
Freescale Semiconductor Document Number: KSDKUSBSUG
User’s Guide Rev. 1, 01/2016

© Freescale Semiconductor, Inc., 2016. All rights reserved.

USB Stack User’s Guide

1 Overview
This document provides the following:

• Detailed steps to compile the USB
examples, download a binary image, and
run the examples.

• Detailed steps to port the USB Stack to a
new platform.

• Detailed steps to develop a new
application based on the existing classes
in the USB Stack.

Contents

1 Overview 1

2 Build the USB examples in Kinetis SDK 2

3 Porting to a new platform 24

4 Developing a New USB Application 34

5 Revision history 56

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
2 Freescale Semiconductor

2 Build the USB examples in Kinetis SDK
This section describes how to compile the USB stack and examples, download a binary image, and run the
examples. The TWR-K22F120M Freescale Tower System module is used as an example board.

2.1 Requirements for Building USB Examples
The TWR-K22F120M Tower System module is used as an example in this document. The process for
compiling, downloading, and running examples is similar on all other boards.

2.1.1 Hardware
• TWR-K22F120M Tower System module

• (Optional) TWR-SER Tower System module and Elevator

• J-Link debugger (optional)

• USB cables

2.1.2 Software
• KSDK release package

• IAR Embedded Workbench for ARM® Version 7.5.0

• Keil µVision5 Integrated Development Environment Version 5.17, available for Kinetis ARM ®

Cortex®-M4 devices

• Kinetis Design Studio IDE v3.0.0

• Atollic® TrueSTUDIO® v5.4.0
• Makefiles support with GCC revision 4.9-2015-q3-update from ARM Embedded

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 3

2.2 USB Code Structure
The USB code is located in the folder:

<install_dir>/middleware/usb_1.0.0

Figure-1 Kinetis SDK folder structure

The USB folder includes the source code for stack and examples. Note that the version number of the usb
folder may vary.

Figure-2 USB Folder Structure

The usb folder includes three subfolders:
• device

This subfolder includes the controller driver and common device driver for the USB device.
• host

This subfolder includes the controller driver, the common device driver, and the class driver for the
USB host.

• include

This subfolder includes the definitions and structures for the USB stack.
• osa

This subfolder includes the adapter interfaces for various OSes.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
4 Freescale Semiconductor

2.3 Compiling or Running the USB Stack and Examples

2.3.1 Step-by-step guide for IAR
This section shows how to use IAR. Open IAR as shown in this figure:

1. Open the workspace corresponding to different examples.

For example, the workspace file is located at:
<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/iar/host_hid_mouse_
bm.eww.

Figure-3 IAR workspace

2. Build the host_hid_mouse_bm example.
3. Connect the micro USB cable from a PC to the J25 of the TWR-K22F120M Tower System

module to power on the board.
4. Click the “Download and Debug” button. Wait for the download to complete.
5. Click the “Go” button to run the example.
6. See the example-specific readme.pdf for more test information.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 5

2.3.2 Step-by-step guide for Keil µVision5
This section shows how to use Keil µVision5. Open Keil µVision5 as shown in this figure:

1. Open the workspace corresponding to different examples.

 For example, the workspace file is located in

<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/mdk/host_hid
_mouse_bm.uvmpw.

Figure-4 Keil µVision5 Workspace

2. Build the host_hid_mouse_bm example.
3. Click the “Start/Stop” debug session button. Wait for the download to complete.
4. Click the “Go” button to run the example.
5. See the example-specific readme.pdf for more test information.

2.3.3 Step-by-step guide for the Kinetis Design Studio IDE
1. Unlike IAR or Keil, the Kinetis Design Studio doesn’t have a workspace. Create a workspace

and import Kinetis Design Studio USB examples.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
6 Freescale Semiconductor

2. Select “File” and “Import” from the KDS IDE Eclipse menu.
3. Expand the General folder and select the “Existing Projects into Workspace”. Then, click

“Next”.

Figure-5 Selection of the correct import type in the KDS IDE

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 7

4. Point the KDS IDE to the host_hid_mouse_bm project in the K22, which is located in the
<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/kds. The import
projects directory selection window should resemble this figure.

Figure-6 Selection of the K22 host_hid_mouse_bm project

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
8 Freescale Semiconductor

5. After importing, the window should like this.

Figure-7 The USB projects workspace

6. Choose the appropriate build target: “Debug” or “Release” by left-clicking the arrow next to
the hammer icon as shown here.

Figure-8 The hammer button

7. If the project build does not begin after selecting the desired target, left-click the hammer icon
to start the build.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 9

8. To check the debugger configurations, click the down arrow next to the green debug button
and select “Debug Configurations”.

Figure-9 Debug configurations

9. After verifying that the debugger configurations are correct, click the “Debug” button.

Figure-10 Kinetis Design Studio Debug configurations

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
10 Freescale Semiconductor

10. The application is downloaded to the target and automatically run to main():

11. Run the code by clicking the “Resume” button to start the application:

 Figure-11 Resume button

12. See the example-specific document for more test information.

2.3.4 Step-by-step guide for the Atollic TrueSTUDIO
1. Unlike IAR or Keil, the Atollic TrueSTUDIO does not have a workspace. Create a workspace

and import Atollic TrueSTUDIO USB examples.

2. Select “File” and “Import” from the Atollic TrueSTUDIO IDE Eclipse menu.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 11

3. Expand the General folder and select “Existing Projects into Workspace. Then, click the
“Next" button.

Figure-12 Selection of the correct import type in Atollic TrueSTUDIO IDE

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
12 Freescale Semiconductor

4. Point the Atollic TrueSTUDIO IDE to the host_hid_mouse_bm project in the K22, which is
located in the <install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/atl.
The import projects directory selection window should resemble this figure.

Figure-13 Selection of the K22 host_hid_mouse_bm project

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 13

5. After importing, the window should like this.

Figure-14 The USB projects workspace

6. Choose the appropriate build target: “Debug” or “Release” by left-clicking the build
configuration icon as shown here.

Figure-15 Manage build configuration button

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
14 Freescale Semiconductor

Figure-16 Set build configuration

7. If the project build does not begin after selecting the desired target, left-click the build icon to
start the build.

Figure-17 Build project button

8. To check the debugger configurations, click the “Configure Debug” button.

Figure-18 Configure debug button

9. After verifying that the debugger configurations are correct, click the “Debug” button.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 15

Figure-19 Atollic TrueSTUDIO Debug configurations

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
16 Freescale Semiconductor

10. The application is downloaded to the target and automatically run to main():

11. Run the code by clicking the “Resume” button to start the application:

 Figure-20 The resume button

12. See the example-specific document for more test information.

2.3.5 Step-by-step guide for the ARM GCC

2.3.5.1 Setup tool chains

2.3.5.2 Install GCC ARM Embedded tool chain
Download and install the installer from www.launchpad.net/gcc-arm-embedded.

2.3.5.3 Install MinGW
1. Download the latest mingw-get-setup.exe.

2. Install the GCC ARM Embedded toolchain. The recommended path is C:/MINGW. However, you
may install to any location. Note that the installation path may not contain a space.

3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

4. Finally, click “Installation” and “Apply changes”.

Figure 21: Setup MinGW and MSYS

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 17

5. Add paths C:/MINGW/msys/1.0/bin;C:/MINGW/bin to the system environment. Note that, if
the GCC ARM Embedded tool chain was installed somewhere other than the recommended
location, the system paths added should reflect this change. An example using the
recommended installation locations are shown below.

NOTE

There is a high chance that, if the paths are not set correctly, the tool chain
will not work properly.

Figure 22: Add Path to systems environment

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
18 Freescale Semiconductor

2.3.5.4 Add new system environment variable ARMGCC_DIR

Create a new system environment variable ARMGCC_DIR. The value of this variable should be the short name of
the ARM GCC Embedded tool chain installation path.

Figure 23: Add ARMGCC_DIR system variable

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 19

2.3.5.5 Install CMake
1. Download CMake 3.0.1 from www.cmake.org/cmake/resources/software.html.

2. Install Cmake 3.0.1 and ensure that the option "Add CMake to system PATH" is selected.

Figure 24: Install CMake

2.3.5.6 Build the USB demo

1. Change the directory to the project directory:

2. <install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/armgcc. Run the
build_all.bat. The build output is shown in this figure:

http://www.cmake.org/cmake/resources/software.html

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
20 Freescale Semiconductor

Figure 27: USB host demo built successfully

2.3.5.7 Run a demo application
This section describes steps to run a demo application using J-Link GDB Server application.

1. Connect the J-Link debug port to the SWD/JTAG connector of the board.
2. Open the J-Link GDB Server application and modify your connection settings as shown in this

figure.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 21

Figure 28: SEGGER J-Link GDB Server configuration

Note
The target device selection should be MK22FN512xxx12. The target
interface should be SWD.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
22 Freescale Semiconductor

3. After connected, the screen should resemble this figure:

Figure 29: SEGGER J-Link GDB Server screen after successful connection

Note
The CPU selection should be CPU to: MK22FN512xxx12.

4. Open the ARM GCC command prompt and change the directory to the output directory of the
desired demo. For this example, the directory is:

<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/armgcc/debug.

5. Run the command “arm-none-eabi-gdb.exe <DEMO_NAME>.elf”. Run these commands:

• “target remote localhost: 2331”

• “monitor reset”

• “monitor halt”

• “load”

• “monitor reset”

6. The application is downloaded and connected. Execute the “monitor go” command to start the
demo application.

7. See the example-specific document for more test information.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 23

2.4 USB Stack Configuration

2.4.1 Device configuration
A device configuration file is set up for each example, such as:

<install_dir>/boards/twrk22f120m/usb/usb_device_hid_mouse/bm/usb_device_config.h

This file is used to either enable or disable the USB class driver. The object number is configurable either
to decrease the memory usage or to meet specific requirements.

If the device stack configuration is changed, rebuild the example projects.

2.4.2 Host configuration
A host configuration file is set up for each example, such as:

<install_dir>/boards/twrk22f120m/usb/usb_host_hid_mouse/bm/usb_host_config.h

This file is used to either enable or disable the USB class driver. The object number is configurable either
to decrease the memory usage or to meet specific requirements.

If the Host stack configuration is changed, rebuild the example projects.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
24 Freescale Semiconductor

3 Porting to a new platform
To port the USB stack to a new platform in the SDK, the SoC-related files, board-related files, and a linker
file for a specified compiler are required.

Assume that the new platform’s name is “xxxk22f120m” based on the MK22F51212 SoC.

3.1 SoC files
SoC source/header files are in the following directory, which are available by default from KSDK.

Figure 30 SoC header file directory

Note
Different toolchains’ linker files are in the linker directory.

Different toolchains’ SoC startup assembler files are in the arm, gcc, and iar
directories.

3.2 Board files
The files for the board configuration and the clock configuration on a specific platform are needed to
enable the USB stack.

The clock configuration files are as follows:

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 25

Figure 31 Clock configuration files

1. Create a folder “xxxk22f120m”under examples directory.

2. Copy the clock_config.c and clock_config.h file from the similar platform, for example
TWR-K22F120m platform.

3. Ensure that the BOARD_BootClockxxx is implemented in the clock_config.c file, for example
BOARD_BootClockRUN and BOARD_BootClockHSRUN. The user can change the function name. However,
the BOARD_InitHardware must call the function. BOARD_InitHardware is introduced later.

The board clock initialization is based on the board crystal oscillator. Ensure that the following two
MACROs are defined in the clock_config.h file:

#define BOARD_XTAL0_CLK_HZ 8000000U

#define BOARD_XTAL32K_CLK_HZ 32768U

The user can update the MACROs according to the board design. For example, if the XTAL0 crystal
oscillator is 16000000U and the XTAL32K is 32768U, change the above MACROs as follows:

#define BOARD_XTAL0_CLK_HZ 16000000U

#define BOARD_XTAL32K_CLK_HZ 32768U

The board configuration files are as follows:

Figure 32 Board configuration files

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
26 Freescale Semiconductor

4. Copy board.c and board.h from the similar platform, for example, TWR-K22F120M platform.

Ensure that the BOARD_InitDebugConsole is implemented in board.c file and that the
BOARD_InitHardware calls the function. The BOARD_InitHardware function is introduced later.

Debug console-related MACROs are need in the board.h file, as follows:
#define BOARD_DEBUG_UART_TYPE DEBUG_CONSOLE_DEVICE_TYPE_UART

#define BOARD_DEBUG_UART_BASEADDR (uint32_t) UART2

#define BOARD_DEBUG_UART_CLKSRC BUS_CLK

#define BOARD_DEBUG_UART_BAUDRATE 115200

Update the MACROs according to the board design. For example, the default UART instance on the
board is LPUART1, the type of default UART instance on one specific platform is LPUART, and the
LPUART clock source is the external clock. In this case, change the above MACROs as follows:

#define BOARD_DEBUG_UART_TYPE DEBUG_CONSOLE_DEVICE_TYPE_LPUART

#define BOARD_DEBUG_UART_BASEADDR (uint32_t) LPUART1

#define BOARD_DEBUG_UART_CLKSRC kCLOCK_Osc0ErClk

#define BOARD_DEBUG_UART_BAUDRATE 115200

Note that there are three kinds of UART instances provided in Kinetis devices, UART, LPUART and
LPSCI. The interfaces of the UART instance are different. To provide a uniform UART interface to
an USB Host example in which the UART function is used, a UART instance wrapper is provided.
The wrapper is implemented in the usb_uart_drv.c, usb_lpuart_drv.c, or usb_lpsci_drv.c file and has
a common header file usb_uart_drv.h. For a different UART instance, use the corresponding UART
instance wrapper file in the project.

3.3 Porting Examples

3.3.1 Copy new platform example
The platform USB examples directory is as follows:

Figure 33 USB examples directory

Copy the existed example’s whole directory from the similar platform, which ensures that all example
source files and project files are copied.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 27

For example:

Copy the twrk22f120m/usb/usb_device_audio_generator_lite to the twrkxx/usb location, which ensures
that sources files and project files for usb_device_audio_generator_lite example are copied.

3.3.2 Porting the example
For different examples, different pins are used. As a result, the pin_mux.c/h files are needed to assign
different pins to a specific functionality. Check the board schematic for correct pin settings.

Example-related port pin configurations are required in following files:

Figure 34 Example-related port pint configuration files

Ensure that the BOARD_InitPins function is implemented in the pin_mux.c file. In this function, the
port clock and pin mux are initialized. Ensure that the BOARD_InitHardware calls the function. The
BOARD_InitHardware function will be introduced later.

For example, on the TWR-K65F180M board, the VBUS of the USB Host is controlled by the
PORTD_8 as a GPIO. Therefore, the PORTD clock needs to be enabled first and then the PORTD_8
configured to GPIO functionality. The debug console uses UART2. The TX/RX pins are PORTE_16
and PORTE_17. As a result, the clock of PORTE needs to be enabled first and then the PORTE_16
and PORTE_17 configured to alternative 3.

This is an example code for TWR-K65F180M:
void BOARD_InitPins(void)

{

/* Initialize UART2 pins below */

CLOCK_EnableClock(kCLOCK_PortE);

 PORT_SetPinMux(PORTE, 16u, kPORT_MuxAlt3);

 PORT_SetPinMux(PORTE, 17u, kPORT_MuxAlt3);

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
28 Freescale Semiconductor

 /* Initialize usb vbus pin */

 CLOCK_EnableClock(kCLOCK_PortD);

 PORT_SetPinMux(PORTD, 8u, kPORT_MuxAsGpio);

}

Check the specific board design to find out which port is used to control the USB VBUS and which
port is used for debug console. For example, in the customer’s board design, the PORTC_15 is used to
control the USB VBUS and PORTD_1 and PORTD_2 is used for debug console. This is the example
code:
void BOARD_InitPins(void)

{

/* Initialize UART2 pins below */

CLOCK_EnableClock(kCLOCK_PortD);

 PORT_SetPinMux(PORTD, 1u, kPORT_MuxAlt3);

 PORT_SetPinMux(PORTD, 2u, kPORT_MuxAlt3);

 /* Initialize usb vbus pin */

 CLOCK_EnableClock(kCLOCK_PortC);

 PORT_SetPinMux(PORTC, 15u, kPORT_MuxAsGpio);

}

Control the VBUS GPIO to output high.

There is one BOARD_InitHardware function in each example, which is used to configure the PINs
and clock.

The VBUS must output high. This is an example code for TWR-K65F180M:
void BOARD_InitHardware(void)

{

gpio_pin_config_t pinConfig;

BOARD_InitPins();

BOARD_BootClockRUN();

BOARD_InitDebugConsole();

/* vbus gpio output high */

pinConfig.pinDirection = kGPIO_DigitalOutput;

pinConfig.outputLogic = 1U;

GPIO_PinInit(PTD, 8U, &pinConfig);

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 29

}

The user can change the function as follows:
void BOARD_InitHardware(void)

{

gpio_pin_config_t pinConfig;

BOARD_InitPins();

BOARD_BootClockxxx();

BOARD_InitDebugConsole();

/* vbus gpio output high */

pinConfig.pinDirection = kGPIO_DigitalOutput;

pinConfig.outputLogic = 1U;

GPIO_PinInit(PTC, 15U, &pinConfig);

}

3.3.3 Modify the example project
USB example project files are kept in the example directory, as follows:

Figure 35 Modify the example project

The steps for modifying a new project are as follows:

1. Open the project and change the SoC.

Note

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
30 Freescale Semiconductor

1. Check the project SoC and update to the porting platform SoC.

2. Update the SoC full name, platform name, and board type name macros if the SoC is updated.
For example, for TWR-K22F120M, update the CPU_MK22FN512VDC12,
TWR_K22F120M, and TOWER macros.

2. Check the files in startup group, for example (IAR):

Figure 36 Check files in startup group

Ensure that the system_MK22F51212.c, system_MK22F51212.h, and strtup_MK22F51212.s are
the porting SoC files. Also change the include path.

3. Check the files in the platform/clock group, for example (IAR):

Figure 37 Check files in platform/clock group

Ensure that the fsl_clock_MK22F51212.c, and fsl_clock_MK22F51212.h are porting SoC files.

Additionally, change the include path.

4. Change the files in board group, for example (IAR):

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 31

Figure 38 Change files in board group

Ensure that board.c, board.h, clock_config.c, and clock_config.h are porting platform files.

Additionally, change the include path.

5. Check the files in the sources group, for example (IAR):

Figure 39 Check files in source group

The example application source files are copied when copying the example directory.

Change the include path.

6. Change the linker file to the new platform. Ensure that the linker file is the porting SoC file.

7. Debug console may use UART, LPUART, or LPSCI according to the platform. As a result, the
example project needs to contain UART, LPUART, or LPSCI driver files according to the
platform.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
32 Freescale Semiconductor

Figure 40 UART, LPUART, and LPSCI files

For example TWR-K22F120M, UART files are all in the project.

For example TWR-K80F150M, LPUART files are in the project.

3.3.4 USB host CDC example
KSDK debug console can be based on KSDK UART, LPUART, or LPSCI driver. Because different
platforms may use different drivers, the CDC has a wrapper code. The files, which call the corresponding
driver API according to the debug console use UART, LPUART, or LPSCI. The utility uses the
BOARD_DEBUG_UART_TYPE to identify the UART type. To use a different UART instance, use the
corresponding UART instance wrapper file.
The KSDK debug console only enables send. The Host CDC example needs the receive function.
Therefore, configuration MACROs need to be defined in the board.h file. The debug console and the Host
CDC share the same configuration. This is an example:
#define BOARD_DEBUG_UART_TYPE DEBUG_CONSOLE_DEVICE_TYPE_UART

#define BOARD_DEBUG_UART_BASEADDR (uint32_t)UART1

#define BOARD_DEBUG_UART_CLKSRC kCLOCK_CoreSysClk

#define BOARD_DEBUG_UART_BAUDRATE 115200

Update MACROs according to board design. For example, the default UART instance on the board is
LPUART1, the type of default UART instance on one specific platform is LPUART, and the LPUART
clock source is the external clock. In this case, change the above MACROs as follows:

#define BOARD_DEBUG_UART_TYPE DEBUG_CONSOLE_DEVICE_TYPE_LPUART

#define BOARD_DEBUG_UART_BASEADDR (uint32_t) LPUART1

#define BOARD_DEBUG_UART_CLKSRC kCLOCK_Osc0ErClk

#define BOARD_DEBUG_UART_BAUDRATE 115200

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 33

3.3.5 USB device MSC SD card example
USB device MSC SD card example needs the SDHC driver support and SD card support. The example
works only if the platform supports both SD card and the SDHC. To enable this example using the same
code, the following MACROs are defined in the board.h file:
#define BOARD_SDHC_BASEADDR SDHC

#define BOARD_SDHC_CLKSRC kCLOCK_CoreSysClk

#define BOARD_SDHC_CD_GPIO_BASE GPIOB

#define BOARD_SDHC_CD_GPIO_PIN 20U

#define BOARD_SDHC_CD_PORT_BASE PORTB

#define BOARD_SDHC_CD_PORT_IRQ PORTB_IRQn

#define BOARD_SDHC_CD_PORT_IRQ_HANDLER PORTB_IRQHandler

Update the MACROs according to the board design. For example, the SD card detection GPIO on the
board is PORTD_1. In this case, change the above MACROs as follows:
#define BOARD_SDHC_BASEADDR SDHC

#define BOARD_SDHC_CLKSRC kCLOCK_CoreSysClk

#define BOARD_SDHC_CD_GPIO_BASE GPIOD

#define BOARD_SDHC_CD_GPIO_PIN 1U

#define BOARD_SDHC_CD_PORT_BASE PORTD

#define BOARD_SDHC_CD_PORT_IRQ PORTD_IRQn

#define BOARD_SDHC_CD_PORT_IRQ_HANDLER PORTD_IRQHandler

3.3.6 USB device audio speaker example
USB device audio speaker example needs the I2C, SAI, and DMA driver support.

The instance of SAI (I2S) and I2C are defined in the app.h file in the example directory as follows:
#define DEMO_SAI I2S0

#define DEMO_I2C I2C0

#define DEMO_SAI_CLKSRC kCLOCK_CoreSysClk

Update the MACROs according to board design. For example, the I2S instance on the board is I2S2. In
this case, change the above MACROs as follows:
#define DEMO_SAI I2S2

#define DEMO_I2C I2C2
#define DEMO_SAI_CLKSRC kCLOCK_CoreSysClk

3.3.7 USB device CCID Smart card example
The example is based on the EMVL1 stack, which works on the EMV protocol. As a result, the example
can only be ported to the platform that supports both the EMVL1 stack and the EMV protocol.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
34 Freescale Semiconductor

4 Developing a New USB Application

4.1 Developing a New USB Device Application

4.1.1 Application interfaces
The interface definition between the application and the classes includes the calls shown in the following table:

Table 1 Application and classes interface definition

API Call Description

Class Initialization This API is used to initialize the class.

Receive Data This API is used by the application to receive data from the host system.

Send Data This API is used by the application to send data to the host system.

USB
descriptor-related
callback

Handles the callback to get the descriptor.

USB Device call
back function

Handles the callback by the class driver to inform the application about
various USB bus events.

USB Class-specific
call back function

Handles the specific callback of the class.

4.1.2 How to develop a new device application
Perform these steps to develop a new device application:

1. Create a new application directory under
<install_dir>/boards/<board>/usb_examples/usb_device_<class>_<application> to locate the
application source files and header files. For example,
<install_dir>/boards/<board>/usb_examples/usb_device_hid_test.

2. Copy the following files from the similar existing applications to the application directory that is
created in Step 1.
usb_device_descriptor.c

usb_device_descriptor.h

The usb_device_descriptor.c and usb_device_descriptor.h files contain the USB descriptors that
are dependent on the application and the class driver.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 35

3. Copy the bm directory from the similar existing application directory to the new application directory.
Remove the unused project directory from the bm directory. Modify the project directory name to the
new application project name. For example, to create toolchain-IAR, board-frdmk64 class-hid
related application, create the new application hid_test based on a similar existing application
hid_mouse.

Change <install_dir>/boards/<board>/usb_examples/usb_device_hid_mouse
to <install_dir>/boards/<board>/usb_examples/usb_device_hid_test

4. Modify the project file name to the new application project file name, for example, from
dev_hid_mouse_bm.ewp to dev_hid_test_bm.ewp. Globally replace the existing name to the new project
name by editing the project files. The dev_hid_test_bm.ewp file includes the new application project
setting.

5. Create a new source file to implement the main application functions and callback functions. The
name of this file is similar to the new application name, such as mouse.c and keyboard.c.

The following sections describe the steps to change application files created in the steps above to match
the new application.

4.1.2.1 Changing the usb_device_descriptor.c file
This file contains the class driver interface. It also contains USB standard descriptors such as device
descriptor, configuration descriptor, string descriptor, and the other class-specific descriptors that are
provided to class driver when required.

The lists below show user-modifiable variable types for an already implemented class driver. The user
should also modify the corresponding MACROs defined in the usb_device_descriptor.h file. See the
Kinetis SDK v.2.0 API Reference Manual (document KSDK20APIRM) for details.

• usb_device_endpoint_struct_t;

• usb_device_endpoint_list_t;

• usb_device_interface_struct_t;

• usb_device_interfaces_struct_t;

• usb_device_interface_list_t;

• usb_device_class_struct_t;

• usb_device_class_config_struct_t;

• usb_device_class_config_list_struct_t;

This diagram shows the relationship between these items:

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
36 Freescale Semiconductor

Figure 41 Relationship diagram

This is the sample code implementation of the endpoint descriptor for the HID class:
/* HID mouse endpoint information */

usb_device_endpoint_struct_t
g_UsbDeviceHidMouseEndpoints[USB_HID_MOUSE_ENDPOINT_COUNT] =

{

 /* HID mouse interrupt IN pipe */

 {

 USB_HID_MOUSE_ENDPOINT_IN | (USB_IN <<
USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_SHIFT),

 USB_ENDPOINT_INTERRUPT,

 FS_HID_MOUSE_INTERRUPT_IN_PACKET_SIZE,

 },

};

The endpoint address, transfer type, and max packet size in this variable are defined
in the usb_device_descriptor.h file. The user may change these value as required. For
example, to implement a CDC class application:
/* Define endpoint for a communication class */
usb_device_endpoint_struct_t
g_UsbDeviceCdcVcomCicEndpoints[USB_CDC_VCOM_ENDPOINT_CIC_COUNT] = {
 {
 USB_CDC_VCOM_INTERRUPT_IN_ENDPOINT | (USB_IN << 7U), USB_ENDPOINT_INTERRUPT,
 FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE,
 },
};

/* HID mouse interface information */

usb_device_interface_struct_t g_UsbDeviceHidMouseInterface[] =

{

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 37

 {

 0U, /* The alternate setting for the interface */

 {

 USB_HID_MOUSE_ENDPOINT_COUNT, /* Endpoint count */

 g_UsbDeviceHidMouseEndpoints, /* Endpoints handle */

 },

 }

};

The endpoint count and alternate setting of the interface may differ in various
applications. User may change these values as required. For example, the interface
structure of a CDC class application is as follows:
/* Define interface for communication class */
usb_device_interface_struct_t g_UsbDeviceCdcVcomCommunicationInterface[] = {{
 1U,
 {
 USB_CDC_VCOM_ENDPOINT_CIC_COUNT, g_UsbDeviceCdcVcomCicEndpoints,
 },
}};

usb_device_interfaces_struct_t
g_UsbDeviceHidMouseInterfaces[USB_HID_MOUSE_INTERFACE_COUNT] =

{

 USB_HID_MOUSE_CLASS, /* HID mouse class code */

 USB_HID_MOUSE_SUBCLASS, /* HID mouse subclass code */

 USB_HID_MOUSE_PROTOCOL, /* HID mouse protocol code */

 USB_HID_MOUSE_INTERFACE_INDEX, /* The interface number of the HID mouse */

 g_UsbDeviceHidMouseInterface, /* Interfaces handle */

 sizeof(g_UsbDeviceHidMouseInterface) / sizeof(usb_device_interfaces_struct_t),

};

The class code, subclass code, and protocol code may differ in various classes. For
example, the usb_device_interfaces_struct of a CDC class is as follows:
/* Define interfaces for the virtual com */
usb_device_interfaces_struct_t
g_UsbDeviceCdcVcomInterfaces[USB_CDC_VCOM_INTERFACE_COUNT] = {
 {USB_CDC_VCOM_CIC_CLASS, USB_CDC_VCOM_CIC_SUBCLASS, USB_CDC_VCOM_CIC_PROTOCOL,
USB_CDC_VCOM_COMM_INTERFACE_INDEX,
 g_UsbDeviceCdcVcomCommunicationInterface,
 sizeof(g_UsbDeviceCdcVcomCommunicationInterface) /
sizeof(usb_device_interfaces_struct_t)},
 {USB_CDC_VCOM_DIC_CLASS, USB_CDC_VCOM_DIC_SUBCLASS, USB_CDC_VCOM_DIC_PROTOCOL,
USB_CDC_VCOM_DATA_INTERFACE_INDEX,
 g_UsbDeviceCdcVcomDataInterface, sizeof(g_UsbDeviceCdcVcomDataInterface) /
sizeof(usb_device_interfaces_struct_t)},
};
usb_device_interface_list_t
g_UsbDeviceHidMouseInterfaceList[USB_DEVICE_CONFIGURATION_COUNT] =

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
38 Freescale Semiconductor

{

 {

 USB_HID_MOUSE_INTERFACE_COUNT, /* The interface count of the HID mouse */

 g_UsbDeviceHidMouseInterfaces, /* The interfaces handle */

 },

};

The interface count may differ in various applications. For example, the
usb_device_interface_list of a CDC class application is as follows:
/* Define configurations for virtual com */
usb_device_interface_list_t
g_UsbDeviceCdcVcomInterfaceList[USB_DEVICE_CONFIGURATION_COUNT] = {
 {
 USB_CDC_VCOM_INTERFACE_COUNT, g_UsbDeviceCdcVcomInterfaces,
 },
};
usb_device_class_struct_t g_UsbDeviceHidMouseConfig =

{

 g_UsbDeviceHidMouseInterfaceList, /* The interface list of the HID mouse */

 kUSB_DeviceClassTypeHid, /* The HID class type */

 USB_DEVICE_CONFIGURATION_COUNT, /* The configuration count */

};

The interface list, class type and configuration count may differ in various applications. For
example, the usb_device_class_struct of a CDC class application is as follows:

/* Define class information for virtual com */

usb_device_class_struct_t g_UsbDeviceCdcVcomConfig = {

 g_UsbDeviceCdcVcomInterfaceList, kUSB_DeviceClassTypeCdc,
USB_DEVICE_CONFIGURATION_COUNT,

};

• g_UsbDeviceDescriptor

This variable contains the USB Device Descriptor.

Sample code implementation of the device descriptor for the HID class is given below:
uint8_t g_UsbDeviceDescriptor[USB_DESCRIPTOR_LENGTH_DEVICE] =

{

 USB_DESCRIPTOR_LENGTH_DEVICE, /* Size of this descriptor in bytes */

 USB_DESCRIPTOR_TYPE_DEVICE, /* DEVICE Descriptor Type */

 USB_SHORT_GET_LOW(USB_DEVICE_SPECIFIC_BCD_VERSION),

 USB_SHORT_GET_HIGH(USB_DEVICE_SPECIFIC_BCD_VERSION),/* USB Specification
Release Number in

 Binary-Coded Decimal
(i.e., 2.10 is 210H). */

 USB_DEVICE_CLASS, /* Class code (assigned by the USB-IF). */

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 39

 USB_DEVICE_SUBCLASS, /* Subclass code (assigned by the USB-IF). */

 USB_DEVICE_PROTOCOL, /* Protocol code (assigned by the USB-IF). */

 USB_CONTROL_MAX_PACKET_SIZE, /* Maximum packet size for endpoint zero

 (only 8, 16, 32, or 64 are valid) */

 0xA2U, 0x15U, /* Vendor ID (assigned by the USB-IF) */

 0x7CU, 0x00U, /* Product ID (assigned by the manufacturer) */

 USB_SHORT_GET_LOW(USB_DEVICE_DEMO_BCD_VERSION),

 USB_SHORT_GET_HIGH(USB_DEVICE_DEMO_BCD_VERSION),/* Device release number in
binary-coded decimal */

 0x01U, /* Index of string descriptor describing manufacturer
*/

 0x02U, /* Index of string descriptor describing product
*/

 0x00U, /* Index of string descriptor describing the

 device serial number */

 USB_DEVICE_CONFIGURATION_COUNT, /* Number of possible configurations */

};

The macros in the variable above are defined in the usb_device_descriptor.h file, such as the
USB_DEVICE_CLASS, USB_DEVICE_SUBCLASS, and USB_DEVICE_PROTOCOL. Those
values may need to be modified as required. The vendor ID and product ID can also be modified.

• g_UsbDeviceConfigurationDescriptor

This variable contains the USB Configuration Descriptor.

Sample code implementation of the configuration descriptor for the HID class is given below:
uint8_t
g_UsbDeviceConfigurationDescriptor[USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL] =

{

 USB_DESCRIPTOR_LENGTH_CONFIGURE, /* Size of this descriptor in bytes */

 USB_DESCRIPTOR_TYPE_CONFIGURE, /* CONFIGURATION Descriptor Type */

 USB_SHORT_GET_LOW(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),

 USB_SHORT_GET_HIGH(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),/* Total length of
data returned for this configuration. */

 USB_HID_MOUSE_INTERFACE_COUNT, /* Number of interfaces supported by this
configuration */

 USB_HID_MOUSE_CONFIGURE_INDEX, /* Value to use as an argument to the

 SetConfiguration() request to select this
configuration */

 0x00U, /* Index of string descriptor describing this
configuration */

 (USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_D7_MASK) |

 (USB_DEVICE_CONFIG_SELF_POWER <<
USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_SELF_POWERED_SHIFT) |

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
40 Freescale Semiconductor

 (USB_DEVICE_CONFIG_REMOTE_WAKEUP <<
USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_REMOTE_WAKEUP_SHIFT),

 /* Configuration characteristics

 D7: Reserved (set to one)

 D6: Self-powered

 D5: Remote Wakeup

 D4...0: Reserved (reset to zero)

 */

 USB_DEVICE_MAX_POWER, /* Maximum power consumption of the USB

 * device from the bus in this specific

 * configuration when the device is fully

 * operational. Expressed in 2 mA units

 * (i.e., 50 = 100 mA).

 */

The macro USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL, which is defined in the
usb_device_descriptor.h, needs to be modified to equal the size of this variable. The
interface count and configuration index may differ in various applications. For
example, this part of a CDC class application is as shown below:
 /* Size of this descriptor in bytes */
 USB_DESCRIPTOR_LENGTH_CONFIGURE,
 /* CONFIGURATION Descriptor Type */
 USB_DESCRIPTOR_TYPE_CONFIGURE,
 /* Total length of data returned for this configuration. */
 USB_SHORT_GET_LOW(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),
 USB_SHORT_GET_HIGH(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),
 /* Number of interfaces supported by this configuration */
 USB_CDC_VCOM_INTERFACE_COUNT,
 /* Value to use as an argument to the SetConfiguration() request to select this
configuration */
 USB_CDC_VCOM_CONFIGURE_INDEX,
 /* Index of string descriptor describing this configuration */
 0,
 /* Configuration characteristics D7: Reserved (set to one) D6: Self-powered D5:
Remote Wakeup D4...0: Reserved
 (reset to zero) */
 (USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_D7_MASK) |
 (USB_DEVICE_CONFIG_SELF_POWER <<
USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_SELF_POWERED_SHIFT) |
 (USB_DEVICE_CONFIG_REMOTE_WAKEUP <<
USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_REMOTE_WAKEUP_SHIFT),
 /* Maximum power consumption of the USB * device from the bus in this specific
* configuration when the device is
 fully * operational. Expressed in 2 mA units * (i.e., 50 = 100 mA). */

USB_DEVICE_MAX_POWER,

 USB_DESCRIPTOR_LENGTH_INTERFACE, /* Size of this descriptor in bytes */

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 41

 USB_DESCRIPTOR_TYPE_INTERFACE, /* INTERFACE Descriptor Type */

 USB_HID_MOUSE_INTERFACE_INDEX, /* Number of this interface. */

 0x00U, /* Value used to select this alternate setting

 for the interface identified in the prior
field */

 USB_HID_MOUSE_ENDPOINT_COUNT, /* Number of endpoints used by this

 interface (excluding endpoint zero). */

 USB_HID_MOUSE_CLASS, /* Class code (assigned by the USB-IF). */

 USB_HID_MOUSE_SUBCLASS, /* Subclass code (assigned by the USB-IF). */

 USB_HID_MOUSE_PROTOCOL, /* Protocol code (assigned by the USB). */

 0x00U, /* Index of string descriptor describing this
interface */

The interface descriptor may differ from various applications. For example, the
interface descriptor of a CDC class application would be as below.
 /* Communication Interface Descriptor */
 USB_DESCRIPTOR_LENGTH_INTERFACE, USB_DESCRIPTOR_TYPE_INTERFACE,
USB_CDC_VCOM_COMM_INTERFACE_INDEX, 0x00,
 USB_CDC_VCOM_ENDPOINT_CIC_COUNT, USB_CDC_VCOM_CIC_CLASS,
USB_CDC_VCOM_CIC_SUBCLASS, USB_CDC_VCOM_CIC_PROTOCOL,

0x00, /* Interface Description String Index*/

 USB_DESCRIPTOR_LENGTH_HID, /* Numeric expression that is the total size of
the

 HID descriptor. */

 USB_DESCRIPTOR_TYPE_HID, /* Constant name specifying type of HID

 descriptor. */

 0x00U,

 0x01U, /* Numeric expression identifying the HID Class

 Specification release. */

 0x00U, /* Numeric expression identifying country code
of

 The localized hardware */

 0x01U, /* Numeric expression specifying the number of

 Class descriptors(at least one report
descriptor) */

 USB_DESCRIPTOR_TYPE_HID_REPORT, /* Constant name identifying type of class
descriptor. */

 USB_SHORT_GET_LOW(USB_DESCRIPTOR_LENGTH_HID_MOUSE_REPORT),

 USB_SHORT_GET_HIGH(USB_DESCRIPTOR_LENGTH_HID_MOUSE_REPORT),

 /* Numeric expression that is the total size of
the

 Report descriptor. */

The class specific descriptor may differ from various applications. For example, the
class specific descriptor of a CDC class application would be as below.
 /* CDC Class-Specific descriptor */
 USB_DESCRIPTOR_LENGTH_CDC_HEADER_FUNC, /* Size of this descriptor in bytes */

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
42 Freescale Semiconductor

 USB_DESCRIPTOR_TYPE_CDC_CS_INTERFACE, /* CS_INTERFACE Descriptor Type */
 HEADER_FUNC_DESC, 0x10,
 0x01, /* USB Class Definitions for Communications the Communication specification
version 1.10 */

 USB_DESCRIPTOR_LENGTH_CDC_CALL_MANAG, /* Size of this descriptor in bytes */
 USB_DESCRIPTOR_TYPE_CDC_CS_INTERFACE, /* CS_INTERFACE Descriptor Type */
 CALL_MANAGEMENT_FUNC_DESC,
 0x01, /*Bit 0: Whether device handle call management itself 1, Bit 1: Whether device
can send/receive call
 management information over a Data Class Interface 0 */
 0x01, /* Indicates multiplexed commands are handled via data interface */
 USB_DESCRIPTOR_LENGTH_ENDPOINT, /* Size of this descriptor in bytes */

 USB_DESCRIPTOR_TYPE_ENDPOINT, /* ENDPOINT Descriptor Type */

 USB_HID_MOUSE_ENDPOINT_IN | (USB_IN <<
USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_SHIFT),

 /* The address of the endpoint on the USB device

 described by this descriptor. */

 USB_ENDPOINT_INTERRUPT, /* This field describes the endpoint's attributes
*/

 USB_SHORT_GET_LOW(FS_HID_MOUSE_INTERRUPT_IN_PACKET_SIZE),

 USB_SHORT_GET_HIGH(FS_HID_MOUSE_INTERRUPT_IN_PACKET_SIZE),

 /* Maximum packet size this endpoint is capable
of

 sending or receiving when this configuration
is

 is selected. */

 FS_HID_MOUSE_INTERRUPT_IN_INTERVAL, /* Interval for polling endpoint for data
transfers. */

The endpoint descriptor may differ from various applications. For example, the endpoint
descriptor of a CDC class application is as follows: /*Notification Endpoint
descriptor */
 USB_DESCRIPTOR_LENGTH_ENDPOINT, USB_DESCRIPTOR_TYPE_ENDPOINT,
USB_CDC_VCOM_INTERRUPT_IN_ENDPOINT | (USB_IN << 7U),
 USB_ENDPOINT_INTERRUPT,
USB_SHORT_GET_LOW(FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE),
 USB_SHORT_GET_HIGH(FS_CDC_VCOM_INTERRUPT_IN_PACKET_SIZE),
FS_CDC_VCOM_INTERRUPT_IN_INTERVAL,

}

• String Descriptors

Users can modify string descriptors to customize their product. String descriptors are written in the
UNICODE format. An appropriate language identification number is specified in the
USB_STR_0. Multiple language support can also be added.

• USB_DeviceGetDeviceDescriptor

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 43

This interface function is invoked by the application. This call is made when the application
receives the kUSB_DeviceEventGetDeviceDescriptor event from the Host. Mandatory descriptors
that an application is required to implement are as follows:

o Device Descriptor

o Configuration Descriptor

o Class-Specific Descriptors (For example, for HID class implementation, Report
Descriptor, and HID Descriptor)

Apart from the mandatory descriptors, an application should also implement various string
descriptors as specified by the Device Descriptor and other configuration descriptors.

Sample code for HID class application is given below:
/* Get device descriptor request */

usb_status_t USB_DeviceGetDeviceDescriptor(usb_device_handle handle,

 usb_device_get_device_descriptor_struct_t
*deviceDescriptor)

{

 deviceDescriptor->buffer = g_UsbDeviceDescriptor;

 deviceDescriptor->length = USB_DESCRIPTOR_LENGTH_DEVICE;

 return kStatus_USB_Success;

}

User may assign the appropriate variable of the device descriptor. For example, if the device
descriptor variable name is g_UsbDeviceDescriptorUser, the sample code is as follows:
/* Get device descriptor request */
usb_status_t USB_DeviceGetDeviceDescriptor(usb_device_handle handle,
 usb_device_get_device_descriptor_struct_t
*deviceDescriptor)
{
 deviceDescriptor->buffer = g_UsbDeviceDescriptorUser;
 deviceDescriptor->length = USB_DESCRIPTOR_LENGTH_DEVICE;
 return kStatus_USB_Success;

}

• USB_DeviceGetConfigurationDescriptor

This interface function is invoked by the application. This call is made when the application receives
the kUSB_DeviceEventGetConfigurationDescriptor event from the Host.

/* Get device configuration descriptor request */

usb_status_t USB_DeviceGetConfigurationDescriptor(

 usb_device_handle handle, usb_device_get_configuration_descriptor_struct_t
*configurationDescriptor)

{

 if (USB_HID_MOUSE_CONFIGURE_INDEX > configurationDescriptor->configuration)

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
44 Freescale Semiconductor

 {

 configurationDescriptor->buffer = g_UsbDeviceConfigurationDescriptor;

 configurationDescriptor->length = USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL;

 return kStatus_USB_Success;

 }

 return kStatus_USB_InvalidRequest;

}

The macro HID_MOUSE_CONFIGURE_INDEX may differ from various applications. For example, the
implementation of a CDC class application would be as below.

usb_status_t USB_DeviceGetConfigurationDescriptor(
 usb_device_handle handle, usb_device_get_configuration_descriptor_struct_t
*configurationDescriptor)
{
 if (USB_CDC_VCOM_CONFIGURE_INDEX > configurationDescriptor->configuration)
 {
 configurationDescriptor->buffer = g_UsbDeviceConfigurationDescriptor;
 configurationDescriptor->length = USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL;
 return kStatus_USB_Success;
 }
 return kStatus_USB_InvalidRequest;
}

• USB_DeviceGetStringDescriptor

This interface function is invoked by the application. This call is made when the application
receives the kUSB_DeviceEventGetStringDescriptor event from the Host.

See the usb_device_hid_mouse example for sample code.

• USB_DeviceGetHidReportDescriptor

This interface function is invoked by the application. This call is made when the application
receives the kUSB_DeviceEventGetHidReportDescriptor event from the Host.

See the usb_device_hid_mouse example for sample code.

• USB_DeviceSetSpeed

Because HS and FS descriptors are different, the device descriptors and configurations need to be
updated to match the current speed. By default, the device descriptors and configurations are
configured using FS parameters for both EHCI and KHCI. When the EHCI is enabled, the
application needs to call this function to update the device by using the current speed. The updated
information includes the endpoint max packet size, endpoint interval, and so on.

4.1.2.2 Changing the usb_device_descriptor.h file
This file is mandatory for the application to implement. The usb_device_descriptor.c file includes this file
for function prototype definitions. When the user modifies the usb_device_descriptor.c, MACROs in this
file should also be modified.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 45

4.1.2.3 Changing the application file
1. Main application function

The main application function is provided by two functions: USB_DeviceApplicationInit and
APP_task(optional).

2. The USB_DeviceApplicationInit enables the clock and the USB interrupt and also initialize the
specific USB class. See the usb_device_hid_mouse example for the sample code.

3. USB device call back function

The device callback function handles the USB device-specific requests. See the
usb_device_hid_mouse example for the sample code.

4. USB Class-specific call back function

The class callback function handles the USB class-specific requests. See the
usb_device_hid_mouse example for the sample code.

4.2 Developing a New USB Host Application

4.2.1 Background
In the USB system, the host software controls the bus and talks to the target devices following the rules
defined by the specification. A device is represented by a configuration that is a collection of one or more
interfaces. Each interface comprises one or more endpoints. Each endpoint is represented as a logical pipe
from the application software perspective.

The host application software registers a callback with the USB host stack, which notifies the application
about the device attach/detach events and determines whether the device is supported or not. The
following figure shows the enumeration and detachment flow.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
46 Freescale Semiconductor

Wait
event

DEVICE_ATTACH_EVENT
The configuration

is supported

Yes

Save interface
handle and Return

kStatus_USB_Success

DEVICE_ENUMERATION_
DONE

Class initialize and
APP operates

DEVICE_NOT_SUPPORTE
D

Peripheral is not
supported

DEVICE_DETACH_EVENT Device detach

Class de-initialize

Return
kStatus_USB_NotSupported

No

Figure 42 Enumeration and detachment flow

The USB host stack is a few lines of code executed before starting communication with the USB device.
The examples on the USB stack are written with class driver APIs. Class drivers work with the host API as
a supplement to the functionality. They make it easy to achieve the target functionality (see example
sources for details) without dealing with the implementation of standard routines. The following code
steps are taken inside a host application driver for any specific device.

4.2.2 How to develop a new host application

4.2.2.1 Creating a project

Perform the following steps to create a project.

1. Create a new application directory under
<install_dir>/boards/<board>/usb_examples/usb_host_<class>_<application> to locate the
application source files and header files. For example,
<install_dir>/boards/<board>/usb_examples/usb_host_hid_mouse.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 47

2. Copy the following files from the similar existing applications to the application directory that is
created in step 1.

app.c

usb_host_config.h

The app.c file contains the common initialization code for USB host and the usb_host_config.h file
contains the configuration MACROs for the USB host.

3. Copy the bm directory from the similar existing application directory to the new application
directory. Remove the unused project directory from the bm directory. Modify the project directory
name to the new application project name. For example, to create toolchain-IAR, board-frdmk64
class-hid related application, create the new application hid_test based on a similar existing
application hid_mouse.

Copy <install_dir>/boards/frdmk64f/usb_examples/usb_host_hid_mouse/bm
to <install_dir>/boards/frdmk64f/usb_examples/usb_host_hid_test/bm

4. Modify the project file name to the new application project file name, for example, from
host_hid_mouse_bm.ewp to host_hid_test_bm.ewp. Globally replace the existing name to the new
project name by editing the project files. The host_hid_test_bm.ewp file includes the new application
project setting.

5. Create a new source file to implement the main application function, application task function, and the
callback function. The name of this file is similar to the new application name, such as host_mouse.c
and host_keyboard.c.

The following sections describe the steps to modify application files created in the steps above to match
the new application.

4.2.2.2 Main application function flow
In the main application function, follow these steps:

Figure 43 Main application function flow

Initialize USB clock

Initialize USB host stack

Enable USB isr

Create tasks

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
48 Freescale Semiconductor

1. Initialize the USB clock.

Call KSDK API to initialize the KHCI or the EHCI USB clock.

2. Initialize the host controller.

This allows the stack to initialize the necessary memory required to run the stack and register the
callback function to the stack.

For example:
status = USB_HostInit(CONTROLLER_ID, &g_HostHandle, USB_HostEvent);

3. Enable the USB ISR.

Set the USB interrupt priority and enable the USB interrupt.

4. Initialize the host stack task and application task.

For example (bm):

while (1)

{

#if ((defined USB_HOST_CONFIG_KHCI) && (USB_HOST_CONFIG_KHCI))

 USB_HostKhciTaskFunction(g_HostHandle);

#endif /* USB_HOST_CONFIG_KHCI */

#if ((defined USB_HOST_CONFIG_EHCI) && (USB_HOST_CONFIG_EHCI))

 USB_HostEhciTaskFunction(g_HostHandle);

#endif /* USB_HOST_CONFIG_EHCI */

 USB_HostMsdTask(&g_MsdCommandInstance);

}

Note that in this code, the g_MsdCommandInstance variable contains all states and pointers used
by the application to control or operate the device.

If implementing the application task as USB_HostHidTestTask and use g_HidTestInstance to
maintain the application states, modify the code as follows:

while (1)

{

#if ((defined USB_HOST_CONFIG_KHCI) && (USB_HOST_CONFIG_KHCI))

 USB_HostKhciTaskFunction(g_HostHandle);

#endif /* USB_HOST_CONFIG_KHCI */

#if ((defined USB_HOST_CONFIG_EHCI) && (USB_HOST_CONFIG_EHCI))

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 49

 USB_HostEhciTaskFunction(g_HostHandle);

#endif /* USB_HOST_CONFIG_EHCI */

 USB_HostHidTestTask(&g_HidTestInstance);

}

4.2.2.3 Event callback function

In the app.c file, there is one USB_HostEvent function. By default, the function is registered to the host
stack when calling the USB_HostInit. In the USB Host stack, customers do not have to write any
enumeration code. When the device is connected to the host controller, the USB Host stack enumerates the
device. The device attach/detach events are notified by this callback function.

Application needs to implement one or more functions to correspond to one class process. These
application functions are called in the USB_HostEvent. The device’s configuration handle and interface
list are passed to the application through the function so that the application can determine whether the
device is supported by this application.

There are four events in the callback: kUSB_HostEventAttach, kUSB_HostEventNotSupported,
kUSB_HostEventEnumerationDone, and kUSB_HostEventDetach.

The events occur as follows:

1. When one device is attached, host stack notifies kUSB_HostEventAttach.

2. The application returns kStatus_USB_Success to notify the host stack that the device configuration is
supported by this class application, or return the kStatus_USB_NotSupported to notify the host stack
that the device configuration is not supported by this class application.

3. The Host stack continues for enumeration if the device is supported by the application and notifies
kUSB_HostEventEnumerationDone when the enumeration is done.

4. The Host stack checks the next device’s configuration if the current configuration is not supported by
the application.

5. When the Host stack checks all configurations and all are not supported by the application, it notifies
the kUSB_HostEventNotSupported.

6. When the device detaches, the Host stack notifies the kUSB_HostEventDetach.

This is the sample code for the HID mouse application. The USB_HostHidMouseEvent function should be
called by the USB_HostEvent. In this code, the g_HostHidMouse variable contains all states and pointers
used by the application to control or operate the device:
usb_status_t USB_HostHidMouseEvent

(

usb_device_handle deviceHandle,

 usb_host_configuration_handle configurationHandle,

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
50 Freescale Semiconductor

 uint32_t eventCode

)

{

 /* Process the same and supported device's configuration handle */

 static usb_host_configuration_handle s_ConfigHandle = NULL;

 usb_status_t status = kStatus_USB_Success;

 uint8_t id;

 usb_host_configuration_t *configuration;

 uint8_t interfaceIndex;

 usb_host_interface_t *interface;

 switch (eventCode)

 {

 case kUSB_HostEventAttach:

 /* judge whether is configurationHandle supported */

 configuration = (usb_host_configuration_t *)configurationHandle;

 for (interfaceIndex = 0; interfaceIndex < configuration->interfaceCount;
++interfaceIndex)

 {

 interface = &configuration->interfaceList[interfaceIndex];

 id = interface->interfaceDesc->bInterfaceClass;

 if (id != USB_HOST_HID_CLASS_CODE)

 {

 continue;

 }

 id = interface->interfaceDesc->bInterfaceSubClass;

 if ((id != USB_HOST_HID_SUBCLASS_CODE_NONE) && (id !=
USB_HOST_HID_SUBCLASS_CODE_BOOT))

 {

 continue;

 }

 id = interface->interfaceDesc->bInterfaceProtocol;

 if (id != USB_HOST_HID_PROTOCOL_MOUSE)

 {

 continue;

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 51

 }

 else

 {

 /* the interface is supported by the application */

 g_HostHidMouse.deviceHandle = deviceHandle;

 g_HostHidMouse.interfaceHandle = interface;

 s_ConfigHandle = configurationHandle;

 return kStatus_USB_Success;

 }

 }

 status = kStatus_USB_NotSupported;

 break;

 case kUSB_HostEventNotSupported:

 break;

 case kUSB_HostEventEnumerationDone:

 if (s_ConfigHandle == configurationHandle)

 {

 if ((g_HostHidMouse.deviceHandle != NULL) &&
(g_HostHidMouse.interfaceHandle != NULL))

 {

 /* the device enumeration is done */

 if (g_HostHidMouse.deviceState == kStatus_DEV_Idle)

 {

 g_HostHidMouse.deviceState = kStatus_DEV_Attached;

 }

 else

 {

 usb_echo("not idle mouse instance\r\n");

 }

 }

 }

 break;

 case kUSB_HostEventDetach:

 if (s_ConfigHandle == configurationHandle)

 {

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
52 Freescale Semiconductor

 /* the device is detached */

 s_ConfigHandle = NULL;

 if (g_HostHidMouse.deviceState != kStatus_DEV_Idle)

 {

 g_HostHidMouse.deviceState = kStatus_DEV_Detached;

 }

 }

 break;

 default:

 break;

 }

 return status;

}

If implementing the callback as USB_HostHidTestEvent, use g_HidTestInstance, and support the
device that the class code is USB_HOST_HID_TEST_CLASS_CODE, sub-class code is
USB_HOST_HID_TEST_SUBCLASS_CODE, and the protocol is USB_HOST_HID_TEST_PROTOCOL. The code
can be modified as follows:
usb_status_t USB_HostHidMouseEvent

(

usb_device_handle deviceHandle,

 usb_host_configuration_handle configurationHandle,

 uint32_t eventCode

)

{

 /* Process the same and supported device's configuration handle */

 static usb_host_configuration_handle s_ConfigHandle = NULL;

 usb_status_t status = kStatus_USB_Success;

 uint8_t id;

 usb_host_configuration_t *configuration;

 uint8_t interfaceIndex;

 usb_host_interface_t *interface;

 switch (eventCode)

 {

 case kUSB_HostEventAttach:

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 53

 /* judge whether is configurationHandle supported */

 configuration = (usb_host_configuration_t *)configurationHandle;

 for (interfaceIndex = 0; interfaceIndex < configuration->interfaceCount;
++interfaceIndex)

 {

 interface = &configuration->interfaceList[interfaceIndex];

 id = interface->interfaceDesc->bInterfaceClass;

 if (id != USB_HOST_HID_TEST_CLASS_CODE)

 {

 continue;

 }

 id = interface->interfaceDesc->bInterfaceSubClass;

 if (id != USB_HOST_HID_TEST_SUBCLASS_CODE)

 {

 continue;

 }

 id = interface->interfaceDesc->bInterfaceProtocol;

 if (id != USB_HOST_HID_TEST_PROTOCOL)

 {

 continue;

 }

 else

 {

 /* the interface is supported by the application */

 g_HidTestInstance.deviceHandle = deviceHandle;

 g_HidTestInstance.interfaceHandle = interface;

 s_ConfigHandle = configurationHandle;

 return kStatus_USB_Success;

 }

 }

 status = kStatus_USB_NotSupported;

 break;

 case kUSB_HostEventNotSupported:

 break;

 case kUSB_HostEventEnumerationDone:

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
54 Freescale Semiconductor

if (s_ConfigHandle == configurationHandle)

{

if ((g_HidTestInstance.deviceHandle != NULL) &&
(g_HidTestInstance.interfaceHandle != NULL))

{

/* the device enumeration is done */

if (g_HidTestInstance.deviceState == kStatus_DEV_Idle)

{

g_HidTestInstance.deviceState = kStatus_DEV_Attached;

}

else

{

usb_echo("not idle mouse instance\r\n");

 }

}

}

break;

 case kUSB_HostEventDetach:

if (s_ConfigHandle == configurationHandle)

{

/* the device is detached */

s_ConfigHandle = NULL;

if (g_HidTestInstance.deviceState != kStatus_DEV_Idle)

{

g_HidTestInstance.deviceState = kStatus_DEV_Detached;

}

}

break;

 default:

break;

 }

 return status;

}

Note that the kStatus_DEV_Attached, kStatus_DEV_Detached MACROs are defined in the example.

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 55

4.2.2.4 Class initialization

When the supported device is attached, the device’s class needs to be initialized.

For example, the HID mouse initialization flow is as follows:

Figure 44 HID mouse initialization flow

1. Call class initialization function to initialize the class instance.

2. Call class set interface function to set the class interface.

3. When the set interface callback returns successfully, the application can run.

4.2.2.5 Sending/Receiving data to/from the device
The transfer flow is as follows:

1. Call the USB_hostClassxxx API to begin the transfer.

2. The transfer result is notified by the callback function that is passed as a parameter.

3. The HID mouse host uses the following code to receive data from the device:
USB_HostHidRecv(classHandle, mouseBuffer, bufferLength, callbackFunction,
callbackParameter);

Initialize class

Set class interface

Wait for set interface callback

Class application run

 Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
56 Freescale Semiconductor

5 Revision history

This table summarizes revisions to this document since the release of the previous version

Revision History

Revision number Date Substantive changes

1 01/2016 KSDK 2.0.0 release

Document Number: KSDKUSBSUG
Rev. 1
01/2016

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
www.freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, Kinetis, and the Freescale logo are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
©2016 Freescale Semiconductor, Inc.

	1 Overview
	2 Build the USB examples in Kinetis SDK
	2.1 Requirements for Building USB Examples
	2.2 USB Code Structure
	2.3 Compiling or Running the USB Stack and Examples
	2.4 USB Stack Configuration

	3 Porting to a new platform
	3.1 SoC files
	3.2 Board files
	3.3 Porting Examples

	4 Developing a New USB Application
	4.1 Developing a New USB Device Application
	4.2 Developing a New USB Host Application

	5 Revision history

