
AN1067/D
Rev. 1, 5/2002

Pulse Generation
and Detection
with Microcontroller Units

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

n
c

..
.

By Mike Pauwels

Introduction

This application note examines two common interfaces between
microcontroller units (MCUs) and external circuitry:

• Pulse generation
• Pulse detection

Several families of Freescale MCUs and a variety of pulse applications are
considered. Code segments and listings are also included.

Pulse Generation

MCUs are often required to generate timed output pulses (i.e., signals asserted
for a specified period of time). The application can be strobing a display latch,
transmitting a code, or metering a reagent in a process control system.
However, each application has specific requirements for pulse duration and
accuracy. This application note examines methods of generating these pulses
in relationship to timing accuracy, coding efficiency, and other controller
requirements.

The following paragraphs describe the timing of the signals (start time and
duration of the pulse). All pulses can be divided into three basic classifications:

• Short pulses
• Long pulses
• Easy pulses

Each class of pulse is considered using three MCUs with different timer
structures.

On the low end of the scale is the MC68HC05J1. The simple timer in this device
limits the accuracy of short pulses and requires a larger amount of software
investment to produce a given pulse. The second MCU, the MC68HC705C8
and similar devices, has a 16-bit timer that is somewhat more powerful and

For More Information On This Product,

 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

flexible than the MC68HC05J1 timer. Finally, the MC68HC11A8 offers
additional features in the 16-bit timer system, as well as the possibility of
producing multiple pulses simultaneously.

Because time measurements are being considered, the clock frequency for the
MCU is significant. For this discussion, each MCU is assumed to be operating
at 2.0 MHz internal, implying a 4.0 MHz crystal for the M68HC05 and an
8.0 MHz crystal for the MC68HC11A8. The maximum speeds of these devices
is somewhat higher, but these are commonly used values. Of course, these
MCUs can all be operated at much slower clock speeds. All times should be
scaled to the actual clock frequency.

Short Pulses The classification of short pulses may vary according to the accuracy of the
required pulse and the available MCU resources. In general, pulses of a few
tens of microseconds and longer are relatively easy to produce. Below this
broad limit, the methods used to generate short pulses may vary greatly
according to the specific requirements. To produce a strobe pulse whose
minimum required duration is in the order of magnitude of the clock period only
requires writing a port bit high, then low in consecutive operations.

PULSE BSET BIT0,PORTA
BCLR BIT0,PORTA

This produces a pulse duration of 2.5 µs in the M68HC05, and 3.0 µs in the
MC68HC11A8. The longer time in the MC68HC11A8 is a consequence of a
longer BSET/BCLR instruction formation — three bytes versus two bytes in the
M68HC05. This is compensated for by the ability to set and clear multiple bits
in one instruction. However, the MC68HC11A8 provides for a 0.5 µs minimum
pulse by using the resources of two timer compare registers.

If the requirement for the pulse is longer than 2 µs, the above pair of instructions
can be separated by no operation (NOP) instructions or even by useful
instructions to stretch to the desired pulse width. There are two problems with
this option. First, padding the instructions with NOPs consumes MCU
resources. If there is some task that the MCU can accomplish between the set
and clear, this is not too serious. More difficult is the possible requirement that
the pulse duration be run time variable. The flexibility of the busy wire pulse
timing can be extended by adding a loop.

SETUP LDA DURATION
PULSE BSET BIT0,PORTA
LOOP DECA

BNE LOOP
BCLAR BIT0,PORTA
2 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Pulse Generation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The duration of the pulse is:
2.5 + 3.8 * DURATION µs for the M68HC05

and
3.0 + 2.5 * DURATION µs for the MC68HC11A8

Of course the previous code could be padded with any number of NOPs at
1.0 µs or with branch never (BRNs) at 1.5 µs either inside or outside the timing
loop for more precise values. However, the variable resolution is 2.5 or 3.0 µs

NOTE: In these cases, the on-board timers were not used. In the case of these short
pulses, the overhead of setting up and reading the timers would be about as
long as the pulse being driven. When the required pulse width is long enough
to use the timer, easy pulses are produced.

Easy Pulses To produce a 10 ms pulse with the MC68HC11A8 controller, force an output
compare pin high and read the timer (in an uninterrupted sequence). Add the
10 ms to the timer value and store the result in the corresponding output
compare register. Next, write the corresponding output level (OLVL) bit to 0 and
enable the interrupt (if desired). The pulse completes automatically.

Three questions arise:
1. What is the shortest pulse that can be produced in this manner?
2. What considerations must be made in the MC68HC705C8 timer which

does not have a force register?
3. What is the equivalent procedure for the MC68HC05J1 timer?

In the MC68HC11A8, two output compare registers can be combined to drive
a single output. The elapsed time between the two events can be as little as
one clock time: 0.5 µs if the prescaler is 1. The code is as follows:

PULSE LDD TIMER
ADDD #50 Delay start of pulse

*
* The delay is selected according to
* timer prescaler, interrupts, etc.
* (min 33)
*

STD TOC1
ADDD #1 Pulse Width
STD TOC2
LDAA #$40 Drive A6 High
STAA OC1M
STAA OC1D
LDAA #$80
STAA TCTL1 Drive A6 Low

*
* ENABLE INTERRUPT, ETC
*

Pulse Generation and Detection with Microcontroller Units 3

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

With the MC68HC705C8 timer system, there is no force bit for compare. The
only way to drive the timer compare (TCMP) line high is to set the OLVL bit in
the timer control register (TCR) and wait for a match. The exact start time of the
pulse is easily obtained from the output compare register (OCR), so pulse
accuracy is unaffected for moderate pulses. Often the pulse is started as soon
as possible, if for no other reason than to complete the pulse setup routine. The
following code segment provides a pulse start in 12 µs, assuming no interrupts.

*
* START THE PULSE
*

BSET OLVL,TCR
* OUTPUT_COMPARE: = TIMER + DELAY

LDX ACHR MUST BE READ FIRST
LDA ACLR TIMER = X:A
ADD $DELAY
BCC OC1 MARK TIME
INCX

OC1 STX OCHR INHIBITS TOC
STA OCLR ENABLES TOC

*
* IF DELAY IS CORRECT, PULSE WILL
* TURN ON IMMEDIATELY

Using a value for DELAY of about 21 (cycles) results in an average latency of
12 µs after the beginning of this routine.

NOTE: Loads and stores to the 16-bit registers are always performed high byte first to
take advantage of special hardware that maintains coherency in 16-bit data
transfers. The pulse will turn on 1 µs later when there is a carry out of the low
byte add, which should occur about 1 in 12 times.

The programing of a moderate length pulse is now quite trivial. Simply add the
desired pulse width (at 2 µs per bit) to the value stored in the output compare.
Write a new value to the OCR and set the OLVL bit to 0. The following is used
to finish code segment.

*WAIT FOR PULSE TO BE SET
HERE BRCLR OCF,TSR,HERE

LDA PW_L PULSE WIDTH LS BYTE
ADD OCLR
TAX TEMPORARILY
LDA PW_H PULSE WIDTH MS BYTE
ADC OCHR INCLUDES CARRY
STA OCHR INHIBITS TOC
STX OCLR

*
*DONE!

The interrupt structure is not required to generate pulses. The 16-bit timers on
the MC68HC11A8 and the MC68HC705C8 will automatically drive the falling
edge of these pulses without software intervention. On the MC68HC05J1,
4 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Pulse Generation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

there is no hardware timer interface. To drive moderate length pulses with this
device, employ the interrupts so that useful work can be performed while the
pulse is being timed. Consider a 10 ms pulse using the MC68HC05J1.

The simple timer of the MC68HC05J1 provides only the capability of being
interrupted periodically. The source of interrupt can be a timer overflow or a
real-time interrupt (RTI). The choice of interrupt times is given in Table 1.

Consider the algorithm for the timing of a pulse as counting “ticks” on a clock.
Initially, it seems the ticks of the timer must be counted — 5,000 ticks (2 µs per
tick) for the desired period of 10 ms. However, the timer overflow and real-time
interrupts of the MC68HC05J1 provide long ticks that sound their completion
with interrupts. Instead of 5,000 short ticks, count as follows:

1 RTI tick of 8,192 µs = 8,192
3 TOF ticks at 512 µs = 1,536
544 cycles of 0.5 µs = 272

TOTAL 10,000

= 10.000 ms

For most of this time background tasks can continue processing. The 544
cycles of busy-wait time include necessary work to set up the pulses. The key
problem is the required timing of the start of the pulse. If the start time is flexible
the design of the pulse could follow the pattern of Figure 1.

Figure 1. Time Line for a 10 ms Pulse with Flexible Start Time

Table 1. RTI and COP Rates (fOP = 2 MHz)

RT1/RT0 RTI COP

0 0 8.2 ms 57.3 ms

0 1 16.4 ms 114.7 ms

1 0 32.8 ms 229.4 ms

1 1 65.5 ms 458.8 ms

START PULSE STOP PULSE

VARIABLE DELAY < 8.192 ms

RTI

8.192 ms

TOF TOFTOF

BUSY WAIT

512 µs512 µs

272 µs

512 µs

10 ms
Pulse Generation and Detection with Microcontroller Units 5

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Start the pulse on the next RTI service routine, then count timer overflow flags
(TOFs) after the next RTI until the final sequence, which is timed by a busy-wait
counter. Careful calculation of the latencies and instruction cycles produces a
pulse with a high degree of accuracy.

When the start time is not as flexible, a different approach is necessary. Since
it is now impossible to align the RTI boundaries with the pulse, use only the
TOF ticks to time the pulse. To turn the pulse on as soon as possible, read the
value of the timer at turn on. Calculate the time until the next overflow, add the
predicted turn off execution time, and then determine how many full TOF
periods are in the remainder. After subtracting these long ticks, the remaining
value is the busy wait. A time line for this approach is given in Figure 2.

Figure 2. Time Line for a 10 ms Pulse with Flexible Start Time

Since an interrupt occurs every 512 µs, the performance of the MCU degrades
slightly — about 10% versus 1% for the first approach. The following code
yields a 10.0 ms pulse on port A1, with a latency of 2.5 µs after the code is
entered.

* ASSUME THE DESIRED PULSE WIDTH,
* RESOLVED TO 2 µs PER BIT,
* IS STORED IN A TWO-BYTE LOCATION
* LABELED: PW_H:PW_L. FOR A
* PULSE WIDTH OF 10 ms THIS
* VALUE WOULD BE $1388

* TURN ON THE PULSE

START BCLR TOF,TCSR
LDA TIMER
BSET BIT0,PORTA
COMA = TIME REMAINING
SBA PW_L LOW BYTE OF PULSE
BCC PW1
DEC PW_H BORROW 1

START PULSE STOP PULSE

VARIABLE DELAY = D < 5.12 µs

TOF
TOFTOF

BUSY WAIT = 784 µs-D

10 ms

PULSE
REQUIRED

START PULSE

512 µs x 18 = 9.216 ms

TOF TOF TOF TOF TOF TOF TOF TOF TOF TOF TOF TOF TOF TOF TOF TOF
6 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Pulse Generation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PW1 LDX #$AA
MUL RE-SCALE LOW BYTE TO
STX PW_L ... 3 µs PER BIT
BSET TOFE,TCSR
CLI

*
* THE TIMER INTERRUPT DOES THE REST
* OF THE WORK:
*
TOFI DEC PW_H

BNE END_T
LDA PW_L
BEQ PLS_L

LOOP DECA
BNE LOOP

PLS_L BCLR BIT0,PORTA
END_T RTI

There will be some small inaccuracies due to latency of the interrupt and border
conditions for the pulse width. The pulse can be refined, but if one-clock
precision is required, choose another processor.

Long Pulses The idea of using the interrupt structure to count long “ticks” can be expanded
beyond one byte. If a two-byte decrement is performed in the previous
MC68HC05J1 example, pulses up to 30 seconds in length can be generated.
The inaccuracies are the same in absolute terms as for the shorter pulses;
therefore, the percent of error is much smaller.

The same approach is used to expand the pulse width that can be generated
by the 16-bit timers in the MC68HC705C8 and the MC68HC11A8 processors.
With the help of the output compare function, one-tick accuracy with very long
pulses is possible. The accuracy of the output is determined only by the
accuracy of the crystal. The code listed in Appendix A — TTL Long Pulse
Generation has been tested in an MC68HC05C4 and produced pulses in the
order of one minute with an accuracy of one part per million. Code to generate
long pulses with an MC68HC11A8 is similar. Since the timer interrupts are used
to count the ticks, most of the MCU resources are available to do background
tasks. For example, the timer interrupt routine consumes less than 25 µs every
131 ms. This represents about 0.2% of the processing power of the MCU. The
actual code takes about 200 bytes of memory. The pulse will be precise if the
interrupts are not masked for more than about 130 ms at a time. Beyond the
limit, whole ticks of 131 ms will be added.

Finally, the MC68HC11A8 timer system provides for two timer output functions
to drive a single pin. With this MCU, the start time and end time of the pulse can
be driven independently with differences of as little as one count between the
two pulse edges.
Pulse Generation and Detection with Microcontroller Units 7

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Summary of Pulse
Generation

Many MCU systems interface to hardware systems by means of timed pulses.
Modern MCUs handle these pulses in three different ways depending on the
hardware timing structure available and the length of the pulse.

Short pulses, ranging in length from as short as a microsecond to a few tens of
microseconds, are usually timed with “busy wait” loops. There is simply not
enough time to set up a peripheral to control a pulse of short duration. The
accuracy and resolution of these pulses is determined in part by the discrete
execution time of branch instructions in the controller. The M68HC11 can drive
a pulse as short as a microsecond, resolved to a microsecond, by using the
resources of two timer compare registers.

Moderate length pulses are simple to drive automatically using the 16-bit timer
available in the MC68HC11A8 and many of the M68HC05 MCUs. These are
set-and-forget systems that run to completion typically in 131 ms. In the simpler
M68HC05 MCUs, there is no 16-bit timer, and the moderate length pulses must
use the timer overflow interrupt to count out large chunks of the pulse time while
some background task is being performed.

The approach is similar in MCUs with the 16-bit timer when the desired pulse
is greater than 131 ms. Multiple timer overflows can be counted in a few
memory locations to produce very long pulses.

For more complex timing functions, a system may require a separate timing
processor. In some complex control applications, an MC68HC11A8 or an
M68HC05 is employed as a peripheral timer to a larger computational engine.
A variation of this theme is the time processing unit (TPU) in the MC68332. This
complex timing system can perform several different functions on 16 different
channels simultaneously, independent of the main processor. Information on
the MC68332 is available from your Freescale Sales Office.

Pulse Detection

Another system problem encountered when applying an MCU to a physical
system is the detection and measurement of pulses. These can range from the
actuation of a push button to pulse codes detection, detection of the period of
rotation of an engine, and accumulation of the ‘on’ time of a process control
valve. The periods can range from microseconds to minutes, hours, or more.

There are several parameters that characterize a pulse, as Figure 3 illustrates.
As far as a digital system is concerned, most of these parameters cannot be
measured directly by a digital device such as an MCU. Indeed, some
parameters such as the voltage level must be modified before the pulse is
applied to the MCU. If the values of these parameters are interesting to the
system, then an external device such as an analog-to-digital converter is
required. Other parameters may not be measurable by the MCU, including the
signal rise and fall times and the presence of noise on the signal.
8 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Pulse Detection

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. Characteristics of a Pulse

Digital pulses convey information only in the timing of their signals, assuming
that all voltage signals vary between VSS and VDD, and that rise and fall times
are sufficiently fast to be unambiguous to the processor. The parameters of
interest are the start time and duration of the pulse. Noise, if it exists, is
interesting only to the extent that it can be seen by the controller, and in that
case, provision must be made to reduce its effects.

There remains one significant question to address before software design can
commence. What is the expected duration range of the pulse? There are no
effective maximum limits on the duration which can be measured; but very
short pulses may require the support of on-chip or off-chip hardware. A related
characteristic is the start time of the pulse, measured from some reference.
This can be thought of as the measurement of a pulse off time, and hence is
not significantly different from the duration measurement. Also important is the
required accuracy of the measurement, specified in absolute or relative terms.

One important choice the designer makes in addressing system problems is
the type of MCU that will be used. Most MCUs have some sort of timing device
on chip. Within the five basic families of Freescale processors are several timer
variations. These range from the simple counter in theMC68HC05J1 to the
sophisticated TPU of the MC68332. The former is useful only for the simplest
requirements, while the latter can measure pulses accurately without
intervention of the CPU.The choice of most applications is usually between an
M68HC11 and one of the large family of M68HC05 devices.

VHigh

VLow

tRise tFall

PULSE DELAY

PULSE WIDTH
Pulse Generation and Detection with Microcontroller Units 9

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The timer on the MC68HC11A8 provides as many as four hardware input
signals with several hardware registers to measure input events. By combining
two input capture functions, or by using the clock gate input of the
MC68HC11A8, many pulse measurement problems are easily solved. It is
more difficult to address the problems with the 16-bit timer system found on the
most popular MCU family, the M68HC05.

Consider the accuracy limitations of the MC68HC(7)05Cx 16-bit timer. The
timer counter itself is incremented once for every eight cycles of the MCU
crystal frequency. A 4.0-MHz crystal provides a count resolution of 2 µs. With
short pulses, this resolution may be a contributor to accuracy limitations. For
example, measuring a 50 µs pulse, this resolution will produce a count of 25
with a 1-bit quantizing error, an uncertainty of 4%. However, in measuring a one
minute pulse, the quantizing error is 0.0000033%,

In the case of the longer pulses, the accuracy of the crystal can contribute far
more to the loss of precision. A limited sampling of clock frequencies on
M68HC05 evaluation modules indicates that typical crystals may produce
errors of 0.001%. While crystals can be selected or trimmed to much higher
accuracy, it is important not to specify accuracies from the software that cannot
be supported by the hardware.

Consider four general classes of pulses to detect:
1. Very fast pulse, say 20 µs or less
2. Longer pulses up to 130 ms
3. Long pulses
4. Noisy pulses

The second class is almost trivial with the TCAP feature of the M68HC05.
Indeed, these are the most common class of pulses, and the hardware does
almost all of the work. These are considered a special case of the third class of
pulses. The other three classes require a bit more study.

Short Pulses To measure very fast pulses with the M68HC05, it is necessary to deal with the
interrupt latency which can be as much as 10 µs. If an IRQ is triggered on the
start of the pulse, the pulse may have ended by the time code is executed in
the interrupt routine. Accuracy is limited by the latency of the system. An
example of the code necessary to measure these pulses is given below.

INTRUPT:
CLRA
BIL END_PULS

T_LOOP: INCA COUNT LOOPS
A: BIH T_LOOP

END_PULS .
* .
*

10 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Pulse Detection

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

After the pulse is driven low on the IRQ line, the timed wait is executed for the
rising edge which enables detection of a very short pulse. At END_PULS, the
accumulator has a measurement of the length of the pulse resolve to 3 µs per
bit. Assuming the interrupts are not masked the worst case time to get to point
A the first time is 13.4 µs (11.5 µs if MUL is not used in the background). The
fastest time is 9 µs. Any pulse shorter than this will result in a zero time value.
If the pulse value is greater than zero, the pulse width is 3 µs times the
accumulator value plus a latency time of 9–13.5 µs. Finally, the longest pulse
time that this routine can reasonably measure before the accumulator will
overflow is about 770 µs. The interpretation of the result is left to the user.

If a short pulse is brought in on the TCAP line, there is additional latency to
consider. If there is sufficient time to reverse the IEDG bit and clear the ICF
(minimum about 20 µs), this is a class 2 pulse. If the pulse is shorter than this,
the input capture function may miss the second edge. Unlike the MC68HC11A8
input capture functions, the M68HC05 timer pin (TCAP) is not directly
detectable. Precautions must be taken in the hardware design if very short
pulses are possible. For example, a port line could be wired to the TCAP pin
and the state of the pin could be tested with a BRSET/BRCLR. The minimum
resolvable pulse length is still no better than the IRQ driven case. However,
using the TCAP input offers capability to measure pulses of either polarity up
to 131 ms in length and with a resolution of 2 µs.

Of course, if the pulse is expected to be short and the start time can be
predicted, a busy wait can be executed for both ends of the pulse. In this case
it is necessary to continually test the state of the input pin and branch
accordingly. For example, if the expected pulse length is between 5 µs and
100 µs, execute a string of tests as shown below.

PULSE:
CLRA

PO BRCLR PIN,PORT,P0 WAIT FOR THE FIRST EDGE
BRSET PIN,PORT,P1 ACTUALLY USING THE CODE TO

MEASURE
BRSET PIN,PORT,P2
.
.
.
BRSET PIN,PORT,PN
INCA

PN INCA
.
.
.

P2 INCA
P1 INCA
*
* ACC CONTAINS PULSE WIDTH OF 2.5 µs
* PER BIT
Pulse Generation and Detection with Microcontroller Units 11

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This code yields a resolution of 2.5 µs for any pulse down to 2.5 µs. Below that,
the pulse may be missed. As the expected pulse length gets larger, this code
becomes unwieldy and finally impossible.

The addition of an instruction loop shortens the code at the expense of
resolution.

PULSE:
CLRA

PO BRCLR PIN,PORT,P0
P1 INCA

BRSET PIN,PORT,P1
*
* ACC CONTAINS PULSE AT 4 µs PER BIT
*

For longer (class 2) pulses, use the input capture register of the timer to do all
the work. Where the pulse is more than a few tens of microseconds long, the
interrupt structure works well to measure the pulse within the accuracy of the
crystal. The rising edge of the pulse triggers a first interrupt, and the service
routine enables the interrupt on the falling edge. By reading the input capture
register on each edge, the exact pulse length can be measured. This class of
pulses is included in a special case of the long pulses shown below.

Longer Pulses What if the pulse length exceeds the rollover time of the timer? By counting the
rollovers, a pulse of arbitrary length can be measured. Consider the possibility
of a 60 second pulse that must be detected and measured accurately. If the
timer counts 2 µs per bit, 30 million counts must be accumulated. To store this
information, log2 (30,000,000,000) = 25 bits, or 4 bytes are needed. To be
precise, a value of $1 C9 C3 80 is expected.

The 16-bit timer will automatically record the edges of the pulse. Ignoring the
overflow, if the start time is subtracted from the end time the result will yield the
two least significant bytes of the pulse width. In the 60 second example, if the
pulse is exactly correct, the difference between the output compare value at the
start of the pulse and the value at the end of the pulse will be $C380. Between
those two pulse events, the timer will roll over $1C9 times (= 457). Counting
those rollovers exactly will determine the pulse length. The timer overflow
facility will allow a count of the rollovers under interrupt control. Some problems
remain in arbitrating the interrupts and protecting for boundary conditions,
which will be discussed below.

The general approach taken for the MC68HC05Cx TCAP works as well for the
M68HC11 Family when a single input capture function is used for
measurement.

 Appendix B — Long Pulse Detection is a listing of an M68HC05 program
which can measure very long pulses with single tick accuracy. The program
12 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Pulse Detection

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

was tested with the pulse generation problem listed above and appears to work
within the accuracy of the crystal. Some adjustment may be necessary when
this software is integrated into the user’s program, particularly insofar as the
interrupt latency is affected, but the basic structure of the routines will perform
the measurement function.

NOTE: Class 2 pulses can be measured with this routine as it stands, although some
code savings can be realized if the pulse to be measured is known to be
contained in less than four bytes.

Three particular areas should be attended to when incorporating this software
in a larger project. The measurement routine uses mutually exclusive interrupts
and no subroutines; therefore, its contribution to stack push is seven bytes. Add
this to any other subroutine and interrupt stack usage to determine the
maximum stack depth and therefore the available RAM.

If other interrupts are used, remember that the interrupt mask is automatically
set when the interrupt routine is entered. If the mask cannot be cleared, the
execution time of the other interrupt, plus its latency, must be kept somewhat
less than 500 µs (or the pulse width, whichever is smaller) to preserve the
accuracy of the measurement routine. The same is true if critical code sections
must be preserved with SEI. . .CLI instructions.

Within these limitations, the automatic timing features of the TCAP will provide
accurate measurement of the pulse. The 500 µs limitation is necessary to
assure the correct handling of the boundary conditions when an overflow
coincides with a pulse edge. If the interrupts must be masked for longer
periods, the boundary conditions handling can be modified.

The third area to consider is the effect of the interrupts on execution speed of
the processor. The pulse measurement routines take less than 0.02% of the
clock cycles when measuring long pulses, so the routine will not significantly
affect the throughput of most programs; however, each timer overflow interrupt
takes about 24 µs, so software timing loops and critical sections can be
affected.

Noisy Pulses The important thing to remember about noisy pulses is that a noise edge often
cannot be distinguished from a pulse edge. This is particularly true when the
input capture register is used to detect the edge. But even when the edge is
polled, a momentary change in the signal level can be erroneously interpreted.

In general, it is difficult to measure any true pulse that contains noise pulse
durations in order of magnitude of the measurement resolution. This means
that signals must be free of 1 µs noise pulses for most MCU detection and
measurement algorithms. The MC68HC11A8 pulse accumulator function in
gated mode can be used to measure the total asserted time of a very noisy
pulse.
Pulse Generation and Detection with Microcontroller Units 13

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Often, the easiest way to eliminate the ambiguity of minor noise is with some
low pass hardware filtering. Remember that low pass filtering will also round
and delay the edges of the pulse. The delay will contribute more or less to the
accuracy of the measurement. In addition, sampled edges can be double
checked in our busy wait algorithms with the addition of a single instruction per
edge.

PULSE:
CLRA

P0 BRCLR PIN,PORT,P0
BRCLR PIN,PORT,P0

P1 INCA
BRSET PIN,PORT,P1
BRSET PIN,PORT,P1

*
* ACC HAS PULSE AT 6.5 µs PER BIT

Sophisticated digital filter algorithms can be used to extract a pulse from very
noisy conditions, but these are beyond the scope of this application note.
Consider a simple method of determining the approximate pulse width of an
input signal corrupted by a lot of noise.

Consider the signal of Figure 4. Is this one noisy 5 ms pulse or a number of
smaller pulses? Taken at face value, this would translate into a number of
various length disjoint pulses. However, if this were part of a pulse width
modulated code that had been transmitted on an r.f. carrier, the range of
reception of the pulse could be significantly improved if the intelligence could
be unambiguously extracted from this waveform. Much of the success of
decoding algorithms depends on the knowledge of the expected signal. If, for
example, the waveform is expected to be either a 6 ms pulse or a 2 ms pulse,
it is expected that this algorithm would more often choose the former. If there
were some independent cross checks on the validity of the code detection,
such as a cyclic redundancy check, the detection could be made with a fair
degree of certainty.

Figure 4. Noisy Pulse
14 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Pulse Detection

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

It is beyond the scope of this application note to present a detailed discussion
of pulse train encoding and decoding, but the following paragraphs offer a few
ideas about developing an effective method for capturing noisy pulses with an
MCU.

The detection of the above signal (Figure 4) with any of the earlier methods is
unlikely to yield the correct data. With the MC68HC11A8 pulse accumulator,
the pulse can be determined to be more likely 6 ms than 2 ms, but without the
pulse accumulator, the M68HC05 MCUs require more software intensive
methods.

The basic strategy used to measure the pulse is to take periodic samples of the
signal and employ some heuristic process to discover the signal in the noise.
Most commonly, the selected algorithm is simple voting. Additionally, some
cross check of the data such as a check sum may be employed. If, for example,
a 100 µs sample of the pulse shown in Figure 4 is taken, marked by the tick
marks on the drawing, the findings show that the signal is high for 37 to 50
samples. This is more consistent with a wide pulse than a narrow one. If a cross
check agrees with this conclusion, there is some confidence in the conclusion.
If the cross check disagrees, the error could be guessed based on the lowest
probability detection; or a re-transmission might be required. If no cross check
is possible, a decision can be made on a minimum probability required to
accept the data.

Below is a sample routine that uses the output compare interrupt to time the
samples. Fifty samples are accumulated before testing the vote.

TOCI BRCLR TOF,TSR,NO_TOC CLEAR FLAG
LDX OCHR
LDA OCLR
ADD #50 INT IN 100
BCC SMP1 ..µs
INCX

SMP1 STX OCHR
STA OCLR

*
* NEXT SAMPLE IN 100 µs
*

BRCLR PIN,PORT,SMP2
INC VOTE
BRA SMP3

SMP2 DEC VOTE
DEC COUNT
BNE SMP9

*
* HERE AFTER 50 SAMPLES
* PUT VOTING ROUTINE HERE
*
NO_TOC:
*
* DO OTHER INTERRUPT HERE
*

RTI
Pulse Generation and Detection with Microcontroller Units 15

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE: This interrupt routine consumes only about 25–30% of the processor cycles.
This number is directly related to the sample rate — sampling of 1/2 the rate
reduces usage to less than 15% of the processor.

The choice of voting algorithm is application dependent. However,
synchronization of the signal must also be considered. Depending on the type
of coding used, a signal can be assumed to be self-synced. That is, the
measurement of any pulse after a quiet period causes the receiving processor
to try to wake up to a wide pulse or a narrow pulse. This causes the voting
algorithm to reject pulses that vary widely from one of the expected widths.

With crystal controlled oscillators in both the transmitting processor and the
receiving one, this does not present a problem. However, if one or both of the
controller clocks is not tightly regulated the receiver will require time base as
well as start time synchronization. In general, the more information that must
be transmitted, the greater potential for error due to noise. The information
transmitted is the code, the start time, and the time base.

Summary of Pulse
Detection

MCU systems often read information from a hardware device by means of
timed pulses. When these pulses fall in the range of a few tens of milliseconds,
most MCUs can measure the pulse width easily with a high degree of accuracy.
When the pulses are very short, very long, or noisy the accurate detection and
measurement of them is more difficult.

The most important decision to be made in system design for pulse
measurement is the choice of MCU, specifically the timer subsystem.The least
sophisticated timers such as found on the MC68HC05J1 lose some resolution
and accuracy, particularly for short pulses, but these simple timers are often
found on the low cost chips. As the complexity and cost of the timer is
increased, so is the performance of the MCU in this task. The very complex
timer system in the MC68332 provides the greatest resolution and performance
of any MCU available. For information, call your local Freescale Sales Office.
16 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Appendix A — TTL Long Pulse Generation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A — TTL Long Pulse Generation

*
* TIC-T0C ROUTINES FOR 68HC05CX
*
* WRITTEN 11/11/89 BY MIKE PAUWELS
*
*
* PULSE GENERATION
*
* THIS ROUTINE GENERATES PULSES FROM A MC68HC05CX MICROCONTROLLER USING
* THE TIMER OUTPUT COMPARE FUNCTION. THE LENGTH OF PULSES GENERATED
* RANGE FROM A FEW MICROSECONDS TO MORE THAN TWO HOURS.
*
* THIS SOFTWARE IS INTENDED AS A SUBSYSTEM TO BE INCLUDED IN A LARGER
* PROGRAM. ETC.
*
* CONSTANTS:
* SYSTEM CONSTANTS:
* ADDRESSES:

OPT nol
PORTA EQU 0 PORT A
DDRA EQU 4 DATA DIRECTION REGISTER FOR PORT A
TCR EQU $12 TIMER CONTROL REGISTER
ICIE EQU 7 INPUT CAPTURE INTERRUPT ENABLE
OCIE EQU 6 OUTPUT COMPARE INTERRUPT ENABLE
TOIE EQU 5 TIMER OVERFLOW INTERRUPT ENABLE
IEDG EQU 1 INPUT EDGE
OLVL EQU 0 OUTPUT LEVEL
TSR EQU $13 TIMER STATUS REGISTER
ICF EQU 7 INPUT CAPTURE FLAG
OCF EQU 6 OUTPUT COMPARE FLAG
TOF EQU 5 TIMER OVERFLOW FLAG
ICHR EQU $14 INPUT CAPTURE REGISTER HIGH BYTE
ICLR EQU $15 INPUT CAPTURE REGISTER LOW BYTE
OCHR EQU $16 OUTPUT COMPARE REGISTER HIGH BYTE
OCLR EQU $17 OUTPUT COMPARE REGISTER LOW BYTE
CHR EQU $18 TIMER/COUNTER HIGH BYTE
CLR EQU $19 TIMER/COUNTER LOW BYTE
ACHR EQU $1A ALTERNATE TIMER/COUNTER HIGH BYTE
ACLR EQU $1B ALTERNATE TIMER/COUNTER LOW BYTE

OPT 1
* PROGRAM CONSTANTS

ORG $20
DELAY FCB 6 DELAY FOR START OF PULSE
MIN_PLS FCB 5 MINIMUM PULSE WIDTH IN CLOCK COUNTS
DO_PLS FCB $01,$C9,$C3,$80
* VARIABLES

ORG $BA OR CONCATENATE WITH USER MEMORY
PULSE RMB 4 MAX TIME = 143.1655765 MINUTES!
*
* ASSUMING A 4 MHz CRYSTAL, FOUR BYTES WILL AUTOMATICALLY TIME
* 2^33 MICROSECONDS (ABOUT 2.4 HOURS) WITHIN THE ACCURACY OF THE
* CRYSTAL. EACH BIT IS 2 MICROSECONDS. FOR LONG TIME PERIODS,
* CONSIDER THAT A SLOWER CLOCK WILL SAVE POWER AND A 32 kHz WATCH
* CRYSTAL IS INEXPENSIVE, BUT REMEMBER THAT THE PROCESSOR EXECUTION
Pulse Generation and Detection with Microcontroller Units 17

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* WILL SLOW BY 122 TIMES! IF YOU HAVE A LOT OF PROCESSING TO DO
* BETWEEN UPDATES, YOU MAY FIND THE PROCESSOR TOO SLOW!
*
* SOME OTHER TIME OPTIONS:
* 5 BYTES WILL TIME UP TO 25.45 DAYS
* 6 BYTES WILL TIME UP TO 17.83 YEARS
* 7 BYTES WILL TIME 4,566 YEARS!
*
*
* NO RESET INITIALIZATION IS REQUIRED. THE TIMED PULSE WILL BE
* DRIVEN ON THE TCMP PIN WHICH IS AUTOMATICALLY INITIALIZED AS
* AN OUTPUT. THE TIMER OUTPUT COMPARE AND THE TIMER OVERFLOW
* INTERRUPTS ARE INITIALIZED BY THE START PULSE SUBROUTINE (STRT_PLS).
*
FLAGS RMB 1 STORE A FLAG
FIRE EQU 7 INDICATES PULSE HAS STARTED
LAST EQU 6 INDICATES LAST INTERRUPT HAS OCCURED
*
* MAIN PROGRAM GOES HERE. THE LENGTH OF THE DESIRED PULSE IS
* DETERMINED AND STORED IN ‘PULSE’ AT 2 MICROSECONDS PER BIT.
* THE PULSE WILL START AFTER ‘STRT_PLS’ IS CALLED WITH THE
* LATENCY AND ACCURACY NOTED BELOW.

**
* RESET ROUTINE *
**

ORG $100
RST_INT:

CLR TCR
CLR FLAGS RESET ALL FLAGS
LDA #$FF
STA DDRA
LDA #$02
STA PORTA

**
* MAIN PROGRAM *
**

*
* HERE IS THE MAIN LOOP. IF WE HAVEN’T FIRED, CALL STRT_PLS
*
MAIN:

BRSET FIRE,FLAGS,FIRED
*
* HERE ONCE AFTER RESET WHILE FIRE FLAG IS CLEARED
*

LDX #3 LOAD FOUR BYTES
LOAD LDA DO_PLS,X

STA PULSE,X
DECX
BPL LOAD
JSR START_PLS

*
* DURING THE INTERRUPTS, THE ‘LAST’ FLAG IS CLEAR, JUMP TO MAIN
*

18 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Appendix A — TTL Long Pulse Generation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

FIRED BRCLR LAST,FLAGS,MAIN
*
* HERE AFTER THE INTERRUPTS
*

NOP REPRESENTS OTHER INSTRUCTIONS
BRA MAIN

**
* START PULSE SUBROUTINE *
**
*
* CALL THIS ROUTINE WITH THE DESIRED PULSE LENGTH IN ‘PULSE’.
* THE MOST SIGNIFICANT BYTE IS STORED FIRST. FOR LONG PULSES,
* THE ‘FRACTIONAL’ PART, THAT STORED IN THE TWO LEAST SIGNIFICANT
* BYTES, ARE TIMED FIRST. THEN THE EXTENSIONS ARE TIMED OUT ONE
* AT A TIME UNTIL, ON THE LAST PERIOD THE OUTPUT LEVEL BIT IS
* CLEARED AND THE PULSE STOPS AUTOMATICALLY.
*
* NOTE THAT THE VARIABLE PULSE IS MODIFIED BY THE PULSE GENERATION
* FUNCTION, AND THAT THAT VARIABLE RELECTS (ROUGHLY) THE AMOUNT
* OF PULSE REMAINING. OVERWRITING THE PULSE WIDTH CAN HAVE
* UNDESIREABLE RESULTS, BUT SHOULD USUALLY RESULT IN CHANGING THE
* TERMINATION TIME.
*
* PROCEDURE START_PULSE (PULSE_WIDTH: LONG_INT);

START_PLS:
SEI DON’T INTERRUPT

* IF PULSE_WIDTH > $FFFF THEN INTERRUPT:=ENABLE ELSE INTERRUPT:=DISABLE
BSET 7,PORTA TURNS ON INDICATOR LED, NOT TRUE PULSE

BSET OCIE,TCR ENABLE TOC INTERRUPT
LDA PULSE+1
SUB #1
STA PULSE+1
LDA PULSE
SBC #0
STA PULSE
BCC SP1

*
* HERE IF PULSE WAS LESS THAN $FFFF--FIX THE DAMAGE
*

CLR PULSE+1
CLR PULSE
BCLR OCIE,TCR

*
* IF 0 < PULSE_WIDTH < MINIMUM THEN PULSE_WIDTH ;= MINIMUM;
*
SP1 TST PULSE+2

BNE LONG_PLS
LDA #PULSE+3
BEQ LONG_PLS
CMP MIN_PLS
BHI LONG_PLS
LDA MIN_PLS
STA PULSE+3
Pulse Generation and Detection with Microcontroller Units 19

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LONG_PLS:
* HERE WHEN THE PULSE WIDTH FRACTIONAL PART IS ZERO OR >= MIN_PLS
*
* FIRST START THE PULSE
*
* NEXT LEVEL := TRUE;

BSET OLVL,TCR
*
* ONE OF THE TRICKIEST OPERATIONS IS TURNING ON THE PULSE. SINCE
* THE ‘HC05 DOES NOT HAVE THE FACILITY TO SWITCH THE TCMP LINE
* DIRECTLY, WE SETUP A TURN ON TO OCCUR IMMEDIATELY. WE HAVE TO
* ADJUST TO THE TIME NEEDED FOR THE SETUP. THIS ISTHE VALUE ‘DELAY’.
*
* OUTPUT_COMPARE := TIMER + DELAY

LDX ACHR MUST BE READ FIRST
LDA ACLR TIMER = X:A
ADD DELAY
BCC MARK_1 MARK TIME
INCX
BRA OC1

MARK_1 NOP TO BALANCE EXECUTION TIMES
BRA OC1

OC1 STX OCHR INHIBITS TOC
STA OCLR ENABLES TOC

*
* IF DELAY IS CORRECT, PULSE WILL TURN ON IMMEDIATELY
*
*
* TOC := TURN_ON + PULSE_WIDTH MOD $10000
*

ADD PULSE+3
STA PULSE+3
TXA
ADC PULSE+2
TAX
LDA PULSE+3
CLR PULSE+3
CLR PULSE+2

*
*
* IF INTERRUPT=ENABLED THEN OLVL := 1 ELSE OLVL := 0 ; ... AND PULSE
* WILL TERMINATE
*

BRSET OCIE,TCR,OC2
BCLR OLVL,TCR IF INTERRUPT = DISABLED

OC2 STX OCHR
TST TSR WILL CLEAR OCF...
STA OCLR ...WHEN EXECUTED
BSET FIRE,FLAGS INDICATE PULSE HAS FIRED

*
* AT THIS TIME, THE MINIMUM PULSE CAN EXPIRE. IN THAT CASE
* WHEN WE ENABLE THE INTERRUPT, WE WILL IMMEDIATELY BEGIN
* SERVICING.
*

CLI
RTS
20 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Appendix A — TTL Long Pulse Generation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**
* TIMER INTERRUPT SUBROUTINE *
**

TCMP_INT:
*
* WE WILL INTERRUPT WITH A TOC ONLY IF THERE ARE A WHOLE NUMBER OF
* $10000 PERIODS TO COMPLETE. WE NEED ONLY DECREMENT THE ‘INTEGER’
* PART OF THE PULSE WIDTH AND IF THIS IS THE LAST TIME, WE CLEAR
* THE INTERRUPTS AND SET THE OUTPUT LEVEL TO ‘0’. THE TOC REGISTER
* IS NOT CHANGED.
*
* IF THERE ARE OTHER POSSIBLE TIME INTERRUPT SOURCES (INPUT CAPTURE
* AND/OR TIMER OVERFLOW) THEN WE SHOULD ARBITRATE THE SOURCE AT THIS
* TIME. NOTE THAT THERE WILL ALWAYS BE PLENTH OF TIME TO SERVICE THIS
* ROUTINE, SO THE PRIORITY COULD BE SET TO THE LOWEST LEVEL.
*
*
* ARBITRATION...
*
* IF PULSE WIDTH > $10000 THEN
* PULSE_WIDTH := PULSE_WIDTH - $10000
*

LDA PORTA
EOR #$03
STA PORTA TOGGLE 2 PORT LINES (DIAGNOSTICS)

*
LDA PULSE+1
SUB #1
STA PULSE+1
LDA PULSE
SBC #0
STA PULSE
BCC NOT_LAST

*ELSE INTERRUPT := DISABLE; OLVL := 0;
*
* HERE IF PULSE WAS ON LAST COUNT, CLEAR INTERRUPT AND OLVL
*

CLR PULSE+1
CLR PULSE
BCLR 7,PORTA
BCLR OCIE,TCR
BCLR OLVL,TCR
BSET LAST,FLAGS

*
* HERE IF NOT ON LAST PULSE
*
* CLEAR (OCF);
*
NOT_LAST:

LDA TSR NECESSARY ACCESS
LDA OCLR ... NEXT INTERRUPT WILL HAPPEN IN $10000
RTI
Pulse Generation and Detection with Microcontroller Units 21

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**
* DUMMY INTERRUPT ROUTINES *
**
SPI_INT RTI
SCI_INT RTI
IRQ_INT RTI
SWI_INT RTI

**
* INTERRUPT VECTORS *
**

ORG $1FF4
SPI_VEC FDB SPI_INT
SCI_VEC FDB SCI_INT
TIM_VEC FDB TCMP_INT
IRQ_VEC FDB IRQ_INT
SWI_VEC FDB SWI_INT
RST_VEC FDB RST_INT
22 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Appendix B — Long Pulse Detection

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix B — Long Pulse Detection

*
* TIC-T0C ROUTINES FOR 68HC05CX
*
* WRITTEN 11/18/89 BY MIKE PAUWELS
*
*
* PULSE DETECTION
*
* THIS ROUTINE DETECTS PULSES WITH A MC68HC05CX MICROCONTROLLER USING
* THE TIMER INPUT CAPTURE FUNCTION. THE LENGTH OF PULSES DETECTED
* CAN RANGE FROM A FEW MICROSECONDS TO MORE THAN TWO HOURS.
*
* THIS SOFTWARE IS INTENDED AS A SUBSYSTEM TO BE INCLUDED IN A LARGER
* PROGRAM. ETC.
*
*CONSTANTS:

OPT nol
* SYSTEM CONSTANTS:
* ADDRESSES:
DDRA EQU $04
PORTA EQU $00
TCR EQU $12 TIMER CONTROL REGISTER
ICIE EQU 7 INPUT CAPTURE INTERRUPT ENABLE
OCIE EQU 6 OUTPUT COMPARE INTERRUPT ENABLE
TOIE EQU 5 TIMER OVERFLOW INTERRUPT ENABLE
IEDG EQU 1 INPUT EDGE
OLVL EQU 0 OUTPUT LEVEL
TSR EQU $13 TIMER STATUS REGISTER
ICF EQU 7 INPUT CAPTURE FLAG
OCF EQU 6 OUTPUT COMPARE FLAG
TOF EQU 5 TIMER OVERFLOW FLAG
ICHR EQU $14 INPUT CAPTURE REGISTER HIGH BYTE
ICLR EQU $15 TIMER CAPTURE REGISTER LOW BYTE
OCHR EQU $16 OUTPUT COMPARE REGISTER HIGH BYTE
OCLR EQU $17 OUTPUT COMPARE REGISTER LOW BYTE
CHR EQU $18 TIMER/COUNTER HIGH BYTE
CLR EQU $19 TIMER/COUNTER LOW BYTE
ACHR EQU $1A ALTERNATE TIMER/COUNTER HIGH BYTE
ACLR EQU $1B ALTERNATE TIMER/COUNTER LOW BYTE

OPT 1
* PROGRAM CONSTANTS
* VARIABLES

ORG $BA OR CONCATENATE WITH USER MEMORY
AC_OVFL RMB 2 MAX TIME = 143.1655765 MINUTES!
PULSE_W RMB 2 HOLDS STOP TIME AND TOTAL PULSE
START_T RMB 2 HOLDS PULSE START TIME
*
* ASSUMING A 4 MHz CRYSTAL, TWO BYTES CAN ACCUMULATE UP TO
* 2^33 MICROSECONDS (ABOUT 2.4 HOURS) WITHIN THE ACCURACY OF THE
* CRYSTAL. EACH BIT IS 2 MICROSECONDS. FOR LONG TIME PERIODS,
* CONSIDER A SLOWER CLOCK.
*

Pulse Generation and Detection with Microcontroller Units 23

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

* SOME OTHER TIME OPTIONS:
* 3 BYTES WILL TIME UP TO 25.45 DAYS

4 BYTES WILL TIME UP TO 17.83 YEARS
5 BYTES WILL TIME 4,566 YEARS!

*
FLAGS RMB 1 BOOLEAN VARIABLES
ARM EQU 7 SET WHEN PROCESSOR IS READY
GOT EQU 6 SET WHEN PULSE IS CAPTURED

ORG $100

**
* RESET INTERRUPT ROUTINE *
**
RST_INT:
*
* NO RESET INITIALIZATION IS REQUIRED. TO MEASURE A PULSE INCIDENT
* ON THE INPUT CAPTURE PIN, ARM THE PROCEDURE BY CALLING ‘GET_PLS’.
* AFTER THE PULSE IS TERMINATED, ADDITIONAL USER CODE (E.G. TO SET
* A FLAG) CAN BE ADDED AS INDICATED IN THE INTERRUPT ROUTINE. NOTE
* THAT THIS FUNCTION REQUIRES THE INTERRUPT STRUCTURE TO SERVICE
* TIMER OVERFLOWS AND FINAL PULSE TERMINATION. THIS IS NOT ESSENTIAL
* AND THE INTERRUPT STRUCTURE COULD BE REPLACED BYPOLLING IN THE
* USER’S MAIN LOOP, AS LONG AS THE POLLING PERIOD WAS LESS THAN THE
* OVERFLOW TIME OF THE COUNTER/TIMER.
*

BSET 7,DDRA
BSET 7,PORTA
CLR FLAGS

*
* DO OTHER INIT STUFF. THE FOLLOWING DELAY REPRESENTS OTHER CODE,
* AND GIVES THE LED A MOMENTARY FLASH.
*

LDA #100
JSR DELAY FOR 1 SECOND

*
* CONTINUE
*

**
* MAIN LOOP *
**
MAIN:

BRSET ARM,FLAGS,ARMED
BSR GET_PLS

ARMED NOP
BRSET GOT,FLAGS,GOT_IT
NOP

GOT_IT NOP
BRA MAIN
24 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Appendix B — Long Pulse Detection

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**
* ARM CAPTURE SUBROUTINE *
**
*
* CALL THIS ROUTINE TO ARM THE PULSE MEASUREMENT. NOTE THAT THE
* LENGTH OF PULSE THAT CAN BE MEASURED IS LIMITED BYSIZE OF THE
* OVERFLOW ACCUMULATOR. POSITIVE GOING PULSE IS ASSUMED; THE
* MODIFICATIONS FOR NEGATIVE GOING PULSE ARE SIMPLY THE INVERSION
* OF THE IEDG. SYSTEM IS RAMED 22 MICROCYCLES AFTER THE ROUTINE
* IS CALLED.

*
GET_PLS:

BSET IEDG,TCR
LDA TSR TWO STEPS REQUIRED...
LDA ICLR ...TO CLEAR OLD FLAGS
BSET ICIE,TCR
BSET TOIE,TCR START COUNTING OVERFLOWS
BCLR 7,PORTA
BSET ARM,FLAGS
CLI
RTS

**
* TIME DELAY SUBROUTINE *
**
*
* CALLED FOR A BUSY DELAY. IF NOT INTERRUPTED, WILL RETURN AFTER
* A DELAY OF 5 MILLISECONDS TIMES THE CONTENTS OF ‘A’ ACCUMULATOR
*
DELAY:

LDX #249
DLA1 DECX

NOP
NOP
NOP
NOP
NOP
NOP
NOP
BNE DLA1
DECA
BNE DELAY
RTS

**
* TIMER INTERRUPT ROUTINE *
**
*
* HERE ON TIMER INTERRUPT. WE ASSUME THAT TIMER OUTPUT ROUTINES
* DO NOT HAVE TO BE ARBITRATED. IF TOC IS NEEDED, THE ARBITRATION
* MUST BE CALCULATED. SINCE THE ONLY STICKLY PROBLEM OCCURS ON
* SIMULTANEOUS OR NEAR-SIMULTANEOUS INTERRUPTS, THE TIMING OF THIS
* ROUTINE IS CAREFULLY CALCULATED.
*

Pulse Generation and Detection with Microcontroller Units 25

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TIM_INT:
* THE FOLLOWING INSTRUCTION IS NEEDED IF ANY OTHER TIMER
* INTERRUPTS ARE ENABLED:
* BRCLR ICF,TSR,NO_TIC BR IF NO INPUT CAPTURE
*
* HERE ON INPUT CAPTURE. IS THIS FIRST EDGE OR LAST EDGE?
*

BRCLR IEDG,TCR,LAST_EDG
BCLR IEDG,TCR PREPARE FOR TRAILING EDGE

*
* HERE ON THE FIRST (RISING) EDGE
*

LDA ICHR
LDX ICLR <<<< POINT A
STA START_T START TIME HIGH BYTE
STX START_T+1 START TIME LOW BYTE

*
* WE NOW HAVE THE CAPTURED START TIME IN MEMORY.
*

CLI
RTI

*
* HERE ON THE TRAILING EDGE OF THE MEASURED PULSE. THE TIC REGISTER
* HAS THE TWO LEAST SIGNIFICANT BYTES OF THE STPO TIME. SUBTRACT
* THE START TIME; IF NECESSARY BORROW FROM THE AC_OVFL. NO CHECK IS
* MADE FOR OVERFLOW OF THE MAXIMUM PULSE.
*
LAST_EDG:

BSET GOT,FLAGS
BSET 7,PORTA
BCLR ICIE,TCR
LDX ICHR
LDA ICLR
STX PULSE_W
STA PULSE_W+1

*
* HERE THE PROBLEM IS TOO MANY OVERFLOWS. IF ICHR = $FF AND ACHR = 0
* AND THE OVERFLOW FLAG HAS BEEN CLEARED, WE ACCUMULATED ONE TOO
* MANY OVERFLOW.
*

INCA TEXT FOR = $FF
BNE CALC_PW
TST ACHR
BNE CLEAR_A1
BRSET TOF,TSR,CLEAR_A1
LDA AC_OVFL+1
SUB #1
STA AC_OVFL+1
BCC CLEAR_A1
DEC AC_OVFL

CLEAR_A1:
LDA ACLR TO CLEAR LATCH
26 Pulse Generation and Detection with Microcontroller Units

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D
Appendix B — Long Pulse Detection

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CALC_PW:
LDA PULSE_W+1
SUB START_T+1
STA PULSE_W+1
LDA PULSE_W
SBC START_T
STA PULSE_W
LDA AC_OVFL+1
SBC #0
STA AC_OVFL+1
BCC TIM_EXIT
DEC AC_OVFL

NO_TIC:
*
* COULD BE A TOC. OTHER TIC OR TOC OR OVERFLOW STUFF CAN BE DONE HERE
*
*
TIM_EXIT:

RTI

**
* DUMMY INTERRUPT ROUTINES *
**
SPI_INT RTI
SCI_INT RTI
IRQ_INT RTI
SWI_INT RTI

**
* INTERRUPT VECTORS *
**

ORG $1FF4
* INTERRUPT VECTORS
SPI_VEC FDB SPI_INT
SCI_VEC FDB SCI_INT
TIM_VEC FDB TIM_INT
IRQ_VEC FDB IRQ_INT
SWI_VEC FDB SWI_INT
RST_VEC FDB RST_INT
Pulse Generation and Detection with Microcontroller Units 27

For More Information On This Product,
 Go to: www.freescale.com

AN1067/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN1067/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Pulse Generation
	Short Pulses
	Easy Pulses
	Long Pulses
	Summary of Pulse Generation

	Pulse Detection
	Short Pulses
	Longer Pulses
	Noisy Pulses
	Summary of Pulse Detection

	Appendix A — TTL Long Pulse Generation
	Appendix B — Long Pulse Detection

