Discover the Power of ‘e’

Comparing and Contrasting Freescale's PowerPC® SoC Platforms

--- e300 e500 e600 ---

Kyle S. Aubrey
Freescale Field Applications Engineer, Silicon Valley
Freescale Technology Forum
NAR477 Session Abstract

• **Length:** 1 Hour (Tuesday 11:00am-12:00pm)

• **Abstract Title:** "Discover the Power of ‘e’: Comparing and Contrasting Freescale’s PowerPC® SoC Platforms – e300, e500, e600"

• **Presenter's Name & Title:**
 Kyle Aubrey, Freescale NCSG Field Applications Engineer – Silicon Valley, CA

• **Level:** Intermediate

• **Architecture:** PowerQUICC™ II-PRO, PowerQUICC™ III, PowerPC®, Next Generation

• **Abstract:** Freescale's PowerPC System-on-Chip (SoC) Platforms combine the company's PowerPC core portfolio with its broad Intellectual Property (IP) portfolio to deliver scalable performance, from low to high, to meet a wide spectrum of processing, I/O, and functional requirements. This session is designed to assist development engineers to quickly gain an understanding of Freescale's e300, e500, and e600 PowerPC SoC platforms, and how they compare. In addition, hardware and software design considerations and strategies for migrating through the platforms are discussed. Basic familiarity of the PowerPC architecture and data communications is required.

• **Intended Audience:** Networking, communications, and pervasive computing engineers developing a low- to high-end platform strategy or planning to upgrade or cost reduce their current PowerPC based design for scaled performance, connectivity, and integration while leveraging existing design investments.
Session Overview

- **Introduction to Freescale’s SoC Platforms**
 - History and Evolution of SoC at Freescale
 - MPC83xx, 85xx, 86xx Platforms and Available Standard Products

- **Scalable Performance**
 - Core Comparisons and Advantages: e300, e500, e600
 - Application Software Compatibility

- **Scalable Connectivity**
 - Peripherals and Interfaces

- **Scalable Integration**
 - Buses and Controllers
 - Driver Software Compatibility

- **Session Summary**

- **Questions**
Freescale SoC Platforms: A Little History...

MPC8560
PowerQUICC III
Best High-Performance Embedded Processor
Microprocessor Report Analysts’ Choice

On the basis of overall performance, efficiency, power consumption, and integration, Motorola’s MPC8560 clearly wins the contest. As companies resume investing in communications equipment, Motorola should have no trouble finding good homes for this product.

Markus Levy
MicroDesign Resources
We have expanded the **e500 Platform’s flexible SoC Methodology** across our entire PowerPC portfolio.

Common SoC Platforms

that enable us to speed Time-to-Market

and continue to meet customers’ performance and price requirements.
‘e’ is for Evolution to SoC
Highly Integrated PowerPC Based SoC Platforms

- **e700 Core**
 - 1500-3000+ MHz
 - 8 – 20W
 - 64-Bit PowerPC ISA
 - Higher CPU & I/O Performance
 - Multi-Core

- **G4**
 - 800 – 2000 MHz
 - 6 – 15W
 - 74xx/745x SIMD
 - 512K on-chip L2
 - External 2MB L3
 - Higher Frequency
 - 1M L2
 - 100% Pin & S/W Compatibility
 - Multi-Core

- **e500**
 - 400 – 1000 MHz
 - 2.4 – 8 W
 - 85xx Family
 - Integrated SoC
 - 256K L2, RapidIO
 - Application Specific
 - Higher CPU & I/O Performance
 - 512K L2

- **603e**
 - 200 – 600 MHz
 - 0.5 -1.2W
 - High Integration
 - 82xx Family
 - PCI, SDRAM, CPM
 - SoC
 - Higher CPU & I/O Performance
 - Application Specific
 - Lower Cost

- **e700 Platform**
 - **MPC87xx Series**

- **e600 Platform**
 - **MPC86xx Series**
 - Fully compatible with G4

- **e500 Platform**
 - **MPC85xx Series**

- **e300 Platform**
 - **MPC83xx Series**
 - Fully compatible with G2/603e
‘e’ is for Embedded Performance, Connectivity & Integration

Scalable Performance

- e300 Core
- e500 Core
- e600 Core
- e700 Core

Scalable Connectivity

- Interconnect
 - Host Peripheral Bus: PCI, PCI-X, PCI-Express, PCMCI A, 60x, MPX, Local Bus
 - System Fabric: RapidIO, SERDES
- General Peripherals: USB High/Full/Low speed, USB Full/Low Speed, I²C, DUART
- Networking: UTOPIA/POS PHY, GMII, MII, RGMII, TBI etc., XAUI

Scalable Integration

- Integration Structures: Copper Line, Magenta/SkyBlue Line, OCeaN Integrated Fabric, Coherent System Bus
- System Integration: Bus Controllers, Timers, DMA, Arbiter, Bridges, Interrupt Controllers, GPIO
- Mixed Signal: PLLs/DLLs, D/A, A/D, Clock Data Recovery, TIA, LDD
- Memory Controllers: DDR SDRAM, DDRII SDRAM, SDRAM, Flash, EPROM, SRAM, DRAM

Networking Protocols:
- Ethernet (10/100/1000)
- Serial (Tx/Rx)
- HDLC
- T1/E1/T3/E3 (TDM)
- ATM (AAAL0,1,2,5, IMA)
- 1P (ML/MC-PPP, PPPmux)
- BPON

Security:
- Encryption
- Authentication
- Public Key
- RNG
- DES/3DES/SHA1

Future PQ
86xx Integrated Platform
PQ III (90nm)
PQ III
PQ II Pro
PQ II

Scalable Compatible Solutions
‘e’-based SoC Platform Processors
Available Today for Your Designs

- e300
 PowerQUICC II Pro
 MPC8343E
 MPC8347E
 MPC8349E
 MPC8358E
 MPC8360E

- e500
 PowerQUICC III
 MPC8540
 MPC8560
 MPC8541E
 MPC8555E
 MPC8543E
 MPC8545E
 MPC8547E
 MPC8548E

- e600
 Integrated G4
 MPC8641
 MPC8641D

- Integrated PowerPC Host Processors
- Integrated PowerPC Communications Processors (Includes CPM or new QE)
e300 SoC Platform
Focusing on the Low-End to Mid-Range

• e300 Platform Goals
 ▪ Extend the PowerQUICC I and PowerQUICC II Product Families
 ▪ Low-end Platform based on SoC Design Methodology
 ▪ Focus on Low-Cost & Power-Sensitive applications

• Provides new high-performance functionality
 ▪ DDR SDRAM
 ▪ Hi-Speed USB
 ▪ 10/100/1000 Ethernet
 ▪ Dual PCI capability
 ▪ QUICC Engine with enhanced communications functions
Features
- Integrated e300 core processor
 - 266-667MHz
 - 32K I/D cache
- DDR Memory Controller
 - 1 x 32/64-bit, 266/333MHz
- Two 10/100/1000 Ethernet MACs
- Integrated 2x32-bit or 1x64-bit PCI
 - Up to 66 MHz PCI 2.2, PCI Arbiter
 - Master & Agent mode support
- Local Bus
- Integrated Security
- Two Hi-Speed USB ports
 - 1 port Host, Device, or On-The-Go
 - 1 port Host
- Multi-channel DMA controller
- DUART, Dual I²C, Interrupt, GPIO, SPI

Technology
- 0.13μm, 1.2V core, 3.3V I/O
- 672 TBGA – 35x35 mm, 1mm pitch
‘e’nside the e300 SoC Platform
MPC8360E Family – PowerQUICC II Pro

• Features
 ▪ Integrated e300 core processor
 > 266-667MHz
 > 32K I/D cache
 ▪ DDR Memory Controller
 > 1 x 32/64b or 2 x 32b, 266/333MHz
 ▪ Integrated 1x32-bit PCI
 > Up to 66 MHz PCI 2.2, PCI Arbiter
 > Master & Agent mode support
 ▪ Local Bus
 ▪ Integrated Security
 ▪ QUICC Engine
 > 2 micro engines (300 - 500 MHz)
 > 8 UCCs (Two UL2/POS, Two GMII, 8 MII, 4 port L2 switch, 8 TDMs)
 > MCC (256 HDLC channels)
 > Dual SPI
 > USB Low/Full Speed
 ▪ Multi-channel DMA controller
 ▪ DUART, Dual I²C, Interrupt, GPIO

• Technology
 ▪ 0.13µm, 1.2V core, 3.3V/2.5V I/O
 ▪ 740 TBGA – 37.5x37.5 mm, 1mm pitch

Kyle Aubrey, Freescale Field Applications Engineer
e500 SoC Platform
Focusing on the Mid-Range

- e500 Platform Goals
 - Address a Wide Variety of Market Needs
 - Exceptional Integration, High-Speed Connectivity, and HW Acceleration
 - Book E Architecture enabling Embedded Applications

- Provides Even Further High-Performance Functionality
 - 256KB-512KB L2 cache
 - DDR/DDR2/FCRAM1/FCRAM2 memory support
 - Enhanced Gigabit Ethernet controllers
 - RapidIO technology
 - PCI Express, PCI/PCI-X
 - Security enhancements
 - XOR acceleration
 - Communications Processor Module (CPM)
‘e’nside the e500 SoC Platform
MPC8560 Family – PowerQUICC III

• Features
 ▪ Integrated e500 core processor
 > 667-1000MHz
 > 32K I/D cache
 > 256KB L2 Cache
 ▪ Features
 > Up to 333MHz 64b DDR SDRAM
 > 2x 10/100/1000 Ethernet Controllers
 > 1x 10/100 Ethernet Controller (8540 only)*
 > 32-/64-bit PCI/PCI-X
 > 500MHz 8b RapidIO
 > DUART(8540 only)*, I2C, Interrupt, GPIO
 > Local Bus
 > Multi-Channel DMA Controller
 ▪ CPM (8560 only)**
 > Specialized RISC 333 MHz
 > 3 FCCs, 4 SCCs, 2 SMCs, 2 MCCs, SPI, I2C
 > 8/16b UTOPIA L2 for DSL/OC-3
 > 8 TDMs – Up to 256 HDLC Channels
 > ATM TC Layer

• Technology
 ▪ 0.13µm, 1.2V core, 3.3V/2.5V I/O
 ▪ 783 FC-PBGA Package (Flip Chip on PBGA)
‘e’nside the e500 SoC Platform
MPC8555E Family – PowerQUICC III

• Features
 ▪ Integrated e500 core processor
 > 533-1000MHz
 > 32K I/D cache
 > 256KB L2 Cache
 ▪ Features
 > Up to 333MHz 64b DDR SDRAM
 > 2x 10/100/1000 Ethernet Controllers
 > 2x 32b or 1x 64b PCI
 > DUART, I2C, Interrupt, GPIO
 > Integrated Security
 > Locus Bus
 > Multi-Channel DMA Controller
 ▪ CPM-Lite
 > Specialized RISC 333 MHz
 > 2 FCCs, 3 SCCs*, USB*, 2 SMCs*, SPI, I2C
 > 8b UTOPIA L2 for DSL*
 > 3 TDMs – Up to 64 HDLC Channels*

• Technology
 ▪ 0.13µm, 1.2V core, 3.3V/2.5V I/O
 ▪ 783 FC-PBGA Package (Flip Chip on PBGA)
‘e’nside the e500 SoC Platform
MPC8548E Family – PowerQUICC III (90nm)

• Features
 ▪ Integrated e500 core processor
 > Up to 1.5GHz
 > 32K I/D cache
 > 256-512KB L2 Cache
 > 36bit physical addressing
 ▪ Features
 > 64b DDR/DDR2/FCRAM1/FCRAM2 SDRAM
 – Up to 667MHz data rate with ECC
 > Up to 4x 10/100/1000 Enhanced Ethernet Controllers
 – Checksum Offload, QoS, Header Parsing, Packet Classification, and 8/16b FIFO mode (up to 3.2Gbps)
 > 2x 32b-PCI or 1x 64b PCI(X)
 > DUART, Dual I2C, Interrupt, GPIO
 > Integrated Security
 > Local Bus
 > Multi-Channel DMA Controller
 > High-Speed Interfaces:
 – x4,x1 Serial RapidIO (20Gbps)
 – Or x8,x4,x2,x1 PCI-Express (32Gbps)
 – Or x4 Serial RapidIO and x4 PCI-Express (36Gbps)
• Technology
 ▪ 90nm, 1.1V core, 3.3V/2.5V or 1.8V I/O
 ▪ 783 FC-PBGA Package
e600 SoC Platform
Focusing on High Performance

• e600 Platform Goals
 ▪ Provide the Highest Compute Density/Performance for an Integrated Device in the Industry
 > First Multi-PowerPC® Core Enabled Product Family from Freescale
 > Achieve Higher Performance without Power Increases with AltiVec™
 ▪ Low Power to enable the High Performance Embedded Market
 ▪ Share Available SoC IP with e300 and e500 Platforms maximizing SW Reuse

• Provides Highest-Performance
 ▪ 1MB Backside L2 cache per e600 Core
 ▪ Dual e600 PowerPC Cores
 ▪ Dual 64b DDR/DDR2/FCRAM1/FCRAM2 memory support
 ▪ Enhanced Gigabit Ethernet controllers
 ▪ Serial RapidIO technology
 ▪ Dual PCI Express
‘e’nside the e600 SoC Platform
MPC8641 Family – High Performance Single & Dual Core*

• Features
 ▪ Integrated Single or Dual e600 Cores
 > 1.2-1.8GHz
 > 32K I/D cache
 > 1MB Backside L2 Cache w/ECC per Core
 > 36bit physical addressing
 ▪ Features
 > Dual 64b DDR/DDR2/FCRAM1/FCRAM2 SDRAM Controllers
 – Up to 667MHz data rate with ECC
 > Up to 4x 10/100/1000 Enhanced Ethernet Controllers
 – Checksum Offload, QoS, Header Parsing, Packet Classification, and 8/16b FIFO mode
 > DUART, Dual I2C, MP Interrupt, GPIO
 > Integrated Security
 > Local Bus
 > Multi-Channel DMA Controller
 > High-Speed Interfaces:
 – x4, x1 Serial RapidIO (20Gbps) and x8, x4, x2, x1 PCI-Express (32Gbps)
 – Or two x8/x4/x2/x1 PCI-Express (64Gbps)

• Technology
 ▪ 90nm, 1.0-1.1V core, 3.3V/2.5V or 1.8V I/O
 ▪ 783 FC-PBGA Package
Comparing and Contrasting the e300, e500, and e600 PowerPC cores
“Don't lower your expectations to meet your performance. Raise your level of performance to meet your expectations.”

Ralph Marston
The Daily Motivator
‘e’ – The Core of our SoC Platforms

Core Comparisons

<table>
<thead>
<tr>
<th></th>
<th>e300</th>
<th>e500</th>
<th>e600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>266 – 667MHz</td>
<td>533MHz – 1.5GHz</td>
<td>1.2 – 1.8GHz</td>
</tr>
<tr>
<td>User Mode</td>
<td>PowerPC Classic</td>
<td>PowerPC Classic</td>
<td>PowerPC Classic</td>
</tr>
<tr>
<td>Supervisory</td>
<td>Classic</td>
<td>Book E</td>
<td>Classic</td>
</tr>
<tr>
<td>Instruction Issue</td>
<td>Dual-Issue</td>
<td>Dual-Issue</td>
<td>3 + 1 branch</td>
</tr>
<tr>
<td>Pipeline Stages</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Vector Processing</td>
<td>–</td>
<td>64b SPE APU (uses GPRs)</td>
<td>128b Altivec (dedicated resources)</td>
</tr>
<tr>
<td>Block translation</td>
<td>8/8 I/DBAT, 128kB–256MB</td>
<td>16 SuperPages 4kB – 4GB</td>
<td>8/8 I/DBAT 128kB – 4GB</td>
</tr>
<tr>
<td>DMIPS/MHz</td>
<td>1.9</td>
<td>1.9 2.3 with SPE</td>
<td>2.3 no vectorization 2.8 with Altivec</td>
</tr>
</tbody>
</table>
‘e’ – The Core of our SoC Platforms
How is Book E different from Classic PowerPC?

• User mode is binary compatible across e300, e500, e600
 ▪ Applies to the vast majority of code
 ▪ Recompile improves performance
 ▪ Some instructions have slightly stronger semantics (eieio→mbar, sync→msync) although the semantics should still ensure proper operation
 ▪ Standard Floating point and string instructions are not implemented

• Supervisor mode is different – confined to kernel
 ▪ MMU: BATs vs SuperPages
 > Some TLB manipulation instructions have different semantics because MMU architecture is different
 ▪ Exceptions: critical interrupt, real mode emulation
 ▪ Reset vector at a different location
 ▪ Debug: performance monitors
The **e300** and **e600**’s block address translation (BAT) registers and segment registers (SRs) are not implemented in the **e500** core.

- Instructions, registers, and associated interrupts are removed

e500 Platform Compatibility Methods

- If MMU translations are static in a system (no dynamic mapping), equivalent translations can be set up at boot time.
- Real mode can be emulated by creating a global TLB entry for address space 0 that maps all physical memory 1 to 1.
- PID assignments could be used to replace segment register configuration for defining access to virtual address spaces.
- New MMU Assist (MAS) registers are used to set up TLBs.
- New TLB instructions need to be used.
‘e’ – The Core of our SoC Platforms
Cache

<table>
<thead>
<tr>
<th></th>
<th>e300</th>
<th>e500</th>
<th>e600</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 I/D-Cache:</td>
<td>32K/32K</td>
<td>32K/32K</td>
<td>32K/32K</td>
</tr>
<tr>
<td>L1/L2 Set</td>
<td>8-way</td>
<td>8-way</td>
<td>8-way</td>
</tr>
<tr>
<td>Associativity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 Type/Size</td>
<td>---</td>
<td>Unified Front Side</td>
<td>Unified Back Side</td>
</tr>
<tr>
<td>L1/L2 Error</td>
<td>L1 Tag Parity</td>
<td>L1 Tag Parity</td>
<td>L1 Tag Parity</td>
</tr>
<tr>
<td>Detection</td>
<td></td>
<td>L2 Tag Parity, ECC</td>
<td>L2 Tag/Data Parity, ECC</td>
</tr>
<tr>
<td>Lockability</td>
<td>L1 Lockable per way (1 ... 7)</td>
<td>Yes</td>
<td>L1 Lockable per way (1 ... 7)</td>
</tr>
<tr>
<td>L2 Stashing</td>
<td>---</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mappable as SRAM</td>
<td>---</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>L2 Hit Latency</td>
<td>---</td>
<td>18 to 22 core clocks</td>
<td>11 or 12 core clocks</td>
</tr>
</tbody>
</table>

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005

Kyle Aubrey, Freescale Field Applications Engineer
The Advantages of the Platform Caches

- **e300** Platform includes only L1 I/D Caches
 - Provides a cost advantage for systems that require lower computing intensive tasks such as IP forwarding and protocol interworking.

- **e500** Platform provides an additional 256k to 512k of Front Side L2 Cache
 - Provides for lower latency accesses to a data/instructions resulting in greater packet performance under heavy services on packet flows.
 - Allows for stashing of packet headers directly to memory.

- **e600** Platform provides up to 1MB of Back Side L2 Cache per Core
 - For highly compute intensive applications, “Cache is King”.
 - Backside Cache means lower latency to data/instructions since the transaction does not have to transverse the Front Side bus.
e300 Core Architecture

- 266-667MHz
- L1: 32KB, 8 way set associative, Parity
- Cache way locking supported
- MEI cache coherence and intervention
- Peak IPC 2 Instructions plus 1 branch
- Out of Order Execution
- FPU - 64-bit IEEE754-1985 single/double prec
- 8/8 I/D BATs
- 128-entry 4K pages
- 32-bit Physical Address
e500 Core Architecture

- 533MHz-1.5GHz
- L1: 32KB, 8 way set associative, Parity
- L2: Fronside 256-512KB, 8 way set associated, ECC
- Cache line locking supported
- MESI cache coherence and intervention
- Peak IPC 2 Instructions plus 1 branch
- Out of Order Execution
- Multiple Book E APUs
- 16 TLB SuperPages
- 512-entry 4K Pages
- 36-bit Physical Address

Instruction Unit
- Completion Unit
- Instruction Queue (12)
- Sequencer Fetcher
- Dispatch Unit
- Branch Processing Unit
- GPR Issue (2)

Memory Unit
- L1 Instruction MMU
 - I-TLBs
- L2 Unified MMUs
- L1 Data MMU
 - DTLBs
- Tags
- 32KB Instruction Cache
- 32KB Data Cache
- Book E APUs: Performance Monitor, SPE, Isel, BTB, Cache Line Locking, Machine Check

Unified Frontside L2 Cache 256-512KB

Core Complex Bus
- 36-bit Address Bus
- 128-bit Rd/Wr Data Bus

Other components:
- CFX
- SFX1
- SFX2
- GPRs
- Rename Buffers
- LSU
e600 Core Architecture

- 1.2GHz-1.8GHz
- L1: 32KB, 8 way set associative, Parity
- L2: Backside 1MB, 8 way set associated, ECC
- Cache line locking supported
- MESI cache coherence and intervention
- Full SMP Support
- Peak IPC 3 Instructions plus 1 branch
- Out of Order Execution
- AltiVec™ SIMD Engine
- 16 TLB SuperPages
- 256-entry 4K Pages
- 36-bit Physical Address
Common Subset PowerPC User Registers

- **ACC**
- **GPR 0**
- **GPR 1**
- **GPR 30**
- **GPR 31**
- **CR**
- **CTR**
- **LR**
- **XER**
- **TBL**
- **TBU**

e300
- **FPSCCR**
- **FPR 0**
- **FPR 1**
- **FPR 30**
- **FPR 31**

e500
- **SPEFSCR**
- **USPRG0**
- **BBEAR**
- **BBTAR**
- **VR 0**
- **VR 1**
- **VR 30**
- **VR 31**
- **VRSAVE**

e600
- **USPRG1**
- **BBTAR1**
- **13 PMRs**
- **2 L1 Cache config**
- **5 General SPRs**

- **10 PMC SPRs**

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005
Common to PowerPC Classic and Book E User: 185

- SPE APU: 196
- FP APU: 23
- Cache APU: 5
- BTB APU: 2
- isel APU: 1
- PM APU: 2

Book E PPC e500

- Classic PPC
 - e300
 - e600

- Classic PPC FP: 54
 - String: 4 (lswi, lswx, stswi, stswx)

- Altivec: 162

- e300 ↔ e500 ↔ e600
Considerations for Cross-Platform Code Compatibility

- Applications should only use features in the intersection of the user register space and instruction sets of e500 and e300/e600 Platforms.

- Avoid use of:
 - Floating point (single or double precision)
 - String operations
 - Specialized Instructions
 - Book E APUs (isel, SPE, etc.) or AltiVec
Considerations for Optimized Platform Specific Code

- For optimized (pre-compiled) code-compatibility, do not ‘hand assemble’
- Recompile and optimize for each specific microarchitecture
 - e300, e500, e600-only binaries
 - For example, use options for e500: \(-mcpu=8540\) -\(mabi=spe\)
- For the most optimized performance
 - Utilize special features that analyze and implement algorithms more efficiently (AltiVec, isel, FP, SPE, BTB, CL, PM)
 - Automatic via compiler (isel, SP FP)
 - Explicitly by using the AltiVec or SPE programming interface (PIM)
 - Tuned assembly code (will not allow cross platform compatibility)
 - Specialized libraries (libmotovec or libmoto_e500)
 - Optimizing branch and cache behavior
• Frequency Overlap allows for Incremental Performance Boosts as Needed.
 - e600 frequency range: 1.2GHz – 1.8GHz
 - e500 frequency range: 533MHz – 1.5GHz
 - e300 frequency range: 266MHz – 667MHz

• Faster clock
• Addition of Front Side L2
• Specialized APUs

• Each platform architecture leads to higher efficiency/cycle
 - DMIPS/MHz is about 20% higher between platforms
Comparing and Contrasting the MPC83xx, MPC85xx, MPC86xx Interconnect and Network Acceleration
Scalable Connectivity
The Right Interface with the Right Performance

• Scalable System Connectivity to Match Platform Performance
 - HiP7 MPC83xx & MPC85xx: PCI, USB, TSECs, QE/CPM
 - HiP8 MPC85xx & MPC86xx: PCI-Express, Serial RapidIO, eTSECs

• Scalable Protocol Support to Meet Throughput Expectations
 - HiP7 MPC83xx and MPC85xx supply various IP and WAN options
 > Complete Integrated Solution for WAN+LAN
 > Flexible QE/CPM for Multi-Protocol and Interworking Support
 - HiP8 MPC8548E and MPC8641x Target IP Applications
 > Focus on Line-Rate Capability through the use of TCP/IP Offload, QoS, FIFO mode, VLAN insertion/extraction.
 > WAN Interfaces would normally be supported via Line Card Interfaces

• Standard Low Speed Interfaces across all Platforms
Scalable Connectivity
Interface and Peripheral Summary

<table>
<thead>
<tr>
<th></th>
<th>8349</th>
<th>8548</th>
<th>8641</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial IO</td>
<td>None</td>
<td>X8 PCI Express OR (x4 PCI Express + x4 SRIO)</td>
<td>X8 PCI Express AND (x8 PCI Express OR x4 SRIO)</td>
</tr>
<tr>
<td>PCI</td>
<td>2x 32b PCI OR 64b PCI</td>
<td>2x 32b PCI OR 64b PCI-X</td>
<td>With low cost bridge chip</td>
</tr>
<tr>
<td>GE /FIFO</td>
<td>2x GE</td>
<td>4x GE OR (16b FIFO + 8b FIFO)</td>
<td>4x GE OR (16b FIFO + 16b FIFO)</td>
</tr>
<tr>
<td>IP/Enet Features</td>
<td>---</td>
<td>TOE/QoS/Stashing</td>
<td>TOE/QoS</td>
</tr>
<tr>
<td>Security</td>
<td>Hardware Block</td>
<td>Hardware Block</td>
<td>SW with AltiVec</td>
</tr>
<tr>
<td>USB</td>
<td>High Speed (Dual)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Low-speed IO</td>
<td>DUART, 2x I2C</td>
<td>DUART, 2x I2C</td>
<td>DUART, 2x I2C</td>
</tr>
</tbody>
</table>
Comparing and Contrasting the MPC83xx, MPC85xx, MPC86xx
Pulling it all Together
• Scalable Memory Interfaces to Sustain Packet Performance

- **MPC83xx** supplies a single 333MHz 32/64b DDR I Memory Controller
 - **Note:** MPC8360E can support either single 32/64b or dual 32b DDR I

- **MPC85xx** supplies a single 667MHz 64b DDR II Memory Controller

- **MPC86xx** supplies dual 667MHz 64b DDR II Memory Controllers
Scalable System Performance

• Memory Controllers Peak Bandwidth
 - 8349: 64b @ 333MHz = 2.7GB/s
 - 8548: 64b @ 667MHz = 5.3GB/s
 - 8641D: dual 64b @ 667MHz = 10.6GB/s

• System Bus Bandwidth
 - 8349: 64b CSB @ 333MHz = 2.7 GB/s,
 - 8548: 64b CCB read at 667MHz = 5.3GB/s, simultaneous with 128b write bus at 667MHz: 10.6GB/s (also for L2 rd/wr)
 - 8641D: 64b MPX @ 667MHz: 5.3GB/s

> Note: All Bandwidth Numbers are provided in GigaBYTES per Second
Software Reuse – How it’s Done!
Configuration, Control, & Status Registers (CCSR)

- Software Driver Reuse is Enabled through CCSR.
- The CCSR is a 1MByte memory mapped region that contains all the configuration, control, and status registers for the processor.
- All Platforms use the same offsets in the CCSR for a particular IP Block
 - Example: DUART Code for the MPC8540 can be reused on both the MPC8349E and MPC8641D since all registers and offsets stay the same.
Scalable Integration
Bus and Controller Summary

<table>
<thead>
<tr>
<th></th>
<th>8349</th>
<th>8548</th>
<th>8641</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Bus</td>
<td>64b CSB</td>
<td>128b CCB</td>
<td>64b MPX</td>
</tr>
<tr>
<td>DDR Memory Controller</td>
<td>32/64b DDR I to 333MHz with ECC</td>
<td>64b DDR II to 667MHz with ECC</td>
<td>Dual 64b DDR II to 667MHz with ECC</td>
</tr>
<tr>
<td>Maximum DDR Memory Bandwidth</td>
<td>2.7 GB/s</td>
<td>5.3 GB/s</td>
<td>10.6 GB/s</td>
</tr>
<tr>
<td>Local Bus</td>
<td>32b to 133MHz</td>
<td>32b to 167MHz</td>
<td>32b to 167MHz</td>
</tr>
<tr>
<td>LB Controllers</td>
<td>GPCM/UPM/SDRAM</td>
<td>GPCM/UPM/SDRAM</td>
<td>GPCM/UPM/SDRAM</td>
</tr>
<tr>
<td>DMA</td>
<td>4-channel</td>
<td>4-channel</td>
<td>4-channel</td>
</tr>
<tr>
<td>Interrupt Controller</td>
<td>PIC</td>
<td>PIC</td>
<td>Multi-Processor Superset of PIC</td>
</tr>
<tr>
<td>CCSR-Based</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The Power of ‘e’ from Freescale
Meeting Your Low-End, Mid-Range, & High-End Requirements

- e300, e500, & e600 PowerPC cores enable software compatible designs that span the full range of computing requirements

- Freescale's SoC-based standard products provide optimized connectivity and integration allowing the right power-price-performance point for a wide range of applications.
 - I/O models and on-chip system logic are shared across product families allowing you to maximize your software re-use (OS and Drivers)
Platform Specific FTF Sessions
Don’t miss out on these related in-depth presentations

- **e300 Platform**
 - NWL443 Overview of PowerQUICC II Pro MPC8349E Family
 - NAR497 The QUICC Engine™ and the PowerQUICC™ II Pro MPC8360 Family
 - NAR500 System Design and Initialization with the MPC834x PowerQUICC™ II Pro Family
 - NAR526 Hands-On Workshop: MPC8349 Board Hands-On Training and Demonstration

- **e500 Platform**
 - NAR490 Overview of the PowerPC® e500 core on the MPC8548
 - NAR489 MPC8548 Architecture Overview
 - NAR492 Tips and techniques in debugging design using PowerQUICC™ III
 - NAR479 PowerQUICC™ III: Meeting the Needs of Next-Generation Systems

- **e600 Platform**
 - NAR464 Inside the MPC8641D Dual-Core PowerPC Processor
 - SDT838 Introduction to AltiVec™ Technology—Ten Easy Ways to Vectorize Your Code
 - NEN410 Flexible and Scalable Multi-Layer Switch Design Using the Dual-Core MPC8641D

- **Related Sessions:**
 - NPV427 PowerPC® Architecture Primer
 - NAR405 PowerQUICC™ II Pro and PowerQUICC III: Scalability and Flexibility
 - NAR474 PowerQUICC™ Software Drivers
 - NAR473 Enhanced Triple Speed Etherent Controller Features
 - NAR513 Overview of the PCI Express I/F on the MPC8548 and MPC8641/D
 - NAR457 Pros and Cons of Using RapidIO®, PCI Express, & Gigabit Ethernet for Embedded System Connectivity
 - NHS512 Overview of the DDR2 I/F on the MPC8548 and MPC8641D
• **Introduction to Freescale’s SoC Platforms**
 - History and Evolution of SoC at Freescale
 - MPC83xx, 85xx, 86xx Platforms and Available Standard Products

• **Scalable Performance**
 - Core Comparisons and Advantages: e300, e500, e600
 - Application Software Compatibility

• **Scalable Connectivity**
 - Peripherals and Interfaces

• **Scalable Integration**
 - Buses and Controllers
 - Driver Software Compatibility

• **Session Summary**

• **Questions**
Supplementary Slides

Scalable Connectivity
Serial Interconnects

- MPC85xx
 - e500 DDR
 - Local
 - PCI1
 - PCI2
 - P-RIO Parallel Rapid IO
 - Serial RIO
 - PCI Express
 - (#lanes) P-RIO S-RIO PCI-Ex
 - 8540 P-RIO(8)
 - 8541/E
 - 8555/E
 - 8560 P-RIO(8)
 - 8543/E PCI-Ex(4)
 - 8545/E PCI-Ex(4)
 - 8547/E PCI-Ex(8)
 - 8548/E S-RIO(4) PCI-Ex(8)

- MPC86xx
 - e600 DDR
 - Local
 - S-RIO Serial Rapid IO
 - PCI Express
 - (#lanes) S-RIO PCI-Ex1 PCI-Ex2
 - 8641D S-RIO(1/4) PCI-Ex (1/2/4/8)
 - 8641 S-RIO(1/4) PCI-Ex (1/2/4/8) PCI-Ex (1/2/4/8)

- Parallel RIO
- Serial RIO
- PCI Express
PCI Bus Options

MPC83xx

- DDR
- FLASH
- Local
- PCI1
- PCI2

8343/E PCI1-32b
8347/E PCI1-32b
8349/E PCI1-64b
8360/E PCI1-32b

8543/E PCI1-32b
8545/E PCI1-64b
8547/E PCI1-32b
8548/E PCI1-64b

MPC85xx

- DDR
- FLASH
- Local
- PCI1
- PCI2

8540/60 PCI1/X-64b
8541/55/E PCI1-32b
8543/E PCI1-32b
8545/E PCI1-64b
8547/E PCI1/X-64b
8548/E PCI1/X-64b

MPC86xx

- DDR
- FLASH
- Local

8641 -
8641D -

* PCI Functionality can be added by using a low cost PCI-Express to PCI Bridge Chip

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005

Kyle Aubrey, Freescale Field Applications Engineer
Clocking (PCI Host)

MPC83xx
- DDR
- MCK[0:3]
- \(\backslash MCK[0:3] \)
- Local
- LCLK[0:2]
- LSYNC_OUT
- LSYNC_IN
- PCI1
- PCI2
- PCI_CLK_OUT[0:8]
- PCI_SYNC_OUT
- PCI_SYNC_IN
- CLKin

MPC85xx
- DDR
- MCK[0:5]
- \(\backslash MCK[0:5] \)
- MSYNC_OUT
- MSYNC_IN
- Local
- LCLK[0:1]
- LSYNC_OUT
- LSYNC_IN
- PCI1
- PCI2
- PCI1_CLK*
- PCI2_CLK*
- SYSCLK

8540/60 Sync PCI
SYSCLK=PCICLK
8541/55/E* Sync/ASync PCI

Kyle Aubrey, Freescale Field Applications Engineer
Clocking (PCI Agent)

MPC83xx
- DDR
- MCK[0:3]
- MCK[0:3]
- Local
 - LCLK[0:2]
 - LSYNC_OUT
 - LSYNC_IN
- PCI1
 - PCI_CLK_OUT[0:8]
 - PCI_SYNC_OUT
 - PCI_SYNC_IN
- CLKIN

MPC85xx
- DDR
- MCK[0:5]
- MCK[0:5]
- Local
 - LCLK[0:1]
 - LSYNC_OUT
 - LSYNC_IN
- PCI1
 - PCI1 CLK*
- PCI2
 - PCI2_CLK*
- MSYNC_OUT
- MSYNC_IN
- SYSCLK/PCICLK

8540/60
- Sync PCI
- SYSCLK=PCICLK

8541/55/E*
- Sync/ASync PCI
<table>
<thead>
<tr>
<th>MPC83xx</th>
<th>MPC85xx</th>
<th>MPC86xx</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR</td>
<td>DDR</td>
<td>DDR</td>
</tr>
<tr>
<td>Local</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>PCI1</td>
<td>PCI1</td>
<td>PCI2</td>
</tr>
<tr>
<td>PCI2</td>
<td>PCI2</td>
<td>PCI2</td>
</tr>
</tbody>
</table>

- **10/100/1000**
 - 8343/E 2 (TSEC)
 - 8347/E 2 (TSEC)
 - 8349/E 2 (TSEC)
 - 8356/E 2 (TSEC)
 - 8360/E 2 (UCC) 4 (UCC)

- **10/100**
 - 8560 2 (TSEC)
 - 8548/E 4 (eTSEC)
 - 8545/E 2 (eTSEC)
 - 8547/E 4 (eTSEC)
 - 8543/E 2 (eTSEC)
 - 8555/E 2 (TSEC)
 - 8540 2 (TSEC)
 - 8541/E 2 (TSEC)
 - 8541 4 (eTSEC)
 - 8542 4 (eTSEC)

- **10/100/1000**
 - 8640 4 (eTSEC)
 - 8641D 4 (eTSEC)
 - 8655/E 2 (TSEC) 2 (FCC)
 - 8650 2 (TSEC) 3 (FCC)

FCC Fast Communications Controller (10/100)
UCC Universal Communications Controller (up to 2 GigE)
TSEC Triple Speed Ethernet Controller (10/100/1000)
eTSEC Enhanced TSEC with FIFO mode, TCP/IP Checksum, QoS

Kyle Aubrey, Freescale Field Applications Engineer
Feature of the MPC8548E and MPC8641D Families

Optimizes CPU performance on TCP/IP
- TCP/IP checksum offload Rx + Tx
- IPv6 support in H/W

QoS support for 16 H/W queues (8 Rx + 8 Tx)
- Customizable per-packet filtering/filing to 64 logical receive queues
- 802.1p, IP TOS, Diffserv classification
- Support for weighted fair queuing
- TCP/UDP port-based flows
- Assist firewall through IP/TCP/UDP reject
- Ethernet preamble sorting and insertion

FIFO I/F to ASICs + (R)GMII/(R)MII/(R)TBI
- 8/16-bits @ OC-48 rates and above

Layer 2 features
- VLAN insertion and deletion per frame
- 16 exact-match MAC addresses

Code compatible by default with standard TSEC
- MPC8349E, MPC8560, MPC8555E Families
Security Engine

Common Features
- 4 Crypto Channels
- PKEU, AESU, DEU, AFEU, MDEU, RNG
- 256byte Tx + 256byte Rx FIFOs per Unit
- Single Pass IPSEC

MPC83xx
- DDR
- FLASH
- Security
- Local
- PCI1
- PCI2
- 8343E 166MHz
- 8347E 166MHz
- 8349E 166MHz
- 8360E 166MHz

MPC85xx
- DDR
- FLASH
- Security
- Local
- PCI1
- PCI2
- 8541E 166MHz SEC2.0
- 8555E 166MHz SEC2.0
- 8543E* 333MHz SEC2.1
- 8545E* 333MHz SEC2.1
- 8547E* 333MHz SEC2.1
- 8548E* 333MHz SEC2.1

Special Features
- KEU Kasumi Engine for 3G
- Single Pass SSL
Communications Processor

MPC83xx
- DDR
- Local
- PCI1
- PCI2

MPC85xx
- DDR
- Local
- PCI1
- PCI2

QE CPM
8360/E 2x500MHz 8UCC, MCC
8358/E 6UCC
8355/E 333MHz 2FCC, 3SCC, USB
8560 333MHz 3FCC, 4SCC, 2MCC

CPM Communications Engine
QE QUICC Engine
FCC Fast Communications Controller
SCC Serial Communications Controller
MCC Multi-Channal Controller
UCC Universal Communications Controller

Kyle Aubrey, Freescale Field Applications Engineer

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005.
FCC Fast Communications Controller (ATM AAL0/1/2/5)
UCC Universal Communications Controller (ATM AAL0/1/2/5)
UL2 8/16-bit UTOPIA Level 2
USB

- FS Full Speed (12 Mbps)
- HS High Speed (480 Mbps)
- OTG On The Go (Configurable Host/Device)

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005
DDR SRAM – Packet Memory Options

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>DDR1</th>
<th>Parity</th>
<th>Data Rate</th>
<th>DDR1</th>
<th>Parity</th>
<th>DDR2</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>8343/E</td>
<td>333MHz</td>
<td></td>
<td>8540/60</td>
<td>333 MHz</td>
<td></td>
<td>ECC</td>
<td>333MHz x2</td>
</tr>
<tr>
<td>8347/E</td>
<td>333MHz</td>
<td></td>
<td>8541/55/E</td>
<td>333 MHz</td>
<td></td>
<td>ECC</td>
<td>333MHz x2</td>
</tr>
<tr>
<td>8349/E</td>
<td>333MHz</td>
<td></td>
<td>8543/E</td>
<td>400 MHz</td>
<td></td>
<td>ECC</td>
<td>667MHz x2</td>
</tr>
<tr>
<td>8358/E</td>
<td>333MHz</td>
<td></td>
<td>8545/E</td>
<td>400 MHz</td>
<td></td>
<td>ECC</td>
<td>667MHz x2</td>
</tr>
<tr>
<td>8360/E</td>
<td>333MHz</td>
<td></td>
<td>8547/E</td>
<td>400 MHz</td>
<td></td>
<td>ECC</td>
<td>667MHz x2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8548/E</td>
<td>400 MHz</td>
<td></td>
<td>ECC</td>
<td>667MHz x2</td>
</tr>
<tr>
<td>8641</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECC</td>
<td>667MHz x2</td>
</tr>
<tr>
<td>8641D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECC</td>
<td>667MHz x2</td>
</tr>
</tbody>
</table>

- MPC83xx DDR DDR1 SDR Local FLASH
- MPC85xx DDR DDR1 SDR Local FLASH
- MPC86xx DDR DDR1 SDR Local FLASH

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005
Local Bus

- All Platforms utilize the same GPCM, 3 UPM, SDRAM Controllers