Document information

<table>
<thead>
<tr>
<th>Info</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>Set-Top Box, STB, LNA, BGU703X, BGU704X</td>
</tr>
<tr>
<td>Abstract</td>
<td>This document provides circuit, layout, BOM, and performance information of Set-Top Box LNA BGU703X and BGU704X</td>
</tr>
</tbody>
</table>
Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
1. Introduction

In Set-Top Boxes (STBs) that use multiple or network-interfaced module (NIM) tuners, the RF signal usually needs to be distributed or split. Very often, a low noise amplifier (LNA) is used to compensate for signal loss when the signal is split with a balun core. In addition to that, due to its low noise, this LNA is used to improve the sensitivity of the tuner.

This STB LNA family of 5V and 3.3V wideband, low noise amplifiers is specifically designed for high linearity, low-noise performance for TV, DVR/PVR, set-top box tuner applications from 40 MHz to 1 GHz. They are used in discrete or Si CAN tuners, as well as on board tuners. Fig 1 shows the application diagram of an active splitter with passive loop-through. It shows that at the moment the power of the recording device (DVD-R, HDD-R, VCR, DVR) is on, the RF switch is open, so the RF signal travels via the recording device to the TV tuner. At the moment the power of the recording device is completely off, the RF switch closes and this ensures that the RF signal is looped through directly to the TV tuner. Built in NXP’s own QUBiC4+ Si BiCMOS process these low noise amplifiers provide programmable gain (-2dB, 5dB and 10dB), have integrated biasing, 75 Ω matching (saving up to 15 external components compared to discrete solutions). These low noise amplifiers are very ESD robust (>2kV HBM and >1.5kV CDM) compared to GaAs solutions. Table 1 gives an overview of this STB LNA family.

In this document, the application diagram, board layout, bill of materials, and performance information are given.

![Application diagram of an active splitter with passive loop-through](image)

Table 1. Overview product types

<table>
<thead>
<tr>
<th>Type Number</th>
<th>Supply voltage [V]</th>
<th>Number of modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGU7031</td>
<td>5.0</td>
<td>1</td>
<td>Fixed Gain 10dB</td>
</tr>
<tr>
<td>BGU7032</td>
<td>5.0</td>
<td>2</td>
<td>Gain 10dB</td>
</tr>
</tbody>
</table>
Type Number Summary Table

<table>
<thead>
<tr>
<th>Type Number</th>
<th>Supply voltage [V]</th>
<th>Number of modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGU7033</td>
<td>5.0</td>
<td>3</td>
<td>Gain 10dB, Gain 5dB, Bypass mode</td>
</tr>
<tr>
<td>BGU7041</td>
<td>3.3</td>
<td>1</td>
<td>Fixed Gain 10dB</td>
</tr>
<tr>
<td>BGU7042</td>
<td>3.3</td>
<td>2</td>
<td>Gain 10dB, Bypass mode</td>
</tr>
<tr>
<td>BGU7044</td>
<td>3.3</td>
<td>1</td>
<td>Fixed Gain 14dB</td>
</tr>
<tr>
<td>BGU7045</td>
<td>3.3</td>
<td>2</td>
<td>Gain 14dB, Bypass mode</td>
</tr>
</tbody>
</table>

2. Application Circuit

A universal evaluation board is used to test the RF performance of the whole NXP STB LNA family BGU703X and BGU704X. For all the types, it needs the same input and output DC block capacitors, supply decoupling capacitors, and RF choke. The difference between the types is mainly the external resistor used to set an optimum biasing current, and depending on how many modes the type has, the resistor and decoupling capacitor are used for each control line (bypass and gain control). The resistor for the control line is used to protect the control pin of the STB LNA MMIC by limiting the current.

The circuit diagram of the universal evaluation board and the board itself are shown in Fig 2 and Fig 3 respectively. Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, and Table 8 show the bills of materials for BGU7031, BGU7032, BGU7033, BGU7041, BGU7042, BGU7044, and BGU7045 respectively.
Fig 2. Circuit diagram of universal evaluation board for STB LNAs BGU703X and BGU704X

PCB material = FR4.
PCB thickness = 1.6 mm.
PCB size = 30 mm x 30 mm.
$\varepsilon_r = 4.5$; thickness of copper layer = 35 μm.

Fig 3. Universal evaluation board for STB LNAs BGU703X and BGU704X
Table 2. Bill of materials BGU7031

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C2</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C3</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>C4</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>C5</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C6</td>
<td>10 µF</td>
<td>C1206</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>L1</td>
<td>1.5 KΩ</td>
<td>L0603</td>
<td>RF Choke: Chip ferrite bead BLM18HE152SN1DF</td>
</tr>
<tr>
<td>R1</td>
<td>43 Ω</td>
<td>R0603</td>
<td>Bias setting</td>
</tr>
<tr>
<td>R2</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>R3</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>X1</td>
<td>75 Ω</td>
<td>F-connector</td>
<td>input</td>
</tr>
<tr>
<td>X2</td>
<td>75 Ω</td>
<td>F-connector</td>
<td>output</td>
</tr>
</tbody>
</table>

Table 3. Bill of materials BGU7032

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C2</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C3</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C4</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>C5</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C6</td>
<td>10 µF</td>
<td>C1206</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>L1</td>
<td>1.5 KΩ</td>
<td>L0603</td>
<td>RF Choke: Chip ferrite bead BLM18HE152SN1DF</td>
</tr>
<tr>
<td>R1</td>
<td>43 Ω</td>
<td>R0603</td>
<td>Bias setting</td>
</tr>
<tr>
<td>R2</td>
<td>1.8 KΩ</td>
<td>R0603</td>
<td>Current limiting</td>
</tr>
<tr>
<td>R3</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>X1</td>
<td>75 Ω</td>
<td>F-connector</td>
<td>input</td>
</tr>
<tr>
<td>X2</td>
<td>75 Ω</td>
<td>F-connector</td>
<td>output</td>
</tr>
</tbody>
</table>

Table 4. Bill of materials BGU7033

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C2</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C3</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C4</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C5</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C6</td>
<td>10 µF</td>
<td>C1206</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>L1</td>
<td>1.5 KΩ</td>
<td>L0603</td>
<td>RF Choke: Chip ferrite bead BLM18HE152SN1DF</td>
</tr>
</tbody>
</table>
Component List

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>43 Ω</td>
<td>R0603</td>
<td>Bias setting</td>
</tr>
<tr>
<td>R2</td>
<td>1.8 KΩ</td>
<td>R0603</td>
<td>Current limiting</td>
</tr>
<tr>
<td>R3</td>
<td>1.8 KΩ</td>
<td>R0603</td>
<td>Current limiting</td>
</tr>
<tr>
<td>X1</td>
<td>75 Ω</td>
<td>F-Connector</td>
<td>input</td>
</tr>
<tr>
<td>X2</td>
<td>75 Ω</td>
<td>F-Connector</td>
<td>output</td>
</tr>
</tbody>
</table>

Table 5. Bill of materials BGU7041

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C2</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C3</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>C4</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>C5</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C6</td>
<td>10 µF</td>
<td>C1206</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>L1</td>
<td>1.5 KΩ</td>
<td>L0603</td>
<td>RF Choke: Chip ferrite bead BLM18HE152SN1DF</td>
</tr>
<tr>
<td>R1</td>
<td>7.5 Ω</td>
<td>R0603</td>
<td>Bias setting</td>
</tr>
<tr>
<td>R2</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>R3</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>X1</td>
<td>75 Ω</td>
<td>F-Connector</td>
<td>input</td>
</tr>
<tr>
<td>X2</td>
<td>75 Ω</td>
<td>F-Connector</td>
<td>output</td>
</tr>
</tbody>
</table>

Table 6. Bill of materials BGU7042

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C2</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C3</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C4</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>C5</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C6</td>
<td>10 µF</td>
<td>C1206</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>L1</td>
<td>1.5 KΩ</td>
<td>L0603</td>
<td>RF Choke: Chip ferrite bead BLM18HE152SN1DF</td>
</tr>
<tr>
<td>R1</td>
<td>7.5 Ω</td>
<td>R0603</td>
<td>Bias setting</td>
</tr>
<tr>
<td>R2</td>
<td>1.8 KΩ</td>
<td>R0603</td>
<td>Current limiting</td>
</tr>
<tr>
<td>R3</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>X1</td>
<td>75 Ω</td>
<td>F-Connector</td>
<td>input</td>
</tr>
<tr>
<td>X2</td>
<td>75 Ω</td>
<td>F-Connector</td>
<td>output</td>
</tr>
</tbody>
</table>
Table 7. Bill of materials BGU7044

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C2</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C3</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>C4</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>C5</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C6</td>
<td>10 µF</td>
<td>C1206</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>L1</td>
<td>1.5 KΩ</td>
<td>L0603</td>
<td>RF Choke: Chip ferrite bead BLM18HE152SN1DF</td>
</tr>
<tr>
<td>R1</td>
<td>18 Ω</td>
<td>R0603</td>
<td>Bias setting</td>
</tr>
<tr>
<td>R2</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>R3</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>X1</td>
<td>75 Ω</td>
<td></td>
<td>F-connector input</td>
</tr>
<tr>
<td>X2</td>
<td>75 Ω</td>
<td></td>
<td>F-connector output</td>
</tr>
</tbody>
</table>

Table 8. Bill of materials BGU7045

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C2</td>
<td>10 nF</td>
<td>C0805</td>
<td>DC blocking</td>
</tr>
<tr>
<td>C3</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C4</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>C5</td>
<td>10 nF</td>
<td>C0603</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>C6</td>
<td>10 µF</td>
<td>C1206</td>
<td>RF decoupling</td>
</tr>
<tr>
<td>L1</td>
<td>1.5 KΩ</td>
<td>L0603</td>
<td>RF Choke: Chip ferrite bead BLM18HE152SN1DF</td>
</tr>
<tr>
<td>R1</td>
<td>18 Ω</td>
<td>R0603</td>
<td>Bias setting</td>
</tr>
<tr>
<td>R2</td>
<td>1.8 KΩ</td>
<td>R0603</td>
<td>Current limiting</td>
</tr>
<tr>
<td>R3</td>
<td>NC</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td>X1</td>
<td>75 Ω</td>
<td></td>
<td>F-connector input</td>
</tr>
<tr>
<td>X2</td>
<td>75 Ω</td>
<td></td>
<td>F-connector output</td>
</tr>
</tbody>
</table>
3. Stability

In some capacitive load cases at RF input the BGU70xx LNA’s tends to oscillate. To avoid oscillation additional components (see Fig 4.) should be placed at RF input.

![Stability improvement on STB LNAs BGU703X and BGU704X](image)

L2 = 2 nH
C7 = 1 pF
R4 = 47 ohm

Fig 4. Stability improvement on STB LNAs BGU703X and BGU704X

The stability improvement circuit has no influence on the RF-parameter! Place the stability circuit closed to the LNA’s input, keep distance to GND and remove the GND layers below the L2, C7 and R4 up to LNA input to avoid capacitive load at LNA’s input.
4. RF Performance for Different Bias Currents including Default Current

Because there are trade-offs between bias current, linearity, and NF, in this chapter the RF performance of all STB LNA types is given for different bias currents, including the default current. The bias current is controlled by the bias resistor and Table 9 shows an overview of the resistor values for different bias currents in gain mode of different types.

<table>
<thead>
<tr>
<th>Type</th>
<th>(R_{\text{bias}}) [(\Omega)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGU7031/2/3</td>
<td>N/A</td>
</tr>
<tr>
<td>BGU7041/2</td>
<td>7.5 (default) 5.6</td>
</tr>
<tr>
<td>BGU7044/5</td>
<td>18 (default) N/A</td>
</tr>
</tbody>
</table>

Table 9. Overview resistor values for different bias currents in gain mode of different types

4.1 RF Test Setup

4.1.1 IM2, and IM3 measurement setup

For the IM2, and IM3 measurements in this report, the equipment list in Table 10 has been used and Fig 5 shows the test setup diagram.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Manufacturer</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1x) 4- Port Vector Network Analyzer 10MHz – 24GHz</td>
<td>Rohde & Schwarz</td>
<td>ZVA24</td>
</tr>
<tr>
<td>(2x) Dual DC Power Supply</td>
<td>TTI</td>
<td>QL355TP</td>
</tr>
<tr>
<td>(1x) USB Powermeter</td>
<td>Rohde & Schwarz</td>
<td>NRP – Z21</td>
</tr>
<tr>
<td>(1x) Multimeter</td>
<td>Keithley</td>
<td>2000</td>
</tr>
<tr>
<td>(1x) Power Combiner</td>
<td>Agilent</td>
<td>11667B</td>
</tr>
<tr>
<td>(2x) Impedance Matching Transformer 75Ω/50Ω, N-connectors</td>
<td>Macom</td>
<td>TPX-75-4</td>
</tr>
</tbody>
</table>

| Additional connectors, cables and adapters as in drawing | Bomar, Suhner, Radiall | n.a. |

Table 10. Equipment list for P1dB, IM2, and IM3 measurements
4.1.2 NF measurement setup

For the NF measurement in this report, the equipment list in Table 11 has been used and Fig 6 shows the test setup diagram.

<table>
<thead>
<tr>
<th>Description</th>
<th>Manufacturer</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Figure Analyzer 10MHz – 1600MHz</td>
<td>Agilent</td>
<td>8970A</td>
</tr>
<tr>
<td>Noise source 15dB / N(m) / 50Ω</td>
<td>Agilent</td>
<td>346B</td>
</tr>
<tr>
<td>DC Power-supply</td>
<td>TTI</td>
<td>QL564P</td>
</tr>
<tr>
<td>Multimeter</td>
<td>Agilent</td>
<td>34401A</td>
</tr>
<tr>
<td>Impedance adapters 5.7dB Loss Pad (N-f)</td>
<td>Agilent</td>
<td>11852B</td>
</tr>
<tr>
<td>50Ω / (N-m) 75Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector adapters (N-f) 75Ω / (F-m) 75Ω</td>
<td>Bomar</td>
<td></td>
</tr>
</tbody>
</table>
4.2 2nd Order Intermodulation (IM2)

For IM2 measurement ZVA S-par. system calibration is not needed since it is a pure and relative power amplitude measurement. Thus only manual Power calibration is required. For this measurement, two tones are used separated by 200MHz or 6MHz, depending on the specification. Via a broadband power combiner and 50Ω to 75Ω impedance transformers the two tones with equal amplitude are fed into the DUT. The measurement has been done with $f_1=200$MHz or $f_1=97.25$MHz, depending on the specification, and an input power sweep from -20dBm to 5dBm per tone is applied. The pre-defined losses of the 50Ω to 75Ω impedance transformers etc. are compensated afterwards using output data processing. With Power calibration the reference plane is the SMA connector at the
50Ω input cable just before the SMA to N adapter that is connected to the input transformer. For IM2, only f1+f2 product has been measured.

The IM2 measurement results for different bias currents of BGU703X (5.0V devices) and BGU704X (3.3V devices) are given in chapter 4.2.1 with f1=200MHz and tone spacing of 200MHz and chapter 4.2.2 with f1=97.25MHz and tone spacing of 6MHz.

4.2.1 IM2 with f1=200MHz, f2=400MHz, fIM2=600MHz, P_in per tone swept from -20dBm to 5dBm

Table 12 shows an overview of IIP2 with f1=200MHz, f2=400MHz, fIM2=600MHz; and P_in =-15dBm per tone for BGU703x (5.0V devices) and BGU704x (3.3V devices) in different modes.

Table 12. Overview of IIP2 with f1=200MHz, f2=400MHz, fIM2=600MHz; and P_in =-15dBm per tone for BGU703x and BGU704x in different modes

<table>
<thead>
<tr>
<th>IIP2 with f1=200MHz, f2=400MHz, fIM2=600MHz, P_in=-15dBm per tone</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGU7031</td>
<td>BGU7032</td>
</tr>
<tr>
<td>10dB Gain</td>
<td>10dB Gain</td>
</tr>
<tr>
<td>PMIN</td>
<td>2.55E+01</td>
</tr>
<tr>
<td>PMAX</td>
<td>9.30E+01</td>
</tr>
<tr>
<td>Bias current</td>
<td>45</td>
</tr>
<tr>
<td>Bias current mode</td>
<td>55</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3.42E+01</td>
<td>3.42E+01</td>
</tr>
<tr>
<td>3.29E+01</td>
<td>3.29E+01</td>
</tr>
</tbody>
</table>

4.2.1.1 BGU7031: IM2 with f1=200MHz, f2=400MHz, fIM2=600MHz, P_in per tone swept from -20dBm to 5dBm

Fig 7 to Fig 8 show 1st and 2nd order response of BGU7031 in 10dB gain mode with f1=200MHz, f2=400MHz, fIM2=600MHz; and P_in per tone swept from -20dBm to 5dBm.
Fig 7. IM2 of BGU7031 in 10dB gain mode with Icc=46mA ($R_{bias}=39\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$. P_{in} per tone swept from -20dBm to 5dBm

Fig 8. IM2 of BGU7031 in 10dB gain mode with Icc=43mA ($R_{bias}=43\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$. P_{in} per tone swept from -20dBm to 5dBm
4.2.1.2 BGU7032: IM2 with \(f_1=200\text{MHz} \), \(f_2=400\text{MHz} \), \(f_{IM2}=600\text{MHz} \), \(P_{in} \) per tone swept from -20dBm to 5dBm

Fig 9 to Fig 12 show 1\(^{st}\) and 2\(^{nd}\) order response of BGU7032 in 10dB gain and bypass modes with \(f_1=200\text{MHz} \), \(f_2=400\text{MHz} \), \(f_{IM2}=600\text{MHz} \); and \(P_{in} \) per tone swept from -20dBm to 5dBm.

Fig 9. IM2 of BGU7032 in 10dB gain mode with \(I_{cc}=46\text{mA} \) (\(R_{bias}=39\Omega \)); \(f_1=200\text{MHz} \), \(f_2=400\text{MHz} \), \(f_{IM2}=600\text{MHz} \); \(P_{in} \) per tone swept from -20dBm to 5dBm
Fig 10. IM2 of BGU7032 in Bypass mode with Icc=4mA; Rbias=39Ω; f1=200MHz, f2=400MHz, fIM2=600MHz. Pin per tone swept from -20dBm to 5dBm.
Fig 11. IM2 of BGU7032 in 10dB gain mode with Icc=43mA ($R_{\text{bias}}=43\Omega$); $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{\text{IM2}}=600\text{MHz}$, P_{in} per tone swept from -20dBM to 5dBM

Fig 12. IM2 of BGU7032 in Bypass mode with Icc=4mA; $R_{\text{bias}}=43\Omega$; $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{\text{IM2}}=600\text{MHz}$, P_{in} per tone swept from -20dBM to 5dBM
4.2.1.3 BGU7033: IM2 with \(f_1=200\text{MHz}, f_2=400\text{MHz}, f_{IM2}=600\text{MHz}\), \(P_{in}\) per tone swept from -20dBm to 5dBm

Fig 13 to Fig 18 show 1st and 2nd order response of BGU7033 in 10dB gain, 5dB gain, and bypass modes with \(f_1=200\text{MHz}, f_2=400\text{MHz}, f_{IM2}=600\text{MHz}\); and \(P_{in}\) per tone swept from -20dBm to 5dBm.

![Graph showing IM2 response](image)

(1) 1st order
(2) 2nd order
(3) 1st order extrapolation
(4) 2nd order extrapolation

Fig 13. IM2 of BGU7033 in 10dB gain mode with \(I_{cc}=46\text{mA} (R_{bias}=39\Omega)\); \(f_1=200\text{MHz}, f_2=400\text{MHz}, f_{IM2}=600\text{MHz}\), \(P_{in}\) per tone swept from -20dBm to 5dBm
Fig 14. IM2 of BGU7033 in 5dB gain mode with \(I_{cc}=46\text{mA} \) \((R_{bias}=39\Omega) \), \(f_1=200\text{MHz} \), \(f_2=400\text{MHz} \), \(f_{IM2}=600\text{MHz} \), \(P_{in} \) per tone swept from -20dBm to 5dBm.
Fig 15. IM2 of BGU7033 in Bypass mode with Icc=4mA; $R_{\text{bias}}=39\Omega$; $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{\text{IM2}}=600\text{MHz}$. P_{in} per tone swept from -20dBm to 5dBm.
Fig 16. IM2 of BGU7033 in 10dB gain mode with Icc=43mA (Rbias=43Ω); f1=200MHz, f2=400MHz, fIM2=600MHz. Pin per tone swept from -20dBm to 5dBm

(1) 1st order
(2) 2nd order
(3) 1st order extrapolation
(4) 2nd order extrapolation
Fig 17. IM2 of BGU7033 in 5dB gain mode with Icc=43mA (R_{bias}=43Ω); f_1=200MHz, f_2=400MHz, f_{IM2}=600MHz. P_{in} per tone swept from -20dBm to 5dBm.

(1) 1st order
(2) 2nd order
(3) 1st order extrapolation
(4) 2nd order extrapolation

Fig 18. IM2 of BGU7033 in Bypass mode with Icc=4mA; R_{bias}=43Ω; f_1=200MHz, f_2=400MHz, f_{IM2}=600MHz. P_{in} per tone swept from -20dBm to 5dBm.

(1) 1st order
(2) 2nd order
(3) 1st order extrapolation
(4) 2nd order extrapolation
4.2.1.4 BGU7041: IM2 with $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm

Fig 19 to Fig 20 show 1st and 2nd order response of BGU7041 in 10dB gain mode with $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$; and P_{in} per tone swept from -20dBm to 5dBm.

Fig 19. IM2 of BGU7041 in 10dB gain mode with $I_{cc}=39mA$ ($R_{bias}=5.6\,\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm

Fig 20. IM2 of BGU7041 in 10dB gain mode with $I_{cc}=35mA$ ($R_{bias}=7.5\,\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm
4.2.1.5 BGU7042: IM2 with \(f_1=200\text{MHz} \), \(f_2=400\text{MHz} \), \(f_{\text{IM2}}=600\text{MHz} \), \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm

Fig 21 to Fig 24 show 1st and 2nd order response of BGU7042 in 10dB gain and bypass modes with \(f_1=200\text{MHz} \), \(f_2=400\text{MHz} \), \(f_{\text{IM2}}=600\text{MHz} \); and \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm.

Fig 21. IM2 of BGU7042 in 10dB gain mode with \(I_{\text{cc}}=39\text{mA} \) \((R_{\text{bias}}=5.8\Omega) \); \(f_1=200\text{MHz} \), \(f_2=400\text{MHz} \), \(f_{\text{IM2}}=600\text{MHz} \). \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm
Fig 22. IM2 of BGU7042 in Bypass mode with Icc=3mA; Rbias=5.6Ω; f1=200MHz, f2=400MHz, fIM2=600MHz. Pin per tone swept from -20dBm to 5dBm

(1) 1st order
(2) 2nd order
(3) 1st order extrapolation
(4) 2nd order extrapolation
Fig 23. IM2 of BGU7042 in 10dB gain mode with Icc=35mA (Rbias=7.5Ω); f1=200MHz, f2=400MHz, fIM2=600MHz; P_in per tone swept from -20dBm to 5dBm

Fig 24. IM2 of BGU7042 in Bypass mode with Icc=3mA; Rbias=7.5Ω; f1=200MHz, f2=400MHz, fIM2=600MHz; P_in per tone swept from -20dBm to 5dBm
4.2.1.6 BGU7044: IM2 with \(f_1=200\text{MHz}, \ f_2=400\text{MHz}, \ f_{\text{IM2}}=600\text{MHz} \), \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm

Fig 25 to Fig 26 show \(1^{\text{st}} \) and \(2^{\text{nd}} \) order response of BGU7044 in 14dB gain mode with \(f_1=200\text{MHz}, \ f_2=400\text{MHz}, \ f_{\text{IM2}}=600\text{MHz} \); and \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm.

Fig 25. IM2 of BGU7044 in 14dB gain mode with \(I_{\text{cc}}=43\text{mA} \) (\(R_{\text{bias}}=10\Omega \)); \(f_1=200\text{MHz}, \ f_2=400\text{MHz}, \ f_{\text{IM2}}=600\text{MHz} \), \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm.
4.2.1.7 BGU7045: IM2 with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{\text{IM2}}=600\text{MHz}$, P_{in} per tone swept from -20dBm to 5dBm

Fig 27 to Fig 30 show 1st and 2nd order response of BGU7044 in 14dB gain and bypass modes with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{\text{IM2}}=600\text{MHz}$; and P_{in} per tone swept from -20dBm to 5dBm.
Fig 27. IM2 of BGU7045 in 14dB gain mode with Icc=43mA ($R_{\text{bias}}=10\Omega$); $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{\text{IM2}}=600\text{MHz}$. P_{in} per tone swept from -20dBm to 5dBm.

Fig 28. IM2 of BGU7045 in Bypass mode with Icc=3mA; $R_{\text{bias}}=10\Omega$; $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{\text{IM2}}=600\text{MHz}$. P_{in} per tone swept from -20dBm to 5dBm.
Fig 29. IM2 of BGU7045 in 14dB gain mode with Icc=35mA (Rbias=18Ω); f1=200MHz, f2=400MHz, fIM2=600MHz; PIn per tone swept from -20dBm to 5dBm

Fig 30. IM2 of BGU7045 in Bypass mode with Icc=3mA; Rbias=18Ω; f1=200MHz, f2=400MHz, fIM2=600MHz; PIn per tone swept from -20dBm to 5dBm
4.2.2 IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm

Table 13 shows an overview of IIP2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; and $P_{in}=-20\text{dBm}$ per tone for BGU703x (5.0V devices) and BGU704x (3.3V devices) in different modes.

![Table 13](image)

4.2.2.1 BGU7031: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm

Fig 31 to Fig 32 show 1st and 2nd order response of BGU7031 in 10dB gain mode with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.
Fig 31. IM2 of BGU7031 in 10dB gain mode with Icc=46mA (Rbias=39Ω); f1=97.25MHz, f2=103.25MHz, fIM2=200.50MHz; P_in per tone swept from -20dBm to 5dBm

Fig 32. IM2 of BGU7031 in 10dB gain mode with Icc=43mA (Rbias=43Ω); f1=97.25MHz, f2=103.25MHz, fIM2=200.50MHz; P_in per tone swept from -20dBm to 5dBm
4.2.2.2 BGU7032: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm

Fig 33 to Fig 36 show 1st and 2nd order response of BGU7032 in 10dB gain and bypass modes with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.

Fig 33. IM2 of BGU7032 in 10dB gain mode with $I_{cc}=46\text{mA}$ ($R_{bias}=39\Omega$); $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm
Fig 34. IM2 of BGU7032 in Bypass mode with $I_{cc}=4\,mA$; $R_{\text{bias}}=39\,\Omega$; $f_1=97.25\,MHz$, $f_2=103.25\,MHz$, $f_{\text{IM2}}=200.50\,MHz$; P_{in} per tone swept from -20dBm to 5dBm

Fig 35. IM2 of BGU7032 in 10dB gain mode with $I_{cc}=43\,mA$ ($R_{\text{bias}}=43\,\Omega$); $f_1=97.25\,MHz$, $f_2=103.25\,MHz$, $f_{\text{IM2}}=200.50\,MHz$; P_{in} per tone swept from -20dBm to 5dBm
4.2.2.3 BGU7033: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{\text{IM2}}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm

Fig 37 to Fig 42 show 1st and 2nd order response of BGU7033 in 10dB gain, 5dB gain, and bypass modes with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{\text{IM2}}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.

Fig 36. IM2 of BGU7032 in Bypass mode with $I_{\text{cc}}=4\text{mA}$; $R_{\text{bias}}=43\Omega$; $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{\text{IM2}}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.
Fig 37. IM2 of BGU7033 in 10dB gain mode with Icc=46mA (R_{bias}=39\,\Omega); f_1=97.25MHz, f_2=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 38. IM2 of BGU7033 in 5dB gain mode with Icc=46mA (R_{bias}=39\,\Omega); f_1=97.25MHz, f_2=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm
Fig 39. IM2 of BGU7033 in Bypass mode with Icc=4mA; Rbias=39Ω; f1=97.25MHz, f2=103.25MHz, fIM2=200.50MHz; P_in per tone swept from -20dBm to 5dBm
Fig 40. IM2 of BGU7033 in 10dB gain mode with Icc=43mA ($R_{bias}=43\Omega$); $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm
Fig 41. IM2 of BGU7033 in 5dB gain mode with Icc=4mA (R_{bias}=43\Omega); f_1=97.25MHz, f_2=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 42. IM2 of BGU7033 in Bypass mode with Icc=4mA; R_{bias}=43\Omega; f_1=97.25MHz, f_2=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm
4.2.2.4 BGU7041: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm

Fig 43 to Fig 44 show 1st and 2nd order response of BGU7041 in 10dB gain mode with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.

Fig 43. IM2 of BGU7041 in 10dB gain mode with $I_{cc}=39\text{mA}$ ($R_{bias}=5.6\Omega$); $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.
4.2.2.5 BGU7042: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{\text{IM2}}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm

Fig 45 to Fig 48 show 1st and 2nd order response of BGU7042 in 10dB gain and bypass modes with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{\text{IM2}}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.
Fig 45. IM2 of BGU7042 in 10dB gain mode with $I_{cc}=39\text{mA}$ ($R_{bias}=5.6\Omega$); $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.

Fig 46. IM2 of BGU7042 in Bypass mode with $I_{cc}=3\text{mA}$; $R_{bias}=5.6\Omega$; $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.

(1) 1$^{\text{st}}$ order
(2) 2$^{\text{nd}}$ order
(3) 1$^{\text{st}}$ order extrapolation
(4) 2$^{\text{nd}}$ order extrapolation
Fig 47. IM2 of BGU7042 in 10dB gain mode with Icc=35mA (R_{bias}=7.5\Omega); f_1=97.25MHz, f_2=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 48. IM2 of BGU7042 in Bypass mode with Icc=3mA; R_{bias}=7.5\Omega; f_1=97.25MHz, f_2=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm
4.2.2.6 BGU7044: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm

Fig 49 to Fig 50 show 1st and 2nd order response of BGU7044 in 14dB gain mode with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm.

![Diagram](image_url)

(1) 1st order
(2) 2nd order
(3) 1st order extrapolation
(4) 2nd order extrapolation

Fig 49. IM2 of BGU7044 in 14dB gain mode with $I_{cc}=43\text{mA}$ ($R_{bias}=10\Omega$); $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{IM2}=200.50\text{MHz}$; P_{in} per tone swept from -20dBm to 5dBm
4.2.2.7 BGU7045: IM2 with $f_1=97.25$MHz, $f_2=103.25$MHz, $f_{IM2}=200.50$MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 51 to Fig 54 show 1st and 2nd order response of BGU7045 in 14dB gain and bypass modes with $f_1=97.25$MHz, $f_2=103.25$MHz, $f_{IM2}=200.50$MHz; P_{in} per tone swept from -20dBm to 5dBm.
(1) 1st order
(2) 2nd order
(3) 1st order extrapolation
(4) 2nd order extrapolation

Fig 51. IM2 of BGU7045 in 14dB gain mode with Icc=43mA (Rbias=10Ω); f1=97.25MHz, f2=103.25MHz, fIM2=200.50MHz; P_in per tone swept from -20dBm to 5dBm

(1) 1st order
(2) 2nd order
(3) 1st order extrapolation
(4) 2nd order extrapolation

Fig 52. IM2 of BGU7045 in Bypass mode with Icc=3mA; Rbias=10Ω; f1=97.25MHz, f2=103.25MHz, fIM2=200.50MHz; P_in per tone swept from -20dBm to 5dBm
Fig 53. IM2 of BGU7045 in 14dB gain mode with Icc=35mA (Rbias=18Ω); f1=97.25MHz, f2=103.25MHz, fIM2=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm
4.3 3rd Order Intermodulation (IM3)

For IM3 measurement ZVA S-par. system calibration is not needed since it is a pure and relative power amplitude measurement. Thus only manual Power calibration is required. For this measurement, two tones are used separated by 1MHz or 10MHz, depending on the specification. Via a broadband power combiner and 50Ω to 75Ω impedance transformers the two tones with equal amplitude are fed into the DUT. The measurement has been done with \(f_1 = 1000\text{MHz} \) or \(f_1 = 900\text{MHz} \), depending on the specification, and an input power sweep from -20dBm to 5dBm per tone is applied. The pre-defined losses of the 50Ω to 75Ω impedance transformers etc. are compensated afterwards using output data processing. With Power calibration the reference plane is the SMA connector at the 50Ω input cable just before the SMA to N adapter that is connected to the input transformer. Both IM3 products will be measured at the frequencies \(2f_1 - f_2 \) and \(2f_2 - f_1 \). Because both frequencies give similar results at these settings only frequency \(2f_2 - f_1 \) is used.

The IM3 measurement results for different bias currents of BGU703X (5.0V devices) and BGU704X (3.3V devices) are given in chapter 4.3.1 with \(f_1 = 1000\text{MHz} \) and tone spacing of 1MHz and chapter 4.3.2 with \(f_1 = 900\text{MHz} \) and tone spacing of 10MHz.

Fig 54. IM2 of BGU7045 in Bypass mode with \(I_{cc} = 3\text{mA} \); \(R_{bias} = 18\Omega \); \(f_1 = 97.25\text{MHz} \), \(f_2 = 103.25\text{MHz}, f_{IM2} = 200.50\text{MHz} \); \(P_{in} \) per tone swept from -20dBm to 5dBm
4.3.1 IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm 1\text{MHz}$, $f_{IM3}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Table 14 shows an overview of IIP3 with $f_1=1000\text{MHz}$, $f_2=1001\text{MHz}$, $f_{IM3}=1002\text{MHz}$; $P_{in} = -10\text{dBm}$ per tone for BGU703x (5.0V devices) and BGU704x (3.3V devices) in different modes.

| IIP3 with $f_1=1000\text{MHz}$, $f_2=1001\text{MHz}$, $f_{IM3}=1002\text{MHz}$; $P_{in} = -10\text{dBm}$ per tone for BGU703x and BGU704x in different modes |
|---|---|---|---|---|---|---|---|---|---|
| **Type** | BGU7031 | BGU7032 | BGU7033 | BGU7041 | BGU7042 | BGU7044 | BGU7045 |
| **Gain** | 10dB Gain | 10dB Gain | 10dB Gain | 5dB Gain | 5dB Gain | 5dB Gain | 5dB Gain |
| **Gain/Bypass** | N/A |
| **Gain/Bypass** | N/A |
| **Gain/Bypass** | N/A |
| **Gain/Bypass** | 2.01E+01 | 3.06E+01 | 1.98E+01 | 3.05E+01 | 1.54E+01 | 3.01E+01 | 1.55E+01 | 3.01E+01 |

Table 14.

4.3.1.1 BGU7031: IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm 1\text{MHz}$, $f_{IM3}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 55 to Fig 56 show 1st and 3rd order response of BGU7031 in 10dB gain mode with $f_1=1000\text{MHz}$, $f_2=f_1\pm 1\text{MHz}$, $f_{IM3}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.
Fig 55. IM3 of BGU7031 in 10dB gain mode with Icc=46mA (R_{bias}=39\Omega); f_1=1000MHz, f_2=f_1\pm1MHz, f_{IM3}=2f_2-f_1 \text{ (worst case)}; P_{in} \text{ per tone swept from -20dBm to 5dBm}

Fig 56. IM3 of BGU7031 in 10dB gain mode with Icc=43mA (R_{bias}=43\Omega); f_1=1000MHz, f_2=f_1\pm1MHz, f_{IM3}=2f_2-f_1 \text{ (worst case)}; P_{in} \text{ per tone swept from -20dBm to 5dBm}
4.3.1.2 BGU7032: IM3 with \(f_1 = 1000\text{MHz}, f_2 = f_1 \pm 1\text{MHz}, f_{\text{IM3}} = 2f_2 - f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm

Fig 57 to Fig 60 show 1\(^{st}\) and 3\(^{rd}\) order response of BGU7032 in 10dB gain and bypass modes with \(f_1 = 1000\text{MHz}, f_2 = f_1 \pm 1\text{MHz}, f_{\text{IM3}} = 2f_2 - f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm.

![Graph showing IM3 response](image)

(1) 1\(^{st}\) order
(2) 3\(^{rd}\) order
(3) 1\(^{st}\) order extrapolation
(4) 3\(^{rd}\) order extrapolation

Fig 57. IM3 of BGU7032 in 10dB gain mode with \(I_{\text{cc}} = 46\text{mA} \) (\(R_{\text{bias}} = 39\Omega \)); \(f_1 = 1000\text{MHz}, f_2 = f_1 \pm 1\text{MHz}, f_{\text{IM3}} = 2f_2 - f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm
(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation

Fig 58. IM3 of BGU7032 in Bypass mode with I_{cc}=4mA; R_{bias}=39\Omega; f_1=1000MHz, f_2=f_1\pm1MHz, f_{IM3}=2xf_2-f_1 \text{ (worst case)}; P_{in} \text{ per tone swept from -20dBm to 5dBm}

(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation

Fig 59. IM3 of BGU7032 in 10dB gain mode with I_{cc}=43mA (R_{bias}=43\Omega); f_1=1000MHz, f_2=f_1\pm1MHz, f_{IM3}=2xf_2-f_1 \text{ (worst case)}; P_{in} \text{ per tone swept from -20dBm to 5dBm}
4.3.1.3 **BGU7033**: IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{IM3}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 61 to Fig 66 show 1st and 3rd order response of BGU7033 in 10dB gain, 5dB gain, and bypass modes with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{IM3}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.
Fig 61. IM3 of BGU7033 in 10dB gain mode with Icc=46mA (R_{bias}=39\,\Omega); f_1=1000MHz, f_2=f_1\pm1MHz, f_{IM3}=2xf_2-f_1 \text{ (worst case)}; P_{in} per tone swept from -20dBm to 5dBm.

Fig 62. IM3 of BGU7033 in 5dB gain mode with Icc=46mA (R_{bias}=39\,\Omega); f_1=1000MHz, f_2=f_1\pm1MHz, f_{IM3}=2xf_2-f_1 \text{ (worst case)}; P_{in} per tone swept from -20dBm to 5dBm.
Fig 63. IM3 of BGU7033 in Bypass mode with Icc=4mA; R_{bias}=39Ω; f_1=1000MHz, f_2=f_1±1MHz, f_{IM3}=2f_2-f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm

(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation
Fig 64. IM3 of BGU7033 in 10dB gain mode with Icc=43mA ($R_{bias}=43\Omega$); $f_1=1000$MHz, $f_2=f_1\pm1$MHz, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm
Fig 65. IM3 of BGU7033 in 5dB gain mode with \(I_{cc}=4.3\,mA \) (\(R_{\text{bias}}=43\,\Omega \)); \(f_1=1000\,MHz \), \(f_2=f_1 \pm 1\,MHz \), \(f_{\text{IM3}}=2f_2-f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm

Fig 66. IM3 of BGU7033 in Bypass mode with \(I_{cc}=4mA \); \(R_{\text{bias}}=43\,\Omega \); \(f_1=1000\,MHz \), \(f_2=f_1 \pm 1\,MHz \), \(f_{\text{IM3}}=2f_2-f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm
4.3.1.4 BGU7041: IM3 with \(f_1=1000\text{MHz} \), \(f_2=f_1\pm1\text{MHz} \), \(f_{IM3}=2f_2-f_1 \) (worst case); \(P_{in} \) per tone swept from -20dBm to 5dBm

Fig 67 to Fig 68 show 1st and 3rd order response of BGU7041 in 10dB gain mode with \(f_1=1000\text{MHz} \), \(f_2=f_1\pm1\text{MHz} \), \(f_{IM3}=2f_2-f_1 \) (worst case); \(P_{in} \) per tone swept from -20dBm to 5dBm.

Fig 67. IM3 of BGU7041 in 10dB gain mode with \(I_{cc}=39\text{mA} \) (\(R_{bias}=5.6\Omega \)); \(f_1=1000\text{MHz} \), \(f_2=f_1\pm1\text{MHz} \), \(f_{IM3}=2f_2-f_1 \) (worst case); \(P_{in} \) per tone swept from -20dBm to 5dBm

(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation
4.3.1.5 BGU7042: IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{\text{IM3}}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 69 to Fig 72 show 1st and 3rd order response of BGU7042 in 10dB gain and bypass modes with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{\text{IM3}}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.
Fig 69. IM3 of BGU7042 in 10dB gain mode with Icc=39mA (Rbias=5.6Ω); f1=1000MHz, f2=f1±1MHz, fm3=2xf2-f1 (worst case); Pin per tone swept from -20dBm to 5dBm

Fig 70. IM3 of BGU7042 in Bypass mode with Icc=3mA; Rbias=5.6Ω; f1=1000MHz, f2=f1±1MHz, fm3=2xf2-f1 (worst case); Pin per tone swept from -20dBm to 5dBm
Fig 71. IM3 of BGU7042 in 10dB gain mode with Icc=35mA (Rbias=7.5Ω); f₁=1000MHz, f₂=f₁±1MHz, f₃=2xf₂-f₁ (worst case); Pₚᵢᵣ per tone swept from -20dBm to 5dBm

Fig 72. IM3 of BGU7042 in Bypass mode with Icc=3mA; Rbias=7.5Ω; f₁=1000MHz, f₂=f₁±1MHz, f₃=2xf₂-f₁ (worst case); Pₚᵢᵣ per tone swept from -20dBm to 5dBm
4.3.1.6 BGU7044: IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{\text{IM3}}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 73 to Fig 74 show 1st and 3rd order response of BGU7044 in 14dB gain mode with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{\text{IM3}}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.
4.3.1.7 BGU7045: IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{IM3}=2f_2-f_1$ (worst case); P_{IN} per tone swept from -20dBm to 5dBm

Fig 75 to Fig 78 show 1\text{st} and 3\text{rd} order response of BGU7045 in 14dB gain and bypass mode with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{IM3}=2f_2-f_1$ (worst case); P_{IN} per tone swept from -20dBm to 5dBm.
Fig 75. IM3 of BGU7045 in 14dB gain mode with Icc=43mA (Rbias=10Ω); f₁=1000MHz, f₂=f₁±1MHz, fIM3=2xf₂-f₁ (worst case); P_in per tone swept from -20dBm to 5dBm

Fig 76. IM3 of BGU7045 in Bypass mode with Icc=3mA; Rbias=10Ω; f₁=1000MHz, f₂=f₁±1MHz, fIM3=2xf₂-f₁ (worst case); P_in per tone swept from -20dBm to 5dBm
Fig 77. IM3 of BGU7045 in 14dB gain mode with Icc=35mA (Rbias=18Ω); f1=1000MHz, f2=f1±1MHz, fIM3=2xf2-f1 (worst case); Pin per tone swept from -20dBm to 5dBm
4.3.2 IM3 with \(f_1=900\text{MHz}, f_2=910\text{MHz}, f_{\text{IM3}}=2xf_2-f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm

Table 15 shows an overview of IIP3 with \(f_1=900\text{MHz}, f_2=910\text{MHz}, f_{\text{IM3}}=920\text{MHz} \); \(P_{\text{in}} = -20\text{dBm per tone for BGU703x (5.0V devices) and BGU704x (3.3V devices)} \) in different modes.

Table 15. Overview of IIP3 with \(f_1=900\text{MHz}, f_2=910\text{MHz}, f_{\text{IM3}}=920\text{MHz} \); \(P_{\text{in}} = -20\text{dBm per tone for BGU703x and BGU704x in different modes} \)

| IIP3 with \(f_1=900\text{MHz}, f_2=910\text{MHz}, f_{\text{IM3}}=920\text{MHz}, P_{\text{in}} = -20\text{dBm per tone} |
|---|---|---|---|---|---|---|---|
| Type | BGU7031 | BGU7032 | BGU7033 | BGU7041 | BGU7042 | BGU7043 | BGU7045 |
| 10dB Gain |
| 5dB Gain |
| Bypass |
| \(I_{\text{in}} \) (mA) |
35	N/A						
39	N/A						
43	2.57E+01	2.43E+01	2.29E+01	2.39E+01	2.43E+01	2.34E+01	2.25E+01
48	2.56E+01	2.40E+01	1.96E+01	2.47E+01	2.52E+01	1.95E+01	2.26E+01

4.3.2.1 BGU7031: IM3 with \(f_1=900\text{MHz}, f_2=910\text{MHz}, f_{\text{IM3}}=2xf_2-f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm

Fig 79 to Fig 80 show 1st and 3rd order response of BGU7031 in 10dB gain mode with \(f_1=900\text{MHz}, f_2=910\text{MHz}, f_{\text{IM3}}=2xf_2-f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm.
Fig 79. IM3 of BGU7031 in 10dB gain mode with Icc=46mA (R_{bias}=39\Omega); f_1=900MHz, f_2=910MHz, f_{IM3}=2xf_2-f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 80. IM3 of BGU7031 in 10dB gain mode with Icc=43mA (R_{bias}=43\Omega); f_1=900MHz, f_2=910MHz, f_{IM3}=2xf_2-f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm
4.3.2.2 BGU7032: IM3 with \(f_1 = 900\text{MHz} \), \(f_2 = 910\text{MHz} \), \(f_{\text{IM3}} = 2f_2 - f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm

Fig 81 to Fig 84 show 1st and 3rd order response of BGU7032 in 10dB gain and bypass modes with \(f_1 = 900\text{MHz} \), \(f_2 = 910\text{MHz} \), \(f_{\text{IM3}} = 2f_2 - f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm.

Fig 81. IM3 of BGU7032 in 10dB gain mode with \(I_{\text{cc}} = 46\text{mA} \) (\(R_{\text{bias}} = 39\Omega \)); \(f_1 = 900\text{MHz} \), \(f_2 = 910\text{MHz} \), \(f_{\text{IM3}} = 2f_2 - f_1 \) (worst case); \(P_{\text{in}} \) per tone swept from -20dBm to 5dBm
Fig 82. IM3 of BGU7032 in Bypass mode with Icc=4mA; R_{bias}=39\Omega; f_1=900MHz, f_2=910MHz, f_{IM3}=2xf_2-f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm
Fig 83. IM3 of BGU7032 in 10dB gain mode with \(I_{CC}=43\,mA\) (\(R_{bias}=43\,\Omega\)); \(f_1=900MHz\), \(f_2=910MHz\), \(f_{IM3}=2f_2-f_1\) (worst case); \(P_{in}\) per tone swept from -20dBm to 5dBm

(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation

Fig 84. IM3 of BGU7032 in Bypass mode with \(I_{CC}=4mA\); \(R_{bias}=43\,\Omega\); \(f_1=900MHz\), \(f_2=910MHz\), \(f_{IM3}=2f_2-f_1\) (worst case); \(P_{in}\) per tone swept from -20dBm to 5dBm

(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation
4.3.2.3 BGU7033: IM3 with \(f_1 = 900 \text{MHz}, f_2 = 910 \text{MHz}, f_{IM3} = 2f_2 - f_1 \) (worst case); \(P_{in} \) per tone swept from -20dBm to 5dBm

Fig 85 to Fig 90 show 1st and 3rd order response of BGU7033 in 10dB gain, 5dB gain, and bypass modes with \(f_1 = 900 \text{MHz}, f_2 = 910 \text{MHz}, f_{IM3} = 2f_2 - f_1 \) (worst case); \(P_{in} \) per tone swept from -20dBm to 5dBm.

![Graph of IM3 response](image)

(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation

Fig 85. IM3 of BGU7033 in 10dB gain mode with \(I_{cc} = 46 \text{mA} \) (\(R_{bias} = 39 \Omega \)); \(f_1 = 900 \text{MHz}, f_2 = 910 \text{MHz}, f_{IM3} = 2f_2 - f_1 \) (worst case); \(P_{in} \) per tone swept from -20dBm to 5dBm.
Fig 86. IM3 of BGU7033 in 5dB gain mode with Icc=46mA (Rbias=39Ω); f1=900MHz, f2=910MHz, fIM3=2xf2-f1 (worst case); P_{in} per tone swept from -20dBm to 5dBm
Fig 87. IM3 of BGU7033 in Bypass mode with Icc=4mA; Rbias=39Ω; f1=900MHz, f2=910MHz, fIM3=2xf2-f1 (worst case); P_{in} per tone swept from -20dBm to 5dBm
Fig 88. IM3 of BGU7033 in 10dB gain mode with Icc=43mA ($R_{\text{bias}}=43\Omega$); $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{\text{IM3}}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation
(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation

Fig 89. IM3 of BGU7033 in 5dB gain mode with Icc=43mA (Rbias=43Ω); f1=900MHz, f2=910MHz, fIM3=2xf2-f1 (worst case); P_in per tone swept from -20dBm to 5dBm

(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation

Fig 90. IM3 of BGU7033 in Bypass mode with Icc=4mA; Rbias=43Ω; f1=900MHz, f2=910MHz, fIM3=2xf2-f1 (worst case); P_in per tone swept from -20dBm to 5dBm
4.3.2.4 BGU7041: IM3 with $f_1=900MHz$, $f_2=910MHz$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 91 to Fig 92 show 1st and 3rd order response of BGU7041 in 10dB gain mode with $f_1=900MHz$, $f_2=910MHz$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 91. IM3 of BGU7041 in 10dB gain mode with Icc=39mA ($R_{bias}=5.6\Omega$); $f_1=900MHz$, $f_2=910MHz$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm
4.3.2.5 BGU7042: IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 93 to Fig 96 show 1st and 3rd order response of BGU7042 in 10dB gain and bypass modes with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.
Fig 93. IM3 of BGU7042 in 10dB gain mode with Icc=39mA (R_{bias}=5.6\Omega); f_1=900MHz, f_2=910MHz, f_{IM3}=2xf_2-f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 94. IM3 of BGU7042 in Bypass mode with Icc=3mA; R_{bias}=5.6\Omega; f_1=900MHz, f_2=910MHz, f_{IM3}=2xf_2-f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm.
Fig 95. IM3 of BGU7042 in 10dB gain mode with Icc=35mA (Rbias=7.5Ω); f1=900MHz, f2=910MHz, fIM3=2xf2-f1 (worst case); Pin per tone swept from -20dBm to 5dBm

Fig 96. IM3 of BGU7042 in Bypass mode with Icc=3mA; Rbias=7.5Ω; f1=900MHz, f2=910MHz, fIM3=2xf2-f1 (worst case); Pin per tone swept from -20dBm to 5dBm
4.3.2.6 BGU7044: IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{\text{IM3}}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 97 to Fig 98 show 1st and 3rd order response of BGU7044 in 14dB gain mode with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{\text{IM3}}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.
4.3.2.7 BGU7045: IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 99 to Fig 102 show 1st and 3rd order response of BGU7045 in 14dB gain and bypass modes with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

(1) 1st order
(2) 3rd order
(3) 1st order extrapolation
(4) 3rd order extrapolation

Fig 99. IM3 of BGU7045 in 14dB gain mode with $I_{cc}=43\text{mA}$ ($R_{bias}=10\Omega$); $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm
Fig 100. IM3 of BGU7045 in Bypass mode with Icc=3mA; $R_{\text{bias}}=10\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{\text{IM3}}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 101. IM3 of BGU7045 in 14dB gain mode with Icc=35mA ($R_{\text{bias}}=18\Omega$); $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{\text{IM3}}=2f_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm
4.4 CSO and CTB

Composite Second Order beat (CSO) and Composite Triple Beat (CTB) have been measured with 131 NTSC channels, and Vout=25dBmV for bypass mode and Vin=15dBmV for gain modes.

4.4.1 CSO and CTB in Bypass Mode of BGU703X and BGU704X

Fig 103 and Fig 104 show the CSO and CTB respectively of BGU7032, BGU7033, BGU7042 and BGU7045 in bypass mode.

Fig 102. IM3 of BGU7045 in Bypass mode with Icc=3mA; Rbias=18Ω; f1=900MHz, f2=910MHz, fIM3=2xf2-f1 (worst case); P_in per tone swept from -20dBm to 5dBm
4.4.2 CSO in Gain Modes of BGU703X and BGU704X

Fig 105 to Fig 108 show the CSO of BGU7031, BGU7032, and BGU7033 in different gain modes and with different bias currents. Fig 109 to Fig 112 show the CSO of
BGU7041, BGU7042, BGU7044, and BGU7045 in different gain modes and with different bias currents.

Fig 105. CSO of BGU7031 in 10dB gain mode and different bias currents

(1) BGU7031 in 10dB gain mode with Icc=46mA (Rbias=39Ω)
(2) BGU7031 in 10dB gain mode with Icc=43mA (Rbias=43Ω, default)

Fig 106. CSO of BGU7032 in 10dB gain mode and different bias currents

(1) BGU7032 in 10dB gain mode with Icc=46mA (Rbias=39Ω)
(2) BGU7032 in 10dB gain mode with Icc=43mA (Rbias=43Ω, default)
Fig 107. CSO of BGU7033 in 10dB gain mode and different bias currents

(1) BGU7033 in 10dB gain mode with Icc=46mA (R_{bias}=39\Omega)
(2) BGU7033 in 10dB gain mode with Icc=43mA (R_{bias}=43\Omega, default)

Fig 108. CSO of BGU7033 in 5dB gain mode and different bias currents

(1) BGU7033 in 5dB gain mode with Icc=46mA (R_{bias}=39\Omega)
(2) BGU7033 in 5dB gain mode with Icc=43mA (R_{bias}=43\Omega, default)
BGU7041 in 10dB gain mode with $I_{cc}=39\,mA$ ($R_{bias}=5.6\,\Omega$)
(2) BGU7041 in 10dB gain mode with $I_{cc}=35\,mA$ ($R_{bias}=7.5\,\Omega$)

Fig 109. CSO of BGU7041 in 10dB gain mode and different bias currents

BGU7042 in 10dB gain mode with $I_{cc}=39\,mA$ ($R_{bias}=5.6\,\Omega$)
(2) BGU7042 in 10dB gain mode with $I_{cc}=35\,mA$ ($R_{bias}=7.5\,\Omega$)

Fig 110. CSO of BGU7042 in 10dB gain mode and different bias currents
Fig 111. CSO of BGU7044 in 14dB gain mode and different bias currents

(1) BGU7044 in 14dB gain mode with Icc=43mA (R_{bias}=10Ω)
(2) BGU7044 in 14dB gain mode with Icc=35mA (R_{bias}=18Ω)

Fig 112. CSO of BGU7045 in 14dB gain mode and different bias currents

(1) BGU7045 in 14dB gain mode with Icc=43mA (R_{bias}=10Ω)
(2) BGU7045 in 14dB gain mode with Icc=35mA (R_{bias}=18Ω)
4.4.3 CTB in Gain Modes of BGU703X and BGU704X

Fig 113 to Fig 116 show the CTB of BGU7031, BGU7032, and BGU7033 in different gain modes and with different bias currents. Fig 117 to Fig 120 show the CTB of BGU7041, BGU7042, BGU7044, and BGU7045 in different gain modes and with different bias currents.

Fig 113. CTB of BGU7031 in 10dB gain mode and different bias currents

(1) BGU7031 in 10dB gain mode with Icc=46mA (R\text{bias}=39\Omega)
(2) BGU7031 in 10dB gain mode with Icc=43mA (R\text{bias}=43\Omega, default)
Fig 114. CTB of BGU7032 in 10dB gain mode and different bias currents

(1) BGU7032 in 10dB gain mode with Icc=46mA (Rbias=39Ω)
(2) BGU7032 in 10dB gain mode with Icc=43mA (Rbias=43Ω, default)

Fig 115. CTB of BGU7033 in 10dB gain mode and different bias currents

(1) BGU7033 in 10dB gain mode with Icc=46mA (Rbias=39Ω)
(2) BGU7033 in 10dB gain mode with Icc=43mA (Rbias=43Ω, default)
(1) BGU7033 in 5dB gain mode with \textit{Icc}=46mA (\textit{R_{bias}}=39\,\Omega)
(2) BGU7033 in 5dB gain mode with \textit{Icc}=43mA (\textit{R_{bias}}=43\,\Omega, default)

\textbf{Fig 116.} CTB of BGU7033 in 5dB gain mode and different bias currents

(1) BGU7041 in 10dB gain mode with \textit{Icc}=39mA (\textit{R_{bias}}=5.6\,\Omega)
(2) BGU7041 in 10dB gain mode with \textit{Icc}=35mA (\textit{R_{bias}}=7.5\,\Omega)

\textbf{Fig 117.} CTB of BGU7041 in 10dB gain mode and different bias currents
(1) BGU7042 in 10dB gain mode with Icc=39mA (R_{bias}=5.6\,\Omega)

(2) BGU7042 in 10dB gain mode with Icc=35mA (R_{bias}=7.5\,\Omega)

Fig 118. CTB of BGU7042 in 10dB gain mode and different bias currents

(1) BGU7044 in 14dB gain mode with Icc=43mA (R_{bias}=10\,\Omega)

(2) BGU7044 in 14dB gain mode with Icc=35mA (R_{bias}=18\,\Omega)

Fig 119. CTB of BGU7044 in 14dB gain mode and different bias currents
4.5 NF

The NF measurement results for different bias currents of BGU703X and BGU704X are given in chapter 4.5.1 and chapter 4.5.2 respectively.

4.5.1 NF of BGU703X

Fig 121, Fig 122, and Fig 123 show the NF of BGU7031, BGU7032, and BGU7033 respectively in different modes and with different bias currents.
BGU7031 in 10dB gain mode with Icc=46mA (Rbias=39Ω)
(2) BGU7031 in 10dB gain mode with Icc=43mA (Rbias=43Ω, default)

Fig 121. NF of BGU7031 in 10dB gain mode and different bias currents

BGU7032 in 10dB gain mode with Icc=46mA (Rbias=39Ω)
(2) BGU7032 in 10dB gain mode with Icc=43mA (Rbias=43Ω, default)

Fig 122. NF of BGU7032 in 10dB gain mode and different bias currents
4.5.2 NF of BGU704X

Fig 124 to Fig 127 show the NF of BGU7041, BGU7042, BGU7044, and BGU7045 respectively in different modes and with different bias currents.

(1) BGU7041 in 10dB gain mode with Icc=39mA (R_{bias}=5.6\Omega)
(2) BGU7041 in 10dB gain mode with Icc=35mA (R_{bias}=7.5\Omega)

Fig 124. NF of BGU7041 in 10dB gain mode and different bias currents
(1) BGU7042 in 10dB gain mode with ICC=39mA (R\text{bias}=5.6\,\Omega)

(2) BGU7042 in 10dB gain mode with ICC=35mA (R\text{bias}=7.5\,\Omega)

Fig 125. NF of BGU7042 in 10dB gain mode and different bias currents

(1) BGU7044 in 14dB gain mode with ICC=43mA (R\text{bias}=10\,\Omega)

(2) BGU7044 in 14dB gain mode with ICC=35mA (R\text{bias}=18\,\Omega)

Fig 126. NF of BGU7044 in 14dB gain mode and different bias currents
Fig 127. NF of BGU7045 in 14dB gain mode and different bias currents

(1) BGU7045 in 14dB gain mode with Icc=43mA (R_{load}=10\Omega)
(2) BGU7045 in 14dB gain mode with Icc=35mA (R_{load}=18\Omega)
5. Legal information

5.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

5.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

5.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

5.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

<Patent ID> — owned by <Company name>

5.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

<Name> — is a trademark of NXP B.V.
6. List of figures

Fig 1. Application diagram of an active splitter with passive loop-through... 3

Fig 2. Circuit diagram of universal evaluation board for STB LNAs BGU703X and BGU704X 5

Fig 3. Universal evaluation board for STB LNAs BGU703X and BGU704X.. 5

Fig 4. Stability improvement on STB LNAs BGU703X and BGU704X... 9

Fig 5. Test setup diagram for IM2, and IM3 measurements .. 11

Fig 6. Test setup diagram for NF measurement....................12

Fig 7. IM2 of BGU7031 in 10dB gain mode with $I_{cc}=4mA$ ($R_{bias}=43\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 14

Fig 8. IM2 of BGU7031 in 10dB gain mode with $I_{cc}=4mA$ ($R_{bias}=43\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 14

Fig 9. IM2 of BGU7032 in 10dB gain mode with $I_{cc}=4mA$ ($R_{bias}=43\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 14

Fig 10. IM2 of BGU7032 in Bypass mode with $I_{cc}=4mA$; $R_{bias}=39\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 16

Fig 11. IM2 of BGU7032 in 10dB gain mode with $I_{cc}=4mA$ ($R_{bias}=43\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 16

Fig 12. IM2 of BGU7032 in Bypass mode with $I_{cc}=4mA$; $R_{bias}=43\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 17

Fig 13. IM2 of BGU7033 in 10dB gain mode with $I_{cc}=4mA$ ($R_{bias}=39\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 18

Fig 14. IM2 of BGU7033 in 5dB gain mode with $I_{cc}=4mA$ ($R_{bias}=39\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 19

Fig 15. IM2 of BGU7033 in Bypass mode with $I_{cc}=4mA$; $R_{bias}=39\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 20

Fig 16. IM2 of BGU7033 in 10dB gain mode with $I_{cc}=4mA$ ($R_{bias}=43\Omega$); $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 21

Fig 17. IM2 of BGU7041 in 10dB gain mode with $I_{cc}=3mA$; $R_{bias}=5.6\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 23

Fig 18. IM2 of BGU7041 in Bypass mode with $I_{cc}=3mA$; $R_{bias}=5.6\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 23

Fig 19. IM2 of BGU7042 in 10dB gain mode with $I_{cc}=3mA$; $R_{bias}=5.6\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 24

Fig 20. IM2 of BGU7042 in Bypass mode with $I_{cc}=3mA$; $R_{bias}=5.6\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 25

Fig 21. IM2 of BGU7042 in 10dB gain mode with $I_{cc}=3mA$; $R_{bias}=7.5\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 26

Fig 22. IM2 of BGU7042 in Bypass mode with $I_{cc}=3mA$; $R_{bias}=7.5\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 26

Fig 23. IM2 of BGU7042 in 10dB gain mode with $I_{cc}=3mA$; $R_{bias}=7.5\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 26

Fig 24. IM2 of BGU7042 in Bypass mode with $I_{cc}=3mA$; $R_{bias}=7.5\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 26

Fig 25. IM2 of BGU7042 in Bypass mode with $I_{cc}=3mA$; $R_{bias}=7.5\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 26

Fig 26. IM2 of BGU7042 in 10dB gain mode with $I_{cc}=3mA$; $R_{bias}=7.5\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 27

Fig 27. IM2 of BGU7042 in 10dB gain mode with $I_{cc}=3mA$; $R_{bias}=10\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 28

Fig 28. IM2 of BGU7042 in 10dB gain mode with $I_{cc}=3mA$; $R_{bias}=10\Omega$; $f_1=200MHz$, $f_2=400MHz$, $f_{IM2}=600MHz$, P_{in} per tone swept from -20dBm to 5dBm ... 29
IM2 of BGU7045 in 14dB gain mode with Icc=35mA ($R_{bias}=39\Omega$); $f_1=200.50MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm39

Fig 54.

IM2 of BGU7045 in 14dB gain mode with Icc=3mA; $R_{bias}=18\Omega$; $f_1=200.50MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm40

Fig 55.

IM2 of BGU7044 in 14dB gain mode with Icc=3mA; $R_{bias}=10\Omega$; $f_1=200.50MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm41

Fig 56.

IM2 of BGU7043 in 14dB gain mode with Icc=3mA; $R_{bias}=10\Omega$; $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm42

Fig 57.

IM2 of BGU7032 in 10dB gain mode with Icc=47mA ($R_{bias}=39\Omega$); $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm36

Fig 29.

IM2 of BGU7045 in 14dB gain mode with Icc=35mA ($R_{bias}=18\Omega$); $f_1=200.50MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm29

Fig 30.

IM2 of BGU7045 in Bypass mode with Icc=3mA; $R_{bias}=18\Omega$; $f_1=200.50MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm30

Fig 31.

IM2 of BGU7031 in 10dB gain mode with Icc=46mA ($R_{bias}=39\Omega$); $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm32

Fig 32.

IM2 of BGU7031 in 10dB gain mode with Icc=43mA ($R_{bias}=43\Omega$); $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm32

Fig 33.

IM2 of BGU7032 in 10dB gain mode with Icc=46mA ($R_{bias}=39\Omega$); $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm33

Fig 34.

IM2 of BGU7032 in Bypass mode with Icc=4mA; $R_{bias}=39\Omega$; $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm34

Fig 35.

IM2 of BGU7032 in 10dB gain mode with Icc=43mA ($R_{bias}=43\Omega$); $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm34

Fig 36.

IM2 of BGU7032 in Bypass mode with Icc=4mA; $R_{bias}=43\Omega$; $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm35

Fig 37.

IM2 of BGU7033 in 10dB gain mode with Icc=46mA ($R_{bias}=39\Omega$); $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm36

Fig 38.

IM2 of BGU7033 in 5dB gain mode with Icc=46mA ($R_{bias}=39\Omega$); $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm36

Fig 39.

IM2 of BGU7033 in Bypass mode with Icc=4mA; $R_{bias}=39\Omega$; $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm37

Fig 40.

IM2 of BGU7033 in 10dB gain mode with Icc=43mA ($R_{bias}=43\Omega$); $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm38

Fig 41.

IM2 of BGU7033 in 5dB gain mode with Icc=43mA ($R_{bias}=43\Omega$); $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{m2}=200.50MHz$, P_{in} per tone swept from -20dBm to 5dBm39
IM3 of BGU7031 in 10dB gain mode with Icc=4mA; Rbias=39Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm48
Fig 55.

IM3 of BGU7032 in 10dB gain mode with Icc=4mA; Rbias=43Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm50
Fig 56.

IM3 of BGU7031 in 10dB gain mode with Icc=4mA; Rbias=39Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm50
Fig 57.

IM3 of BGU7032 in Bypass mode with Icc=4mA; Rbias=39Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm51
Fig 58.

IM3 of BGU7032 in Bypass mode with Icc=4mA; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm52
Fig 59.

IM3 of BGU7032 in 10dB gain mode with Icc=4mA; Rbias=39Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm52
Fig 60.

IM3 of BGU7031 in 10dB gain mode with f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm53
Fig 61.

IM3 of BGU7033 in 10dB gain mode with Icc=4mA; Rbias=39Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm54
Fig 62.

IM3 of BGU7033 in 5dB gain mode with Icc=4mA; Rbias=39Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm54
Fig 63.

IM3 of BGU7033 in Bypass mode with Icc=4mA; Rbias=39Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm55
Fig 64.

IM3 of BGU7033 in 10dB gain mode with f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm56
Fig 65.

IM3 of BGU7033 in Bypass mode with Icc=4mA; Rbias=43Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm57
Fig 66.

IM3 of BGU7032 in Bypass mode with Icc=4mA; Rbias=39Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm57
Fig 67.

IM3 of BGU7032 in 10dB gain mode with Icc=4mA; Rbias=43Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm58
Fig 68.

IM3 of BGU7041 in 10dB gain mode with Icc=35mA; Rbias=7.5Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm59
Fig 69.

IM3 of BGU7042 in 10dB gain mode with Icc=39mA; Rbias=5.6Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm60
Fig 70.

IM3 of BGU7042 in Bypass mode with Icc=3mA; Rbias=5.6Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm61
Fig 71.

IM3 of BGU7042 in 10dB gain mode with Icc=3mA; Rbias=7.5Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm62
Fig 72.

IM3 of BGU7044 in 14dB gain mode with Icc=43mA; Rbias=10Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm63
Fig 73.

IM3 of BGU7044 in 14dB gain mode with Icc=35mA; Rbias=18Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm64
Fig 74.

IM3 of BGU7045 in 14dB gain mode with Icc=43mA; Rbias=10Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm64
Fig 75.

IM3 of BGU7045 in Bypass mode with Icc=3mA; Rbias=10Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm65
Fig 76.

IM3 of BGU7045 in 14dB gain mode with Icc=35mA; Rbias=18Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm66
Fig 77.

IM3 of BGU7045 in 14dB gain mode with Icc=3mA; Rbias=18Ω; f1=1000MHz, f2=fi±1MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm67
Fig 78.

IM3 of BGU7031 in 10dB gain mode with Icc=46mA; Rbias=39Ω; f1=900MHz, f2=910MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm67
Fig 79.

IM3 of BGU7031 in 10dB gain mode with Icc=43mA; Rbias=43Ω; f1=900MHz, f2=910MHz, fIM3=2xf2-f1 (worst case); Pn per tone swept from -20dBm to 5dBm68
Fig 80.
Fig 81. IM3 of BGU7032 in 10dB gain mode with $I_{cc}=46\text{mA} (R_{bias}=39\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 82. IM3 of BGU7032 in Bypass mode with $I_{cc}=4mA$; $R_{bias}=39\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 83. IM3 of BGU7032 in 10dB gain mode with $I_{cc}=46\text{mA} (R_{bias}=43\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 84. IM3 of BGU7032 in Bypass mode with $I_{cc}=4mA$; $R_{bias}=43\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 85. IM3 of BGU7033 in 10dB gain mode with $I_{cc}=46\text{mA} (R_{bias}=39\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 86. IM3 of BGU7033 in 5dB gain mode with $I_{cc}=46\text{mA} (R_{bias}=43\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 87. IM3 of BGU7033 in Bypass mode with $I_{cc}=4mA$; $R_{bias}=39\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 88. IM3 of BGU7033 in 10dB gain mode with $I_{cc}=43\text{mA} (R_{bias}=43\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 89. IM3 of BGU7033 in 5dB gain mode with $I_{cc}=43\text{mA} (R_{bias}=43\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 90. IM3 of BGU7033 in Bypass mode with $I_{cc}=4mA$; $R_{bias}=43\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 91. IM3 of BGU7041 in 10dB gain mode with $I_{cc}=39\text{mA} (R_{bias}=5.6\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 92. IM3 of BGU7041 in 10dB gain mode with $I_{cc}=35\text{mA} (R_{bias}=7.5\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 93. IM3 of BGU7042 in 10dB gain mode with $I_{cc}=39\text{mA} (R_{bias}=5.6\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 94. IM3 of BGU7042 in Bypass mode with $I_{cc}=3mA$; $R_{bias}=5.6\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 95. IM3 of BGU7042 in 10dB gain mode with $I_{cc}=3mA$; $R_{bias}=7.5\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 96. IM3 of BGU7042 in Bypass mode with $I_{cc}=3mA$; $R_{bias}=7.5\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 97. IM3 of BGU7044 in 14dB gain mode with $I_{cc}=43\text{mA} (R_{bias}=10\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 98. IM3 of BGU7044 in 14dB gain mode with $I_{cc}=35\text{mA} (R_{bias}=18\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 99. IM3 of BGU7045 in 14dB gain mode with $I_{cc}=43\text{mA} (R_{bias}=10\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 100. IM3 of BGU7045 in Bypass mode with $I_{cc}=3mA$; $R_{bias}=10\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 101. IM3 of BGU7045 in 14dB gain mode with $I_{cc}=35\text{mA} (R_{bias}=18\Omega)$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 102. IM3 of BGU7045 in Bypass mode with $I_{cc}=3mA$; $R_{bias}=18\Omega$; $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

Fig 103. CSO of BGU703X and BGU704X in bypass mode.

Fig 104. CTB of BGU703X and BGU704X in bypass mode.

Fig 110. CSO of BGU7031 in 10dB gain mode and different bias currents.

Fig 111. CSO of BGU7032 in 10dB gain mode and different bias currents.

Fig 112. CSO of BGU7033 in 10dB gain mode and different bias currents.

Fig 113. CSO of BGU7041 in 10dB gain mode and different bias currents.

Fig 114. CSO of BGU7042 in 10dB gain mode and different bias currents.
Fig 110. CSO of BGU7042 in 10dB gain mode and different bias currents87
Fig 111. CSO of BGU7044 in 14dB gain mode and different bias currents88
Fig 112. CSO of BGU7045 in 14dB gain mode and different bias currents88
Fig 113. CTB of BGU7031 in 10dB gain mode and different bias currents89
Fig 114. CTB of BGU7032 in 10dB gain mode and different bias currents90
Fig 115. CTB of BGU7033 in 10dB gain mode and different bias currents90
Fig 116. CTB of BGU7033 in 5dB gain mode and different bias currents90
Fig 117. CTB of BGU7041 in 10dB gain mode and different bias currents91
Fig 118. CTB of BGU7042 in 10dB gain mode and different bias currents91
Fig 119. CTB of BGU7044 in 14dB gain mode and different bias currents92
Fig 120. CTB of BGU7045 in 14dB gain mode and different bias currents93
Fig 121. NF of BGU7031 in 10dB gain mode and different bias currents94
Fig 122. NF of BGU7032 in 10dB gain mode and different bias currents94
Fig 123. NF of BGU7033 in 10dB and 5dB gain mode and different bias currents95
Fig 124. NF of BGU7041 in 10dB gain mode and different bias currents95
Fig 125. NF of BGU7042 in 10dB gain mode and different bias currents96
Fig 126. NF of BGU7044 in 14dB gain mode and different bias currents96
Fig 127. NF of BGU7045 in 14dB gain mode and different bias currents97
7. List of tables

Table 1. Overview product types .. 3
Table 2. Bill of materials BGU7031 ... 6
Table 3. Bill of materials BGU7032 ... 6
Table 4. Bill of materials BGU7033 ... 6
Table 5. Bill of materials BGU7041 ... 7
Table 6. Bill of materials BGU7042 ... 7
Table 7. Bill of materials BGU7044 ... 8
Table 8. Bill of materials BGU7045 ... 8
Table 9. Overview resistor values for different bias currents in gain mode of different types 10
Table 10. Equipment list for P1dB, IM2, and IM3 measurements ... 10
Table 11. Equipment list for NF measurement 11
Table 12. Overview of IIP2 with f_1=200MHz, f_2=400MHz, f_\text{IM2}=600MHz; and P_{in} = -15dBm per tone for BGU703x and BGU704x in different modes 13
Table 13. Overview of IIP2 with f_1=97.25MHz, f_2=103.25MHz, f_\text{IM2}=200.50MHz; and P_{in} = -20dBm per tone for BGU703x and BGU704x in different modes 31
Table 14. Overview of IIP3 with f_1=1000MHz, f_2=1001MHz, f_\text{IM3}=1002MHz; P_{in} = -10dBm per tone for BGU703x and BGU704x in different modes ... 49
Table 15. Overview of IIP3 with f_1=900MHz, f_2=910MHz, f_\text{IM3}=920MHz; P_{in} = -20dBm per tone for BGU703x and BGU704x in different modes 66
8. Contents

1. Introduction .. 3
2. Application Circuit .. 4
3. Stability .. 9
4. RF Performance for Different Bias Currents including Default Current 10
 4.1 RF Test Setup .. 10
 4.1.1 IM2, and IM3 measurement setup 10
 4.1.2 NF measurement setup 11
 4.2 2nd Order Intermodulation (IM2) 12
 4.2.1 IM2 with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{im2}=600\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 13
 4.2.1.1 BGU7031: IM2 with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{im2}=600\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 13
 4.2.1.2 BGU7032: IM2 with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{im2}=600\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 15
 4.2.1.3 BGU7033: IM2 with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{im2}=600\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 18
 4.2.1.4 BGU7041: IM2 with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{im2}=600\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 23
 4.2.1.5 BGU7042: IM2 with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{im2}=600\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 24
 4.2.1.6 BGU7044: IM2 with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{im2}=600\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 27
 4.2.1.7 BGU7045: IM2 with $f_1=200\text{MHz}$, $f_2=400\text{MHz}$, $f_{im2}=600\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 28
 4.2.2 IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{im2}=200.50\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 31
 4.2.2.1 BGU7031: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{im2}=200.50\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 31
 4.2.2.2 BGU7032: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{im2}=200.50\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 31
 4.2.2.3 BGU7033: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{im2}=200.50\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 33
 4.2.2.4 BGU7041: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{im2}=200.50\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 35
 4.2.2.5 BGU7042: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{im2}=200.50\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 40
 4.2.2.6 BGU7044: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{im2}=200.50\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 41
 4.2.2.7 BGU7045: IM2 with $f_1=97.25\text{MHz}$, $f_2=103.25\text{MHz}$, $f_{im2}=200.50\text{MHz}$, P_n per tone swept from -20dBm to 5dBm 44

4.3 IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 49
 4.3.1 IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 49
 4.3.2 IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 51
 4.3.3 IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 53
 4.3.4 IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 58
 4.3.5 IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 59
 4.3.6 IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 62
 4.3.7 IM3 with $f_1=1000\text{MHz}$, $f_2=f_1\pm1\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 63
 4.3.8 IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 66
 4.3.9 IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 66
 4.3.10 IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 66
 4.3.11 IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$, $f_{im3}=2xf_2-f_1$ (worst case); P_n per tone swept from -20dBm to 5dBm 68

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2017. All rights reserved.

Application note

Rev. 2 — 20 March 2017

105 of 106
4.3.2.3 BGU7033: IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$,
$f_{\text{IM3}}=2xf_2-f_1$ (worst case); P_{n} per tone swept from -20dBm to 5dBm71

4.3.2.4 BGU7041: IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$,
$f_{\text{IM3}}=2xf_2-f_1$ (worst case); P_{n} per tone swept from -20dBm to 5dBm76

4.3.2.5 BGU7042: IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$,
$f_{\text{IM3}}=2xf_2-f_1$ (worst case); P_{n} per tone swept from -20dBm to 5dBm77

4.3.2.6 BGU7044: IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$,
$f_{\text{IM3}}=2xf_2-f_1$ (worst case); P_{n} per tone swept from -20dBm to 5dBm80

4.3.2.7 BGU7045: IM3 with $f_1=900\text{MHz}$, $f_2=910\text{MHz}$,
$f_{\text{IM3}}=2xf_2-f_1$ (worst case); P_{n} per tone swept from -20dBm to 5dBm81

4.4 CSO and CTB ...83
4.4.1 CSO and CTB in Bypass Mode of BGU703X and
BGU704X ...83
4.4.2 CSO in Gain Modes of BGU703X and BGU704X
...84
4.4.3 CTB in Gain Modes of BGU703X and BGU704X
...89

4.5 NF ...93
4.5.1 NF of BGU703X ..93
4.5.2 NF of BGU704X ..95

5. Legal information ...98
5.1 Definitions ...98
5.2 Disclaimers ...98
5.3 Licenses ..98
5.4 Patents ..98
5.5 Trademarks ...98

6. List of figures ...99

7. List of tables ..104

8. Contents ..105