
IMXDSPUG
i.MX DSP User's Guide
Rev. LF5.15.71_2.2.0 —
16 December 2022

User guide

Document information
Information Content

Keywords i.MX, Linux, LF5.15.71_2.2.0

Abstract This document provides an overall introduction to the DSP including system
architecture, file organization, DSP-related toolchain, and so on.

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

1 Introduction

This document provides an overall introduction to the DSP including system architecture,
file organization, DSP-related toolchain, and so on. This document helps with the overall
understanding of the DSP-related code. Currently, the DSP is used to decode and
encode audio streams on the i.MX 8QuadXPlus, i.MX 8QuadMax, i.MX 8M Plus, and
i.MX 8ULP platforms.

The current DSP framework can support several clients. They support these codecs:

Decoder:

• AAC-LC
• AAC plus(HE-AAC/HE-AACv2)
• BSAC
• DAB+
• MP2
• MP3
• DRM
• SBC
• OGG
• AMR-NB
• AMR-WB
• WMA
• WAV
• OPUS

Encoder:

• SBC

2 System Architecture

Figure 1 and Figure 2 provide the overall system architecture of the DSP-related code.

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
2 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

GStreamer

DSP
Wrapper

User
space

Application

Kernel
space

/dev/rpmsgx /dev/rpmsg_
ctrlx

rpmsg
framework

Vritio framework

/unit_tests/DSP/dsp_test.out

Dma-buf

virtio

Android

Remote proc
frameworkRemoteproc

Mailbox

Hardware SOC
HIFI4MU

Figure 1. Software architecture for Cortex-A cores running Linux OS

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
3 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

Rpmsg-lite (openamp) DSP Framework/firmware

Execution

Memory

Library loader

Component

Dsp codec wrapper

Component

Dsp render

HIFI4 Core

Dsp codecs SAI/ESAI/DMA DAC

Figure 2. Software architecture for DSP processor

The DSP-related code includes the DSP framework, DSP remoteproc driver, DSP
wrapper, unit test, DSP codec wrapper, and DSP codec.

• The DSP framework is a firmware code which runs on the DSP core. The DSP driver
is used to load the DSP firmware into the memory and transfer messages between the
user space and the DSP framework.

• The remoteproc and RPMsg framework is used to transfer messages between the
Cortex-A cores and the DSP cores. The Message Unit (MU) is used to trigger interrupts

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
4 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

between the Cortex-A cores and DSP cores when messages are placed into the vring
buffer.

• The DSP wrapper and the unit test are the application code in the user space, which
uses the rpmsg_char interface to transfer messages between the DSP remoteproc
driver and the user space. In addition, the DSP wrapper is used to provide unified
interfaces for the GStreamer.

• The DSP codec provides the actual decoding and encoding functions.
• The DSP codec wrapper is a wrapping code for the DSP codec and provides unified

interfaces for the DSP framework.

2.1 Remote processor start
To start the firmware, use the following command.

Board $> echo start >/sys/class/remoteproc/remoteprocX/state

Note:

Some platform may have multiple remoteproc devices, so users need to check the name
of each remoteproc device by using cat > /sys/class/remoteproc/remoteproc
X/name to find the proper X for DSP.

The name of DSP is imx-dsp-rproc.

2.2 Remote processor stop
To stop the firmware, use the following command.

Board $> echo stop >/sys/class/remoteproc/remoteprocX/state

2.3 Resource table example

#define NUM_VRINGS 0x02
/* Place resource table in special ELF section */
__attribute__((section(".resource_table")))
const struct remote_resource_table resources = {
/* Version */
1,
/* NUmber of table entries */
NO_RESOURCE_ENTRIES,
/* reserved fields */
{
0,
0,
},
/* Offsets of rsc entries */
{
offsetof(struct remote_resource_table, user_vdev),
},
/* SRTM virtio device entry */
{
RSC_VDEV,
7,
0,
RSC_VDEV_FEATURE_NS,

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
5 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

0,
0,
0,
NUM_VRINGS,
{0, 0},
},
/* Vring rsc entry - part of vdev rsc entry */
{VDEV0_VRING_DA_BASE, VRING_ALIGN, RL_BUFFER_COUNT, 0, 0},
{VDEV0_VRING_DA_BASE + VRING_SIZE, VRING_ALIGN,
 RL_BUFFER_COUNT, 1, 0},
};

3 File Organization

The DSP framework, DSP wrapper, and unit test code are in the https://
github.com/NXP/imx-audio-framework repository. Use the following command to
clone the Git repository and check out the branch matching with the Linux release:

git clone https://github.com/NXP/imx-audio-framework.git --
recursive

The DSP remoteproc driver code belongs to the Linux OS kernel.

DSP codecs originated from Cadence are license-restricted: A license authorization is
required from NXP Marketing to access them in binary format.

3.1 DSP remoteproc driver
The driver is under the remoteproc framework. The remote processor (RPROC)
framework allows the different platforms/architectures to control (power on, load
firmware, power off) remote processors while abstracting the hardware differences. For
more details, refer to the below link.

https://www.kernel.org/doc/Documentation/remoteproc.txt

The DSP remoteproc driver code is in the Linux OS kernel. It includes the following files:

• drivers/remoteproc/imx_dsp_rproc.c
• drivers/rpmsg/rpmsg_char.c
• drivers/rpmsg/rpmsg_ctrl.c
• drivers/rpmsg/rpmsg_ns.c

3.2 DSP framework
The DSP framework code is in this folder:

• imx-audio-framework/dsp_framework
• imx-audio-framework/dsp_framework/rpmsg-lite

The rpmsg-lite code is copied from https://github.com/NXPmicro/rpmsg-lite.

3.3 DSP wrapper and unit test
The DSP wrapper and unit test are in these folders:

• imx-audio-framework/dsp_wrapper

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
6 / 25

https://github.com/NXP/imx-audio-framework
https://github.com/NXP/imx-audio-framework
https://www.kernel.org/doc/Documentation/remoteproc.txt
https://github.com/NXPmicro/rpmsg-lite

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

• imx-audio-framework/unit_test

3.4 Interface header files
The DSP-related code includes these four interface header files:

• imx-audio-framework/include/mxc_dsp.h
• imx-audio-framework/dsp_framework/plugins/audio_codec/dsp_codec_interface.h
• imx-audio-framework/dsp_wrapper/include/uni_audio/fsl_unia.h
• imx-audio-framework/dsp_wrapper/include/uni_audio/fsl_types.h

The mxc_dsp.h file is the same as the header file in the Linux OS kernel. This file
includes the interfaces and command definitions that are used by the DSP wrapper
and unit test. The dsp_codec_interface.h file wraps the DSP codec’s header files. It
includes unified interfaces and command definitions which can be used by the DSP
framework. The fsl_unia.h and fsl_types.h header files include the interfaces and
command definitions which can be used by GStreamer.

4 Building DSP Framework on Linux OS

Before you compile the DSP-related code, set up the DSP-related toolchains. The DSP
framework, DSP codec wrapper, and DSP codec use Xtensa development toolchain.

4.1 Installing Xtensa development toolchain
The Xtensa development toolchain consists of two components, which are installed
separately in the Linux OS, including:

• Configuration-independent Xtensa Tool
• Configuration-specific core files and Xtensa Tool

The configuration-independent Xtensa Tool is released by Cadence. For the current
code, the version of the tool is XtensaTools_RI_2020_4_linux.tgz, which is updated from
XtensaTools_RF_2016_4_linux.tgz. The two versions are compatible. You can download
this package from the Xtensa Xplorer.

The configuration-specific core files and the Xtensa Tool are released by NXP. The
following are the packages for each platform:

• i.MX 8QuadMax and i.MX 8QuadXPlus:
– hifi4_nxp_v4_3_1_prod_linux.tgz

– hifi4_nxp_v4_3_1_prod_win32.tgz

These packages can also be obtained from https://tensilicatools.com/platform/imx8qm/
or https://tensilicatools.com/platform/imx8qxp/.

• i.MX 8M Plus:
– hifi4_mscale_v1_0_2_prod_linux.tgz

– hifi4_mscale_v1_0_2_prod_win32.tgz

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
7 / 25

https://tensilicatools.com/platform/imx8qm/
https://tensilicatools.com/platform/imx8qxp/

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

These packages can also be obtained from https://tensilicatools.com/platform/i-
mx8mp/.

• i.MX 8ULP:
– hifi4_nxp2_s7_v1_1a_prod_linux.tgz

– hifi4_nxp2_s7_v1_1a_prod_win32.tgz

These packages can be obtained from https://tensilicatools.com/platform/i-mx-8ulp/.

When you have these two components, you can set up the toolchain as follows:

• Open the imx-audio-frameworkvfolder and execute these commands:

mkdir -p ./imx-audio-toolchain/Xtensa_Tool/tools mkdir -p ./
imx-audio-toolchain/Xtensa_Tool/builds

• Set up the configuration-independent Xtensa Tool:

cd imx-audio-toolchain/Xtensa_Tool
tar zxvf XtensaTools_RI_2020_4_linux.tgz -C ./tools

• Set up the configuration-specific core files and the Xtensa Tool:

cd imx-audio-toolchain/Xtensa_Tool
tar zxvf hifi4_nxp_v4_3_1_prod_linux.tgz -C ./builds

• Install the Xtensa development toolchain:

cd imx-audio-toolchain/Xtensa_Tool
./builds/RI-2020.4-linux/hifi4_nxp_v4_3_1_prod/install --
xtensa-tools ./tools/RI-2020.4-linux/XtensaTools --registry ./
tools/RI-2020.4-linux/XtensaTools/config

• Set the PATH environment variable:

export PATH=./imx-audio-toolchain/Xtensa_Tool/tools/RI-2020.4-
linux/XtensaTools/bin:$PATH

• Set the LM_LICENSE_FILE environment variable.

The Xtensa development tools use FLEXlm for license management. The FLEXIm
licensing is required for tools such as the Xtensa Xplorer, TIE Compiler, and Xtensa
C and C++ compiler. If you want to use a floating license, install the FLEXIm license
manager and set the LM_LICENSE_FILE environment variable. If there is any problem,
you can find useful information in the Xtensa Development Tools Installation Guide
User’s Guide.doc document provided by Cadence.

After the above steps, the Xtensa development toolchain is set up successfully. In
addition, the Xtensa Tools and additional tools are provided as 32-bit (x86) binaries.
They are supported on 32-bit (x86) systems, and also on recent 64-bit (x86-64) systems
that have appropriate 32-bit compatibility packages installed. If you use a 64-bit system
(for example; Ubuntu 16.04), install the 32-bit compatibility packages first. Use these
commands:

sudo apt-get install lib32ncurses5 lib32z1 sudo dpkg --add-
architecture i386

sudo apt-get install libc6:i386 libstdc++6:i386

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
8 / 25

https://tensilicatools.com/platform/i-mx8mp/
https://tensilicatools.com/platform/i-mx8mp/
https://tensilicatools.com/platform/i-mx-8ulp/

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

4.2 Building DSP framework
After installing the DSP-related toolchains on your Linux OS server, you can compile
the DSP framework. Execute the “make” command in the imx-audio-framework folder to
compile the DSP framework. This way also builds the DSP wrapper and unit test. If you
want to compile the DSP framework separately, see the README file in the imx-audio-
framework folder. After the compiling process, you can find the binary files in the imx-
audio-framework/release folder.

For the DSP framework, different commands generate different frameworks for different
platforms:

• imx-audio-framework/release/hifi4_imx8qmqxp.bin
• imx-audio-framework/release/hifi4_imx8mp.bin
• imx-audio-framework/release/hifi4_imx8ulp.bin

By default, the command generates the hifi4_imx8qmqxp.bin file. With the
“PLATF=imx8m” attribute, it generates the hifi4_imx8mp.bin file. With the “PLATF=
imx8ulp” attribute, it generates the hifi4_imx8ulp file. With the “DEBUG=1” attribute, it
generates the firmware with the debug information. You can see the debug information
using UART. For details, see Section Section 4.3.

4.3 DSP DEBUG
Building the DSP framework with the extra “DEBUG=1” attribute, the DSP can print the
debug information using the UART console. To enable this feature, do some changes in
the kernel and in the DSP side. For a different platform, prepare a different board and
different changes. The following sections describe what need to change for different
platforms.

4.3.1 Enabling DSP debug on i.MX 8M Plus

Enable the UART for DSP print debug information in the i.MX 8M Plus board and add the
UART clock in the DTS file and the UART module driver in the DSP.

1. Add the UART clock and pinctrl in the DTS.
Add the UART clock and pinctrl in the DSP node as follows:

&dsp {
compatible = "fsl,imx8mp-dsp-v1"; memory-region =
 <&dsp_reserved>; reg = <0x0 0x3B6E80000x0 0x88000>;
pinctrl-0 = <&pinctrl_uart4>;
clocks = <&audiomix_clk IMX8MP_CLK_AUDIOMIX_OCRAMA_IPG>,
…
…
<&audiomix_clk IMX8MP_CLK_AUDIOMIX_ASRC_IPG>,
<&clk IMX8MP_CLK_UART4_ROOT>,
<&clk IMX8MP_CLK_UART4_ROOT>;
clock-names =
"ocram", "audio_root", "audio_axi", "core", "debug", "mu2",
 "sdma_root", "sai_ipg", "sai_mclk","asrc_ipg", "uart_ipg",
 "uart_per";
…
fsl,dsp-firmware = "imx/dsp/hifi4.bin"; status = "okay";
};

Then generate the DTB file, replacing the old one.
2. Add the UART driver in the DSP.

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
9 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

By default, the DSP side already supports enabling the UART. Build the DSP
firmware with the “DEBUG=1” attribute to generate the hifi4_imx8mp.bin file, rename
it to hifi4.bin, and copy it to the board.

3. Run the DSP and print the debug information.
Run one instance and the following debug information is printed on the fourth serial
COM port:

DSP Start.....
core initialized
Response queue: write = 0x0 / read = 0x0 Command queue: write
 = 0x10001 / read = 0x0 ext_msg: [client:0]:(80008004,4,1000)
 Response queue: write = 0x0 / read = 0x0 Command queue:
 write = 0x10001 / read
= 0x10001
alloc size out: 943feff8 4104 avail mem: 16773104 Response
 queue: write = 0x0 / read = 0x0
Response[client: 0]:(80048000,4,1000)
Command queue: write = 0x10001 / read = 0x10001 Response
 queue: write = 0x10001 / read = 0x10001
Command queue: write = 0x20002 / read = 0x10001 ext_msg:
 [client: 0]:(80008004,80000001,15) Response
queue: write = 0x10001 / read = 0x10001

4.3.2 Enabling DSP DEBUG on i.MX QuadXPlus

To enable the DSP DEBUG on the i.MX QuadXPlus platform, you need only one base
board, as shown in Figure 3.

Figure 3. i.MX8-8X-BB

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
10 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

Connect the RS-232 to a PC and connect the base board to the i.MX QuadXPlus board.

1. Add the UART clock and pinctrl in the DTS.
Add the UART clock and pinctrl in the DSP node as follows:

dsp: dsp@596e8000 {
compatible = "fsl,imx8qxp-dsp"; reg = <0x596e8000 0x88000>;
clocks = ...
<&uart2_lpcg 1>, <&uart2_lpcg 0>; clock-names = ...
 "uart_ipg",
"uart_per";
assigned-clocks = <&clk IMX_SC_R_UART_2 IMX_SC_PM_CLK_PER>;
assigned-clock-rates = <80000000>;
...
status = "disabled";
};

Then build the image instead of the old one.
2. Modify the DSP side.

The DSP supports the LPUART driver in the dsp_framework/arch/peripheral.c file.
Change the LPUART_BASE from 0x5a090000 to 0x5a080000:

diff --git a/dsp_framework/arch/board.h b/dsp_framework/arch/
board.h
index 9e04e64e821c..75a15fd09f0d 100644
--- a/dsp_framework/arch/board.h
+++ b/dsp_framework/arch/board.h
@@ -138,7 +138,7 @@ enum {
#define MUB_BASE (MU_PADDR)
#define SYSTEM_CLOCK (600000000UL)
-#define LPUART_BASE (0x5a090000)
+#define LPUART_BASE (0x5a080000)
#define UART_CLK_ROOT (80000000)
#endif /*PLATF_8ULP */

Then build the DSP with “DEBUG=1” and copy it to the board.
3. Run the DSP and print the debug information.

This part is the same as on the i.MX 8M Plus board. Select the proper serial COM
port and you will see the debug information. The debug information cannot print on
the i.MX 8QuadMax board, because the UART is taken.

5 Building DSP Framework on Windows OS

The DSP framework can be built also on Windows OS. The Xplorer software can be used
to build the DSP framework on Windows OS. This chapter explains how to use Xplorer
to build the DSP framework. First, install the Xtensa Xplorer IDE. You can download the
Xplorer IDE and Xplorer license form Cadence.

Note: Log into the XPG Cadence website to download installers for the Xplorer IDE,
Xtensa tools, and so on. For NXP internal use, contact the DSP owner to get the NXP
common XPG login credentials. The Xplorer 7.0.8 version is used as an example and its
default installation folder is C:\usr\xtensa.

5.1 Adding new configuration packages
Currently, the hifi4_nxp_v4_3_1_prod_win32.tgz configuration package, which is updated
from the hifi4_nxp_v3_3_1_prod_win32.tgz configuration package, is used to build the
DSP framework on Windows OS. Add this configuration package into Xplorer before

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
11 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

building the code. You can get this configuration package and the corresponding memory
map linker files from NXP. The required files are as following:

• hifi4_nxp_v4_3_1_prod_win32.tgz
• memmap/mainsim folder

When you have the DSP configuration package, you can add a new configuration
package into Xplorer as follows:

1. Download and install Xtensa Tools for Xplorer.
If you do not have the Xtensa Tools, you shall download and install it using Xplorer.
Currently, the Xtensa Tool that we use is XtensaTools_RI_2020_4_win32.tgz. You
can first open the Xplorer software and click the “RI-2020.4” option in the “XPG
View” panel and select the “tools->Xtensa Tools->Xtensa Tools 14.04 for Windows”
option. After you select it, you can click the download button to start the downloading
process.

Figure 4. “XPG View” panel
After the download finishes, right-click the “Xtensa Tools 14.0.4 for Windows” option
and select the “Install Xtensa Tools…” option in the new dialog. The installing process
takes some time.
The Xtensa Tool is installed successfully after this step. You can see this folder in the
Xplorer’s installing folder if everything is OK:
C:\usr\xtensa\XtDevTools\install\tools\RI-2020.4-win32

2. Add the configuration package into Xplorer.
When you have the hifi4_nxp_v4_3_1_prod_win32.tgz package from NXP, you can
add it into Xplorer. The first thing to do is to create a folder called build in Xplorer’s
installing path if the build folder is not created already. The total path after this
operation is as follows:
C:\usr\xtensa\XtDevTools\downloads\RI-2020.4\build

3. Place the hifi4_nxp_v4_3_1_prod_win32.tgz package into the new build folder.
C:\usr\xtensa\XtDevTools\downloads\RI-2020.4\build\
hifi4_nxp_v4_3_1_prod_win32.tgz

4. After you have performed the above steps, you can click the refresh button in the
“XPG View” panel and find the “build” option in this panel.

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
12 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

Figure 5. The “build” option
5. Right-click the build->hifi4_nxp_v4_3_1_prod_win32.tgz package and click the

“Install Build…” option in the new dialog to start the installing process. This takes
some time. You can see the following folder in the Xplorer’s installing folder if
everything is OK.
C:\usr\xtensa\XtDevTools\install\builds\RI-2020.4-win32\hifi4_nxp_v4_3_1_prod

6. Add the new memmap linker files into Xplorer.
After you add the hifi4_nxp_v4_3_1_prod_win32.tgz configuration package into
Xplorer, you can add the new memmap linker files.
After you complete the above three steps, the new configuration package is
successfully added into Xplorer.

5.2 Creating the DSP framework Xplorer project
The DSP framework project must be created before using Xplorer to build it. The
DSP framework code is in the imx-audio-framework package: imx-audio-framework
\dsp_framework

You can create the DSP framework as follows:

1. Open Xplorer and click the “File->New->Xtensa C/C++ project” option in the menu
bar. You will see this dialog:

Figure 6. New Xtensa project
2. Enter the project name and import DSP framework source code into the “New Xtensa

C/C++ Project” dialog. Then click the “Finish” button.

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
13 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

Figure 7. The “Finish” button
After the above two steps, the DSP framework project is successfully created. You
can see the project in Figure 7.

Figure 8. DSP framework project

5.3 Building DSP framework
When you created the DSP framework project, you can build its code. Choose the
memmap linker files before the building process.

1. Right-click the name of the DSP framework project in the “Project Explorer” panel
and choose the “Build Properties…” option. You will see the “Build Properties for
dsp_framework” dialog. The dialog is shown in Figure 9.

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
14 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

Figure 9. “Build Properties” dialog
2. Click “Addl compiler” to add options. Add the “-DPLATF_8M” attribute to build the

firmware for i.MX 8M Plus. Add the "-DPLATF_8ULP" attribute to build the firmware
for i.MX 8ULP. Add the “-DDEBUG” attribute to build the firmware with the print debug
information.

3. Click the “Linker” option and configure the custom LSP path as shown in Figure 10.
Click the “OK” button to finish this process.

Figure 10. “Linker” option
4. When you configured the memmap linker files, you can choose the dsp_framework

project and the required DSP configuration to start the building process. The
configuration is as follows:

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
15 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

Figure 11. Build process configuration
5. Click the “Build Active->Build Active” option to start building the DSP framework. This

takes some time.
a. In "Build -> Exclude", right-click the folder or files to exclude C files.

rpmsg_lite/lib/rpmsg_lite/porting/
rpmsg_lite/lib/rpmsg_lite/rpmsg_queue.c
common/
dsp_wrapper/
unit_test/
testxa_af_hostless/test/src/
testxa_af_hostless/test/plugins/cadence/ (except
 "pcm_gain")
libxa_af_hostless/algo/host-apf/
libxa_af_hostless/algo/host-dpf/src/xf-main.c
libxa_af_hostless/algo/host-dpf/src/xf-msgq1.c

b. In "Auto Includes Settings -> Manage", right click the folder to exclude headers.
Change the "Auto Includes" to "Manual". remove the following files:
libxa_af_hostless/include/sysdeps/freertos/include
libxa_af_hostless/include/sysdeps/linux/include

6. After performing the above steps, you get the binary file called dsp_framework (which
is the firmware of the DSP) in the following folder.
C:\usr\xtensa\Xplorer-8.0.13-workspaces\workspace\dsp_framework\bin\hifi4_nxp_
v4_3_1_prod\Debug\dsp_framework
If you want to use this binary file to run on a real board, rename the dsp_framework
binary file as
hifi4.bin and place it to a right place of “rootfs”.

6 Building DSP Wrapper and Unit Test

Before you compile the DSP wrapper and the unit test, set up the related toolchain. The
DSP wrapper and the unit test use the Linaro compiler toolchain for the Yocto platform.

6.1 Installing Linaro compiler toolchain
Currently, the Yocto toolchain is used to compile the DSP wrapper and the unit test’s
code for the Yocto platform. Use source environment-setup-armv8a-poky-
linux to set up the yocto gcc toolchain. If you want to successfully build the code, you
can get more information from the Makefile file of the DSP wrapper and the unit test.

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
16 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

6.2 Building the code
When the Linaro toolchain is successfully installed on your server, you can compile the
DSP-related code. You can execute the “make” command in the imx-audio-framework
folder to compile the DSP wrapper and the unit test. If you want to compile them
separately, see the README file in the imx-audio-framework folder. After the compiling
process, you can find the binary files in the imx-audio-framework/release folder.

For the DSP wrapper:

• imx-audio-framework/release/wrapper/lib_dsp_wrap_arm_elinux.so

For the unit test:

• imx-audio-framework/release/exe/dsp_test

7 Usage of DSP Binary Files

7.1 Getting DSP binary files
You can get the DSP binary files of the DSP framework, DSP wrapper, and unit test
directly from NXP or compile the source code to produce them yourself. You can also
obtain DSP codec binary files directly from NXP. DSP codecs originated from Cadence
are license-restricted: A license authorization is required from NXP Marketing to access
them.

The location for all prebuilt binaries not requiring any NXP Marketing authorization is on
the Yocto mirror server.

7.2 Binary files in Linux OS rootfs
To run these binary files, place them into the Linux OS rootfs. The location of the DSP
framework is determined by the DSP remoteproc driver, so you shall keep it in the
specified place. The location of the DSP wrapper is determined by the GStreamer and
you shall keep it in the specified place. You can change the location of the unit test. The
binary files are in these folders:

• The unit test is here (default path):
/unit_tests/DSP/dsp_test.out

• The DSP framework is here:
/lib/firmware/imx/dsp/hifi4.bin

• The DSP wrapper is here:
/usr/lib/imx-mm/audio-codec/wrap/lib_dsp_wrap_arm_elinux.so

• You can keep the DSP codec wrapper and the DSP codec in these folders of the Linux
OS rootfs (These libraries require authorization from NXP Marketing):
/usr/lib/imx-mm/audio-codec/dsp/lib_dsp_codec_wrap.so
/usr/lib/imx-mm/audio-codec/dsp/lib_dsp_mp3_dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib_dsp_aac_dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib_dsp_bsac_dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib_dsp_dabplus_dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib_dsp_drm_dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib_dsp_mp2_dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib_dsp_sbc_dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib_dsp_sbc_enc.so

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
17 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

• Add DSP NXP codec wrapper library (WMA10 library requires authorization from NXP
Marketing, others are on the Yocto Mirror Server):
/usr/lib/imx-mm/audio-codec/dsp/lib_mp3d_wrap_dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib_aacd_wrap_dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib_vorbisd_wrap_dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib_wma10d_wrap_dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib_nbamrd_wrap_dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib_wbamrd_wrap_dsp.so

7.3 Unit test and playing

7.3.1 dsp_test

After placing the binary files into the correct location of the rootfs, you can decode or
encode audio streams directly using the unit test binary file. To decode one *.mp3 file,
use this command:

./dsp_test -f1 -d16 -itest.mp3 -otest.pcm
dsp_test.out -f3 -r32 -t49 -d16 -ithetest_48000ps_chbr32.nac
 -othetest_48000ps_chbr32.pcm dsp_test.out -f4 -il2-fl11.mp2 -
ol2-fl11.pcm

For more information about the dsp_test, use this command:

./dsp_test

To play one music file using the GStreamer and DSP wrapper, use this command:

gplay-1.0 test.mp3

The dsp_test also supports compress playback. This feature is now usable on i.MX
8MP board, after this change the dtb filename is: imx8mp-evk-dsp.dtb, you can hear
the sound by running the command:

./dsp_test -f1 -c33 -d16 -isyz.mp3

8 Building Codec Wrapper and Codec Library

The library of the DSP codec wrapper and DSP codec is the loadable library. This
chapter describes how to make the loadable library for the DSP.

The DSP loadable library is available as two different types: a fixed-location overlay and
a position-independent library.

• For a fixed-location overlay, you can load the code into a predetermined location in the
memory.

• For a position-independent library, you can load the code at an address determined
during runtime.

You can link the loadable library using a special LSP named “piload” or “pisplitload” (see
the Xtensa Linker Support Packages (LSPs) Reference Manual). The binary files that are
used by the DSP framework belong to the position-independent library, so this chapter

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
18 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

briefly discusses how to generate the position-independent library. For more detailed
information, see Chapter 4 of the Xtensa System Software Reference Manual.

A position-independent library can be loaded and run at any address that supports both
code and data, like a normal system RAM. Alternatively, you can use the “pisplitload”
LSP to load the code and data into separate memory blocks located in local RAMs. The
library location must be decided before the runtime.

The Xtensa development toolchain must be installed before making a loadable library.
After that, you can follow the steps below.

8.1 Finding custom LSPs
The loadable libraries must be linked to a custom linker support package. For the
position-independent libraries, you do not have to generate or edit an LSP. Instead, you
must link your position-independent library using the standard “pisplitload” LSP that is
provided as a part of your configuration.

8.2 Source code modifying and compiling
The API only allows the main program to directly access a single symbol in the library,
the “_start” symbol. The library cannot access any symbols in the main program directly.
Any other symbol’s address must be passed to or from the library as an argument to the
“_start” function. This code is an example:

#include <stdio.h>
/* declare a printf function pointer */ int (*printf_ptr)(const
 char *format, …);
/* replace all calls to printf with calls through the pointer
 */ #define printf printf_ptr
/* This is the function provided by the library */ char *
 interface_func(unsigned int input)
{
printf(“executing function interface_func\n”); 13
return “this is string returned from interface_func”;
}
void * _start(int (*printf_func)(const char *format, …))
{
printf_ptr = printf_func;
/* The main application wants to call the function
 interface_func, but can’t directly reference it. Therefore,
 this function returns a pointer to it, and the main
 application will be able to call it via this pointer. */
return interface_func;
}

The main application calls the “_start” function, passes a pointer to “printf”, and
takes a pointer to interface_func() in return. If the library and the main program must
communicate a value of more than one symbol, then the “_start” function call can return
arrays of pointers, rather than single pointers.

After finishing your source code, you can use “xt-xcc” of the Xtensa development
toolchain to compile the code. Because the position-independent libraries can be loaded

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
19 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

at any address, make sure that the code in the library is position-independent using the “-
fpic” flag along with your normal compile options, as shown here:

xt-xcc -O3 -o library.o -c library.c

8.3 Linking the library code
In this step, link the library code into a loadable library using the appropriate LSP. For
position-independent library, you can use this command:

xt-xcc -mlsp=pisplitload -Wl,--shared-pagesize=128 -Wl,-pie -
lgcc -lc -o library.so library.o

After this command, you can get a position-independent library with the code and data
loadable separately. If you want to get a contiguous position-independent library, you can
use this command.

xt-xcc -mlsp=piload -Wl,--shared-pagesize=128 -Wl,-pie -lgcc -
lc -o library.so library.o

After the linking stage, you can get a loadable library which can be loaded by the
DSP framework. The current DSP framework only supports loading the code and data
sections separately.

9 Memory Allocation for DSP

The DSP firmware is loaded into the memory by the DSP remoteproc driver. The
loading address is defined by the memory map linker files of the Xtensa development
toolchain. You may change the loading address based on the memory map list of i.MX
8QuadXPlus, as shown in Table 1.

Cortex-A35/Cortex-M4 DSP Content

— 0x80000000 - 0x806FFFFF Reserved (cannot be used)

0x59700000 - 0x5971FFFF 0x80700000 - 0x8071FFFF DSP OCRAM-system RAM

0x59720000 - 0x5973FFFF 0x80720000 - 0x8073FFFF DSP OCRAM-system ROM

— 0x80740000 - 0x80FFFFFF Reserved (cannot be used)

0x80700000 - 0x8073FFFF — Linux OS kernel (not visible
from DSP)

0x81000000 - 0x9FFFFFFF 0x81000000 - 0x9FFFFFFF SDRAM

Table 1. Memory allocation on i.MX8 QuadXPlus

Note: 0x80700000 - 0x8071FFFF in the DDR range and without the ocram aliasing,
the HiFi4 can have access to this DDR addresses. Once the aliasing is enabled, the
HiFi4 does not access the DDR, but its dedicated ORCAM is at this address range. (The
reason is that every 512 MB in 4 GB space has dedicated cache attribute).

Currently, the Linux OS kernel reserves the memory for the DSP in the SDRAM
separately. The range of the reserved memory is 0x92400000 ~ 0x943fffff (32 MB). You

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
20 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

may set this reserved memory by changing the imx8x-mek.dtsi file in the linux-kernel/
arch/arm64/boot/dts/freescale folder.

reserved-memory {
…………….
dsp_reserved: dsp@92400000 {
reg = <0 0x92400000 0 0x1000000>;
no-map;
};
dsp_reserved_heap: dsp_reserved_heap {
reg = <0 0x93400000 0 0xef0000>;
no-map;
};
dsp_vdev0vring0: vdev0vring0@942f0000 {
reg = <0 0x942f0000 0 0x8000>;
no-map;
};
dsp_vdev0vring1: vdev0vring1@942f8000 {
reg = <0 0x942f8000 0 0x8000>;
no-map;
};
dsp_vdev0buffer: vdev0buffer@94300000 {
compatible = "shared-dma-pool";
reg = <0 0x94300000 0 0x100000>;
no-map;
};
………….....
}

The DSP remoteproc driver splits the current reserved memory into five parts. One part
is used to store the DSP firmware and the other part is a scratch memory for the DSP
framework. The detailed information about these five parts is shown in Table 2.

0x92400000 - 0x933FFFFF DSP firmware (16 MB)

0x93400000 - 0x942EFFFFF Scratch memory (16 MB)

0x942F0000 - 0x942F7FFF vdev0vring0

0x942F8000 - 0x942FFFFF vdev0vring1

0x94300000 - 0x943FFFFF vdev0buffer

Table 2. Five memory parts

Note: If you make changes in the memory map linker files of the Xtensadevelopment
toolchain, make the related changes for the DSP remoteproc driver.

Note: For i.MX 8ULP and i.MX 8M Plus memory allocation, check the DTS of each
platform.

10 NatureDSP Library Support

NatureDSP Library is an extensive library, containing the most commonly used signal
processing functions: FFT, FIR, vector, matrix, and common mathematics. API and
programing guide is in hifi4_library/doc/NatureDSP_Signal_Library_
Reference_HiFi4.pdf, and performance data is in hifi4_library/doc/
NatureDSP_Signal_Library_Performance_HiFi4.pdf.

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
21 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

NatureDSP Library package is license restricted on the i.MX platform. License
authorization is required from the NXP marketing for the users to access the source
code.

NatureDSP Library supported on the i.MX platform uses the same architecture as DSP
framework. It is a separate firmware.

Firmware location: rootfs: /lib/firmware/imx/dsp/ hifi4_naturedsp.bin

Unit test location: rootfs: /unit_tests/DSP/naturedsp_test

How to test:

Find the remoteproc instance for DSP, because we may have other remoteproc for the
Cortex-M core

root@imx8ulpevk:~# cat /sys/class/remoteproc/remoteproc1/name
imx-dsp-rproc

Change the default firmware for DSP

root@imx8ulpevk:~# echo imx/dsp/hifi4_naturedsp.bin > /sys/
class/remoteproc/remoteproc1/firmware

Run unit test:

root@imx8ulpevk:~# /unit_tests/DSP/naturedsp_test -func
root@imx8ulpevk:~# /unit_tests/DSP/naturedsp_test -mips

11 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause
license:

Copyright 2019 NXP Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
22 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

12 Revision History

The following table provides the revision history for this document.

Revision number Date Substantive changes

0 06/2018 Initial release

1 01/2019 Added details about using the sound card feature that
allows users to play mp3 files over ALSA compressed
interface.

2 05/2020 Updated sections Section 1, Section 4.2, and
Section 7.2.

3 09/2020 Added support for the i.MX8 MP board. Added support
for *.wav files playback by the ALSA compressed
interface. Added details about DSP framework
building.

4 01/2021 Updated the version of the toolchain. Added details
about the firmware generation and the LPA.

5 09/2021 • Added 8ulp support
• Removed the cplay and LPA support
• Added Section 2.1, Section 2.2, and Section 2.3
• Updated Section 2, Section 3.2, Section 3.1,

Section 4.3.1, Section 4.3.2, and Section 9
• Updated Figure 1
• Added Figure 2
• Changed "DSP driver" to "DSP remoteproc driver" in

Section 3

6 11/2021 • Added OPUS decoder in Section 1
• Updated Figure 10
• Added note in Section 5.3
• Added compress playback feature for i.MX 8MP

board in Section 7.3.1
• Removed the path of configurable memory map file

from Section 4.1

LF5.10.72_2.2.0 12/2021 This document is published with the Linux software
document package from this release.

LF5.15.5_1.0.0 03/2022 Updated the Section "File organization" and added
Appendix B.

LF5.15.32_2.0.0 06/2022 Upgraded to the 5.15.32 kernel, U-Boot 2022.04, and
Kirkstone Yocto

LF5.15.52_2.1.0 09/2022 Upgraded to the 5.15.52 kernel, and added the i.MX
93.

LF5.15.71_2.2.0 12/2022 Upgraded to the 5.15.71 kernel.

Table 3. Revision history

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
23 / 25

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

13 Legal information

13.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

13.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

13.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

IMXDSPUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
24 / 25

mailto:PSIRT@nxp.com

NXP Semiconductors IMXDSPUG
i.MX DSP User's Guide

Contents
1 Introduction ... 2
2 System Architecture ... 2
2.1 Remote processor start 5
2.2 Remote processor stop 5
2.3 Resource table example5
3 File Organization ...6
3.1 DSP remoteproc driver6
3.2 DSP framework ... 6
3.3 DSP wrapper and unit test 6
3.4 Interface header files ...7
4 Building DSP Framework on Linux OS 7
4.1 Installing Xtensa development toolchain7
4.2 Building DSP framework9
4.3 DSP DEBUG ... 9
4.3.1 Enabling DSP debug on i.MX 8M Plus 9
4.3.2 Enabling DSP DEBUG on i.MX QuadXPlus10
5 Building DSP Framework on Windows OS 11
5.1 Adding new configuration packages 11
5.2 Creating the DSP framework Xplorer

project .. 13
5.3 Building DSP framework14
6 Building DSP Wrapper and Unit Test 16
6.1 Installing Linaro compiler toolchain16
6.2 Building the code ...17
7 Usage of DSP Binary Files17
7.1 Getting DSP binary files 17
7.2 Binary files in Linux OS rootfs 17
7.3 Unit test and playing ..18
7.3.1 dsp_test ... 18
8 Building Codec Wrapper and Codec

Library .. 18
8.1 Finding custom LSPs19
8.2 Source code modifying and compiling 19
8.3 Linking the library code 20
9 Memory Allocation for DSP20
10 NatureDSP Library Support 21
11 Note About the Source Code in the

Document ...22
12 Revision History ..23
13 Legal information ..24

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 16 December 2022

	1 Introduction
	2 System Architecture
	2.1 Remote processor start
	2.2 Remote processor stop
	2.3 Resource table example

	3 File Organization
	3.1 DSP remoteproc driver
	3.2 DSP framework
	3.3 DSP wrapper and unit test
	3.4 Interface header files

	4 Building DSP Framework on Linux OS
	4.1 Installing Xtensa development toolchain
	4.2 Building DSP framework
	4.3 DSP DEBUG
	4.3.1 Enabling DSP debug on i.MX 8M Plus
	4.3.2 Enabling DSP DEBUG on i.MX QuadXPlus

	5 Building DSP Framework on Windows OS
	5.1 Adding new configuration packages
	5.2 Creating the DSP framework Xplorer project
	5.3 Building DSP framework

	6 Building DSP Wrapper and Unit Test
	6.1 Installing Linaro compiler toolchain
	6.2 Building the code

	7 Usage of DSP Binary Files
	7.1 Getting DSP binary files
	7.2 Binary files in Linux OS rootfs
	7.3 Unit test and playing
	7.3.1 dsp_test

	8 Building Codec Wrapper and Codec Library
	8.1 Finding custom LSPs
	8.2 Source code modifying and compiling
	8.3 Linking the library code

	9 Memory Allocation for DSP
	10 NatureDSP Library Support
	11 Note About the Source Code in the Document
	12 Revision History
	13 Legal information
	Contents

