

AN11094
Sensored BLDC motor control with LPC111x/LPC11Cxx

Rev. 1 — 1 August 2011 Application note

Document information

Info Content

Keywords LPC1112, LPC1114, LPC11C12, LPC11C14, LPC11C24, ARM Cortex-
M0, BLDC, Motor control, CMSIS, White Goods, PWM, Timers, CAN,
UART, LPCXpresso, LPCXpresso Motor Control, Embedded Artists

Abstract This application note describes the implementation of Sensored
Brushless DC motor control in the LPC1100 using the general purpose
timers in PWM mode made for the LPCXpresso Motor Control kit.

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 2 of 33

Contact information
For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

1 20110801 Initial version.

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

1. Introduction

Brushless DC (BLDC) motors are replacing traditional brushed DC (BDC) motors in
markets like White Goods (WG), Heating Ventilation Air Conditioning (HVAC) and
industrial applications due to higher efficiency and reliability, reduced noise and weight,
longer lifetime, elimination of sparks created by the commutator and overall reduction of
Electro Magnetic emissions.

NXP is a broad-based supplier for industrial applications, including General Application
(Rectifiers, Zener diodes, etc), Logic and Power (Triacs, Power IC) as well as Interface
and Microcontroller products.

M
O

SF
ET

 d
ri

ve
r

Fig 1. LPC1100 Motor control system block diagram

In common with most motor controlling, BLDC control consists of a control unit and a
power unit, with NXP offering competitive solutions for both units.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 3 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

1.1 LPCXpresso Motor Control Kit

This application note focuses on the LPCXpresso Motor Control Kit that Embedded
Artists has developed in close cooperation with the NXP Microcontrollers applications
group.

The LPCXpresso Motor Control Kit is a multi-motor type and multipurpose evaluation
board. It supports BLDC, Brushless AC (BLAC), stepper and one or two BDC motors. For
more detailed information on the hardware, please see Chapter 3, as well as
http://www.embeddedartists.com/products/lpcxpresso/xpr_motor.php

The implementation of six-step commutation or brushless DC motor control on the
LPC1100 is described in this application note together with all required hardware and
software. This hardware and software can be used to build a tailored motor controlling
application with the low-cost, low-power LPC1100 family.

Fig 2. LPCXpresso Motor Control kit

1.2 Getting started with the LPCXpresso Motor Control Kit

The LPCXpresso Motor Control kit is an out-of-the-box solution enabling you to have a
BLDC motor running within five minutes. In order to understand all the possibilities and
capabilities of this kit, please register your kit at
http://www.embeddedartists.com/support/. Extensive documentation and example code
can be found at the Embedded Artist website.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 4 of 33

http://www.nxp.com/redirect/embeddedartists.com/products/lpcxpresso/xpr_motor.php
http://www.nxp.com/redirect/embeddedartists.com/support/

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

1.3 How to read this application note

As additional information it is recommended to keep the LPC1100 User Manual
(UM10398) at hand.

Application notes AN10661 “Brushless DC motor control using LPC2141” and AN10898
“BLDC motor control with LPC1700” are used as reference for this application note.

This application note is written dedicated for the Cortex-M0 LPC1100 series though the
baseline works on the Cortex-M3 LPC1300 series as well. The peripherals required
except for the CAN interface are also present on the LPC1300 series.

Supported devices are:

Table 1. Supported devices
This application note supports:

LPC111x

LPC11C1x

LPC11C2x

Table 2. Handy references
Document name Description

UM10398 LPC11xx and LPC11Cxx User Manual

Datasheet LPC11xx LPC11xx and LPC11Cxx Data Sheet

Embedded Artists LPCXpresso Motor control Kit Product page on Embedded Artists
LPCXpresso Motor Control Kit.

Users Guide for the LPCXpresso Motor
Control kit

LPCXpresso_Motor_Control
Users_Guide_Rev_PA4.pdf[1]

AN10661 Brushless DC motor control using LPC2141

42BLF01 datasheet.pdf [1] Datasheet of the LPCXpresso Motor Control
Kit datasheet

LPCXpressoLPC1114revA.pdf[1] LPC1114 LPCXpresso board schematics

LPCXpresso LPC11C24 rev B_schematic.pdf[1] LPC11C24 LPCXpresso board schematics

Motor_Control_Evaluation_Board_rev_A_SCHEM
ATICS.pdf[1]

LPCXpresso motor control board schematics

AN10898 BLDC motor control with LPC1700

[1] These documents are available in the example code bundle. Open up the example project in
the LPCXpresso IDE and look in the _Documentation folder

NOTE: Please read the LPCXpresso Motor Control Kit Users Guide before continuing
with this application note. This will help you with setting up the system.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 5 of 33

http://www.embeddedartists.com/products/lpcxpresso/xpr_motor.php

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

2. The LPC1100

2.1 The LPC111x/LPC11Cxx

In 2009 NXP Semiconductors released the LPC1100, the first microcontroller series
based on the ARM Cortex-M0 core.

From a computational point of view, the LPC1100 series is able to deliver
0.9 DMIPS/MHz according to Dhrystone benchmarks.

According to Coremark (http://www.coremark.org/), a benchmark based on real world
performance of embedded devices, NXP’s LPC1100 family is positioned at
1.4 Coremark/MHz which is extremely high compared to competitive 8-bit and 16-bit
microcontrollers. At the same time, users can benefit from the improved code density. On
average, developers can save around 40 % of the flash memory utilization compared to
competitive 8/16-bit MCUs.

Cortex-M0 based devices can be used in low power applications such as medical
devices, e-metering, motor control and battery powered sensors. Cortex-M family
processors integrate support for multiple power modes: Sleep, deep sleep, and power-
down modes.

The LPC1100 series supports up to 50 MHz clock speed at zero latency and integrates a
simple AHB-Lite interface.

The LPC1100 series integrates all necessary peripherals for embedded control in
industrial, consumer and white goods applications. For controlling BLDC motors, the
LPC1100 series incorporates four timers: Two 16-bit and two 32-bit, with a total of 13
match outputs, where each match output can be configured for Pulse Width Modulation
(PWM). Six of these PWM signals are used in the demonstration board driving the high
and low side MOSFETs.

The General-Purpose Input/Output (GPIO) pins on the LPC1100 are highly configurable
and can be used as external interrupt triggering on the rising, falling or both edges. Rotor
orientation feedback is captured through these GPIO interrupts.

The LPC1100 has an 8-channel 10-bit Analog-to-Digital Converter (ADC) from which one
channel can be used for over-current protection by measuring the motor current through
a shunt resistor.

By measuring the voltage on the floating phase during BLDC commutation, the rotor
orientation can be determined without the use of any sensors. This requires accurate
timing in capturing the floating phase voltage. In the LPC1100, an ADC conversion can
be triggered by a match event of two of the four timers. This decreases CPU load and
allows accurate capturing of the floating phase at the right moment.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 6 of 33

http://www.nxp.com/redirect/coremark.org/

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

Fig 3. LPC11xx/LPC11Cxx block diagram

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 7 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

2.2 Timers and PWM

2.2.1 Description

The LPC1100 series are equipped with two 16-bit and two 32-bit counter/timers with a
PWM that uses up to three match outputs as single edge-controlled PWM outputs.

Each match output can be configured for PWM or match output. The function can be
selected by the External Match Register (EMR).

One additional match register is used for determining the PWM cycle period. When a
match occurs in any of the other match registers, the PWM output is set to HIGH. The
timer is reset by the match register that is configured to set the PWM cycle period. When
the timer is reset to zero, all currently HIGH match outputs configured as PWM outputs
will be cleared.

The PWM Control (PWMC) register is used to configure the match outputs as PWM
outputs.

Fig 4. Sample PWM waveforms

2.2.2 How to set up the PWM

This chapter will give a brief introduction of the sequence required for setting the
timer/counters in PWM mode. Please reference Chapter 4 and the source code
(timer16.c and timer32.c) included with this application note for more details.

Although PWM functionality is implemented in the included source code, this step by step
approach gives a high level insight how to correctly configure the timer/counter as a
PWM source.

Step by step

1. Enable the clock to the timer/counter domain using the SYSAHBCLKCTRL register

16 bit timer/counter 0 = CT16B0 = bit 7 of SYSAHBCLKCTRL

16 bit timer/counter 1 = CT16B1 = bit 8 of SYSAHBCLKCTRL

32 bit timer/counter 0 = CT32B0 = bit 9 of SYSAHBCLKCTRL

32 bit timer/counter 1 = CT32B1 = bit 10 of SYSAHBCLKCTRL

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 8 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

Check the timer/counter input clock frequency; this will be needed for defining
the PWM period.

2. Configure the external match pins using the EMR register.

3. Configure the I/O Pin-mux to timer/counter functionality.

4. Enable the PWM mode in the PWM Control register. When corresponding bits
are set in the PWMC register, at a match the selected channels will be set HIGH.

5. Set the PWM period by writing the match value in the match register selected for
resetting the timer counter. See Fig 4.

6. Enable reset and/or interrupt triggering at match of the period defining register in
the match control register (MCR)

2.3 General Purpose I/O (GPIO)

The LPC1100 series GPIO can be configured as an (external) interrupt source acting on
high and low level, rising, falling and both edges.

This functionality is used in this application for feeding back the Hall sensor outputs into
the microcontroller. Setting up the GPIOs as interrupt sources requires setting a few
registers.

Step by step

1. Enable the clock to the GPIO domain using the SYSAHBCLKCTRL register

2. Set the GPIO as inputs in the DIR register (input is default after reset)

3. Then set up the sense register, selecting whether the IO is edge or level
sensitive. This can be done through the IS register.

4. Next the “both edges” sense register (IBE) should be configured. With this
register one can select whether an edge sensitive input should act on both or
only one edge.

5. Selection of which edge to act on is done through the interrupt event register
(IEV).

6. Interrupts of other unwanted pins can be masked using the interrupt mask
register (IE).

7. Now enable the GPIO interrupts.

2.4 Analog-to-Digital Converter (ADC)

The LPC1100 series has a 10-bit successive approximation ADC. This ADC can be used
to measure the motor current.

The ADC input is multiplexed on 8 pins. It does a single or burst conversion on single or
multiple inputs. Triggering the conversion can be done by setting a bit in the A/D Control
Register, but other trigger sources like timer matches or input (capture) pins can be
selected.

2.5 Controller Area Network (CAN)

The LPC11C1x series are equipped with a C_CAN peripheral. This application gives the
possibility for using the CAN interface to a PC or an industrial network. Chapter 4.2.1.2
describes how the CAN is implemented and used in this application.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 9 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

Controller Area Network (CAN) is the definition of a high performance communication
protocol for serial data communication. The C_CAN controller is designed to provide a
full implementation of the CAN protocol according to the CAN Specification Version 2.0B.

The CAN controller consists of a CAN core, message RAM, a message handler, control
registers, and the APB interface. For communication on a CAN network, individual
Message Objects are configured. The Message Objects and Identifier Masks for
acceptance filtering of received messages are stored in the Message RAM.

All functions concerning the handling of messages are implemented in the Message
Handler. Those functions are the acceptance filtering, the transfer of messages between
the CAN Core and the Message RAM, and the handling of transmission requests as well
as the generation of the module interrupt.

Fig 5. C_CAN block diagram

2.6 On-chip CAN drivers

NXP offers on-chip CAN drivers and CANopen initialization and communication, stored in
ROM on the LPC11C1x series. An API gives user applications easy access to these
drivers.

These drivers cover initialization, configuration, basic CAN send and receive, as well as a
CANopen SDO interface. Receive events processing is made available through callback
functions.

The on-chip drivers API include the following functionality:

 CAN set-up and initialization

 CAN send and receive messages

 CAN status

 CANopen Object Dictionary

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 10 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

 CANopen SDO expedited communication

 CANopen SDO fall-back handler

2.6.1 Calling the C_CAN API

The C_CAN API calling is set up to be approached through pointers. A fixed location in
ROM contains a pointer to the ROM driver table, i.e. 0x1FFF 1FF8. This location is the
same for all LPC11C1x parts. The ROM driver table contains a pointer to the CAN API
table. Pointers to the various CAN API functions are stored in this table. CAN API
functions can be called by using a C structure.

Fig 6 illustrates the pointer mechanism used to access the on-chip CAN API. On-chip
RAM from address 0x1000 0050 to 0x1000 00B8 is used by the CAN API. This address
range should not be used by the application. For applications using the on-chip CAN API,
the linker control file should be modified appropriately to prevent usage of this area for
the application’s variable storage.

Fig 6. CAN API pointer structure

For more detailed information on the C_CAN and the on-chip CAN drivers, please see
the LPC11xx/LPC11Cxx User Manual.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 11 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

3. Application setup

This motor control application can be divided in three main parts: The control unit, the
power unit, (both of which are implemented on the LPCXpresso Motor Control board),
and the external BLDC motor (Fig 7).

This chapter will describe how the application is set up.

Fig 7. LPC1100 Motor control application block diagram

3.1 Control unit

The main component of the control unit is the LPC1100, gathering various inputs and
then controlling outputs. The inputs are the feedback signals of the motor as well as
button inputs or CAN/UART signals. Also an LED indicator is incorporated for various
status indication purposes.

3.2 Power unit

The power unit is the high power part of the application. It consists of the power
MOSFETs for directing and controlling the current through the motor. Since these
MOSFETs can’t be driven directly from the microcontroller, FET drivers are incorporated
in the power unit. The temperature sensor (Fig 7) is placed as close as possible to the
power MOSFETs for monitoring and fail-safe purposes.

3.3 User Interface and communications

The user interface on the LPCXpresso Motor Control board consists of a joystick and an
I2C OLED screen, and external communication by UART or CAN if available.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 12 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

3.3.1 Joystick

The joystick is used in this application to control the motor in various ways.

Table 3. Joystick functionality
Joystick function Application response

UP Increase RPM with 50

DOWN Decrease RPM with 50

LEFT START/STOP the motor

RIGHT[2] Change motor rotation direction

CENTER[2] START/STOP the motor

[2] Not available on the LPC11Cxx

3.3.2 UART and CAN

The communication busses UART and CAN print the actual system parameters. The
current setup doesn’t support system control over these two interfaces.

Bitrate setup:

- UART: 115200 Baud

- CAN: 50 kBaud

NOTE: Using the UART output through the FTDI

When you are using the UART connection though the FTDI USB to UART chip, please
note that a board RESET will reset the FTDI chip as well and your COM connection on
the PC could be lost!

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 13 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

3.4 BLDC motor

The included BLDC motor in the LPCXpresso Motor Control Kit is the 42BLF01. The
42BLF01 is a 24 VDC BLDC 4 pole-pair motor with Hall sensor unit attached. The data
sheet of this motor can be found in the documentation folder of this application note
project.

Fig 8. 42BLF01 BLDC motor

Table 4. 42BLF01 specifications
Parameter Value

Resistance 2.2 Ω

24VDC Nominal Voltage

Pole pairs 4

No load speed 6000 RPM

No load current 0.5 A

Rated torque 0.063 N-m

Rated speed 4000 ±300 RPM

Back EMF Constant 4.4V/kRPM

Torque constant 0.042 N-m/A

Table 5. Motor connections
Motor Hall Sensors

PHASE A Yellow Hall A Yellow

PHASE B Green Hall B Green

PHASE C Blue Hall C Blue

 +5V Red

 GND Black

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 14 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

3.5 System connections

The table below shows all connections used for this application note as depicted by Fig
7. For a complete reference of all connections of the LPCXpresso LPC11xx/LPC11Cxx to
the LPCXpresso Motor Control board, please see the LPCXpresso Motor Control Kit
User’s Guide.

Table 6. Application connections as depicted in Fig 7

Signal Pin name Function Name Signal Purpose

Motor phase A high side FET drive AH PIO0_1 CT32B0_MAT2

Motor phase A low side FET drive AL PIO0_11 CT32B0_MAT3

Motor phase B high side FET drive BH PIO0_8 CT16B0_MAT0

Motor phase B low side FET drive BL PIO0_9 CT16B0_MAT1

Motor phase C high side FET drive CH PIO1_1 CT32B1_MAT0

Motor phase C low side FET drive CL PIO1_2 CT32B1_MAT1

FB0 PIO2_0 PIO2_0 Hall A feedback input

FB1 PIO2_1 PIO2_1 Hall B feedback input

FB2 PIO2_2 PIO2_2 Hall C feedback input

AIN PIO1_0 AD1 Motor current measurement input

 PIO1_7 TXD UART TX signal

 PIO1_6 RXD UART RX signal

I2C PIO0_5 SDA I2C Data signal for the temperature sensor
and OLED

I2C PIO0_4 SCL I2C Clock signal for the temperature sensor
and OLED

RST PIO0_0 RST Reset button

START/STOP[1] PIO2_6 PIO2_6 Joystick center, Start/Stop the motor

REVERSE[1] PIO2_9 PIO2_9 Joystick right, change rotation direction

UP PIO2_7 PIO2_7 Joystick up, increase RPM

DOWN PIO2_8 PIO2_8 Joystick down, decrease RPM

[1] These functions are not available on the LPC11Cxx LPCXpresso boards. Please use the UP button to
start the motor.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 15 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4. Software

The software written for this application note is based on the Cortex Microcontroller
Software Interface Standard (CMSIS) core libraries and the standard peripheral drivers
delivered with the LPCXpresso IDE. The latest version of this driver library can be found
on NXP’s microcontrollers website (http://www.nxp.com/microcontrollers) and is also
available in the latest version of the LPCXpresso IDE.

Usage of the relevant driver library files and the application dedicated sources will be
explained in this chapter.

UART and CAN can be used as a feedback mechanism and parameter control interface
allowing for your preferred terminal program to be used.

4.1 Folders and files

All files needed for this application note are arranged in the following order:

Table 7. Top folder structure

Folder Description

_Documentation Documentation folder containing all documentation required for this
application note and demo software

BLDC_Sensored Main source folder for the BLDC_Sensored application

|--- driver LPC1100 peripheral drivers

|--- src Application source folder, containing all files application specific files,
like the main.c

|--- config Folder containing the target, system driver and application
configuration files.

|--- linker Linker files for various targets

|--- startup Development environment specific startup file for the LPC1100

|--- Debug/Release Folder containing compiler outputs like the .axf-file

|--- LPCXpresso_MC LPCXpresso Motor Control kit specific driver sources

CMSISv1p30_LPC11xx Standardized CMSIS library covering core and device specific drivers

Library folder for the small footprint printf function. lib_small_printf_m0

|--- src Library source folder

|--- Inc Library includes folder

|--- Lib Library compiler output folder, containing the .a-file

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 16 of 33

http://www.nxp.com/microcontrollers

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4.2 Program structure

Fig 9. Main program flow diagram

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 17 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4.2.1 Firmware source

The application-dedicated source files written for this application notes can be found as
indicated in Table 7 in the src folder.

The following files are available in the src and will be described in the following sections
of this chapter.

Table 8. Source files in src folder
File name Description

BLDC.c & BLDC.h Main BLDC motor control init and controlling source

can_romhandlers.c &
can_romhandlers.h

Source files for using the LPC11Cxx CAN drivers that
are place in ROM.

comms.c & comms.h Communication hook to preferred comms peripheral

ea_image.h Header file with the EA logo placed in a array

gui.c & gui.h Source files for setting up and usage of the GUI

handlers.c This source file contains all the application-related
interrupt handlers.

main.c Main application source file

nxp_image.h Header file with the NXP logo in an array

PID.c & PID.h Source files for the PID calculations

4.2.1.1 BLDC.c and BLDC.h

The BLDC.c source file incorporates the initialization and control of the BLDC motor.
Table 9 describes all functions in this file.

Table 9. Functions description in BLDC.c

Function Description

void vBLDC_init (void) BLDC control initialization

- Motor structure initialization with defaults

- PWM initialization

void vBLDC_Commutate

(volatile uint8_t step)

Commutate the motor to the step passed as input
variable. The duty cycle of the PWM which is used in the
commutation is calculated in vPID_RPM. ()

void vBLDC_Stop (void) Stop the BLDC motor

void vBLDC_ReadHall(void) Read the current Hall status and commutate the motor
accordingly

void vBLDC_CalcRPM
(MOTOR_TypeDef *ptr)

Calculate the actual RPM, using the free-running counter
initialized in main.c

void vBLDC_RampUp
(MOTOR_TypeDef *ptr,

 uint32_t max_RPM)

Hard-commutate the motor to give its first spin

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 18 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4.2.1.2 can_romhandlers.c and can_romhandlers.h

The LPC11Cxx devices have CAN drivers incorporated in ROM as described in Chapter
2.5.

The can_romhandlers.c and .h files contain the source for getting the CAN drivers
initialized and starting CAN communication.

Table 10. Functions described in can_romhandlers.c
Function Description

void CAN_rx(

 uint8_t msg_obj_num)

CAN receive callback. This function is executed by the
Callback handler after a CAN message has been
received

void CAN_tx(

 uint8_t msg_obj_num)

CAN transmit callback. This function is executed by the
Callback handler after a CAN message has been
transmitted

void CAN_error(

 uint32_t error_info)

CAN error callback. This function is executed by the
Callback handler after an error has occurred on the CAN
bus.

void CAN_IRQHandler (void) CAN interrupt handler. The CAN interrupt handler must
be provided by the user application. It's function is to call
the isr() API located in the ROM

void vCAN_initRomHandlers CAN ROM handler initialize functions

__inline void vCAN_sendObj

(CAN_MSG_OBJ *can_obj)

Transmit a CAN object

4.2.1.3 comms.c and comms.h

The comms source file gives the user the ability to hook their preferred communication
peripheral to the motor control application.

Table 11. Functions description in comms.c
Function Description

void vDec2Ascii

(uint32_t val,

 uint8_t *buffer,

 uint8_t *size)

Convert a decimal value to an ASCII based string output.

void vCOMMS_send
(MOTOR_TypeDef *ptr)

Main function to where the application communication
could be hooked. This function allows CAN or UART to
be selected , using the USE_CAN or USE_UART definition
in application.h

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 19 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4.2.1.4 gui.c and gui.h

The GUI files give the user the ability to set up a GUI experience on the LPCXpresso
Motor Control Kit OLED screen.

These files will not be discussed further in this documentation, please see the source for
more details.

4.2.1.5 handlers.c

The handlers source file contains the application specific (e.g., the Hall interrupt)
handlers.

All interrupt handlers which are used differently than the predefined default handlers in
the peripheral drivers should be placed in this file.

These functions are placed in the handlers.c source file:

Table 12. Functions description in handlers.c
Function Description

void PIOINT2_IRQHandler(void) The PORT2 interrupt handler in this application handles
the Hall sensor and Joystick interrupts.

void SysTick_Handler (void) The SysTick Handler will increase a tick counter which
is used as time base for the scheduler in Main

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 20 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4.2.1.6 Main.c

The Main.c is the application entry file. Here all application-specific initializations are
made and a small pre-emptive scheduler is started for task scheduling with a 1 ms
resolution. It also includes the retarget function enabling usage of the printf function.

Table 13. Functions description in Main.c

Function Description

void Call_5ms(void) The 5 ms scheduler

Tasks:

- Start PID calculation if the motor is enabled and it
isn’t ramping up.

void Call_25ms(void) The 25 ms scheduler

Tasks:

- Put a pixel on the OLED in order create a graph of
the RPM.

void Call_100ms(void) The 100 ms scheduler

Tasks:

- Ramp up the motor RPM if the motor is enabled
and the ramping-up variable is set TRUE.

- Clear the OLED screen if requested through the
clear_screen variable.

void Call_1s(void) The 1 s scheduler

Tasks:

- Send the motor structure to the COMMS send
handler to be transmitted.

- If the temperature should be shown on the OLED,
write it to the display.

void Call_5s(void) Not used in this application example

void Appl_Init(void) Initialize the application

- Systick configuration

- Free-running counter

- BLDC Motor

- Hall Sensor

- I2C

- OLED

- Joystick

- CAN

- UART

int main(void) Main program entry function

- Initialize the application

- Run scheduler in endless loop

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 21 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4.2.1.7 PID.c and PID.h

The PID consists only of one function, vPID_RPM which actually is a PI controller. The
input of this function is a pointer to a MOTOR_TypeDef type structure. This structure
contains all variables needed for the PI controller to calculate the manipulated value or
output.

Fig 10. PI controller

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 22 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4.3 Configuration

This application has various configuration defines and variables that can be set to
configure the application a bit differently.

4.3.1 Microcontroller choice

First, one can select which microcontroller to use. This should be done in the properties
dialog of the BLDC_Sensored project. The properties dialog can be reached through
right-clicking on the project as depicted in the picture below.

Fig 11. Open BLDC_Sensored properties

In this dialog, select C/C++ Build MCU Settings to select the microcontroller that will
be used in your application.

When opening the example project, everything is configured correctly so then you don’t
have to worry about this.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 23 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

In the Settings MCU C Compiler Symbols dialog a global microcontroller definition
is made which configure various options, e.g., enabling the CAN interface for the
LPC11C24

The definition can be edited in the Defined Symbol part of the Tool Settings tab. The
possible defines that are used in the application are:

 __LPC111x

 __LPC11C2x

Fig 12. Configure the global define symbols

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 24 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4.3.2 Configuration files

Apart from the global definitions and configurations that are described in the previous
chapter, there are some configuration files that are used to setup the application.

These files can be found in the config folder of the BLDC_Sensored project, as depicted
below.

Fig 13. config folder of the BLDC_Sensored project

4.3.2.1 Application.h

In this file some configurations can be made to setup the application, like enabling or
disabling the UART interface.

Please have a look at the available configurations and definitions to get a better
understanding of the project architecture.

4.3.2.2 Driver_config.h

This configuration file connects to the drivers available in the driver folder. In this file the
user can setup the peripheral drivers and enable it for use in the application.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 25 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

4.4 Controlling structure Motor_TypeDef

typedef volatile struct _MOTORstr {
 int32_t Kp; // PID Kp input value
 int32_t Ki; // PID Ki input value
 int32_t Kd; // PID Kd input value
 uint32_t sp; // The RPM Setpoint
 uint32_t pv; // the process value, used by PID
 int32_t err[3]; // PID error array
 int32_t IntError; // Integration error
 int32_t LastError; // Previous PID calc error
 uint32_t mv; // Manipulated value, PID output
 uint32_t HALstate[2]; // Current HALL state
 uint32_t TMRval[2]; //
 uint32_t Deadtime; // Deadtime *NOT USED*
 uint32_t CMT_CNT; // Commutation counter value
 uint32_t CMT_step; // Current commutation step
 uint32_t RPM; // Actual RPM value
 uint8_t Enable; // Overall motor ENABLE
 uint8_t Direction; // Motor rotor direction, CW or CCW
 uint8_t RampingUp; // Motor ramping up indication
 uint32_t Startup; //
 uint8_t Brake; // Motor break indication
 uint8_t CMT_flag; //
 uint32_t max_mv; // Max manipulated value, to scale to
 uint8_t PolePairs; // Motor pole pairs
 uint32_t Trap_CNT; //
 uint16_t Current[3]; // Motor current
 uint16_t Voltage[3]; // Motor/System voltage
} MOTOR_TypeDef;

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 26 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

5. The brushless DC motor fundamentals

5.1 The brushless DC motor

Brushless DC (BLDC) motors consist of a permanent magnet rotor with a three-phase
stator winding. As the name implies, BLDC motors do not use brushes for commutation;
instead, they are electronically commutated. Typically three Hall sensors (Fig 14) are
used to detect the rotor position and commutation is based on these sensor inputs.

In a brushless DC motor, the electromagnets do not move; instead, the permanent
magnets rotate and the three-phase stator windings remain static (see Fig 14). This
solves the problem of transferring current to a moving rotor. In order to do this, the brush-
commutator assembly is replaced by an intelligent electronic “controller”. The controller
performs the same power distribution as found in a brushed DC motor, but is uses a
solid-state circuit rather than a commutator/brush system.

The speed and torque of the motor depends on the strength of the magnetic field
generated by the energized windings of the motor, which in turn depends on the current
flow through each winding. Therefore adjusting the voltage (and current) will change the
motor speed.

Fig 14. The brushless DC motor

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 27 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 28 of 33

5.2 Electrical commutation

A BLDC motor is driven by voltage strokes coupled with the given rotor position. These
voltage strokes must be properly applied to the active phases of the three-phase winding
system so that the angle between the stator flux and the rotor flux is kept close to 90° to
maximize torque. Therefore, the controller needs some means of determining the rotor's
orientation/position (relative to the stator coils.)

BLDC
Motor

A

B

C

VCC

GND

1 3 5

642

Fig 15. Three phase bridge and coil current direction

Fig 15 depicts a systematic implementation of how to drive the motor coils for correct
motor rotation. The current direction through the coils determines the orientation of the
stator flux. By sequentially driving or pulling the current though the coils, the rotor will be
either pulled or pushed. A BLDC motor is wound in such a way that the current direction
in the stator coils will cause an electrical revolution by applying it in six steps. As also
shown in Fig 15 each phase driver is pushing or pulling current through its phase in two
consecutive steps. These steps are shown in Table 14. This is called trapezoidal
commutation. Fig 17 shows the relation between the six-step commutation (six Hall
sensor edges H1, H2 and H3), block commutation (ia, ib, ic) and trapezoidal commutation
(ea, eb, ec).

Table 14. Switching sequence

Phase current

Sequence
number

Switching interval

A B C

Switch closed

0 0° - 60° + - OFF 1 4

1 60° - 120° + OFF - 1 6

2 120° - 180° OFF + - 3 6

3 180° - 240° - + OFF 3 2

4 240° - 300° - OFF + 5 2

5 300° - 360° OFF - + 5 4

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

5.3 Revolution speed control

Varying the voltage across the motor coils can simply control the rotor speed. This can
be achieved by pulse width modulation (PWM) of the phase voltage. By increasing or
decreasing the duty-cycle, more or less current per commutation step will flow through
the stator coils. This affects the stator flux and flux density, which changes the force
between the rotor and stator.

This means that the rotation speed is determined by the load of the rotor, the current
during each phase, and the voltage applied.

Fig 16. Speed control through PWM

5.4 Torque control

Just like speed control, torque is controlled by the amount of the current through the
stator coils. For maximum torque, the angle between the stator and rotor flux should be
kept at 90°. With trapezoidal commutation, the control resolution is 60° and the angle
between the stator and rotor flux is from -30° to +30°, which introduces a torque ripple.

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 29 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

5.5 Position feedback

The rotor position feedback can be accomplished though a couple of techniques. Most
commonly is the hall sensor feedback, but other techniques include using an encoder or
even eliminating sensors entirely. This application note will only focus on the hall sensor
feedback and will not explore sensor-less operation.

5.5.1 Hall sensor feedback

The hall sensors are placed such that they generate an edge at each switching interval
as explained in Chapter 5.2. This makes it very easy to determine the current rotor
orientation and to activate each phase in the right sequence.

Fig 17. Trapezoidal control with Hall sensor feedback

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 30 of 33

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 31 of 33

6. References
 UM10398 - LPC11xx and LPC11Cxx User manual

 LPC1111/12/13/14 data sheet

 LPC11Cx2/Cx4 data sheet

 AN10661 – Brushless DC motor control using LPC2141

 AN10898 – BLDC motor control with LPC1700

 Cortex Microcontroller Software Interface Standard - http://www.onarm.com/

 LPCXpresso Motor Control Kit by Embedded Artists product page:
http://www.embeddedartists.com/products/lpcxpresso/xpr_motor.php

 LPCXpresso_Motor_Control Users_Guide_Rev_PA4.pdf1 - Users Guide for the
LPCXpresso Motor Control kit

 42BLF01 datasheet.pdf1 - LPCXpresso Motor Control Kit datasheet

 LPCXpressoLPC1114revA.pdf1 - LPC1114 LPCXpresso board schematics

 LPCXpresso LPC11C24 rev B_schematic.pdf1 - LPC11C24 LPCXpresso board
schematics

 Motor_Control_Evaluation_Board_rev_A_SCHEMATICS.pdf1 - LPCXpresso motor
control board schematics

1. These documents are available in the example code bundle. Open up the example project in the
LPCXpresso IDE and look in the _Documentation folder.

http://www.nxp.com/redirect/onarm.com/
http://www.nxp.com/redirect/embeddedartists.com/products/lpcxpresso/xpr_motor.php

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

 AN11094 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 August 2011 32 of 33

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should

provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11094
 Sensored BLDC motor control with LPC111x/LPC11Cxx

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2011. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 August 2011

Document identifier: AN11094

8. Contents

1. Introduction ...3
1.1 LPCXpresso Motor Control Kit4
1.2 Getting started with the LPCXpresso Motor

Control Kit ..4
1.3 How to read this application note5
2. The LPC1100..6
2.1 The LPC111x/LPC11Cxx6
2.2 Timers and PWM ...8
2.2.1 Description ...8
2.2.2 How to set up the PWM......................................8
2.3 General Purpose I/O (GPIO)9
2.4 Analog-to-Digital Converter (ADC)9
2.5 Controller Area Network (CAN)9
2.6 On-chip CAN drivers ..10
2.6.1 Calling the C_CAN API11
3. Application setup ..12
3.1 Control unit...12
3.2 Power unit ..12
3.3 User Interface and communications.................12
3.3.1 Joystick ..13
3.3.2 UART and CAN..13
3.4 BLDC motor ...14
3.5 System connections ...15
4. Software ...16
4.1 Folders and files...16
4.2 Program structure ..17
4.2.1 Firmware source ..18
4.2.1.1 BLDC.c and BLDC.h ..18
4.2.1.2 can_romhandlers.c and can_romhandlers.h19
4.2.1.3 comms.c and comms.h19
4.2.1.4 gui.c and gui.h..20
4.2.1.5 handlers.c...20
4.2.1.6 Main.c ..21
4.2.1.7 PID.c and PID.h ...22
4.3 Configuration..23
4.3.1 Microcontroller choice23
4.3.2 Configuration files ..25
4.3.2.1 Application.h...25
4.3.2.2 Driver_config.h ...25
4.4 Controlling structure Motor_TypeDef26
5. The brushless DC motor fundamentals27
5.1 The brushless DC motor27
5.2 Electrical commutation28
5.3 Revolution speed control..................................29
5.4 Torque control ..29

5.5 Position feedback ...30
5.5.1 Hall sensor feedback..30
6. References ...31
7. Legal information ..32
7.1 Definitions...32
7.2 Disclaimers...32
7.3 Trademarks ..32
8. Contents...33

	1.1 LPCXpresso Motor Control Kit
	1.2 Getting started with the LPCXpresso Motor Control Kit
	1.3 How to read this application note
	2.1 The LPC111x/LPC11Cxx
	2.2 Timers and PWM
	2.2.1 Description
	2.2.2 How to set up the PWM
	Step by step

	2.3 General Purpose I/O (GPIO)
	Step by step

	2.4 Analog-to-Digital Converter (ADC)
	2.5 Controller Area Network (CAN)
	2.6 On-chip CAN drivers
	2.6.1 Calling the C_CAN API

	3.1 Control unit
	3.2 Power unit
	3.3 User Interface and communications
	3.3.1 Joystick
	3.3.2 UART and CAN

	3.4 BLDC motor
	3.5 System connections
	4.1 Folders and files
	4.2 Program structure
	4.2.1 Firmware source
	4.2.1.1 BLDC.c and BLDC.h
	4.2.1.2 can_romhandlers.c and can_romhandlers.h
	4.2.1.3 comms.c and comms.h
	4.2.1.4 gui.c and gui.h
	4.2.1.5 handlers.c
	4.2.1.6 Main.c
	4.2.1.7 PID.c and PID.h

	4.3 Configuration
	4.3.1 Microcontroller choice
	4.3.2 Configuration files
	4.3.2.1 Application.h
	4.3.2.2 Driver_config.h

	4.4 Controlling structure Motor_TypeDef
	5.1 The brushless DC motor
	5.2 Electrical commutation
	5.3 Revolution speed control
	5.4 Torque control
	5.5 Position feedback
	5.5.1 Hall sensor feedback

	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Trademarks

