

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
n

c
..

.

Order this document
by AN1064/D

AN1064

Use of Stack Simplifies M68HC11 Programming
By Gordon Doughman

Introduction

The architectural extensions of the M6800 incorporated into the
M68HC11 allow easy manipulation of data residing on the stack of the
microcontroller unit (MCU).

The M68HC11 central processor unit (CPU) automatically uses the
stack for these two purposes:

• Each time the CPU executes a branch-to-subroutine (BSR) or
jump-to-subroutine (JSR) instruction, it pushes a return address
onto the stack. This procedure allows the CPU to resume
execution with the instruction following the BSR or JSR when the
program returns from the subroutine.

• Second, just before the MCU executes an interrupt service
routine, the CPU saves its register contents on the stack, allowing
the registers to be restored when the CPU executes a return-from-
interrupt (RTI) instruction at the end of the interrupt service
routine.

Two additional uses of the M68HC11 stack discussed in this application
note are the storage of local or temporary variable values and subroutine
parameter passing.

For More Information On This Product,

 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Using the stack for local variables and parameter passing provides the
assembly language programmer with the following benefits:

• First, since a routine allocates storage space for local variables
and parameters upon entry and releases the storage upon exit,
the same temporary memory space can be reused by program
routines that run in succession. This reuse can result in a
substantial savings in the total amount of RAM required by a
program.

• Second, allocating a new set of local variables and parameters
when entering a routine makes it both re-entrant and recursive.
Routines that possess these two properties can make a
programmer’s job much easier when debugging a program in a
real-time, interrupt-driven environment.

• Third, placing local variables and parameters on the stack helps to
promote modular programming. Because all temporary storage
required by a routine is allocated and deallocated by the program
module itself, it can be easily detached from the main program for
reuse or replacement.

• The final major benefit of using the stack for local variables and
parameters becomes apparent during the debugging process.
Because a routine’s local variables and parameters exist only
while it is executing, it is very unlikely that one routine will
accidentally modify the local variables and parameters of another
routine. Once the programmer has written and debugged a
routine, time can be spent finding logical errors and/or problems
associated with the interaction of the different routines in a
program.

The goal of this application note is to help the assembly language
programmer understand the following topics:

• Basic operation of the M68HC11 stack

• Concept of the local and global variables

• Subroutine parameter passing

• Use of the M68HC11 instruction set to support local variables and
parameter passing
AN1064

2
For More Information On This Product,

 Go to: www.freescale.com

Application Note
M68HC11 Stack Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The source code for the examples and the macros described in this
application note can be obtained from
http://www.mot.com/pub/SPS/MCU/appnotes

M68HC11 Stack Operation

The M68HC11 supports a stack through the use of the CPU stack
pointer (SP) register. The SP is a 16-bit register that points to an area of
RAM used for stack storage. Because the SP is 16 bits wide, the stack
can be located anywhere in the M68HC11 64-Kbyte address space. The
SP contents are undefined at power-up and are normally initialized in the
first few instructions of a program. Each time a byte is pushed onto the
stack, the SP is automatically decremented. Therefore, the initial value
loaded into the SP is usually the address of the last RAM location in a
system. Thus, as more information is pushed onto the stack, the stack
area grows downward (the SP points to lower addresses) in the memory
map. The SP always contains the address of the next available location
on the stack.

As previously mentioned, the stack on the M68HC11 is used
automatically by the CPU hardware during subroutine calls/returns and
during the servicing of interrupts. When a subroutine is called by a JSR
or BSR instruction, the address of the instruction following the JSR or
BSR is automatically pushed onto the stack.

Since the M68HC11 only has an 8-bit data bus, two separate push
operations are performed by the CPU hardware. During the first push
operation, the low-order eight bits (b7–b0) of the return address are
placed on the stack. The second push operation places the high-order
eight bits (b15–b8) of the return address on the stack at the next lower
address in memory. Performing the operation in this order leaves the
16-bit return address on the stack in the order that all 16-bit numbers are
stored in memory, with the high-order eight bits at the lower address.

After a JSR or BSR instruction, the stack appears as shown in Figure 1.
AN1064

3
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 Figure 1. Stack Contents after Executing
a JSR or BSR Instruction

Whenever an unmasked interrupt occurs, the contents of all CPU
registers (with the exception of the SP itself) are pushed onto the stack
as shown in Figure 2. After the registers are stacked, CPU execution
continues at an address specified by the vector for the pending interrupt
source. Upon completion of the interrupt service routine, the execution
of an RTI instruction restores the previously saved CPU registers by
pulling them off the stack in the reverse order in which they were pushed
onto the stack. Since the entire state of the CPU is restored, execution
resumes as if the interrupt had not occurred.

HIGH MEMORY ADDRESSES

<RETURN ADDRESS LO>

<RETURN ADDRESS HI>

SP

SP–1

SP–2

USED STACK SPACE

USED STACK SPACEUNUSED STACK SPACE

LOW MEMORY ADDRESSES

SP BEFORE CALL

SP AFTER CALL
AN1064

4
For More Information On This Product,

 Go to: www.freescale.com

Application Note
M68HC11 Stack Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2. Stack Contents after an Interrupt

The M68HC11 instruction set contains instructions that allow the
individual CPU registers to be pushed onto and pulled off the stack. For
example, if the value contained in one of the CPU registers needs to be
saved before a particular subroutine call, a push instruction places the
register value on the stack. When the subroutine returns, a pull
instruction restores the contents of the CPU register. These instructions
not only allow the stack to be used as temporary data storage but also
allow the construction of recursive and re-entrant subroutines.

M68HC11 instructions that involve the direct manipulation of the SP are
listed in Table 1.

HIGH MEMORY ADDRESSES

PC LOSP

SP–1

SP–2

SP BEFORE INTERRUPT

USED STACK SPACE

PC HI

IY LO

IY HI

IX LO

IX HI

ACCA

ACCB

CCR

UNUSED STACK SPACE

LOW MEMORY ADDRESSES

SP AFTER INTERRUPT

SP–3

SP–4

SP–5

SP–6

SP–7

SP–8

SP–9
AN1064

5
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Stack Usage

Although most assembly language programmers use the M68HC11
stack for subroutine return addresses, register contents during interrupt
processing and temporary CPU register storage, more powerful
programming techniques can make additional use of the stack.

Most high-level language compilers for modern, block-structured, high-
level languages make use of the stack for two additional functions:
passing parameters and local or temporary variable storage. By
borrowing some of these techniques, programmers can write assembly
language programs that are much more reliable, easier to maintain, and
easier to debug.

Table 1. Instructions Involving Direct Manipulation of the SP

Instruction
Mnemonic Description

PSHA Push accumulator A onto the stack.

PSHB Push accumulator B onto the stack.

PULA Pull accumulator A off the stack.

PULB Pull accumulator B off the stack.

PSHX Push index register X onto the stack.

PSHY Push index register Y onto the stack.

PULX Pull index register X off the stack.

PULY Pull index register Y off the stack.

INS Increment the stack pointer by 1.

DES Decrement the stack pointer by 1.

TXS Place the contents of index register X – 1 in the stack pointer.

TYS Place the contents of the index register Y – 1 in the stack pointer.

TSX Place the contents of the stack pointer +1 in index register X.

TSY Place the contents of the stack pointer in +1 in index register Y.
AN1064

6
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Stack Usage

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Variables
in Assembly
Language

Computer programs rarely operate on data directly; instead, the program
refers to variables. A variable is a physical location in computer memory
that can be used to hold different values while the program runs.
Variables usually have an identifier or name associated with them. Using
names to refer to data contained in memory is much easier than trying
to remember a long string of binary or hexadecimal numbers.

Besides a name and an address, variables may have several other
attributes. Depending on the programming language, variable
declarations may assign attributes to the variables restricting both the
scope and extent of the variable. The scope of a variable is the range of
program text in which a particular variable is known and can be used.
The extent of a variable is the time during which a computer associates
physical storage with a variable name.

In assembly language, the scope of variables is usually global — for
instance, variables may be referenced throughout the text of a program.
Though some assemblers may provide mechanisms to restrict the scope
of declared variables, many assembly language programmers do not
use these features. A programmer using assembly language usually
declares variables by employing an assembler directive as shown in
Listing 1. This method assigns fixed storage locations to the variables.
The extent of variables declared this way is for the entire program
execution — for instance, the storage locations assigned to the variables
at assembly time remain allocated during the entire time the program is
executing.
AN1064

7
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Further examination of the variable declarations in Listing 1 shows that
several variables are used for intermediate calculation results or for
temporary CPU register storage. This example is typical of the way
many assembly language programmers allocate temporary storage.
Each time they write a routine requiring temporary variable storage, they
allocate an additional set of global variables. The use of this technique
can lead to the inefficient use of RAM if there are many routines within a
program requiring temporary storage.

In an effort to make more efficient use of the limited amount of RAM on
single-chip MCUs, some programmers use a technique known as
“variable sharing.” Listing 2 shows a portion of a listing using this
technique. In this program, more than one routine shares the use of a
single temporary variable. To keep track of which routines use which
variables, each line, in addition to the variable declaration, contains a list
of the routines using that particular variable. In small programs, it may
not be too difficult to manage temporary variables this way; however, in
large programs having hundreds or thousands of routines using
temporary variables, it becomes impossible to keep track of which
routines use which temporary variables at any given time.

*
* RAM LOCATIONS
*
*
*

ORG $10
*
STANUM RMB 1 STATION NUMBER REGISTER.
DATBLP RMB 1 DATA TABLE POINTER REGISTER.
STAMSK RMB 1 STATION BIT MASK REGISTER.
FCTNUM RMB 1 FUNCTION NUMBER REGISTER FOR MODE SET.
XTEMP RMB 2 X-REG. TEMPORARY STORAGE.
XTEMP1 RMB 2 X-REGISTER TEMPORARY STORAGE.
ATEMP1 RMB 1 A-REGISTER TEMPORARY STORAGE.
COUNT1 RMB 1 COUNT USED DURING STATION POLLING LOOP.
KPCNT RMB 1 ’NUMBER OF KEYS PESSED’ COUNT.
LSTFCN RMB 1 LAST T/L FUNCTION THAT WAS PROCESSED.
CALLST RMB 1 REMOTE CALL STATUS BYTE.
ATEMP2 RMB 1 A-REG. TEMPORARY STORAGE FOR THE DELAY SUBROUTINE.
XTEMP3 RMB 2 X-REG. STORAGE BEFORE CALL TO DELAY SUBROUTINE.
COUNT2 RMB 1 COUNT USED IN DELAY SUBROUTINE.
NONESL RMB 1 ’NONE SELECTED’ REGISTER USED BY SSCHK.
*

Listing 1. Declaring Global Variables in Assembly Language
AN1064

8
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Stack Usage

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The sharing of temporary variable storage shown in Listing 2 can
produce debugging problems that are extremely hard to find. The
chances of having one routine unintentionally modify the temporary
storage of another can become quite high in large programs. In interrupt-
driven, real-time systems, the sharing of temporary variables by various
routines can become disastrous.

Consider the situation illustrated in Figure 3. Subroutine A and
subroutine B both share the temporary variable Temp1. Initially, there
seems to be no problem since subroutine A and subroutine B do not call
one another. Yet, consider what happens if an interrupt occurs during
the execution of subroutine A. Because of the interrupt, subroutine B is
called indirectly through subroutine C. The execution of subroutine B
causes any value placed in Temp1 by subroutine A before the interrupt
to be overwritten! Because interrupts usually occur asynchronously to
main program execution, the program may appear to operate properly
most of the time and crash randomly, depending on when an interrupt
occurs. This type of apparently random program failure can be almost
impossible to find.

*
* RAM LOCATIONS
*
*
*

ORG $0
*
*** variables - used by: ***
PTR0 RMB 2 main,readbuff,incbuff,AS
PTR1 RMB 2 main,BR,DU,MO,AS,EX
PTR2 RMB 2 EX,DU,MO,AS
PTR3 RMB 2 EX,HO,MO,AS
PTR4 RMB 2 EX,AS
PTR5 RMB 2 EX,AS,BOOT
PTR6 RMB 2 EX,AS,BOOT
PTR7 RMB 2 EX,AS
PTR8 RMB 2 AS
TMP1 RMB 1 main,hexbin,buffarg,termarg
TMP2 RMB 1 GO,HO,AS,LOAD
TMP3 RMB 1 AS,LOAD
TMP4 RMB 1 TR,HO,ME,AS,LOAD

Listing 2. Declaring Global Variables in Assembly Language
AN1064

9
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. Two Subroutines Sharing a Single Temporary Variable

Although this example may seem overly simplistic, a program that
contains hundreds or thousands of routines makes it nearly impossible
to keep track of which subroutines are using what variables at any
specific time, particularly if the main program and interrupt service
routines share subroutines. The solution to this type of problem may
seem simple — do not allow any subroutines to share globally declared
temporary variables. This solution is acceptable provided enough RAM
is available for all required temporary variables. A better solution to this
problem can be found by examining the way modern, block-structured,
high-level languages use temporary variables.

Variables in
Block-Structured
High-Level
Languages

Most block-structured, high-level languages, notably C and Pascal,
provide the ability to limit both the scope and the extent of variables as
part of the language definition. In both C and Pascal, the scope of a
variable is local to the block in which it is declared. The scope of
variables declared outside of a block (function or procedure) is usually
global. These global variables are similar to the ones declared in the

MAIN PROGRAM

TEMP1

 SUBROUTINE A

SUBROUTINE B

SUBROUTINE C

INTERRUPT ROUTINE
AN1064

10
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Stack Usage

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

assembly language shown in Listing 1. They can be accessed by all
routines within a program, and they remain in existence throughout the
entire time the program executes. Listing 3 shows an example of how
global variables are declared in C and Pascal.

Variables declared within a function or procedure have their scope
limited to that function or procedure. The extent of these variables is also
limited. These variables, known as local or automatic variables, come
into existence when the functions or procedures that contain them are
called. When a function or procedure finishes execution, the local
variables disappear, and the memory locations occupied by them can be
used again. Listing 4 shows an example of how local variables are
declared in C and Pascal. In both examples, the variables i and j are
local to procedure/function A and do not exist outside them.

 Pascal C

var
 x,y:integer; int x,y;
 j:char; char j;
 z:boolean; int z;
 num:array[1..10] of integer; int num[9];
 Date:record struct Date {
 Month:integer; int x,y;
 Day:integer; int Day;
 Year:integer; int Year;
 end; };

program(input,output); main()
. {
. .
. .
end. }

Listing 3. Declaring Global Variables in High-Level Languages
AN1064

11
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

There are several benefits of using local variables:

• First, the restricted life of local variables can result in memory
savings. Since storage for local variables is allocated upon entry
to a routine and released upon exit from a routine, the same
temporary memory space can be used by many different program
routines. If two routines are run in succession, each can use the
same storage locations.

• Second, since a new set of local variables is allocated each time
the procedure or function is entered, it makes the routine both
recursive and re-entrant. A re-entrant routine is one that allocates
a new set of local variables upon entry. When complex programs
are run in a real-time, interrupt-driven environment, the interrupt
handlers may call the routine that was interrupted. Making
routines re-entrant can greatly simplify a programmer’s job during
the debugging process in a real-time environment. The same
properties that make a routine re-entrant also make a routine
recursive. A recursive routine is one that can call itself.

• Third, the use of local variables helps to promote modular
programming. A program module is a self-contained program
element that can be easily detached from the main program either
for reuse in another program or for replacement. Since any
storage space for local variables is allocated and deal-located by
the program module itself, the module code can easily be copied
from a single place within one program and reused in another
program.

 Pascal C

var
 x,y:integer; int x,y;
 z:boolean; int z;

procedure A; A()
 var {
 i,j:integer; int i,j;
 begin .
. .
. .
. }
end;

Listing 4. Declaring Local Variables in High-Level Languages
AN1064

12
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Stack Usage

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• A fourth benefit of using local variables is evidenced during the
debugging process. In complex programs, there may be hundreds
or thousands of routines that have to interact with each other.
Since local variables help isolate any changes made within a
routine, debugging becomes a much simpler process. Once
routines are written and debugged, the programmer does not have
to worry about one routine accidentally modifying the local
variables of another. Instead, time can be spent finding any logical
errors and/or problems associated with the interaction of routines
in the program.

Even with all the benefits provided by the use of local variables, there are
some costs associated with their use. On the M68HC11, programs using
local variables tend to be slightly larger and slower than programs using
only global variables because the addressing modes required to access
the local variables can make the instruction somewhat longer and may
cause longer execution time. Given the benefits of using local variables,
a slightly larger and slower program is usually well worth the cost.

The reusable memory storage for local variables is usually taken from
the same memory space used for the MCU’s hardware stack. Placing
local variables on the hardware stack leaves them intact even if the
routine using them is interrupted. The specifics of allocating,
deallocating, and accessing local variables residing on the M68HC11
stack is discussed in Using the M68HC11 Stack.

Passing
Parameters

To make routines more flexible and to vary their actions each time they
are called, different information must be passed to the routines.
Generally, most assembly language programmers use the CPU
registers to pass information to a subroutine. Using this technique is
acceptable as long as the amount of information to be passed to the
subroutine fits within the available CPU registers.

When the amount of information to be passed to a routine exceeds the
space available in the CPU registers, the information can be passed in
a set of global variables. This technique may be acceptable for some
situations, but it can also cause problems that make debugging difficult.
One problem with passing parameters in this manner is that it makes a
AN1064

13
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

routine non-re-entrant. Referring to Figure 4, assume that subroutine
A’s parameters are passed in a set of global variables. If subroutine A is
called either by the main program or by subroutine C as a result of an
interrupt, the program will work correctly. If an interrupt occurs during the
execution of subroutine A, the original parameters passed by the main
program will be overwritten when subroutine C calls subroutine A. When
the processor returns from the interrupt and resumes execution of
subroutine A, it will be using incorrect parameter data, and the results
passed back to the main program will most likely be incorrect.

Figure 4. Subroutine Calling Chain

Because interrupts usually occur asynchronously to main program
execution, the program may appear to operate properly most of the time
and crash randomly. This type of problem can be extremely difficult to
locate and can make debugging of real-time, interrupt-driven systems
very difficult. Passing the parameters on the stack completely solves this
problem. When subroutine C calls subroutine A as a result of the
interrupt, a new set of parameters is placed on the stack while the
original parameters remain undisturbed. Figure 5 shows the state of the
stack after an interrupt.

MAIN PROGRAM

SUBROUTINE A

SUBROUTINE B

SUBROUTINE C

INTERRUPT ROUTINE
AN1064

14
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Stack Usage

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Stack State as a Result of an Interrupt

In addition to where parameters are passed, there is also an issue of
how parameters are passed. Subroutine parameters can be passed
either by value or by reference. When a parameter is passed by value,
the parameter acts as a local variable whose initial value is provided by
the calling routine. Any modification of the supplied value has no effect
on the original data that was passed to the subroutine. Thus a subroutine
can import values but not export values by means of value parameters.

Passing a parameter by reference is one method used to pass results
back to a calling subroutine. These types of parameters are known as
variable parameters. When using variable parameters, the address of
the actual parameter is passed to the subroutine rather than a value. The
passed address can be a local variable of the calling routine or even the
address of a global variable. Whenever a subroutine has to effect a

HIGH MEMORY ADDRESSES

PARAMETERS PASSED

TO SUBROUTINE A
FROM MAIN

RETURN ADDRESS

TO MAIN

CPU REGISTERS

PLACED ON THE STACK

AS A RESULT OF AN

INTERRUPT

RETURN ADDRESS FROM

CALL TO SUBROUTINE B

RETURN ADDRESS FROM

CALL TO SUBROUTINE C

PARAMETERS PASSED

TO SUBROUTINE A

FROM SUBROUTINE C

LOW MEMORY ADDRESS

SP AFTER
INTERRUPT

SP AFTER CALL
OF SUBROUTINE A

FROM SUBROUTINE C

SP AFTER CALL
OF SUBROUTINE A

FROM MAIN

RETURN ADDRESS FROM

CALL TO SUBROUTINE C
AN1064

15
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

permanent change in the values passed to it, the parameters must be
passed by reference rather than by value.

Consider the following example in both C and Pascal that exchanges the
value of two integers:

If the call-by-value routine were to be used in this example, the routine
would not work as the programmer might expect. It would exchange the
local values of x and y within the SwapInt routine, but it would have no
effect on the actual variables in the routine’s call statement. For the
SwapInt routine to work properly, the routine must be declared so that
the parameters are passed by reference rather than by value. As
mentioned previously, passing a parameter by reference passes the
address of the actual parameter. In the example in Listing 5, using the
call-by-reference routine, the addresses of the variables z and w are
passed to the SwapInt routine when it is called from the main program.
This procedure allows the SwapInt routine to exchange the actual
values of the variables passed to the routine.

Pascal C
Call By Value Call By Value

procedure SwapInt (x,y:integer); void SwapInt (int x,y)
 var {
 Temp:integer; int Temp;
 begin Temp=x;
 Temp:=x; x=y
 x:=y y=Temp
 Y:=Temp }
 end;

Call By Reference Call By Reference

procedure SwapInt (var x,y:integer); void SwapInt (int *x, *y)
 var {
 Temp:integer; int Temp;
 begin Temp=*x;
 Temp:=x; *x=*y
 x:=y *y=Temp
 y:=Temp }
 end;

Call Of "SwapInt" Using Either Method Call Of "SwapInt" Using Call by Reference

program(output); main()
 var {
 z,w:integer; int w,z;
 begin z=2;
 z:=2; w=4;
 w:=4; SwapInt (&z,&w);
 SwapInt (z,w); }
 end;

Listing 5. Passing Parameters by Reference and by Value
AN1064

16
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Using the M68HC11 Stack

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Function/
Subroutine
Return Values

Most subroutines or functions, if they are to perform a useful action in a
program, will return one or more values to the calling routine. Any value
or status can be returned using one of the three methods previously
described. When a subroutine only needs to return a single value, one
of the CPU registers is commonly used to pass the value back to the
calling routine. This simple, safe technique allows the routine to remain
re-entrant. This method is used most often by C compilers to return a
value from a function.

Similar to the situation that exists when passing parameters in the CPU
registers, there may be times when a routine must return more
information than will fit in the CPU registers. The information can be
returned in a set of global variables; however, as previously described,
this method poses the same problems as passing parameters in this
manner. Returning results in global variables makes the routine
non-re-entrant and can cause the same debugging problems previously
described.

A better way to return large amounts of data from a subroutine is to
allocate the required amount of space on the stack either just before or
just after pushing a routine’s parameters onto the stack. This method
possesses the same benefits of passing parameters on the stack — it
makes the routine completely re-entrant and self-contained. Most
Pascal compilers return function values in this manner.

Using the M68HC11 Stack

This section specifically discusses how to allocate, deallocate, and
access both local variables and parameters residing on the M68HC11
stack. The programmer’s model of the M68HC11 is shown in Figure 6.
The following paragraphs briefly describe the CPU registers and their
usage.
AN1064

17
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6. M68HC11 Programmer’s Model

The A and B accumulators are used to hold operands and the results of
arithmetic and logic operations. These two 8-bit registers can be
concatenated to form a single 16-bit D accumulator to support the
M68HC11 16-bit arithmetic instructions. The A and B accumulators can
easily be used to push data onto or pull data off the stack.

The X and Y index registers are used in conjunction with the CPU
indexed addressing mode. The indexed addressing mode uses the
contents of the 16-bit index register in addition to a fixed 8-bit unsigned
offset that is part of the instruction to form the effective address of the
operand to be used by the instruction. The index registers play a very
important role in accessing data residing on the stack.

The CPU SP is a 16-bit register that points to an area of RAM used for
stack storage. The stack is used automatically during subroutine calls to
save the address of the instruction that follows the call. When an
interrupt occurs, the stack is used automatically by the CPU to save the

 7

15

15

15

15

15

0

0

0

0

0

0

A:B

D

IX

IY

SP

PCPROGRAM COUNTER

STACK POINTER

INDEX REGISTER Y

INDEX REGISTER X

DOUBLE ACCUMULATOR D

ACCUMULATOR A ACCUMULATOR B

7

70

0

S X H I N Z V C

CARRY

OVERFLOW

ZERO

NEGATIVE

I INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

X INTERRUPT MASK

STOP DISABLE

CONDITION CODE REGISTER CCR
AN1064

18
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Using the M68HC11 Stack

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

entire CPU register contents on the stack (except for the SP itself). The
SP always contains the address of the next available location on the
stack.

The program counter (PC) is a 16-bit register used to hold the address
of the next instruction to be executed.

The condition code register (CCR) contains five status indicators and
two interrupt mask bits. The status bits reflect the results of arithmetic
and other operations of the CPU as it performs instructions.

Before considering the specifics of parameter passing and the utilization
of local variables that reside on the M68HC11 stack, the method used to
access the information placed on the stack will be discussed. One
M68HC11 index register and the CPU indexed addressing mode are
used to access parameters or local variables residing on the stack. With
respect to the indexed addressing mode, the contents of one of the
16 bit index registers plus a fixed unsigned offset is used in calculating
the effective address of an instruction’s operand. The unsigned offset,
contained in a single byte following the instruction opcode, can only
accommodate positive offsets in the range 0–255. Thus, the indexed
addressing mode can only access information at addresses that are
between 0 and 255 bytes greater than the base address contained in
one of the index registers. Figure 7 illustrates how to calculate the
effective address of an instruction using the indexed addressing mode.

Figure 7. Effective Address Calculation
for Indexed Addressing Mode

+UNSIGNED

OFFSET

INDEX REGISTER

X OR Y

OPERAND ADDRESS

7 0

LDD $10,X

15 0
AN1064

19
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

As information is pushed onto the M68HC11 stack, the SP is
decremented, signifying that the information placed on the stack resides
at addresses greater than the address contained in the SP. The use of
indexed addressing is ideal for accessing information residing on the
M68HC11 stack. The example shown in Figure 8 illustrates how
information on the stack is manipulated.

Figure 8. Stack Data Access Example

As Figure 8 shows, the SP is pointing to the next available address, and
the Y index register is pointing to the last data placed on the stack. The
instruction LDD 1,Y will load the value of the local variable x into the D
accumulator. To access the parameter Num, the instruction LDD 7,Y

can be used. Any instructions that support the indexed addressing mode
can be used to manipulate stack data.

Passing
Parameters

Parameters are easily placed on the M68HC11 stack by CPU push
instructions. Table 2 lists the push instructions available on the
M68HC11. Note that there is not a single instruction for pushing the D
accumulator onto the stack. A PSHD instruction can easily be simulated

HIGHER ADDRESSES

NUM

<RETURN ADDRESS>

FRAME POINTER

X

ZS

LOWER ADDRESSES

Y

SP

7

5

3

1

0

AN1064

20
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Using the M68HC11 Stack

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

by executing the two instructions PSHB and PSHA. These two
instructions must be executed in this order to keep the value pushed
onto the stack consistent with the way 16-bit values are stored in
memory — for example, 16-bit values are placed in memory with the
most significant eight bits at a lower address than the least significant
eight bits. By following this convention, a 16-bit parameter pushed onto
the stack in this manner is easily retrieved using one of the 16-bit load
instructions.

As previously mentioned, parameters can be passed either by value or
by reference. Consider a function, Int2Asc, that converts a signed 16-
bit integer to ASCII text and places the ASCII characters in a text buffer.

The function requires two parameters: the number to be converted into
ASCII text and a pointer to a buffer where the ASCII text is to be stored.
The first parameter is passed to the subroutine by value because the
actual number to be converted is passed to the function. The second
parameter is passed by reference because a pointer to the buffer is
passed to the routine and not the buffer itself.

A function declaration written in C is shown in Listing 6.

Table 2. Push Instructions in the M68HC11 Instruction Set

Instruction
Mnemonic Description

PSHA Push accumulator A onto the stack.

PSHB Push accumulator B onto the stack.

PSHX Push index register X onto the stack.

PSHY Push index register Y onto the stack.

void Int2Asc(int Num; char *Buff)
 {
 int Pwr10 = 10000;
 char zs = 0;
 .
 .
 .
 }

Listing 6. Function Declaration of Int2Asc
AN1064

21
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Before calling an equivalent routine written in M68HC11 assembly
language, the two parameters will be pushed onto the stack as shown in
Listing 7.

Using the immediate addressing mode with the second load index
register X (LDX) instruction loads the address of OutBuff into the X index
register rather than the 16-bit value contained in the memory locations
OutBuff and OutBuff+1. After both parameters have been pushed onto
the stack, the function is called with a JSR instruction. Upon entry to the
subroutine Int2Asc, the parameters reside just above the return address,
as shown in Figure 9.

Figure 9. Location of Parameters Passed on the Stack

Allocating Local
Variables

Four basic techniques can be used to allocate local variables that reside
on the stack. Choosing which one to use depends upon the total amount
of storage required for the local variables and whether the variables
need to have an initial value assigned to them. Of course, a combination
of all four techniques can be used.

LDX ErrorNum ; Get the value of the current error.
PSHX ; Place it on the stack.
LDX #OutBuff ; Get the address of the Output buffer.
PSHX ; Place it on the stack.
JSR Int2Asc ; Go convert the number.

Listing 7. Placing Parameters on the M68HC11 Stack

HIGHER ADDRESSES

NUM

OUTBUFF ADDRESS

<RETURN ADDRESS>

LOWER ADDRESSES

SP
AN1064

22
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Using the M68HC11 Stack

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

One technique used to allocate space on the stack for local storage
involves the use of the decrement stack pointer (DES) instruction. The
DES instruction subtracts one from the value of the SP each time the
instruction is executed, allocating one byte of local variable storage for
each DES instruction. This technique is a simple and direct way of
allocating local storage but becomes impractical when large amounts of
local storage are required. For instance, if 100 bytes of local storage are
required for a subroutine, 100 DES instructions are needed to allocate
the required amount of storage. This required amount is clearly
unacceptable since each DES instruction requires one byte of program
memory. Even if a small program loop is set up to execute 100 DES
instructions, the subroutine will suffer a severe execution speed penalty
each time the routine is entered.

Using the previously described technique requires one byte of program
storage for each byte of local storage that is allocated. Since allocating
local storage simply involves decrementing the SP, the PSHX instruction
can be used to allocate two bytes of local storage space for each
executed PSHX instruction. The actual contents of the X index register
are irrelevant because the only concern is decrementing the SP. The
use of this technique can be confusing if not properly documented, since
it is not directly obvious what is being accomplished with five or six
sequentially executed PSHX instructions.

Many times it is necessary to initialize local variables with a particular
value before they are used. The same technique used to push
parameters onto the stack before a subroutine call also can be used to
allocate space for local variables and simultaneously assign initial
values to them. This procedure is accomplished by loading one of the
CPU registers with a variable’s initial value and executing a PSH
instruction. The program fragment in Listing 8 shows the use of this
technique to allocate and initialize both an 8- and 16-bit local variable.

Int2Asc equ *
.
.
ldx #10000 ; get the initial value of Pwr10.
pshx ; allocate and initialize it.
clra ; initial value of zs is zero.
psha ; allocate and initialize it.

Listing 8. Allocating and Initializing Local Variables
AN1064

23
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

If more than 13 bytes of local storage are required by a subroutine, a
fourth technique allocates storage more efficiently than using multiple
DES or PSHX instructions. Since there are not any instructions that
allow arithmetic to be performed directly on the SP, the fourth technique
involves using several M68HC11 instructions. These instructions adjust
the value of the SP downward in memory, allocating the required amount
of local storage. Listing 9 shows the instruction sequence required to
allocate an arbitrary number of bytes of local storage.

Since no single instruction allows the contents of the SP to be
transferred to the D accumulator, the 2-instruction sequence transfer
from SP to index register X or Y; exchange double accumulator and
index register X or Y (TSX; XGDX, or TSY; XGDY) must be used.
Placing the SP value in the D accumulator allows the use of the 16-bit
subtract instruction to adjust the value of the SP. The subtract double
accumulator (SUBD) instruction will subtract the 16-bit value xxxx from
the contents of the D accumulator. To place this new value in the SP, the
2-instruction sequence XGDX; TXS or XGDY; TYS is used.

NOTE: Actually, the TSX or TSY instruction causes the SP value plus 1 to be
transferred to either the X or Y index register
(SP + 1 → X or SP + 1 → Y). This transfer does not pose a problem
because when the SP is updated with the TXS or TYS instruction 1 is
subtracted from the value of the index register
(X – 1 → SP or Y – 1 → SP) before the SP is updated. Remember that
since the SP points to the next available location on the stack, adding 1
to its value before the execution of the TSX or TSY instruction makes the
X or Y index register point to the last data placed on the stack.

SinCos equ *
.
.
tsx ; SP+1 → X.
xgdx ; exchange the contents of x and d.
subd #xxxx ; subtract the required amt. of storage.
xgdx ; place the result back into x.
txs ; X–1 → SP. Update the SP.

Listing 9. Allocation of More Than 13 Bytes for Local Storage
AN1064

24
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Using the M68HC11 Stack

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Creating
a Complete
Stack Frame

In addition to providing storage space for local variables and
parameters, a complete stack frame (sometimes called an activation
record) must contain two additional pieces of information: a return
address and a pointer to the base of the stack frame of any previous
routines. The return address is placed on the stack automatically by the
M68HC11 when it executes either a JSR or BSR instruction. As shown
in Figure 9, the return address is placed on the stack just below a
subroutine’s parameters.

Before using either the X or Y index register to access a routine’s
parameters or local variables, the contents of the register must first be
saved. The index register contents, known as the stack frame pointer,
may contain the base address of a stack frame for a routine from which
control was transferred. This pointer must be maintained so that when
control is returned to the calling routine, the calling routine’s environment
can be restored to its previous state. Even if a routine has no local
variables or parameters, the contents of the index register being used as
the stack frame pointer must be saved before the register is used for any
other purpose.

The best time to save the value of the previous stack frame pointer is
immediately upon entry to a subroutine, which places the previous stack
frame pointer immediately below the return address (see Figure 10).

After space for local variables has been allocated, the stack frame
pointer for the new subroutine needs to be initialized. By transferring the
contents of the SP to either the X or Y index register using the TSX or
TSY instruction, a new stack frame is created.

Figure 10. Location of the Stack Frame Pointer

HIGHER ADDRESSES

NUM

OUTBUFF ADDRESS

<RETURN ADDRESS>

LOWER ADDRESSES

SP

<FRAME POINTER>
AN1064

25
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In summary, creating a complete stack frame involves the following
three steps after entering a subroutine:

1. Immediately upon entry to a subroutine, the contents of the index
register being used as the stack frame pointer must be saved by
using either the PSHX or PSHY instruction.

2. Storage space for the routine’s local variables should be allocated
using one of the three methods described earlier.

3. The new stack frame pointer must be initialized using either the
TSX or TSY instruction.

The last issue to discuss is which index register to use as the stack frame
pointer. In terms of code size and speed, the X index register would be
the most logical choice since all instructions involving the Y index
register require one additional opcode byte and one additional clock
cycle to execute. However, if a program is not making extensive use of
the stack for local variables and parameters but is performing extensive
array or table manipulations, the Y index register may be a better choice.
No matter which index register is used as the stack frame pointer, it
should be, if at all possible, dedicated to that use throughout a program.
Program debugging is much easier if the contents of a single index
register can always be expected to point to the current stack frame.

Accessing
Parameters
and Local
Variables

As mentioned in Using the M68HC11 Stack, local variables and
parameters are accessed by using instructions that support the indexed
addressing mode. The following list identifies the local and store
instructions as well as all arithmetic and logic instructions that support
indexed addressing. Because most M68HC11 instructions support
indexed addressing, it is just as code efficient to manipulate local
variables that reside on the stack as it is to manipulate global variables
using direct or extended addressing. Figure 11(a) illustrates a complete
allocation frame as used by a subroutine.

ADCA ADCB ADDA ADDB ADDD
ANDA ANDB ASL ASR BCLR
BITA BITB BRCLR BRSET BSET
CLR CMPA CMPB COM CPD
CPX CPY DEC EORA EORB
INC JMP JSR LDAA LDAB
LDD LDS LDX LDY LSL
LSR NEG ORA ORB ROL
ROR SBCA SBCB STAA STAB
STD STS STX STY SUBA
SUBB SUBD TST
AN1064

26
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Using the M68HC11 Stack

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Using the indexed addressing mode to access data contained in a stack
frame places a restriction on the combined size of local variables and
parameters. Since the indexed addressing mode functions by adding an
unsigned 8-bit offset to the contents of the 16-bit index register, the
indexed addressing mode can only access information at addresses that
are between 0 and 255 bytes greater than the base address contained
in one of the index registers. Consequently, the maximum size of a
single stack frame is restricted to 256 bytes. If no parameters are passed
to a routine on the stack, then the entire 256 bytes are available for local
variables. However, when parameters are passed on the stack, not only
is the space occupied by the parameters unavailable for use as local
variables, but the subroutine return address and previous stack frame
pointer reduce the amount of available space by an additional four bytes.

In most embedded control applications that use the M68HC11 in single-
chip mode, this limit on the combined size of parameters and local
variables for a single stack frame is rarely a concern since the amount
of on-chip RAM is limited. Several techniques can be used to work
around the limit imposed by the indexed addressing mode; however,
they are extremely wasteful in terms of code space and execution
speed.

NOTE: In reality, the amount of memory available for local storage in a single
stack frame is 257 bytes. Because the M68HC11 is capable of loading
and storing 16 bits of data with a single instruction, it is possible to
access one byte beyond the contents of the index register plus the fixed
offset of 255 with the 16-bit load and store instructions.

Deallocating
the Stack Frame

When a subroutine has completed execution, the stack space allocated
for the stack frame must be released so the memory can be reused by
subsequent subroutine calls. The deallocation of the stack frame
includes not only the removal of the space occupied by the local storage,
but also the restoration of the previous stack frame pointer and the
removal of space occupied by any parameters that were passed to the
subroutine.

The process of freeing the memory occupied by the stack frame is
simply a matter of adjusting the value of the SP upward in memory. The
AN1064

27
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SP must be adjusted upward by the same amount that it was adjusted
downward when the space for the stack frame was allocated. Either of
the following methods can be used to perform this task.

The most obvious way to perform the deallocation is to reverse the
process used to allocate the storage. Removing the stack frame in this
manner involves these three basic steps.

First, the storage occupied by any local variables must be removed from
the stack area by using the reverse of one of the techniques described
in Allocating Local Variables. Alternately, the technique shown in
Listing 10 can be used. This technique involves adjusting the value of
the SP upward in memory by the same amount it was adjusted
downward when the space was allocated.

Second, the previous stack frame pointer must be restored. Because the
previous stack frame pointer is now on the top of the stack, the use of a
pull index register X or Y from the stack (PULX or PULY) instruction is
all that is needed to perform this operation. At this point, the return
address is on the top of the stack. Simply executing a return-from-
subroutine (RTS) instruction returns program execution to the instruction
following the subroutine call.

After returning to the calling routine, any parameters that were pushed
onto the stack before the subroutine call must now be removed. This
places the burden of removing subroutine parameters on the calling
routine rather than on the called routine. This method of removing
subroutine parameters is perfectly acceptable and is the one most often
used by C language compilers.

Removing the parameters can be as simple as a 1-instruction operation.
If the X or Y index register contains the address of the current stack
frame pointer, simply executing a TXS or TYS instruction places the SP
just below the stack frame pointer. If the X or Y index register does not
contain the address of the current stack frame pointer, an alternate
method must be used to remove the parameters. Figure 11 illustrates
the state of the stack at each stage of the deallocation process.

LBAD #LOCLEN Get size of local storage into the B register.
ABX Add it to the current stack frame pointer.
TXS Deallocate the local storage.

Listing 10. Alternate Method for Deallocating Local Storage
AN1064

28
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Using the M68HC11 Stack

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

An alternative method requires the called routine to remove the entire
stack frame, including any parameters passed to it. This method may not
be as code efficient as the first method since it requires a fixed number
of instructions to release the storage space occupied by the entire stack
frame. Listing 11 shows the instruction sequence necessary to
deallocate the stack frame when the X index register is being used as
the stack frame pointer. This 4-instruction sequence requires nine bytes
of program storage space and 18 cycles to execute but removes the
entire stack frame, regardless of the size. This method of stack frame
deallocation has one drawback — the X or Y index register must always
contain a valid stack frame pointer. Thus, all subroutines, even if they do
not require parameters or local variables, must “mark” the current state
of the stack upon entry by executing a PSHX; TSX or PSHY; TSY
instruction sequence.

NOTE: In Listing 11, RA is the offset value to the <Return Address> and PSFP
is the offset value to the <Previous Stack Frame Pointer>.

In summary, choosing a method to deallocate the stack frame involves
a trade-off between code size and execution speed. Using the first
method results in the smallest amount of code being generated but may
take longer to execute than the method shown in Listing 11.

LDY RA,X Load the return address into the Y register.
LDX PSFP,X Restore the previous stack frame pointer.
TXS Remove the entire stack frame.
JMP 0,Y Return to the calling routine.

Listing 11. Alternate Method for Deallocating Entire Stack Frame
AN1064

29
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11. Deallocation of the Stack Frame

X

SP
X

SP

X

<LOCAL VARIABLE

NUM

OUTBUFF ADDRESS

SP

<LOCAL VARIABLE

< RETURN ADDRESS >

< FRAME POINTER >

HIGHER ADDRESSES

LOWER ADDRESSES

(a) Before Deallocation

NUM

< FRAME POINTER >

PARAMETERS

SP

LOWER ADDRESSES

HIGHER ADDRESSES

(b) After Deallocation

NUM

OUTBUFF ADDRESS

< RETURN ADDRESS >

HIGHER ADDRESSES

LOWER ADDRESSES

(c) After Restoration of the
Previous Stack Frame Pointer

X

(e) After Deallocation of Parameters
LOWER ADDRESSES

< RETURN ADDRESS >

OUTBUFF ADDRESS

HIGHER ADDRESSES

(d) After Execution of an RTS Instruction
LOWER ADDRESSES

PARAMETERS

NUM

OUTBUFF ADDRESS

SP

X HIGHER ADDRESSES

PARAMETERS

PARAMETERS

Process of Local Storage
AN1064

30
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Using the M68HC11 Stack

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Support Macros The following macros may be used to help in managing stack frames in
M68HC11 programs. Using these macros may not provide the smallest
or fastest code in all situations but should make the program easier to
write and debug. Although the macros were written for the Micro Dialects
µASM-HC11 assembler that runs on the Macintosh , they can be used
with other assemblers with some modification. The following paragraph
explains the way parameters are passed and referenced in the Micro
Dialects assembler and should help in the conversion process.

When a macro is defined, parameters are not declared. When a macro
is invoked, the parameters appear in the operand field following the
macro name. Within a macro definition, parameters are referenced by
using a colon (;) followed by a single decimal digit (0–9). Therefore,
within the body of the macro, the first parameter is referenced by using
:0, the second parameter is referenced by using :1, and so forth.
Parameter substitution is performed strictly on a textual substitution
basis.

The link macro shown in Listing 12 can be used to allocate a complete
stack frame after entry into a subroutine. The link macro performs the
following functions:

• Saves the previous stack frame pointer

• Allocates the required number of bytes of local storage

• Initializes a new stack frame pointer

The calling convention for the link macro is:

link <s.f. reg>,<storage bytes>

The first parameter passed to the macro is the name of the index register
being used as the stack frame pointer (either X or Y). Although no check
is made to ensure that a legal index register name is passed to the
macro, the assembler will produce an "Unrecognized Mnemonic" error
message when the macro is expanded. The second parameter is the
number of bytes of local storage required by the subroutine.

µASM-HC11 is a trademark of Micro Dialects.
Macintosh is a registered trademark of Apple Computer, Inc.
AN1064

31
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The return and deallocate (rtd) macro shown in Listing 13 can be used
to partially deallocate a subroutine stack frame. The rtd macro performs
the following functions:

• Deallocates local storage

• Restores the previous stack frame pointer

• Returns to the calling routine

The rtd macro does not remove any parameters from the stack that may
have been passed to the subroutine. Removal of any parameters must
be performed by the calling routine. This macro is useful when no
parameters are passed to a subroutine or when parameters are passed
in registers. The calling convention for the rtd macro is:

rtd <s.f. reg>,<storage bytes>

Like the link macro, the first parameter passed to the rtd macro is the
name of the index register being used as the stack frame pointer (either
X or Y). Again, although no check is made to ensure that a legal index
register name is passed to the macro, the assembler will produce an
"Unrecognized Mnemonic" error message when the macro is expanded.
The second parameter is the number of bytes of local storage allocated
when the subroutine was entered.

The only drawback in using this macro is that it uses the B accumulator
when deallocating a subroutine’s local storage, preventing a subroutine
from returning a 16-bit result in the D accumulator. A simple solution to

link macro
psh:0 ; Save the previous stack frame pointer.
ts:0 ; Transfer the stack pointer into :0.
xgd:0 ; Transfer :0 into D.
subd #:1 ; subtract the required amount of local storage.
xgd:0 ; Initialize the new stack frame pointer.
t:0s ; Update the stack pointer with new value.
endm

Listing 12. Link Macro

rtd macro
ldab #:1 ; number of bytes to deallocate.
ab:0 ; add it to the current stack frame pointer.
t:0s ; deallocate storage by updating the stack pointer.
pul:0 ; restore the previous stack frame pointer.
rts ; return to the calling routine.
endm

Listing 13. Return and Deallocate Macro
AN1064

32
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Using the M68HC11 Stack

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the problem is to surround the load accumulator B (LDAB) and add
accumulator B to index register X or Y (ABX/ABY) instructions with the
PSHB/PULB instruction pair as shown in Listing 14. This macro,
renamed frtd for function return and deallocate, allows the D
accumulator to be loaded with a return value immediately before the
macro is called. A second solution to this problem is to place all return
values on the stack as described in Function/ Subroutine Return
Values, allowing the calling routine to retrieve the returned value and
then remove it along with the parameters.

The return and deallocate using x (rtdx) and return and deallocate using
y (rtdy) macros shown in Listing 15 can be used to completely
deallocate a subroutine stack frame, including any parameters that were
passed on the stack. The rtdx and rtdy macros perform the following
functions:

• Deallocates the entire stack frame, including local storage and
passed parameters

• Restores the previous stack frame pointer

• Returns to the calling routine

The calling convention for the rtdx and rtdy macros is as follows:

rtdx <storage bytes> or rtdy <storage bytes>

The only parameter passed to the macros is the number of local storage
bytes allocated upon entry to the subroutine. These macros have an
advantage over the rtd macro in that the A and B accumulators are not
used during deallocation, which allows a return value to be loaded into
the A, B, or D registers before execution of the rtdx or rtdy macro.

frtd macro
pshb ; save the lower byte of the return value.
ldab #:1 ; number of bytes to deallocate.
ab:0 ; add it to the current stack frame pointer.
pulb ; restore the lower byte of the return value.
t:0s ; deallocate storage by updating the stack pointer.
pul:0 ; restore the previous stack frame pointer.
rts ; return to the calling routine.
endm

Listing 14. Function Return and Deallocate Macro
AN1064

33
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 The only restriction to using the rtdx and rtdy macros is that a valid stack
frame pointer for the previous subroutine must be present in either the X
or Y index register when the register is pushed onto the stack at the
beginning of the subroutine. Even if a subroutine has no local variables
in it or no parameters passed to it, a PSHX and TSX instruction must be
executed immediately upon entry to a subroutine to save the previous
stack frame pointer and "mark" the current state of the stack. Before
returning, a PULX instruction must be executed to restore the previous
stack frame pointer.

This restriction implies that, somewhere in the program, the index
register to be used as the stack frame pointer must be initialized with a
valid value. If either the X or Y index register is to be dedicated for use
as a stack frame pointer, the index register must be initialized at the
beginning of the program. The initial value loaded into the index register
should be one more than the value loaded into the stack pointer, which
is easily accomplished by executing the TSX instruction immediately
after initializing the stack pointer.

In summary, the use of the rtdx and rtdy macros are convenient in that
they remove both parameters and local variables passed to subroutines.
However, their use will cost three extra instructions in subroutines that
do not have local variables or parameters but call subroutines that use
local variables or have parameters passed to them.

Examples Appendix A. Example Listings contains several examples that use the
techniques described to manage local storage, parameter passing, and
allocation/deallocation of stack frames.

rtdx macro
ldy :0+2,x ; Load the return address into the Y index register.
ldx :0,x ; restore the previous stack frame pointer.
txs ; Update the stack pointer, removing the storage space.
jmp 0,y ; Return to the calling routine.
endm

*
*
rtdy macro

ldx :0+2,y ; Load the return address into the X index register.
ldy :0,y ; restore the previous stack frame pointer.
tys ; Update the stack pointer, removing the storage space.
jmp 0,x ; Return to the calling routine.
endm

Listing 15. rtdx and rtdy Macros
AN1064

34
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Appendix A. Example Listings

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A. Example Listings

1 Include "Stack Macros"

2 ***

3 *

4 * Written By

5 * Gordon Doughman

6 *

7 *

8 *

9 * The author reserves the right to make changes to this file. Although this

10 * software has been carefully reviewed and is believed to be reliable, neither

11 * Freescale nor the author assumes any liability arising from its use. This soft-

12 * ware may be freely used and/or modified at no cost or obligation to the user.

13 *

14 * The following macros may be used to help in managing stack frames in

15 * M68HC11 programs. The macros were written for Micro Dialects µASM-HC11
16 * assembler that runs on the Macintosh but may be used with other assemblers

17 * with some modification. The following discussion of the way parameters are

18 * passed and referenced should help in the conversion process.

19 *

20 * Within a macro, parameters are referenced by using a colon (:) followed

21 * by a single decimal digit (0–9). Therefore, within the body of the macro

22 * the first parameter is referenced by using ’:0’, the second parameter is

23 * referenced by using ’:1’, and so forth. Parameter substitution is performed

24 * strictly on a textual substitution basis.

25 *

26 ***

27 *

28 * The link macro may be used to allocate a complete stack frame after entry

29 * into a subroutine. The link macro performs the following functions:

30 * 1) Saves the previous stack frame pointer; 2) Allocates the requested

31 * number of bytes of local storage; 3) Initializes a new stack frame pointer.

32 *

33 * Usage: link <s.f. reg>,<storage bytes>

34 *

35 * The first parameter passed to link is the index register that is being used

36 * as the stack frame pointer (either x or y). Although no check is made to

37 * ensure that a legal index register name is passed to the macro, the assembler

38 * will produce an "Unrecognized Mnemonic" error message when the macro is

39 * expanded. The second parameter is the number of bytes of local storage

40 * required by the subroutine.

41 *

42 ***

43 *

44 M link macro

45 M psh:0 ; Save the previous stack frame pointer.

46 M ts:0 ; Transfer the stack pointer into :0.

47 M xgd:0 ; Transfer :0 into D.

48 M subd #:1 ; subtract the required amount of local storage.

49 M xgd:0 ; Initialize the new stack frame pointer.

50 M t:0s ; Update the stack pointer with new value.

51 M endm

52 *

53 *
AN1064

35
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

54 ***

55 *

56 * The rtd (Return and Deallocate) macro may be used to partially deallocate

57 * a subroutine stack frame that includes parameters passed on the stack. The

58 * rtd macro performs the following functions: 1) Deallocates local storage;

59 * 2) Restores the previous stack frame pointer; 3) Returns to the calling

60 * routine. Rtd DOES NOT remove any parameters from the stack. This function

61 * must be performed by the calling routine. This macro is useful when

62 * parameters are passed in registers rather than on the stack.

63 *

64 * Usage: rtd <s.f. reg>,<storage bytes>

65 *

66 * The first parameter passed to link is the index register that is being used

67 * as the stack frame pointer (either x or y). Although no check is made to

68 * ensure that a legal index register name is passed to the macro, the assembler

69 * will produce an "Unrecognized Mnemonic" error message when the macro is

70 * expanded. The second parameter is the number of bytes of local storage

71 * used by the subroutine.

72 *

73 ***

74 *

75 M rtd macro

76 M ldab #:1 ; number of bytes to deallocate.

77 M ab:0 ; add it to the current stack frame pointer.

78 M t:0s ; deallocate storage by updating the stack pointer

79 M pul:0 ; restore the previous stack frame pointer

80 M rts ; return to the calling routine

81 M endm

82 *

83 *

84 ***

85 *

86 * The frtd (Function Return and Deallocate) macro may be used to partially

87 * deallocate a subroutine stack frame that includes parameters passed on

88 * the stack. The frtd macro performs the following functions: 1) Deallocates

89 * local storage; 2) Restores the previous stack frame pointer; 3) Returns

90 * to the calling routine. Frtd DOES NOT remove any parameters from the stack.

91 * This function must be performed by the calling routine. This macro is

92 * useful when parameters are passed in registers rather than on the stack and

93 * a value is being returned in the D-accumulator.

94 *

95 * Usage: frtd <s.f. reg>,<storage bytes>

96 *

97 * The first parameter passed to frtd is the index register that is being used

98 * as the stack frame pointer (either x or y). Although no check is made to

99 * ensure that a legal index register name is passed to the macro, the assembler

100 * will produce an "Unrecognized Mnemonic" error message when the macro is

101 * expanded. The second parameter is the number of bytes of local storage

102 * used by the subroutine.

103 *

104 ***

105 *

106 M frtd macro

107 M pshb ; save the lower byte of the return value.

108 M ldab #:1 ; number of bytes to deallocate.

109 M ab:0 ; add it to the current stack frame pointer.

110 M pulb ; restore the lower byte of the return value.

111 M t:0s ; deallocate storage by updating the stack pointer

112 M pul:0 ; restore the previous stack frame pointer.

113 M rts ; return to the calling routine.

114 M endm
AN1064

36
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Appendix A. Example Listings

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

115 *

116 *

117 ***

118 *

119 * The rtdx and rtdy (Return and Deallocate using x or y) macros may be used

120 * to completely deallocate a subroutine stack frame including parameters that

121 * were passed on the stack. The rtdx macro performs the following functions:

122 * 1) Deallocates the entire stack frame including local storage and passed

123 * parameters; 2) restores the previous stack frame pointer; and 3) Returns

124 * to the calling routine.

125 *

126 * Usage: rtdx <storage bytes>

127 * Usage: rtdy <storage bytes>

128 *

129 * The only parameter passed to the routines is the number of bytes of local

130 * storage that were originally allocated upon entry to the subroutine. These

131 * macros have the advantage that the a and b accumulators are not used during the

132 * deallocation process. This allows a value to be loaded into a, b, or d register

133 * before execution of the rtdx or rtdy macro and returned to calling routine.

134 *

135 ***

136 *

137 M rtdx macro

138 M ldy :0+2,x ; Load return address into the y-index register.

139 M ldx :0,x ; restore the previous stack frame pointer

140 M txs ; Update stack pointer, removing storage space.

141 M jmp 0,y ; Return to the calling routine.

142 M endm

143 *

144 *

145 M rtdy macro

146 M ldx :0+2,y ; Load return address into the x-index register.

147 M ldy :0,y ; restore the previous stack frame pointer.

148 M tys ; Update stack pointer, removing storage space.

149 M jmp 0,x ; Return to the calling routine.

150 M endm

151 *

152 *

153 ***

154 *

155 * The pshd macro pushes the 16-bit d-accumulator onto the stack. The

156 * b-accumulator is pushed first so that the least significant 8-bits of

157 * the 16-bit number appear on the stack at the higher address. This is

158 * consistent with the way all 16-bit numbers are stored in memory.

159 *

160 * Usage: pshd

161 *

162 * No parameters are required by the macro.

163 *

164 ***

165 *

166 M pshd macro

167 M pshb

168 M psha

169 M endm

170 *

171 *
AN1064

37
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

172 ***

173 *

174 * The puld macro pulls the top two bytes from the stack and places them in

175 * the 16-bit d-accumulator. The first byte pulled from the stack is placed

176 * in the a-accumulator; the second byte pulled from the stack is placed in

177 * the b-accumulator. The pull order is consistent with the way all 16-bit

178 * numbers are stored in memory.

179 *

180 * Usage: puld

181 *

182 * No parameters are required by the macro.

183 *

184 ***

185 *

186 M puld macro

187 M pula

188 M pulb

189 M endm

190 *

191 *

192 ***

193 *

194 * The clrd macro uses the clra and clrb instructions to clear the 16-bit

195 * d-accumulator.

196 *

197 * Usage: clrd

198 *

199 * No parameters are required by the macro.

200 *

201 ***

202 *

203 M clrd macro

204 M clra

205 M clrb

206 M endm

207 *

208 *

209 *

210 ***

211 *

212 * Written By

213 * Gordon Doughman

214 *

215 *

216 *

217 * The author reserves the right to makes changes to this file. Although this

218 * software has been carefully reviewed and is believed to be reliable, neither

219 * Freescale nor the author assumes any liability arising from its use. This soft-

220 * ware may be freely used and/or modified at no cost or obligation to the user.

221 *

222 *

223 *

224 ***

225 *

226 * This subroutine converts a 16-bit binary integer to a null terminated

227 * ASCII string. Three parameters are passed to the subroutine on the

228 * stack. The first parameter is the 16-bit binary number to be converted.

229 * The second parameter is the address of a buffer where the null terminated

230 * ASCII string will be placed. The buffer should be at least 7 bytes long.

231 * The third parameter is a boolean flag indicating whether the number passed

232 * in the first parameter is a signed or unsigned 16-bit number. If the byte
AN1064

38
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Appendix A. Example Listings

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

233 * flag is zero, the number is converted as an unsigned number. If the byte

234 * is non-zero, the number will be converted as a 16-bit signed number.

235 * Parameters are pushed onto the stack in the following order 1) Signed Flag;

236 * 2) Pointer to ASCII buffer; 3) Number to be converted. A typical

237 * calling sequence would be:

238 *

239 * clra ; Do the conversion as an unsigned number

240 * psha ; put the flag on the stack.

241 * ldd #Buffer ; get the address of the ascii buffer.

242 * pshd ; put the address on the stack.

243 * ldd Num ; Get the number to convert.

244 * pshd ; Put it on the stack

245 * jsr Int2Asc ; Go convert the number.

246 * .

247 * .

248 * .

249 *

250 * This subroutine has two local variables. The first, zs, is a boolean variable

251 * used to suppress leading zeros when doing a conversion. It is located at an

252 * offset of 0 from the stack frame pointer. The second local, Divisor, is a 16-

253 * bit variable. It is used to divide the number being converted by succeedingly

254 * lower powers of 10. Divisor is located at an offset of 1 from the local stack

255 * frame pointer.

256 *

257 * NOTE: This routine was written assuming that the previous stack frame pointer

258 * is the x-index register. HOWEVER, because the x-index register is required

259 * by the integer divide instruction, the y-index register is used as the

260 * stack frame pointer WITHIN the Int2Asc subroutine.

261 *

262 *

263 * Declare locals

264 *

265 0000 PCSave set * ; save the current PC value

266 0000 org 0 ; set PC to 0 for offsets to locals

267 0000 zs rmb 1 ; declare zs variable.

268 0001 Divisor rmb 2 ; declare Divisor variable.

269 0003 LocSize set * ; number of bytes of local storage.

270 0000 org PCSave

271 *

272 * Offsets to parameters

273 *

274 0007 Num equ LocSize+4 ; offset to Num parameter.

275 0009 BuffP equ LocSize+6 ; offset to BuffP parameter.

276 000B Signed equ LocSize+8 ; offset to Signed parameter.

277 *

278 0000 Int2Asc equ *

279 0000 3C [4] pshx ; save the previous stack frame pointer.

280 0001 CC2710 [3] ldd #10000 ; initialize the divisor to 10000.

281 0004 pshd

282 0004 37 [3] pshb

283 0005 36 [3] psha

284 0006 4F [2] clra ; initialize zs to 0.

285 0007 36 [3] psha

286 0008 1830 [4] tsy ; initialize the new stack frame pointer.

287 000A 18EC07 [6] ldd num,y ; get the number to convert. Is it zero?

288 000D 260B [3] bne Int2Asc1 ; no go do the conversion.

289 000F CC3000 [3] ldd #$3000 ; yes.

290 0012 CDEE09 [6] ldx BuffP,y ; point to the buffer.

291 0015 18ED00 [6] std 0,y ; just put an ASCII 0 in the buffer.

292 0018 2050 [3] bra Int2Asc5 ; then return.

293 001A 186D0B [7] Int2Asc1 tst Signed,y ; do the conversion as a signed number?
AN1064

39
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

294 001D 2716 [3] beq Int2Asc2 ; no.

295 001F 4D [2] tsta ; yes. Is the number negative?

296 0020 2A13 [3] bpl Int2Asc2 ; no. just go do the conversion.

297 0022 43 [2] coma ; yes. make it a positive number by negation.

298 0023 53 [2] comb

299 0024 C30001 [4] addd #$1

300 0027 18ED07 [6] std Num,y ; save the result

301 002A 862D [2} ldaa #’-’ ; get an ASCII minus sign.

302 002C CDEE09 [6] ldx BuffP,y ; point to the buffer.

303 002F A700 [4] staa 0,x ; put it in the buffer

304 0031 08 [3] inx ; point to the next location in the buffer.

305 0032 CDEF09 [6] stx BuffP,y ; save the new pointer value.

306 0035 18EC07 [6] Int2Asc2 ldd Num,y ; get the remainder to convert.

307 0038 CDEE01 [6] ldx Divisor,y

308 003B 02 [41] idiv

309 003C 18ED07 [6] std Num,y ; save the remainder.

310 003F 8F [3] xgdx ; put the dividend into d.

311 0040 5D [2] tstb ; was the dividend 0?

312 0041 2605 [3] bne Int2Asc3 ; no. go store the number in the buffer

313 0043 186D00 [7] tst zs,y ; are we still suppressing leading zeros?

314 0046 2710 [3] beq Int2Asc4 ; yes. go setup for the next divide.

315 0048 CB30 [2] Int2Asc3 addb #’0’ ; make the dividend ASCII.

316 004A 8601 [2] ldaa #1

317 004C 18A700 [5] staa zs,y ; don’t suppress leading zeros anymore.

318 004F CDEE09 [6] ldx BuffP,y ; get a pointer to the buffer.

319 0052 E700 [4] stab 0,x ; save the digit.

320 0054 08 [3] inx ; point to the next location.

321 0055 CDEF09 [6] stx BuffP,y ; save the new pointer value.

322 0058 18EC01 [6] Int2Asc4 ldd Divisor,y ; get the previous divisor.

323 005B CE000A [3] ldx #10

324 005E 02 [41] idiv ; divide it by 10.

325 005F CDEF01 [6] stx Divisor,y ; save the dividend. Is it zero?:

326 0062 26D1 [3] bne Int2Asc2 ; no. continue with the conversion.

327 0064 CDEE09 [6] ldx BuffP,y ; get a pointer to the buffer.

328 0067 6F00 [6] clr 0,x ; null terminate the string.

329 0069 30 [3] tsx ; this is only needed because we are using y as
our sf pointer.

330 006A Int2Asc5 rtdx LocSize ; return & deallocate locals & parameters

331 006A 1AEE05 [6] ldy LocSize+2,x ; Load the return address into y-index register.

332 006D EE03 [5] ldx LocSize,x ; restore the previous stack frame pointer.

333 006F 35 [3] txs ; Update stack pointer, removing storage space.

334 0070 186E00 [4] jmp 0,y ; Return to the calling routine.

335 *

336 *

337 *

338 ***

339 *

340 * This subroutine performs a 16 x 16 bit unsigned multiply and produces a 32-bit

341 * result. Two 16-bit numbers are passed to the subroutine on the stack.

342 * The 32-bit result is returned on the stack in place of the two 16-bit

343 * parameters. This allows the calling routine to easily pull the product

344 * from the stack and store the result. Because multiplication is a

345 * commutative operation, the order in which the parameters are pushed

346 * onto the stack is unimportant. A typical calling sequence would be:

347 *

348 * ldd Num1

349 * pshd

350 * ldd Num2

351 * pshd

352 * jsr Mul16x16

353 * puld
AN1064

40
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Appendix A. Example Listings

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

354 * std Result32

355 * puld

356 * std Result32+2

357 * .

358 * .

359 * .

360 *

361 * This subroutine has four local variables. Each variable occupies 1 byte

362 * on the stack. These four bytes are used to hold the partial product as

363 * the final answer is being computed. These four byte variables are

364 * treated as 16-bit variables during the calculation.

365 *

366 * NOTE: This routine was written assuming that the stack frame pointer

367 * is the x-index register.

368 *

369 * Declare locals

370 *

371 0073 PCSave set * ; save the current PC value

372 0000 * org 0 ; set PC to 0 for offsets to locals

373 0000 Prd0 rmb 1 ; declare ms byte of partial product variable.

374 0001 Prd1 rmb 1 ; declare next ms byte of partial product variable

375 0002 Prd2 rmb 1 ; declare next ls byte of partial product variable

376 0003 Prd3 rmb 1 ; declare ls byte of partial product variable.

377 0004 LocSize set * ; number of bytes of local storage.

378 0073 org PCSave

379 *

380 * Offsets to parameters

381 *

382 0008 Fact1 equ LocSize+4 ; offset to factor 1 parameter.

383 000A Fact2 equ LocSize+6 ; offset to factor 2 parameter.

384 *

385 cycles clear

386 *

387 0073 Mul16x16 equ *

388 0073 3C [4] pshx ; save the previous stack frame pointer.

389 0074 clrd ; clear the d-accumulator.

390 0074 4F [2] clra

391 0075 5F [2] clrb

392 0076 pshd ; allocate & initialize the locals prd0 - prd3

393 0076 37 [3] pshb

394 0077 36 [3] psha

395 0078 pshd

396 0078 37 [3] pshb

397 0079 36 [3] psha

398 007A 30 [3] tsx ; initialize the new stack frame pointer.

399 007B A609 [4] ldaa Fact1+1,x ; get the ls byte of factor 1.

400 007D E60B [4] ldab Fact2+1,x ; get the ls byte of factor 2.

401 007F 3D [10] mul ; multiply them.

402 0080 ED02 [5] std Prd2,x ; save the first term of the partial product.

403 0082 A608 [4] ldaa Fact1,x ; get the ms byte of factor 1.

404 0084 E60B [4] ldab Fact2+1,x ; get the ls byte of factor 2.

405 0086 3D [10] mul ; multiply them.

406 0087 E301 [6] addd Prd1,x ; add the result into the partial product.

407 0089 ED01 [5] std Prd1,x ; save the result.

408 008B A609 [4] ldaa Fact1+1,x ; get the ls byte of factor 1.

409 008D E60A [4] ldab Fact2,x ; get the ms byte of factor 2.

410 008F 3D [10] mul ; multiply them.

411 0090 E301 [6] addd Prd1,x ; add the result into the partial product.

412 0092 ED01 [5] std Prd1,x ; save the result.

413 0094 2402 [3] bcc Mul16 ; Was there a carry into Prd0?

414 0096 6C00 [6] inc Prd0,x ; yes. ’add’ it in.
AN1064

41
For More Information On This Product,

 Go to: www.freescale.com

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

415 0098 A608 [4] Mul16 ldaa Fact1,x ; get the ms byte of factor 1.

416 009A E60A [4] ldab Fact2,x ; get the ms byte of factor 2.

417 009C 3D [10] mul ; multiply them.

418 009D E300 [6] addd Prd0,x ; add it to the partial product.

419 009F ED08 [5] std Fact1,x ; overwrite the two parameters with the result.

420 00A1 EC02 [5] ldd Prd2,x

421 00A3 ED0A [5] std Fact2,x

422 00A5 rtd x,LocSize ; return and deallocate the locals.

423 00A5 C604 [2] ldab #LocSize ; number of bytes to deallocate.

424 00A7 3A [3] abx ; add it to the current stack frame pointer.

425 00A8 35 [3] txs ; deallocate storage by updating stack pointer.

426 00A9 38 [5] pulx ; restore the previous stack frame pointer.

427 00AA 39 [5] rts ; return to the calling routine.

429 cycles total=170 ; Total number of E cycles for a 16 x 16 multiply.

430 *

431 *

432 ***

433 *

434 * This subroutine performs a 32 by 16 bit unsigned divide and produces a 32-bit

435 * quotient and a 16-bit remainder. Both the divisor and dividend are passed to

436 * the subroutine on the stack. The 32-bit quotient and 16-bit remainder are

437 * returned on the stack in place of the divisor and dividend. This allows the

438 * calling routine to easily pull the answer from the stack and store the result.

439 * The divisor is pushed onto the stack first, followed by the lower 16-bits of

440 * the dividend and finally the upper 16-bits of the dividend. A typical calling

441 * sequence would be:

442 *

443 * ldd Divisor

444 * pshd

445 * ldd Dividend+2

446 * pshd

447 * ldd Dividend

448 * pshd

449 * jsr Div32x16

450 * puld

451 * std Quotient

452 * puld

453 * std Quotient+2

454 * puld

455 * std Remainder

456 * .

457 * .

458 * .

459 *

460 *

461 * This subroutine has two local variables. A 32-bit variable for partial

462 * quotient results that is treated as two 16-bit variables and a 16-bit

463 * variable for intermediate remainder results.

464 *

465 * NOTE: This routine was written assuming that the previous stack frame pointer

466 * is the x-index register. HOWEVER, because the x-index register is required

467 * by the integer and fractional divide instructions, the y-index register is

468 * used as the stack frame pointer WITHIN the Div32x16 subroutine.

469 *

470 * Declare locals

471 *

472 00AB PCSave set * ; save the current PC value.

473 0000 org 0 ; set PC to 0 for offsets to locals.

474 0000 Quo0 rmb 2 ; declare upper 16-bits of quotient.

475 0002 Quo2 rmb 2 ; declare lower 16-bits of quotient.

476 0004 Rem rmb 2 ; declare remainder.
AN1064

42
For More Information On This Product,

 Go to: www.freescale.com

Application Note
Appendix A. Example Listings

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

477 0006 LocSize set * ; number of bytes of local storage.

478 00AB org PCSave

479 *

480 * Offsets to parameters

481 *

482 000A Num0 equ LocSize+4 ; upper 16-bits of Dividend.

483 000C Num2 equ LocSize+6 ; lower 16-bits of Dividend.

484 000E Denm equ LocSize+8 ; 16-bit divisor.

485 *

486 cycles clear

487 *

488 00AB Div32x16 equ *

489 00AB 3C [4] pshx ; save the previous stack frame pointer.

490 00AC clrd ; clear the d-accumulator

491 00AC 4F [2] clra

492 00AD 5F [2] clrb

493 00AE pshd ; allocate & initialize the locals.

494 00AE 37 [3] pshb

495 00AF 36 [3] psha

496 00B0 pshd

497 00B0 37 [3] pshb

498 00B1 36 [3] psha

499 00B2 pshd

500 00B2 37 [3] pshb

501 00B3 36 [3] psha

502 00B4 1830 [4] tsy ; initialize y as the new stack frame pointer.

503 00B6 18EC0A [6] ldd Num0,y ; load the upper 16-bits of the dividend.

504 00B9 CDA30E [7] cpd Denm,y ; is the divisor>the upper 16-bits of dividend?

505 00BC 2507 [3] blo Div32x16a ; yes. use a fractional divide on initial value.

506 00BE CDEE0E [6] ldx Denm,y ; load the divisor into x.

507 00C1 02 [41] idiv ; divide the upper 16 bits by the divisor.

508 00C2 CDEF00 [6] stx Quo0,y ; save the partial quotient.

509 00C5 CDEE0E [6]Div32x16a ldx Denm,y ; load the divisor into x.

510 00C8 03 [41] fdiv ; resolve remainder into a 16-bit fractional part.

511 00C9 CDEF02 [6] stx Quo2,y ; save the partial result.

512 00CC 18ED04 [6] std Rem,y ; save the remainder of the fractional divide
(partial remainder).

513 00CF 18EC0C [6] ldd Num2,y ; get the lower 16-bits of the dividend.

514 00D2 CDEE0E [6] ldx Denm,y ; get the denominator again.

515 00D5 02 [41] idiv ; resolve the remaining quotient.

516 00D6 18E304 [7] addd Rem,y ; add the previous remainder to this remainder.

517 00D9 18ED04 [6] std Rem,y ; save the total remainder.

518 00DC 8F [3] xgdx ; put last partial quotient into d-accumulator...

519 ; & save the total remainder in x.

520 00DD 18E302 [7] addd Quo2,y ; add partial quotient to the lower 16-bits of the
quotient.

521 00E0 18ED0C [6] std Num2,y ; save the result.

522 00E3 18EC00 [6] ldd Quo0,y ; get the upper 16-bits of the quotient.

523 00E6 C900 [2] adcb #0 ; add the possible carry to the lower 8-bits.

524 00E8 8900 [2] adca #0 ; add the possible carry to the upper 8-bits.

525 00EA 18ED0A [6] std Num0,y ; save the result.

526 00ED 8F [3] xgdx ; get the total remainder back into d.

527 00EE CDA30E [7] cmpd Denm,y ; is the total fractional remainder > the divisor?

528 00F1 2519 [3] blo Div32x16b ; no. we’re finished.

529 00F3 18A30E [7] subd Denm,y ; yes. It will be < than 2 * Divisor.

530 00F6 18ED04 [6] std Rem,y ; save the final remainder.

531 00F9 18EC0C [6] ldd Num2,y ; now we must add 1 to the 32-bit quotient.

532 00FC C30001 [4} addd #1 ; add 1 to the lower 16-bits.

533 00FF 18ED0C [6] std Num2,y ; save the result.

534 0102 18EC0A [6] ldd Num0,y ; get the upper 16-bits.

535 0105 C900 [2] adcb #0 ; add the possible carry to the lower 8-bits.
AN1064

43
For More Information On This Product,

 Go to: www.freescale.com

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

536 0107 8900 [2] adca #0 ; add the possible carry to the upper 8-bits.

537 0109 18ED0A [6] std Num0,y ; save the result.

538 010C 18EC04 [6]Div32x16b ldd Rem,y ; get the final remainder.

539 010F 18ED0E [6] std Denm,y ; overwrite the divisor.

540 0112 30 [3] tsx ; need to do this for rtd to work correctly. See
NOTE.

541 0113 rtd x,LocSize ; deallocate locals & return.

542 0113 C606 [2] ldab #LocSize ; number of bytes to deallocate.

543 0115 3A [3] abx ; add it to the current stack frame pointer.

544 0116 35 [3] txs ; deallocate storage by updating stack pointer.

545 0117 38 [5] pulx ; restore the previous stack frame pointer.

546 0118 39 [5] rts ; return to the calling routine.

547 *

548 cycles total=347 ; Total number of E cycles for a 32 x 16 divide.

549 *

Errors: None

Labels: 30

Last Program Address: $0118

Last Storage Address: $FFFF

Program Bytes: $0119 281

Storage Bytes: $000D 13

For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	M68HC11 Stack Operation
	Stack Usage
	Variables in Assembly Language
	Variables in Block-Structured High-Level Languages
	Passing Parameters
	Function/ Subroutine Return Values

	Using the M68HC11 Stack
	Passing Parameters
	Allocating Local Variables
	Creating a Complete Stack Frame
	Accessing Parameters and Local Variables
	Deallocating the Stack Frame
	Support Macros
	Examples

	Appendix A. Example Listings

