

AN10963
Reducing code size for LPC11XX with LPCXpresso

Rev. 1 — 2 August 2010 Application note

Document information
Info Content
Keywords Cortex, M0, Optimization, Size

Abstract This application note will cover some basic techniques which can be used
to reduce the size of your program’s binary image. This is an important
step in the design process when targeting LPC11XX parts with small
memory footprints.

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 2 of 22

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20100802 Initial version.

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

1. Introduction
The LPC11XX part family offers a wide granularity of flash densities which enable
designers to reduce overall system costs by targeting optimally sized devices. When
targeting parts with the lowest available memory sizes, it becomes critical that a
program’s binary image does not exceed the part’s resources. Many strategies exist to
reduce an embedded program’s footprint, and this application note will detail a general
purpose set of recommendations which if followed properly will allow designers to target
lower density microcontrollers with minimal effort.

It should be noted that a typical case of development may involve the use of an
evaluation board loaded with a microcontroller featuring more memory than the intended
target hardware. Often larger part variants in a family will inherit the memory map of the
lower end part variants. By adjusting the project’s settings to target the lowest end part
early in the development process, the designer will have a better feel for the constraints
they will be working with in their final implementation.

2. Code size reduction strategies
Most embedded toolchains support configurable optimization settings, and LPCXpresso
is no different. However, adjusting compiler optimization levels alone may not result in
the smallest code size possible, and in general enabling optimization may not be a good
starting point when attempting to reduce code size. Analyzing a program allows a
developer to detect when additional functions have been unintentionally imported due to
the use of libraries. Enabling compiler size optimization will not remove any superfluous
symbols from a program.

The recommend strategy for reducing code size is outlined below:
• Avoid the use of high level library routines
• Target a larger (or “virtual”) device in the case of link failure
• Configure linker options to remove unreferenced sections
• Replace generic routines with application specific ones
• Enable compiler optimization for code size

2.1 Avoid the use of high level library routines
As an example, a simple program with a perpetual loop was created. Project options
were selected to enable semi-hosting. The program requires as little as 350 bytes. Due
to the removal of extraneous startup routines there is little overhead in this program: the
exception vector for the Cortex-M0, an application specific low level startup routine and
the body of main().

Simply adding a call to printf(“Hello World!”) can lead to a program with over 200
functions being included. The specific functions included may be a surprise to many
developers as they are not all related to I/O. Because the Cortex-M0 does not include a
hardware divider, several math functions are harvested in order to enable output
formatting. The inclusion of printf(…) also requires several double precision floating point
routines, each of which can take up over 400 bytes. By removing unreferenced sections
the number of functions is reduced to 57, but this is still surprisingly large and uses a
substantial amount of the LPC1114’s available flash as can be seen when Fig 1 is
compared with Fig 2.

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 3 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

If the use of printf(…) cannot be avoided, consider defining the preprocessor symbol
CR_INTEGER_PRINTF in LPCXpresso’s compiler settings, to limit formatting when
using the REDLIB libraries as it alleviates the need for double precision floating point
routines, thus saving space.

This section has focused on printf(…) as it is a commonly used library function that will
typically harvest many other functions, however it is not the only library routine that does
this. A recommended practice is to always analyze a project’s symbol table to ensure
only those symbols which are required are included in the program image.

(1) Not drawn to scale

Fig 1. Flash usage by a simple program without printf(…) for LPC1114

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 4 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

(1) Not drawn to scale

Fig 2. Flash usage by a simple program with printf(…) for LPC1114

Coding style can also affect code size. For instance consider the following two routines to
increment and bound a value:

Table 1. Coding style comparison
C Source Note
count = (count+1) % 60; Will include division routine

if (++count >= 60) count = 0; No division required

2.2 Target a larger (or “virtual”) device in the case of link failure
When a program’s image exceeds the resources of the target device, the linker will stop
and issue an error, preventing further analysis by the developer. Without a fully linked
image, it is difficult to detect unintentionally included libraries. Analysis of a properly
linked image enables developers to efficiently improve the largest sections of a project,
rather than attempting to reduce the size of every single function. It is therefore
recommended as a first step that developers work around linker failures in order to better
reduce their code size, rather than enabling optimizations straight away.

LPCXpresso allows designers to easily adjust their target devices in the “MCU Settings”
dialog. As an example, when a project targeting an LPC1111 fails, selecting the
LPC1114 instead may be a sufficient means to link the project. Be aware that changing
the target device may allow the build to complete, but you will not be able to debug the
device in LPCXpresso as the device ID will not match.

Should the project be too large for even the LPC1114, by manually managing the linker’s
configuration file inside LPCXpresso, you can configure the toolchain into thinking your
target device has more memory than it actually does. As the topic of generating custom
linker scripts is slightly lengthy, it has been included later in the document as Appendix A.
When using a custom linker script, just as when selecting a larger device debugging and
execution will not be possible.

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 5 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

Fig 3. LPCXpresso: MCU settings

2.3 Configure linker options to remove unreferenced sections
Most toolchains make use of a linker with configurable options. Typically these will
include a parameter to check for any unreferenced symbols, and in the event that any
are found they will be removed from the linked program image.

Because LPCXpresso is based on the GNU toolchain users should ensure that their
project has specific options enabled to ensure that unreferenced sections are properly
removed at link time. The compiler options apply not only to project source code, but any
libraries as well.

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 6 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

Table 2. LPCXpresso recommended toolchain options
Flag Tool Description
-ffunction-sections Compiler Create function specific sections in each module

-fdata-sections Compiler Create data specific sections in each module

--gc-sections Linker Remove unreferenced sections

--cref Linker Generate cross reference report in map file

Fig 4. Compiler options

Fig 5. Linker options

2.4 Replace generic routines with application specific ones
While the use of general purpose routines can aid in rapidly developing an application,
the increased flexibility typically comes at a price: increased code size. A
recommendation in achieving the leanest program is to replace generic routines with
application specific ones. Example LPCXpresso projects will typically include several

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 7 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 8 of 22

routines which, if deemed to be too large for the functionality they offer, can either be
replaced or removed.

Take the function “SystemInit()” as an example. Without compiler optimization enabled,
this function requires up to 224 bytes of “.text” (as well as 4 bytes of RAM for the
SystemCoreClock variable). If your application runs at a fixed clock rate (which is
common in many applications) you should consider replacing this routine with a focused
initialization routine to configure your clock(s) as required.

The example project LPC1114_Blinky makes use of a routine GPIOSetDir(). By including
a post build action “arm-none-eabi-nm --size-sort ${BuildArtifactFileName}” it can be
seen that GPIOSetDir() occupies over 500 bytes. Some applications do not need to
adjust the directionality of peripheral pins at runtime because they are dedicated on the
PCB. In these scenarios substantial amounts of code can be recovered by using fixed pin
input/output routines at the start of execution.

Another example involves the SYSAHBCLKCTRL register. Many of the routines included
with LPCXpresso will set or clear bits in SYSAHBCLKCTRL, but in some applications
(typically those without power consumption constraints) peripherals are powered up at
system startup and remain enabled indefinitely. In such a situation, it may make more
sense to simply configure SYSAHBCLKCTRL once at start up by setting multiple bits in
the mask. Doing this will prevent additional code associated with inline read/modify/write
cycles being included.

There is no universal rule as to which library functions should be replaced, therefore
doing so is recommended only in the event that implementing the application specific
routine can be accomplished with relative ease and in cases where prior analysis shows
that space savings warrant the development of application specific routines.

2.5 Enable compiler optimization for code size
GCC supports a multitude of compiler options, which at times may overwhelm a
developer. As a general rule, the “-Os” meta-option to optimize for size is a good starting
point. This option will enable the majority of optimizations included in “-O2”, while
disabling those which generally increase code size.

Many optimization levels can reorder program execution complicating the task of
debugging. In cases where a program simply will not link without optimizations enabled,
yet debugging is required, the developer may have an option to make life easier:
LPCXpresso allows users to enable optimizations on a file by file basis. This makes it
possible to selectively disable optimization on a specific module in order to make
program flow more intuitive while operating under a debugger.

Despite the fact that optimization can make debugging more challenging, it should also
be noted that optimizing code can also affect the behavior of a program. This typically
manifests when memory mapped devices and/or peripherals are not declared with the
volatile attribute,1 and when variables are used to enforce timing. As such it is generally
recommended to enable optimizations as soon as a module of code has stabilized, so
that any issues (usually timing related) introduced by optimization are detected as early
as possible.

It is also recommended that in addition to an application’s code being optimized, any
libraries (for which source is available) also be compiled with optimizations enabled.

1. http://www.nxp.com/redirect/en.wikipedia.org/wiki/Volatile_variable

http://www.nxp.com/redirect/en.wikipedia.org/wiki/Volatile_variable

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

Once an application’s development has stabilized, testing with further optimization
options can occur. When code size savings can be had due to reducing library bloat and
removing unused sections, the designer is free to experiment at their discretion with
further optimizations levels such as “-O3” or focusing optimizations on run time
performance rather than code size reduction, as determined by their application’s
requirements.

3. Advanced topics
This section will cover several advanced topics. They are:
• Utilities
• Structure alignment
• Disassembly
• Vector table modification

3.1 Utilities
LPCXpresso offers several tools to assess a program’s code size right out of the box. A
command prompt with an automatically configured environment can be quickly opened
by CTRL+Clicking on the active project’s name in the LPCXpresso status bar.
Additionally, these utilities can be added to pre/post build actions, as seen in some of the
included example code.

The first of these utilities is the “size” program. The arm-none-eabi-size tool is part of the
GNU toolchain included with LPCXpresso. It can be accessed via an ELF binary’s
context menu (Binary Utilities->Size) or can be invoked as a part of a custom build script
or manually from the command line. In Fig 6 it can be seen that the example “Blinky”
project when built without any optimization takes up nearly the entire 8 kB of flash offered
by an LPC1111.

Fig 6. LPCXpresso code size example

Analyzing a list of a program’s symbols can be useful in determining whether libraries
have unintentionally included unnecessary functions. In addition to the list of symbols,

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 9 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

knowing which symbols are the largest will aid in reducing the size of code without
wasting effort on optimizing insignificant routines.

This can be assessed by reading the toolchain’s map report. Adding the command line
switch "--cref" will append a “Cross Reference Table” to the map report which
alphabetically lists all symbols and the modules in which they are referenced.

Sometimes it can be more convenient to sort the list of symbols by their size rather than
alphabetically. The GNU toolchain included in LPCXpresso comes with a copy of the
utility “arm-none-eabi-nm” which lists symbols from ELF object files. Invoking the
command with the “--size-sort” option will result in output being sorted size. Including the
following line in a list of post build actions will display the size of all symbols after each
build: “arm-none-eabi-nm --size-sort ${BuildArtifactFileName};”

3.2 Structure alignment
There is one particular case in which structure member ordering can be a significant
cause for program bloat: when there are large arrays of structures being used. Because
the Cortex-M0 cannot transfer arbitrarily sized data from every memory location, the
compiler must insert padding to ensure that all members are aligned naturally in memory.
This padding is illustrated in Fig 8. Padding misaligned structures can impact code size
whenever the array is not zero-initialized, regardless of whether or not it was declared
with the const qualifier. It should also be noted that the same padding is required if the
array is stored in RAM. In the case of the LPC11XX family of parts, there is less on chip
RAM than flash, and as such the padding will be underutilizing a higher percentage of the
part’s resources.

Take the structures in Fig 7 as an example. Notice that they have the exact same type of
members, however they are ordered differently. While the size improvement seen by
properly ordering the structure (four bytes) may seem insignificant, the loss of memory
from having a table of 100 poorly structured elements can be significant when using parts
with lean resources. For instance, 400 padding bytes on a program targeting the
LPC1111 results in nearly 5 % wasted code storage (and 10 % RAM).

A useful rule to follow is to order a structure’s members from smallest sized to largest.
That is to say, declare all 8-bit members prior to 16-bit ones, followed by any 32-bit sized
members such as integers and floating point variables. This way the compiler will be able
to minimize the number of padding bytes that might be added, and more efficiently
access members via the 16-bit Thumb instruction LDRB.

Be aware that using a pragmatic directive to pack structures may reduce the RAM
footprint of a program, but additional code must be generated to properly access a
packed structure’s members. Because members will be aligned to potentially unnatural
boundaries, the compiler will automatically generate additional operations to access the
data to be manipulated in order to be accessed. This will not only degrade runtime
performance, but will also increase a program’s size. Unless there is a specific need
(such as packetized networking), it is therefore not recommended to use packed
structures when optimizing for code size.

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 10 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

typedef struct { //naieve member ordering
 char c;
 short s1;
 long l;
 char arr_c[3];
 short s2;
}misaligned;

typedef struct { //intentional 32-bit aligned ordering
 char c;
 char arr_c[3];
 short s1;
 short s2;
 long l;
}aligned;

#pragma pack(1)
typedef struct { // naieve (packed on byte bounadaries)
 char c;
 short s1;
 long l;
 char arr_c[3];
 short s2;
}packed;
#pragma pack

Fig 7. Structure alignment examples

Fig 8. Memory layout (differing member ordering)

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 11 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

(1) Red outline indicates unnatural alignment.

Fig 9. Memory layout (misaligned, packed structure)

3.3 Disassembly
Oftentimes it is useful to inspect the inner workings of a function which is suspiciously
large. This is easily done with the GNU objdump utility. By invoking objdump with the
“--source” and “--syms” switches will display the final object file’s symbol table as well as
disassembly intermixed with original C source. Note that LPCXpresso has an option to
view disassembly, but it does not invoke the inline source option. Below is a portion of
the disassembly of an application specific clock initialization routine.

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 12 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

static void InitPLLIRC48(void)
{
 c0: b580 push {r7, lr}
 c2: af00 add r7, sp, #0
 // Set PLL frequency= x4 = 48 MHz from 12 MHz IRC
 LPC_SYSCON->SYSPLLCTRL = 0x3 + (0x2<<5);
 c4: 4a0f ldr r2, [pc, #60] (104 <InitPLLIRC48+0x44>)
 c6: 2343 movs r3, #67
 c8: 6093 str r3, [r2, #8]
 // Turn on PLL
 LPC_SYSCON->PDRUNCFG &= ~(1<<7);
 ca: 490e ldr r1, [pc, #56] (104 <InitPLLIRC48+0x44>)
 cc: 4a0d ldr r2, [pc, #52] (104 <InitPLLIRC48+0x44>)
 ce: 238e movs r3, #142
 d0: 009b lsls r3, r3, #2
 d2: 58d2 ldr r2, [r2, r3]
 d4: 2380 movs r3, #128
 d6: 439a bics r2, r3
 d8: 238e movs r3, #142
 da: 009b lsls r3, r3, #2
 dc: 50ca str r2, [r1, r3]
 …

(1) Bold text indicates C language

Fig 10. Example disassembly with inline C source

3.4 Vector table modification
The Cortex-M0 core uses the vector table stored at 0x00000000 at startup to enter low
level startup routines and eventually call main(). The vector table also contains the
addresses of any interrupt or exception handlers. Be aware that this strategy is
recommended only when no other means of space reduction are possible, and in
applications with either very specific or no interrupt requirements. If your design requires
use of lower power modes, ensure that any required wakeup functionality will continue to
operate after any modification to the vector table. Because an incorrectly configured
vector table can prevent a system from booting, refer to the “Criterion for Valid User
Code” section of your selected device’s Users Manual before attempting these changes.
It is also recommend that developers inspect their program images prior to flashing the
device, to ensure that the vector table has not been disturbed due to the placement of
code and/or constant data in the unused vector locations.

In the event that a program does not use any (or many) interrupts (including power mode
wake up events), this vector table is acting as underutilized memory. This table can
potentially waste up to 128 bytes of memory, and can be reclaimed relatively easily.

In the rare case that an application does not require interrupts, the declaration of the
vector table can simply be truncated and the default linker options will subsequently start
the “.text” segment after the vector table.

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 13 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) =
{
 &_vStackTop, // The initial stack pointer
 ResetISR, // The reset handler
 NMI_Handler, // The NMI handler
 HardFault_Handler, // The hard fault handler
 0, // Reserved
 0, // Reserved
 0, // Reserved
 0, // Reserved
 0, // Reserved
 0, // Reserved
 0, // Reserved
 SVCall_Handler, // SVCall handler
 0, // Reserved
 0, // Reserved
 PendSV_Handler, // The PendSV handler
 SysTick_Handler // The SysTick handler

};

Fig 11. Redefined vector table (no peripheral interrupts)

If peripheral interrupts are required for an application, manually configuring the linker as
seen in Appendix A will allow a developer to reclaim some of the space normally
occupied by the vector table as well. The general process of doing this first requires
function and constant-data size analysis to make sure there are symbols which will fit
contiguously in the space to be freed. In the case of the included example project
“LPCXpresso1114_blinky_tiny” there is a look up table of 0x30 bytes used for GPIO
routines. After determining that savings can be had, two additional sections must be
added to the linker. The example uses “.reset_vector” and “.vector_const” as the names.
The vector table is split into two arrays, one of M0 core related handlers, the other of
peripheral handlers; the middle section of wakeup handlers is removed.

Complications in modifying the exception vector can be difficult to debug, as such the
recommendation is that developers first allocate space for additional functions and
variables by splitting the vector array into two parts and test their applications. After the
design is verified with the previous change define functions and constants with attributes
to place them in the “.vector_const” section.

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 14 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

 .text :
 {
 KEEP(*(.reset_vector)) //Portion of vector table related
to M0
 KEEP(*(.vector_const)) //Small functions and constants

 . = 0x7C;
 KEEP(*(.isr_vector)) //Peripheral interrupt handlers

 . = 0xC0;
 (.text)
 (.rodata)

 } > MFlash32

Fig 12. Example linker configuration adding two new sections

4. Example software projects
Included with this application note is an LPCXpresso workspace archive which contains
four projects and their required libraries. The workspace contains two “stock” projects
and two “tiny” projects. The intent is to show a direct comparison as to the gains that can
be attained by following the guidelines in this application note.

One projects pair use the semi-hosting features of LPCXpresso to display a running
count to the user. Table 3 shows a comparison in resulting image file sizes. Note that the
standard project is 3X the size of the LPC1111’s available flash memory.

Table 3. Comparison of “hello_world_semihosting” and “hello_world_semihosting_tiny”
Type Bytes LPC1111 Usage LPC1114 Usage
Stock 25,772 314% 79%

Tiny 2,870 35% 9%

The second project is even more simplistic, it simply blinks an on board LED. The tiny
version of this project makes use of several advanced concepts covered in this
document, please be aware that it has custom linker configuration and startup routines.

Table 4. Comparison of “LPCXpresso1114_blinky” and “LPCXpresso1114_blinky_tiny”
Type Bytes LPC111 Usage LPC1114 Usage
Stock 1,448 18% 4%

Tiny 516 6% 2%

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 15 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 16 of 22

5. Conclusion
The strategies and tools covered in this application note should give developers the
ability to ensure their programs will fit into their target hardware with minimal effort. By
analyzing their code, they will be better suited to meet product requirements using
devices with limited program storage. While this application note has been LPC11XX
centric, the recommendations made here can largely be applied to any NXP device.

6. Appendix A
Several steps are required to specify a custom linker script set.2 First make a new folder
in the project named “custom_ld”. This will store the customized script files. Next copy
the automatically generated linker scripts with “.ld” extensions from the active target
folder (typically “Debug” or “Release”) into the “custom_ld” folder. Fig 13 illustrates where
the automatically generated scripts are stored in the project. Rename the file as per
Table 5. Before you modify the content of the scripts, you need to ensure that the
toolchain is configured to use them as seen in Fig 14. To redefine the memory map of
the ‘virtual’ target device, manually edit Custom_mem.ld to suit your needs; in the
example shown in Fig 15 the flash section has been expanded to 1 MB. Finally update
Custom.ld to point to the Custom_mem.ld and Custom_lib.ld scripts in the newly created
custom_ld folder. An example of this is shown in Fig 16.

Table 5. Renamed linker scripts
Original name Renamed copy
PROJECTNAME_Debug.ld Custom.ld

PROJECTNAME_Debug_mem.ld Custom_mem.ld

PROJECTNAME_Debug_lib.ld Custom_lib.ld

Fig 13. Automatically generated linker scripts

2. http://www.nxp.com/redirect/lpcxpresso.code-red-tech.com/LPCXpresso/node/31

http://www.nxp.com/redirect/lpcxpresso.code-red-tech.com/LPCXpresso/node/31

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

Fig 14. Specifying custom linker file

MEMORY
{
 /* Define each memory region */
 MFlash32 (rx) : ORIGIN = 0x0, LENGTH = 0x100000 /* 1M */
 RamLoc8 (rwx) : ORIGIN = 0x10000000, LENGTH = 0x2000 /* 8k */
}
 /* Define a symbol for the top of each memory region */
 __top_MFlash32 = 0x0 + 0x100000;
 __top_RamLoc8 = 0x10000000 + 0x2000;

Underline indicates changes from original file

Fig 15. Artificially large memory definition

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 17 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 18 of 22

/*
 * GENERATED FILE - DO NOT EDIT
 * (C) Code Red Technologies Ltd,
 * Generated C linker script file for LPC1114
*/
INCLUDE "../custom_ld / Custom_lib.ld "
INCLUDE "../custom_ld /Custom_mem.ld "

ENTRY(ResetISR) …

Underline indicates changes from original file

Fig 16. Modifications to “Custom.ld” linker script

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 19 of 22

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of

NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

7.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

8. List of figures

Fig 1. Flash usage by a simple program without
printf(…) for LPC1114.......................................4

Fig 2. Flash usage by a simple program with printf(…)
for LPC1114..5

Fig 3. LPCXpresso: MCU settings6
Fig 4. Compiler options ...7
Fig 5. Linker options..7
Fig 6. LPCXpresso code size example9
Fig 7. Structure alignment examples.........................11
Fig 8. Memory layout (differing member ordering)11
Fig 9. Memory layout (misaligned, packed structure)12
Fig 10. Example disassembly with inline C source13
Fig 11. Redefined vector table (no peripheral interrupts)

..14
Fig 12. Example linker configuration adding two new

sections...15
Fig 13. Automatically generated linker scripts.............16
Fig 14. Specifying custom linker file............................17
Fig 15. Artificially large memory definition...................17
Fig 16. Modifications to “Custom.ld” linker script18

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 20 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

9. List of tables

Table 1. Coding style comparison...................................5
Table 2. LPCXpresso recommended toolchain options ..7
Table 3. Comparison of “hello_world_semihosting” and

“hello_world_semihosting_tiny”.......................15
Table 4. Comparison of “LPCXpresso1114_blinky” and

“LPCXpresso1114_blinky_tiny”.......................15
Table 5. Renamed linker scripts16

 AN10963 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 2 August 2010 21 of 22

NXP Semiconductors AN10963
 Reducing code size for LPC11XX with LPCXpresso

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an please send an email to:
salesaddresses@nxp.com

Date of release: 2 August 2010
Document identifier: AN10963

10. Contents

1. Introduction ...3
2. Code size reduction strategies3
2.1 Avoid the use of high level library routines.........3
2.2 Target a larger (or “virtual”) device in the case of

link failure ...5
2.3 Configure linker options to remove unreferenced

sections ..6
2.4 Replace generic routines with application specific

ones ...7
2.5 Enable compiler optimization for code size8
3. Advanced topics..9
3.1 Utilities..9
3.2 Structure alignment ..10
3.3 Disassembly...12
3.4 Vector table modification13
4. Example software projects...............................15
5. Conclusion...16
6. Appendix A ..16
7. Legal information ..19
7.1 Definitions ..19
7.2 Disclaimers...19
7.3 Trademarks ..19
8. List of figures...20
9. List of tables ..21
10. Contents...22

	1. Introduction
	2. Code size reduction strategies
	2.1 Avoid the use of high level library routines
	2.2 Target a larger (or “virtual”) device in the case of link failure
	2.3 Configure linker options to remove unreferenced sections
	2.4 Replace generic routines with application specific ones
	2.5 Enable compiler optimization for code size

	3. Advanced topics
	3.1 Utilities
	3.2 Structure alignment
	3.3 Disassembly
	3.4 Vector table modification

	4. Example software projects
	5. Conclusion
	6. Appendix A
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Trademarks

	8. List of figures
	9. List of tables
	10. Contents

