOCK_DivDphyEscTxClk, 2);
/* BitClk = 8 Byteclk = 8 * 1/8 * DPHY PLL = 316.8MHz. */
mipiDsiDphyBitClkFreq_Hz = CLOCK_GetMipiDphyClkFreq();

2. FRO as MIPI clock source

Example 2 shows the results of each clock distribution with FRO as the clock source.

• DPHY PLL(Input clock) = 192 M

• BitClock = 192 M

• RxClkEsc = 48 M

• TxClkEsc = 16 M

Example 2: FRO as clock source

POWER_DisablePD(kPDRUNCFG_APD_MIPIDSI_SRAM);
POWER_DisablePD(kPDRUNCFG_PPD_MIPIDSI_SRAM);
POWER_DisablePD(kPDRUNCFG_PD_MIPIDSI);
POWER_ApplyPD();
CLOCK_AttachClk(kFRO_DIV1_to_MIPI_DPHY_CLK);

NXP Semiconductors
Graphics drawing and display

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 4 / 16

CLOCK_SetClkDiv(kCLOCK_DivDphyClk, 1);
/* RxClkEsc max 60MHz, TxClkEsc 12 to 20MHz. */
CLOCK_AttachClk(kFRO_DIV1_to_MIPI_DPHYESC_CLK);
/* RxClkEsc = 192MHz / 4 = 48MHz. */
CLOCK_SetClkDiv(kCLOCK_DivDphyEscRxClk, 4);
/* TxClkEsc = 192MHz / 4 / 3 = 16MHz. */
CLOCK_SetClkDiv(kCLOCK_DivDphyEscTxClk, 3);
/* BitClk = 8 Byteclk = 8 * 1/8 * DPHY PLL = 192MHz. */
mipiDsiDphyBitClkFreq_Hz = CLOCK_GetMipiDphyClkFreq();

3.2 Utilize GPU for graphics drawing
i.MXRT595 contains a 2D Vector Graphics Processing Unit(GPU). To draw graphics, first the CPU sends instructions to the GPU.
And, after receiving the instructions, the GPU performs the corresponding operations. During the period, vg_lite_task() API is
suspended, waiting for the instruction to complete. Various instructions are encapsulated in the API.

i.MXRT595 supports OpenVG1.0 API and VGLite Graphics API. Among them, OpenVG provides low-level hardware acceleration
interfaces for vector graphics libraries, such as Flash and SVG based on standard protocols. VGLite is a lightweight API whose
feature set is smaller than OpenVG, mainly designed for MCU. It has smaller memory footprint and lower CPU overhead. In this
document, we call the VGlite API to draw scalar and vector graphics.

For detailed content of VGLite API, refer to i.MX RT VGLite API Reference Manual and VGLite®Graphics API for Vivante
GCNanoLiteV Vector Graphics Core. Among them, the VGLite API has two main rendering function API as mentioned below.

• Vg_lite_draw. Render vector graphics primitives. No distortion after zooming in. Graphic elements are objects, and each
object is a self-contained entity with attributes, such as color, shape, outline, size, and screen position.

• Vg_lite_blit. Render bitmap / raster image. Consists of pixels. These pixels can be sorted and colored in different ways to
form a pattern.

3.3 Frame transfer and display

3.3.1 Tearing effect output signal
The G1120B0MIPI module has a tearing effect output line (TE pin) to synchronize MCU to frame writing . The screen refresh
frequency refers to the frequency at which the device refreshes the screen, which is constant for a specific device. The refresh
process is from left to right (row refresh), and then from top to bottom (column refresh). When completed, the signal can be issued
to synchronize internal VSYNC.

The TELOM (Tearing effect line mode) has two types, Mode 1 and Mode 2. Mode 1 refers to the tearing effect output signal consist
of V-sync information only. And Mode 2 refers to the signal consist of V-sync and H-sync information. The signal can be enabled
or disabled by the set_tear_off (34h) and set_tear_on (35h) commands. The mode of the tearing effect signal is defined by the
parameter of the set_tear_on (35h) and set_tear_scanline(44h) commands.

The tearing effect output signal is configured to Mode 1, as shown in Figure 2.

Figure 2. Tearing effect output signal

tvdh = The display is not updated from the frame memory.

tvdl = The display is updated from the frame memory.

NXP Semiconductors
Graphics drawing and display

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 5 / 16

The TE pin configuration is briefly summarized in Table 5.

Table 5. TE pin setting instructions

Scene TE pin settings

1frame send time < 1 frame refresh time set interrupt at the start of VSYNC

1 frame refresh time< 1frame send time < 2 frame refresh time set interrupt at the end of VSYNC

In this document, the specific situation is in line with scenario one. So the TE pin can be set to rising edge trigger interrupt as shown
in Example 3.

Example 3: TE pin setting

static void BOARD_InitMipiPanelTEPin(void)
{
 const gpio_pin_config_t tePinConfig = {
 .pinDirection = kGPIO_DigitalInput,
 .outputLogic = 0,
 };
 gpio_interrupt_config_t tePinIntConfig = {kGPIO_PinIntEnableEdge, kGPIO_PinIntEnableHighOrRise};
 GPIO_PinInit(GPIO, BOARD_MIPI_TE_PORT, BOARD_MIPI_TE_PIN, &tePinConfig);
 GPIO_SetPinInterruptConfig(GPIO, BOARD_MIPI_TE_PORT, BOARD_MIPI_TE_PIN, &tePinIntConfig);
 GPIO_PinEnableInterrupt(GPIO, BOARD_MIPI_TE_PORT, BOARD_MIPI_TE_PIN, 0);
 NVIC_SetPriority(GPIO_INTA_IRQn, 3);
 NVIC_EnableIRQ(GPIO_INTA_IRQn);
}

3.3.2 Functional analysis
During the graphics generation and display, the connection and access means of each part are as shown in Figure 3.

Figure 3. Overall connection and access means

Below points need attention.

NXP Semiconductors
Graphics drawing and display

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 6 / 16

1. CM33 and Smart DMA access SRAM via the AHB matrix, and Smart DMA data bus can access all SRAM.

2. Smart DMA code is in Smart DMA RAM 32 KB.

3. GPU access SRAM via AXI:AHB Bridges 1 -9. Need to enable AXI Switch clock.

4. CM33’s system bus and Smart DMA’s data bus can access DSI PHY/Host Controller register via AHB to APB bridge.

Analyze the main function of each module in this process as follows.

• CPU: Host controller. Assign clock to each peripheral. Send commands to GPU. Monitor TE pin signal. Control and
configure display device.

• GPU: Receive CPU commands and execute them for image processing and rendering.

• SMART DMA: Transport graphics data, responsible for frame sending(From frame buffer at SRAM or PSRAM to MIPI DSI
FIFO).

• SRAM/PSRAM: Store temporary frame buffer.

• Octal Flash: code execution and persistent data storage.

• Display Module: Refresh the screen and display graphical data.

3.3.3 Frame generation transfer processing

3.3.3.1 Round panel processing

Normally, the display panel is rectangular or square. However, G1120B0MIPI is a round panel with 392x392 display buffer. As
shown in Figure 4, the displayable area in the panel is a circle with a diameter of 392. The coordinates of the center of the circle
are (392/2,392/2).

Figure 4. G1120B0MIPI display area

During the drawing, the position of the graphics can be planned according to the coordinates of the circle.

3.3.3.2 One frame buffer used

When there is only one frame buffer, graphical frame generation and transfer process are shown in Figure 5.

Figure 5. Graphical frame generation and transfer process under one frame buffer

The actual process can be divided into two parts.

Part one: GPU generates graphics to Frame Buffer.

NXP Semiconductors
Graphics drawing and display

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 7 / 16

The GPU executes a series of commands which is encapsulated in API sent by CPU to generate graphics.

Create a semaphore fbdev->semaFramePending, the semaphore will be given when no frame is pending namely after receiving
TE interrupt and triggering Smart DMA transfer.

And, after the GPU generates graphics, take the semaphore to set Frame Buffer. The process is shown in Example 4.

Example 4: GPU generates graphics to Frame Buffer

status_t FBDEV_SetFrameBuffer(fbdev_t *fbdev, void *frameBuffer, uint32_t flags)
{
 TickType_t tick;
 const dc_fb_t *dc = fbdev->dc;
 tick = ((flags & (uint32_t)kFBDEV_NoWait) != 0U) ? 0U : portMAX_DELAY;
 if (pdTRUE == xSemaphoreTake(fbdev->semaFramePending, tick))
 {
 return dc->ops->setFrameBuffer(dc, fbdev->layer, frameBuffer);
 }
 else
 {
 return kStatus_Fail;
 }
}

Part two: Screen takes graphics from Frame Buffer.

When the TE interrupt comes, check whether the new frame buffer is ready. If done, trigger the Smart DMA transmission to transfer
the new buffer to MIPI DSI FIFO. Example 5 shows the process.

Example 5: Data transfer from frame buffer to display module

void DC_FB_DSI_CMD_TE_IRQHandler(const dc_fb_t *dc)
{
 dc_fb_dsi_cmd_handle_t *dcHandle;
 dc_fb_dsi_cmd_layer_t *layer;
 dc_fb_info_t *fbInfo;
 void *newFB;
 dcHandle = (dc_fb_dsi_cmd_handle_t *)dc->prvData;
 /* Currently only support one layer, so the layer index is always 0. */
 layer = &(dcHandle->layers[0]);
 newFB = layer->fbWaitTE;
 if (NULL != newFB)
 {
 fbInfo = &(layer->fbInfo);
 layer->fbWaitTE = NULL;
 layer->frameBuffer = newFB;
 (void)MIPI_DSI_WriteMemory(dcHandle->dsiDevice, newFB,
 (uint32_t)fbInfo->height * (uint32_t)fbInfo->strideBytes);
 }
}

Moreover, the member variables fbWaitTE is assigned at function DC_FB_DSI_CMD_SetFrameBuffer(). When GPU completes
generating graphics to Frame Buffer, assign the new Frame Buffer to fbWaitTE.

In summary, these two parts complete the synchronization process through a semaphore fbdev->semaFramePending and the
TE interrupt.

3.3.3.3 Two frame buffer used

If one frame buffer is used, the frame rate may be reduced due to the following reasons.

1. We cannot read and write to a buffer at the same time

NXP Semiconductors
Graphics drawing and display

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 8 / 16

2. When the TE interrupts come, the new frame buffer is not yet ready

Therefore, two frame buffers can be used to solve it. Moreover, if two frame buffers are used, allocate them in two
different partitions.

The transfer process is shown in Figure 6.

Figure 6. Graphical frame generation and transfer process under two frame buffers

The switching of the two buffers is carried out through the MEMPOOL and the semaphore fbdev->semaFbManager.

4 Performance evaluation
Power consumption and frame rate are considerations for performance evaluation during frame rendering. Set different conditions
to measure these two points.

4.1 System power domain
There are various power domains in i.MXRT595 and the power domains are supplied by different power rails as illustrated in
AN13162 (i.MX RT500 Power Management).

In low-power applications, power management IC is commonly used. On i.MXRT595 EVK board, PCA9420 supplies the power
for i.MXRT595 when LDO_Enable is pulled to low (Set JS28.2 and JS28.3).

Among them, the most noteworthy power domains are summarized below in Table 6.

Table 6. Noteworthy power domain

Power Domain Power supply Power sink

VDD Core PMIC_SW1_OUT CM33, DSP, SRAM, Peripherals IP

VDD1V8 PMIC_SW2_OUT Analog(PLL, OSC, ADC), OTP, PMC

VDDAO PMIC_LDO1_OUT Always-on pad and logic, RTC, POR

VDDIO0 MCU_1V8 (PMIC_SW2_OUT) FlexSPI0 NOR Flash IOs

Table continues on the next page...

NXP Semiconductors
Performance evaluation

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 9 / 16

Table 6. Noteworthy power domain (continued)

Power Domain Power supply Power sink

VDDIO1 MCU_1V8 (PMIC_SW2_OUT) FlexSPI1 PSRAM IOs

VDDIO2 MCU_1V8 (PMIC_SW2_OUT) eMMC Flash IOs

VDDIO3 MCU_3V3 (PMIC_LDO2_OUT) -

VDDIO4 MCU_1V8 (PMIC_SW2_OUT) -

4.2 Experimental scene setting
To better analyze the performance, measure the power consumption of each power domain and the corresponding frame rate in
below scenes.

• Simple graphics (shown in Figure 7) or complex graphics (shown in Figure 8)

• Signal frame buffer or double frame buffer

• Frame buffer(s) is(are) placed in SRAM or PSRAM

Figure 7. Simple graphics

NXP Semiconductors
Performance evaluation

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 10 / 16

Figure 8. Complex graphics

In order to avoid other influences, all scenes are set according to Table 7.

Table 7. Experimental scene setting

Main Clock 192 M

Flexspi0 Clock 192 M

Flexspi1 Clock（if used） 198 M

GPU Clock 192 M

MIPI DSI Clock 316.8 M

Vddcore 0.9 V

SRAM Rention 5 M RAM Enabled

4.3 Power consumption and frame rate
On i.MXRT595 EVK, jumpers are reserved for power measurement in different domains. Digital multimeter is placed in series
instead of jumpers. The power measurement location at jumpers of board is listed in Table 8.

Table 8. Power measurement location

Power Domain Jumper

VDD Core and MIPI 1V1

(0.9V@active 0.6V@deepsleep)

JS25

VDD1V8 JS30

VDDAO_1V8 JS29

Table continues on the next page...

NXP Semiconductors
Performance evaluation

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 11 / 16

Table 8. Power measurement location (continued)

Power Domain Jumper

VDDIO0_1V8 JS20

VDDIO1_1V8 JS21

VDDIO2_1V8 JS22

VDDIO3_3V3 JS23

VDDIO4_1V8 JS24

Figure 9 is the frame rate measurement process.

Figure 9. Frame rate measurement process

During the measurement, both graphics rotate 5 degrees counterclockwise every frame.

4.3.1 Scenario one: Frame buffer number as a variable
The first scenario is set as signal or double frame buffer(s) in PSRAM, and displaying simple graphics. The result is shown in
Table 9.

Table 9. Current measurement result

Power Domain Signal frame buffer - Current/mA Double frame buffers - Current/mA

VDD Core and MIPI 1V1

(0.9V@active 0.6V@deepsleep)

20.25 mA 35.40 mA

VDD1V8 2.43 mA 3.96 mA

VDDAO_1V8 1.0 µA 1.0 µA

VDDIO0_1V8 0.25 mA 0.39 mA

Table continues on the next page...

NXP Semiconductors
Performance evaluation

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 12 / 16

Table 9. Current measurement result (continued)

Power Domain Signal frame buffer - Current/mA Double frame buffers - Current/mA

VDDIO1_1V8 1.57 mA 2.88 mA

VDDIO2_1V8 0.1 µA 0.1 µA

VDDIO3_3V3 0.1 µA 0.1 µA

VDDIO4_1V8 0.1 µA 0.1 µA

Table 10. Frame rate measurement result

/ Signal frame buffer Double frame buffers

Frame rate 28.68 fps 57.5 fps

4.3.2 Scenario two: Frame buffer location as a variable
The second scenario is set as double frame buffers in SRAM or PSRAM, and displaying simple graphics. The result is shown in
Table 11.

Table 11. Current measurement result

Power Domain SRAM - Current/mA PSRAM - Current/mA

VDD Core and MIPI 1V1

(0.9V@active 0.6V@deepsleep)

29.25 mA 35.40 mA

VDD1V8 3.86 mA 3.96 mA

VDDAO_1V8 1.0 µA 1.0 µA

VDDIO0_1V8 0.33 mA 0.39 mA

VDDIO1_1V8 0.1 µA 2.88 mA

VDDIO2_1V8 0.1 µA 0.1 µA

VDDIO3_3V3 0.1 µA 0.1 µA

VDDIO4_1V8 0.1 µA 0.1 µA

Table 12. Frame rate measurement result

/ SRAM PSRAM

Frame rate 57.7 fps 57.5 fps

4.3.3 Scenario three: Graphics complexity as a variable

NXP Semiconductors
Performance evaluation

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 13 / 16

4.3.3.1 Frame buffers in SRAM

The third scenario is set as double frame buffers in SRAM, and displaying simple or complex graphics. The result is shown in
Table 13.

Table 13. Current measurement result

Power Domain Simple graphics - Current/mA Complex graphics - Current/mA

VDD Core and MIPI 1V1

(0.9V@active 0.6V@deepsleep)

29.25 mA 33.91 mA

VDD1V8 3.86 mA 4.06 mA

VDDAO_1V8 1.0 µA 1.0 µA

VDDIO0_1V8 0.33 mA 0.34 mA

VDDIO1_1V8 0.1 µA 0.1 µA

VDDIO2_1V8 0.1 µA 0.1 µA

VDDIO3_3V3 0.1 µA 0.1 µA

VDDIO4_1V8 0.1 µA 0.1 µA

Table 14. Frame rate measurement result

/ Simple graphics Complex graphics

Frame rate 57.7 fps 57.5 fps

4.3.3.2 Frame buffers in PSRAM

The fourth scenario is set as double frame buffers in PSRAM, and displaying simple or complex graphics. The result is shown as
Table 15.

Table 15. Current measurement result

Power Domain Simple graphics - Current/mA Complex graphics - Current/mA

VDD Core and MIPI 1V1

(0.9V@active 0.6V@deepsleep)

35.40 mA 38.1 mA

VDD1V8 3.96 mA 4.08 mA

VDDAO_1V8 1.0 µA 1.0 µA

VDDIO0_1V8 0.39 mA 0.41 mA

VDDIO1_1V8 2.88 mA 3.5 mA

VDDIO2_1V8 0.1 µA 0.1 µA

Table continues on the next page...

NXP Semiconductors
Performance evaluation

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 14 / 16

Table 15. Current measurement result (continued)

Power Domain Simple graphics - Current/mA Complex graphics - Current/mA

VDDIO3_3V3 0.1 µA 0.1 µA

VDDIO4_1V8 0.1 µA 0.1 µA

Table 16. Frame rate measurement result

/ Simple graphics Complex graphics

Frame rate 57.5 fps 37 fps

5 Conclusion
This document briefly describes the principle of drawing using GPU and MIPI DSI, and measures the power consumption and
frame rate of drawing and pushing screens under different conditions.

1. In some cases, using a single frame buffer as an example, i.MXRT595 has the opportunity to enter a low-power state.

• When a frame is refreshed and the next TE interrupt has not yet arrived, CPU can enter the deep sleep state and
wait for the TE interrupt to wake up.

• After CPU sends the command to GPU, CPU can enter the WFI state during the execution of GPU.

2. Use on-chip SRAM for frame buffer rather than PSRAM can save power in VDD Core domain and VDDIO1 domain. In
addition, the frame rate is limited by the bandwidth of PSRAM.

3. Because the size of the frame buffer is a bit large, when it is placed in PSRAM, the cache is almost useless. Close
Cache may get better results.

6 References
1. iMXRT500RM Rev 0.1

2. MIMXRT595-EVK Schematic diagram

3. RM67162 User Guide V0.0

4. RM67162 Data Sheet V0.5

If you are unable to download any of the above listed documents, you will need to request a copy of the document.

7 Revision history
Table 17 is the revision history table.

Table 17. Revision history

Revision number Date Substantive changes

0 09 February 2022 Initial release

NXP Semiconductors
Conclusion

Analysis of screen pushing scene based on i.MXRT595 MIPI DSI Controller, Rev. 0, 09 February 2022
Application Note 15 / 16

https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
https://www.nxp.com/search?keyword=MIMXRT595-EVK-DESIGN-FILES&start=0&category=software
https://www.rad-ic.com/en-global
https://www.rad-ic.com/en-global

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice
to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 09 February 2022
Document identifier: AN13509

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 System architecture
	3 Graphics drawing and display
	3.1 MIPI DSI and G1120B0MIPI module
	3.1.1 Feature and layer
	3.1.2 Clock distribution
	3.1.2.1 DSI host clock
	3.1.2.2 D-PHY clock
	3.1.2.3 Clock distribution example

	3.2 Utilize GPU for graphics drawing
	3.3 Frame transfer and display
	3.3.1 Tearing effect output signal
	3.3.2 Functional analysis
	3.3.3 Frame generation transfer processing
	3.3.3.1 Round panel processing
	3.3.3.2 One frame buffer used
	3.3.3.3 Two frame buffer used

	4 Performance evaluation
	4.1 System power domain
	4.2 Experimental scene setting
	4.3 Power consumption and frame rate
	4.3.1 Scenario one: Frame buffer number as a variable
	4.3.2 Scenario two: Frame buffer location as a variable
	4.3.3 Scenario three: Graphics complexity as a variable
	4.3.3.1 Frame buffers in SRAM
	4.3.3.2 Frame buffers in PSRAM

	5 Conclusion
	6 References
	7 Revision history

