

AN10934
Using M3 DSP library filter functions

Rev. 01 — 14 May 2010 Application note

Document information
Info Content
Keywords M3, LPC1300, LPC1700, DSP, FIR, IIR, Biquad, Filter

Abstract This application note and associated source code examples demonstrate
how to use the filter functions contained within NXP’s M3 DSP library.

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 2 of 16

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
01 20100514 Initial version.

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

1. Introduction
The NXP M3 DSP library contains a set of commonly used signal processing functions
that have been designed and optimized for use with the NXP Cortex-M3 LPC1700 and
LPC1300 family of products.

This application note describes, with the aid of software examples, how to use the filter
functions contained within the library.

Note that the DSP Library supplied with application note AN10913[2] must be
installed in order to build these software examples.

2. Filter examples
The filter example projects provided with this application note demonstrate how to use
the FIR and IIR filter functions contained within the NXP M3 DSP Library. The projects
are designed to take a waveform (represented as a table of samples) and execute a filter
on this data to recover one of the original components. The filter results are output on the
DAC allowing the user to observe the recovered waveform.

FIR or IIR
Filter DAC

Table
of

input
samples

Fig 1. Filter example block diagram

This application note makes use of the LPC1700’s memory-to-DAC DMA transfer
functionality to output the filtered wave form. More information about this feature can be
found in application note AN10917[3].

The filter input waveform is a combination of sine waves at three different frequencies:
50 Hz, 250 Hz and 500 Hz. The component sine waves can be seen in the top diagram
of Fig 2. The resulting filter input waveform (an addition of the sine waves) can be seen
in the bottom diagram. A table of input samples was created from this waveform, based
on a sampling frequency of 10 kHz. This table can be found in the file waveform.c.

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 3 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

Fig 2. Filter input waveform

Software examples are provided for the following tool-chains and target hardware:
• Keil uVision 4.10 and a MCB1700 evaluation board.
• IAR Embedded Workbench 5.41 and a LPC1766-SK evaluation board.
• LPCXpresso 3.4 and a CodeRed RDB1768 evaluation board.

The DAC output on these boards can be monitored at the following locations:
• MCB1700 Evaluation Board: Pin 1 on the jumper labeled ‘SPK’.
• LPC1766-SK Evaluation Board: Pin 1 on the switch labeled ‘S2’.
• RDB1768v2 Evaluation Board: Pin 1 on the headphone jack.

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 4 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

3. FIR filter
The Finite Impulse Response (FIR) filter is one of the most commonly used digital filter
functions. The output of such a filter is dependent only upon the input samples and the
filter coefficients. It can be described as follows:

y[n] = b0x[n] + b1x[n-1] + … bNx[n–N]

y[n] represents the nth output sample

x[n] represents the nth input sample

bi represents the filter coefficients

N represents the number of taps

Fig 3. FIR filter difference equation

Because the filter uses only multiplication and addition it can be very efficiently
implemented on LPC1700 and LPC1300 devices by making use of the built-in hardware
Multiply and Accumulate (MAC) unit.

FIR filters have a number of desirable properties making them suitable for a wide range
of filtering applications:
• The lack of feedback (no previous output samples are used in the calculation of the

current output sample) makes them inherently stable.
• They can be easily designed to ensure that the phase difference between input and

output is proportional to frequency, i.e., the delay through the filter is equal at all
frequencies.

• They are insensitive to coefficient quantization error. Because no output terms are
used in the filter calculation, rounding errors that occur when coefficients are
converted from floating to fixed-point format are not compounded over multiple
iterations.

The response of a FIR filter (low-pass, high-pass, cut-off frequency, stop band
attenuation, etc.) is determined by the number of taps and the values used for the
coefficients. There are a number of tools available that allow calculation of FIR filter
coefficients based upon a desired response. The coefficients used in the example were
generated using a tool called WinFilter[5].

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 5 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

3.1 FIR parameter limits
Internally, the FIR filter function uses 32-bit multiplication and addition to generate a 32-
bit result. This means that input values have to be scaled appropriately to avoid overflow,
i.e., scaled down to 16-bit values. Any gain or attenuation introduced by the filter can be
removed by appropriately adjusting the magnitude out the output samples.

To maximize performance the filter has been implemented using a ‘block-FIR’ algorithm.
The algorithm reduces the number of memory accesses by computing several output
samples in each loop iteration. In this way, the input data and the coefficients can be re-
used multiple times before reading more data from memory.

Because the block FIR function computes several output samples in each loop iteration
the number of input samples passed to the function, and the number of taps used, must
be a multiple of 4.

3.2 FIR filter example
This example demonstrates how create a FIR filter that will recover the 50 Hz sine wave
component of the input waveform. In order to recover this component a low-pass filter
with the following characteristics was designed:
• Sampling Frequency – 10 kHz
• Cut-off Frequency – 100 Hz
• Number of Taps – 128 (the filter order plus one)

A PC-based application (WinFilter[5]) was used to generate the coefficients necessary to
implement this filter using the vF_dspl_blockfir32 function. The frequency response
that can be expected when using these coefficients is illustrated in Fig 4.

Fig 4. Low-pass FIR filter frequency response

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 6 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

The coefficients generated by the WinFilter application are fractional numbers in the
range −1.0 to +1.0. They must be converted into 16-bit signed integers for use with the
block FIR filter function. This process is achieved simply by multiplying them by 215. The
example project contains a macro to perform this conversion, allowing fractional
coefficients to be copied directly into the source file and then converted at build time.

The generated coefficients are stored in an array as follows (the SCALE_F2S16 macro is
used to convert them in signed 16-bit integers):

int iFIR_Coeff[FIR_NB_TAPS] =
{
 SCALE_F2S16(-0.00248711688516133980),
 SCALE_F2S16(-0.00248994820340432470),
 ..
 ..
 SCALE_F2S16(-0.00247085376479650640)
};

Fig 5. FIR filter coefficient storage (fir_coeff.c)

The number of taps and a pointer to the filter coefficients are stored in a data structure
that is passed (by reference) to the filter function every time it is called. This structure is
initialized as follows:

tS_blockfir32_Coeff sFirCoeff =
{
 &iFIR_Coeff [0],
 FIR_NB_TAPS,
};

Fig 6. FIR filter parameter storage (fir_example.c)

When the FIR filter function is called, multiple input samples can be passed to it; when
complete, it will return the same number of output samples.

vF_dspl_blockfir32((int *)&au32Output[0],
 (int *)pu32WaveForm,
 &sFirCoeff,
 u16WaveForm_GetLen());

Fig 7. FIR filter function parameters (fir_example.c)

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 7 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

Both the original input wave form and the filtered version can be output on the DAC
simply by changing the FILTER_DATA definition.

Fig 8. Low-pass FIR filter input/output

The output from the DAC as a result of running the example software is shown in Fig 8.
The top waveform represents the filter input data (output by the DAC when
FILTER_DATA = 0). The bottom waveform represents the filter output (generated by
the DAC when FILTER_DATA = 1).

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 8 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

4. IIR filter
The Infinite Impulse Response (IIR) filter is another commonly used digital filter function.
Unlike the FIR filter, an IIR filter uses feedback; its output is dependent upon the input
samples, previous output values and filter coefficients.

An IIR filter can achieve the same response as a FIR filter with fewer operations and less
memory usage. However, the use of feedback means that high order IIR filters can be
sensitive to coefficient quantization (because rounding errors are compounded) and are
more prone to instability. To overcome this problem high order filters are usually
implemented as a number of cascaded second order IIR filters. The NXP DSP Library
contains a second order (Biquad) IIR filter function (Direct Form II implementation) which
can be described as follows:

y[n] = b0v[n] + b1v[n-1] + b2v[n–2]

where

v[n] = x[n] - a1v[n-1] - a2v[n-2]

y[n] represents the nth output sample

x[n] represents the nth input sample

ai represents the feedback filter coefficients

bi represents the feedforward filter coefficients

Fig 9. IIR filter (direct form II implementation) difference equation

As with FIR filters, IIR filters use only multiplication and addition and therefore can be
very efficiently implemented on LPC1700 and LPC1300 devices by making use of the
built-in hardware MAC (multiply and accumulate) unit.

4.1 IIR filter example
This example demonstrates how to create an IIR filter that will recover the 50 Hz sine
wave component of the input waveform. In order to recover this component a low-pass
filter with the following characteristics was designed:
• Sampling Frequency – 10 kHz
• Cut-off Frequency – 100 Hz
• Order – 2

A PC-based application (WinFilter[5]) was used to generate the coefficients necessary to
implement this filter using the vF_dspl_biquad32 function. The frequency response
that can be expected when using these coefficients is illustrated in Fig 10.

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 9 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

Fig 10. Low-pass IIR filter frequency response

The coefficients generated by this application are fractional numbers in the range −2.0 to
+1.999999. They must be converted into 2.14 fixed-point numbers for use with the
Biquad filter function; see section 5 for more details regarding this number format. The
example project contains a macro to do this conversion, which will allow fractional
coefficients to be copied directly into the source file and then converted at build time.

The generated coefficients are stored in an array as follows (the QFORMAT 16 macro is
used to convert them into 2.14 format signed 16-bit integers):

tS_biquad32_StateCoeff sIIR_Coeff =

{

 /* Fs = 10kHz Fc = 100Hz 2nd Order */

 QFORMAT_16(14, 1.91119706742607360000), /* psi_Coeff[0] - a1 */

 QFORMAT_16(14, -0.91497583480143418000), /* psi_Coeff[1] - a2 */

 QFORMAT_16(14, 0.00094547653094439164), /* psi_Coeff[2] - b0 */

 QFORMAT_16(14, 0.00189095306188878330), /* psi_Coeff[3] - b1 */

 QFORMAT_16(14, 0.00094547653094439164), /* psi_Coeff[4] - b2 */

 0, /* psi_State[0] */

 0 /* psi_State[1] */

};

Fig 11. IIR filter coefficient storage (iir_coeff.c)

See section 4.2 for further information regarding the format of the a1 and a2 coefficients.

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 10 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

When the IIR filter function is called, multiple input samples can be passed to it; when
complete, it will return the same number of output samples.

 vF_dspl_biquad32(&aiOutput[0],
 &aiInput[0],
 &sIIR_Coeff,
 u16WaveForm_GetLen());

Fig 12. IIR filter function parameters (iir_example.c)

Both the original input wave form and the filtered version can be output on the DAC by
simply changing the FILTER_DATA definition.

Fig 13. Low-pass IIR filter input/output

The output from the DAC as a result of running the example software, with (bottom) and
without (top) filtering enabled, is shown in Fig 13.

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 11 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

4.2 IIR parameter limits
Internally, the IIR filter uses only multiplication and addition; therefore, the sign of the
feedback (ai) coefficients generated by WinFilter have to be reversed (if they are positive
they have to be made negative and vice versa). The actual coefficients generated by the
tool for the filter specified in section 4.2 are as follows:

a1 = −1.91119706742607360000

a2 = 0.91497583480143418000

However, when they are added to the IIR coefficient data structure, the sign is reversed
so that they become:

a1 = 1.91119706742607360000

a2 = −0.91497583480143418000

As with the FIR filter, the IIR function uses 32-bit multiplication and addition to generate a
32-bit result. This means that input values have to be scaled appropriately to avoid
overflow, i.e., scaled down to 16-bit values. Any gain or attenuation introduced by the
filter can be removed by appropriately adjusting the magnitude out the output samples.

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 12 of 16

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 13 of 16

5. Fixed-point number representation
A fixed-point number format (often referred to as Q-Format) can be used to represent
fractional numbers without having to use floating point data types.

A fixed-point number consists of three fields:
1. A 1-bit field representing the sign, an i-bit
2. 2’s complement field representing the integer portion and an f-bit
3. 2’s complement field representing the fractional part of the number

For example, a 16-bit data type can be used to represent a fractional number, where 1-
bit represents the sign, 1-bit represents the integer and 14-bits represent the fraction, as
follows:

-(21) 20 2-1 2-2 2-3 … 2-12 2-13 2-14

Fig 14. Fixed-point number example

The resolution is defined by the number of fractional bits. In this example there are 14
and therefore the resolution is 2-14 (0.00006103515625). The largest positive value that
can be represented by this format is 1.999938964843750 (0x7FFF) and the largest
negative value is −2.0 (0x8000).

The notation used to describe these numbers is Qi.f, e.g., a number containing 4 integer
bits and 28 fractional bits (stored in a 32 bit data type) would be designated as a Q4.28
value.

5.1 Floating point to fixed-point conversion
Converting a floating point value into a Qi.f fixed-point representation can be achieved
simply by multiplying the floating point number by 2f and then rounding to the nearest
integer. An example showing how to convert the floating point value 1.2345678 into a
2.14 fixed point representation is shown in Fig 15.

1.2345678 * 214 = 20227.1588352 = 20227 (2.14 Fixed-Point Format)

Fig 15. Floating point to fixed-point conversion example

Fractional
Bits

Sign
Bit

Integer
Bit

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 14 of 16

6. References
[1] Understanding Digital Signal Processing by Richard G. Lyons

[2] DSP library for LPC1700 and LPC1300 (AN10913)

[3] Memory to DAC transfers using the LPC1700’s DMA (AN10917)

[4] LPC17xx User Manual (UM10360)

[5] WinFilter Version 0.8 (http://www.nxp.com/redirect/winfilter.20m.com)

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

 AN10934_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 14 May 2010 15 of 16

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10934
 Using M3 DSP library filter functions

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 14 May 2010
Document identifier: AN10934_1

8. Contents

1. Introduction ...3
2. Filter examples ..3
3. FIR filter..5
3.1 FIR parameter limits...6
3.2 FIR filter example ...6
4. IIR filter...9
4.1 IIR filter example ..9
4.2 IIR parameter limits ..12
5. Fixed-point number representation13
5.1 Floating point to fixed-point conversion............13
6. References...14
7. Legal information ..15
7.1 Definitions ..15
7.2 Disclaimers...15
7.3 Trademarks ..15
8. Contents...16

	1. Introduction
	2. Filter examples
	3. FIR filter
	3.1 FIR parameter limits
	3.2 FIR filter example

	4. IIR filter
	4.1 IIR filter example
	4.2 IIR parameter limits

	5. Fixed-point number representation
	5.1 Floating point to fixed-point conversion

	6. References
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Trademarks

	8. Contents

