Freescale Semiconductor Document Number: KSDKUSBSUG
User's Guide Rev. 1, 01/2016

USB Stack User’s Guide

1 Overview

Contents
This document provides the following:
1 Overview
e Detailed steps to compile the USB _ o
examples, download a binary image, and 2 Build the USB examples in Kinetis SDK

run the examples. 3

e Detailed steps to port the USB Stack to a
new platform.

Porting to a new platform

4 Developing a New USB Application
. 5 Revision history

e Detailed steps to develop a new

application based on the existing classes
in the USB Stack.

© Freescale Semiconductor, Inc., 2016. All rights reserved.

. -
P R

24

34

56

2 Build the USB examples in Kinetis SDK

This section describes how to compile the USB stack and examples, download a binary image, and run the
examples. The TWR-K22F120M Freescale Tower System module is used as an example board.

2.1 Requirements for Building USB Examples

The TWR-K22F120M Tower System module is used as an example in this document. The process for
compiling, downloading, and running examples is similar on all other boards.

2.1.1

Hardware

TWR-K22F120M Tower System module

(Optional) TWR-SER Tower System module and Elevator
J-Link debugger (optional)

USB cables

Software
KSDK release package
IAR Embedded Workbench for ARM® Version 7.5.0

Keil pVision5 Integrated Development Environment Version 5.17, available for Kinetis ARM©
Cortex®-M4 devices

Kinetis Design Studio IDE v3.0.0

Atollic® TrueSTUDIO® v5.4.0
Makefiles support with GCC revision 4.9-2015-g3-update from ARM Embedded

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor

2.2 USB Code Structure
The USB code is located in the folder:

<install_dir>/middleware/usb_1.0.0

boards
CMSIS
devices
docs
4 middleware
dma_manager_2.0.0
; fatfs 0.11a
sdmme_2.0.0
ush 1.00
rtos

tools

Figure-1 Kinetis SDK folder structure

The USB folder includes the source code for stack and examples. Note that the version number of the usb
folder may vary.

4 ush 1.0.0
device

; host
include

053
Figure-2 USB Folder Structure
The ush folder includes three subfolders:
e (device

This subfolder includes the controller driver and common device driver for the USB device.
o host

This subfolder includes the controller driver, the common device driver, and the class driver for the
USB host.

e include

This subfolder includes the definitions and structures for the USB stack.
e 0Sa

This subfolder includes the adapter interfaces for various OSes.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 3

2.3 Compiling or Running the USB Stack and Examples

2.3.1 Step-by-step guide for IAR
This section shows how to use IAR. Open IAR as shown in this figure:
1. Open the workspace corresponding to different examples.

For example, the workspace file is located at:

<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/iar/host_hid_mouse__
bm.eww.

T —————————————

File Edit View Project Tools Window Help

DEH@| S|4 2R | YR E PP @0 EERES(S L
Workspace

z - x
[_Dehug -
Files fn O
[=f&/host_hid_mouse_bm - Debug (v [|
[Jhoard
[Josa
[platomm
[Jsources
[startup
[Jush
[T utilities
3 Output
I host_hid_mauze_bm
x

Messages File Line =
ush_host_hid.c

ush_host_hub.c

ush_host_hub_app.c

ush_osa_bm.c

ush_host_khci.c

I .

Toatal number of errars: 0
<

Ready

|”M ad

Errors 0, Warnings 1 NUM

Figure-3 IAR workspace

2. Build the host_hid_mouse_bm example.

3. Connect the micro USB cable from a PC to the J25 of the TWR-K22F120M Tower System
module to power on the board.

4. Click the “Download and Debug” button. Wait for the download to complete.
5. Click the “Go” button to run the example.

6. See the example-specific readme.pdf for more test information.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

IS

Freescale Semiconductor

2.3.2 Step-by-step guide for Keil pVision5

This section shows how to use Keil pVision5. Open Keil pVision5 as shown in this figure:
1. Open the workspace corresponding to different examples.
For example, the workspace file is located in

<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/mdk/host_hid
_mouse_bm.uvmpw.

FEile Edit XView Project Flash Debug Peripherals JTools SVCS Window Help
NS A@] 4 aB]a o e mmm|EEEE s o Ha#lals oo alE) A
@ \Ll Iﬁl @ t;g| w‘ host_hid_mouse_bm Del|z| ,ﬁ%‘ ﬁ % ’ Q @

= E8 Workspace
Ry
=-%% host_hid_mouse_bm Debug
@0 startup
@0 usb-host
[platform-lpuart
[platform-uart
[osa
[ush-host-class
[sources
[utilities
3 ush-include
[platform-port
[platform-mcg
[platform-osc
@0 platform-sim
@0 platform-clock
B0 platform-gpio
- platform-common
& board
B0 platform-smc

El project | @ Books | {1 Functions | 0, Templates

Build Output
../ f..f../clock config.c: 1 warning, 0 errors -
compiling hardware init.c...

compiling pin mux.c...

compiling fsl_sme.c...

linking... ﬂ
Program Size: Code=30828 RO-data=169& RW-data=%2 ZI-data=1889&6 g
< 1t | 3

PEMicro Debugger CAP NUM SCRL OVR R/W

Figure-4 Keil pVision5 Workspace

Build the host_hid_mouse_bm example.

Click the “Start/Stop” debug session button. Wait for the download to complete.
Click the “Go” button to run the example.

See the example-specific readme.pdf for more test information.

gk own

2.3.3 Step-by-step guide for the Kinetis Design Studio IDE

1. Unlike I1AR or Keil, the Kinetis Design Studio doesn’t have a workspace. Create a workspace
and import Kinetis Design Studio USB examples.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 5

2. Select “File” and “Import” from the KDS IDE Eclipse menu.

3. Expand the General folder and select the “Existing Projects into Workspace”. Then, click
“Next”.

Import o =)

Select \“
Create new projects from an archive file or directory, u

Select an import source:

|t_',.rpe filter text |

4 [General *
[E Archive File
[Existing Projects into Workspace |
[, File System
El Preferences
[= C/C++
 [= Component Development Environment
[= CVS
= Git P
[» = Install
[> [= Processor Expert

m

[> = Remote Systems

P MNKA

@ < Back Next = Fiish || Cancel

Figure-5 Selection of the correct import type in the KDS IDE

Freescale KSDK USB Stack Porting New Platform User's Guide, Rev. 1, 01/2016

Freescale Semiconductor

4. Point the KDS IDE to the host_hid_mouse_bm project in the K22, which is located in the
<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/kds. The import
projects directory selection window should resemble this figure.

“di': Import

Import Projects
Select a directory to search for existing Eclipse projects.

| oj
B

@) Select root directony: c\Freescale\Freescale SDK_2 0hmcu-sdk-2.0 « Browse...
(71 Select archive file: Browse...
Projects:

host_hid_mouse_bm_twrk22f120m (c\Freescale\Freescale_SDE_Z_ Select All

Deselect All

4l

Refresh

i | 1] 3

Opticns
["] Search for nested projects
[Copy projects into workspace
[] Hide projects that already exist in the workspace
Working sets
[T Add project to working sets

Widarking sets: Select...

® Mext = Einish] ’ Cancel

Figure-6 Selection of the K22 host_hid_mouse_bm project

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor

5. After importing, the window should like this.

¥ C/C++ - host_hid_mouse_bm_twrk22f120m/sources/app.c - Kinetis Design Studio - C:\Users\B42754\workspace kds ==]
File Edit Source Refactor Navigate Search Project Run Processor Expert Window Help
- Gle-R-a@x|d BeEmiE- @B @it 0 Q- UriEme F LGl Gy
Quick Access [|}| [| 4 Debug
[Project Explorer 2 B <:==(>| o ¥ = 0O ||g startup_MEKL..) system_MKL2...] hardware_init.c L) pin_mux.c |¢) board.c (€ app.c 52 | P = 0 'ﬁl
4 % host_hid_mouse_bm_twrk22f120m @| * copyright (c) 2015, Fresscale Semiconductor, Inc.[] - =]
> [Includes
board #include "usb_host config.h” L =
b #include "usb_host.h" 3 =
b G osa #include "fsl_device_registers.h” L oz
» (= platform #include "ush _host_hid.h" o
b [Zp sources #include "board.h” (@)
b startu #include "host_mouse.h”
. g ush P #include "fs1_common.h™ El
#if ((defined USB_HOST_CONFIG_EHCI) &R& (USB_HOST_CONFIG_EHCI))
> (g utilities #include "ush_phy.h"
host_hid_mouse_bm_twrk22f120m debug jlink.launc #endif /* USB_HOST CONFIG EHCT */
host_hid_mouse_bm_twrk22f120m debug pne.launct
hast_hid_mouse_bm_twrk22f120m release jlink.launc #if ((!USB_HOST_CONFIG_KHCI) & (!USE_HOST_CONFIG_EHCI))
. #error Please enable USB_HOST CONFIG _KHCI or USB_HOST CONFIG_EHCI in file usbh_host_config.
host_hid_mouse_bm_twrk22f120m release pne.launc sendif = = = = = = = =
2| host_hid_mouse_bm_twrk22f120m.wsd
* pDefinitions
B
#if ((defined USB_HOST CONFTG_KHCT) %2 (USB_HOST CONFTG_KHCT))
#define CONTROLLER_ID kUSB_ControllerkKhcie
#endif /* USB_HOST CONFIG_KHCI */
#if ((defined USB_HOST CONFTG_EHCT) & (USB_HOST CONFTG_EHCT))
#define CONTROLLER_ID kUSB_ControllerEhcie
#endif /* USB_HOST_CONFIG_EHCI */
Fl 3
Problems] Tasks ' B Console 52 Properties &ﬁ}l'—ﬁsﬁ ::Exl.".E‘rJ'DE'
CDT Build Consele [host_hid_mouse_bm_twrk22f120m]
-
L] (1] » 1 »
| Writable | Smart Insert | 2:1 : Computing Git status fo...itory mecu-sdk L]

Figure-7 The USB projects workspace

6. Choose the appropriate build target: “Debug” or “Release” by left-clicking the arrow next to
the hammer icon as shown here.

File Edit Source Refactor Mavigate Search
i - ® KR & &
v 1 Debug

2 Release

[Project Explorer &7

Figure-8 The hammer button

7. If the project build does not begin after selecting the desired target, left-click the hammer icon
to start the build.

Freescale KSDK USB Stack Porting New Platform User's Guide, Rev. 1, 01/2016
8 Freescale Semiconductor

8. To check the debugger configurations, click the down arrow next to the green debug button
and select “Debug Configurations”.

Blo-a-®=c v-

(no launch history)

Debug As *
Debug Configurations...

COrganize Favorites..,

Figure-9 Debug configurations

9. After verifying that the debugger configurations are correct, click the “Debug” button.

& Debug Configurations

type filter text
[&] C/C++ Application
[€] C/C++ Attach to Applicatior
[€] C/C++ Postmortemn Debugg
[€] C/C++ Remete Application
[€] GDB Hardware Debugging
[&] GDB OpenO{D Debugging
[GDE PEMicro Intesface Debu
4 [£] GDB SEGGER J-Link Debugai
[T host_hid_mouse_twrk22f
| host_hid_mouse_twrk22f
= Launch Group

4 [r

Filter matched 11 of 11 items

@

Create, manage, and run configurations

Mame: host_hid_mouse_twrk22fL20m_bm debug jlink
.|_|‘ Main 4 Debugger B Startup | B Source. [0 Commen

Hehug,n’ho;l_hid_mouse_hvrk&!llﬁm_bm.el!

Project:
hast_hid_mouse_twrk22f120m_bm
Build (if required) before launching

Build configuration: Use Active
(/] Select configuration using 'C//C++ Application’
Erable avte build Disable aute build

9 Use workspace settings Configure Wodkspace Settings,

[oebug |

Close

Figure-10 Kinetis Design Studio Debug configurations

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor

10. The application is downloaded to the target and automatically run to main():

11. Run the code by clicking the “Resume” button to start the application:

pr EXpell__Eun _ Windov
2.| |0 -, Y

| Resume (F8) i

Figure-11 Resume button

12. See the example-specific document for more test information.

2.3.4 Step-by-step guide for the Atollic TrueSTUDIO

1. Unlike IAR or Keil, the Atollic TrueSTUDIO does not have a workspace. Create a workspace
and import Atollic TrueSTUDIO USB examples.

2. Select “File” and “Import” from the Atollic TrueSTUDIO IDE Eclipse menu.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
10 Freescale Semiconductor

3. Expand the General folder and select “Existing Projects into Workspace. Then, click the
“Next" button.

|
E Import EE
Select \
Create new projects from an archive file or directory. | g - E I

Select an import source:

|t_*,r|:|n.=-_ filter text |

4 [~ General
[T Archive File
|12 Existing Projects into Workspace |
[, File System
El Preferences

o= GIC++

B = CVS

[» [Example projects

[= Git

[+ [Install

[» = Run/Debug

[2= SVM

[+ [Tasks

[= Team

Figure-12 Selection of the correct import type in Atollic TrueSTUDIO IDE

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor

11

4. Point the Atollic TrueSTUDIO IDE to the host_hid_mouse_bm project in the K22, which is
located in the <install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/atl.
The import projects directory selection window should resemble this figure.

-,

B import =
Import Projects
Select a directory to search for existing Eclipse projects.
-

@ Select root directory: c\Freescale\Freescale_SDK_2_0hmcu-sdk-2.0 -

() Select archive file: Browse...

Projects:

host_hid_mouse_brm_twrk22f120m (o Freescale\Freescale_SDE_Z2_ Select All

Deselect All

Refresh

a4 | m | b

Options
["] Search for nested projects
[Copy projects into workspace

Working sets
[T Add project to working sets

Wrarking sets: Select...

@ Next > Finish | [Cancel

Figure-13 Selection of the K22 host_hid_mouse_bm project

Freescale KSDK USB Stack Porting New Platform User's Guide, Rev. 1, 01/2016

Freescale Semiconductor

5. After importing, the window should like this.

=3 Eol =<~

E CfC++ - host_hid_mouse_bm_twrk22f120m/sources/app.c - Atollic TrueSTUDIO® for ARM®

File Edit Source Refactor

el B E R RT

View Navigate

[Project Explorer 32 = 8

host_hid_mouse_bm_twrk22f120m

@j] Includes

[=
I [y board
[
[
[
[
[=
[=

-

[py 058

= platform

[py sources

[y startup

= ush

(g utilities

|=| host_hid_mouse_bm_twrk22f120m ¢
|=| host_hid_mouse_bm_twrk22f120m ¢
= host_hid_mouse_bm_twrk22f120m r
= host_hid_mouse_bm_twrk22f120m r

Search Project Run Window Help

SR KABQ BB EI-L GOy B0 -BE-RBE
Quick Access ﬁ | 3&\? Debug
[g] virtual_com.c [€] composite.c [€ app.c 32 | Pn = 0 =0 ® M = 8 E
s 3 v EELRY o ¥
. . Z w
2 * Copyright (c) 2815, Freescale Semiconductor, Inc. vv L
3 * All rights reserved. =
4 = ol usb_host_confii ~
5 * Redistribution and use in source and binary forms, with o =1 ush_hosth Tl
6 * are permitted provided that the following conditions are r - - .
7 = = fsl_device_regis
8 * o Redistributions of source code must retain the above cop =l ush_host_hid.h
9 * of conditions and the following disclaimer. = boardh
lo = 2 host_mouseh
11 * o Redistributions in binary form must reproduce the above g f
sl_commaon.h
12 * 1list of conditions and the following disclaimer in the ¢ ;, E; hh
13 * other materials provided with the distribution. usb_phy.
14 * # CONTROLLER] .
15 * o Neither the name of Freescale Semiconducter, Inc. nor & # CONTROLLER]
16 * contributors may be used to endorse or promote products # USB_HOST_INT
17 * software without specific prior written permission. 45 USB_HostEvent
18 * e e)
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND COI H USB—HOStP‘ppl“
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM: ++ BOARD InitHar
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAF @ g_HostHidMou
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CON @ g HostHandle:
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR (e USBO IRQHand
24 * (INCLUDING, BUT MNOT LIMITED TO, PROCUREMENT OF SUBSTITUTE % USBH_S ROH e
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) t 5 _JRQHan
26 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIAB: _ ®° USB HostEvent
mm E _imaees i mees Tesses mn amieememes i amreTies T ans inns s ~ 5 e i
< I | 3 4 [3
Problems = Tasks [E Console 53 Properties L4 | BEE = I:—='|'|| #E~Ffi= 8
CDT Build Console [host_hid_mouse_bm_twrk22f120m]
-
4 L4
| Writable | Smart Insert | 1:1 Re-indexing (fully) repository meu-sdk o

Figure-14 The USB projects workspace

6. Choose the appropriate build target: “Debug” or “Release” by left-clicking the build
configuration icon as shown here.

484 6[8]

Figure-15 Manage build configuration button

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor

13

E] host_hid_mouse_twrk22f120m_bm_twrk22f120m: ...
Configuration Description Status
E Debug Active :
Release
Set Active ’ Mew...] ’ Delete] ’ Rename...]
| ok || cencel |

Figure-16 Set build configuration

7. If the project build does not begin after selecting the desired target, left-click the build icon to

start the build.
T 66 G|

Figure-17 Build project button

8. To check the debugger configurations, click the “Configure Debug” button.

Jas[Ef e v

Figure-18 Configure debug button

9. After verifying that the debugger configurations are correct, click the “Debug” button.

Freescale KSDK USB Stack Porting New Platform User's Guide, Rev. 1, 01/2016
14 Freescale Semiconductor

Create, ge, and run configurati

CEX| B3~

St

MName: host_hid_mouse_twrk22f120m_bm_twrk22f120m debug jlink
‘typa filter text

[E] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger Idebugfhost_hid_muuse_twrkZZﬂZUm_bm_twrkZZﬂZUm.Elf[
[E] C/C++ Remote Application

4 [£] Embedded C/C++ Application

Main :& Debugger] B StartupScripts] B Source| B Qommorq
C/C++ Application:

[Variables...] [SEBICD Prcyed...] [Browse...]
|[£] host_hid_mouse_twrk22f120m_bm_twrk22f120m debug jlink |

Project:
[E] host_hid_mouse_twrk22f120m_bm_twrk22f120m debug pne host_hid_mouse_twrk22f120m_bm_twrk22f120m Browse.
[] host_hid_mouse_twrk22f120rm_bm_twrk22f120m release jlink .
I-c_=| host_hid_mouse_twrk22f120m_bm_twrk22f120m release pne Build (if required) before launching
I Launch Group Build configuration: ‘Dehug

Select configuration using 'C/C++ Application’
~) Enable auto build

_) Disable auto build
Use workspace settings Configure Weorkspace Settings...

Filter matched 10 of 10 items

| Apply ‘ ‘ Revert |
| ——
® l Debug II [Close]
_

Figure-19 Atollic TrueSTUDIO Debug configurations

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor

10. The application is downloaded to the target and automatically run to main():

11. Run the code by clicking the “Resume” button to start the application:

cuidE] e%ne

Figure-20 The resume button

12. See the example-specific document for more test information.

2.3.5 Step-by-step guide for the ARM GCC
2.3.5.1 Setup tool chains

2.3.5.2 Install GCC ARM Embedded tool chain

Download and install the installer from www.launchpad.net/gcc-arm-embedded.

2.3.5.3 Install MinGW
1. Download the latest mingw-get-setup.exe.

2. Install the GCC ARM Embedded toolchain. The recommended path is C:/MINGW. However, you
may install to any location. Note that the installation path may not contain a space.

3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

4. Finally, click “Installation” and “Apply changes”.

Installation Package Settings
Basic Setup

Clazs | Installed. ..

Repository Version | Description

All Packages bin 2013072300 An MSYS Inctallation for MinCW Developer: (meta)
bin 2013072200 A Basic MinG¥ Installation
[=tre=3z-gec-ada bin 4.8.14 ™ Ada Compiler

D =ingw32-gecfortran bin 4.8.1-4 The GNU FORTRAN Compiler

[=ingwsz-gec-g== bin 4.8.174 The GNU C*= Compiler
D singx3i-geeobje bin 4.8. 14 The GNU Cbiective~C Compiler
zsrs-base bin 2013072300 A Basic MSYS Installation (meta)

Figure 21: Setup MinGW and MSYS

Freescale KSDK USB Stack Porting New Platform User's Guide, Rev. 1, 01/2016
16 Freescale Semiconductor

5. Add paths C:/MINGW/msys/1.0/bin;C:/MINGW/bin to the system environment. Note that, if
the GCC ARM Embedded tool chain was installed somewhere other than the recommended
location, the system paths added should reflect this change. An example using the
recommended installation locations are shown below.

NOTE

There is a high chance that, if the paths are not set correctly, the tool chain
will not work properly.

. ; ; sz |
Environment ‘u'anables__ S — |

Edit System Variable

Variable name: Path

Variable value: c: \MinGW imsys | 1. 0Ybingc: MinGEW bing 2: \Pr

o) (o]

System variables

Variable Value gt
Path c\MInGW msys 1, 0%bin; C: \Program File. ..
PATHEXT .COM; .EXE;.BAT;.CMD;.VBS; VBE;.JS;.... 3

PROCESSOR_A... AMDG&4
PROCESSOR_ID... Intel54 Family 6 Model 58 Stepping 9, G... ™

New.. || Edit.. || Delete |

E [DKHCE"CE']|

Figure 22: Add Path to systems environment

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 17

2.3.5.4 Add new system environment variable ARMGCC_DIR

Create a new system environment variable ARMGCC_DIR. The value of this variable should be the short name of
the ARM GCC Embedded tool chain installation path.

- |
Environment Yariables @
Edit System Variable
Variable name: ARMGCC_DIR
Variable value: o PROGRA~1YGNUTOO ~144BDE5~1.520|
[Ok] [Cancel]

System variables

Variable Value i
ARMGCC_DIR ¢ \PROGRA~1\GNUTOO ~1\4BD65~1.920 L4
CDS_LIC_FILE L280@127.0.0.1

CDS_LIC_OMLY 1

CLASSPATH CiProgram FilesYJavaijresVibtext\QT... ~

| mMew.. || Edit.. || Delete |

[oK H Cancel]

Figure 23: Add ARMGCC_DIR system variable

Freescale KSDK USB Stack Porting New Platform User's Guide, Rev. 1, 01/2016
Freescale Semiconductor

18

2.3.5.5 Install CMake
1. Download CMake 3.0.1 from www.cmake.org/cmake/resources/software.html.
2. Install Cmake 3.0.1 and ensure that the option "Add CMake to system PATH" is selected.

CMake 3.0.0 Setup = .

Install Options
Choose options for installing CMake 3.0.0

By default CMake does not add its directory to the system PATH.

1 Do not add CMake to the system PATH
@)add CMake to the system PATH for all users
{7 Add CMake to the system PATH for current user

|| Create CMake Desktop Icon

< Back I Mext > J| Cancel

Figure 24: Install CMake

2.3.5.6 Build the USB demo
1. Change the directory to the project directory:

2. <install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/armgcc. Run the
build_all.bat. The build output is shown in this figure:

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 19

http://www.cmake.org/cmake/resources/software.html

[77%]

[81%]

[85%1 [88%]

[92%] [96%]

[106%]

C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\driversi\smc\fsl_smc.c: In function *SMC_SetPowerModeStop:
C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\drivers\smc\fsl_smc.c:83:23: warning: variable 'dummyRead’ set but n|
ot used [-Wunused-but-set-variable]

volatile uint32_t dummyRead;

C:\Freescale\Freescale_SDK_2_o\mcu-sdk-2.0\platform\driversi\smc\fsl_smc.c: function 'SMC_SetPowerModelUlps’:
C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\driversi\smc\fsl_smc. :23: warning: variable ‘dummyRead’ set but
not used [-Wunused-but-set-variable]

volatile uint32_t dummyRead;

C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\driversi\smcy\fsl_smc.c: function 'SMC_SetPouwerModells':
C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\drivers\smcyfsl_smc. :23: warning: variable 'dummyRead’ set but
hot used [-Wunused-but-set-variable]

volatile uint32_t dummyRead;

C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\drivers\smc\fsl_smc.c: function *SHC_SetPouwerModeUlls':
C:\Freescale\Freescale_SDK_2_0\mcu-sdk-2.0\platform\drivers\smc\fsl_smc. :23: warning: variable ‘dummyRead’' set but
not used [-Wunused-but-set-variable]

volatile uint32_t dummyRead;

[100%] Built target host_hid_mouse_bm.elf

Figure 27: USB host demo built successfully

2.3.5.7 Run a demo application
This section describes steps to run a demo application using J-Link GDB Server application.

1. Connect the J-Link debug port to the SWD/JTAG connector of the board.

2. Open the J-Link GDB Server application and modify your connection settings as shown in this
figure.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
20 Freescale Semiconductor

SEGGER J-Link GDE Server V4.90e - Config

— Connection taJ-Link,

" ICPAF

f« LISE [T Serial Mo

— Target device

|MK22DN51 P

I Little endian = I

— Target interface

[JTAG

=

— Speed
f* Auto zelection

~ Adaptive clocking

i I'IEIEIEI vI kHz

— Command ling optian

I-select IJSE -device MEZZDMST 2aenb -if JTAG -zpeed auto

o |

Cancel

Figure 28: SEGGER J-Link GDB Server configuration

The target device selection should be MK22FN512xxx12. The target

interface should be SWD.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Note

Freescale Semiconductor

21

3. After connected, the screen should resemble this figure:

e

E! SEGGER J-Link GDE Server V4.90e

Eile Help
GDB |Waiting for connection I Iritial JTAG speed |Auto -
J-Link. |Eu:unnec:teu:| Current JTAG speed [4000 kHz
CPU |MK2ZDN51 Zxs5 | 3a0v Little endian +

Log output; Clearlog

[Stay aontop

[v Show log window
[~ Generate logfile
[Verfy download
[Init reqs on start

Connecting to J-Link. . .
J-Linl i= connected.
Firmware:
Hardware: W1.00

S~N: 361000583

Checlking target wvoltage. . .

Target woltage: 3.30 ¥V

Li=tening on TCE-IF port 2331

Connecting to target. . .

J-Link found 1 JTAG device, Total IRLen = 4
JTAG ID: Ox4BAOD477 (Cortex—-H4)

Connected to target

Waiting for GDE connection. . .

F

0 Bytes downloaded 1 JTAG device

J-Linlk Lite-FSL V1 compiled Jun 25 2012 16:40:07

m

Figure 29: SEGGER J-Link GDB Server screen after successful connection

Note

The CPU selection should be CPU to: MK22FN512xxx12.

4. Open the ARM GCC command prompt and change the directory to the output directory of the

desired demo. For this example, the directory is:

<install_dir>/boards/twrk22f120m/usb_examples/usb_host_hid_mouse/bm/armgcc/debug.

5. Run the command “arm-none-eabi-gdb.exe <DEMO_NAME>.elf”. Run these commands:

e “target remote localhost: 2331”
e “monitor reset”

e “monitor halt”

o “load”

e “monitor reset”

6. The application is downloaded and connected. Execute the “monitor go” command to start the

demo application.

7. See the example-specific document for more test information.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

22

Freescale Semiconductor

2.4 USB Stack Configuration

2.4.1 Device configuration
A device configuration file is set up for each example, such as:
<install_dir>/boards/twrk22f120m/usb/usb_device _hid_mouse/bm/usb_device_config.h

This file is used to either enable or disable the USB class driver. The object number is configurable either
to decrease the memory usage or to meet specific requirements.

If the device stack configuration is changed, rebuild the example projects.

2.4.2 Host configuration
A host configuration file is set up for each example, such as:
<install_dir>/boards/twrk22f120m/usb/usb_host_hid_mouse/bm/usb_host_config.h

This file is used to either enable or disable the USB class driver. The object number is configurable either
to decrease the memory usage or to meet specific requirements.

If the Host stack configuration is changed, rebuild the example projects.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 23

3 Porting to a new platform

To port the USB stack to a new platform in the SDK, the SoC-related files, board-related files, and a linker
file for a specified compiler are required.

Assume that the new platform’s name is “xxxk22f120m” based on the MK22F51212 SoC.

3.1 SoC files
SoC source/header files are in the following directory, which are available by default from KSDK.
boards
arrm
CMSIS .
; drivers
4 devices
gec
. ME22F51212 ;
iar
arm _
; linker
drivers s
utilities
gec
; || fsl_clock.c
iar
: || fsl_clock.h
linker : :
i || fsl_device_registers.h
utilities
|| MK22F51212.h
docs
. || MK22F51212 5vd
middleware
|| ME22F51212 features.h
rtos
|| system_ME22F51212.c
tools

) || system_ME22F51212.h
Figure 30 SoC header file directory

Note
Different toolchains’ linker files are in the linker directory.

Different toolchains’ SoC startup assembler files are in the arm, gcc, and iar
directories.

3.2 Board files

The files for the board configuration and the clock configuration on a specific platform are needed to
enable the USB stack.

The clock configuration files are as follows:

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
24 Freescale Semiconductor

4 boards
twrk2 2f120m
4 wock22f120m

demo_apps

|| clock_config.c

|| elock_config.h

driver_examples
rtos_exarnples
a ush_exarmnples
4 ush_device_audio_generator_lite

> b
Figure 31 Clock configuration files
1. Create a folder “xxxk22f120m”under examples directory.

2. Copy the clock_config.c and clock_config.h file from the similar platform, for example
TWR-K22F120m platform.

3. Ensure that the BOARD_BootClockxxx IS implemented in the clock_config.c file, for example
BOARD_BootClockRUN and BOARD_BootClockHSRUN. The user can change the function name. However,
the BOARD_InitHardware must call the function. BOARD InitHardware is introduced later.

The board clock initialization is based on the board crystal oscillator. Ensure that the following two
MACRO s are defined in the clock_config.h file:

#define BOARD XTALO CLK _HZ 8000000U
#define BOARD_XTAL32K_CLK HZ 32768U

The user can update the MACROSs according to the board design. For example, if the XTALO crystal
oscillator is 16000000U and the XTAL32K is 32768U, change the above MACROs as follows:

#define BOARD XTALO CLK HZ 16000000U
#define BOARD_XTAL32K_CLK_HZ 32768U

The board configuration files are as follows:

boards
board.c
twrk22f120m e
|| board.h
oo 2F1 20m
demo_apps

driver_exarmples

rtos_examples

usb_examples
ush_device_audio_generator_lite

bm

Figure 32 Board configuration files

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 25

4. Copy board.c and board.h from the similar platform, for example, TWR-K22F120M platform.

Ensure that the BoARD_InitbebugConsole is implemented in board.c file and that the
BOARD_InitHardware calls the function. The BoARD InitHardware function is introduced later.
Debug console-related MACROs are need in the board.h file, as follows:

#define BOARD_DEBUG_UART_TYPE DEBUG_CONSOLE_DEVICE_TYPE_UART

#define BOARD_DEBUG_UART_BASEADDR (uint32_t) UART2

#define BOARD_DEBUG_UART_CLKSRC BUS_CLK

#define BOARD_DEBUG_UART_BAUDRATE 115200

Update the MACROs according to the board design. For example, the default UART instance on the

board is LPUARTL, the type of default UART instance on one specific platform is LPUART, and the
LPUART clock source is the external clock. In this case, change the above MACROs as follows:

#define BOARD_DEBUG_UART_TYPE DEBUG_CONSOLE DEVICE_TYPE_LPUART
#define BOARD_DEBUG_UART_BASEADDR (uint32_t) LPUART1

#define BOARD_DEBUG_UART_CLKSRC KCLOCK_ OscOErCIlk

#define BOARD_DEBUG_UART_BAUDRATE 115200

Note that there are three kinds of UART instances provided in Kinetis devices, UART, LPUART and
LPSCI. The interfaces of the UART instance are different. To provide a uniform UART interface to
an USB Host example in which the UART function is used, a UART instance wrapper is provided.
The wrapper is implemented in the usb_uart_drv.c, usb_lpuart_drv.c, or usb_lIpsci_drv.c file and has
a common header file usb_uart_drv.h. For a different UART instance, use the corresponding UART
instance wrapper file in the project.

3.3 Porting Examples

3.3.1 Copy new platform example
The platform USB examples directory is as follows:

4 boards
twrk2 21 20m
4 womk22f120m

demo_apps

usb_device_audio_generator_lite

driver_examples
rtos_examples
4 usb_exarnples

usb_device audio_generator_lite

Figure 33 USB examples directory

Copy the existed example’s whole directory from the similar platform, which ensures that all example
source files and project files are copied.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
26 Freescale Semiconductor

For example:

Copy the twrk22f120m/usb/usb_device_audio_generator_lite to the twrkxx/usb location, which ensures
that sources files and project files for usb_device_audio_generator_lite example are copied.

3.3.2 Porting the example

For different examples, different pins are used. As a result, the pin_mux.c/h files are needed to assign
different pins to a specific functionality. Check the board schematic for correct pin settings.

Example-related port pin configurations are required in following files:

boards]
|| audio_data.c
twrk22f120m]
| | audio_generator.c
wock22f120m]
|| audic_generator.h
demo_apps ;
; || pin_mux.c
driver_sxamples 3
|| pin_mux.h

| rtos_examples g :
ush_device_audio.c
usb_examples = =
;]] || usb_device_audio.h
ush_device_audio_generator_lite :
ush_device_ch8.c

bm =]
|| usb_device_ch9.h
CMSIS _ _
] || ush_device_config.h
devices : :
|| usb_device_descriptor.c
docs : !
; || ush_device_descriptor.h
middleware

Figure 34 Example-related port pint configuration files

Ensure that the BoARD_InitPins function is implemented in the pin_mux.c file. In this function, the
port clock and pin mux are initialized. Ensure that the BoARD_InitHardware calls the function. The
BOARD_ InitHardware function will be introduced later.

For example, on the TWR-K65F180M board, the VBUS of the USB Host is controlled by the
PORTD 8 as a GPIO. Therefore, the PORTD clock needs to be enabled first and then the PORTD 8
configured to GP10O functionality. The debug console uses UART2. The TX/RX pins are PORTE_16
and PORTE_17. As a result, the clock of PORTE needs to be enabled first and then the PORTE_16
and PORTE_17 configured to alternative 3.
This is an example code for TWR-K65F180M:
void BOARD_InitPins(void)
{
/* Initialize UART2 pins below */
CLOCK_EnableClock(kCLOCK_PortE);
PORT_SetPinMux(PORTE, 16u, KPORT_MuxAlt3);
PORT_SetPinMux(PORTE, 17u, KPORT_MuxAlt3);

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 27

/* Initialize usb vbus pin */

CLOCK_EnableClock(kCLOCK_PortD);

PORT_SetPinMux(PORTD, 8u, KPORT_MuxAsGpio);
}

Check the specific board design to find out which port is used to control the USB VBUS and which
port is used for debug console. For example, in the customer’s board design, the PORTC_15 is used to
control the USB VBUS and PORTD_1 and PORTD _2 is used for debug console. This is the example
code:

void BOARD_InitPins(void)

{
/* Initialize UART2 pins below */

CLOCK_EnableClock(KCLOCK PortD);
PORT_SetPinMux(PORTD, 1u, kPORT_MuxAlt3);

PORT_SetPinMux(PORTD, 2u, kPORT_MuxAlt3);

/* Initialize usb vbus pin */
CLOCK_EnableClock(KCLOCK_PortC);

PORT_SetPinMux(PORTC, 15u, kPORT_MuxAsGpio);

Control the VBUS GPIO to output high.

There is one BOARD _InitHardware function in each example, which is used to configure the PINs
and clock.

The VBUS must output high. This is an example code for TWR-K65F180M:
void BOARD_InitHardware(void)

{
gpio_pin_config_t pinConfig;

BOARD_InitPins();
BOARD_BootClockRUNQ) ;
BOARD_ InitDebugConsole();

/* vbus gpio output high */
pinConfig.pinDirection = kGPI0_DigitalOutput;
pinConfig.outputLogic = 1U;

GPI10_PinInit(PTD, 8U, &pinConfig);

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor

}

The user can change the function as follows:
void BOARD_ InitHardware(void)
{
gpio_pin_config_t pinConfig;
BOARD_InitPins();

BOARD _BootClockxxx();
BOARD_ InitDebugConsole();

/* vbus gpio output high */
pinConfig.pinDirection = kGPI0_DigitalOutput;
pinConfig.outputLogic = 1U;
GP10_PinInit(PTC, 15U, é&pinConfig);

3.3.3 Modify the example project

USB example project files are kept in the example directory, as follows:

4) boards
S || dev_audio_generator_lite_bm.ewd
twr m
P || dev_audic_generator_lite_bm.ewp
4 3K m
|4 dev_audio_generator_lite_bm.eww
demo_apps

=] MEZ2FMNS1 200 2_flash.icf
driver_examples

rtos_examples
a ush_examples
E usb_device_audic_generator_lite
4 . bm
armgec
atl
iar
kds
rmdk

Figure 35 Modify the example project
The steps for modifying a new project are as follows:
1. Open the project and change the SoC.
Note

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 29

1. Check the project SoC and update to the porting platform SoC.

2. Update the SoC full name, platform name, and board type name macros if the SoC is updated.
For example, for TWR-K22F120M, update the CPU_MK22FN512VDC12,
TWR_K22F120M, and TOWER macros.

2. Check the files in startup group, for example (IAR):

=2 J dev_audio_generator_lite_bm - Debug
—&E [board

—H[Josa

—E [platform

—E [sources

a=|
fem startup_MK2ZFE1212 5
systerm_MK2ZZFE1212.c
L— [system_MK22ZFE1212 h
—E [Jush

Figure 36 Check files in startup group

Ensure that the system_MK22F51212.c, system_MK22F51212.h, and strtup_ MK22F51212.s are
the porting SoC files. Also change the include path.

3. Check the files in the platform/clock group, for example (IAR):

= (G dev_audio_qgenerator_lite_bm - Debug
(I hoard

[(Josa

31 [platform

fsl_clock_MEZZFE1212.C
L fsl_clock_MEZZFE1212.h
[comman

[gpio

[lpuart

Cmeg

[Qasc

[port

[Jsim

Cdsmc

[T uart

[Jsources

Figure 37 Check files in platform/clock group
Ensure that the fsl_clock_MK22F51212.c, and fsl_clock_MK22F51212.h are porting SoC files.

Additionally, change the include path.
4. Change the files in board group, for example (IAR):

Freescale KSDK USB Stack Porting New Platform User's Guide, Rev. 1, 01/2016
30 Freescale Semiconductor

B J dev_audio_generator_lite_bm - Debug
W] board
hoard.c
hioard h
clock_config.c
clock_canfigh
hardware_init.c
RIN_mux.c
pin_muxh
[(Josa

Erars

Figure 38 Change files in board group
Ensure that board.c, board.h, clock_config.c, and clock_config.h are porting platform files.
Additionally, change the include path.
5. Check the files in the sources group, for example (IAR):

2 (fdev_audio_generator_lite_bm - Debug
CJhboard

[(Josa

[platiorm

audio_data.c
audio_generator.c
audio_generatar.h
ush_device_audio.c
ush_dewice_audioh
ush_dewice_chi.c
ush_device_chdh
ush_device_canfigh
ush_device_descriptor.c
ush_device_descriptor.h
(1 startup

TTTETaTE5E

Figure 39 Check files in source group

The example application source files are copied when copying the example directory.
Change the include path.
6. Change the linker file to the new platform. Ensure that the linker file is the porting SoC file.

7. Debug console may use UART, LPUART, or LPSCI according to the platform. As a result, the
example project needs to contain UART, LPUART, or LPSCI driver files according to the
platform.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 31

B (J dev_audio_generator_lite_bm - Debug
—E [board

—H [(Josa

—=1 (1 platform
—E [clock

—E (] comman
—H (I gpio
—H (I ey

—H [(Josc
—3& [(J port
—E [sim
—E [smc
n= I UET
[£1fs_uartc
L— [f=l_uarth
—E [sources

Figure 40 UART, LPUART, and LPSCI files

For example TWR-K22F120M, UART files are all in the project.
For example TWR-K80F150M, LPUART files are in the project.

3.3.4 USB host CDC example

KSDK debug console can be based on KSDK UART, LPUART, or LPSCI driver. Because different
platforms may use different drivers, the CDC has a wrapper code. The files, which call the corresponding
driver APl according to the debug console use UART, LPUART, or LPSCI. The utility uses the
BOARD_DEBUG_UART_TYPE to identify the UART type. To use a different UART instance, use the
corresponding UART instance wrapper file.

The KSDK debug console only enables send. The Host CDC example needs the receive function.
Therefore, configuration MACROSs need to be defined in the board.h file. The debug console and the Host
CDC share the same configuration. This is an example:

#define BOARD_DEBUG_UART TYPE DEBUG_CONSOLE_DEVICE_TYPE_UART
#define BOARD_DEBUG_UART BASEADDR (uint32_t)UART1
#define BOARD_DEBUG_UART CLKSRC KCLOCK_CoreSysClk

#define BOARD_DEBUG_UART_BAUDRATE 115200

Update MACROs according to board design. For example, the default UART instance on the board is
LPUARTL, the type of default UART instance on one specific platform is LPUART, and the LPUART
clock source is the external clock. In this case, change the above MACROs as follows:

#define BOARD_DEBUG_UART_TYPE DEBUG_CONSOLE_DEVICE_TYPE_LPUART

#define BOARD_DEBUG_UART BASEADDR (uint32_t) LPUART1

#define BOARD_DEBUG_UART_CLKSRC KCLOCK_ 0OscOErCIlk
#define BOARD_DEBUG_UART_BAUDRATE 115200

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
32 Freescale Semiconductor

3.3.5 USB device MSC SD card example

USB device MSC SD card example needs the SDHC driver support and SD card support. The example
works only if the platform supports both SD card and the SDHC. To enable this example using the same
code, the following MACROs are defined in the board.h file:

#define BOARD_SDHC_BASEADDR SDHC

#define BOARD_SDHC_CLKSRC KCLOCK_CoreSysClk
#define BOARD_SDHC_CD_GP10_BASE GPI0B

#define BOARD_SDHC_CD_GPIO_PIN 20U

#define BOARD_SDHC_CD_PORT BASE PORTB

#define BOARD_SDHC_CD_PORT_IRQ PORTB_IRQnN

#define BOARD_SDHC_CD_PORT_ IRQ_HANDLER PORTB_IRQHandler

Update the MACROs according to the board design. For example, the SD card detection GPIO on the
board is PORTD_1. In this case, change the above MACROs as follows:

#define BOARD_SDHC_BASEADDR SDHC

#define BOARD_SDHC_CLKSRC kCLOCK_CoreSysCIlk
#define BOARD_SDHC_CD_GPI10_BASE GPIOD

#define BOARD_SDHC_CD_GPI10_PIN 1u

#define BOARD_SDHC_CD_PORT_BASE PORTD

#define BOARD_SDHC_CD_PORT_IRQ PORTD_IRQN

#define BOARD_SDHC_CD_PORT_IRQ HANDLER PORTD_IRQHandler

3.3.6 USB device audio speaker example
USB device audio speaker example needs the 12C, SAI, and DMA driver support.

The instance of SAI (I12S) and 12C are defined in the app.h file in the example directory as follows:
#define DEMO_SAIl 12S0

#define DEMO_I2C 12CO

#define DEMO_SAI_CLKSRC kCLOCK_CoreSysClk

Update the MACROs according to board design. For example, the 12S instance on the board is 12S2. In
this case, change the above MACROs as follows:

#define DEMO_SAI 12S2

#define DEMO_I12C 12C2

#define DEMO_SAIl_CLKSRC kCLOCK_CoreSysClk

3.3.7 USB device CCID Smart card example

The example is based on the EMVL1 stack, which works on the EMV protocol. As a result, the example
can only be ported to the platform that supports both the EMVLL1 stack and the EMV protocol.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 33

4 Developing a New USB Application

4.1 Developing a New USB Device Application

4.1.1 Application interfaces
The interface definition between the application and the classes includes the calls shown in the following table:

Table 1 Application and classes interface definition

API Call Description

Class Initialization | This API is used to initialize the class.

Receive Data This APl is used by the application to receive data from the host system.
Send Data This API is used by the application to send data to the host system.

USB Handles the callback to get the descriptor.

descriptor-related

callback

USB Device call Handles the callback by the class driver to inform the application about
back function various USB bus events.

USB Class-specific | Handles the specific callback of the class.
call back function

4.1.2 How to develop a new device application
Perform these steps to develop a new device application:

1. Create a new application directory under
<install_dir>/boards/<board>/usb_examples/usb_device <class> <application> t0 locate the
application source files and header files. For example,
<install_dir>/boards/<board>/usb_examples/usb_device_hid_test.

2. Copy the following files from the similar existing applications to the application directory that is
created in Step 1.
usb_device_descriptor.c
usb_device_descriptor._h

The usb_device_descriptor.c and usb_device_descriptor.h files contain the USB descriptors that
are dependent on the application and the class driver.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
34 Freescale Semiconductor

3. Copy the bm directory from the similar existing application directory to the new application directory.
Remove the unused project directory from the bm directory. Modify the project directory name to the
new application project name. For example, to create toolchain-1AR, board-frdmké4 class-hid
related application, create the new application hid_test based on a similar existing application
hid_mouse.

Change <install_dir>/boards/<board>/usb_examples/usb_device_hid_mouse
10 <install_dir>/boards/<board>/usb_examples/usb_device hid_test

4. Modify the project file name to the new application project file name, for example, from
dev_hid_mouse_bm.ewp {0 dev_hid_test_bm.ewp. Globally replace the existing name to the new project
name by editing the project files. The dev_hid_test_bm.ewp file includes the new application project
setting.

5. Create a new source file to implement the main application functions and callback functions. The
name of this file is similar to the new application name, such as mouse.c and keyboard.c.

The following sections describe the steps to change application files created in the steps above to match
the new application.
4.1.2.1 Changing the usb_device_descriptor.c file

This file contains the class driver interface. It also contains USB standard descriptors such as device
descriptor, configuration descriptor, string descriptor, and the other class-specific descriptors that are
provided to class driver when required.

The lists below show user-modifiable variable types for an already implemented class driver. The user
should also modify the corresponding MACROs defined in the usb_device_descriptor.h file. See the
Kinetis SDK v.2.0 API Reference Manual (document KSDK20APIRM) for details.

e usb_device_endpoint_struct_t;

e ush_device_endpoint_list_t;

e usb device interface_struct t;

e usb device interfaces_struct t;

e usb_device_interface_list_t;

e usb_device_class_struct_t;

e ush_device class_config_struct _t;

e ush_device class_config_list_struct _t;

This diagram shows the relationship between these items:

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 35

usb_device_class_config_list_sfruct t

usb_device_class_config_struct_t
usb_device_class_config_struct t

usb_device_class_sfruct_t ’9 usb_device_inferface_list t

interfaceList count

config

deviceCallback classCallback type interfaces

— classHandle configurations

classinfomation

usb_device_endpoint_struct_t

usb_device_endpoint_list_t

usb_device_interface_struct_t usb_device_interfaces_struct t

usb_device_endpoint_struct t (_I_ count usb_device_interface_struct_t usb_device_interfaces_sfruct_t
endpointAddress endpoint alternateSetting classCode
transferType endpointList subclassCode
maxPacketSize classSpecific protocolCode

interfaceNumber
interface

count

Figure 41 Relationship diagram

This is the sample code implementation of the endpoint descriptor for the HID class:
/* HID mouse endpoint information */

usb_device_endpoint_struct_t
g_UsbDeviceHidMouseEndpoints[USB_HID_ MOUSE_ENDPOINT_COUNT] =

{
/* HID mouse interrupt IN pipe */

{
USB_HID_MOUSE_ENDPOINT_IN | (USB_IN <<
USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_SHIFT),

USB_ENDPOINT_INTERRUPT,
FS_HID_MOUSE_INTERRUPT_IN_PACKET_SIZE,
},
}:
The endpoint address, transfer type, and max packet size in this variable are defined

in the usb_device_descriptor.h file. The user may change these value as required. For
example, to implement a CDC class application:

/* Define endpoint for a communication class */

usb_device_endpoint_struct_t
g_UsbDeviceCdcVcomCicEndpoints[USB_CDC_VCOM_ENDPOINT_CIC_COUNT] = {

{
USB_CDC_VCOM_INTERRUPT_IN_ENDPOINT | (USB_IN << 7U), USB_ENDPOINT_INTERRUPT,
FS_CDC_VCOM_INTERRUPT_ _IN_PACKET_SIZE,
},
};

/* HID mouse interface information */
usb_device_interface struct_t g_UsbDeviceHidMouselnterface[] =

{

Freescale KSDK USB Stack Porting New Platform User's Guide, Rev. 1, 01/2016

36

Freescale Semiconductor

OU, /* The alternate setting for the interface */
{
USB_HID_MOUSE_ENDPOINT_COUNT, /* Endpoint count */
g_UsbDeviceHidMouseEndpoints, /* Endpoints handle */
3.
}
}:
The endpoint count and alternate setting of the interface may differ in various

applications. User may change these values as required. For example, the interface
structure of a CDC class application is as follows:

/* Define interface for communication class */
usb_device_interface struct_t g _UsbDeviceCdcVcomCommunicationlnterface[] = {{
1u,
{
USB_CDC_VCOM_ENDPOINT_CIC_COUNT, g _UsbDeviceCdcVcomCicEndpoints,
3,
33

usb_device_interfaces_struct_t
g_UsbDeviceHidMouselInterfaces[USB_HID_MOUSE_INTERFACE_COUNT] =

{
USB_HID_MOUSE_CLASS, /* HID mouse class code */
USB_HID_MOUSE_SUBCLASS, /* HID mouse subclass code */
USB_HID_MOUSE_PROTOCOL, /* HID mouse protocol code */
USB_HID_MOUSE_INTERFACE_INDEX, /* The interface number of the HID mouse */
g_UsbDeviceHidMouselnterface, /* Interfaces handle */
sizeof(g_UsbDeviceHidMouselnterface) / sizeof(usb_device_interfaces_struct t),

33

The class code, subclass code, and protocol code may differ in various classes. For
example, the usb_device_interfaces_struct of a CDC class is as follows:

/* Define interfaces for the virtual com */

usb_device_interfaces _struct_ t
g_UsbDeviceCdcVcominterfaces[USB_CDC_VCOM_INTERFACE_COUNT] = {

{USB_CDC_VCOM_CIC_CLASS, USB_CDC_VCOM_CIC_SUBCLASS, USB_CDC_VCOM_CIC_PROTOCOL,
USB_CDC_VCOM_COMM_ INTERFACE_ INDEX,

g_UsbDeviceCdcVcomCommunicationlnterface,

sizeof(g_UsbDeviceCdcVcomCommunicationlnterface) /
sizeof(usb_device_interfaces_struct t)},
{USB_CDC_VCOM_DIC_CLASS, USB_CDC_VCOM_DIC_SUBCLASS, USB_CDC_VCOM_DIC_PROTOCOL,
USB_CDC_VCOM_DATA_INTERFACE_ INDEX,

g_UsbDeviceCdcVcomDatalnterface, sizeof(g_UsbDeviceCdcVcomDatalnterface) /
sizeof(usb_device_interfaces_struct t)},

};
usb_device_interface list t
g_UsbDeviceHidMouselnterfacelList[USB_DEVICE_CONFIGURATION_COUNT] =

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 37

USB_HID_MOUSE_INTERFACE_COUNT, /* The interface count of the HID mouse
g_UsbDeviceHidMouselnterfaces, /* The interfaces handle */
}.
};
The interface count may differ in various applications. For example, the
usb_device_interface list of a CDC class application is as follows:

/* Define configurations for virtual com */

usb_device_interface list t
g_UsbDeviceCdcVcomlnterfaceList[USB_DEVICE_CONFIGURATION_COUNT] = {

{
USB_CDC_VCOM_INTERFACE_COUNT, g_UsbDeviceCdcVcomlnterfaces,

3,

33

usb_device_class_struct_t g UsbDeviceHidMouseConfig =

{
g_UsbDeviceHidMouselnterfacelList, /* The interface list of the HID mouse */
kUSB_DeviceClassTypeHid, /* The HID class type */
USB_DEVICE_CONFIGURATION_COUNT, /* The configuration count */

}

The interface list, class type and configuration count may differ in various applications. For
example, the usb_device_class_struct of a CDC class application is as follows:

/* Define class information for virtual com */
usb_device_class_struct_t g_UsbDeviceCdcVcomConfig = {

g_UsbDeviceCdcVcominterfaceList, kUSB_DeviceClassTypeCdc,
USB_DEVICE_CONFIGURATION_COUNT,

2
g_UsbDeviceDescriptor
This variable contains the USB Device Descriptor.

Sample code implementation of the device descriptor for the HID class is given below:

uint8_t g_UsbDeviceDescriptor[USB_DESCRIPTOR_LENGTH_DEVICE] =

{
USB_DESCRIPTOR_LENGTH_DEVICE, /* Size of this descriptor in bytes */
USB_DESCRIPTOR_TYPE_DEVICE, /* DEVICE Descriptor Type */
USB_SHORT_GET_LOW(USB_DEVICE_SPECIFIC_BCD_VERSION),

USB_SHORT_GET_HIGH(USB_DEVICE_SPECIFIC_BCD_VERSION),/* USB Specification
Release Number in

Binary-Coded Decimal
(i.e., 2.10 is 210H). */

USB_DEVICE_CLASS, /* Class code (assigned by the USB-IF). */

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor

USB_DEVICE_SUBCLASS, /* Subclass code (assigned by the USB-IF). */

USB_DEVICE_PROTOCOL, /* Protocol code (assigned by the USB-IF). */
USB_CONTROL_MAX_ PACKET_SIZE, /* Maximum packet size for endpoint zero
(only 8, 16, 32, or 64 are valid) */
OxA2U, 0x15U, /* Vendor ID (assigned by the USB-IF) */
Ox7CuU, 0Ox00u, /* Product 1D (assigned by the manufacturer) */

USB_SHORT_GET_LOW(USB_DEVICE_DEMO_BCD_VERSION),

USB_SHORT_GET_HIGH(USB_DEVICE_DEMO_BCD_VERSION),/* Device release number in
binary-coded decimal */

0x01U, /* Index of string descriptor describing manufacturer
*/

0x02U, /* Index of string descriptor describing product
*/

0x00uU, /* Index of string descriptor describing the

device serial number */
USB_DEVICE_CONFIGURATION_COUNT, /* Number of possible configurations */

Y
The macros in the variable above are defined in the usb_device_descriptor.h file, such as the

USB_DEVICE_CLASS, USB_DEVICE_SUBCLASS, and USB_DEVICE_PROTOCOL. Those
values may need to be modified as required. The vendor ID and product ID can also be modified.

e g _UsbDeviceConfigurationDescriptor
This variable contains the USB Configuration Descriptor.

Sample code implementation of the configuration descriptor for the HID class is given below:
uint8 t
g_UsbDeviceConfigurationDescriptor[USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL] =
{
USB_DESCRIPTOR_LENGTH_CONFIGURE, /* Size of this descriptor in bytes */
USB_DESCRIPTOR_TYPE_CONFIGURE, /* CONFIGURATION Descriptor Type */
USB_SHORT_GET_LOW(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),

USB_SHORT_GET_HIGH(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),/* Total length of
data returned for this configuration. */

USB_HID_MOUSE_INTERFACE_COUNT, /* Number of interfaces supported by this
configuration */

USB_HID_MOUSE_CONFIGURE_INDEX, /* Value to use as an argument to the

SetConfiguration() request to select this
configuration */

0Ox00u, /* Index of string descriptor describing this
configuration */

(USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_D7_MASK) |

(USB_DEVICE_CONFIG_SELF_POWER <<
USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_SELF_POWERED_SHIFT) |

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 39

(USB_DEVICE_CONFIG_REMOTE_WAKEUP <<
USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_REMOTE_WAKEUP_SHIFT),

/* Configuration characteristics
D7: Reserved (set to one)
D6: Self-powered
D5: Remote Wakeup
D4...0: Reserved (reset to zero)

USB_DEVICE_MAX_POWER, /* Maximum power consumption of the USB
* device from the bus in this specific
* configuration when the device is fully
* operational. Expressed in 2 mA units
* (i-e., 50 = 100 mA).
*/
The macro USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL, which is defined in the
usb_device_descriptor.h, needs to be modified to equal the size of this variable. The

interface count and configuration index may differ in various applications. For
example, this part of a CDC class application is as shown below:

/* Size of this descriptor in bytes */
USB_DESCRIPTOR_LENGTH_CONFIGURE,

/* CONFIGURATION Descriptor Type */
USB_DESCRIPTOR_TYPE_CONFIGURE,

/* Total length of data returned for this configuration. */
USB_SHORT_GET_LOW(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),
USB_SHORT_GET_HIGH(USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL),
/* Number of interfaces supported by this configuration */
USB_CDC_VCOM_INTERFACE_COUNT,

/* Value to use as an argument to the SetConfiguration() request to select this
configuration */

USB_CDC_VCOM_CONFIGURE_ INDEX,

/* Index of string descriptor describing this configuration */

0,

/* Configuration characteristics D7: Reserved (set to one) D6: Self-powered D5:
Remote Wakeup D4...0: Reserved

(reset to zero) */
(USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_D7_MASK) |

(USB_DEVICE_CONFIG_SELF_POWER <<
USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_SELF_POWERED_SHIFT) |

(USB_DEVICE_CONFIG_REMOTE_WAKEUP <<
USB_DESCRIPTOR_CONFIGURE_ATTRIBUTE_REMOTE_WAKEUP_SHIFT),

/* Maximum power consumption of the USB * device from the bus in this specific
* configuration when the device is

fully * operational. Expressed in 2 mA units * (i.e., 50 = 100 mA). */
USB_DEVICE_MAX_POWER,

USB_DESCRIPTOR_LENGTH_INTERFACE, /* Size of this descriptor in bytes */

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor

USB_DESCRIPTOR_TYPE_INTERFACE, /* INTERFACE Descriptor Type */
USB_HID MOUSE_INTERFACE_INDEX, /* Number of this interface. */
0x00uU, /* Value used to select this alternate setting
for the interface identified in the prior
field */
USB_HID_MOUSE_ENDPOINT_COUNT, /* Number of endpoints used by this
interface (excluding endpoint zero). */

USB_HID_ MOUSE_CLASS, /* Class code (assigned by the USB-IF). */

USB _HID MOUSE_SUBCLASS, /* Subclass code (assigned by the USB-I1F). */
USB_HID_MOUSE_PROTOCOL, /* Protocol code (assigned by the USB). */
0x00uU, /* Index of string descriptor describing this

interface */

The interface descriptor may differ from various applications. For example, the
interface descriptor of a CDC class application would be as below.

/* Communication Interface Descriptor */

USB_DESCRIPTOR_LENGTH_INTERFACE, USB_DESCRIPTOR_TYPE_INTERFACE,
USB_CDC_VCOM_COMM_INTERFACE_INDEX, 0x00,

USB_CDC_VCOM_ENDPOINT_CIC_COUNT, USB_CDC_VCOM_CIC_CLASS,
USB_CDC_VCOM_CIC_SUBCLASS, USB_CDC_VCOM_CIC_PROTOCOL,

0x00, /* Interface Description String Index*/

USB_DESCRIPTOR_LENGTH_HID, /* Numeric expression that is the total size of
the

HID descriptor. */
USB_DESCRIPTOR_TYPE_HID, /* Constant name specifying type of HID
descriptor. */

0x00u,

0Ox01U, /* Numeric expression identifying the HID Class
Specification release. */

0x00uU, /* Numeric expression identifying country code

of
The localized hardware */
0x01U, /* Numeric expression specifying the number of

Class descriptors(at least one report
descriptor) */

USB_DESCRIPTOR_TYPE_HID_REPORT, /* Constant name identifying type of class
descriptor. */

USB_SHORT_GET_LOW(USB_DESCRIPTOR_LENGTH_HID_MOUSE_REPORT),
USB_SHORT_GET_HIGH(USB_DESCRIPTOR_LENGTH_HID_MOUSE_REPORT),

/* Numeric expression that is the total size of
the

Report descriptor. */

The class specific descriptor may differ from various applications. For example, the
class specific descriptor of a CDC class application would be as below.

/* CDC Class-Specific descriptor */
USB_DESCRIPTOR_LENGTH_CDC_HEADER_FUNC, /* Size of this descriptor in bytes */

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 41

USB_DESCRIPTOR_TYPE_CDC_CS_INTERFACE, /* CS_INTERFACE Descriptor Type */
HEADER_FUNC_DESC, 0x10,

0x01, /* USB Class Definitions for Communications the Communication specification
version 1.10 */

USB_DESCRIPTOR_LENGTH_CDC_CALL_MANAG, /* Size of this descriptor in bytes */
USB_DESCRIPTOR_TYPE_CDC_CS_INTERFACE, /* CS_INTERFACE Descriptor Type */
CALL_MANAGEMENT_FUNC_DESC,

0x01, /7*Bit 0: Whether device handle call management itself 1, Bit 1: Whether device
can send/receive call

management information over a Data Class Interface 0 */
0x01, /* Indicates multiplexed commands are handled via data interface */
USB_DESCRIPTOR_LENGTH_ENDPOINT, /* Size of this descriptor in bytes */
USB_DESCRIPTOR_TYPE_ENDPOINT, /* ENDPOINT Descriptor Type */

USB_HID_MOUSE_ENDPOINT_IN | (USB_IN <<
USB_DESCRIPTOR_ENDPOINT_ADDRESS_DIRECTION_SHIFT),

/* The address of the endpoint on the USB device
described by this descriptor. */
USB_ENDPOINT_INTERRUPT, /* This field describes the endpoint®s attributes
*
/
USB_SHORT_GET_LOW(FS_HID_MOUSE_INTERRUPT_IN_PACKET_SIZE),
USB_SHORT_GET_HIGH(FS_HID_MOUSE_INTERRUPT IN_PACKET_SIZE),

/* Maximum packet size this endpoint is capable
of

sending or receiving when this configuration

is
is selected. */

FS_HID_MOUSE_INTERRUPT _IN_INTERVAL, /* Interval for polling endpoint for data
transfers. */

The endpoint descriptor may differ from various applications. For example, the endpoint
descriptor of a CDC class application is as follows: /*Notification Endpoint
descriptor */

USB_DESCRIPTOR_LENGTH_ENDPOINT, USB_DESCRIPTOR_TYPE_ENDPOINT,
USB_CDC_VCOM_INTERRUPT_IN_ENDPOINT | (USB_IN << 7U),

USB_ENDPOINT_INTERRUPT,
USB_SHORT_GET_LOW(FS_CDC_VCOM_INTERRUPT _IN_PACKET_SIZE),

USB_SHORT_GET_HIGH(FS_CDC_VCOM_INTERRUPT _IN_PACKET_SIZE),
FS_CDC_VCOM_INTERRUPT_IN_INTERVAL,

}
String Descriptors

Users can modify string descriptors to customize their product. String descriptors are written in the
UNICODE format. An appropriate language identification number is specified in the
USB_STR_0. Multiple language support can also be added.

USB_DeviceGetDeviceDescriptor

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

42

Freescale Semiconductor

This interface function is invoked by the application. This call is made when the application
receives the KUSB_DeviceEventGetDeviceDescriptor event from the Host. Mandatory descriptors
that an application is required to implement are as follows:

0 Device Descriptor
o Configuration Descriptor

o0 Class-Specific Descriptors (For example, for HID class implementation, Report
Descriptor, and HID Descriptor)

Apart from the mandatory descriptors, an application should also implement various string
descriptors as specified by the Device Descriptor and other configuration descriptors.

Sample code for HID class application is given below:
/* Get device descriptor request */
usb_status_t USB_DeviceGetDeviceDescriptor(usb_device_handle handle,

usb_device_get_device_descriptor_struct_t
*deviceDescriptor)

{

deviceDescriptor->buffer
deviceDescriptor->length
return kStatus_USB_Success;

g_UsbDeviceDescriptor;
USB_DESCRIPTOR_LENGTH_DEVICE;

¥

User may assign the appropriate variable of the device descriptor. For example, if the device
descriptor variable name is g_UsbDeviceDescriptorUser, the sample code is as follows:

/* Get device descriptor request */

usb_status_t USB_DeviceGetDeviceDescriptor(usb_device_handle handle,

usb_device_get_device_descriptor_struct_t
*deviceDescriptor)

{

deviceDescriptor->buffer
deviceDescriptor->length
return kStatus_USB_Success;

g_UsbDeviceDescriptorUser;
USB_DESCRIPTOR_LENGTH_DEVICE;

e USB_DeviceGetConfigurationDescriptor

This interface function is invoked by the application. This call is made when the application receives
the KUSB_DeviceEventGetConfigurationDescriptor event from the Host.

/* Get device configuration descriptor request */
usb_status_t USB_DeviceGetConfigurationDescriptor(

usb_device_handle handle, usb_device_get_configuration_descriptor_struct_t
*configurationDescriptor)

{
if (USB_HID_MOUSE_CONFIGURE_INDEX > configurationDescriptor->configuration)

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 43

configurationDescriptor->buffer
configurationDescriptor->length
return kStatus_USB_Success;

g_UsbDeviceConfigurationDescriptor;
USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL;

}
return kStatus_USB_InvalidRequest;
}

The macro HID_MOUSE_CONFIGURE_INDEX may differ from various applications. For example, the
implementation of a CDC class application would be as below.

usb_status_t USB_DeviceGetConfigurationDescriptor(

usb_device_handle handle, usb_device_get_configuration_descriptor_struct_t
*configurationDescriptor)

{
if (USB_CDC_VCOM_CONFIGURE_INDEX > configurationDescriptor->configuration)
{
configurationDescriptor->buffer = g_UsbDeviceConfigurationDescriptor;
configurationDescriptor->length = USB_DESCRIPTOR_LENGTH_CONFIGURATION_ALL;
return kStatus_USB_Success;
}
return kStatus_USB_InvalidRequest;
}

e USB_DeviceGetStringDescriptor

This interface function is invoked by the application. This call is made when the application
receives the KUSB_DeviceEventGetStringDescriptor event from the Host.

See the usb_device _hid_mouse example for sample code.
e USB_DeviceGetHidReportDescriptor

This interface function is invoked by the application. This call is made when the application
receives the kKUSB_DeviceEventGetHidReportDescriptor event from the Host.

See the usb_device_hid_mouse example for sample code.
e USB_DeviceSetSpeed

Because HS and FS descriptors are different, the device descriptors and configurations need to be
updated to match the current speed. By default, the device descriptors and configurations are
configured using FS parameters for both EHCI and KHCI. When the EHCI is enabled, the
application needs to call this function to update the device by using the current speed. The updated
information includes the endpoint max packet size, endpoint interval, and so on.

4.1.2.2 Changing the usb_device_descriptor.h file

This file is mandatory for the application to implement. The usb_device_descriptor.c file includes this file
for function prototype definitions. When the user modifies the usb_device_descriptor.c, MACROs in this
file should also be modified.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
44 Freescale Semiconductor

4.1.2.3 Changing the application file
1. Main application function

The main application function is provided by two functions: USB_DeviceApplicationInit and
APP_task(optional).

2. The USB_DeviceApplicationlnit enables the clock and the USB interrupt and also initialize the
specific USB class. See the usb_device _hid_mouse example for the sample code.

3. USB device call back function

The device callback function handles the USB device-specific requests. See the
usb_device_hid_mouse example for the sample code.

4. USB Class-specific call back function

The class callback function handles the USB class-specific requests. See the
usb_device_hid_mouse example for the sample code.

4.2 Developing a New USB Host Application

4.2.1 Background

In the USB system, the host software controls the bus and talks to the target devices following the rules
defined by the specification. A device is represented by a configuration that is a collection of one or more
interfaces. Each interface comprises one or more endpoints. Each endpoint is represented as a logical pipe
from the application software perspective.

The host application software registers a callback with the USB host stack, which notifies the application
about the device attach/detach events and determines whether the device is supported or not. The
following figure shows the enumeration and detachment flow.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 45

Wait
event

Return
kStatus_USB_NotSupported

Xo

Phe configuratio
is supported

DEVICE_ATTACH_EVENT

Yes

Save interface
handle and Return —
kStatus USB Success

Class initialize and
APP operates

Peripheral is not
supported

D

Device detach

l

Class de—initialize

DEVICE DETACH EVENT

Figure 42 Enumeration and detachment flow

The USB host stack is a few lines of code executed before starting communication with the USB device.
The examples on the USB stack are written with class driver APIs. Class drivers work with the host API as
a supplement to the functionality. They make it easy to achieve the target functionality (see example
sources for details) without dealing with the implementation of standard routines. The following code
steps are taken inside a host application driver for any specific device.

4.2.2 How to develop a new host application

4.2.2.1 Creating a project
Perform the following steps to create a project.

1. Create a new application directory under
<install_dir>/boards/<board>/usb_examples/usb_host_<class>_<application> t0 locate the
application source files and header files. For example,
<install_dir>/boards/<board>/ush_examples/usb_host_hid_mouse.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
46 Freescale Semiconductor

2. Copy the following files from the similar existing applications to the application directory that is
created in step 1.

app.c
usb_host_config.h

The app.c file contains the common initialization code for USB host and the usb_host_config.h file
contains the configuration MACROs for the USB host.

3. Copy the bm directory from the similar existing application directory to the new application
directory. Remove the unused project directory from the bm directory. Modify the project directory
name to the new application project name. For example, to create toolchain-1AR, board-frdmké64
class-hid related application, create the new application hid_test based on a similar existing
application hid_mouse.

Copy <install_dir>/boards/frdmk64f/usb_examples/usb_host_hid_mouse/bm
{0 <install_dir>/boards/frdmk64f/usb_examples/usb_host_hid_test/bm

4. Modify the project file name to the new application project file name, for example, from
host_hid_mouse_bm.ewp t0 host_hid_test_bm.ewp. Globally replace the existing name to the new
project name by editing the project files. The host_hid_test_bm.ewp file includes the new application
project setting.

5. Create a new source file to implement the main application function, application task function, and the
callback function. The name of this file is similar to the new application name, such as host_mouse.c
and host_keyboard.c.

The following sections describe the steps to modify application files created in the steps above to match
the new application.
4.2.2.2 Main application function flow

In the main application function, follow these steps:

Initialize USB clock

A 4

Initialize USB host stack

\ 4
Enable USB isr

Create tasks

Figure 43 Main application function flow

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

Freescale Semiconductor 47

Initialize the USB clock.
Call KSDK API to initialize the KHCI or the EHCI USB clock.
Initialize the host controller.

This allows the stack to initialize the necessary memory required to run the stack and register the
callback function to the stack.

For example:
status = USB_HostInit(CONTROLLER 1D, &g HostHandle, USB_HostEvent);

Enable the USB ISR.

Set the USB interrupt priority and enable the USB interrupt.

Initialize the host stack task and application task.

For example (bm):

while (1)

{

#if ((defined USB_HOST_CONFIG_KHCI) && (USB_HOST_CONFIG_KHCI))
USB_HostKhciTaskFunction(g_HostHandle);

#endif /* USB_HOST CONFIG_KHCI */

#if ((defined USB_HOST CONFIG_EHCI) && (USB_HOST_CONFIG_EHCI))
USB_HostEhciTaskFunction(g_HostHandle);

#endif /* USB_HOST_CONFIG_EHCI */
USB_HostMsdTask(&g_MsdCommandlnstance);

}

Note that in this code, the g_MsdCommand Instance variable contains all states and pointers used
by the application to control or operate the device.

If implementing the application task as USB_HostHidTestTask and use g_HidTestlInstance t0
maintain the application states, modify the code as follows:

while (1)

{

#if ((defined USB_HOST CONFIG_KHCI) && (USB_HOST_CONFIG_KHCI))
USB_HostKhciTaskFunction(g_HostHandle);

#endif /* USB_HOST_CONFIG_KHCI */

#if ((defined USB_HOST CONFIG_EHCI) && (USB_HOST_CONFIG_EHCI))

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

48

Freescale Semiconductor

USB_HostEhciTaskFunction(g_HostHandle);
#endif /* USB_HOST_CONFIG_EHCI */
USB_HostHidTestTask(&g_HidTestlnstance);

}

4.2.2.3 Event callback function

In the app.c file, there is one USB_HostEvent function. By default, the function is registered to the host
stack when calling the USB_HostlInit. In the USB Host stack, customers do not have to write any
enumeration code. When the device is connected to the host controller, the USB Host stack enumerates the
device. The device attach/detach events are notified by this callback function.

Application needs to implement one or more functions to correspond to one class process. These
application functions are called in the USB_HostEvent. The device’s configuration handle and interface
list are passed to the application through the function so that the application can determine whether the
device is supported by this application.

There are four events in the callback: kUSB_HostEventAttach, kUSB_HostEventNotSupported,
kUSB_HostEventEnumerationDone, and kUSB_HostEventDetach.

The events occur as follows:
1. When one device is attached, host stack notifies kUSB_HostEventAttach.

2. The application returns kStatus_USB_Success to notify the host stack that the device configuration is
supported by this class application, or return the kStatus_USB_NotSupported to notify the host stack
that the device configuration is not supported by this class application.

3. The Host stack continues for enumeration if the device is supported by the application and notifies
kUSB_HostEventEnumerationDone When the enumeration is done.

4. The Host stack checks the next device’s configuration if the current configuration is not supported by
the application.

5. When the Host stack checks all configurations and all are not supported by the application, it notifies
the kUSB_HostEventNotSupported.

6. When the device detaches, the Host stack notifies the kUSB_HostEventDetach.

This is the sample code for the HID mouse application. The USB_HostHidMouseEvent function should be
called by the USB_HostEvent. In this code, the g_HostHidMouse variable contains all states and pointers
used by the application to control or operate the device:

usb_status_t USB_HostHidMouseEvent
(

usb_device _handle deviceHandle,

usb_host_configuration_handle configurationHandle,

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 49

uint32_t eventCode

/* Process the same and supported device"s configuration handle */
static usb_host_configuration_handle s _ConfigHandle = NULL;
usb_status_t status = kStatus_USB Success;

uint8_t id;

usb_host_configuration_t *configuration;

uint8_t interfacelndex;

usb_host_interface_t *interface;

switch (eventCode)

{
case kUSB_HostEventAttach:

/* judge whether is configurationHandle supported */

configuration = (usb_host_configuration_t *)configurationHandle;

for (interfacelndex = 0; interfacelndex < configuration->interfaceCount

++interfacelndex)

{

interface = &configuration->interfacelList[interfacelndex];

id = interface->interfaceDesc->blInterfaceClass;
if (id '= USB_HOST HID_CLASS_CODE)
{
continue;
}
id = interface->interfaceDesc->blInterfaceSubClass;
if ((id !'= USB_HOST_HID_SUBCLASS_CODE_NONE) && (id

USB_HOST_HID_SUBCLASS_CODE_BOOT))

{

continue;

d = interface->interfaceDesc->blnterfaceProtocol;
if (id '= USB_HOST _HID_PROTOCOL_ MOUSE)
{

continue;

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

50

Freescale Semiconductor

else

/* the interface is supported by the application */
g_HostHidMouse.deviceHandle = deviceHandle;
g_HostHidMouse. interfaceHandle = interface;
s_ConfigHandle = configurationHandle;

return kStatus_USB_Success;

}
status = kStatus_USB_NotSupported;
break;
case kUSB_HostEventNotSupported:
break;
case kUSB HostEventEnumerationDone:
if (s_ConfigHandle == configurationHandle)
{

if ((g_HostHidMouse.deviceHandle != NULL) &&
(g_HostHidMouse. interfaceHandle '= NULL))

{
/* the device enumeration is done */
if (g_HostHidMouse.deviceState == kStatus_DEV_Idle)
{
g_HostHidMouse.deviceState = kStatus_DEV_Attached;
}
else
{
usb_echo("'not idle mouse instance\r\n');
}
}
¥
break;

case kUSB_ HostEventDetach:
if (s_ConfigHandle == configurationHandle)
{

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 51

}

/* the device is detached */

s_ConfigHandle = NULL;

if (g_HostHidMouse.deviceState

{

g_HostHidMouse.deviceState

}

break;
default:
break;

}

return status;

1= kStatus_ DEV_Idle)

= kStatus_DEV_Detached;

If implementing the callback as USB_HostHidTestEvent, use g_HidTestlnstance, and support the
device that the class code is USB_HOST_HID_TEST_CLASS_CODE, sub-class code is
USB_HOST_HID_TEST_SUBCLASS_CODE, and the protocol is USB_HOST_HID_TEST_PROTOCOL. The code
can be modified as follows:

usb_status_t USB_ HostHidMouseEvent

(

usb_device_handle deviceHandle,

usb_host_configuration_handle configurationHandle,

uint32_t eventCode

/* Process the same and supported device"s configuration handle */

static usb_host_configuration_handle s ConfigHandle = NULL;

usb_status_t status = kStatus_USB_Success;

uint8_t id;
usb_host_configuration_t *configuration;
uint8_t interfacelndex;

usb_host_interface_t *interface;

switch (eventCode)

{
case kUSB_HostEventAttach:

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016

52

Freescale Semiconductor

/* judge whether is configurationHandle supported */
configuration = (usb_host_configuration_t *)configurationHandle;

for (interfacelndex = 0; interfacelndex < configuration->interfaceCount;
++interfacelndex)

{

interface = &configuration->interfacelList[interfacelndex];

id = interface->interfaceDesc->blInterfaceClass;

it (id '= USB_HOST HID TEST CLASS CODE)

{
continue;

}

id = interface->interfaceDesc->blnterfaceSubClass;

if (id '= USB_HOST_HID_TEST_SUBCLASS_CODE)

{
continue;

}

id = interface->interfaceDesc->blnterfaceProtocol;

if (id '= USB_HOST_HID TEST PROTOCOL)

{
continue;

}

else

{
/* the interface is supported by the application */
g_HidTestlnstance.deviceHandle = deviceHandle;
g_HidTestlnstance. interfaceHandle = interface;
s_ConfigHandle = configurationHandle;
return kStatus USB_Success;

}

}

status = kStatus USB_NotSupported;
break;

case kUSB_HostEventNotSupported:
break;

case kUSB_HostEventEnumerationDone:

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 53

if (s_ConfigHandle == configurationHandle)

{

if ((g_HidTestlInstance.deviceHandle !'= NULL) &&
(g_HidTestlnstance. interfaceHandle = NULL))

{
/* the device enumeration is done */
if (g_HidTestlnstance.deviceState == kStatus_ DEV_Ildle)
{
g_HidTestlnstance.deviceState = kStatus_DEV_Attached;
}
else
{
usb_echo(*'not idle mouse instance\r\n');
}
}
}
break;

case kUSB_HostEventDetach:
if (s_ConfigHandle == configurationHandle)

{
/* the device is detached */
s_ConfigHandle = NULL;
if (g_HidTestlInstance.deviceState != kStatus_DEV_Idle)
{

g_HidTestlnstance.deviceState = kStatus_DEV_Detached;

}

}

break;

default:
break;

}
return status;

}
Note that the kStatus_ DEV_Attached, kStatus_ DEV_Detached MACROs are defined in the example.

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
54 Freescale Semiconductor

4.2.2.4 Class initialization
When the supported device is attached, the device’s class needs to be initialized.

For example, the HID mouse initialization flow is as follows:

Initialize class

A 4

Set class interface

A\ 4

Wait for set interface callback

Class application run

Figure 44 HID mouse initialization flow

1. Call class initialization function to initialize the class instance.
2. Call class set interface function to set the class interface.

3. When the set interface callback returns successfully, the application can run.

4.2.2.5 Sending/Receiving data to/from the device
The transfer flow is as follows:
1. Call the USB_hostClassxxx API to begin the transfer.
2. The transfer result is notified by the callback function that is passed as a parameter.

3. The HID mouse host uses the following code to receive data from the device:

USB_HostHidRecv(classHandle, mouseBuffer, bufferLength, callbackFunction,
cal lbackParameter);

Freescale KSDK USB Stack Porting New Platform User’s Guide, Rev. 1, 01/2016
Freescale Semiconductor 55

5 Revision history

This table summarizes revisions to this document since the release of the previous version

Revision History

Revision number

Date

Substantive changes

01/2016

KSDK 2.0.0 release

Freescale KSDK USB Stack Porting New Platform User's Guide, Rev. 1, 01/2016

56

Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
www.freescale.com/support

Document Number: KSDKUSBSUG
Rev. 1
01/2016

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, Kinetis, and the Freescale logo are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.

©2016 Freescale Semiconductor, Inc.

PR

	1 Overview
	2 Build the USB examples in Kinetis SDK
	2.1 Requirements for Building USB Examples
	2.2 USB Code Structure
	2.3 Compiling or Running the USB Stack and Examples
	2.4 USB Stack Configuration

	3 Porting to a new platform
	3.1 SoC files
	3.2 Board files
	3.3 Porting Examples

	4 Developing a New USB Application
	4.1 Developing a New USB Device Application
	4.2 Developing a New USB Host Application

	5 Revision history

