
IMXBSPPG
i.MX Porting Guide
Rev. LF5.15.71_2.2.0 —
16 December 2022

User guide

Document information
Information Content

Keywords i.MX, Linux, LF5.15.71_2.2.0

Abstract This document provides an overview on how to develop a custom i.MX
solution from an i.MX BSP release.

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

1 Introduction

1.1 Introduction
This document provides an overview on how to develop a custom i.MX solution from an
i.MX BSP release. This document describes how to customize kernel changes, U-Boot,
memory, and various configurations for a custom hardware solution using an i.MX SoC.

1.2 References
i.MX has multiple families supported in software. The following are the listed families and
SoCs per family. The i.MX Linux Release Notes describes which SoC is supported in the
current release. Some previously released SoCs might be buildable in the current release
but not validated if they are at the previous validated level.

• i.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SLL, 6UltraLite, 6ULL, 6ULZ
• i.MX 7 Family: 7Dual, 7ULP
• i.MX 8 Family: 8QuadMax, 8ULP
• i.MX 8M Family: 8M Plus, 8M Quad, 8M Mini, 8M Nano
• i.MX 8X Family: 8QuadXPlus, 8DXL, 8DualX
• i.MX 9 Family: i.MX 93

This release includes the following references and additional information.

• i.MX Linux Release Notes (IMXLXRN) - Provides the release information.
• i.MX Linux User's Guide (IMXLUG) - Provides the information on installing U-Boot and

Linux OS and using i.MX-specific features.
• i.MX Yocto Project User's Guide (IMXLXYOCTOUG) - Describes the board support

package for NXP development systems using Yocto Project to set up host, install tool
chain, and build source code to create images.

• i.MX Machine Learning User's Guide (IMXMLUG) - Provides the machine learning
information.

• i.MX Linux Reference Manual (IMXLXRM) - Provides the information on Linux drivers
for i.MX.

• i.MX Graphics User's Guide (IMXGRAPHICUG) - Describes the graphics features.
• i.MX Porting Guide (IMXXBSPPG) - Provides the instructions on porting the BSP to a

new board.
• i.MX VPU Application Programming Interface Linux Reference Manual (IMXVPUAPI) -

Provides the reference information on the VPU API on i.MX 6 VPU.
• Harpoon User's Guide (IMXHPUG) - Presents the Harpoon release for i.MX 8M device

family.
• i.MX Digital Cockpit Hardware Partitioning Enablement for i.MX 8QuadMax

(IMXDCHPE) - Provides the i.MX Digital Cockpit hardware solution for i.MX 8QuadMax.
• i.MX DSP User's Guide (IMXDSPUG) - Provides the information on the DSP for i.MX 8.
• i.MX 8M Plus Camera and Display Guide (IMX8MPCDUG) - Provides the information

on the ISP Independent Sensor Interface API for the i.MX 8M Plus.

The quick start guides contain basic information on the board and setting it up. They are
on the NXP website.

• SABRE Platform Quick Start Guide (IMX6QSDPQSG)
• SABRE Board Quick Start Guide (IMX6QSDBQSG)
• i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
2 / 56

https://www.nxp.com/docs/en/user-guide/SABRESDP_IMX6_QSG.pdf
https://www.nxp.com/webapp/Download?colCode=IMX6SABREINFOQSG&location=null
https://www.nxp.com/webapp/Download?colCode=IMX6ULTRALITEQSG

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

• i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)
• SABRE Automotive Infotainment Quick Start Guide (IMX6SABREINFOQSG)
• i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)
• i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)
• i.MX 8M Mini Evaluation Kit Quick Start Guide (8MMINIEVKQSG)
• i.MX 8M Nano Evaluation Kit Quick Start Guide (8MNANOEVKQSG)
• i.MX 8QuadXPlus Multisensory Enablement Kit Quick Start Guide

(IMX8QUADXPLUSQSG)
• i.MX 8QuadMax Multisensory Enablement Kit Quick Start Guide

(IMX8QUADMAXQSG)
• i.MX 8M Plus Evaluation Kit Quick Start Guide (IMX8MPLUSQSG)

Documentation is available online at nxp.com.

• i.MX 6 information is at nxp.com/iMX6series
• i.MX SABRE information is at nxp.com/imxSABRE
• i.MX 6UltraLite information is at nxp.com/iMX6UL
• i.MX 6ULL information is at nxp.com/iMX6ULL
• i.MX 7Dual information is at nxp.com/iMX7D
• i.MX 7ULP information is at nxp.com/imx7ulp
• i.MX 8 information is at nxp.com/imx8
• i.MX 6ULZ information is at nxp.com/imx6ulz

2 Porting Kernel

2.1 Introduction
This chapter describes how to download, build, and load the i.MX kernel both in a
standalone environment and through Yocto Project.

2.1.1 How to build and load Kernel in standalone environment

To build Kernel in a standalone environment, first, generate a development SDK, which
includes the tools, toolchain, and small rootfs to compile against to put on the host
machine.

1. Generate an SDK from the Yocto Project build environment with the following
command. To set up the Yocto Project build environment, follow the steps in the
i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following command,
set Target-Machine to the machine you are building for. See Section "Build
configurations" in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG). The
populate_sdk generates a script file that sets up a standalone environment without
Yocto Project. This SDK should be updated for each release to pick up the latest
headers, toolchain, and tools from the current release.

DISTRO=Target-Distro MACHINE=Target-Machine bitbake core-
image-minimal -c populate_sdk

For valid DISTRO options, see Section "Build configurations" in the i.MX Yocto
Project User's Guide (IMXLXYOCTOUG).

2. From the build directory where the BitBake was run in, copy the .sh file from tmp/
deploy/sdk to the host machine to build on and execute the script to install the
SDK. The default location is /opt but can be placed anywhere on the host machine.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
3 / 56

https://www.nxp.com/webapp/Download?colCode=IMX6ULLQSG
https://www.nxp.com/webapp/Download?colCode=IMX6SABREINFOQSG
http://www.nxp.com/docs/en/user-guide/SABRESDBIMX7DUALQSG.pdf
https://www.nxp.com/docs/en/user-guide/IMX8MQUADEVKQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MMINIEVKQSG.PDF
https://www.nxp.com/document/guide/i-mx-8m-nano-evk-board-getting-started-guide:GS-8MNANOLPD4-EVK
https://www.nxp.com/webapp/Download?colCode=IMX8QUADXPLUSQSG
https://www.nxp.com/webapp/Download?colCode=IMX8QUADXPLUSQSG
https://www.nxp.com/docs/en/quick-reference-guide/IMX8QUADMAXQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/IMX8QUADMAXQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MPLUSEVKQSG.pdf
http://www.nxp.com
http://www.nxp.com/iMX6series
http://www.nxp.com/imxSABRE
http://www.nxp.com/imx6ul
http://www.nxp.com/imx6ull
http://www.nxp.com/imx7d
http://www.nxp.com/imx7ulp
http://www.nxp.com/imx8
http://www.nxp.com/imx6ulz

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Arm-v7A (32-bit) and Arm-v8A (64-bit) toolchain script and environment are as follows:

• i.MX 6

Toolchain : environment-setup-cortexa9thf-vfp-neon-poky-linux-
gnueabi
Linux_Config: imx_v7_defconfig
ARCH=arm
CROSS_COMPILE=arm-poky-linux-gnueabi-

• i.MX 7

Toolchain : environment-setup-cortexa7t2hf-neon-poky-linux-
gnueabi
Linux_Config: imx_v7_defconfig
ARCH=arm
CROSS_COMPILE=arm-poky-linux-gnueabi-

• i.MX 8 and i.MX 93

Toolchain : environment-setup-cortexa53-crypto-poky-linux
Linux_Config: imx_v8_defconfig
ARCH=arm64
CROSS_COMPILE=aarch64-poky-linux-

The following are steps to build standalone Kernel sources on the host machine:

1. Set up the host terminal window toolchain environment.
The environment variables are created in the terminal window after running the
environment-setup-<toolchain> script. See the information above for i.MX 6,
i.MX 7, and i.MX 8 toolchains.

$ source <toolchain install directory>/environment-setup-
<toolchain script>

Example for i.MX 8:

$ source /opt/fsl-imx-wayland/5-15-kirkstone/environment-
setup-aarch64-poky-linux
$ echo $LDFLAGS
 -Wl,-O1 -Wl,--hash-style=gnu -Wl,--as-needed
$ unset LDFLAGS // Remove env variable LDFLAGS

Check that new environment variables are correctly set for the target i.MX 8:

$ echo $ARCH
 arm64
$ echo $CROSS_COMPILE
 aarch64-poky-linux-

2. Get the Linux source code.

$ git clone https://github.com/nxp-imx/linux-imx

The git cloned repository contains all the NXP releases. To work with a different
release, the git tag command shows available releases and git checkout
<tag name> is used to move to that version.

lf-5.15.52-2.1.0

For example, choose lf-5.15.52-2.1.0 snapshot: $ git checkout -b
lf-5.15.52-2.1.0

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
4 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

3. Initialize the configuration.

$ cd linux-imx
$ make distclean // delete all generated files
$ make imx_v8_defconfig // configuration for i.MX 8
 // see above for i.MX 6 and i.MX 7
 configuration name

4. Build the kernel sources.

$ make -j $(nproc) // -j: number of simultaneous jobs
 // use available Host CPUs for number
$ Linux kernel generated files in directory arch/arm64/boot
 // For i.MX 6 or i.MX 7, arch/arm/boot
 dts
 Image
 Image.gz
 install.sh
 Makefile

By default, i.MX U-Boot loads kernel image and device tree blob from the first FAT
partition. Users can copy their images to this partition. Alternatively, users can flash
images to the RAW address for U-Boot loading.

To flash the kernel generated from the build, execute the following commands:

$ sudo dd if=<zImageName> of=/dev/sd<partition> bs=512
 seek=2048 conv=fsync && sync

Note:

For i.MX 8, compressed images are not supported by U-Boot, and Image file must be
used, not Image.gz.

To flash the device trees generated from the build, execute the following commands:

$ sudo dd if=<DevicetreeName>.dtb of=/dev/sd<partition> bs=512
 seek=20480 conv=fsync

Note:

For i.MX 8QuadMax and i.MX 8QuadXPlus, the kernel image and DTB need to be
flashed after the first 6 MB of the SD card.

2.1.2 How to build and load Kernel in Yocto Project

To integrate kernel changes in Yocto Project, perform the following steps:

1. Set up a build environment for building the associated SoC on an i.MX reference
board in Yocto Project by following the directions in the README either in the
manifest branch or in the release layer. This involves using repository initialization
and repository synchronization to download the Yocto Project meta data and imx-
setup-release to set up the build environment.

2. Build a reference board kernel for the associated SoC. The following is an example.
For the first time, this build is longer because it builds all required tools and
dependencies.

$ MACHINE=imx6qsabresd bitbake linux-imx

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
5 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

3. Create a custom layer to hold custom board kernel changes. To create a custom
layer, look at the existing i.MX demos for XBMC or IOTG for simpler examples. A
custom layer is integrated by adding it to the bblayer.conf in the <build-dir>/
conf directory. The layer must have a conf/layer.conf file describing the layer
name.

4. Copy an existing machine file associated with the SoC on custom board to the
custom layer:

$ cp sources/meta-freescale/conf/machine/imx6qsabresd.conf
 <new layer>/conf/machine/<custom_name>.conf

5. Edit the machine configuration file with device trees listed in the
KERNEL_DEVICETREE.

6. Change the preferred version for kernel to build with linux-imx by adding this line
to conf/local.conf. There are multiple providers of kernel and this forces the
linux-imx version to be used.

PREFERRED_PROVIDER_virtual/kernel_<custom_name> = "linux-imx"

7. Build the custom machine.

$ MACHINE=<custom_name> bitbake linux-imx

Check in <build-dir>/tmp/work/<custom_name>-poky-linux-gnueabi/
linux-imx/<version> to find the build output. Also look in <build-dir>/tmp/
deploy/images/<custom_name> to find the kernel binary.

8. Kernel patches and custom defconfig provided in a linux-imx_%.bbappend with
these lines as an example and patch1.patch as a patch placed in sources/
<custom_layer>/recipes-kernel/linux-imx/files.

FILESEXTRAPATHS:prepend := "${THISDIR}/${PN}:"
SRC_URI_append = "file://patch1.patch file://
custom_defconfig"

3 Porting U-Boot

3.1 Introduction
This chapter describes how to download, build, and load the i.MX U-Boot in a standalone
environment and through the Yocto Project.

3.1.1 How to build U-Boot in standalone environment

To build U-Boot in a standalone environment, perform the following steps:

1. Generate a development SDK, which includes the tools, toolchain, and small rootfs
to compile against to put on the host machine. The same SDK can be used to build a
standalone kernel.
a. Generate an SDK from the Yocto Project build environment with the following

command. To set up the Yocto Project build environment, follow the steps in the
i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following command,
set Target-Machine to the machine you are building for. See Section "Build
configurations" in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG).
The populate_sdk generates a script file that sets up a standalone environment

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
6 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

without Yocto Project. This SDK should be updated for each release to pick up
the latest headers, toolchain, and tools from the current release.

DISTRO=Target-Distro MACHINE=Target-Machine bitbake core-
image-minimal -c populate_sdk

For valid DISTRO options, see Section "Build configurations" in the i.MX Yocto
Project User's Guide (IMXLXYOCTOUG).

b. From the build directory where the BitBake was run in, copy the .sh file from
tmp/deploy/sdk to the host machine to build on and execute the script to
install the SDK. The default location is /opt but can be placed anywhere on the
host machine.

2. On the host machine, perform the following steps to build U-Boot:
a. On the host machine, set the environment with the following command before

building for i.MX 8 SoC.

$ source/opt/fsl-imx-xwayland/5.15.71/environment-setup-
aarch64-poky-linux
$ export ARCH=arm64

b. On the host machine, set the environment with the following command before
building for i.MX 6 or i.MX 7 SoC.

$ export CROSS_COMPILE=/opt/fsl-imx-fb/5.15.71/
environment-setup-cortexa9hf-vfp-neon-poky-linux-gnueabi
$ export ARCH=arm

c. To build the U-Boot in the standalone environment, execute the following
commands.
Download source by cloning with:

$ git clone https://github.com/nxp-imx/uboot-imx

d. To build U-Boot in the standalone environment, find the configuration for the
target boot in the configs/ directory of the uboot-imx source code. In the
following example, i.MX 6ULL is the target.

$ cd uboot-imx
$ make distclean
$ make mx6ull_14x14_evk_defconfig
$ make

e. To create a custom board, copy a reference defconfig for the associated SoC to a
new name and place in the configs folder and build using the new config name.

f. For i.MX 8, use the imx-mkimage tool to combine the U-Boot binary with Arm
Trusted Firmware (ATF) and SCFW to produce the final flash.bin boot image
and burn to the SD card. See the imx-mkimage tool for details.

g. To burn the boot image to the SD card, execute the following command:

dd if=<boot_image> of=/dev/sd<x> bs=1k seek=<offset>
 conv=fsync

Where:
• offset is:

1 - for i.MX 6 or i.MX 7
33 - for i.MX 8QuadMax A0, i.MX 8QuadXPlus A0, i.MX 8M Quad, i.MX 8M
Mini
32 - for i.MX 8QuadXPlus B0, i.MX 8QuadMax B0, i.MX 8DXL, i.MX 8M Nano,
i.MX 8M Plus, and i.MX 93

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
7 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

• sd<x> is:Device node for the SD card
• boot_image is:
u-boot.imx - for i.MX 6 or i.MX 7
flash.bin - for i.MX8

3.1.2 How to build and load U-Boot in Yocto Project

To integrate U-Boot changes in Yocto Project, perform the following steps:

1. Set up a build environment for building the associated SoC on an i.MX reference
board in Yocto Project by following the directions in the README either in the
manifest branch or in the release layer. This involves using repository initialization
and repository synchronization to download the Yocto Project meta data and imx-
setup-release to set up the build environment.

2. Build a reference board kernel for the associated SoC. The following is an example.
For the first time, this build is longer because it builds all required tools and
dependencies.

$ MACHINE=imx6qsabresd bitbake u-boot-imx

3. Create a custom layer to hold custom board kernel changes. To create a custom
layer, look at the existing i.MX demos for XBMC or IOTG for simpler examples. A
custom layer is integrated by adding it to the bblayer.conf in the <build-dir>/
conf directory. The layer must have a conf/layer.conf file describing the layer
name.

4. Copy an existing machine file associated with the SoC on custom board to the
custom layer:

$ cp sources/meta-freescale/conf/machine/imx6qsabresd.conf
 <new layer>/conf/machine/<custom_name>.conf

5. Edit the machine configuration file with UBOOT_CONFIG options.
6. Change the preferred version for kernel to build with u-boot-imx by adding this line

to conf/local.conf. There are multiple providers of U-Boot and this forces the u-
boot-imx version to be used.

PREFERRED_PROVIDER_virtual/bootloader_<custom_name> = "u-
boot-imx"

7. Build the custom machine.

$ MACHINE=<custom_name> bitbake u-boot-imx

Check in <build-dir>/tmp/work/<custom_name>-poky-linux-gnueabi/
u-boot-imx/<version> to find the build output. Also look in <build-dir>/tmp/
deploy/images/<custom_name> to find the boot binaries.

8. U-Boot patches for the custom machine and defconfig can be provided in a u-boot-
imx_%.bbappend with these lines as an example and patch1.patch as a patch
placed in sources/<custom_layer>/recipes-bsp/uboot-imx/files:

FILESEXTRAPATHS:prepend := "${THISDIR}/${PN}:"
SRC_URI_append = "file://patch1.patch".

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
8 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

3.2 Customizing the i.MX custom board code
The new i.MX custom board is a part of the U-Boot source tree, but it is a duplicate of the
i.MX reference board code and needs to be customized.

The DDR technology is a potential key difference between the two boards. If there is
a difference in the DDR technology, the DDR initialization needs to be ported. DDR
initialization is coded in the DCD table, inside the boot header of the U-Boot image.
When porting bootloader, kernel or driver code, you must have the schematics easily
accessible for reference.

If there is a difference in the DDR technology between the two boards, the DDR
initialization needs to be ported. DDR initialization is coded in the DCD table, inside the
boot header of the U-Boot image. When porting bootloader, kernel or driver code, you
must have the schematics easily accessible for reference.

3.2.1 Changing the DCD table for i.MX DDR initialization

Before initializing the memory interface, configure the relevant I/O pins with the right
mode and impedance, and then initialize the MMDC module.

For how to generate calibration parameters for DDR, see i.MX 6 Series DDR Calibration
(AN4467). Users can also use the DDR script Aid and DDR stress tools in i.MX Design
and Tool Lists for DDR initialization.

1. To port to the custom board, the DDR needs to be initialized properly.
2. Take an example for the i.MX 6Quad custom board. Open the file: board/

freescale/mx6<customer_board_name>/imximage.cfg to mx6q.cfg.
3. Modify all the items in this file to match the memory specifications. These code

blocks are read by the ROM code to initialize your DDR memory.
4. For i.MX 8QuadMax A0 and i.MX 8QuadXPlus A0, U-Boot does not contain the DCD

table for DDR initialization. Users need to update the DCD table file in imx-mkimage
to generate the final imx-boot image.

5. For i.MX 8QuadXPlus B0, i.MX 8QuadMax B0, and i.MX 8DXL, the DDR initialization
codes are in SCFW. Users need to update the DCD table in SCFW and build new
SCFW for imx-mkimage.

6. For i.MX 8M Quad, i.MX 8M Mini, i.MX 8M Nano, and i.MX 8M Plus, U-Boot does not
contain DCD. It depends on SPL to initialize the DDR. SPL contains the codes for
DDR PHY and DDR controller initialization and DDR PHY training, so users need to
modify the codes.

3.2.2 Booting with the modified U-Boot

This section describes how to compile and write u-boot.imx to an SD card.

If the DDR configuration (board/freescale/<customer_board_name>/
imximage.cfg) is modified successfully, you can compile and write u-boot.imx to an
SD card. To verify this, insert the SD card into the SD card socket of the CPU board and
power on the board.

The following message should be displayed on the console if the board is based on the
i.MX 6Quad SABRE-SD:

U-Boot 2017.03-00240-gb8760a1 (March 10 2017 - 14:32:18)
CPU: Freescale i.MX6Q rev1.2 at 792 MHz
CPU: Temperature 36 C

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
9 / 56

http://www.nxp.com/assets/documents/data/en/application-notes/AN4467.pdf
http://www.nxp.com/assets/documents/data/en/application-notes/AN4467.pdf
https://community.nxp.com/docs/DOC-102005
https://community.nxp.com/docs/DOC-102005

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Reset cause: POR
Board: MX6Q-Sabreauto revA
I2C: ready
DRAM: 2 GiB
PMIC: PFUZE100 ID=0x10
NAND: 0 MiB
MMC: FSL_SDHC: 0, FSL_SDHC: 1
No panel detected: default to Hannstar-XGA
Display: Hannstar-XGA (1024x768)
In: serial
Out: serial
Err: serial
switch to partitions #0, OK
mmc1 is current device
Net: FEC [PRIME]
Normal Boot
Hit any key to stop autoboot: 0
=>

The following message should be displayed on the console if the custom board is based
on the i.MX 8QuadMax Validation board:

U-Boot 2017.03-imx_4.9.51_8qm_beta1_8qxp_alpha+gc1ec08e (Nov 22
 2017 - 00:39:31 -0600)
CPU: Freescale i.MX8QM revA A53 at 1200 MHz at 12C
Model: Freescale i.MX8QM ARM2
Board: iMX8QM LPDDR4 ARM2
Boot: SD1
DRAM: 6 GiB
start sata init
SATA link 0 timeout.
MMC: Actual rate for SDHC_0 is 396000000
Actual rate for SDHC_1 is 396000000
Actual rate for SDHC_2 is 396000000
FSL_SDHC: 0, FSL_SDHC: 1, FSL_SDHC: 2
Run CMD11 1.8V switch
*** Warning - bad CRC, using default environment
[pcie_ctrla_init_rc] LNK DOWN 8600000
In: serial
Out: serial
Err: serial
 BuildInfo:
 - SCFW 9f3fa3da, IMX-MKIMAGE 90fbac1a, ATF
 - U-Boot 2017.03-imx_4.9.51_8qm_beta1_8qxp_alpha+gc1ec08e
switch to partitions #0, OK
mmc1 is current device
SCSI: Net:
Warning: ethernet@5b040000 using MAC address from ROM
eth0: ethernet@5b040000 [PRIME]
Error: ethernet@5b050000 address not set.
Normal Boot
Hit any key to stop autoboot: 0

The following message should be displayed on the console if the custom board is based
on the i.MX 8M Quad EVK board:

U-Boot SPL 2017.03-imx_v2017.03_4.9.51_imx8m_ga+gb026428 (Mar
 01 2018 - 03:15:20)

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
10 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

PMIC: PFUZE100 ID=0x10
start to config phy: p0=3200mts, p1=667mts with 1D2D training
check ddr4_pmu_train_imem code
check ddr4_pmu_train_imem code pass
check ddr4_pmu_train_dmem code
check ddr4_pmu_train_dmem code pass
config to do 3200 1d training.
Training PASS
check ddr4_pmu_train_imem code
check ddr4_pmu_train_imem code pass
check ddr4_pmu_train_dmem code
check ddr4_pmu_train_dmem code pass
config to do 3200 2d training.
Training PASS
check ddr4_pmu_train_imem code
check ddr4_pmu_train_imem code pass
check ddr4_pmu_train_dmem code
check ddr4_pmu_train_dmem code pass
pstate=1: set dfi clk done done
Training PASS
Load 201711 PIE
Normal Boot
Trying to boot from MMC2
U-Boot 2017.03-imx_v2017.03_4.9.51_imx8m_ga+gb026428 (Mar 01
 2018 - 03:15:20 -0600)
CPU: Freescale i.MX8MQ rev2.0 1500 MHz (running at 1000 MHz)
CPU: Commercial temperature grade (0C to 95C) at 21C
Reset cause: POR
Model: Freescale i.MX8MQ EVK
DRAM: 3 GiB
TCPC: Vendor ID [0x1fc9], Product ID [0x5110]
MMC: FSL_SDHC: 0, FSL_SDHC: 1
*** Warning - bad CRC, using default environment
No panel detected: default to HDMI
Display: HDMI (1280x720)
In: serial
Out: serial
Err: serial
 BuildInfo:
 - ATF d2cbb20
 - U-Boot 2017.03-imx_v2017.03_4.9.51_imx8m_ga+gb026428
switch to partitions #0, OK
mmc1 is current device
Net:
Warning: ethernet@30be0000 using MAC address from ROM
eth0: ethernet@30be0000
Normal Boot
Hit any key to stop autoboot: 0
u-boot=>

3.2.3 Adding new driver initialization code to board files

The following steps describe how to add a new driver and how to initialize the code.

1. Find mx<customer_board>.c in board/freescale/mx<customer_board>/.
2. Edit mx<customer_board>.c and add new driver initialization code, including

clock, IOMUX, and GPIO.
3. Put the driver initialization function into board_init or board_late_init.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
11 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Note:
• The board_early_init_f() function is called at the very early phase if you

define CONFIG_BOARD_EARLY_INIT_F. You can put the UART/SPI-NOR/NAND
IOMUX setup function, which requires to be set up at the very early phase.

• The board_init() function is called between board_early_init_f and
board_late_init. You can do some general board-level setup here. If you do
not define CONFIG_BOARD_EARLY_INIT_F, do not call printf before the UART
setup is finished. Otherwise, the system may be down.

• The board_late_init() function is called later. To debug the initialization code,
put the initialization function into it.

3.2.4 Further customization at system boot

To further customize your U-Boot board project, use the first function that system boot
calls on:

board_init_f in "common/board_f.c"
board_early_init_f()
board_init()

All board initialization is executed inside this function. It starts by running through the
init_sequence_f[] array and init_sequence_r[] array of function pointers.

The first board dependent function inside the init_sequence_f[] array is
board_early_init_f(). board_early_init_f() is implemented inside board/
freescale/mx6<custom board name>.c.

The following line of code is very important:

...
setup_iomux_uart();
...

Note: If a device tree is used, the machine ID is not used. The compatible string of
the DTS file is used to match the board. The device tree for file each boot variation is
specified in the machine configuration files in the arch/arm/dts directory.

3.2.5 Customizing the printed board name

To customize the printed board name, use the checkboard() function.

This function is called from the init_sequence_f[] array implemented inside
board/freescale/mx6<custom board name>.c. There are two ways to use
checkboard() to customize the printed board name: the brute force way or by using a
more flexible identification method if implemented on the custom board.

To customize the brute force way, delete identify_board_id() inside
checkboard() and replace printf("Board: "); with printf("Board: i.MX on
<custom board>\n");.

If this replacement is not made, the custom board may use another identification
method. The identification can be detected and printed by implementing the
__print_board_info() function according to the identification method on the custom
board.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
12 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

3.3 Debugging
There are two ways to do debugging:

• Using a JTAG tool
• Using printf

3.3.1 Using JTAG tool for debugging

Generally, the JTAG tool is used to debug at a very early stage, for example, before
UART initialization, or when it is difficult to debug with printf.

1. Make sure that the JTAG tool supports Arm Cortex-A9 cores on i.MX 6, Arm Cortex-
A7 cores on i.MX 7Dual and 6UltraLite, Arm Cortex-A53/A72 on i.MX 8QuadMax,
and Arm Cortex-A35 on i.MX 8QuadXPlus. It is recommended to use TRACE32.

2. Load U-Boot, which is an ELF file, in the root directory of U-Boot fully, or just symbol
(faster) to debug step by step.
Note: Make optimization level 0 in compiling, which is easier for debugging in the
JTAG tool.

3.3.2 Using printf for debugging

This is the most common method used in debugging. You can print your value in the
driver for debugging.

Note: To use printf in early stages, such as in board_init, put the UART initialization
code earlier, such as in the board_early_init_f().

4 Porting System Controller Firmware

4.1 Introduction
The System Controller is supported through a firmware also known as SCFW flashed
into the boot image on SoC in the i.MX 8 and i.MX 8X families. Each release provides
a System Controller Firmware porting kit, which includes a porting guide document. For
the kernel associated with a BSP, the associated porting kit must be used to ensure
compatibility wtih the binaries released in the porting kit. The System Controller porting
kit includes both object and source code. The source code provided is for customer
enablement of boards which use SoC that have a system controller.

A Yocto Project layer meta-imx-scfw is available to build the system controller
firmware from the System Controller porting kit.

5 Configuring OP-TEE

5.1 Introduction
The Trusted Execution Environment (TEE) is a set of specifications published by the
GlobalPlatform association (www.globalplatform.org). The purpose of the TEE is to
provide a safe environment within the application processor for developing and executing
secure applications. We call an application processor a system running a Rich OS like
Android or Linux. A Rich environment represents a huge amount of code. It is open to
third-party applications and it is an open ecosystem: it makes a Rich OS hard to audit. It
is prone to bugs/vulnerability, which may compromise the security and integrity of

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
13 / 56

http://www.globalplatform.org

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

the entire system. The TEE offers another level of protection against attacks from the rich
OS. The TEE is only open to trusted partners, which makes it easier to audit. It executes
only trusted and authorized software. All sensitive data are protected from the rest of the
application processor and from the outside world.

The TEE relies on the Arm TrustZone technology. The TrustZone is a system-on-chip
security feature available on most Arm Cortex A/M processors. It provides a strict
hardware isolation between the secure world (TEE) and the normal world (REE). This
technology allows each physical processor core to provide two virtual cores: one for the
normal world and one for the secure world.

OP-TEE is an open source stack of the Trusted Execution Environment. This project
includes:

• OP-TEE OS: Trusted side of the TEE
• OP-TEE Client: Normal world client side of the TEE
• OP-TEE Test (or xtest): OP-TEE Test Suite

The OP-TEE project is developed and maintained by Linaro under BSD 2-Clause. The
source code is available at https://github.com/OP-TEE. This stack supports Arm-v7 and
Arm-v8 architectures.

The TEE exposes its features through a tandem operation between a Client Application
and a Trusted Application. The client application runs in the Rich OS and always initiates
the communication with the Trusted Application that runs in the Trusted OS. The Client
application interacts with the TEE through the TEE client API interface. The Secure
Application interacts with the TEE Core through the TEE Internal API.

TEE GlobalPlatform specifications can be found at https://globalplatform.org/specs-
library/.

5.2 Boards supported
All the i.MX 6, 7, and 8 boards support OP-TEE. Some support the same OP-TEE flavor
for multiple boards like the i.MX 6ULL EVK and i.MX 6ULZ EVK.

5.3 OP-TEE booting flow
Booting flow on i.MX 6 and i.MX 7 (Arm V7):

Files and binaries required in the boot partition:

• u-boot-imx*_sd_optee.imx: U-Boot binary specific to boot OP-TEE. Only booting
from the SD card is supported for OP-TEE.

• uTee-*: Self-extracting image containing the OP-TEE binary.
• zImage: Kernel image.
• zImage-*.dtb: Device tree.

On i.MX 6 and i.MX 7, the bootloader is U-Boot. To boot OP-TEE, the specific version
of U-Boot is required (u-boot-imx<soc>_sd-optee.imx). U-Boot loads OP-TEE
OS, Linux OS, and DTB into the memory. U-Boot jumps to OP-TEE OS. OP-TEE OS
initializes the secure world and modifies the DTB on the fly to add a specific node to load
Linux TEE drivers. Then, it jumps to normal world to boot Linux OS.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
14 / 56

https://github.com/OP-TEE
https://globalplatform.org/specs-library/
https://globalplatform.org/specs-library/

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Figure 1. Booting flow on i.MX 6 and i.MX 7

Booting flow on i.MX 8 (Arm V8)

Files and binaries required in the boot partition:

• flash.bin: Fit image containing U-Boot and the ATF
• zImage: Kernel image
• zImage-*.dtb: Device tree

On Arm V8, Arm has a specified preferred way to boot Secure Component with the Arm
Trusted Firmware (ATF). The ATF first loads the OP-TEE OS. The OP-TEE OS initializes
the secure world. Then, the ATF loads U-Boot that modifies the DTB on the fly to add a
specific node to load Linux TEE drivers. Then, the Linux OS is booted.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
15 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Figure 2. Booting flow on i.MX 8

5.4 OP-TEE Linux support
The Linux TEE driver defines the generic interface to a TEE. See Documentation/tee.txt
for more information.

The Linux TEE driver is booted if the following node is present in the device tree:

firmware {
 optee {
 compatible = "linaro, optee-tz";
 method = "smc";
 };
 };

This node is added by OP-TEE OS for i.MX 6, i.MX 7, and i.MX 7ULP, and added by U-
Boot on i.MX 8M Mini, i.MX 8M Nano, and i.MX 8M Plus.

5.5 Memory protection

5.5.1 OCRAM protection

OCRAM stands for On-Chip RAM. On i.MX 6 and i.MX 7, its size varies between 128 KB
or 256 KB. Its main purpose is to hold and execute power management features, such
as CPU idle, bus frequency, or suspending. When it is enabled, OP-TEE handles power
management features, such as suspending or CPU idle. Therefore, OP-TEE needs to
allocate a secure area in the OCRAM to execute its own power management code. This

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
16 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

can be done by configuring the IOMUXC_GPR registers. The lower part is set to non-
secure and the upper part is set to secure.

The start address of secure OCRAM and the size are defined in the device tree,
ocram_optee node:

ocram: sram@00905000 {
compatible = "mmio-sram";
reg = <0x00905000 0x3B000>;
clocks = <&clks IMX6QDL_CLK_OCRAM>;
};
ocram_optee: sram@00938000 {
compatible = "fsl,optee-lpm-sram";
reg = <0x00938000 0x8000>;
overw_reg = <&ocram 0x00905000 0x33000>;
};

At boot, OP-TEE modifies the ocram node of the device tree on the fly. To allocate and
secure the OCRAM space, OP-TEE decreases the OCRAM space allocated to the
kernel. This is done by modifying the ocram node with properties defined in overw_reg
of the ocram_optee node.

Note:

For i.MX 6SoloX and i.MX 7Dual, there are two types of OCRAM: OCRAM and
OCRAM_S. The OCRAM_S is secure or non-secure: It cannot be split into two. In this
case, OP-TEE always takes over OCRAM_S for power management features and leaves
the OCRAM non-secure, and no OCRAM re-sizing is done.

5.5.2 TZASC380 – RAM protection

The TZC-380 is an IP developed by Arm designed to provide configurable protection over
DRAM memory space. Its main feature is to protect security-sensitive software and data
in a Trusted Execution Environment (TEE) against potentially compromised software
running on the platform. The main features of TZASC are:

• Supports 16 independent address regions.
• Access controls are independently programmable for each address region.
• Sensitive registers may be locked.
• Host interrupt may be programmed to signal attempted access control violations.
• AXI master/slave interfaces for transactions.
• APB slave interface for configuration and status reporting.

5.5.3 Setting TZASC regions

The TZC-380 supports up to 16 independent regions that can be configured to accept
or deny a transaction access to a certain DRAM address space. The number of regions
that the device provides can be checked in configuration register (Offset 0x0). Except for
region 0, you can program the following region parameters:

• Region enable
• Base address
• Size (The minimum address size of a region is 32 KB)
• Subregion permissions

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
17 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

The regions can be overlapped, and the final permission is defined according to the
region priority. The priority is defined by the region number. Region 0 is the lowest
priority.

32 MB of the RAM space are allocated to OP-TEE: 28 MB is mapped by the TZASC
as secure (OP-TEE RAM) and the last 4 MB is mapped as non-secure (shared
memory). The start address and the size of this secure memory are hardcoded:
CFG_TZDRAM_START and CFG_TZDRAM_SIZE. These values are added in the device
tree by OP-TEE OS after its initialization:

/sys/firmware/devicetree/base/reserved-memory/
optee_core@<some_address>
optee@<some address>

The optee_core address belongs to the OP-TEE firmware. Any reading or writing from
the normal world will result in a crash. The OP-TEE address is the shared memory
between Linux OS and OP-TEE. Reading and writing are allowed from the secure and
normal worlds.

Example of TZASC configuration for i.MX 6UL:

static int board_imx_tzasc_configure(vaddr_t addr)
{
tzc_init(addr);
tzc_configure_region(0, 0x00000000,
 TZC_ATTR_REGION_SIZE(TZC_REGION_SIZE_4G) |
 TZC_ATTR_REGION_EN_MASK | TZC_ATTR_SP_S_RW);
tzc_configure_region(1, 0x80000000,
 TZC_ATTR_REGION_SIZE(TZC_REGION_SIZE_512M) |
 TZC_ATTR_REGION_EN_MASK | TZC_ATTR_SP_NS_RW);
tzc_configure_region(2, 0x84000000,
 TZC_ATTR_REGION_SIZE(TZC_REGION_SIZE_32M) |
 TZC_ATTR_REGION_EN_MASK | TZC_ATTR_SP_S_RW);
tzc_configure_region(3, 0x9fe00000,
 TZC_ATTR_REGION_SIZE(TZC_REGION_SIZE_2M) |
 TZC_ATTR_REGION_EN_MASK | TZC_ATTR_SP_ALL);
tzc_dump_state();
return 0;
}

Note:

On i.MX 8QuadMax and i.MX 8QuadXPlus, SCFW provides partition concept to divide
resources. The 28 MB OP-TEE memory (0xFE000000 -- 0xFFC00000) is assigned to
secure partition by ATF. It cannot be accessed by non-secure partitions like in U-Boot and
kernel. U-Boot fetches the memory regions from the current non-secure partition and sets
up memory node for the kernel.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
18 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Figure 3. Example of TZASC configuration for i.MX 6UL

• On i.MX 6 and i.MX 7
The TZASC enablement is done by the U-Boot setting the TZASC_BYPASS bit(s)
in IOMUXC_GPR9 register. Once this bit is programmed, the TZASC is taken out of
bypass mode and starts to perform security checks on AXI accesses to the DRAM
memory. The TZASC_BYPASS bit is a "one time write" type bit. Once it is enabled, it is
not possible to change until the next power-up cycle. This prevents an unauthorized
disable operation.

• On i.MX 8M Quad, i.MX 8M Mini, i.MX 8M Nano, and i.MX 8M Plus
Similarly to i.MX 6 and i.MX 7 families, the TZASC enablement is done by setting
a TZASC_EN bit in IOMUXC_GPR10. In mscale family, this bit is not a "one time
write" type and TZASC_EN_LOCK must be programmed to avoid unintended disable
operation. On i.MX 8M Mini, it is necessary to enable the TZASC_ID_SWAP_BYPASS in
IOMUXC_GPR10[1] to avoid an AXI bus error when using GPU. The TZASC ID Swap
feature is not correctly handling the AXI Users IDs leading to a GPU crash in certain
conditions.

5.6 How to compile OP-TEE
OP-TEE is enabled by default in the BSP. Follow the directions in the i.MX Yocto User’s
Guide (IMXLXYOCTOUG) for information on how to build an image. See below to flash
the SD card.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
19 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Flash the SD card:

$ cd tmp/deploy/images/<platform>/
$ bzip2 -d tmp/deploy/images/<platform>/imx-image-
multimedia*.wic.bz2
$ sudo dd if=imx-image-multimedia*.wic of=/dev/sd<partition>
 bs=1M && sync
Run the test suite to check if optee is operational:
$ root@imx: xtest

Another way to compile OP-TEE is to use imx-optee-os/scripts/imx-build.sh.
Download and install the Linaro toolchains for cross compiling:

$ export CROSS_COMPILE=/<path>/arm-linux-gnueabihf-
$ export CROSS_COMPILE64=/<path>/aarch64-linux-gnu-
$ scripts/imx-build.sh <board>

5.7 Adding OP-TEE support for a new board
This section describes how to add the OP-TEE OS to a new board.

• U-Boot
U-Boot must disable the TZASC bypass in registers. To do that, bit(s) must be set in
the General-Purpose Registers (IOMUXC_GPR9/10). According to the Reference
Manual, check bits to set to disable the TZASC bypass. Do the operation in the
following U-Boot source code:
In /uboot-imx/board/freescale/<platform>/<soc>.cfg, in the device
configuration data (DCD), add the following code:

#ifdef CONFIG_IMX_OPTEE
DATA 4 <register addr> <value>
CHECK_BITS_SET 4 <register addr> <value>
#endif

In /uboot-imx/board/freescale/<platform>/< platform>.c, the tee
environment property must be set to “yes” by default:

env_set("tee", "no");
#ifdef CONFIG_IMX_OPTEE
 env_set("tee", "yes");
#endif

Note:
OP-TEE can be disabled at any time by setting env set tee no in U-Boot
environment.

• OP-TEE OS
In plat-imx/imx-common.c, add a board function identifier, such as bool
soc_imx*(void).
In plat-imx/config/imx*.h, add a board specific header file to define the constant
like DRAM0_BASE, DRAM0_SIZE, CFG_UART_BASE, and CONSOLE_UART_BASE. In
plat-imx/platform_config.h, add your configuration file.
In plat-imx/registers/, eventually add board-specific registers.
In plat-imx/conf.mk, add the new SoC to the platform flavorlist and define the SoC
and the number of cores for the the new board:

else ifneq ($(filter $(PLATFORM_FLAVOR),$(mx*-flavorlist)))
$(call force,CFG_MX*,y)

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
20 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

$(call force,CFG_MX*,y)
$(call force,CFG_TEE_CORE_NB_CORE,*)

Specify the Linux entry address, the device tree address, and the DDR size.

ifneq (,$(filter $(PLATFORM_FLAVOR),mx*))
CFG_DT ?= y
CFG_NS_ENTRY_ADDR ?=
CFG_DT_ADDR ?=
CFG_DDR_SIZE ?=
CFG_PSCI_ARM32 ?= y
CFG_BOOT_SYNC_CPU = *
CFG_BOOT_SECONDARY_REQUEST = *
endif

In plat-imx/sub.mk, define the Arm processor (Cortex A7 or A9) if the SoC is an
Arm V7.
In plat-imx/tzasc.c, configure the secure memory mapping. Most of the time,
four regions need to be mapped: the base region, the non-secure region for Linux, the
secure space for OP-TEE, and the shared memory space.
In scripts/imx_build.sh, add the new platform flavor to the board_list.

• Linux OS:
None.

6 Configuring Arm Trusted Firmware

6.1 Introduction
Arm Trusted Firmware (ATF) is required for all i.MX 8 boards. ATF might need some
customization on new boards. ATF currently partitions non-secure resources for the OS
partition before launching. When porting to a new board, ATF must be modified for the
intended partitioning of system resources with System Controller Firmware.

7 Memory Assignment

7.1 Introduction
On i.MX 8QuadMax, i.MX 8QuadXPlus, and i.MX 8DXL, SCFW provides partition
concept to divide resources. The memory is divided into several regions and can only be
accessed by particular software modules with corresponding security mode.

Generally, we have two partitions on AP cores. The secure ATF partition owns the critical
resources and memory for ATF and OP-TEE. The non-secure OS partition owns the
resources and memory for kernel and U-Boot. When Arm Cortex-M4 is running, the Arm
Cortex-M4 partition is created by SCFW, and resources and memory are assigned.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
21 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

The typical DDR memory is assigned as shown in the following table on i.MX 8QuadMax
MEK board. The regions in bold are accessible for Linux kernel.

Memory Type Start End Partition Reservation Code

0x80000000 0x8001FFFF Secure ATF Reserved by
ATF mx8_

partition_
resources

0x80020000 0x801FFFFF Non-secure
OS

Reserved by
U-Boot dram_

init_
banksize

0x80200000 0x87FFFFFF Non-secure
OS

- -

0x88000000 0x887FFFFF M4_0 Reserved by
SCFW and
U-Boot for
Cortex-M4

SCFW:

board_
system_
config

U-Boot:

#define
 BOOTAUX_
RESERVED_
MEM_BASE
 0x88000000
#define
 BOOTAUX_
RESERVED_
MEM_SIZE
 0x08000000

DDR

0x88800000 0x8FFFFFFF M4_1 Reserved by
SCFW and
U-Boot for
Cortex-M4

SCFW:

board_
system_
config

U-Boot:

#define
 BOOTAUX_
RESERVED_
MEM_BASE
 0x88000000
#define
 BOOTAUX_
RESERVED_
MEM_SIZE
 0x08000000

Table 1. DDR memory assignment

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
22 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Memory Type Start End Partition Reservation Code

0x90000000 0xFDFFFFFF Non-secure
OS

- -

0xFE000000 0xFFBFFFFF Secure ATF Reserved
by ATF for
OPTEE

mx8_
partition_
resources

0xFFC00000 0xFFFFFFFF Non-secure
OS

- -

0x880000000 0x8C0000000 Non-secure
OS

- -

Table 1. DDR memory assignment...continued

When Arm Cortex-M4 is running, the following FlexSPI memory is assigned to the Arm
Cortex-M4 partition.

Memory Type Start End Partition Reservation Code

0x08081000 0x08180FFF M4_0 Reserved by
SCFW for M4_
0

board_
system_
config

FlexSPI

0x08181000 0x08181FFF M4_1 Reserved by
SCFW for M4_
1

board_
system_
config

Table 2. FlexSPI memory assignment

In kernel, VPU/RPMSG/DSP drivers reserve DDR memory in DTB. The system cannot
allocate memory from these areas. Users can find them in the reserved-memory node as
follows:

reserved-memory {
 #address-cells = <2>;
 #size-cells = <2>;
 ranges;
 /*
 * reserved-memory layout
 * 0x8800_0000 ~ 0x8FFF_FFFF is reserved for M4
 * Shouldn't be used at A core and Linux side.
 *
 */
 decoder_boot: decoder_boot@0x84000000 {
 no-map;
 reg = <0 0x84000000 0 0x2000000>;
 };
 encoder_boot: encoder_boot@0x86000000 {
 no-map;
 reg = <0 0x86000000 0 0x400000>;
 };
 rpmsg_reserved: rpmsg@0x90000000 {
 no-map;
 reg = <0 0x90000000 0 0x400000>;
 };
 rpmsg_dma_reserved:rpmsg_dma@0x90400000 {

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
23 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

 compatible = "shared-dma-pool";
 no-map;
 reg = <0 0x90400000 0 0x1C00000>;
 };
 decoder_rpc: decoder_rpc@0x92000000 {
 no-map;
 reg = <0 0x92000000 0 0x200000>;
 };
 encoder_rpc: encoder_rpc@0x92200000 {
 no-map;
 reg = <0 0x92200000 0 0x200000>;
 };
 dsp_reserved: dsp@0x92400000 {
 no-map;
 reg = <0 0x92400000 0 0x2000000>;
 };
 encoder_reserved: encoder_reserved@0x94400000 {
 no-map;
 reg = <0 0x94400000 0 0x800000>;
 };
 /* global autoconfigured region for contiguous allocations */
 linux,cma {
 compatible = "shared-dma-pool";
 reusable;
 size = <0 0x3c000000>;
 alloc-ranges = <0 0x96000000 0 0x3c000000>;
 linux,cma-default;
 };
};

8 Configuring IOMUX

8.1 Introduction
Before using the i.MX pins (or pads), select the desired function and correct values for
characteristics such as voltage level, drive strength, and hysteresis. You can configure a
set of registers from the IOMUX controller.

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter or for about the IOMUX controller block, see the "IOMUX Controller (IOMUXC)"
in the SoC Application References Manual.

8.1.1 Information for setting IOMUX controller registers

The IOMUX controller contains four sets of registers that affect the i.MX
6Dual/6Quad/6DualLite/6Solo/6SoloX/6SoloLite/6UltraLite/7Dual registers.

• General-purpose registers (IOMUXC_GPRx): consist of registers that control PLL
frequency, voltage, and other general purpose sets.

• "Daisy Chain" control registers (IOMUXC_<Instance_port>_SELECT_INPUT):
control the input path to a module when more than one pad may drive the module's
input.

• MUX control registers (changing pad modes):
– Select which of the pad's eight different functions (also called ALT modes) is used.
– Set the pad functions individually or by group using one of the following registers:

– IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
24 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

– IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>
• Pad control registers (changing pad characteristics):

– Set pad characteristics individually or by group using one of the following registers:
– IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>
– IOMUXC_SW_PAD_CTL_GRP_<GROUP NAME>

– Pad characteristics are:
– SRE (1 bit slew rate control): Slew rate control bit; selects between FAST/SLOW

slew rate output. Fast slew rate is used for high frequency designs.
– DSE (2 bits drive strength control): Drive strength control bits; selects the drive

strength (low, medium, high, or max).
– ODE (1 bit open drain control): Open drain enable bit; selects open drain or

CMOS output.
– HYS (1 bit hysteresis control): Selects between CMOS or Schmitt Trigger when

pad is an input.
– PUS (2 bits pull up/down configuration value): Selects between pull up or down

and its value.
– PUE (1 bit pull/keep select): Selects between pull up or keeper. A keeper circuit

helps assure that a pin stays in the last logic state when the pin is no longer being
driven.

– PKE (1 bit enable/disable pull up, pull down or keeper capability): Enable or
disable pull up, pull down, or keeper.

– DDR_MODE_SEL (1 bit ddr_mode control): Needed when interfacing DDR
memories.

– DDR_INPUT (1 bit ddr_input control): Needed when interfacing DDR memories.

8.1.2 Using IOMUX in the Device Tree - example

The following example shows how to use IOMUX in the Device Tree.

usdhc@0219c000 { /* uSDHC4 */
 fsl,card-wired;
 vmmc-supply = <®_3p3v>;
 status = "okay";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_usdhc4_1>;
};
iomuxc@020e0000 {
 compatible = "fsl,imx6q-iomuxc";
 reg = <0x020e0000 0x4000>;
 /* shared pinctrl settings */
 usdhc4 {
 pinctrl_usdhc4_1: usdhc4grp-1 {
 fsl,pins = <
 MX6QDL_PAD_SD4_CMD__SD4_CMD 0x17059
 MX6QDL_PAD_SD4_CLK__SD4_CLK 0x10059
 MX6QDL_PAD_SD4_DAT0__SD4_DATA0 0x17059
 MX6QDL_PAD_SD4_DAT1__SD4_DATA1 0x17059
 MX6QDL_PAD_SD4_DAT2__SD4_DATA2 0x17059
 MX6QDL_PAD_SD4_DAT3__SD4_DATA3 0x17059
 MX6QDL_PAD_SD4_DAT4__SD4_DATA4 0x17059
 MX6QDL_PAD_SD4_DAT5__SD4_DATA5 0x17059
 MX6QDL_PAD_SD4_DAT6__SD4_DATA6 0x17059
 MX6QDL_PAD_SD4_DAT7__SD4_DATA7 0x17059
 >;

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
25 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

 };
 };

};

For details, see:

• Documentation/devicetree/bindings/pinctrl/fsl,imx-pinctrl.txt
• Documentation/devicetree/bindings/pinctrl/fsl,imx6*-pinctrl.txt
• Documentation/devicetree/bindings/pinctrl/fsl,imx7*-pinctrl.txt
• Documentation/devicetree/bindings/pinctrl/fsl,imx8qm-pinctrl.txt
• Documentation/devicetree/bindings/pinctrl/fsl,imx8qxp-pinctrl.
txt

9 UART

9.1 Introduction
UART is enabled by default. The default UART is configured as follows:

• Baud rate: 115200
• Data bits: 8
• Parity: None
• Stop bits: 1
• Flow control: None

10 Adding SDHC

10.1 Introduction
uSDHC has 14 associated I/O signals. The following list describes the associated I/O
signals.

Signal overview

• The SD_CLK is an internally generated clock used to drive the MMC, SD, and SDIO
cards.

• The CMD I/O is used to send commands and receive responses to/from the card. Eight
data lines (DAT7 - DAT0) are used to perform data transfers between the SDHC and
the card.

• The SD_CD# and SD_WP are card detection and write protection signals directly
routed from the socket. These two signals are active low (0). A low on SD_CD# means
that a card is inserted and a high on SD_WP means that the write protect switch is
active.

• SD_LCTL is an output signal used to drive an external LED to indicate that the SD
interface is busy.

• SD_RST_N is an output signal used to reset the MMC card. This should be supported
by the card.

• SD_VSELECT is an output signal used to change the voltage of the external power
supplier. SD_CD#, SD_WP, SD_LCTL, SD_RST_N, and SD_VSELECT are all optional
for system implementation. If the uSDHC is desired to support a 4-bit data transfer,
DAT7 - DAT4 can also be optional and tied to high voltage.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
26 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Adding uSDHC support in the device tree

The following is an example for adding uSDHC support in the device tree:

usdhc@02194000 { /* uSDHC2 */
 compatible = "fsl,imx6q-usdhc";
 reg = <0x02194000 0x4000>;
 interrupts = <0 23 0x04>;
 clocks = <&clks 164>, <&clks 164>, <&clks 164>;
 clock-names = "ipg", "ahb", "per";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_usdhc2_1>;
 cd-gpios = <&gpio2 2 0>;
 wp-gpios = <&gpio2 3 0>;
 bus-width = <8>;
 no-1-8-v;
 keep-power-in-suspend;
 enable-sdio-wakeup;
 status = "okay";
};

usdhc1: usdhc@02190000 {
 compatible = "fsl,imx6ul-
usdhc", "fsl,imx6sx-usdhc";
 reg = <0x02190000 0x4000>;
 interrupts = <GIC_SPI 22
 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks
 IMX6UL_CLK_USDHC1>,
 <&clks
 IMX6UL_CLK_USDHC1>,
 <&clks
 IMX6UL_CLK_USDHC1>;
 clock-names = "ipg", "ahb",
 "per";
 bus-width = <4>;
 status = "disabled";
 };

For more information, see:

• The binding document at linux/Documentation/devicetree/bindings/mmc/
fsl-imx-esdhc.txt.

• arch/arm/boot/dts/imx6ul.dtsi
• arch/arm/boot/dts/imx6ul-14x14-evk.dts
• arch/arm/boot/dts/imx6qdl.dtsi
• arch/arm/boot/dts/imx6qdl-sabresd.dtsi

Support of SD3.0

SD3.0 requires 3.3 V and 1.8 V for signal voltage. Voltage selection needs to be
implemented on your platform.

Support of SDIO

In most situations, SDIO requires more power than SD/MMC memory cards. Ensure that
the power supply is in the SD slot while using SDIO, or apply an external power to SDIO
instead.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
27 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

11 Configuring SPI NOR

11.1 Introduction
This chapter describes how to set up the SPI NOR Flash memory technology device
(MTD) driver.

This driver uses the SPI interface to support the SPI-NOR data Flash devices. By default,
the SPI NOR Flash MTD driver creates static MTD partitions.

The NOR MTD implementation provides necessary information for the upper-layer MTD
driver.

11.1.1 Selecting SPI NOR on the Linux image

To enable support for SPI NOR, perform the following steps:

1. Add the pinctrl for the SPI. For example:

pinctrl_ecspi1: ecspi1grp {
 fsl,pins = <

 MX6QDL_PAD_EIM_D17__ECSPI1_MISO 0x100b1

 MX6QDL_PAD_EIM_D18__ECSPI1_MOSI 0x100b1

 MX6QDL_PAD_EIM_D16__ECSPI1_SCLK 0x100b1
 >;
 };
 pinctrl_ecspi1_cs: ecspi1cs {
 fsl,pins = <

 MX6QDL_PAD_EIM_D19__GPIO3_IO19 0x80000000
 >;
 };

2. Enable the SPI. For example:

&ecspi1 {
 fsl,spi-num-chipselects = <1>;
 cs-gpios = <&gpio3 19 0>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi1 &pinctrl_ecspi1_cs>;
 status = "okay"; /* pin conflict with WEIM NOR */
 flash: m25p80@0 {
 #address-cells = <1>;
 #size-cells = <1>;
 compatible = "st,m25p32";
 spi-max-frequency = <20000000>;
 reg = <0>;
 };
};

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
28 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

11.1.2 Changing the SPI interface configuration

The i.MX 6 SoC has five ECSPI interfaces. The i.MX 7Dual SoC has four ECSPI
interfaces. The i.MX 8QuadMax/8QuadXPlus has four LPSPI interfaces. By default, the
BSP configures ECSPI-1 interface in master mode to connect to the SPI NOR Flash.

11.1.3 Hardware operation

SPI NOR Flash is SPI compatible with frequencies up to 66 MHz.

The memory is organized in pages of 512 bytes or 528 bytes. SPI NOR Flash also
contains two SRAM buffers of 512/528 bytes each, which allows data reception while
a page in the main memory is being reprogrammed. It also allows the writing of a
continuous data stream.

Unlike conventional Flash memories that are accessed randomly, the SPI NOR Flash
accesses data sequentially. It operates from a single 2.7-3.6 V power supply for program
and read operations.

SPI NOR Flashes are enabled through a chip select pin and accessed through a three-
wire interface: serial input, serial output, and serial clock.

12 Connecting LVDS Panel

12.1 Introduction
This chapter describes how to connect the LVDS panel to an i.MX reference board
that supports the LVDS interface. Currently the i.MX 6 with IPU and i.MX 8QuadMax,
i.MX 8QuadXPlus, i.MX 8M Plus, and i.MX 93 support the LVDS display interfaces. The
implementationn of the LVDS is a DRM driver for i.MX 8 and i.MX 93, and framebuffer
driver for i.MX 6. The LVDS connects to a LVDS Display bridge (LBB), which is
configured as a DRM LDB driver for i.MX 8 and i.MX 93, and a framebuffer driver for i.MX
6.

The i.MX 6 with IPU has an LVDS display bridge (LDB) block that drives LVDS panels
without external bridges. The LDB on i.MX with IPU supports the flow of synchronous
RGB data from the IPU to external display devices through the LVDS interface.

The LDB support covers the following activities:

• Connectivity to relevant devices-display with an LVDS receiver.
• Arranging the data as required by the external display receiver and by LVDS display

standards.
• Synchronization and control capabilities.

12.1.1 Connecting an LVDS panel to the i.MX 8 and i.MX 93

The LVDS interface on i.MX 8, i.MX 8M Plus, and i.MX 93 is implemented with the DRM
display framework. This LVDS interface works with the Mixel on i.MX QuadMax and
the Mixel Combo on the i.MX 8QuadXPlus both using the it6263 encoder. The LVDS
interface works with an LVDS PHY designed by NXP on i.MX 93 and may connect with
the it6263 bridge. Both support 1080p resolution. The connection to the it6263 is set up
wtih a device tree such as fsl-imx8qxp-mek-it6263-lvds0-dual-channel.dts
found in the kernel repository in arch/arm64/boot/dts/freescale.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
29 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

12.1.2 Connecting an LVDS panel to the i.MX 6

The kernel command line for 24-bit LVDS panel (4 pairs of LVDS data signals) displays
the following line if the panel is properly connected:

video=mxcfb0:dev=ldb,if=RGB24

The kernel command line for 18-bit LVDS panel (3 pairs of LVDS data signals) displays
the following line if the panel is properly connected:

video=mxcfb0:dev=ldb,if=RGB666

12.2 Enabling an LVDS channel with LDB
When the LDB device is probed by the mxc display core driver, the driver uses platform
data information from DTS file to configure the LDB's reference resistor mode and also
tries to match video modes for external display devices with an LVDS interface. The
display signal polarities and LDB control bits are set according to the matched video
modes.

The LVDS channel mapping mode and the LDB bit mapping mode of LDB are set
according to the LDB device tree node set by the user.

An LVDS channel is enabled as follows:

1. Set the parent clock of ldb_di_clk and the parent clock rate.
2. Set the rate of ldb_di_clk.
3. Set the LDB in a proper mode, including display signals' polarities, LVDS channel

mapping mode, bit mapping mode, and reference resistor mode.
4. Enable both ldb_di_clk and its parent clock.

12.3 LDB ports on i.MX 6
The following figure shows the LDB block.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
30 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Figure 4. i.MX 6 LVDS Display Bridge (LDB) block

The LDB has the following ports:

• Two input parallel display ports
• Two output LVDS channels
• Control signals to configure LDB parameters and operations
• Clocks from the SoC PLLs

12.3.1 LDB on i.MX 6 for input parallel display ports

The LDB is configurable to support either one or two (DI0, DI1) parallel RGB input ports.
The LDB only supports synchronous access mode.

Each RGB data interface contains the following:

• RGB data of 18 or 24 bits
• Pixel clock

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
31 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

• Control signals
• HSYNC, VSYNC, DE, and one additional optional general purpose control
• Transfers a total of up to 28 bits per data interface per pixel clock cycle

The LDB supports the following data rates:

• For dual-channel output: up to 170 MHz pixel clock (such as UXGA-1600 x 1200 at 60
Hz + 35% blanking)

• For single-channel output: up to 85 MHz per interface (such as WXGA-1366 x 768 at
60 Hz + 35% blanking).

12.3.2 LDB on i.MX 6 Output LVDS ports

The LDB has two LVDS channels, which are used to communicate RGB data and
controls to external LCD displays either through the LVDS interface or through LVDS
receivers. Each channel consists of four data pairs and one clock pair, with a pair
indicating an LVDS pad that contains PadP and PadM.

The LVDS ports may be used as follows:

• One single-channel output
• One dual-channel output: single input, split to two output channels
• Two identical outputs: single input sent to both output channels
• Two independent outputs: two inputs sent, each to a distinct output channel

13 Connecting MIPI-DSI Panel

13.1 Introduction
The following table lists the relationship of SoC and DSI controller/panel.

MIPI DSISoC

Controller Panel (Module Name)

i.MX 6DualQuadPlus Synopsys HX8369 480x800

i.MX 7Dual Samsung HX8363 480x854

i.MX 7ULP Northwest controller + Mixel
DPHY

RM68200 720x1280

i.MX 8QuadMax Northwest controller + Mixel
DPHY

RM67191 1080x1920

i.MX 8QuadXPlus Northwest controller + Mixel
DPHY

RM67191 1080x1920

i.MX 8M Quad Northwest controller + Mixel
DPHY

RM67191/67199 1080x1920

i.MX 8M Mini Samsung Combo RM67191/67199 1080x1920

i.MX 8M Nano Samsung Combo RM67191/67199 1080x1920

i.MX 8M Plus Samsung Combo RM67191/67199 1080x1920

i.MX 8ULP Northwest controller + Mixel
DPHY

RM68200/HX8394F 720x1280

Table 3. Relationship of SoC and DSI controller/panel

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
32 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

MIPI DSISoC

Controller Panel (Module Name)

i.MX 93 Synopsys RM67199 1080x1920

Table 3. Relationship of SoC and DSI controller/panel...continued

14 Supporting Cameras with CSI

14.1 Introduction
This chapter provides information about how to use the expansion connector to include
support for a new camera sensor.

The camera sensor is support on all i.MX but configured using different capture
controllers. For more information, see the "Capture Overview" section in the ‘Video“
chapter in the i.MX Linux Reference Manual (IMXLXRM). For i.MX 6 with IPU, the CSI
interface is through the IPU, but on other parts, the Parallel CSI driver is available to
support the CSI interface. For i.MX QuadXPlus, it uses an ISI controller and a custom
Parallel CSI interface driver.

This chapter describes the following operations:

• Configuring the CSI unit in test mode (Section 14.1.3)
• Adding support for a new CMOS sensor in the i.MX 6Dual/6Quad/6Solo/6DualLite BSP

(Section 14.2)
• Setting up and using the I2C interface to handle your camera bus (Section 14.3)
• Loading and testing the camera module (Section 14.3.1)

It also provides reference information about configuring the CSI interface on i.MX with
IPU.:

• Required software and hardware
• Reference IPU-CSI interfaces layout (Section 14.1.2)
• CMOS sensor interfaces (IPU-CSI) (Section 14.4.1)
• Parallel interface (Section 14.4.2)
• CSI test mode (Section 14.4.3)

14.1.1 Required software

In i.MX BSPs, all capture devices support the V4L2 standard. Therefore, only the
CMOS-dependent layer needs to be modified to include a new CMOS sensor. All other
layers are developed to work with V4L2.

14.1.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI interfaces layout

The following figure shows the camera interface layout on an i.MX 6Solo/6DualLite
SABRE-SD board.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
33 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Figure 5. Camera interface layout

CSI0 is used as a parallel sensor input interface. CSI1 is used as a MIPI sensor input
interface.

14.1.3 Configuring the CSI unit in test mode

This section uses the test mode for its example scenario of a new camera driver that
generates a chess board.

When you set the TEST_GEN_MODE register, the device is in test mode, which is used
for debugging. The CSI generates a frame automatically and sends it to one of the
destination units. The sent frame is a chess board composed of black and configured
color squares. The configured color is set with the registers PG_B_VALUE, PG_G_VALUE,
and PG_R_VALUE. The data can be sent in different frequencies according to the
configuration of DIV_RATIO register.

When CSI is in test mode, configure the CSI unit with a similar configuration to the
described settings in the following table. Call ipu_csi_init_interface() to
configure the CSI interface protocol, formats, and features.

Bit Field Value Description

CSI0_DATA_DEST 0x4 Destination is IDMAC through SMFC.

CSI0_DIV_RATIO 0x0 SENSB_MCLK rate = HSP_CLK rate.

CSI0_EXT_VSYNC 0x1 External VSYNC mode.

CSI0_DATA_WIDTH 0x1 8 bits per color.

CSI0_SENS_DATA_FORMAT 0x0 Full RGB or YUV444.

CSI0_PACK_TIGHT 0x0 Each component is written as a 16 bit word where the
MSB is written to bit #15. Color extension is done for
the remaining least significant bits.

CSI0_SENS_PRTCL 0x1 Non-gated clock sensor timing/data mode.

CSI0_SENS_PIX_CLK_POL 0x1 Pixel clock is inverted before applied to internal circuitry.

CSI0_DATA_POL 0x0 Data lines are directly applied to internal circuitry.

CSI0_HSYNC_POL 0x0 HSYNC is directly applied to internal circuitry.

CSI0_VSYNC_POL 0x0 VSYNC is directly applied to internal circuitry.

Table 4. Settings for Test Mode

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
34 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

14.2 Adding support for a new CMOS camera sensor
To add support for a new CMOS camera sensor to your BSP, create a device driver to
support it.

This device driver is the optimal location for implementing initialization routines, the
power up sequence, power supply settings, the reset signal, and other desired features
for your CMOS sensor. It is also the optimal location to set the parallel protocol used
between the camera and the i.MX 6Dual/6Quad/6Solo/6DualLite.

Perform the following three steps on the i.MX 6Dual/6Quad/6Solo/6DualLite BSP to
create a device driver:

1. Add a camera sensor entry in Kconfig.
2. Create the camera file.
3. Add compilation flag for the new camera sensor.

These steps are described in detail in the following subsections.

14.2.1 Adding a camera sensor entry in Kconfig

Select specific camera drivers in the following location (as shown in the following figure):

Device Drivers > Multimedia support > Video capture adapters
 V4L platform devices > MXC Video For Linux Camera > MXC
 Camera/V4L2 PRP Features
support

Figure 6. MXC camera/V4L2 PRP features support window

To add a new camera sensor entry on the Kconfig camera file, perform the following
steps:

1. Enter the following command into the display specific folder:

$ cd linux/drivers/media/video/mxc/capture

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
35 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

2. Open the Kconfig file:

$ gedit Kconfig &

3. Add the entry where you want it to appear:

config MXC_IPUV3_CSI0_TEST_MODE
 tristate "IPUv3 CSI0 test mode camera
 support"
 depends on !VIDEO_MXC_EMMA_CAMERA
 ---help---
 If you plan to use the IPUv3 CSI0 in test
 mode with your MXC system, say Y here.

14.2.2 Creating the camera sensor file

The camera sensor file enables camera initialization, reset signal generation, power
settings, and all sensor-specific code.

Note: Before connecting a camera sensor to the i.MX 6Dual/6Quad/6Solo/6DualLite
board, check whether the sensor is powered with the proper supply voltages and whether
the sensor data interface has the correct VIO value. Power supply mismatches can
damage either the CMOS or the i.MX 6Dual/6Quad/6Solo/6DualLite.

Create a file with the required panel-specific functions in the following path:

linux/drivers/media/video/mxc/capture/

The camera file ipuv3_csi0_chess.c must include the functions described in the
following table and may include additional functions and macros required for your driver.

Function
name

Function declaration Description

ioctl_g_
ifparm

static int ioctl_g_
ifparm(struct v4l2_
int_device *s, struct
v4l2_ifparm *p)

V4L2 sensor interface handler for VIDIOC_G_PARM
ioctl.

ioctl_s_
power

static int ioctl_s_
power(struct v4l2_int_
device *s, int on)

V4L2 sensor interface handler for VIDIOC_S_
POWER ioctl. Sets sensor module power mode (on
or off).

ioctl_g_
parm

static int ioctl_
g_parm(struct v4l2_
int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_G_PARM
ioctl. Get streaming parameters.

ioctl_s_
parm

static int ioctl_
s_parm(struct v4l2_
int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_S_PARM
ioctl. Set streaming parameters.

ioctl_g_
fmt_cap

static int ioctl_g_
fmt_cap(struct v4l2_
int_device *s, struct
v4l2_format *f)

Returns the sensor's current pixel format in the
v4l2_format parameter.

Table 5. Required functions

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
36 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Function
name

Function declaration Description

ioctl_g_
ctrl

static int ioctl_
g_ctrl(struct v4l2_
int_device *s, struct
v4l2_control *vc)

V4L2 sensor interface handler for VIDIOC_
G_CTRL. If the requested control is supported,
returns the control's current value from the video_
control[] array. Otherwise, it returns -EINVAL if
the control is not supported.

ioctl_s_
ctrl

static int ioctl_
s_ctrl(struct v4l2_
int_device *s, struct
v4l2_control *vc)

V4L2 sensor interface handler for VIDIOC_S_
CTRL. If the requested control is supported, it sets
the control's current value in HW (and updates the
video_control[] array). Otherwise, it returns -
EINVAL if the control is not supported.

ioctl_
init

static int ioctl_
init(struct v4l2_int_
device *s)

V4L2 sensor interface handler for VIDIOC_INT_
INIT. Initialize sensor interface.

ioctl_
dev_init

static int ioctl_dev_
init(struct v4l2_int_
device *s)

Initializes the device when slave attaches to the
master.

ioctl_
dev_exit

static int ioctl_dev_
exit(struct v4l2_int_
device *s)

De-initializes the device when slave detaches to
the master.

Table 5. Required functions...continued

After the functions are created, add additional information to
ipuv3_csi0_chess_slave and ipuv3_csi0_chess_int_device. The device uses
this information to register as a V4L2 device.

The following ioctl function references are included:

static struct v4l2_int_slave ipuv3_csi0_chess_slave = {
 .ioctls = ipuv3_csi0_chess_ioctl_desc,
 .num_ioctls = ARRAY_SIZE(ipuv3_csi0_chess_ioctl_desc),
};
static struct v4l2_int_device ipuv3_csi0_chess_int_device = {
 ...
 .type = v4l2_int_type_slave,
 ...
};
static int ipuv3_csi0_chess_probe(struct i2c_client
 *client,const struct i2c_device_id *id)
{
 ...
 retval =
 v4l2_int_device_register(&ipuv3_csi0_chess_int_device);
 ...
}

It is also necessary to modify other files to prepare the BSP for CSI test mode. Change
the sensor pixel format from YUV to RGB565 in the ipu_bg_overlay_sdc.c file
so that the image converter does not perform color space conversion and the input
received from the CSI test mode generator is sent directly to the memory. Additionally,
modify mxc_v4l2_capture.c to preserve CSI test mode settings, which are set by the
ipuv3_csi0_chess_init_mode() function in the ipuv3_csi0_chess.c file.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
37 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

14.2.3 Adding a compilation flag for the new camera

After camera files are created and the Kconfig file has the entry for your new camera,
modify the Makefile to create the new camera module during compilation.

The Makefile is located in the same folder as your new camera file and Kconfig: linux/
drivers/media/video/mxc/capture.

1. Enter the following into the i.MX 6Dual/6Quad/6Solo/6DualLite camera support
folder:

$ cd linux/drivers/media/video/mxc/capture

2. Open the i.MX 6Dual/6Quad/6Solo/6DualLite camera support Makefile.

$ gedit Makefile &

3. Add the CMOS driver compilation entry to the end of the Makefile.

ipuv3_csi0_chess_camera-objs := ipuv3_csi0_chess.o
obj-$(CONFIG_MXC_IPUV3_CSI0_TEST_MODE) +=
 ipuv3_csi0_chess_camera.o

The kernel object is created by using the ipuv3_csi0_chess.c file. You should have
the following files as output:

• ipuv3_csi0_chess_camera.mod.c
• ipuv3_csi0_chess.o
• ipuv3_csi0_chess_camera.o
• ipuv3_csi0_chess_camera.mod.o
• ipuv3_csi0_chess_camera.ko

14.3 Using the I2C interface
Many camera sensor modules require a synchronous serial interface for initialization and
configuration.

This section uses the linux/drivers/media/video/mxc/capture/ov5642.c
file as its example code. This file contains a driver that uses the I2C interface for sensor
configuration.

After the I2C interface is running, create a new I2C device to handle your camera bus. If
the camera sensor file (called mycamera.c in the following example code) is located in
the same folder as ov5642.c, the code is as follows:

struct i2c_client * mycamera_i2c_client;
static s32 mycamera_read_reg(u16 reg, u8 *val);
static s32 mycamera_write_reg(u16 reg, u8 val);
static const struct i2c_device_id mycamera_id[] = {
 {"mycamera", 0},
 {},
};
MODULE_DEVICE_TABLE(i2c, mycamera_id);
static struct i2c_driver mycamera_i2c_driver = {
 .driver = {
 .owner = THIS_MODULE,
 .name = "mycamera",
 },
 .probe = mycamera_probe,
 .remove = mycamera_remove,

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
38 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

 .id_table = mycamera_id,
};
static s32 my_camera_write_reg(u16 reg, u8 val)
{
 u8 au8Buf[3] = {0};
 au8Buf[0] = reg >> 8;
 au8Buf[1] = reg & 0xff;
 au8Buf[2] = val;
 if (i2c_master_send(my_camera_i2c_client, au8Buf, 3) < 0) {
 pr_err("%s:write reg error:reg=%x,val=%x\n",__func__,
 reg, val);
 return -1;
 }
 return 0;
}
static s32 my_camera_read_reg(u16 reg, u8 *val)
{
 u8 au8RegBuf[2] = {0};
 u8 u8RdVal = 0;
 au8RegBuf[0] = reg >> 8;
 au8RegBuf[1] = reg & 0xff;
 if (2 != i2c_master_send(my_camera_i2c_client, au8RegBuf,
 2)) {
 pr_err("%s:write reg error:reg=%x\n",__func__, reg);
 return -1;
 }
 if (1 != i2c_master_recv(my_camera_i2c_client, &u8RdVal, 1))
 {// @ECA
 pr_err("%s:read reg error:reg=%x,val=%x\n",__func__, reg,
 u8RdVal);
 return -1;
 }
 *val = u8RdVal;
 return u8RdVal;
}
static int my_camera_probe(struct i2c_client *client, const
 struct i2c_device_id *id)
{
 ...
 my_camera_i2c_client = client;
 ...
}
static __init int mycamera_init(void)
{
 u8 err;
 err = i2c_add_driver(&mycamera_i2c_driver);
 if (err != 0)
 pr_err("%s:driver registration failed, error=%d
 \n",__func__, err);
 return err;
}
static void __exit mycamera_clean(void)
{
 i2c_del_driver(&mycamera_i2c_driver);
}
module_init(mycamera_init);
module_exit(mycamera_clean);

Check ov5642.c for the complete example code.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
39 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

After creating the new I2C device driver, add a new I2C node to your platform dts file.

You may modify the dts file at this point to specify features about your camera such as
the CSI interface used (CSI0 or CSI1), the MCLK frequency, and some power supply
settings related to the module.

You can now read and write from/to the sensor in the camera sensor file by using the
following:

retval = mycamera_write_reg(RegAddr, Val);
retval = mycamera_read_reg(RegAddr, &RegVal);

14.3.1 Loading and testing the camera module

If your camera driver is created as a kernel module, as in the example in this section, the
module must be loaded prior to any camera request attempt.

According to the Makefile information, the camera module is named
ipuv3_csi0_chess_camera.ko.

To load the V4L2 camera interface and CSI in test mode, execute the following
commands:

root@ /unit_tests$ modprobe ipuv3_csi0_chess_camera
root@ /unit_tests$ modprobe mxc_v4l2_capture

To test the video0 input (camera), an mxc_v4l2_overlay test is included in the BSP. If the
imx-test package has also been included, open the unit test folder and execute the test.

root@ ~$ cd /unit_tests/
root@ /unit_tests$./mxc_v4l2_overlay.out

14.4 Additional reference information

14.4.1 CMOS interfaces supported by the i.MX 6Dual/6Quad/6Solo/6DualLite

The camera sensor interface, which is a part of the image processing unit (IPU) module
on the i.MX 6Dual/6Quad/6Solo/6DualLite, handles CMOS sensor interfaces. The i.MX
6Dual/6Quad/6Solo/6DualLite IPU is able to handle two camera devices through its CSI
ports: one connected to the CSI0 port and the other to the CSI1 port. Both CSI ports are
identical and provide glueless connectivity to a wide variety of raw/smart sensors and TV
decoders.

Each of the camera ports includes the following features:

• Parallel interface
– Up to 20-bit input data bus
– A single value in each cycle
– Programmable polarity

• Multiple data formats
– Interleaved color components, up to 16 bits per value (component)
– Input Bayer RGB, Full RGB, or YUV 4:4:4, YUV 4:2:2 Component order:UY1VY2 or

Y1UY2V, grayscale and generic data
• Scan order: progressive or interlaced

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
40 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

• Frame size: up to 8192 x 4096 pixels
• Synchronization-video mode

– The sensor is the master of the pixel clock (PIXCLK) and synchronization signals.
– Synchronization signals are received by using either of the following methods:

– Dedicated control signals-VSYNC, HSYNC-with programmable pulse width and
polarity.

– Controls embedded in the data stream following loosely the BT.656 protocol with
flexibility in code values and location.

– The image capture is triggered by the MCU or by an external signal (such as a
mechanical shutter).

– Synchronized strobes are generated for up to six outputs-the sensor and camera
peripherals (flash, mechanical shutter...).

• Frame rate reduction by periodic skipping of frames.

For details, see the "Image Processing Unit (IPU)" chapter in the i.MX 6Dual/6Quad
Applications Processor Reference Manual (IMX6DQRM) or i.MX 6Solo/6DualLite
Applications Processor Reference Manual (IMX6SDLRM). The following figure shows the
block diagram.

Figure 7. IPU block diagram

Several sensors can be connected to each of the CSIs. Simultaneous functionality (for
sending data) is supported as follows:

• Two sensors can send data independently, each through a different port.
• One stream can be transferred to the VDI or IC for on-the-fly processing while the other

one is sent directly to system memory.

The input rate supported by the camera port is as follows:

• Peak: up to 180 MHz (values/sec).
• Average (assuming 35% blanking overhead) for YUV 4:2:2.

– Pixel in one cycle (BT.1120): up to 135 MP/sec, such as 9 Mpixels at 15 fps.
– Pixel on two cycles (BT.656): up to 67 MP/sec, such as 4.5 Mpixels at 15 fps.

• On-the-fly processing may be restricted to a lower input rate.

If required, additional cameras can be connected through the USB port.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
41 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

14.4.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI parallel interface

The CSI obtains data from the sensor, synchronizes the data and the control signals to
the IPU clock (HSP_CLK), and transfers the data to the IC and/or SMFC.

The CSI parallel interface,as shown in the following figure, provides a clock
output (MCLK), which is used by the sensor as a clock input reference. The i.MX
6Dual/6Quad/6Solo/6DualLite requests either video or still images through a different
interface between the processor and the camera module. In most situations, the
interface is a synchronous serial interface such as the I2C. After the frame has been
requested, the camera module takes control of the CSI bus, and uses synchronization
signals VSYNC, HSYNC, DATA_EN and PIXCLK to send the image frame to the i.MX
6Dual/6Quad/6Solo/6DualLite. The camera sensor creates PIXCLK based on MCLK
input.

Figure 8. Parallel interface layout

In parallel interface, a single value arrives in each clock, except in BT.1120 mode
when two values arrive per cycle. Each value can be 8-16 bits wide according to the
configuration of DATA_WIDTH. If DATA_WIDTH is configured to N, then 20-N LSB bits
are ignored.

Therefore, you never need CSI0_DAT[3:0], unless you are using BT.1120 mode,
because the maximum pixel width is 16 (CSI0_DAT[19:4]). The expansion port 2
includes CSI0_DAT[19:4], but only CSI0_DAT[19:10] are used for the CSI data bus
(10-bit wide data). CSI0_DAT[9:4] are shared with other interfaces and are used for
audio and I2C.

CSI can support several data formats according to SENS_DATA_FORMAT configuration.
When the data format is YUV, the output of the CSI is always YUV444-even if the data
arrives in YUV422 format.

The polarity of the inputs can be configured using the following registers:

• SENS_PIX_CLK_POL
• DATA_POL
• HSYNC_POL
• VSYNC_POL

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
42 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

The following table describes the camera parallel interface provided by the i.MX
6Dual/6Quad/6Solo/6DualLite:

Signal IPU Pin Description

MCLK CSI0_MCLK Master clock (Output)

PIXCLK CSI0_PIXCLK Pixel clock

VSYNC CSI0_VSYNC Vertical synchronization signal

HSYNC CSI0_HSYNC Horizontal synchronization signal

DATA_EN CSI0_DATA_EN Data enable or data ready

DATA[19:10] CSI0_DAT [19:10] Pixel data bus, optional to [19:4]

Table 6. CSI0 parallel interface signals

The following section explains how the timing data mode protocols use these signals. Not
all signals are used in each timing data mode protocol.

14.4.3 Timing data mode protocols

The CSI interface supports the following four timing/data protocols:

• Gated mode
• Non-gated mode
• BT.656 (Progressive and interlaced)
• BT.1120 (Progressive and interlaced)

In gated mode, VSYNC is used to indicate the beginning of a frame, and HSYNC is used
to indicate the beginning of a raw. The sensor clock is always ticking.

In non-gated mode, VSYNC is used to indicate the beginning of a frame, and HSYNC is
not used. The sensor clock only ticks when data is valid.

In BT.656 mode, the CSI works according to recommendation ITU-R BT.656. The timing
reference signals (frame start, frame end, line start, line end) are embedded in the data
bus input.

In BT1120 mode, the CSI works according to recommendation ITU-R BT.1120. The
timing reference signals (frame start, frame end, line start, line end) are embedded in the
data bus input.

For details, see the i.MX 6Dual/6Quad Applications Processor Reference Manual
(IMX6DQRM) or i.MX 6Solo/6DualLite Applications Processor Reference Manual
(IMX6SDLRM).

15 Supporting Cameras with MIPI-CSI

15.1 Introduction
This chapter describes how to configure the MIPI-CSI cameras on the i.MX 7 and i.MX8.
For more information on MIPI-CSI, see the "Capture Overview" section in the "Video"
chapter in the i.MX Linux Reference Manual (IMXLXRM).

A variety of capture controllers are used and included to support different cameras. For
i.MX 8 separate device trees are required for the cameras for Omnivision OV5640 for

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
43 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

i.MX 8QuadMax and i.MX 8QuadXPlus, Omnivision OV2775 and Basler for the i.MX 8M
Plus, and AP1302+AR0144 for iMX 93.

For i.MX 8M Plus Basler camera, Basler supports and additional Yocto Project layer
enabling the Pylon API set and provides an additional kit to go with their camera module.
For more information on the Basler NXP software, go to https://www.baslerweb.com/nxp-
software".

16 Porting Audio Codecs

16.1 Introduction
This chapter describes how to port audio drivers from the i.MX reference board to a
custom board.

This procedure varies depending on whether the audio codec on the custom board is the
same as, or different from the audio codec on the NXP reference design. This chapter
first describes the common porting task and then various other porting tasks.

Common porting tasks for configuring audio codecs require ALSA customizations. To
use the ALSA Audio function, CPU DAI driver, CODEC DAI driver, and DAI LINK driver
machine driver) should be registered in the device tree, and accordingly there must be
three nodes in the board specified dts file. Device trees are located in arch/arm/boot/
dts for i.MX 6 and i.MX 7 and arch/arm64/boot/dts for all i.MX 8. An example of
detailed nodes can be found in arch/arm/boot/dts/imx6qdl-sabresd.dtsi:

/* DT binding for CPU DAI driver */
ssi2: ssi@0202c000 {
 fsl,mode = "i2s-slave";
 status = "okay";
};
/* DT binding for CODEC DAI driver */
codec: wm8962@1a {
 compatible = "wlf,wm8962";
 reg = <0x1a>;
 clocks = <&clks 169>;
 DCVDD-supply = <®_audio>; /* 1.8v */
 DBVDD-supply = <®_audio>; /* 1.8v */
 AVDD-supply = <®_audio>; /* 1.8v */
 CPVDD-supply = <®_audio>; /* 1.8v */
 MICVDD-supply = <®_audio>; /* 3.3v */
 PLLVDD-supply = <®_audio>; /* 1.8v */
 SPKVDD1-supply = <®_audio>; /* 4.2v */
 SPKVDD2-supply = <®_audio>; /* 4.2v */
 gpio-cfg = <
 0x0000 /* 0:Default */
 0x0000 /* 1:Default */
 0x0013 /* 2:FN_DMICCLK */
 0x0000 /* 3:Default */
 0x8014 /* 4:FN_DMICCDAT */
 0x0000 /* 5:Default */
 >;
};
/* DT binding for DAI LINK driver */
sound {
 compatible = "fsl,imx6q-sabresd-wm8962",
 "sl,imx-audio-wm8962";

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
44 / 56

https://www.baslerweb.com/nxp-software
https://www.baslerweb.com/nxp-software

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

 model = "wm8962-audio";
 si-controller = <&ssi2>;
 udio-codec = <&codec>;
 audio-routing =
 "Headphone Jack", "HPOUTL",
 "Headphone Jack", "HPOUTR",
 "Ext Spk", "SPKOUTL",
 "Ext Spk", "SPKOUTR",
 "MICBIAS", "AMIC",
 "IN3R", "MICBIAS",
 "DMIC", "MICBIAS",
 "DMICDAT", "DMIC";
 mux-int-port = <2>;
 mux-ext-port = <3>;
 hp-det-gpios = <&gpio7 8 1>; /*active low*/
 mic-det-gpios = <&gpio1 9 1>; /*active low*/
};

Note: For the specific meaning of the device tree binding, see the document located in
Documentation/devicetree/bindings/sound/.

16.1.1 Porting the reference BSP to a custom board (audio codec is the same as
in the reference design)

When the audio codec is the same in the reference design and the custom board, ensure
that the I/O signals and the power supplies to the codec are properly initialized to port the
reference BSP to the custom board.

Devicetree uses pin control group for I/O signals' configuration. There are some
examples in arch/arm/boot/dts/imx6qdl-sabresd.dtsi and the definitions of
those pin control groups can be found in arch/arm/boot/dts/imx6qdl.dtsi.

The essential signals for wm8962 codec are as follows:

• I2C interface signals
• I2S interface signals
• SSI external clock input to wm8962

The following table shows the required power supplies for the wm8962 codec.

Power Supply Name Definition Value

PLLVDD PLL supply 1.8 V

SPKVDD1 Supply for left speaker drivers 4.2 V

SPKVDD2 Supply for right speaker drivers 4.2 V

DCVDD Digital core supply 1.8 V

DBVDD Digital supply 1.8 V

AVDD Analog supply 1.8 V

CPVDD Charge pump power supply 1.8 V

MICVDD Microphone bias amp supply 3.3 V

Table 7. Required power supplies

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
45 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

16.1.2 Porting the reference BSP to a custom board (audio codec is different from
the reference design)

When adding support for an audio codec that is different from the one on the reference
design, create new ALSA drivers to port the reference BSP to a custom board. The ALSA
drivers plug into the ALSA sound framework, which enables the standard ALSA interface
to be used to control the codec.

The source code for the ALSA driver is located in the Linux kernel source tree at linux/
sound/soc. The following table shows the files used for the WM8962 codec support.

File name Definition

imx-pcm-dma.
c

• Shared by the stereo ALSA SoC driver, the esai driver, and the spdif driver.
• Responsible for preallocating DMA buffers and managing DMA channels.

fsl_ssi.c • Register the CPU DAI driver for the stereo ALSA SoC.
• Configures the on-chip SSI interfaces.

wm8962.c • Register the stereo codec and Hi-Fi DAI drivers.
• Responsible for all direct hardware operations on the stereo codec.

imx-wm8962.c • Machine layer code.
• Create the driver device.
• Register the stereo sound card.

Table 8.  Files for wm8962 codec support

Note: If using a different codec, adapt the driver architecture shown in the table above
accordingly. The exact adaptation depends on the codec chosen. Obtain the codec-
specific software from the codec vendor.

17 Porting HiFi 4

17.1 Porting HiFi 4 DSP framework
The HiFi 4 DSP framework is provided on specific i.MX 8QuadXPlus, i.MX 8QuadMax,
and i.MX 8M Plus SoC. Supporting HiFi 4 on a custom board is documented in the i.MX
DSP User's Guide (IMXDSPUG).

17.2 Porting Sound Open Firmware
Sound Open Firmware is an open source alternative to HiFi 4 DSP framework. It is
provided on specific i.MX 8QuadXPlus, i.MX 8QuadMax, and i.MX 8M Plus SoC.

For supporting the HiFi 4 on a custom board, see the SOF project documentation https://
thesofproject.github.io available in the public domain.

18 Porting Ethernet

18.1 Introduction
This chapter explains how to port the Ethernet controller driver to the i.MX 6 or i.MX 7
processor.

Using i.MX FEC standard driver makes porting simple. Porting needs to address the
following three areas:

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
46 / 56

https://thesofproject.github.io
https://thesofproject.github.io

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

• Pin configuration
• Source code
• Ethernet connection configuration

18.1.1 Pin configuration

The Ethernet Controller supports three different standard physical media interfaces: a
reduced media independent interface (RMII), a media independent interface (MII), and a
4-bit reduced RGMII.

In addition, the Ethernet Controller includes support for different standard MAC-PHY
(physical) interfaces for connection to an external Ethernet transceiver. The i.MX
Ethernet Controller supports the 10/100 Mbps MII, and 10/100 Mbps RMII. The i.MX
6Dual/6Quad/6Solo/6DualLite/6SoloX FEC also supports 1000 Mbps RGMII, which uses
4-bit reduced GMII operating at 125 MHz.

A brief overview of the device functionality is provided here. For details, see the Ethernet
chapter of the related Applications Processor Reference Manual.

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by
the EMAC. MII, RMII, and RGMII modes use a subset of the 18 signals. These signals
are listed in the following table.

DirectionEMAC pin
name

MII usage RMII usage RGMII usage

In/Out FEC_MDIO Management Data Input/
Output

Management
Data Input/
output

Management Data Input/Output

Out FEC_MDC Management Data Clock General output Management Data Clock

Out FEC_
TXD[0]

Data out, bit 0 Data out, bit 0 Data out, bit 0

Out FEC_
TXD[1]

Data out, bit 1 Data out, bit 1 Data out, bit 1

Out FEC_
TXD[2]

Data out, bit 2 Not Used Data out, bit 2

Out FEC_
TXD[3]

Data out, bit 3 Not Used Data out, bit 3

Out FEC_TX_
EN

Transmit Enable Transmit
Enable

Transmit Enable

Out FEC_TX_
ER

Transmit Error Not Used Not Used

In FEC_CRS Carrier Sense Not Used Not Used

In FEC_COL Collision Not Used Not Used

In FEC_TX_
CLK

ransmit Clock Not Used Synchronous clock reference
(REF_CLK, can connect from
PHY)

In FEC_RX_
ER

Receive Error Receive Error Not Used

Table 9. Pin usage in MII RMII and RGMII modes

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
47 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

DirectionEMAC pin
name

MII usage RMII usage RGMII usage

In FEC_RX_
CLK

Receive Clock Not Used Synchronous clock reference
(REF_CLK, can connect from
PHY)

In FEC_RX_
DV

Receive Data Valid Receive Data
Valid and
generate CRS

RXDV XOR RXERR on the
falling edge of FEC_RX_CLK.

In FEC_
RXD[0]

Data in, bit 0 Data in, bit 0 Data in, bit 0

In FEC_
RXD[1]

Data in, bit 1 Data in, bit 1 Data in, bit 1

In FEC_
RXD[2]

Data in, bit 2 Not Used Data in, bit 2

In FEC_
RXD[3]

Data in, bit 3 Not Used Data in, bit 3K

Table 9. Pin usage in MII RMII and RGMII modes...continued

Because i.MX 6 has more functionality than it has physical I/O pins, it uses I/O pin
multiplexing.

Every module requires specific pad settings. For each pad, there are up to eight muxing
options called ALT modes. For further explanation, see IOMUX chapter in the SoC
Application Processor Reference Manual.

Note:

Designs with an external Ethernet PHY may require an external pin configured as a
simple GPIO to reset the Ethernet PHY before enabling physical clock. Otherwise, some
PHYs fail to work correctly.

18.1.2 Ethernet configuration

This section describes the Ethernet driver bring-up issues. For more information about
Ethernet MAC configuration and using flow control in full duplex and more, check the
Ethernet chapter in the SoC Applications Processor References Manual.

Note the following during Ethernet driver bring-up:

• Configure all I/O pins used by MAC correctly in dts files.
• Check physical input clock and power, physical LED1 and LED2 lightened on if clock

and power input are ok.
• Make sure that MAC tx_clk has the right clock input. Otherwise, MAC cannot work.
• Make sure that the MAC address is set and valid.

By default, the Ethernet driver gets the MAC address from the Ethernet node property
"local-mac-address" in dts file. If dts does not have the property, the driver get the MAC
address from fuse. If the fuse does not burn the MAC address, the driver gets the MAC
address from the Ethernet registers set by the bootloader. If no legal MAC address
exists, MAC malfunctions. In this example, add the MAC address in the U-Boot command
line for kernel, such as "fec.macaddr=0x00,0x01,0x02,0x03,0x04,0x05" in bootargs.

The Ethernet driver and hardware are designed to comply with the IEEE standards for
Ethernet auto-negotiation.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
48 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

19 Porting USB

19.1 Introduction
The USB supports USB 2.0 on i.MX 6 and i.MX 7 families using the Chip IDEA hardware.
On all i.MX 8 families, the USB supports USB 2.0 and USB 3.0. This chapter describes
how to configure USB ports.

The number of USB ports vary on differnt boards.

There are up to four USB ports on i.MX 6Dual/6Quad/6Solo/6DualLite/6UltraLite/7Dual
serial application processors:

• USB OTG port
• USB H1 port
• USB HSIC1 port
• USB HSIC2 port

There are three USB ports on i.MX 8QuadMax:

• USB OTG port
• USB HSIC port
• USB 3.0 port

The following power supplies must be provided:

• 5V power supply for USB OTG VBUS
• 5V power supply for USB H1 VBUS
• 3.3V power supply for HSIC1/2 port
• 3.15 +/- 5%V power supply for USB OTG/H1 PHY. Because this power can be routed

from USB OTG/H1 VBUS, it indicates that if either of the power supplies is powered up,
the USB PHY is powered as well. However, if neither can be powered up, an external
power supply is needed.

For the USB OTG port, the following signals are used:

• USB_OTG_CHD_B
• USB_OTG_VBUS
• USB_OTG_DN
• USB_OTG_DP
• USBOTG_ID
• USBOTG_OC_B
• One pin is used to control the USB_OTG_VBUS signal.

The following signals, which need to be set with proper IOMUX, are multiplexed with
other pins.

• USBOTG_ID
• USBOTG_OC_B
• One pin used to control the USB_OTG_VBUS signal.

Note: For the USBOTG_ID pin, a pin that has an alternate USBOTG_ID function must
be used.

For USB H1 port, the following signals are used:

• USB_H1_VBUS

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
49 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

• USB_H1_DN
• USB_H1_DP
• USBH_OC_B

The following signals are multiplexed with other pins, and need to be set with proper
IOMUX:

• USBH_OC_B

For USB HSIC 1/2 port, the following signals are used:

• H2_STROBE
• H3_STROBE
• H2_DATA
• H3_DATA

The following signals are multiplexed with other pins, and need to be set with proper
IOMUX:

• H2_STROBE
• H3_STROBE
• H2_DATA
• H3_DATA

To secure HSIC connection, the USB HSIC port must be powered up before the USB
HSIC device.

19.2 USB overview for i.MX 6SLL and 6SoloX
There are up to three USB ports on i.MX 6 6SLL and 6SoloX serial application
processors:

• USB OTG1 port
• USB OTG2 port
• USB HSIC1 port

The following power supplies must be provided:

• 5V power supply for USB OTG1 VBUS
• 5V power supply for USB OTG2 VBUS
• 3.3V power supply for HSIC1 port
• 3.15 +/- 5%V power supply for USB OTG1/OTG2 PHY. Since this power can be

routed from USB OTG1/OTG2 VBUS, it indicates that if either of the power supplies is
powered up, the USB PHY is powered as well. However, if neither can be powered up,
an external power supply is needed.

For the USB OTG1 port, the following signals are used:

• USB_OTG1_CHD_B
• USB_OTG1_VBUS
• USB_OTG1_DN
• USB_OTG1_DP
• USBOTG1_ID
• USBOTG1_OC_B
• One pin is used to control the USB_OTG1_VBUS signal.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
50 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

The following signals, which need to be set with proper IOMUX, are multiplexed with
other pins.

Note: For the USBOTG_ID pin, a pin that has an alternate USBOTG_ID function must
be used.

• USBOTG_ID
• USBOTG_OC_B
• One pin used to control the USB_OTG_VBUS signal.

For USB OTG2 port, the following signals are used:

• USB_OTG2_VBUS
• USB_OTG2_DN
• USB_OTG2_DP
• USBOTG2_OC_B

The following signals are multiplexed with other pins, and need to be set with proper
IOMUX:

• USBOTG2_OC_B

For USB HSIC 1 port, the following signals are used:

• H2_STROBE
• H2_DATA

The following signals are multiplexed with other pins, and need to be set with proper
IOMUX:

• H2_STROBE
• H2_DATA

To secure HSIC connection, the USB HSIC port must be powered up before the USB
HSIC device.

19.3 USB overview for i.MX 8
There are two identical USB 3.0 ports on i.MX 8. Each USB 3.0 port supports both host
mode and device mode with USB 2.0 and USB 3.0 device/host.

The USB PHY power supply must be configured as follows.

Take the first port (USB1) as an example, the 3.3 V power supply must be provided for:

• USB1_VDD33
• USB1_VPH

The 0.9 V power supply must be provided for:

• USB1_VPTX
• USB1_VP
• USB1_DVDD

The following signals are used:

• USB1_DN
• USB1_DP
• USB2_ID
• USB1_RESREF

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
51 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

• USB1_RX_N
• USB1_RX_P
• USB1_TX_N
• USB1_TX_P
• USB1_VBUS

20 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause
license:

Copyright 2019 NXP Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

21 Revision History

21.1 Revision History
This table provides the revision history.

Revision number Date Substantive changes

L4.9.51_imx8qxp-
alpha

11/2017 Initial release

L4.9.51_imx8qm-
beta1

12/2017 Added i.MX 8QuadMax

L4.9.51_imx8mq-
beta

12/2017 Added i.MX 8M Quad

Revision history

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
52 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Revision number Date Substantive changes

L4.9.51_8qm-beta2/
8qxp-beta

02/2018 Added i.MX 8QuadMax Beta2 and i.MX 8QuadXPlus Beta

L4.9.51_imx8mq-ga 03/2018 Added i.MX 8M Quad GA

L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8M Quad GA release

L4.9.88_2.1.0_8mm-
alpha

06/2018 i.MX 8M Mini Alpha release

L4.9.88_2.2.0_8qxp-
beta2

07/2018 i.MX 8QuadXPlus Beta2 release

L4.9.123_2.3.0_
8mm

09/2018 i.MX 8M Mini GA release

L4.14.62_1.0.0_beta 11/2018 i.MX 4.14 Kernel Upgrade, Yocto Project Sumo upgrade

L4.14.78_1.0.0_ga 01/2019 i.MX6, i.MX7, i.MX8 family GA release

L4.14.98_2.0.0_ga 04/2019 i.MX 4.14 Kernel upgrade and board updates

L4.19.35_1.0.0 07/2019 i.MX 4.19 Beta Kernel and Yocto Project Upgrades

L4.19.35_1.1.0 10/2019 i.MX 4.19 Kernel and Yocto Project Upgrades

Linux LF5.4.3_1.0.0 03/2020 i.MX 5.4 Kernel and Yocto Project Upgrades

L5.4.3_2.0.0 04/2020 i.MX 5.4 Alpha release for i.MX 8M Plus and 8DXL EVK
boards

L5.4.24_2.1.0 06/2020 i.MX 5.4 Beta release for i.MX 8M Plus, Alpha2 for 8DXL,
and consolidated GA for released i.MX boards

L5.4.47_2.2.0 09/2020 i.MX 5.4 Beta2 release for i.MX 8M Plus, Beta for 8DXL,
and consolidated GA for released i.MX boards

L5.4.70_2.3.0 12/2020 i.MX 5.4 consolidated GA for release i.MX boards including
i.MX 8M Plus and i.MX 8DXL

L5.4.70_2.3.0 01/2021 Updated the command lines in Section "Running the Arm
Cortex-M4 image"

LF5.10.9_1.0.0 03/2021 Upgraded to Kernel 5.10.9

LF5.10.35_2.0.0 06/2021 Upgraded to Kernel 5.10.35

LF5.10.52_2.1.0 09/2021 Minor updates for the Linux LF5.10.52_2.1.0 release

LF5.10.72_2.2.0 12/2021 Upgraded the kernel to 5.10.72 and updated the BSP

LF5.15.5_1.0.0 03/2022 Upgraded the kernel to 5.15.5 and upgrade Yocto to
honister

LF5.15.32_2.0.0 06/2022 Upgraded to the 5.15.32 kernel, U-Boot 2022.04, and
Kirkstone Yocto

LF5.15.52_2.1.0 09/2022 Upgraded to the 5.15.52 kernel, and added the i.MX 93.

LF5.15.71_2.2.0 12/2022 Upgraded to the 5.15.71 kernel.

Revision history...continued

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
53 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

22 Legal information

22.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

22.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

22.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
54 / 56

mailto:PSIRT@nxp.com

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

Contents
1 Introduction ... 2
1.1 Introduction .. 2
1.2 References ...2
2 Porting Kernel ... 3
2.1 Introduction .. 3
2.1.1 How to build and load Kernel in standalone

environment ... 3
2.1.2 How to build and load Kernel in Yocto

Project ..5
3 Porting U-Boot .. 6
3.1 Introduction .. 6
3.1.1 How to build U-Boot in standalone

environment ... 6
3.1.2 How to build and load U-Boot in Yocto

Project ..8
3.2 Customizing the i.MX custom board code 9
3.2.1 Changing the DCD table for i.MX DDR

initialization .. 9
3.2.2 Booting with the modified U-Boot 9
3.2.3 Adding new driver initialization code to

board files .. 11
3.2.4 Further customization at system boot12
3.2.5 Customizing the printed board name12
3.3 Debugging ..13
3.3.1 Using JTAG tool for debugging13
3.3.2 Using printf for debugging 13
4 Porting System Controller Firmware13
4.1 Introduction .. 13
5 Configuring OP-TEE ... 13
5.1 Introduction .. 13
5.2 Boards supported .. 14
5.3 OP-TEE booting flow14
5.4 OP-TEE Linux support16
5.5 Memory protection ...16
5.5.1 OCRAM protection ...16
5.5.2 TZASC380 – RAM protection 17
5.5.3 Setting TZASC regions17
5.6 How to compile OP-TEE 19
5.7 Adding OP-TEE support for a new board 20
6 Configuring Arm Trusted Firmware21
6.1 Introduction .. 21
7 Memory Assignment ...21
7.1 Introduction .. 21
8 Configuring IOMUX ... 24
8.1 Introduction .. 24
8.1.1 Information for setting IOMUX controller

registers ... 24
8.1.2 Using IOMUX in the Device Tree - example 25
9 UART .. 26
9.1 Introduction .. 26
10 Adding SDHC .. 26
10.1 Introduction .. 26
11 Configuring SPI NOR ..28
11.1 Introduction .. 28
11.1.1 Selecting SPI NOR on the Linux image28
11.1.2 Changing the SPI interface configuration 29

11.1.3 Hardware operation ... 29
12 Connecting LVDS Panel 29
12.1 Introduction .. 29
12.1.1 Connecting an LVDS panel to the i.MX 8

and i.MX 93 ... 29
12.1.2 Connecting an LVDS panel to the i.MX 630
12.2 Enabling an LVDS channel with LDB30
12.3 LDB ports on i.MX 6 ..30
12.3.1 LDB on i.MX 6 for input parallel display

ports ...31
12.3.2 LDB on i.MX 6 Output LVDS ports 32
13 Connecting MIPI-DSI Panel 32
13.1 Introduction .. 32
14 Supporting Cameras with CSI 33
14.1 Introduction .. 33
14.1.1 Required software ..33
14.1.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI

interfaces layout .. 33
14.1.3 Configuring the CSI unit in test mode34
14.2 Adding support for a new CMOS camera

sensor .. 35
14.2.1 Adding a camera sensor entry in Kconfig 35
14.2.2 Creating the camera sensor file36
14.2.3 Adding a compilation flag for the new

camera ...38
14.3 Using the I2C interface38
14.3.1 Loading and testing the camera module40
14.4 Additional reference information 40
14.4.1 CMOS interfaces supported by the i.MX

6Dual/6Quad/6Solo/6DualLite 40
14.4.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI

parallel interface .. 42
14.4.3 Timing data mode protocols 43
15 Supporting Cameras with MIPI-CSI 43
15.1 Introduction .. 43
16 Porting Audio Codecs 44
16.1 Introduction .. 44
16.1.1 Porting the reference BSP to a custom

board (audio codec is the same as in the
reference design) ...45

16.1.2 Porting the reference BSP to a custom
board (audio codec is different from the
reference design) ...46

17 Porting HiFi 4 .. 46
17.1 Porting HiFi 4 DSP framework46
17.2 Porting Sound Open Firmware 46
18 Porting Ethernet ..46
18.1 Introduction .. 46
18.1.1 Pin configuration ..47
18.1.2 Ethernet configuration48
19 Porting USB ...49
19.1 Introduction .. 49
19.2 USB overview for i.MX 6SLL and 6SoloX 50
19.3 USB overview for i.MX 8 51
20 Note About the Source Code in the

Document ...52
IMXBSPPG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
55 / 56

NXP Semiconductors IMXBSPPG
i.MX Porting Guide

21 Revision History ..52
21.1 Revision History ...52
22 Legal information ..54

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 16 December 2022

	1 Introduction
	1.1 Introduction
	1.2 References

	2 Porting Kernel
	2.1 Introduction
	2.1.1 How to build and load Kernel in standalone environment
	2.1.2 How to build and load Kernel in Yocto Project

	3 Porting U-Boot
	3.1 Introduction
	3.1.1 How to build U-Boot in standalone environment
	3.1.2 How to build and load U-Boot in Yocto Project

	3.2 Customizing the i.MX custom board code
	3.2.1 Changing the DCD table for i.MX DDR initialization
	3.2.2 Booting with the modified U-Boot
	3.2.3 Adding new driver initialization code to board files
	3.2.4 Further customization at system boot
	3.2.5 Customizing the printed board name

	3.3 Debugging
	3.3.1 Using JTAG tool for debugging
	3.3.2 Using printf for debugging

	4 Porting System Controller Firmware
	4.1 Introduction

	5 Configuring OP-TEE
	5.1 Introduction
	5.2 Boards supported
	5.3 OP-TEE booting flow
	5.4 OP-TEE Linux support
	5.5 Memory protection
	5.5.1 OCRAM protection
	5.5.2 TZASC380 – RAM protection
	5.5.3 Setting TZASC regions

	5.6 How to compile OP-TEE
	5.7 Adding OP-TEE support for a new board

	6 Configuring Arm Trusted Firmware
	6.1 Introduction

	7 Memory Assignment
	7.1 Introduction

	8 Configuring IOMUX
	8.1 Introduction
	8.1.1 Information for setting IOMUX controller registers
	8.1.2 Using IOMUX in the Device Tree - example

	9 UART
	9.1 Introduction

	10 Adding SDHC
	10.1 Introduction

	11 Configuring SPI NOR
	11.1 Introduction
	11.1.1 Selecting SPI NOR on the Linux image
	11.1.2 Changing the SPI interface configuration
	11.1.3 Hardware operation

	12 Connecting LVDS Panel
	12.1 Introduction
	12.1.1 Connecting an LVDS panel to the i.MX 8 and i.MX 93
	12.1.2 Connecting an LVDS panel to the i.MX 6

	12.2 Enabling an LVDS channel with LDB
	12.3 LDB ports on i.MX 6
	12.3.1 LDB on i.MX 6 for input parallel display ports
	12.3.2 LDB on i.MX 6 Output LVDS ports

	13 Connecting MIPI-DSI Panel
	13.1 Introduction

	14 Supporting Cameras with CSI
	14.1 Introduction
	14.1.1 Required software
	14.1.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI interfaces layout
	14.1.3 Configuring the CSI unit in test mode

	14.2 Adding support for a new CMOS camera sensor
	14.2.1 Adding a camera sensor entry in Kconfig
	14.2.2 Creating the camera sensor file
	14.2.3 Adding a compilation flag for the new camera

	14.3 Using the I2C interface
	14.3.1 Loading and testing the camera module

	14.4 Additional reference information
	14.4.1 CMOS interfaces supported by the i.MX 6Dual/6Quad/6Solo/6DualLite
	14.4.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI parallel interface
	14.4.3 Timing data mode protocols

	15 Supporting Cameras with MIPI-CSI
	15.1 Introduction

	16 Porting Audio Codecs
	16.1 Introduction
	16.1.1 Porting the reference BSP to a custom board (audio codec is the same as in the reference design)
	16.1.2 Porting the reference BSP to a custom board (audio codec is different from the reference design)

	17 Porting HiFi 4
	17.1 Porting HiFi 4 DSP framework
	17.2 Porting Sound Open Firmware

	18 Porting Ethernet
	18.1 Introduction
	18.1.1 Pin configuration
	18.1.2 Ethernet configuration

	19 Porting USB
	19.1 Introduction
	19.2 USB overview for i.MX 6SLL and 6SoloX
	19.3 USB overview for i.MX 8

	20 Note About the Source Code in the Document
	21 Revision History
	21.1 Revision History

	22 Legal information
	Contents

