

AN10986
USB In-System Programming with the LPC1300

Rev. 1 — 24 September 2010 Application note

Document information
Info Content
Keywords LPC1300, USB, In-System Programming (ISP), Mass Storage Class

(MSC), Cortex-M3, Windows, Apple OS-X, Linux

Abstract This application note explains how to use the on-chip USB In-System
Programming feature of the LPC1300 Cortex-M3 based microcontroller to
update firmware in on-chip flash memory on Windows, Apple OS-X, and
Linux operating systems.

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 2 of 17

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20100924 Initial version.

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

1. Introduction
The LPC1300 microcontroller family is based on the ARM Cortex-M3 CPU architecture
for embedded applications featuring a high level of support block integration and low
power consumption. The peripheral complement of the LPC1300 series includes up to
32 kB of flash memory, up to 8 kB of data memory, USB Device interface, 1 UART, 1
SSP controller, SPI interface, I2C interface, 8 channel 10-bit ADC, 4 general purpose
timer/PWMs, and up to 40 general purpose I/O pins.

Also present is an on-chip ROM containing In-System Programming capability (a
bootloader) supporting UART and USB flash programming, as well as APIs for user
code. The flash API implements a simple interface to the on-board flash programming
functionality and allows entry to ISP mode at any time. The USB API supports
development of Human Interface Devices (HID) and Mass Storage Class (MSC) devices
without requiring driver code to be written by the customer or stored in Flash.

 The various topics covered in this application note are as follows:
1. USB In-System Programming Overview
2. USB ISP Details
3. Automating USB ISP
4. Automating entry of USB ISP
5. Sample Software
6. Conclusion

2. USB In-System Programming (ISP) Overview
The LPC1300’s on-chip USB ISP firmware enables programming and updating of
firmware in the field by end users using standard personal computer operating systems.
This document will reference the LPC1343 in particular, but the procedures should also
apply to other LPC1300 family products with on-chip USB.

Holding PIO0_1 low during power-up will trigger the on-chip ISP firmware to enter ISP
mode (unless it is disabled by the NO_ISP code read protection [CRP] mode). Once ISP
mode has been entered, the USB VBUS line PIO0_3 is checked. If high, then USB ISP
will be entered. If low, UART ISP will be entered instead. The diagram in the User’s
Manual titled “Boot Process Flowchart” explains this process in greater detail.

Upon entry to USB ISP mode, the LPC1300 part will enable the on-chip USB full-speed
interface as a mass storage class device. This disk device will contain a FAT12
filesystem which will appear as a standard disk device in most operating systems. The
label of the disk will indicate the CRP status and the disk will contain a single file,
firmware.bin. Deleting and rewriting this file will write to the flash memory if allowed by
the code protect settings. Reading the contents of flash memory is as simple as copying
the firmware.bin file.

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 3 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

Fig 1. LPC1300 USB ISP system

Fig 2. USB ISP- firmware.bin file as seen in Windows XP

3. USB ISP details
The LPC1300’s on-chip USB ISP firmware emulates a FAT filesystem to facilitate
firmware reading and writing by PC software. We will describe details of the filesystem
emulation and techniques to update the firmware using several standard host operating
systems.

When LPC1300 is connected to a USB host and USB ISP mode is initiated, it
enumerates as USB Vendor ID 0x04CC and Device ID 0x0003. This information is
usually hidden from the end user, but it can be used by firmware updating software to
find the LPC1300 among the USB devices connected to a PC. Once the device has been
found, a Mass Storage Class Inquiry command can be sent. This will return a string
describing the LPC microcontroller product attached. The Inquiry string for the LPC134x
products reads “NXP LPC134X IFLASH 1.0” The device can also be recognized by its
device vendor which is “NXP” and device model which is “LPC134X IFLASH.” Finally,
there is a model ID which is “NXP_LPC13XX_IFLASH”

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 4 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

The disk emulated by the LPC1300 has different volume labels depending on the Code
Read Protect (CRP) settings and slightly different behavior during reprogramming. A brief
summary of this behavior is printed below, but the complete documentation is available in
the LPC1300 User’s Manual UM10375.

If CRP1 or CRP2 is enabled, the user flash is erased when the file is deleted and
reprogrammed when the new file is copied.

If CRP1 is enabled or no CRP is selected, the user flash is erased and reprogrammed
when the new file is copied. However, only the area occupied by the new file is erased
and reprogrammed. Because of this, ideally, the new programming file would contain the
full flash contents (32KB for the LPC1343) so that all of the flash would be in a known
state. Using a padded (32KB or flash size) programming file also provides a means for
the programming tool to error-check that the correct LPC part is connected (by
comparing file sizes of the new firmware and the firmware.bin on the device) without
additional configuration information.

Remark: The only Windows commands supported for the LPC1300 flash image folder
are copy and delete. Overwrite operations using the Windows Explorer will not be
successful as there is insufficient room on the emulated disk to store the temporary file
created by Windows during the overwrite process.

Fig 3. LPC1300 User’s Manual- CRP disk volume labels

The FAT filesystem emulated by the boot ROM consist of a single file called
firmware.bin which contains the entire flash contents of the part. Normally, a disk
must be slightly larger than the required storage due to the directory and allocation table
overhead of the filesystem. In the case of the LPC1300’s emulated FAT filesystem, four
extra blocks are needed for the boot block, root directory, and file allocation table.
Because it is required to be able to program all of the flash memory in the MCU using
ISP, these extra blocks are emulated using data from RAM and ROM rather than being
mapped into the flash used for code storage. Because of this, no filesystem metadata is
saved when power is lost- only data programmed into flash via file writes is saved.

The data written to the filesystem is organized in flash by disk block order, with the
beginning of flash starting at block 4. If firmware.bin is deleted, PCs running windows will
allocate any new file starting at block 4 and using increasing block numbers as more data
is written. This means that in Windows, any standard program or tool can be used to
write new firmware to the LPC1300. In a Windows Explorer window, a user can delete

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 5 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

firmware.bin and drag over a new file to program the flash. Unfortunately, FAT
filesystems on Mac and Linux machines tend to allocate blocks to files in a different order
which results in data being written onto the ISP disk, and consequently firmware being
written to flash, being reordered. This will cause the firmware update to be unsuccessful.
There are two workarounds for this. The most general workaround is to overwrite the
firmware.bin file in place. A more “brute-force” option that requires administrative
privileges to do direct disk device writes to /dev.

4. Automating USB ISP
Sometimes a system requirement is for firmware updates to be performed without user
intervention. Asking a user to determine which disk drive links to a USB device, or asking
them to manually delete and rewrite a file, is often too complex. Firmware often needs to
be updated automatically under control of a PC program. This section will describe how
this can be accomplished. To fully automate this process on the PC side, a program
should find the correct USB device to be updated, convert the USB device “handle” into a
file path, check the CRP mode, write to the file to program flash, and finally unmount the
disk device to ensure that the flash contents are written. These steps will be discussed
separately. It can also be useful to validate the firmware file to be programmed. This can
be verified using the “Criterion for Valid User Code” in the LPC134x User’s Manual,
which is implemented in the Windows ISP tool. It is also possible to validate that the file
is the same length as the flash space on the device to be programmed. This is
implemented on the Mac and Linux ISP examples. Note: Some deviation from these
exact steps is okay to simplify implementation on various operating systems.

4.1 Finding the correct USB device
The technique used to enumerate USB devices varies depending on the operating
system. On Linux, most distributions provide a program called lsusb which can search
for a USB device with a specific Vendor ID and Product ID (04CC:0003). Afterward,
udevadm (present on systems using the udev device filesystem) can be used to list the
USB Model ID and system device path. The Model ID should be
“NXP_LPC13XX_IFLASH” for the LPC1300 family. Once the Vendor ID, Product ID, and
Model ID are confirmed, you are assured to have found an NXP LPC1300 microcontroller
that is in ISP mode. Under Windows and Mac OS-X, this step is a little bit different. Since
the USB device model information is available from the disk volume database on the
Mac, no attempt is made to find the actual USB device. Instead, the disk devices are
checked until one with the correct Vendor and Device Model is found. A similar process
is used under Windows, with the help of the iTuner UsbManager class to retrieve disk
information under Windows.

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 6 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

4.2 Converting a USB device handle into a file path
In Linux, a USB device handle can be converted into a file path by iterating through all of
the disk drives in the udev filesystem and querying udevadm for their system device
paths until a match is found with the ISP USB device.

1. lsusb is called with the Vendor ID and Product ID of the NXP ISP device
(04CC:0003). lsusb outputs the bus and device ID to standard out (the
console). This output is captured and used to create a udev path for the USB
device. For example, bus 2 device 3 would be /dev/bus/usb/002/003.

2. A disk device name is pulled from /dev. In our sample script we use a wildcard
match to /dev/sd[a-z] and loop through all devices matching this pattern-
/dev/sda, /dev/sdb, /dev/sdc, etc. This will find all disk drives on the
system including hard disks as well as USB mass storage devices.

3. The complete low-level disk device file path is looked up with udevadm info -
q path –n /dev/sdX. The file path returned should begin with the low-level
usb device file path if that disk device is associated with the USB device we
found.

4. Finally the output of the mount command is used to determine where the disk
device name tested in step 2 is mounted in the linux filesystem. Now we have a
filesystem path for our USB ISP device and can access firmware.bin.

Under Mac and Windows, we start out with a disk handle (instead of a USB device
handle) and query the operating system for the disk letter or filesystem path.

4.3 Checking for Code Read Protection (CRP)
The LPC1300 USB ISP feature sets the label of the USB disk to indicate CRP mode. A
robust design for a USB ISP flash programmer would check the disk label to make sure
that CRP is not enabled. In Linux, FAT disk filesystem labels can be read with the
mtools package. Unfortunately, this is not recommended because it requires
administrative access. Another way to read filesystem labels in Linux is to use the
mount -l command if it is supported by your system’s version of mount. This will list all
of the mounted filesystems and their labels. On the Mac and on Windows the disk label
information shows up in the DiskDescription dictionary or in the Volume object
retrieved from WMI respectively.

If CRP 1 or CRP 2 is enabled, the firmware.bin file on the USB ISP disk must be
deleted to disable code protection before new firmware can be written. After deleting
firmware.bin, the device needs to be powered down and reconnected in order for the
change to CRP settings to take effect so that the firmware can be updated. If CRP 3 is
enabled, the device cannot be erased and the firmware cannot be updated.

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 7 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

4.4 Writing the file into program flash
In Windows, almost any standard filesystem write sequence will work properly as the
Windows variant of the FAT filesystem allocates blocks sequentially beginning at the first
free block on the ISP disk. In Linux, the device itself could be written directly (in /dev)
using dd to ensure block ordering. This technique is not recommended because it
requires that the user have administrative permissions. A second option is to open the
existing firmware.bin file on the USB ISP disk and overwrite the contents. If the file is
opened without truncation, then the new data will be written with the same order as the
existing file that is set up by the ISP firmware. (remember the “file metadata” is created
by the rom code and not stored in flash) Overwriting can be accomplished using dd to
write to firmware.bin with the conv=nocreat,notrunc.option. If coding in the C
language, it is possible to use open(path, O_RDWR) or fopen(path, “r+”). Again
in Windows there is no requirement to overwrite the existing file, so any file write scheme
can be used as long as it either overwrites or deletes the current file so that free space is
available to write the new data. In our Windows sample program we use the C# function
System.IO.File.WriteAllBytes(filePath, firmwareData) which does a
truncate operation before writing.

4.5 Unmounting the disk device
Most operating systems will eventually complete writes to disk after a delay, but forcing
an unmount is a helpful final step to ensure that the operating system has finished writing
data to disk so the user can be informed that it is okay to remove the device. For the
unmount operation to succeed, all open files including the firmware.bin file must be
closed first. In Linux, the posix standard umount command can be used. Usually no
administrator access is required to unmount automatically mounted USB mass-storage
devices. On the Mac, since mounting is handled automatically by the Disk Arbiter, the
best route is to use the DADiskUnmount system call. On Windows, most users are used
to unmounting disks themselves or the CM_Request_Device_Eject function in the
SetupAPI can be used to do it for them. Our sample Windows ISP updater does not
unmount the device when it is finished, instead it displays a dialog reminding the user to
do it.

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 8 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

Start

Scan USB
Devices

Device
04CC:0003

found?

No

Scan again,
or fail

Yes

Confirm
model and

CRP

No

Yes

Get path to
firmware.bin

Overwrite
firmware.bin

with new
firmware

(Mac, linux,
Windows)

Confirm flash
size matches

Match

Wrong

Unmount
disk device

Done

Delete
firmware.bin

and write
new firmware

(Windows only)

Fig 4. Host side- Automatable process to update flash

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 9 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

5. Automating entry of USB ISP
In the previous section we explained the PC process to update the firmware of a device
once it has already been placed in USB ISP mode. NXP LPC1300 microcontrollers enter
ISP mode by default when no firmware is programmed, or they can be placed in ISP
mode by pulling a pin low (PIO0.1 on the LPC134X family) and resetting or power-cycling
the device. Sometimes it is not desired to require a user to press a button while
connecting the device to invoke ISP mode for firmware updates. In this case, the
firmware can be designed to allow programmatic entry into ISP mode.

Programmatic entry into ISP mode is accomplished with a call to the In-Application
Programming API in the LPC1300 on-chip ROM. After the firmware is updated, the user
will need to power-cycle the device in order to start the new firmware. Alternately the
firmware can pre-configure the watchdog timer to reset the LPC1300 after the new
firmware has been downloaded. A flow chart is printed below showing the device-side
automated ISP process. A software example is provided called “autoisp” to demonstrate
this technique.

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 10 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

Start

Firmware
main loop

No

Yes

Init USB

PC sent
enter ISP
command

Configure
watchdog

timer

Call
“Enter ISP”

IAP API

Fig 5. Target side- Automatable process to update flash

6. Sample software
To accelerate the process of building a customer-friendly firmware updating tool, NXP
has released three implementations of an ISP download program and provided source
code. A Windows Forms-based C# application running in Windows XP, Windows Vista,
and Windows 7 is provided. The Windows application was developed using Microsoft
Visual Studio C# Express 2010. A command-line tool written in C is provided for the Mac.
It was developed in Apple Xcode and runs on OS-X 10.5 or higher. Finally, a bash shell
script is provided for Ubuntu Linux. It has been tested in Ubuntu 10.04 and may work in
other variants of Linux that have the same underlying udev filesystem and tools installed.

All of these tools have open unrestricted licenses for reuse except the Windows
application, which depends on a USB disk device class library from the iTuner

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 11 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

(http://ituner.codeplex.com/) project. It is covered under an open-source license that
requires disclosure of the source code of derivative works.

Also included with this application note is a blinky program implementing code read
protection. This program, developed under the LPCXpresso IDE, will flash the LED on
the LPCXpresso board and count numbers on the 7-segment LED display on an
Embedded Artists base board. There are nine compiled versions of the program included
so that a test device can be repeatedly reprogrammed with various CRP modes and LED
blinking/counting rates for testing.

A program called “autoisp” is included. This sample demonstrates how to enter ISP mode
under program control. It flashes an LED for ten seconds and then ISP mode is entered.
If the device is connected to a PC, it should enumerate and the firmware should be
flashed. During this time, while the LPC1343 is in ISP mode, the watchdog timer
continues to operate. After it times out, the LPC1343 will reset and run the newly flashed
firmware.

Finally, a small command-line program called “padto” is included. This program is used
for taking the binary output from development tools, and padding them with 0xFF bytes
until they match the size of the flash memory in the LPC microcontroller being used. This
size matching is useful to help the ISP download program on the PC host ensure that the
firmware is designed for the particular LPC134x part connected to USB.

Below are screen shots and descriptions of each of the three firmware downloading
tools.

6.1 Windows NXPISP utility
This program is based on Microsoft .NET, and when the setup.exe program is run to start
it, the bundled Visual Studio Installer will check the PC and download the latest version
of .NET if it is not already installed. For this reason, make sure you are connected to
the Internet through a broadband connection the first time you run this setup.exe
program. After the Windows .NET subsystem is updated, the NXPISP program will be
installed and automatically started. Once NXPISP is running, click “Select Firmware.” A
file chooser dialog will pop up and allow you to select a .bin file. This .bin file will be
checked against the “Criterion for Valid User Code” which is simply that the first 8 32-bit
words of the vector table sum to zero. If the .bin file looks good, a green checkmark will
be displayed to the right of the “Select Firmware” button. Otherwise, a red X will be
displayed.

To actually program a device, click “Update Firmware.” The “Update Firmware” button
works like a toggle and can stay depressed when clicked or release when it is clicked
again. When the button is pressed, the PC will be scanned for NXP ISP devices. If one is
found, its firmware will be updated and a green checkmark will be displayed to the right
of the “Update Firmware” button, and the button will release. If no devices are found, the
“Update Firmware” button will stay depressed and the tool will wait for a device to be
connected. After a device is found and updated, a green checkmark will be displayed and
the “Update Firmware” button will pop out. If the utility is awaiting a device connection
(“Update Firmware” button is still depressed) it can be canceled by clicking on the
“Update Firmware” button again and causing it to pop out.

Once the update has completed, it is important to safely eject the USB ISP device to
ensure that the new firmware has been written to it since the Windows NXPISP tool does
not unmount the device. Safe ejection can be performed with Window’s eject hardware

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 12 of 17

http://www.nxp.com/redirect/ituner.codeplex.com/

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

icon or the eject option in the Windows Explorer. Failure to complete this step may result
in corrupt firmware.

Fig 6. Windows NXPISP Utility (C# language, Microsoft Visual Studio 2010)

6.2 Linux LinuxNXPISP.sh ISP Utility
The LinuxNXPISP.sh ISP utility is a bash shell script that will run in Ubuntu 10.04. To
run it, open a Terminal window, which can be found in the Accessories submenu of the
Applications menu on the Ubuntu desktop. In the terminal window, navigate to where you
have placed the script, using the cd command. If the script has been extracted from a
.zip file, it may not be marked with executable permissions. Use chmod +x filename
to remedy this. Finally, ensure that the USB ISP device to be programmed is already
connected to the PC, and run the script with a single argument, the path to the .bin file
you wish to program.

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 13 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

Fig 7. Ubuntu NXPISP Utility (bash script)
chmod +x LinuxNXPISP.sh
then run from command prompt with ./LinuxNXPISP.sh firmware.bin

6.3 Mac NXPISP ISP utility
The Mac NXPISP ISP utility is an executable that should run on any Intel Mac running
OS 10.5 or newer. To run it, open a Terminal window, which can be found using a
Spotlight search. In the terminal window, navigate to where you have placed the
program, using the cd command. If the executable has been extracted from a .zip file, it
may not be marked with execute permissions. Use chmod +x filename to remedy
this. Finally, run the program with a single argument, the path to the .bin file you wish to
program. If the ISP device is already connected to the Mac, it will be updated
immediately and the tool will exit. If no device is connected, the tool will wait until a USB
ISP device is connected to the Mac, then update it and quit.

Fig 8. Mac OS-X NXPISP Utility (C language- Xcode)

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 14 of 17

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 15 of 17

7. Conclusion
In conclusion, the on-chip USB mass-storage in-circuit programming feature in the
LPC1300 family of microcontrollers can simplify manual firmware downloads during the
development process as well as support automated updates in the field.

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

 AN10986 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 1 — 24 September 2010 16 of 17

8. Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of

NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

8.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10986
 USB In-System Programming with the LPC1300

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an please send an email to:
salesaddresses@nxp.com

Date of release: 24 September 2010
Document identifier: AN10986

9. Contents

1. Introduction ...3
2. USB In-System Programming (ISP) Overview ..3
3. USB ISP details..4
4. Automating USB ISP ...6
4.1 Finding the correct USB device..........................6
4.2 Converting a USB device handle into a file path 7
4.3 Checking for Code Read Protection (CRP)7
4.4 Writing the file into program flash.......................8
4.5 Unmounting the disk device8
5. Automating entry of USB ISP10
6. Sample software..11
6.1 Windows NXPISP utility12
6.2 Linux LinuxNXPISP.sh ISP Utility.....................13
6.3 Mac NXPISP ISP utility14
7. Conclusion...15
8. Legal information ..16
8.1 Definitions ..16
8.2 Disclaimers...16
8.3 Trademarks ..16
9. Contents...17

	1. Introduction
	2. USB In-System Programming (ISP) Overview
	3. USB ISP details
	4. Automating USB ISP
	4.1 Finding the correct USB device
	4.2 Converting a USB device handle into a file path
	4.3 Checking for Code Read Protection (CRP)
	4.4 Writing the file into program flash
	4.5 Unmounting the disk device

	5. Automating entry of USB ISP
	6. Sample software
	6.1 Windows NXPISP utility
	6.2 Linux LinuxNXPISP.sh ISP Utility
	6.3 Mac NXPISP ISP utility

	7. Conclusion
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Trademarks

	9. Contents

