NXP Semiconductors
User's Guide

Document Number: MCUXSDKGSUG
Rev. 12, 20 May 2020

Getting Started with MCUXpresso

SDK

1 Overview

The MCUXpresso Software Development Kit (SDK) provides
comprehensive software support for Kinetis and LPC
Microcontrollers. The MCUXpresso SDK includes a flexible
set of peripheral drivers designed to speed up and simplify
development of embedded applications. Along with the
peripheral drivers, the MCUXpresso SDK provides an
extensive and rich set of example applications covering
everything from basic peripheral use case examples to full
demo applications. The MCUXpresso SDK contains
FreeRTOS, a USB host and device stack, and various other
middleware to support rapid development.

For supported toolchain versions, see MCUXpresso SDK
Release Notes (document MCUXSDKRN).

For more details about MCUXpresso SDK, refer to
MCUXpresso-SDK: Software Development Kit for
MCUXpresso.

10
11

Contents
OVEIVIBW...ouiiiiiieiieiteieeienit ettt 1
MCUXpresso SDK board support
package folders.........cooeevenieiiinieiiinicie e 2
Run a demo using MCUXpresso IDE..................... 4
Run a demo application using IAR....... 21
Run a demo using Keil® MDK/

IVISION. ..ttt 25
Run a demo using Arm® GCC.............ccccovennenee. 30
MCUXpresso Config ToolS.......cocceeververienienennnens 41
MCUXpresso IDE New Project

Wizard.......coooiiiiiiiiiiiiiii 41
How to determine COM port........ccceet covverivenneenne 42
Default debug interfaces.........ccocee vevvevueevieneenenne. 44
Updating debugger firmware......... .ccccoceecveneenenne 46

h
P

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

A ————
MCUXpresso SDK board support package folders

Application Code

Stacks and Middleware
(Connectivity, Security, Board Support
DMA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP development and evaluation boards for
Arm® Cortex®-M cores including Freedom, Tower System, and LPCXpresso boards. Board support packages are found
inside the top level boards folder and each supported board has its own folder (an MCUXpresso SDK package can support
multiple boards). Within each <board name> folder, there are various sub-folders to classify the type of examples it contain.
These include (but are not limited to):

* cmsis_driver examples: Simple applications intended to show how to use CMSIS drivers.

* demo_apps: Full-featured applications that highlight key functionality and use cases of the target MCU. These
applications typically use multiple MCU peripherals and may leverage stacks and middleware.

e driver examples: Simple applications that show how to use the MCUXpresso SDK’s peripheral drivers for a single
use case. These applications typically only use a single peripheral but there are cases where multiple peripherals are
used (for example, SPI conversion using DMA).

* emwin_ examples: Applications that use the emWin GUI widgets.

* rtos_examples: Basic FreeRTOS™ OS examples that show the use of various RTOS objects (semaphores, queues,
and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

* usb examples: Applications that use the USB host/device/OTG stack.

* multicore_ examples: Applications for both cores showing the usage of multicore software components and the
interaction between cores.

* mmcau_examples: Simple applications intended to concisely illustrate how to use middleware/mmcau stack.

* wireless examples: Applications that use the Zigbee and OpenThread stacks.

* usb dongle examples: Simple applications to be used on the PCB2459-2 JN5189 USB DONGLE.

2.1 Example application structure

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

2 NXP Semiconductors

4
MCUXpresso SDK board support package folders

This section describes how the various types of example applications interact with the other components in the MCUXpresso
SDK. To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso
SDK API Reference Manual.

Each <board name> folder in the boards directory contains a comprehensive set of examples that are relevant to that
specific piece of hardware. Although we use the hello world example (part of the demo_apps folder), the same general
rules apply to any type of example in the <board names> folder.

In the hello world application folder you see the following contents:

armgec
iar — Toolchain folders: project and linker files
mdk
:‘, board.c Board macro definitions (LEDs, buttons, etc)
&l board.h

H clock_config.c

B dock configh Application-specific clock configuration

hello_world bin » Pre-compiled application
&l hello_world.c » Application main source file
B8 hello_world.mex » Application-specific MCUXpresso Config Tool configuration

hello_world.xml * Project definition file for MCUXpresso IDE and PG

E o
= PRI Application-specific pin configuration
& pin_mux.h

| readme.txt » Description and instructions for running

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example to start
developing a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, a variety of source files are referenced. The
MCUXpresso SDK devices folder is the central component to all example applications. It means the examples reference the
same source files and, if one of these files is modified, it could potentially impact the behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

* devices/<device name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other files

* devices/<device name>/cmsis_drivers: All the CMSIS drivers for your specific MCU

* devices/<device names>/drivers: All of the peripheral drivers for your specific MCU

* devices/<device name>/<tool names: Toolchain-specific startup code, including vector table definitions

* devices/<device name>/utilities: Items such as the debug console that are used by many of the example
applications

* devices/<devices name>/project Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate source code. Middleware
source files are located in the middleware folder and RTOSes are in the rtos folder. The core files of each of these are
shared, so modifying one could have potential impacts on other projects that depend on that file.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 3

Run a demo using MCUXpresso IDE

3 Run a demo using MCUXpresso IDE

NOTE
Ensure that the MCUXpresso IDE toolchain is included when generating the
MCUXpresso SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug example applications. The
hello world demo application targeted for the FRDM-K64F Freedom hardware platform is used as an example, though
these steps can be applied to any example application in the MCUXpresso SDK.

3.1 Select the workspace location

Every time MCUXpresso IDE launches, it prompts the user to select a workspace location. MCUXpresso IDE is built on top
of Eclipse which uses workspace to store information about its current configuration, and in some use cases, source files for
the projects are in the workspace. The location of the workspace can be anywhere, but it is recommended that the workspace
be located outside of the MCUXpresso SDK tree.

3.2 Build an example application

To build an example application, follow these steps.
1. Drag and drop the SDK zip file into the Installed SDKSs view to install an SDK. In the window that appears, click OK
and wait until the import has finished.
[Installed 5DKs 52 | [T Properties [E) Console [* Problems [] Memory % Instruction’

[{ Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the Tnstalled SDKs' view.

Mame Wersion Location

Figure 3. Install an SDK
2. On the Quickstart Panel, click Import SDK example(s)....

U Quickstart Panel #=Global Variables = Variables ® Breakpoints E= Outline

§A MCUXpresso IDE - Quickstart Panel
=) No project selected

~ Create or import a project

BE-d-H-~

- Miscellaneous

& Quick Settings>>

% Build all projects |

Figure 4. Import an SDK example

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
4 NXP Semiconductors

Run a demo using MCUXpresso IDE
3. In the window that appears, expand the K6x folder and select MK64FN1MO0xxx12 . Then, select frdmk64f and click
Next.

P
= I
@ importing project(s) for device: MK64FN1M0x0c12 using board: FRDM-K64F
- Board and/or Device selection page
~ SDK MCUs Available boards 1%
MCUs from installed SDKs Please select an available board for your project
NXP MK6AFNIMOxo12 | [Supported boards for device: MKS4FN1MGxox12
v Kbx
IMKG4FMN1M000c12)

1EEH:

frdmk64f frdmk84f multzb

frdmks

m13588 frdmk64f agm01

™™

frdmk64f agm04

Selected Device: MK64FN1M0xxx12 using board: FRDM-K64F
Target Core: cortex-m4 Name
Description:

SDKs for selected MCU

SDK Ve...

Manifes... Location
+SDK_2x_ FRDM-K6 2.3.1
K64_120: Kinetis ® K64-120 MHz, 256KB SRAM

320 . <Default Location>\SD}

Cancel

Figure 5. Select FRDM-K64F board

4. Expand the demo_apps folder and select hello world. Then, click Next.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors

Run a demo using MCUXpresso IDE

SDK Import Wiza
X pol

e)

(¥, The source from the SDK will be copied into the workspace.
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-KB4F' SDK.

)

. Import projects

Project name prefic |¢ 4 1eas Project name suffic

Ll |-
-

o [
Use default location
Location: | Ch\Users\b59906\Decuments\MCUXpressolDE 10.0.0_299_beta‘\workspacefrdmkGdf_ Browse...
Project Type Project Options
@ C Project C++ Project C Static Library C++ Static Library Copy sources
Examples n\u'aE&lE‘
Name Version ol
» [[] £ cmsis driver_examples
4 [@ £ demo_apps
b B E wip
» [[] £ mbedtls
» [[] £ wifi_gea
» [2 wolfssl
[[] = adcl6_low_power
] = bubble
[= dac_adc
[F] = ecompass £
[[] = ftm_pdb_adclé L
ftm guad_decoder
helle_world >
[F] = power_manager
[[] = power_mode_switch
[[] = re_func
M = chell -
L n L3
@ [<Beck | mee> [Enisn][cance

Figure 6. Select he11o worid
5. Ensure Redlib: Use floating point version of printf is selected if the example prints floating point numbers on the
terminal for demo applications such as adc_basic, adc_burst, adc_dma, and adc_interrupt. Otherwise, it is not

necessary to select this option. Then, click Finish.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

NXP Semiconductors

Run a demo using MCUXpresso IDE
B0 SDKImport Wizard L T o o e]

. Advanced Settings

w (/C++ Library Settings

Set library type (and hosting variant) Redlib (semihaost-nf) -

Rediib: Use floating point version of printf; MNewlibNano: Use floating point version of printf

+ Use character rather than string based printf MewlibNano: Use floating point version of scanf
Redirect SDK "PRINTF" te C library "printf"
[7] Redirect printf/scanf to [TM
|| Redirect printf/scanf to UART

~ Memory Configuration

Memory details
Type MName Alias Location Size Driver
Flash PROGRAM_FLASH Flash 0:0 0100000 FTFE_4K.cfx
RAM SRAM_UPPER RAM 0x20000000 030000
- Edit...
RAM SRAM_LOWER RAMZ 0:1£ff0000 010000
RAM FLEX_RAM RAMZ 0:14000000 0x1000

~ Hardware settings

Set Floating Peint type [pr; (HardABD) ']

~ MCU C Compiler

Language standard [(,ornpller default ']
@ MNext > l Finish l[Cancel]

Figure 7. Select vse floating point version of printf

3.3 Run an example application

For more information on debug probe support in the MCUXpresso IDE see community.nxp.com.
To download and run the application, perform the following steps:

1. See the table in Default debug interfaces to determine the debug interface that comes loaded on your specific hardware
platform. For LPCXpresso boards, install the DFU jumper for the debug probe, then connect the debug probe USB
connector.

* For boards with a P&E Micro interface, see www.pemicro.com/support/downloads_find.cfm to download and
install the P&E Micro Hardware Interface Drivers package.

* For the MRB-KWO1 board, see www.nxp.com/USB2SER to download the serial driver. This board does not
support the OpenSDA. Therefore, an external debug probe (such as a J-Link) is required. The steps below
referencing the OpenSDA do not apply because there is only a single USB connector for the serial output.

* If using J-Link with either a standalone debug pod or OpenSDA, install the J-Link software (drivers and utilities)
from www.segger.com/jlink-software.html.

¢ For boards with the OSJTAG interface, install the driver from www keil.com/download/docs/408.

2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 7

https://community.nxp.com/message/630901

Run a demo using MCUXpresso IDE

a. 115200 or 9600 baud rate, depending on your board (reference BOARD DEBUG UART BAUDRATE variable in
board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

Behaviour

Basic options for your PuTTY session |

Specify the destination you want to connect to

Load, save or delete a stored session
Saved Sessions
Debug

Default Settings
Debug

Qosemdow@e#:

() Aways (Never

- T

Help

Figure 8. Terminal (PuTTY) configurations

4. On the Quickstart Panel, click on Debug frdmk64f demo apps hello world [Debug] to launch the debug

session.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

NXP Semiconductors

4
Run a demo using MCUXpresso IDE

Cortex
(U Quickstart Panel #=Global Vanables ==Variables ® Breakpaints E= Outline == ::IJethI;
e]
- MCUXpresso IDE - Quickstart Panel Your ir
=E! project frdmkadf_hello_world [Debug] require
L T -
= Create or import a project
RArap {1 Installed SDKs &2 Properties B Cor
B new project..
= Import SDK exarmpleds)
L \mport project(s) from file system... i Installed SDKs
+ Build your project Ta install an SDK, simply drag and drop an 5C
ey % Build Name SDK
°C) [P, [4 SDK_2.x_FRDM-K64F 230
~ Debug your project BE-E-H-
i Debug B Debug using LinkServer probes (CTRL+SHIFT+L)
B Attach to a running target using LinkServer (CTRL+ALT+L)

B Program flash using LinkSenver
* Miscellaneous B Erase flash using LinkServer

® Edit project settings

Figure 9. Debug ne11o_worid case
5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, showing all supported probes
that are attached to your computer. Select the probe through which you want to debug and click OK. (For any future
debug sessions, the stored probe selection is automatically used, unless the probe cannot be found.)

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 9

A ————
Run a demo using MCUXpresso IDE

F B
. Probes discovered E@g

Connect to target: MK64FN1MOoox12
1 probe found. Select the probe to use:

Available attached probes

Marme Serial number/ID Type Manu... IDE Debug Mode

Em USBL - OpenSDA (FATI0E49 TATI0E4D USEL P&E M All-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc, CMSIS-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

-

Remermber my selection (for this Launch configuration)

@

Figure 10. Attached Probes: debug emulator selection

6. The application is downloaded to the target and automatically runs to main ().

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

10 NXP Semiconductors

4
Run a demo using MCUXpresso IDE

= | B -] |

. workspace - Develop - frdmk64f_demo_apps_hello_werld/source/hello_world.c - MCUXpresso IDE

MEile Edit Source Refactor Mavigate Search Project Run Window Help

a =5 frdmkidf_demo_apps_hello_w
s ﬁ" Binaries
5 @]J Includes
s [CMSIS
> 2 board
» 2 drivers
4 2 source
> g hello_world.c
» [startup
- 8 utilities
[Debug
v = doc
=| frdmbk6df_demo_apps_hell
=| frdmbkbdf_demo_apps_hell

4 I k

o

Qs MW=-G6 3

. MCUXpresso IDE (|
|_IoE

+ Start here

. MNew project...

. Impeort SDK example(s)...

% Import project(s)

% Build ‘frdmkG4f_demo_app:
& Clean ‘frdmbkGdf_dermo_app
f:? Debug frdmki4f_demo_ap
ﬁ Terminate, Build and Debu:
B3 Edit ‘frdmbkG4f_demo_apps_

4 1 k

In R (B-R-BiINPIBNZR S bERRRSLL -

A R R H- X A B MifflreGarD Quick Access :| &5 | [R] |

Bap 2p = B 3% Debug i |i# = = &
E = 4 mfrdmlcﬁilf_demo_apps_helln_wnrld PE Debug [GDE PEMicro Interface Debugging] o

4 2 frdmkb4f_demo_apps_hello_world.axf
a f# Thread #1 <main> (Suspended : Breakpoint]
= main() at hello_werld.c:58 0x7db
g Chnxp\MCUXpressolDE_0.0.0_291_alpha\ide\plugins\com.pemicro.debug.gdbjtag.pne_2.8.1.2

m

s arm-none-eabi-gdb -
4 I | b
Welcome D204 [hello_world.c &3 = O
43

* Code -

char ch;

/* Init board hardware. */
BOARD InitPins(};

BOARD BootClockRUN();
BOARD_InitDebugConscle();

PRINTF("helle world.\r\n"); 3 !

while (1)

1
ch = GETCHAR(); 4
PUTCHAR(ch);

1 =

4 i | 3
[nst.. [Pro.. B Con.. 2 [& Pro.. [Mem.. €slnst.. F]sw.. =BPow.. = 8 |l

BX% &R ME-&8-
frdmki4f_demo_apps_hello_world PE Debug [GDE PEMicro Interface Debugging] Semihosting Conscle
P&E Semihosting Console -

() NXP MKBAFMI MOood 2 (Frdmke..avorld)

Figure 11. Stop at main() When running debugging

7. Start the application by clicking Resume.

Project guiiee Window
Wim I

Figure 12. Resume button

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

NXP Semiconductors 11

Run a demo using MCUXpresso IDE

The hello world application is now running and a banner is displayed on the terminal. If this is not the case, check your
terminal settings and connections.

Figure 13. Text display of the ne110 woria demo

3.4 Build a multicore example application

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug multicore example
applications. The following steps can be applied to any multicore example application in the MCUXpresso SDK. Here, the
dual-core version of hello_world example application targeted for the LPCXpresso54114 hardware platform is used as an

example.

1. Multicore examples are imported into the workspace in a similar way as single core applications, explained in Build an
example application. When the SDK zip package for LPCXpresso54114 is installed and available in the Installed
SDKs view, click Import SDK example(s)... on the Quickstart Panel. In the window that appears, expand the LPCxx
folder and select LPC54114J256. Then, select Ipcxpresso54114 and click Next.

. Expand the multicore examples/hello world folder and select cm4. The cmOplus counterpart project is
automatically imported with the cm4 project, because the multicore examples are linked together and there is no need to
select it explicitly. Click Finish.

{8 50K Import Wizard o X

(¥}
[]
n

host O UART @ Example default

Figure 14. Select the hello_world multicore example

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

12

NXP Semiconductors

4
Run a demo using MCUXpresso IDE

3. Now, two projects should be imported into the workspace. To start building the multicore application, highlight the
lpcxpresso54114 multicore examples hello world cm4 project (multicore master project) in the Project
Explorer. Then choose the appropriate build target, Debug or Release, by clicking the downward facing arrow next to
the hammer icon, as shown in Figure 15. For this example, select Debug.

. workspace - Develop - Welcome page - MCUXpresso lDl-
File Edit Mavigate Search Project Run FreeRTOS Window Help
M-l e-CRix|roEye s eS3
v 1 Debug (Debug build)
2 Release (Release build)

bol Viewer

=1§

E‘“:, Project Explorer &3

s (=5 lpcxpresso54114_multicore_examples_hello_world_cmOplus
= lpcxpresso54114_multicore_examples_hello_world_cméd

Figure 15. Selection of the build target in MCUXpresso IDE

The project starts building after the build target is selected. Because of the project reference settings in multicore projects,
triggering the build of the primary core application (cm4) also causes the referenced auxiliary core application (cmOplus) to
build.

NOTE
When the Release build is requested, it is necessary to change the build configuration of
both the primary and auxiliary core application projects first. To do this, select both
projects in the Project Explorer view and then right click which displays the context-
sensitive menu. Select Build Configurations -> Set Active -> Release. This alternate
navigation using the menu item is Project -> Build Configuration -> Set Active ->
Release. After switching to the Release build configuration, the build of the multicore
example can be started by triggering the primary core application (cm4)build.

%) workspace - Develop - Welcome page - MCUXpresso ID}

File Edit Nevigste Search Project Run FreeRTOS MWindow Help
- [®-|-Bin|puEs o i]|SRbERRRSLAE-0-9
[7 Project Explorer 53 |2, Peripherals= 1iif Registers ., Symbol Viewer = O @ Welcome 13
BE - S file//CifrpMCUX pressol
» (% Ipcapresso54114_multicore_examples_hello_world_cm0plus|
» [E5 Ipexpressos4114_multicore_examples_hello_world_cmd
New 13
Golnto
) Copy culeC
Paste Ctriey
3 Delete Delete
Source »
Move...
Rename... R
e Import..
L9 Bxport..
Build Project
Clean Project
Refresh Fs
Close Project
Close Unrelated Projects
Build Configurations » Set Active
Build Targets , Manage... v 2Relesse (Release build)
Index ' Build All
Run s , Clean All
Debug As , Build Selected...
Profile As VT

Figure 16. Switching multicore projects into the Release build configuration

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 13

A ————
Run a demo using MCUXpresso IDE

3.5 Run a multicore example application

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash
memory. To download and run the multicore application, switch to the primary core application project and perform all steps
as described in Run an example application. These steps are common for both single-core applications and the primary side
of dual-core applications, ensuring both sides of the multicore application are properly loaded and started. However, there is
one additional dialogue that is specific to multicore examples which requires selecting the target core. See the following
figures as reference.

} Quickstart Parel “Variables * Breakpoints . It Ehe MCLUIXpre:
Halp -> MCUXpresso IDE User Gu
z -
[x] MCUXpresso IDE - Quickstart Panel
' Project: frdmk3213a6_hello world_cmd [Release] Helo -Hel:)l_‘-_\ﬂ!e‘l-l‘\
= Create or import a project
Y B¢
M ; CDT Build Console [frdmk32(3a6_hello_ world_om
* Build your project make --no-print-directory post-buil
< Performing post-build steps
arm-nong-eabi-size “frdmk3213a6_hel
’ text data bss dec
Teee L] B48B 15488
* Debug your project Evd~H~
% Dot ® Debug using LinkServer probes (CTRL+SHIFT+ALT+L
ﬂ Attach to a running target using LinkServer (CTRL+ALT+L)

Program flash action using LinkServer
- Miscellaneous

Erase flash action using LinkServer

Figure 17. Debug "frdmk32I13a6_hello_world_cm4" case

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
14 NXP Semiconductors

Run a demo using MCUXpresso IDE

-
8 Probes discovered = @'lg

Connect to target: LPC54114J256

(1, Thefollowing probes have been disabled in the preferences:
P&E Micro probes SEGGER J-Link probes

Available attached probes

Mame Serial number/1I0D Type Manufa.. IDE Debug Mode
LPC-LIMEZ2 CMSIS-DAP V5,134 AD00000002 LinkServe MNXP Semi Mon-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc, CMSIS-DAP) probes
[7] P&E Micro probes

[] SEGGER J-Link probes

Probe search options

Remember my selection (for this Launch configuration)

@

Figure 18. Attached Probes: debug emulator selection

r. £ N
SWD Configuration
(1, 2 available SWD Devices detected.
Target 'Cortex-M4' has been selected, but it may be incompatible!
Device Name TAPId Details
0 Cortex-M4 (x2ba01477 APID:24770011 I
—
11 Cortex-MO+ (x2ba01477 APID:24770011
® I OK][Cancel]
L

Figure 19. Target core selection dialogue

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

NXP Semiconductors 15

Run a demo using MCUXpresso IDE

. workspace - Develop - Ipcipresso54114_multicore_examples_hello_world_cmd/source/hello_world_corel.c - MCUXpresso [D-
File Edit 5Source Refactor MNavigate Search Project Run FreeRTOS Window Help

Tl | ® -]/~ E@in|m eSSkl @RS A 0G|
o | 3% Debug i1
|-—I>:l 4 . lpcxpresso54114_multicore_examples_hello_world_cmd Debug [C/C++ (MXP Semiconductors) MCU Application]
IE._"-&. 4 L':E Ipcxpresso54114_multicore_examples_hello_world_crmd.axf [LPC54114J256 (cortex-m0plus)]

a4 % Thread £1 1 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_corel.c:85 0x98a

)
1

==

101
oo

by | arm-none-eabi-gdb (7.12.0.20161204)
=3
0 @ hello_world_corel.c &2
()= 68 {
()= 69 uint32_t corel_image size;
78 #if defined(_ CC_ARM)
8g 71 corel_image size = (uint32_t)&Image$$CORE1_REGIONESLength;
o= 72 #elif defined(_ ICCARM_)
== 73 #pragma section = "_ sec_core”
74 corel_image size = (uint32_t)_ section_end("__ sec_core™) - (uint32_t)&corel_image start;
75 #endif
76 return corel_image size;
77}
73 #endif
792 f*]

Ba
81 ¥/

2= int main(wvoid)

83 {

84 /* Define the init structure for the switches*/

a5 | gpio_pin_config t sw_config = {kGPIO DigitalInput, @};

86

87 /* Init board hardware.*/

88 /* attach 12 MHz clock to FLEXCOMMB (debug console) */

89 CLOCK_AttachClk(kFROIZM to FLEXCOMME);

ELS

91 BOARD _InitPins_CoreB();

92 BOARD BootClockFROHF4EM();

93 BOARD InitDebugConsole();

94

95 /* Init switches */

o5 GPIO PinInit(BOARD SW1 GPIO, BOARD SW1 GPIO PORT, BOARD SW1 GPIO PIN, &sw config);
a7 GPIO PinInit{BOARD SW2_GPIO, BOARD_SW2 GPIO _PORT, BOARD_SW2 GPIO PIN, &sw_config);
ag

Figure 20. Stop the primary core application at main() when running debugging

@brief Main function

After clicking the "Resume All Debug sessions" button, the hello_world multicore application runs and a banner is displayed
on the terminal. If this is not the case, check your terminal settings and connections.

Edit Setup Control Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core.)
The secondary core application has been started.

Figure 21. Hello World from the primary core message

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
16 NXP Semiconductors

4
Run a demo using MCUXpresso IDE

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from the reset and
running correctly. It is also possible to debug both sides of the multicore application in parallel. After creating the debug
session for the primary core, perform same steps also for the auxiliary core application. Highlight the
Ipcxpresso54114_multicore_examples_hello_world_cmOplus project (multicore slave project) in the Project Explorer. On the
Quickstart Panel, click “Debug ‘Ipcxpresso54114_multicore_examples_hello_world_cmOplus’ [Debug]” to launch the
second debug session.

U Quickstart Pa.. ©-=Global Varia.. =Variables ®e Breakpoints 5= Outline ~— O Fur
~ Installed SDKs [E Properties 3 Consols
- MCUXpresso IDE - Quickstart Panel Property
P& Project: Ipcxpresso54114_hello_world_cmOplus [Debug]
~ Create or import a project
& New project..
.
= Import SDK example(s)...
2 Import project(s) from file system...
~ Build your project
% Build
& Clean
+ Debug your project E~-~EHH~
5 Debug)4} Debug using LinkServer probes (CTRL+SHIFT+L)
B Attach to a running target using LinkServer (CTRL+ALT +L)
B Program flash using LinkServer
~ Micrallananne @ Erase flash using LinkServer

Figure 22. Debug "Ipcxpresso54114_multicore_examples_hello_world_cmOplus" case

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 17

A ————
Run a demo using MCUXpresso IDE

. workspace - Develop - Ipc:presso541]4_muﬁmm_mmhs_hdlu_mﬂd_cmd{mumﬂﬂﬂ@

Eile Edit 5Source Refactor Mavigate Search Project Bun FreeRTOS Window Help

Nmil | B~ R~ mi x| NS 8 blErRRESE LI -0
& Uﬁfis: Debug &3
rlp:‘ 4 . Ipcxpresso54114_multicore_examples_helle_world_cmd Debug [CFC++ (NXP Semiconductors) MCU Application]
% 4 Lﬁ? Ipcxpresso54114_multicore_examples_hello_world_crmd.axf [LPC54114)256 (cortex-mOplus)]

4 f® Thread #1 1 (Stopped) (Suspended : Breakpoint)

: = main() at hello_world_corel.c:85 0:98a

p| arm-none-eabi-gdb (712.0.20161204)

P . Ipcxpresso54114_multicore_sxamples_hello_world_cm0plus Debug [C/C++ (NXP Semiconductors) MCU Application]

o
1

==

1
o

= 4 E Ipcxpresso54114_multicore_sxamples_hello_world_crnDplus.asf [LPC54114)256 (cortex-m0plus)]
0 4 ¥ Thread #1 1 (Stopped) (Suspended : Signal : SIGSTOP:Stopped (signal))
o= = Oilec
= <signal handler called=> () at DxffFFFFfa
LA = 0
®s p| arm-none-eabi-gdb (7.12.0.20161204)
o=

@ hello_world_corel.c 2

68 {

69 uint32 t corel_image size;

7@ #if defined(_ CC_ARM)

71 corel _image _size = (uwint32_t)&Image$$COREL_REGIONS$ELength;

72 #elit defined(_ ICCARM)
73 #pragma section = "___sec_core"

74 corel_image size = (uint32_t)_ section_end("_ sec_core") - (uint32_t)&corel_image start;
75 #endif

76 return corel_image size;

77 }

78 #endif

708 /*!

88 ¥ {ibrief Main function

8L */

2= int main(void)

83 {

g4 /* Define the init structure for the switches®/

85 | gpio_pin_config t sw_config = {kGPIO DigitolInput, @};
86

87 /* Init board hardware.*/

85 J/* attach 12 MHz clock to FLEXCOMM@ (debug console) */
89 CLOCK_AttachClk(kFROIZM to FLEXCOMME):

9

91 BOARD_InitPins_Core@();

92 BOARD BootClockFROHFA8M();

a3 BOARD InitDebugConscle();

94

95 /* Init switches */

96 GPIO_PinInit(BOARD SW1_GPIO, BOARD SW1 GPIO_PORT, BOARD SW1 GPIO _PIN, &sw config);

a7 GPIO_PinInit(BOARD SW2 GPIO, BOARD SW2 GPIO PORT, BOARD SW2 GPIO PIN, &sw config);
o

Figure 23. Two opened debug sessions

Now, the two debug sessions should be opened, and the debug controls can be used for both debug sessions depending on the
debug session selection. Keep the primary core debug session selected by clicking the "Resume" button. The hello_world
multicore application then starts running. The primary core application starts the auxiliary core application during run time,

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
18 NXP Semiconductors

4
Run a demo using MCUXpresso IDE

and the auxiliary core application stops at the beginning of the main() function. The debug session of the auxiliary core
application is highlighted. After clicking the “Resume” button, it is applied to the auxiliary core debug session. Therefore, the
auxiliary core application continues its execution.

. workspace - Develop - Ipoxpresso54114 multicore_examples_hello_world_cm0plus/source/hello_world_corel.c - MCUXpresso ID
File Edit Source Refactor MNavigate Search Project RBun FreeRTOS Window Help
Tk | B-R-B | PIE32 S @RS LA 0G|
= 3&3: Debug 52 [Step Return All Debug sessions]
r[\:‘ 4 . Ipcxpresso54114_multicore_sxamples_hello_world_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]
lé._"-e. 4 lpcxpresso54114_multicore_examples_hello_world_crmd.axf [LPC54114)256 (cortex-m0plus)]

2 Thread #1 1 (Stopped) (Running)
w| arm-none-eabi-gdb (7.12.0.20161204)

o=
==
==
==

X 4 . Ipcxpresso54114_multicore_sxamples_hello_world_cm0plus Debug [C/C++ (NXP Semiconductors) MCU Application]
4 EE} Ipcxpresso54114_multicore_examples_hello_world_cmOplus.axf [LPC54114)256 (cortex-mOplus)]
= a o Thread #11 (Stopped) (Suspended : Breakpaint)
0 = rmain() at hello_world_corel ;71 0x20010846
09- p| arm-none-eabi-gdb (7.12.0.20161204)
x)=
®s
=
E=
helle_world_corel.c | fsl_mailbox.h @ helle_world_corel.c &2
66 }
61 }
62
635 /*!

64
65 ¥/

66= int main(void)

67 {

63 uint32_t startupData, 1i;

69

78 /* Define the init structure for the output LED pin*/
71 gpio_pin_config t led config = {

72 RGPIO DigitalOutput, @,

73 b

74

75 /* Initialize MCMGR before calling its API */

76 MCMGR_Init();

77

78 /* Get the startup data */

79 MCMGR_GetStartupData(kMOMGR Corel, &startupData);
8e

81 /* Make a noticable delay after the reset */

82 /* Use startup parameter from the master core... */
83 for (i = @; 1 < startupData; i++)

84 delay();

as

ibrief Main function

Figure 24. Auxiliary core application stops at the main function

At this point, it is possible to suspend and resume individual cores independently. It is also possible to make synchronous
suspension and resumption of both the cores. This is done either by selecting both opened debug sessions (multiple selection)
and clicking the “Suspend” / "Resume” control button, or just using the “Suspend All Debug sessions” and the “Resume All
Debug sessions” buttons.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 19

Run a demo using MCUXpresso IDE

- workspace - Develop - | 54114 multicore_exa :_hello_world_ lusy’

File Edit Source Refactor Mavigate Search Project Bun FreeRTOS Window Help

Tl | B~ R~ w:w Mo p|SE | blEBRRR S LI HFE-0
5’ A5 Debug 2

r[\:‘ 4 . |pcxpresso54114_multicore_examples_hello_world_cmd Debug [C/C++ (MXP Semiconductors) MCU Application]

?,5 4 Ipoxpresseid4114_multicore_examples_helle_world_cmd.axf [LPC54114J256 (cortex-m0plus)]

| Thread #1 1 (Stopped) (Running] |
p| arm-none-eabi-gdb (7.12.0.20161204)

o=
==
—=

{ 4 . Ipcxpresso54114_multicore_examples_hello_world_cmOplus Debug [C/C++ (NXP Semiconductors) MCU Application]
— 4 Ipcxpresso5d114_multicore_examples_hello_world_cm0plus.axf [LPC54114)256 (cortex-miplus)]
= |8 Thread #1 1 (Stopped) (Running] |
0) p| arm-none-eabi-gdb (7.12.0.20161204)
b=
(%)=
)
O
o=
| hello_world_corel.c | fzl_mailbox.h @ hello_world_corel.c &2 [c | 0x180

-u v

59 __asm("NOP"); /* delay */

&8 1

61 }

B2

635 /*!

64 * (ibrief Main function

65 */

66= int main(void)
68 uint32_t startupData, 1i;

78 /* Define the init structure for the output LED pin*/
71 gpio_pin_config t led_config = {

72 RGPIQ DigitaolOutput, 8,

73 s

75 /* Initialize MCMGR before calling its API */
76 MCMGR_Init();

78 /* Get the startup data */
79 MCMGR_GetStartuplata(kMCMER_Corel, &startupData);

81 /* Make a noticable delay after the reset */

82 /* Use startup parameter from the master core... */
83 for (1 = @; 1 < startupData; i++)

84 delay();

Figure 25. Synchronous suspension/resumption of both cores using the multiple
selection of debug sessions and “Suspend”/"Resume” controls

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
20 NXP Semiconductors

Run a demo application using IAR

. workspace - Develop - Ipoxpresso34114 multicore_examples_hello_world_cmOplus/source
Eile Edit Source Refactor Mavigate Search Project Bun FreeRTOS Window Help

Am i | B~ K~ miw| e albifEa2RSLLHE-0-
5’ %5 Debug 2

r[\:‘ 4 . Ipcxpressesd114_multicore_examples_hello_world_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]

?ﬁ 4 E;} Ipcxpresso54114_multicore_examples_hello_world_cmd,axf [LPC54114)256 (cortex-m0plus)]

4 f# Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)

GPIO_ReadPinlnput() at fsl_gpio.h:146 0:85¢

main() at hello_world_corel.c:134 0xall

g arm-none-eabi-gdb (7.12.,0.20161204)

= a . lpcxpresso54114_multicore_sxamples_hello_world_cmlplus Debug [C/C++ (MXP Semiconductors) MCU Application]

o=
==
==
==

B

0 4 E Ipcxpresso54114_multicore_sxamples_hello_world_cmlplus.axf [LPC54114)256 (cortex-m0plus]]
- 4 o Thread #11 (Stopped) (Suspended : Signal : SIGINT:Interrupt)
= delay() at hello_world_corel.c:59 0x20010824
x)= = main() at hello_world_corel .99 0x200108a0
% p| arm-none-eabi-gdb (7.12.0.20161204)
Oz
O-—
hello_world_corel.c h| fsl_mailbox.h hello_world_corel.c &3 0,190
-y L
59 __asm{"NOP"}; /* delay */
6@ 1
61 1}
B2
B3= ¥ 1
64 ¥ (@brief Main function
B5 *;
5= int main(void)
67 {
68 uint32_t startupData, i;
69
78 /* Define the init structure for the output LED pin*/
71 gpio_pin_config_t led_config = {
72 kGPIO DigitalOutput, @,
73 T
74
75 /* Initialize MCMGR before calling its API */
76 MCMGR_Init();
77
78 /* Get the startup data */
79 MCMGER_GetStartupData(kMCHGR_Corel, &startupData);
Fits
81 /* Make a ngticable delay after the reset */
32 /* Use startup parameter from the master core... */
e for (i = B; i < startupData; i++)
84 delay();
ac

Figure 26. Synchronous suspension/resumption of both cores using the “Suspend All
Debug sessions” and the “Resume All Debug sessions” controls

4 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 21

Run a demo application using IAR

NOTE
IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and
the IAR toolchain should correspond to the latest supported version, as described in the
MCUXpresso SDK Release Notes.

4.1 Build an example application

Do the following steps to build the hello world example application.
1. Open the desired demo application workspace. Most example application workspace files can be located using the

following path:

<install dirs/boards/<board name>/<example_ type>/<application names/iar

Using the FRDM-K64F Freedom hardware platform as an example, the hello world workspace is located in:

<install dirs/boards/frdmké4f/demo_apps/hello world/iar/hello world.eww
Other example applications may have additional folders in their path.
2. Select the desired build target from the drop-down menu.

For this example, select hello_world — debug.

Release

E(J hello_world - Deb... v
[(hboard

(Jdoc

[drivers

[(Jsource

[startup

[utilities

3 Output

Figure 27. Demo build target selection
3. To build the demo application, click Make, highlighted in red in Figure 28.

MW@ = XE0 DC < Q>&r=< 8 >QAH B

Debug

Files .
2 @ hello_world - Debug v
B board

= i doc

i drivers

M source

B startup

= o utilities

B Output

Figure 28. Build the demo application

4. The build completes without errors.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
22 NXP Semiconductors

Run a demo application using IAR
4.2 Run an example application

To download and run the application, perform these steps:

1. See the table in Default debug interfaces to determine the debug interface that comes loaded on your specific hardware

platform.
* For boards with CMSIS-DAP/mbed/DAPLink interfaces, visit developer.mbed.org/handbook/Windows-serial-
configuration and follow the instructions to install the Windows® operating system serial driver. If running on
Linux® OS, this step is not required.
* The user should install LPCScrypt or MCUXpresso IDE to ensure LPC board drivers are installed.
* For boards with P&E Micro interfaces, visit www.pemicro.com/support/downloads_find.cfm and download the
P&E Micro Hardware Interface Drivers package.
2. Connect the development platform to your PC via USB cable.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD DEBUG UART BAUDRATE variable in the
board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit
$3 PuTTY Configuration =
Category: _
=) Session Basic options for your PuTTY session
-) Foglging Specify the destination you wart to connect to
e s Senal line Speed
- Keyboard
- Bell COoM16 115200
- Features Connection type:
£ Window | Raw Teinet () Rlogin () SSH
- Appea@ce Load, save or delete a stored session
Behaviour
. Tramsiation Saved Sessions
Selection Debug

-~ Colours - |

=- Connection !?iau.l Settings @]
- Data | b _ —

Proxy -

Riogin
- SSH
S Close window on ext:
) Mways (Never @ Only on clean exit
[ot || Heo | Open [Cancel |

Figure 29. Terminal (PuTTY) configuration
4. InTAR, click the Download and Debug button to download the application to the target.

<Q>8»=< P> AG=|0] su Bh =

-
-

Figure 30. Download and Debug button

5. The application is then downloaded to the target and automatically runs to the main () function.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

NXP Semiconductors 23

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm

A ————
Run a demo application using IAR

LT i i - —_ .
NoR@ = XE0Dc »<Q>82< B0 BB GCO_NK I 3 v dudh
Workspace ¥ 0 X | hello_world.c X
‘Debug ~| main()

- 41

Files £ . a2 B e E
E @ hello_world - Debug v 43T * Prototvpes

B hoard 14 B T LT T
i doc 45

5 i drivers I T T T LT ST TP P PP PP

@ i source “T * Codz

-Sta[‘tup 48 a-ka-ka-a-a-a-a-a-a-a-kkkkkkt*kkkkkkkkkkkkkkkkktkkkkkkkkkkkkkkkkkkf*tkkkkkkkkkkkkkkkkt*t/
_ 1
@ i utilities :3 /*'@b ief Main functi
-Out ut goriel Main funciion
= P s1 L oy
g 52 |int mainfvoid)
53 {
54 char ch;
S
56 /* Init board hardware. */
57 /* attach 12 MHz clock to FLEXCOMMO (debug conscle) *#/
58 CLOCE_AttachClk (BORRD _DEBUG UART CLE ATTACH):
59
&0 BORED InitPins();
6l BOAED BootClockFROHF48M():
62 BORRD InitDebugConsole();

Figure 31. Stop at main() When running debugging
6. Run the code by clicking the Go button.

Q > K=< G > [[..'E@CO;n_“r"i'I' 3 - ;do s g

L

Figure 32. Go button
7. The hello world application is now running and a banner is displayed on the terminal. If it does not appear, check
your terminal settings and connections.

Figure 33. Text display of the ne11o woria demo

4.3 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo applications workspace files are located in
this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World TAR workspaces are
located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cmOplus/iar/hello_world_cmOplus.eww

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
24 NXP Semiconductors

4
Run a demo using Keil® MDK/pVision

Build both applications separately by clicking the Make button. Build the application for the auxiliary core (cmOplus) first,
because the primary core application project (cm4) needs to know the auxiliary core application binary when running the
linker. It is not possible to finish the primary core linker when the auxiliary core application binary is not ready.

4.4 Run a multicore example application

The primary core debugger handles flashing both primary and the auxiliary core applications into the SoC flash memory. To
download and run the multicore application, switch to the primary core application project and perform steps 1 —4 as
described in Run an example application. These steps are common for both single core and dual-core applications in IAR.

After clicking the “Download and Debug" button, the auxiliary core project is opened in the separate EWARM instance. Both
the primary and auxiliary image are loaded into the device flash memory and the primary core application is executed. It
stops at the default C language entry point in the main() function.

Run both cores by clicking the "Start all cores" button to start the multicore application.

.o~ LM~

Figure 34. Start all cores button

During the primary core code execution, the auxiliary core is released from the reset. The hello_world multicore application
is now running and a banner is displayed on the terminal. If this does not appear, check the terminal settings and connections.

L1 COM23:115200baud - Tera Term VT
File Edit Setup Control Window KanjiCode Help

|Hello World from the Primary Core!

Starting Secondary core.)
The secondary core application has been started.

Figure 35. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from the reset and
is running correctly. When both cores are running, use the "Stop all cores" and "Start all cores" control buttons to stop or run
both cores simultaneously.

ko v LW~ o o

Figure 36. "Stop all cores" and "Start all cores" control buttons

5 Run a demo using Keil® MDK/pVision

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.
The hello world demo application targeted for the FRDM-K64F Freedom hardware platform is used as an example,
although these steps can be applied to any demo or example application in the MCUXpresso SDK.

5.1 Install CMSIS device pack

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 25

Run a demo using Keil® MDK/pVision

After the MDK tools are installed, Cortex® Microcontroller Software Interface Standard (CMSIS) device packs must be
installed to fully support the device from a debug perspective. These packs include things such as memory map information,
register definitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS pack.

1. Open the MDK IDE, which is called puVision. In the IDE, select the Pack Installer icon.

Eﬁpﬂﬁﬁﬂn
File Edit View Project Flash Debug Peripherals Tools SVCS Window
& A s | | | | &
! ::-:-'.-| «\‘f . .‘_:_ s, @

il

Figure 37. Launch the Pack Installer

2. After the installation finishes, close the Pack Installer window and return to the uVision IDE.

5.2 Build an example application

1. Open the desired example application workspace in:

<install dir>/boards/<board names/<example type>/<application name>/mdk

The workspace file is named as <demo name> . uvmpw. For this specific example, the actual path is:

<install dir>/boards/frdmké64f/demo_apps/hello world/mdk/hello world.uvmpw
2. To build the demo project, select Rebuild, highlighted in red.

4| E@ | it | hello_world Debug E ;:‘\|

Figure 38. Build the demo

3. The build completes without errors.

5.3 Run an example application

To download and run the application, perform these steps:

1. See the table in Default debug interfaces to determine the debug interface that comes loaded on your specific hardware
platform.

* For boards with the CMSIS-DAP/mbed/DAPLink interface, visit mbed Windows serial configuration and follow
the instructions to install the Windows operating system serial driver. If running on Linux OS, this step is not
required.

* The user should install LPCScrypt or MCUXpresso IDE to ensure LPC board drivers are installed.

* For boards with a P&E Micro interface, visit www.pemicro.com/support/downloads_find.cfm and download and
install the P&E Micro Hardware Interface Drivers package.

* If using J-Link either a standalone debug pod or OpenSDA, install the J-Link software (drivers and utilities) from
www.segger.com/jlink-software.html.

¢ For boards with the OSJTAG interface, install the driver from www keil.com/download/docs/408.

2. Connect the development platform to your PC via USB cable using OpenSDA USB connector.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
26 NXP Semiconductors

https://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
http://www.keil.com/download/docs/408.asp

Run a demo using Keil® MDK/pVision

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the debug serial port number (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD DEBUG UART BAUDRATE variable in the
board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

R PuTTY Configuration
Category:
[=- Session Basic options for your PuTTY session
| . Lngi"g Specify the destination you wart to connect to
=~ Terminal
Serial line Speed
- Keyboard el
- Bel COM16 115200
- Features LConnection type:
- Window JRaw () Telnet () Rlogin () SSH | @ Segal
g Appea@ce Load, save or delete a stored session
Behaviour
. Translation Saved Sessions
Selection Debug
-~ Colours [
Default Settings
& Connection T —
B
oy
Rlogin
[-SSH
Swind Close window on exit:
) Always Never @ Only on clean exit
[ot J[b | Open][Corcd |

Figure 39. Terminal (PuTTY) configurations
4. In pVision, after the application is built, click the Download button to download the application to the target.

Project
=REL WorkSpace
=% Project: hello_world

f%' hello_world Debug

B

Figure 40. Download button

[+] &

5. After clicking the Download button, the application downloads to the target and is running. To debug the application,
click the Start/Stop Debug Session button, highlighted in red.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

NXP Semiconductors

27

A ————
Run a demo using Keil® MDK/pVision

e l=R- | [Fet |t ® | iE E | @ use_uarTSTDIO_FOR EHv|), o
ARG ERE e I) [E =
Registers a Disassembly
Register ‘ Value
=" Core
R2 (00000000 BOARD_BootClockRUN (0x00000D20)
e InicDebugConsole () ;
i
| 4
RE _] hello_worldc | startup_MK64F12.s
R7 52 int main(void
R8 53 E¢
RS 54 char ch
R10 55
il 56 b a e
R12 [57
58
59
&0
+ 1
* Banked 62
{1 E - System €3 dhile (1)

Figure 41. Stop at main() When run debugging
6. Run the code by clicking the Run button to start the application.

%‘Fi D| B B @
n_ [l

Registers

=]l Run (F5)
Register Start code execution

Figure 42. Go button

The hello world application is now running and a banner is displayed on the terminal. If this does not appear, check
your terminal settings and connections.

Figure 43. Text display of the hello_world demo

5.4 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo applications workspace files are located in
this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World Keil MSDK/uVision®
workspaces are located in this folder:

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
28 NXP Semiconductors

4
Run a demo using Keil® MDK/pVision

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cmOplus/mdk/hello_world_cmOplus.uvmpw
<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the auxiliary core (cmOplus) first
because the primary core application project (cm4) needs to know the auxiliary core application binary when running the
linker. It is not possible to finish the primary core linker when the auxiliary core application binary is not ready.

5.5 Run a multicore example application

The primary core debugger flashes both the primary and the auxiliary core applications into the SoC flash memory. To
download and run the multicore application, switch to the primary core application project and perform steps 1 — 5 as
described in Run an example application. These steps are common for both single-core and dual-core applications in pVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking the “Run" button, the
primary core application is executed. During the primary core code execution, the auxiliary core is released from the reset.
The hello_world multicore application is now running and a banner is displayed on the terminal. If this does not appear,
check your terminal settings and connections.

(@ COM25:115200baud - Tera Term

File Edit 5etup Control Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core.)
The secondary core application has been started.

Figure 44. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been released from the reset and
is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in the second uVision instance and
clicking the “Start/Stop Debug Session” button. After this, the second debug session is opened and the auxiliary core
application can be debugged.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 29

A ————
Run a demo using Arm® GCC

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

1S Ha| r B | | m | == | o B
B BT o> [HEREDS SR R R
Registers a @ Disassembly
Register |Va||.|e | 51: for (i = 0; 1 < 1000000; ++i)
32 {
= Core .
=0 DOD00ATDA 0x20010B52 2000 STR x0, [sp, $0x00]
0x20010B5C EQO3 B 0x20010B&6
R1 b<000F4240 P asm("NOE"): /* delay */
R2 20000000 59: —=m o -
A2 000000000 0x20010B5E T‘E‘OO HCP
R4 x4008E300 N -
Rs 00000001 - 51 - Far (i = 0+ i < 1000ANN- 2351
RE :20010C0C
R7 O<FFFFFFFF J hello_world_corel.c
R& [Q«FFFFFFFF e T
R9 (xFFFFFFFF P Frototypes
R10 <FFFFFFFF 40 | swwwwwww e e e e e e e e e e e e e
R11 xFFFFFFFF a1
R12 [Q«FFFFFFFF G [A m kR A kR R AR R R R AR R R AR AR R AR R AR R AR R AR A AR AR AR AR R AR AR AR AR
R13 (5P} (200267F0 ‘13T « Code
R14 (LR} (x20010B3F 0 A e
R15 (PC) (120010868 45 1
* kPSR (01000000 QGT Bbrief Function to create delay for Led blink
+I- Barked 47
System 48 void delay (void)
=l Intemal 49 04
Made Thread 50 volatile uint32 £ i = 0;
Privilege Privileged M st for (1 = 0; 1 < 1000000; ++1)
Stack MSP 52 i
=3 __asm("HCP"); /* delay */
54 ¥
55
56

Figure 45. Debugging the auxiliary core application

Arm describes multi-core debugging using the NXP LPC54114 Cortex-M4/MO+ dual-core processor and Keil uVision IDE
in Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The associated video can be found here.

6 Run a demo using Arm® GCC

This section describes the steps to configure the command line Arm® GCC tools to build, run, and debug demo applications
and necessary driver libraries provided in the MCUXpresso SDK. The hello world demo application is targeted for the
FRDM-K64F Freedom hardware platform which is used as an example.

NOTE
GCC ARM Embedded 8.2.1 is used as an example in this document. The latest GCC
version for this package is as described in the MCUXpresso SDK Release Notes.

6.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run an MCUXpresso SDK demo
application with the Arm GCC toolchain, as supported by the MCUXpresso SDK. There are many ways to use Arm GCC
tools, but this example focuses on a Windows operating system environment.

6.1.1 Install GCC Arm Embedded tool chain

Download and run the installer from developer.arm.com/open-source/gnu-toolchain/gnu-rm. This is the actual toolset (in
other words, compiler, linker, and so on). The GCC toolchain should correspond to the latest supported version, as described
in MCUXpresso SDK Release Notes.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
30 NXP Semiconductors

http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

4
Run a demo using Arm® GCC

6.1.2 Install MinGW (only required on Windows OS)

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on third-party
C-Runtime DLLs (such as Cygwin). The build environment used by the MCUXpresso SDK does not use the MinGW build
tools, but does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface
and tools.

1. Download the latest MinGW mingw-get-setup installer from sourceforge.net/projects/mingw/files/Installer/.
2. Run the installer. The recommended installation path is C: \MinGW, however, you may install to any location.

NOTE
The installation path cannot contain any spaces.

3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

B MinGW Installation Manager
Installation Package Settings

Basic Setup

Package Class Installed Version Repository Version Description
Al Packages
I:‘ mingw-developer-tool... bin 2013072300 An M3YS Installation for MinGW Developers (meta)
mingw32-base bin 2013072200 A Basic MinGW Installation
|:| mingw32-gcc-ada bin 4.8.1-4 The GNU Ada Compiler
[] mingw32-gcc-fortran bin 4.8.1-4 The GNU FORTRAN Compiler
D mingw32-gcc-g++ bin 4.8.1-4 The GNU C++ Compiler
I:‘ mingw32-gcc-objc bin 4.8.1-4 The GMU Objective-C Compiler
msys-base bin 2013072300 & Basic MSYS Installation (meta)

Figure 46. Set up MinGW and MSYS

4. In the Installation menu, click Apply Changes and follow the remaining instructions to complete the installation.

5 MinGW Installation Manager

Installation | Package Settings

Update Catalogue Package

Mark All Upgrades g mingw-developer-toal...
Apply Changes 52l mingw32-base
il 1 IE mingw32-gcc-ada

Quit Alt+F4 D mingw32-gcc-fortran
I:l mingw32-goc-g++
[[] mingw3z-gec-obije
E msys-base

Figure 47. Complete MinGW and MSYS installation

5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control
Panel->System and Security->System->Advanced System Settings in the Environment Variables... section. The
path is:

<mingw_install dir>\bin

Assuming the default installation path,C: \MinGW, an example is shown below. If the path is not set correctly, the
toolchain will not not work.

NOTE
If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by
Kinetis SDK 1.0.0), remove it to ensure that the new GCC build system works
correctly.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 31

http://sourceforge.net/projects/mingw/files/Installer/

Run a demo using Arm® GCC

System Properties 23

Computer Name | Hardware | Advanced | System Protection | Remote

Environment Variables £3
Edit System Variable £
Variable name: Path
Variable value: agram Files {(x86&)\CMake \bin; C: \MinGW bin
| OK | | Cancel |

System variables

Variable Value i
05 Windows_NT

Path C:\Program Files (x86)\Parallels\Parallel...
PATHEXT ,COM; .EXE;.BAT;.CMD;.VES; VBE;. 1S;.....
PROCESSOR_A... AMD&4 -

[nwew.. |[GEdit. |[Deete |

| OK || Cancel |

Figure 48. Add Path to systems environment

6.1.3 Add a new system environment variable for armccc pir

Create a new sysfem environment variable and name it as ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Tools ARM Embedded\8 2018-g4-major
See the installation folder of the GNU Arm GCC Embedded tools for the exact path name of your installation.

Short path should be used for path setting, you could convert the path to short path by running command "for %I in (.) do
echo %~sI" in above path.

s Arm Emb

s Arm Emb

Figure 49. Convert path to short path

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
32 NXP Semiconductors

4
Run a demo using Arm® GCC

User variables for

Variable Value

OneDrive C\Usersy, \OneDrive - NXP

OneDriveCorfmercial Ch\Usersy, \OneDrive - NXP

Path C\Ruby24-x64\bin:C:\Users\nxal7599\ AppData\Local\Micros...
PATHEXT LCOM;.EXE.BAT.CMD; VBS: VBE.JS;JSE,.WSF, WS5H;MSC;.RB;.RB...
TEMP Ch\Usersy, ‘AppDataiLocal\Temp

TMP Ch\Usersy, ‘AppDataiLocal\Temp

MNew User Variable

Variable name; |ARMGCC_DIR

Variable value: [C.‘\FRDGF{A~2\GNUTOD~1\S.ZUIS—~1

Browse Directory... Browse File... Cancel

| IAR_WORKBENCH C\Program Files (x86)\|AR Systems\Embedded Workbench 8.2 |
JLINK_DIR C\Program Files (x86)\SEGGERYLink_V&40
KEIL C\Keil _vS\Uva
e P v
New.. Edit.. Delste
oK Cancel

Figure 50. Add ARMGCC_DIR system variable

6.1.4 Install CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
2. Install CMake, ensuring that the option Add CMake to system PATH is selected when installing. The user chooses to
select whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all

users.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

T

NXP Semiconductors

33

http://www.cmake.org/cmake/resources/software.html

Run a demo using Arm® GCC

A CMake 30.2 Setup o = =]

Install Options
Choose options for instaling CMake 3.0.2

By default CMake does not add its directory to the system PATH.

Do not add CMake to the system PATH

©) Add CMake to the system PATH for all users
53dTH G BETH

CMake To the system Of CUMTent user

[create CMake Desktop Icon

[<Back | next> | [cancel

Figure 51. Install CMake

3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.
5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of mingw32-make.

6.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows operating
system Start menu, go to Programs ->GNU Tools ARM Embedded <version> and select GCC Command Prompt.

GNU Tools for ARM Embedded Process:
Documentation

193] GCC Command Prompt

{9 Uninstall GNU Tools for ARM Embec

Figure 52. Launch command prompt
2. Change the directory to the example application project directory which has a path similar to the following:

<install dirs/boards/<board name>/<example_ type>/<application names>/armgcc

For this example, the exact path is:

<install dir>/examples/frdmké64f/demo apps/hello world/armgcc

NOTE
To change directories, use the cd command.

3. Type build_debug.bat on the command line or double click on build_debug.bat file in Windows Explorer to build it.
The output is shown in this figure:

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
34 NXP Semiconductors

Run a demo using Arm® GCC

[841
[921

[18@8::] Linking C executable debug“hello_world.elf

(18] Built target hello world.elf

:DE_2 .6_FRDM-K&4F<ho ardz“Ffrdrnkit4df ~demo_appszshello_worldvarmgecc >I[F "' == "
>
key to cont inuwe

Figure 53. ne11o woria demo build successful

6.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application. To complete the set-up check if
your board supports OpenSDA in Default debug interfaces

If your board supports OpenSDA
* The OpenSDA interface on your board is pre-programmed with the J-Link OpenSDA firmware.
¢ For instructions on reprogramming the OpenSDA interface, see Updating OpenSDA firmware.

If your board does not support OpenSDA
* A standalone J-Link pod is required which should be connected to the debug interface of your board.

NOTE
Some hardware platforms require hardware modification in order to function
correctly with an external debug interface.

NOTE
J-Link GDB Server application is not supported for TFM examples. Use CMSIS
DAP instead of J-Link for flashing and debugging TFM examples.

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the development platform to your PC via USB cable between the OpenSDA USB connector (may be named
OSJTAG for some boards) and the PC USB connector. If using a standalone J-Link debug pod, connect it to the SWD/
JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_ BAUDRATE variable in
board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 35

Run a demo using Arm® GCC

$23 PuTTY Configuration
Category:
= Session Basic options for your PuTTY session
i L.ogging Specify the destination you want to connect to
=~ Teminal
Serial line Speed
-~ Keyboard & L,
. Ball COM16 115200
- Features Lonnechon type:
- Window "Raw () Telnet () Rlogin () SSH | @ Segal
: Appea@ce Load, save or delete a stored session
Behaviour
- Translation Saved Sessions
Selection Debug
-~ Colours I
Default Settings
- Comnection S e —
- Data
ous =
Rlogin
- S5H
Serial

Close window on edt:
() Mways (Never @ Onlyon clean exit

[[Open][Concel |

Figure 54. Terminal (PuTTY) configurations
3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched by
going to the Windows operating system Start menu and selecting Programs -> SEGGER -> J-Link <version> J-Link
GDB Server.
4. Modify the settings as shown below. The target device selection chosen for this example is MK64FN1MO0xxx12.
5. After it is connected, the screen should look like this figure:

SEGGER J-Link GDB Server V6.46g - X
File Help
GDB |Waiting for connection | || [] stay on top
J-Link [Connected 1] swo | 4000 kHz | 2] show log window
Device 'L3A6000 Md (Halted)| || '3.20v | little endian | [] Generate logfile

["] Verify download

Clear Log

Firmware: J-Link Lite-FSL V1 compiled Jun 25 2012 16:40:07 A
Hardware: v1.00

S/N: 361000738

Checking target voltage...

Target voltage: 3.29 V

Listening on TCE/IP port 2331

Connecting to target...

Connected to target

Waiting for GDB connection...

0 bytes downloaded

nnnnnnnnnnnnnn . wm mARAsAAA T —

Figure 55. SEGGER J-Link GDB Server screen after successful connection
6. If not already running, open a GCC Arm Embedded tool chain command window. To launch the window, from the
Windows operating system Start menu, go to Programs -> GNU Tools Arm Embedded <version> and select GCC
Command Prompt.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
36 NXP Semiconductors

Run a demo using Arm® GCC

GNU Tools for ARM Embedded Process:
Documentation

%] GCC Command Prompt

P Uninstall GNU Tools for ARM Embec

Figure 56. Launch command prompt

7. Change to the directory that contains the example application output. The output can be found in using one of these
paths, depending on the build target selected:

<install dirs/boards/<board name>/<example type>/<application names/armgcc/debug

<install dirs/boards/<board name>/<example type>/<application names/armgcc/release

For this example, the path is:

<install dir>/boards/frdmk3213a6/demo_apps/hello world/cm4/armgcc/debug
8. Run the arm-none-eabi-gdb.exe <application names>.elf command. For this example, it is arm-none-
eabi-gdb.exe hello world.elf.

=arm—non

Figure 57. Run arm-none-eabi-gdb

9. Run these commands:

a.
b.
c.
d.
e.

target remote localhost:2331
monitor reset

monitor halt

load

monitor reset

10. The application is now downloaded and halted at the reset vector. Execute the monitor go command to start the demo
application.

The hello world application is now running and a banner is displayed on the terminal. If this does not appear, check
your terminal settings and connections.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

NXP Semiconductors 37

A ————
Run a demo using Arm® GCC

Figure 58. Text display of the hello_world demo

6.4 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo application build scripts are located in this
folder:

<install dir>/boards/<board name>/multicore examples/<application name>/<core types>/armgcc

Begin with a simple dual-core version of the Hello World application. The multicore Hello World GCC build scripts are
located in this folder:

<install dir>/boards/lpcxpresso54114/multicore examples/hello world/cmOplus/armgcc/
build debug.bat

<install dirs/boards/lpcxpresso54114/multicore examples/hello world/cm4/armgcc/
build debug.bat

Build both applications separately following steps for single core examples as described in Build an example application.

Bl GCC Command Prompt - build_debug.bat —] w

s\frdmk32 6\multicore amplesihello_world\cmplus?

Figure 59. hello_world_cmOplus example build successful

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
38 NXP Semiconductors

4
Run a demo using Arm® GCC

Bl GCC Command Prompt - build_debug.bat — O *

c\frdmk3 6imulticore amplesihello_world\cmd\ar

Figure 60. hello_world_cm4 example build successful

6.5 Run a multicore example application

When running a multicore application, the same prerequisites for J-Link/J-Link OpenSDA firmware, and the serial console as
for the single-core application, applies, as described in Run an example application.

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash
memory. To download and run the multicore application, switch to the primary core application project and perform steps 1
to 10, as described in Run an example application. These steps are common for both single-core and dual-core applications in
Arm GCC.

Both the primary and the auxiliary image is loaded into the SPI flash memory. After execution of the monitor go
command, the primary core application is executed. During the primary core code execution, the auxiliary core code is re-
allocated from the flash memory to the RAM, and the auxiliary core is released from the reset. The hello world multicore
application is now running and a banner is displayed on the terminal. If this is not true, check your terminal settings and
connections.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 39

A ————
Run a demo using Arm® GCC

+

BN Administrator: GCC Command Prompt | =N |-'EE"-]

c:wDEDK_2.0_LPCipressobdiidshoardsslpoxpressobdlid4multicore_examples~hello_wor
ldscmd~armgcc >IF " == "" {pause 2
Press any key to continue . . .

c:wDAEDK_2.8_LPCipressob4dilid-boardsslpocxpressobdlilid multicore_examples~hello_wor
ldscmd~armgcc >cd debug

c:sDSNSDK_2 . 8_LPCiApressoSdlidshoardsslpoxpressob4did4 multicore_examplesshello_wor
ldscmd~armgccsdebug >arm—none—eabi—gdb.exe hello_world_cmd.elf

GHMU gdh <GMU Tools for ARM Embedded Processors 6—2017—g2—update>r 7.12.1.201780417
—git

Copyright <C» 2817 Free Software Foundation. Inc.

Licenze GPLu3+: GHU GPL version 3 or later <http:/“gnu.org-licenses-gpl.html>
Thiz iz free software: you are free to change and redistribute it.

There iz MO WARRANTY. to the extent permitted by law. Type "“show copying®
and "show warranty' for details.

This GDB was configured as "“"——host=i68b6—wbd-—mingw3d2 ——target=arm—none—eahi®.
Type '"zhow configuration' for configuration details.

For bug reporting instructions, please see:

“http: 2w .gnu.orgszof tware/gdb-bugs s>,

Find the GDB manual and other documentation resources online at:
Chttp:/svuw._gnu.orgssof twaresgdb-documentations>.

For help,. type "help®.

Type "apropos word" to search for commandszs related to “"word'...

Reading symbols from hello_world_cmd.elf...done.

Cgdbh> target remote localhost:2331

Remote debugging using localhost:=2331

Ax00004298 in 77 2

Cgdb? monitor reset

Resetting target

Cgdbh? monitor halt

Cgdb> load

Loading section .interrupts,. size Bxed 1lma BxA

Loading section .text, size Bx3614 lma HAxed

Loading section .ARM. size Bx8 Ima Bx36f8

Loading szection .init_array,. szize Bx4d Ilma Bx3780

Loading section .fini_array,. sicse Axd Ima Bx3784

Loading section .data. size Bx68 Ilma Bx37HE8

Loading section .mBcode, size Bxif64 Ima Bx3B008A

Start address Bx1d8. load size 22224

Transfer rate: 1973 KBrsec, 3174 hytessurite.

Cgdb? monitor reset

Resetting target

Cgdbh? monitor go

Cgdb> g

A debugging session iz active.

Inferior 1 [Remote target] will be killed.

Quit anyway? (y or n? v

c:sDSSDK_2 . 8_LPCipressoS4lid4shoardsslpoxpressobd4lidsmulticore_examplesshello_wor
ldscmdsarmgccsdebug >

Figure 61. Loading and running the multicore example

COM17:115200baud - Tera Term VT = [©]
[Fie €t Setup Control Window KanjiCode Help
Starting Secondary core.

Hello Horld from the Primary Core!

ress utto
Secondary core is in startup code.
‘Secondar‘y core is in exception number 3.
il

Figure 62. Hello World from primary core message

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
40 NXP Semiconductors

4
MCUXpresso Config Tools

7 MCUXpresso Config Tools

MCUXpresso Config Tools can help configure the processor and generate initialization code for the on chip peripherals. The
tools are able to modify any existing example project, or create a new configuration for the selected board or processor. The
generated code is designed to be used with MCUXpresso SDK version 2.x.

Table 1 describes the tools included in the MCUXpresso Config Tools.
Table 1. MCUXpresso Config Tools

Config Tool Description Image
Pins tool For configuration of pin routingandpin | /2
electrical properties.
Clock tool For system clock configuration @
Peripherals tools For configuration of other peripherals @
TEE tool Configures access policies for memory
area and peripherals helping to protect
and isolate sensitive parts of the
application.
Device Configuration tool Configures Device Configuration Data
. : . -tk
(DCD) contained in the program image
that the Boot ROM code interprets to
setup various on-chip peripherals prior
the program launch.

MCUXpresso Config Tools can be accessed in the following products:

* Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and debugger which makes it the
easiest way to begin the development.

» Standalone version available for download from www.nxp.com. Recommended for customers using IAR Embedded
Workbench, Keil MDK pVision, or Arm GCC.

* Online version available on mcuxpresso.nxp.com. Recommended to do a quick evaluation of the processor or use the
tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE Config Tools installation
folder that can help start your work.

8 MCUXpresso IDE New Project Wizard

MCUZXpresso IDE features a new project wizard. The wizard provides functionality for the user to create new projects from
the installed SDKs (and from pre-installed part support). It offers user the flexibility to select and change multiple builds. The
wizard also includes a library and provides source code options. The source code is organized as software components,
categorized as drivers, utilities, and middleware.

To use the wizard, start the MCUXpresso IDE. This is located in the QuickStart Panel at the bottom left of the
MCUXpresso IDE window. Select New project, as shown in Figure 63.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 41

https://www.nxp.com
http://mcuxpresso.nxp.com

A ————
How to determine COM port

L) Quickstart Panel Slobal Variables Variables Breakpoints Outline -

E MCUXpresso IDE (Free Edition) -

o

- Start here

B New project...
= Import SDK example(s)...

m

® Import project(s) from file system...

& Quick Settings= =

Figure 63. MCUXpresso IDE Quickstart Panel

For more details and usage of new project wizard, see the MCUXpresso_IDE_User_Guide.pdf in the MCUXpresso IDE
installation folder.

9 How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP hardware development
platform. All NXP boards ship with a factory programmed, on-board debug interface, whether it’s based on OpenSDA or the
legacy P&E Micro OSJTAG interface. To determine what your specific board ships with, see Default debug interfaces.

1. Linux: The serial port can be determined by running the following command after the USB Serial is connected to the
host:

$ dmesg | grep "ttyUSB"
[503175.307873] usb 3-12: cp2l0x converter now attached to ttyUSBO
[503175.309372] usb 3-12: cp21l0x converter now attached to ttyUSB1l

There are two ports, one is Cortex-A core debug console and the other is for Cortex M4.

2. Windows: To determine the COM port open Device Manager in the Windows operating system. Click on the Start
menu and type Device Manager in the search bar.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
42 NXP Semiconductors

Control Panel (3)

=h Device Manager

E';:s\ﬁaw devices peel
Device Manager

i Update devict yiew and update your hardware's settings and driver s
Pictures (9)

|| Companies.inc

| hutinc

| PTPstilllmageTablesinc
| VIDs_PIDs.TXT

|| SCSI_CDB_RcvCpyRslts.inc
|| SCSI_CDB_SPC.inc

| hei_command_tableinc
| RNDIS_OID.inc

|| CDCRequests.inc

Files (1)

=] dialog_settings.xml

» See more results

‘DE\{\[EMEHEQEI’ < | | shutdown | » |

Figure 64. Device Manager

How to determine COM port

3. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports. The COM port names
will be different for all the NXP boards.

a. OpenSDA - CMSIS-DAP/mbed/DAPLinKk interface:

477 Ports (COM &L LPT)

X ?" mbed Serial Port (COM41)

Figure 65. OpenSDA — CMSIS-DAP/mbed/DAPLink interface
b. OpenSDA - P&E Micro:

a ‘;‘f Ports (COM & LPT)
P ? Open5DA - CDC Senal Port (http://www.pemicro.com/opensda) (COM22)

c. OpenSDA - J-Link:

d. P&E Micro OSJTAG:

a ? Ports (COM & LPT)

Figure 66. OpenSDA - P&E Micro

f?’

Ports (COM & LPT)

T3 JLink CDC UART Port (COMI2)

Figure 67. OpenSDA - J-Link

------ ? QSBOM/OSITAG - CDC Serial Port (https/Swww pemicro.com/esbdm, http:/Swww,pemicro.com/opensda) (COM43)

e. MRB-KW01:

Fi

f?

gure 68. P&E Micro OSJTAG

Ports (COM & LPT)

Figure 69. MRB-KWO01

? Freescale COC Device (COM49)

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

NXP Semiconductors

43

Default debug interfaces

10 Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with a variety of factory programmed debug
interface configurations. Table 2 lists the hardware platforms supported by the MCUXpresso SDK, their default debug

interface, and any version information that helps differentiate a specific interface configuration.

The OpenSDA details column in Table 2 is not applicable to LPC.

NOTE

Table 2. Hardware platforms supported by MCUXpresso SDK

Hardware platform

Default interface

OpenSDA details

EVK-MC56F83000 P&E Micro OSJTAG N/A
EVK-MIMXRT595 CMSIS-DAP N/A
EVK-MIMXRT685 CMSIS-DAP N/A

FRDM-K22F CMSIS-DAP/mbed/DAPLink OpenSDA v2.1
FRDM-K28F DAPLink OpenSDA v2.1
FRDM-K32L2A4S CMSIS-DAP OpenSDA v2.1
FRDM-K32L2B CMSIS-DAP OpenSDA v2.1
FRDM-K32W042 CMSIS-DAP N/A

FRDM-K64F CMSIS-DAP/mbed/DAPLink OpenSDA v2.0
FRDM-K66F J-Link OpenSDA OpenSDA v2.1
FRDM-K82F CMSIS-DAP OpenSDA v2.1
FRDM-KE15Z DAPLink OpenSDA v2.1
FRDM-KE16Z CMSIS-DAP/mbed/DAPLink OpenSDA v2.2
FRDM-KL02Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL03Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL25Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL26Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL27Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL28Z P&E Micro OpenSDA OpenSDA v2.1
FRDM-KL43Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL46Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL81Z CMSIS-DAP OpenSDA v2.0
FRDM-KL82Z CMSIS-DAP OpenSDA v2.0
FRDM-KV10Z CMSIS-DAP OpenSDA v2.1
FRDM-KV11Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KV31F P&E Micro OpenSDA OpenSDA v1.0
FRDM-KW24 CMSIS-DAP/mbed/DAPLink OpenSDA v2.1
FRDM-KW36 DAPLink OpenSDA v2.2
FRDM-KW41Z CMSIS-DAP/DAPLink OpenSDA v2.1 or greater
Hexiwear CMSIS-DAP/mbed/DAPLink OpenSDA v2.0
HVP-KE18F DAPLink OpenSDA v2.2
Table continues on the next page...

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

44 NXP Semiconductors

Default debug interfaces

Table 2. Hardware platforms supported by MCUXpresso SDK (continued)

Hardware platform

Default interface

OpenSDA details

HVP-KV46F150M

P&E Micro OpenSDA

OpenSDA vi

HVP-KV11Z75M CMSIS-DAP OpenSDA v2.1
HVP-KV58F CMSIS-DAP OpenSDA v2.1
HVP-KV31F120M P&E Micro OpenSDA OpenSDA v1
JN5189DK6 CMSIS-DAP N/A
LPC54018 IoT Module N/A N/A
LPCXpresso54018 CMSIS-DAP N/A
LPCXpresso54102 CMSIS-DAP N/A
LPCXpresso54114 CMSIS-DAP N/A
LPCXpresso51U68 CMSIS-DAP N/A
LPCXpress054608 CMSIS-DAP N/A
LPCXpresso54618 CMSIS-DAP N/A
LPCXpresso54628 CMSIS-DAP N/A
LPCXpresso54S018M CMSIS-DAP N/A
LPCXpresso55s16 CMSIS-DAP N/A
LPCXpresso55s28 CMSIS-DAP N/A
LPCXpresso55s69 CMSIS-DAP N/A
MAPS-KS22 J-Link OpenSDA OpenSDA v2.0
MIMXRT1170-EVK CMSIS-DAP N/A
TWR-K21D50M P&E Micro OSJTAG N/AOpenSDA v2.0
TWR-K21F120M P&E Micro OSJTAG N/A

TWR-K22F120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K24F120M

CMSIS-DAP/mbed

OpenSDA v2.1

TWR-K60D100M

P&E Micro OSJTAG

N/A

TWR-K64D120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K64F120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K65D180M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K65D180M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV10Z32

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K80F150M CMSIS-DAP OpenSDA v2.1
TWR-K81F150M CMSIS-DAP OpenSDA v2.1
TWR-KE18F DAPLink OpenSDA v2.1

TWR-KL28Z72M

P&E Micro OpenSDA

OpenSDA v2.1

TWR-KL43Z48M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KL81Z72M CMSIS-DAP OpenSDA v2.0
TWR-KL82Z72M CMSIS-DAP OpenSDA v2.0
TWR-KM34Z75M P&E Micro OpenSDA OpenSDA v1.0
TWR-KM35Z75M DAPLink OpenSDA v2.2

TWR-KV10Z32

P&E Micro OpenSDA

OpenSDA v1.0

Table continues on the next page...

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020

NXP Semiconductors

45

A ————
Updating debugger firmware

Table 2. Hardware platforms supported by MCUXpresso SDK (continued)

Hardware platform Default interface OpenSDA details
TWR-KV11Z75M P&E Micro OpenSDA OpenSDA v1.0
TWR-KV31F120M P&E Micro OpenSDA OpenSDA v1.0
TWR-KV46F150M P&E Micro OpenSDA OpenSDA v1.0
TWR-KV58F220M CMSIS-DAP OpenSDA v2.1
TWR-KW24D512 P&E Micro OpenSDA OpenSDA v1.0
USB-KW24D512 N/A External probe N/A
USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater

11 Updating debugger firmware

11.1 Updating OpenSDA firmware

Any NXP hardware platform that comes with an OpenSDA-compatible debug interface has the ability to update the
OpenSDA firmware. This typically means switching from the default application (either CMSIS-DAP/mbed/DAPLink or
P&E Micro) to a SEGGER J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to restoring the original image also. For reference, OpenSDA firmware files can be found
at the links below:

¢ J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the appropriate J-Link binary based
on the table in Appendix B. Any OpenSDA v1.0 interface should use the standard OpenSDA download (in other
words, the one with no version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

o CMSIS-DAP/mbed/DAPLink: DAPLink OpenSDA firmware is available at www.nxp.com/opensda.

* P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with P&E Micro
(wWww.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and Linux OS users:

1. Unplug the board's USB cable.
2. Press the Reset button on the board. While still holding the button, plug the USB cable back into the board.
3. When the board re-enumerates, it shows up as a disk drive called MAINTENANCE.

M Computer
%5' Primary (C:)
e MAINTENANCE (E)

Figure 70. MAINTENANCE drive
4. Drag and drop the new firmware image onto the MAINTENANCE drive.

NOTE
If for any reason the firmware update fails, the board can always re-enter
maintenance mode by holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
46 NXP Semiconductors

http://www.segger.com/opensda.html
http://www.nxp.com/opensda
http://www.pemicro.com/opensda/index.cfm

Updating debugger firmware

—

Unplug the board's USB cable.

2. Press the Reset button of the board. While still holding the button, plug the USB cable back into the board.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in Finder. Boards with
OpenSDA v1.0 may or may not show up depending on the bootloader version. If you see the drive in Finder, proceed
to the next step. If you do not see the drive in Finder, use a PC with Windows OS 7 or an earlier version to either
update the OpenSDA firmware, or update the OpenSDA bootloader to version 1.11 or later. The bootloader update
instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new firmware image onto the
BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> ¢cp -X <path to update file> /Volumes/BOOTLOADER

NOTE
If for any reason the firmware update fails, the board can always re-enter
bootloader mode by holding down the Reset button and power cycling.

11.2 Updating LPCXpresso board firmware

The LPCXpresso hardware platform comes with a CMSIS-DAP-compatible debug interface (known as LPC-Link2). This
firmware in this debug interface may be updated using the host computer utility called LPCScrypt. This typically used when
switching between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to re-program the debug probe firmware.

NOTE
If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board
(JP5 on some boards, but consult the board user manual or schematic for specific jumper
number), LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE
automatically downloads the CMSIS-DAP firmware to the probe before flash memory
programming (after clicking Debug). Using DFU mode ensures most up-to-date/
compatible firmware is used with MCUXpresso IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest versions of CMSIS-DAP
and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility can be downloaded from www.nxp.com/lIpcutilities.

These steps show how to update the debugger firmware on your board for Windows operating system. For Linux OS, follow
the instructions described in LPCScrypt user guide (www.nxp.con/lIpcutilities, select LPCScrypt, and then the
documentation tab).

Install the LPCScript utility.
Unplug the board's USB cable.
Make the DFU link (install the jumper labelled DFUlink).
Connect the probe to the host via USB (use Link USB connector).
Open a command shell and call the appropriate script located in the LPCScrypt installation directory (<LPCScrypt
install dirs).
a. To program CMSIS-DAP debug firmware: <LPCScrypt install dirs/scripts/program CMSIS
b. To program J-Link debug firmware: <LPCScrypt install dirs/scripts/program JLINK
6. Remove DFU link (remove the jumper installed in Step 3).
7. Re-power the board by removing the USB cable and plugging it in again.

Nk LD =

Getting Started with MCUXpresso SDK, Rev. 12, 20 May 2020
NXP Semiconductors 47

http://www.nxp.com/lpcutilities
http://www.nxp.com/lpcutilities

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical’ parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application
by customer’s technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer's applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+,
C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure
logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC,
Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks
of NXP B.V. All other product or service names are the property of their respective owners. AMBA,
Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, pVision,
Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and
trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its
affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org.

© 2018-2020 NXP B.V.

Document Number MCUXSDKGSUG
Revision 12, 20 May 2020

r
4\

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Overview
	MCUXpresso SDK board support package folders
	Example application structure
	Locating example application source files

	Run a demo using MCUXpresso IDE
	Select the workspace location
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	Run a demo application using IAR
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	Run a demo using Keil® MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	Run a demo using Arm® GCC
	Set up toolchain
	Install GCC Arm Embedded tool chain
	Install MinGW (only required on Windows OS)
	Add a new system environment variable for ARMGCC_DIR
	Install CMake

	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	MCUXpresso Config Tools
	MCUXpresso IDE New Project Wizard
	How to determine COM port
	Default debug interfaces
	Updating debugger firmware
	Updating OpenSDA firmware
	Updating LPCXpresso board firmware

