AN11024
SDARS active antenna 2nd stage LNA with BFU690, 2.33 GHz
Rev. 1 — 24 March 2011
Application note

Document information

<table>
<thead>
<tr>
<th>Info</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>LNA, 2.33 GHz, BFU690, SDARS</td>
</tr>
<tr>
<td>Abstract</td>
<td>This application note provides circuit, layout, BOM and performance information for 2.33GHz LNA equipped with NXP Semiconductors BFU690 wideband transistor</td>
</tr>
</tbody>
</table>
Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
1. Introduction

The BFU690 is a wideband Silicon Germanium Amplifier transistor intended for high speed, low noise applications. It is designed to be used for LNA applications such as GPS, satellite radio, cordless phone and wireless LAN. The BFU690 comes in a SOT343F package providing 2 emitter pins for better grounding.

The BFU690 is ideal in all kind of applications where cost matters. It also gives the designer flexibility in his design work.

The BFU690 SiGe low noise transistor is shown here in a Satellite Digital Audio Service (SDARS) active antenna LNA application. It is intended for use as the 2nd stage in a 3 stage SIRIUS LNA chain.

The 2.33 GHz LNA evaluation board (EVB) is designed to evaluate the performance of the BFU690 transistor applied as the 2nd stage in a 3 stage SIRIUS LNA chain. In this document, the application diagram, board layout, bill of material, and some typical results are given.

The evaluation board is shown in Figure 2.
2. General description

The BFU690 is a NPN silicon germanium microwave transistor for high speed, low noise applications in a plastic, 4-pin dual-emitter SOT343F package. Table 1 shows a summary of the transistor performance in terms of noise and gain.

Table 1. BFU690 performance in terms of noise and gain measured at $V_{CE} = 2$ V; $I_C = 25$ mA

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Noise figure (dB)</th>
<th>Associated gain (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.13</td>
<td>19.5</td>
</tr>
<tr>
<td>2.4</td>
<td>1.51</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Table 2. BFU690 pinning information

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Simplified outline</th>
<th>Graphic symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>emitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>emitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>collector</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Application board

The BFU690 2.33GHz EVB simplifies the evaluation of the BFU690 wideband transistor, for this frequency range. The EVB enables testing of the device performance and requires no additional support circuitry. The board is fully assembled with the BFU690, including input and output matching, to optimize the performance. The input match was a compromise between the best noise figure and a low input return loss. The board is mounted with signal input and output SMA connectors for connection to RF test equipment:

3.1 Application circuit

The application diagram as supplied on the evaluation board is shown in Figure 3.

![Evaluation board circuit diagram](image)

3.2 Board layout

Figure 2 shows the board layout with components.
3.3 PCB layout

A good PCB Layout is an essential part of an RF circuit design. The EVB of the BFU690 can serve as a guideline for laying out a board using either the BFU690. Use controlled impedance lines for all high frequency inputs and outputs. Bypass supply voltage V_{CC} with decoupling capacitors, preferable located as close as possible to the device. For long bias lines it may be necessary to add decoupling capacitors along the line further away from the device. Proper grounding of the GND pin is also essential for the performance. Either connect the GND pin directly to the ground plane or through vias, or do both.

The EVB is made of FR4 material using the stack shown in Figure 5.

![Stack of PCB Material](image)

Material supplier Isola Duraver; $\varepsilon_r = 4.6$ to 4.9; $T_\delta = 0.02$

Fig 5. Stack of PCB material
3.4 Bill of materials

Table 3. Bill of materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Footprint</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>capacitor</td>
<td>0402</td>
<td>1.8 pF</td>
<td>Murata GRM1555</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C3, C5</td>
<td>capacitor</td>
<td>0402</td>
<td>8.2 pF</td>
<td>Murata GRM1555</td>
<td>LF decoupling</td>
</tr>
<tr>
<td>C4, C6</td>
<td>capacitor</td>
<td>0402</td>
<td>10 nF</td>
<td>Murata GRM1555</td>
<td>LF decoupling</td>
</tr>
<tr>
<td>L1</td>
<td>inductor</td>
<td>0402</td>
<td>1.6 nH</td>
<td>Coilcraft 0603CS; high Q, low Rs</td>
<td>input matching</td>
</tr>
<tr>
<td>L2</td>
<td>inductor</td>
<td>0402</td>
<td>12 nH</td>
<td>Murata/LQW15A; high Q, low Rs</td>
<td>input matching /DC bias</td>
</tr>
<tr>
<td>L3</td>
<td>inductor</td>
<td>0402</td>
<td>3.9 nH</td>
<td>Murata/LQW15A</td>
<td>input matching</td>
</tr>
<tr>
<td>L4</td>
<td>inductor</td>
<td>0402</td>
<td>4.1 nH</td>
<td>Murata/LQW15A</td>
<td>input matching /DC bias</td>
</tr>
<tr>
<td>R1</td>
<td>resistor</td>
<td>0402</td>
<td>9.1 kΩ</td>
<td>various</td>
<td>bias setting</td>
</tr>
<tr>
<td>R2</td>
<td>resistor</td>
<td>0402</td>
<td>22 Ω</td>
<td>various</td>
<td>stability</td>
</tr>
<tr>
<td>R3</td>
<td>resistor</td>
<td>0402</td>
<td>15 Ω</td>
<td>various</td>
<td>bias setting temp stability</td>
</tr>
<tr>
<td>X1, X2</td>
<td>SMA RF connector</td>
<td>0402</td>
<td>-</td>
<td>Johnson, End Launch SMA 142-0701-841</td>
<td>RF input/RF output</td>
</tr>
<tr>
<td>X3</td>
<td>DC header</td>
<td>0402</td>
<td>-</td>
<td>Molex, PCB header, Right angle, 1 row, 3 way, Part no: 90121-0763</td>
<td>bias connector</td>
</tr>
</tbody>
</table>

4. Required equipment

In order to measure the evaluation board the following are necessary:

- DC power supply up to 60 mA at 3.3 V (up to 15 V for bias Control)
- RF signal generator capable of generating an RF signal at the 2.33 GHz operating frequency
- RF spectrum analyzer covering as a minimum the 2.33 GHz operating frequency and some of the harmonics (up to 8 GHz should be sufficient). Optional: a version with the capability of measuring noise figure is convenient
- Amp meter to measure the supply current (optional)
- NetWork analyzer for measuring gain, return loss and reverse isolation
- Noise figure analyzer.

5. Connections and setup

The BFU690, 2.33 GHz EVB is fully assembled and tested. To operate the EVB and test the device functions follow this step-by-step guide:

1. Connect the DC power supply to the VCC and GND terminals and set to 3.3 V.
2. Connect the RF signal generator and the spectrum analyzer to the RF input and the RF output of the EVB respectively. Do not yet turn on the RF output of the signal generator. Set it to ~30 dBm output power at 2.33 GHz and set the spectrum analyzer to 2.33 GHz center frequency with a reference level of 0 dBm.
3. Turn on the DC power supply and it should read approximately 30 mA.
4. Enable the RF output of the generator; the spectrum analyzer displays a tone of 2.33 GHz at approximately 14.7 dBm.
5. A NetWork Analyzer (NWA) can be used instead of a signal generator and spectrum analyzer in order to measure both gain and input and output return losses.

6. For noise figure evaluation use either a noise figure analyzer or a spectrum analyzer with noise option. The use of a 15 dB noise source, such as the Agilent 364B is recommended. When measuring the noise figure of the evaluation board, any kind of adaptors, cables etc, between the noise source and the EVB should be avoided, since this affects the noise performance.

![Evaluation board showing its connections](image)

6. Typical EVB results

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>BFU690 EVB</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>noise figure</td>
<td>1.47[1]</td>
<td>dB</td>
</tr>
<tr>
<td>G_p</td>
<td>power gain</td>
<td>15.3[1]</td>
<td>dB</td>
</tr>
<tr>
<td>IRL</td>
<td>input return loss</td>
<td>10</td>
<td>dB</td>
</tr>
<tr>
<td>ORL</td>
<td>output return loss</td>
<td>17</td>
<td>dB</td>
</tr>
<tr>
<td>$\alpha_{iso}(r)$</td>
<td>reverse isolation</td>
<td>20.7</td>
<td>dB</td>
</tr>
<tr>
<td>$P_{L(1dB)}$</td>
<td>input power at 1 dB gain compression</td>
<td>-0.48</td>
<td>dBm</td>
</tr>
</tbody>
</table>

Table 4. Typical results measured on the evaluation board

$T = 25 ^\circ C; f = 2.33$ GHz unless otherwise specified
Table 4. Typical results measured on the evaluation board …continued

\(T = 25 \degree C; f = 2.33 \text{ GHz unless otherwise specified} \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>BFU690 EVB</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{L(1dB)})</td>
<td>output power at 1 dB gain compression</td>
<td>13.9</td>
<td>dBm</td>
</tr>
<tr>
<td>IP3_i</td>
<td>input third order intercept point</td>
<td>12.85</td>
<td>dBm</td>
</tr>
<tr>
<td>IP3_o</td>
<td>output third order intercept point</td>
<td>28.15</td>
<td>dBm</td>
</tr>
</tbody>
</table>

[1] The NF and gain figures are measured at the SMA connectors of the EVB, so the connector and PCB losses are not subtracted. If subtracted the NF will improve by approximately 0.1 dB.

6.1 Noise figure

![Fig 7. Noise figure plot](image)

2290 MHz to 2390 MHz.
Center of plot (x-axis) is 2333 MHz.
Ref = –62 dBm, SWT = 100 ms.

(1) Gain.
(2) NF.

Table 5. Noise figure tabular data

From Rohde & Schwarz FSU

<table>
<thead>
<tr>
<th>Frequency list results</th>
<th>RF (GHz)</th>
<th>NF (dB)</th>
<th>Noise temp (K)</th>
<th>Gain (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.290</td>
<td>1.456</td>
<td>115.508</td>
<td>15.758</td>
<td></td>
</tr>
<tr>
<td>2.300</td>
<td>1.445</td>
<td>114.499</td>
<td>15.699</td>
<td></td>
</tr>
<tr>
<td>2.310</td>
<td>1.445</td>
<td>114.486</td>
<td>15.601</td>
<td></td>
</tr>
<tr>
<td>2.320</td>
<td>1.450</td>
<td>114.944</td>
<td>15.468</td>
<td></td>
</tr>
<tr>
<td>2.330</td>
<td>1.468</td>
<td>116.673</td>
<td>15.297</td>
<td></td>
</tr>
<tr>
<td>2.340</td>
<td>1.499</td>
<td>119.495</td>
<td>15.124</td>
<td></td>
</tr>
</tbody>
</table>
6.2 Gain compression test

The network analyzer is set to CW mode: e.g. set to a single frequency, with power sweep. Input power is swept from -25 dBm to $+5$ dBm at 2332.5 MHz. The amplifier reaches input 1 dB compression point ($P_{I(1dB)}$) at -0.48 dBm input power. Output $P_{L(1dB)} = -0.48$ dBm + 14.4 dB gain at $P_{L(1dB)}$ point $\geq +13.9$ dBm, or 24.5 mW.

![Gain compression test plot](image)

Table 5. Noise figure tabular data ...continued

From Rohde & Schwarz FSU

<table>
<thead>
<tr>
<th>Frequency list results</th>
<th>NF (dB)</th>
<th>Noise temp (K)</th>
<th>Gain (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF (GHz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.350</td>
<td>1.528</td>
<td>122.291</td>
<td>14.968</td>
</tr>
<tr>
<td>2.360</td>
<td>1.564</td>
<td>125.712</td>
<td>14.875</td>
</tr>
<tr>
<td>2.370</td>
<td>1.587</td>
<td>127.888</td>
<td>14.822</td>
</tr>
<tr>
<td>2.380</td>
<td>1.601</td>
<td>129.290</td>
<td>14.810</td>
</tr>
<tr>
<td>2.390</td>
<td>1.607</td>
<td>129.874</td>
<td>14.750</td>
</tr>
</tbody>
</table>

(1) Tr 3 b2/a1.1 LogM 10.00 dBm/0.00 dBm: -25.0000 dBm; 15.396 dB.
(2) Tr 3 b2/a1.1 LogM 10.00 dBm/0.00 dBm: -480.0000 dBm; 14.432 dB.
(3) Tr 2 b2/1 LogM 10.00 dBm/0.00 dBm: -480.0000 dBm; 13.902 dB.
6.3 Input return losses

6.3.1 Log Mag

Fig 9. Input return loss plot

10 MHz to 6 GHz.
Tr 1 S11 LogM 2.000 dB/−10.0 dB.

(1) 2.320000 GHz; −10.632 dB.
(2) 2.345000 GHz; −9.0084 dB.
6.3.2 Smith chart

Reference plane = input SMA connector on PCB.
10 MHz to 6 GHz.

Fig 10. Smith chart of input return loss
6.4 Forward gain, wide sweep

![Forward gain plot](image)

10 MHz to 6 GHz.
Tr 1 S21 LogM 2.000 dB/10.0 dB.
(1) 2.320000 GHz; 15.380 dB.
(2) 2.345000 GHz; 15.110 dB.

Fig 11. Forward gain plot

6.5 Reverse isolation

![Reverse isolation plot](image)

10 MHz to 6 GHz.
Tr 1 S12 LogM 2.000 dB/−20.0 dB.
(1) 2.320000 GHz; −20.762 dB.
(2) 2.345000 GHz; −20.850 dB.

Fig 12. Reverse isolation plot
6.6 Output return losses

6.6.1 Log Mag

![Output return loss plot](image)

10 MHz to 6 GHz.
Tr 1 S22 LogM 2.000 dB/-10.0 dB.
(1) 2.320000 GHz; –19.453 dB.
(2) 2.345000 GHz; –16.948 dB.

Fig 13. Output return loss plot
6.6.2 Smith chart

Reference plane = input SMA connector on PCB.
10 MHz to 6 GHz.

Fig 14. Smith chart of output return loss
6.7 2-tone test at 2332 MHz

6.7.1 Input stimulus for amplifier 2-tone test

\[f_1 = 2332 \text{ MHz}; f_2 = 2333 \text{ MHz}; -17 \text{ dBm each tone} \]

Fig 15. 2 tone test input stimulus at 2332 MHz
6.7.2 LNA response to 2-tone test

![Spectrum](image)

Input IP3 = $-17 + \frac{59.7}{2} = +12.85 \text{ dBm}$

Output IP3 = +12.85 + 15.3 dB gain = +28.15 dBm

Fig 16. 2 tone test LNA response at 2332 MHz

7. Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVB</td>
<td>Evaluation Board</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LNA</td>
<td>Low Noise Amplifier</td>
</tr>
<tr>
<td>NWA</td>
<td>NetWork Analyzer</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SDARS</td>
<td>Satellite Digital Audio Service</td>
</tr>
</tbody>
</table>
8. Legal information

8.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

8.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out of the use or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

8.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
9. Contents

1 Introduction .. 3
2 General description 4
3 Application board 5
 3.1 Application circuit 5
 3.2 Board layout 5
 3.3 PCB layout 6
 3.4 Bill of materials 7
4 Required equipment 7
5 Connections and setup 7
6 Typical EVB results 8
 6.1 Noise figure 9
 6.2 Gain compression test 10
 6.3 Input return losses 11
 6.3.1 Log Mag 11
 6.3.2 Smith chart 12
 6.4 Forward gain, wide sweep 13
 6.5 Reverse isolation 13
 6.6 Output return losses 14
 6.6.1 Log Mag 14
 6.6.2 Smith chart 15
 6.7 2-tone test at 2332 MHz 16
 6.7.1 Input stimulus for amplifier 2-tone test 16
 6.7.2 LNA response to 2-tone test 17
7 Abbreviations 17
8 Legal information 18
 8.1 Definitions 18
 8.2 Disclaimers 18
 8.3 Trademarks 18
9 Contents 19