AN11209 Set-Top Box LNAs BGU703X and BGU704X Rev. 2 – 20 March 2017

Application note

Document information

Info	Content
Keywords	Set-Top Box, STB, LNA, BGU703X, BGU704X
Abstract	This document provides circuit, layout, BOM, and performance information of Set-Top Box LNA BGU703X and BGU704X

AN11209

Set-Top Box LNAs BGU703X and BGU704X

Revision history

Rev	Date	Description
1	20121005	Initial document
2	20170320	Add stability improvement circuit

Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

AN11209

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2017. All rights reserved.

1. Introduction

In Set-Top Boxes (STBs) that use multiple or network-interfaced module (NIM) tuners, the RF signal usually needs to be distributed or split. Very often, a low noise amplifier (LNA) is used to compensate for signal loss when the signal is split with a balun core. In addition to that, due to its low noise, this LNA is used to improve the sensitivity of the tuner.

This STB LNA family of 5V and 3.3V wideband, low noise amplifiers is specifically designed for high linearity, low-noise performance for TV, DVR/PVR, set-top box tuner applications from 40 MHz to 1 GHz. They are used in discrete or Si CAN tuners, as well as on board tuners. Fig 1 shows the application diagram of an active splitter with passive loop-through. It shows that at the moment the power of the recording device (DVD-R, HDD-R, VCR, DVR) is on, the RF switch is open, so the RF signal travels via the recording device to the TV tuner. At the moment the power of the recording device is completely off, the RF switch closes and this ensures that the RF signal is looped through directly to the TV tuner. Built in NXPs own QUBiC4+ Si BiCMOS process these low noise amplifiers provide programmable gain (-2dB, 5dB and 10dB), have integrated biasing, 75 Ω matching (saving up to 15 external components compared to discrete solutions). These low noise amplifiers are very ESD robust (>2kV HBM and >1.5kV CDM) compared to GaAs solutions. Table 1 gives an overview of this STB LNA family.

In this document, the application diagram, board layout, bill of materials, and performance information are given.

Tabl	le 1.	Overview	product	types

Table I. Overvie	w product types		
Type Number	Supply voltage [V]	Number of modes	Description
BGU7031	5.0	1	Fixed Gain 10dB
BGU7032	5.0	2	Gain 10dB

Type Number	Supply voltage [V]	Number of modes	Description
			Bypass mode
BGU7033	5.0	3	Gain 10dB Gain 5dB Bypass mode
BGU7041	3.3	1	Fixed Gain 10dB
BGU7042	3.3	2	Gain 10dB Bypass mode
BGU7044	3.3	1	Fixed Gain 14dB
BGU7045	3.3	2	Gain 14dB Bypass mode

2. Application Circuit

A universal evaluation board is used to test the RF performance of the whole NXP STB LNA family BGU703X and BGU704X. For all the types, it needs the same input and output DC block capacitors, supply decoupling capacitors, and RF choke. The difference between the types is mainly the external resistor used to set an optimum biasing current, and depending on how many modes the type has, the resistor and decoupling capacitor are used for each control line (bypass and gain control). The resistor for the control line is used to protect the control pin of the STB LNA MMIC by limiting the current.

The circuit diagram of the universal evaluation board and the board itself are shown in Fig 2 and Fig 3 respectively. Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, and Table 8 show the bills of materials for BGU7031, BGU7032, BGU7033, BGU7041, BGU7042, BGU7044, and BGU7045 respectively.

Application note

AN11209

Application note

© NXP B.V. 2017. All rights reserved.

Table 2. Bill of materials BGU7031				
Component	Value	Туре	Remark	
C1	10 nF	C0805	DC blocking	
C2	10 nF	C0805	DC blocking	
C3	NC		Not connected	
C4	NC		Not connected	
C5	10 nF	C0603	RF decoupling	
C6	10 µF	C1206	RF decoupling	
L1	1.5 KΩ	L0603	RF Choke: Chip ferrite bead BLM18HE152SN1DF	
R1	43 Ω	R0603	Bias setting	
R2	NC		Not connected	
R3	NC		Not connected	
X1	75 Ω	F-connector	input	
X2	75 Ω	F-connector	output	

Table 3.Bill of materials BGU7032

Component	Value	Туре	Remark
C1	10 nF	C0805	DC blocking
C2	10 nF	C0805	DC blocking
C3	10 nF	C0603	RF decoupling
C4	NC		Not connected
C5	10 nF	C0603	RF decoupling
C6	10 µF	C1206	RF decoupling
L1	1.5 KΩ	L0603	RF Choke: Chip ferrite bead BLM18HE152SN1DF
R1	43 Ω	R0603	Bias setting
R2	1.8 KΩ	R0603	Current limiting
R3	NC		Not connected
X1	75 Ω	F-connector	input
X2	75 Ω	F-connector	output

Table 4. Bill of materials BGU7033

Component	Value	Туре	Remark
C1	10 nF	C0805	DC blocking
C2	10 nF	C0805	DC blocking
C3	10 nF	C0603	RF decoupling
C4	10 nF	C0603	RF decoupling
C5	10 nF	C0603	RF decoupling
C6	10 µF	C1206	RF decoupling
L1	1.5 KΩ	L0603	RF Choke: Chip ferrite bead BLM18HE152SN1DF

Component	Value	Туре	Remark
R1	43 Ω	R0603	Bias setting
R2	1.8 KΩ	R0603	Current limiting
R3	1.8 KΩ	R0603	Current limiting
X1	75Ω	F-connector	input
X2	75 Ω	F-connector	output

Table 5. Bill of materials BGU7041

Component	Value	Туре	Remark
C1	10 nF	C0805	DC blocking
C2	10 nF	C0805	DC blocking
C3	NC		Not connected
C4	NC		Not connected
C5	10 nF	C0603	RF decoupling
C6	10 µF	C1206	RF decoupling
L1	1.5 KΩ	L0603	RF Choke: Chip ferrite bead BLM18HE152SN1DF
R1	7.5 Ω	R0603	Bias setting
R2	NC		Not connected
R3	NC		Not connected
X1	75 Ω	F-connector	input
X2	75 Ω	F-connector	output

Table 6.Bill of materials BGU7042

Component	Value	Туре	Remark
C1	10 nF	C0805	DC blocking
C2	10 nF	C0805	DC blocking
C3	10 nF	C0603	RF decoupling
C4	NC		Not connected
C5	10 nF	C0603	RF decoupling
C6	10 µF	C1206	RF decoupling
L1	1.5 KΩ	L0603	RF Choke: Chip ferrite bead BLM18HE152SN1DF
R1	7.5 Ω	R0603	Bias setting
R2	1.8 KΩ	R0603	Current limiting
R3	NC		Not connected
X1	75 Ω	F-connector	input
X2	75 Ω	F-connector	output

Table 7. Bill	of materia	als BGU7044	
Component	Value	Туре	Remark
C1	10 nF	C0805	DC blocking
C2	10 nF	C0805	DC blocking
C3	NC		Not connected
C4	NC		Not connected
C5	10 nF	C0603	RF decoupling
C6	10 µF	C1206	RF decoupling
L1	1.5 KΩ	L0603	RF Choke: Chip ferrite bead BLM18HE152SN1DF
R1	18 Ω	R0603	Bias setting
R2	NC		Not connected
R3	NC		Not connected
X1	75 Ω	F-connector	input
X2	75 Ω	F-connector	output

Table 8.Bill of materials BGU7045

Component	Value	Туре	Remark
C1	10 nF	C0805	DC blocking
C2	10 nF	C0805	DC blocking
C3	10 nF	C0603	RF decoupling
C4	NC		Not connected
C5	10 nF	C0603	RF decoupling
C6	10 µF	C1206	RF decoupling
L1	1.5 KΩ	L0603	RF Choke: Chip ferrite bead BLM18HE152SN1DF
R1	18 Ω	R0603	Bias setting
R2	1.8 KΩ	R0603	Current limiting
R3	NC		Not connected
X1	75 Ω	F-connector	input
X2	75 Ω	F-connector	output

AN11209

3. Stability

In some capacitive load cases at RF input the BGU70xx LNA's tends to oscillate. To avoid oscillation additional components (see Fig 4.) should be placed at RF input.

The stability improvement circuit has no influence on the RF-parameter! Place the stability circuit closed to the LNA's input, keep distance to GND and remove the GND layers below the L2, C7 and R4 up to LNA input to avoid capacitive load at LNA's input.

4. RF Performance for Different Bias Currents including Default Current

Because there are trade-offs between bias current, linearity, and NF, in this chapter the RF performance of all STB LNA types is given for different bias currents, including the default current. The bias current is controlled by the bias resistor and Table 9 shows an overview of the resistor values for different bias currents in gain mode of different types.

Table 9. Overview resistor values for different bias currents in gain mode of different types

Туре	R _{bias} [Ω]								
	lcc≈35mA	lcc≈39mA	lcc≈43mA	lcc≈46mA					
BGU7031/2/3	N/A	N/A	43 (default)	39					
BGU7041/2	7.5 (default)	5.6	N/A	N/A					
BGU7044/5	18 (default)	N/A	10	N/A					

4.1 RF Test Setup

4.1.1 IM2, and IM3 measurement setup

Table 10. Equipment list for P1dB, IM2, and IM3 measurements

For the IM2, and IM3 measurements in this report, the equipment list in Table 10 has been used and Fig 5 shows the test setup diagram.

Manufacturer Type Instrument Rohde & Schwarz ZVA24 (1x) 4- Port Vector Network Analyzer 10MHz – 24GHz TTi QL355TP (2x) Dual DC Power Supply (1x) USB Powermeter Rohde & Schwarz NRP - Z21 (1x) Multimeter Keithley 2000 (1x) Power Combiner Agilent 11667B Macom TPX-75-4 (2x) Impedance Matching Transformer 75Ω/50Ω, Nconnectors 3x Cables from ZVA Rohde & Schwarz Test cables PC2.9/PC3.5 1x Cable to input Suhner Sucoflex104E, appr.50cm Suhner Sucoflex104PE, appr.20cm 1x Cable from output Additional connectors, cables Bomar, Suhner, Radiall n.a. and adapters as in drawing

AN11209

4.1.2 NF measurement setup

For the NF measurement in this report, the equipment list in Table 11 has been used and Fig 6 shows the test setup diagram.

Table 11. Equipment list for NF measurement

Description	Manufacturer	Number
Noise Figure Analyzer 10MHz – 1600MHz	Agilent	8970A
Noise source $15dB / N(m) / 50\Omega$	Agilent	346B
DC Power-supply	TTi	QL564P
Multimeter	Agilent	34401A
Impedance adapters 5.7dB Loss Pad (N-f) 50 Ω / (N-m) 75 Ω	Agilent	11852B
Connector adapters (N-f) 75Ω / (F-m) 75Ω	Bomar	

AN11209

4.2 2nd Order Intermodulation (IM2)

For IM2 measurement ZVA S-par. system calibration is not needed since it is a pure and relative power amplitude measurement. Thus only manual Power calibration is required. For this measurement, two tones are used separated by 200MHz or 6MHz, depending on the specification. Via a broadband power combiner and 50Ω to 75Ω impedance transformers the two tones with equal amplitude are fed into the DUT. The measurement has been done with f1=200MHz or f1=97.25MHz, depending on the specification, and an input power sweep from -20dBm to 5dBm per tone is applied. The pre-defined losses of the 50Ω to 75Ω impedance transformers etc. are compensated afterwards using output data processing. With Power calibration the reference plane is the SMA connector at the

 50Ω input cable just before the SMA to N adapter that is connected to the input transformer. For IM2, only f_1+f_2 product has been measured.

The IM2 measurement results for different bias currents of BGU703X (5.0V devices) and BGU704X (3.3V devices) are given in chapter 4.2.1 with f_1 =200MHz and tone spacing of 200MHz and chapter 4.2.2 with f_1 =97.25MHz and tone spacing of 6MHz.

4.2.1 IM2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz; P_{in} per tone swept from - 20dBm to 5dBm

Table 12 shows an overview of IIP2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz; and P_{in} =-15dBm per tone for BGU703x (5.0V devices) and BGU704x (3.3V devices) in different modes.

Table 12.Overview of IIP2 with f1=200MHz, f2=400MHz, f1M2=600MHz; and Pin =-15dBm per
tone for BGU703x and BGU704x in different modes

I	IIP2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz, Pin=-15dBm per tone														
Γ		Туре													
		IIP2	2	BGU7031 BGU7032		BGU7033			BGU7041	BGU7042		BGU7044	BGU7045		
				10dB Gain	10dB Gain	Bypass	10dB Gain	5dB Gain	Bypass	10dB Gain	10dB Gain	Bypass	14dB Gain	14dB Gain	Bypass
	ent	A]	35	N/A	N/A	N/A	N/A	N/A	N/A	2.95E+01	2.98E+01	3.45E+01	2.73E+01	2.68E+01	3.40E+01
	Ę -	<u> </u>	39	N/A	N/A	N/A	N/A	N/A	N/A	3.59E+01	3.93E+01	3.27E+01	N/A	N/A	N/A
	is c	ode ode	43	3.47E+01	3.10E+01	3.35E+01	3.84E+01	3.42E+01	3.46E+01	N/A	N/A	N/A	2.93E+01	3.00E+01	3.47E+01
1	olas in	Ē	46	3.35E+01	3.32E+01	3.41E+01	3.29E+01	3.23E+01	3.26E+01	N/A	N/A	N/A	N/A	N/A	N/A

4.2.1.1 BGU7031: IM2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz, P_{in} per tone swept from - 20dBm to 5dBm

Fig 7 to Fig 8 show 1st and 2nd order response of BGU7031 in 10dB gain mode with $f_1=200$ MHz, $f_2=400$ MHz, $f_{1M2}=600$ MHz; and P_{in} per tone swept from -20dBm to 5dBm.

AN11209

© NXP B.V. 2017. All rights reserved.

4.2.1.2 BGU7032: IM2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz; P_{in} per tone swept from - 20dBm to 5dBm

Fig 9 to Fig 12 show 1st and 2nd order response of BGU7032 in 10dB gain and bypass modes with f_1 =200MHz, f_2 =400MHz, f_{1M2} =600MHz; and P_{in} per tone swept from -20dBm to 5dBm.

AN11209

Application note

4.2.1.3 BGU7033: IM2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz; P_{in} per tone swept from - 20dBm to 5dBm

Fig 13 to Fig 18 show 1st and 2nd order response of BGU7033 in 10dB gain, 5dB gain, and bypass modes with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz; and P_{in} per tone swept from -20dBm to 5dBm.

AN11209

AN11209

4.2.1.4 BGU7041: IM2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz; P_{in} per tone swept from - 20dBm to 5dBm

Fig 19 to Fig 20 show 1st and 2nd order response of BGU7041 in 10dB gain mode with $f_1=200$ MHz, $f_2=400$ MHz, $f_{IM2}=600$ MHz; and P_{in} per tone swept from -20dBm to 5dBm.

4.2.1.5 BGU7042: IM2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz; P_{in} per tone swept from - 20dBm to 5dBm

Fig 21 to Fig 24 show 1st and 2nd order response of BGU7042 in 10dB gain and bypass modes with f_1 =200MHz, f_2 =400MHz, f_{1M2} =600MHz; and P_{in} per tone swept from -20dBm to 5dBm.

AN11209

AN11209

© NXP B.V. 2017. All rights reserved.

4.2.1.6 BGU7044: IM2 with f₁=200MHz, f₂=400MHz, f_{IM2}=600MHz; P_{in} per tone swept from - 20dBm to 5dBm

Fig 25 to Fig 26 show 1st and 2nd order response of BGU7044 in 14dB gain mode with $f_1=200$ MHz, $f_2=400$ MHz, $f_{IM2}=600$ MHz; and P_{in} per tone swept from -20dBm to 5dBm.

AN11209

4.2.1.7 BGU7045: IM2 with f₁=200MHz, f₂=400MHz, f_{IM2}=600MHz; P_{in} per tone swept from - 20dBm to 5dBm

Fig 27 to Fig 30 show 1st and 2nd order response of BGU7044 in 14dB gain and bypass modes with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz; and P_{in} per tone swept from -20dBm to 5dBm.

AN11209

© NXP B.V. 2017. All rights reserved.

AN11209

© NXP B.V. 2017. All rights reserved.

4.2.2 IM2 with f_1 =97.25MHz, f_2 =103.25MHz, f_{IM2} =200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Table 13 shows an overview of IIP2 with $f_1=97.25$ MHz, $f_2=103.25$ MHz, $f_{IM2}=200.50$ MHz; and $P_{in} = -20$ dBm per tone for BGU703x (5.0V devices) and BGU704x (3.3V devices) in different modes.

Table 13.Overview of IIP2 with f1=97.25MHz, f2=103.25MHz, f1M2=200.50MHz; and Pin = -20dBm per tone for BGU703x and BGU704x in different modes

Ш	IIP2 with f_1 =97.25MHz, f_2 =103.25MHz, f_{IM2} =200.50MHz, Pin=-20dBm per tone														
	Туре														
IIP2 BGU7031 BGU7032 BGU7033 BGU7041 B							BGU	17042 BGU7044		BGU	7045				
				10dB Gain	10dB Gain	Bypass	10dB Gain	5dB Gain	Bypass	10dB Gain	10dB Gain	Bypass	14dB Gain	14dB Gain	Bypass
ť		A]	35	N/A	N/A	N/A	N/A	N/A	N/A	3.48E+01	3.35E+01	4.47E+01	2.92E+01	2.91E+01	4.56E+01
curre	ain	<u></u>	39	N/A	N/A	N/A	N/A	N/A	N/A	3.54E+01	3.43E+01	4.89E+01	N/A	N/A	N/A
		ode	43	4.44E+01	3.53E+01	4.54E+01	3.51E+01	4.51E+01	4.86E+01	N/A	N/A	N/A	3.24E+01	3.24E+01	4.55E+01
bias		É	46	4.52E+01	3.58E+01	4.77E+01	3.65E+01	4.53E+01	4.83E+01	N/A	N/A	N/A	N/A	N/A	N/A

4.2.2.1 BGU7031: IM2 with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 31 to Fig 32 show 1st and 2nd order response of BGU7031 in 10dB gain mode with $f_1=97.25$ MHz, $f_2=103.25$ MHz, $f_{IM2}=200.50$ MHz; P_{in} per tone swept from -20dBm to 5dBm.

AN11209

Application note

4.2.2.2 BGU7032: IM2 with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 33 to Fig 36 show 1^{st} and 2^{nd} order response of BGU7032 in 10dB gain and bypass modes with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from - 20dBm to 5dBm.

AN11209

4.2.2.3 BGU7033: IM2 with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 37 to Fig 42 show 1st and 2nd order response of BGU7033 in 10dB gain, 5dB gain, and bypass modes with f_1 =97.25MHz, f_2 =103.25MHz, f_{IM2} =200.50MHz; P_{in} per tone swept from -20dBm to 5dBm.

AN11209

Application note

© NXP B.V. 2017. All rights reserved.

AN11209

4.2.2.4 BGU7041: IM2 with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 43 to Fig 44 show 1st and 2nd order response of BGU7041 in 10dB gain mode with $f_1=97.25$ MHz, $f_2=103.25$ MHz, $f_{IM2}=200.50$ MHz; P_{in} per tone swept from -20dBm to 5dBm.

AN11209

4.2.2.5 BGU7042: IM2 with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 45 to Fig 48 show 1^{st} and 2^{nd} order response of BGU7042 in 10dB gain and bypass modes with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from - 20dBm to 5dBm.

AN11209

4.2.2.6 BGU7044: IM2 with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 49 to Fig 50 show 1st and 2nd order response of BGU7044 in 14dB gain mode with f_1 =97.25MHz, f_2 =103.25MHz, f_{IM2} =200.50MHz; P_{in} per tone swept from -20dBm to 5dBm.

AN11209

4.2.2.7 BGU7045: IM2 with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from -20dBm to 5dBm

Fig 51 to Fig 54 show 1^{st} and 2^{nd} order response of BGU7045 in 14dB gain and bypass modes with f₁=97.25MHz, f₂=103.25MHz, f_{IM2}=200.50MHz; P_{in} per tone swept from - 20dBm to 5dBm.

AN11209

Application note

© NXP B.V. 2017. All rights reserved.

AN11209

4.3 3rd Order Intermodulation (IM3)

For IM3 measurement ZVA S-par. system calibration is not needed since it is a pure and relative power amplitude measurement. Thus only manual Power calibration is required. For this measurement, two tones are used separated by 1MHz or 10MHz, depending on the specification. Via a broadband power combiner and 50Ω to 75Ω impedance transformers the two tones with equal amplitude are fed into the DUT. The measurement has been done with f₁=1000MHz or f₁=900MHz, depending on the specification, and an input power sweep from -20dBm to 5dBm per tone is applied. The pre-defined losses of the 50Ω to 75Ω impedance transformers etc. are compensated afterwards using output data processing. With Power calibration the reference plane is the SMA connector at the 50Ω input cable just before the SMA to N adapter that is connected to the input transformer. Both IM3 products will be measured at the frequencies $2xf_1-f_2$ and $2xf_2-f_1$ Because both frequencies give similar results at these settings only frequency $2xf_2-f_1$ is used.

The IM3 measurement results for different bias currents of BGU703X (5.0V devices) and BGU704X (3.3V devices) are given in chapter 4.3.1 with f_1 =1000MHz and tone spacing of 1MHz and chapter 4.3.2 with f_1 =900MHz and tone spacing of 10MHz.

4.3.1 IM3 with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Table 14 shows an overview of IIP3 with f_1 =1000MHz, f_2 =1001MHz, f_{IM3} =1002MHz; P_{in} = -10dBm per tone for BGU703x (5.0V devices) and BGU704x (3.3V devices) in different modes.

Table 14. Overview of IIP3 with f_1 =1000MHz, f_2 =1001MHz, f_{IM3} =1002MHz; P_{in} = -10dBm per tone for BGU703x and BGU704x in different modes

II	IIP3 with f_1 =1000MHz, f_2 =1001MHz, f_{IM3} =1002MHz, Pin=-10dBm per tone															
Г				Туре												
	1	IIP3		BGU7031	BGU	7032		BGU7033		BGU7041	BGU7042		BGU7044	BGU7045		
				10dB Gain	10dB Gain	Bypass	10dB Gain	5dB Gain	Bypass	10dB Gain	10dB Gain	Bypass	14dB Gain	14dB Gain	Bypass	
bias current	in gain	mode [mA]	35	N/A	N/A	N/A	N/A	N/A	N/A	2.03E+01	1.98E+01	3.06E+01	1.54E+01	1.55E+01	3.01E+01	
			39	N/A	N/A	N/A	N/A	N/A	N/A	2.01E+01	2.01E+01	3.01E+01	N/A	N/A	N/A	
			43	2.05E+01	2.08E+01	4.02E+01	2.14E+01	2.41E+01	3.05E+01	N/A	N/A	N/A	1.76E+01	1.76E+01	2.98E+01	
			46	2.08E+01	2.08E+01	2.95E+01	2.13E+01	2.33E+01	3.70E+01	N/A	N/A	N/A	N/A	N/A	N/A	

4.3.1.1 BGU7031: IM3 with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 55 to Fig 56 show 1st and 3rd order response of BGU7031 in 10dB gain mode with f_1 =1000MHz, f_2 = f_1 ±1MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm.

4.3.1.2 BGU7032: IM3 with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 57 to Fig 60 show 1st and 3rd order response of BGU7032 in 10dB gain and bypass modes with f_1 =1000MHz, f_2 = f_1 ±1MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from - 20dBm to 5dBm.

AN11209

AN11209

© NXP B.V. 2017. All rights reserved.

AN11209

4.3.1.3 BGU7033: IM3 with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 61 to Fig 66 show 1^{st} and 3^{rd} order response of BGU7033 in 10dB gain, 5dB gain, and bypass modes with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

AN11209

Application note

© NXP B.V. 2017. All rights reserved.

AN11209

AN11209

AN11209

© NXP B.V. 2017. All rights reserved.

4.3.1.4 BGU7041: IM3 with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 67 to Fig 68 show 1st and 3rd order response of BGU7041 in 10dB gain mode with f_1 =1000MHz, f_2 = f_1 ±1MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm.

AN11209

4.3.1.5 BGU7042: IM3 with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 69 to Fig 72 show 1st and 3rd order response of BGU7042 in 10dB gain and bypass modes with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from - 20dBm to 5dBm.

AN11209

4.3.1.6 BGU7044: IM3 with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 73 to Fig 74 show 1st and 3rd order response of BGU7044 in 14dB gain mode with f_1 =1000MHz, f_2 = f_1 ±1MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm.

AN11209

4.3.1.7 BGU7045: IM3 with f₁=1000MHz, f₂=f₁±1MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 75 to Fig 78 show 1st and 3rd order response of BGU7045 in 14dB gain and bypass mode with f_1 =1000MHz, f_2 = f_1 ±1MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from - 20dBm to 5dBm.

AN11209

© NXP B.V. 2017. All rights reserved.

AN11209

AN11209

4.3.2 IM3 with f₁=900MHz, f₂=910MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Table 15 shows an overview of IIP3 with f₁=900MHz, f₂=910MHz, f_{IM3}=920MHz; P_{in} =-20dBm per tone for BGU703x (5.0V devices) and BGU704x (3.3V devices) in different modes.

Table 15. Overview of IIP3 with f1=900MHz, f2=910MHz, f1M3=920MHz; Pin =-20dBm per tone for BGU703x and BGU704x in different modes

I	IIP3 with f_1 =900MHz, f_2 =910MHz, f_{IM3} =920MHz, Pin=-20dBm per tone															
Г	IIP3			Туре												
L				BGU7031	BGU7032		BGU7033			BGU7041	BGU7042		BGU7044	BGU7045		
				10dB Gain	10dB Gain	Bypass	10dB Gain	5dB Gain	Bypass	10dB Gain	10dB Gain	Bypass	14dB Gain	14dB Gain	Bypass	
bias current	in gain	ωo	35	N/A	N/A	N/A	N/A	N/A	N/A	2.43E+01	2.49E+01	2.07E+01	1.97E+01	2.02E+01	2.22E+01	
			39	N/A	N/A	N/A	N/A	N/A	N/A	2.27E+01	2.52E+01	2.14E+01	N/A	N/A	N/A	
			43	2.57E+01	2.43E+01	2.29E+01	2.39E+01	2.43E+01	2.34E+01	N/A	N/A	N/A	2.25E+01	2.26E+01	2.27E+01	
			46	2.56E+01	2.49E+01	1.96E+01	2.47E+01	2.52E+01	1.95E+01	N/A	N/A	N/A	N/A	N/A	N/A	

4.3.2.1 BGU7031: IM3 with f₁=900MHz, f₂=910MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 79 to Fig 80 show 1^{st} and 3^{rd} order response of BGU7031 in 10dB gain mode with f₁=900MHz, f₂=910MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm.

4.3.2.2 BGU7032: IM3 with f₁=900MHz, f₂=910MHz, f_{1M3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 81 to Fig 84 show 1st and 3rd order response of BGU7032 in 10dB gain and bypass modes with f_1 =900MHz, f_2 =910MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from - 20dBm to 5dBm.

4.3.2.3 BGU7033: IM3 with f₁=900MHz, f₂=910MHz, f_{1M3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 85 to Fig 90 show 1st and 3rd order response of BGU7033 in 10dB gain, 5dB gain, and bypass modes with f_1 =900MHz, f_2 =910MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm.

AN11209

AN11209

AN11209

4.3.2.4 BGU7041: IM3 with f₁=900MHz, f₂=910MHz, f_{1M3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 91 to Fig 92 show 1st and 3rd order response of BGU7041 in 10dB gain mode with f_1 =900MHz, f_2 =910MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm.

AN11209

4.3.2.5 BGU7042: IM3 with f₁=900MHz, f₂=910MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 93 to Fig 96 show 1st and 3rd order response of BGU7042 in 10dB gain and bypass modes with f_1 =900MHz, f_2 =910MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from - 20dBm to 5dBm.

AN11209

Pin (dBm)

Fig 96. IM3 of BGU7042 in Bypass mode with Icc=3mA; R_{bias}=7.5Ω; f₁=900MHz,

f₂=910MHz, f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

(1) 1st order(2) 3rd order

(3) 1st order extrapolation
(4) 3rd order extrapolation

4.3.2.6 BGU7044: IM3 with f₁=900MHz, f₂=910MHz, f_{1M3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 97 to Fig 98 show 1st and 3rd order response of BGU7044 in 14dB gain mode with f_1 =900MHz, f_2 =910MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from -20dBm to 5dBm.

4.3.2.7 BGU7045: IM3 with f₁=900MHz, f₂=910MHz, f_{1M3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm

Fig 99 to Fig 102 show 1st and 3rd order response of BGU7045 in 14dB gain and bypass modes with f_1 =900MHz, f_2 =910MHz, f_{IM3} =2x f_2 - f_1 (worst case); P_{in} per tone swept from - 20dBm to 5dBm.

AN11209

Application note

© NXP B.V. 2017. All rights reserved.

AN11209

4.4 CSO and CTB

Composite Second Order beat (CSO) and Composite Triple Beat (CTB) have been measured with 131 NTSC channels, and Vout=25dBmV for bypass mode and Vin=15dBmV for gain modes.

4.4.1 CSO and CTB in Bypass Mode of BGU703X and BGU704X

Fig 103 and Fig 104 show the CSO and CTB respectively of BGU7032, BGU7033, BGU7042 and BGU7045 in bypass mode.

AN11209

4.4.2 CSO in Gain Modes of BGU703X and BGU704X

Fig 105 to Fig 108 show the CSO of BGU7031, BGU7032, and BGU7033 in different gain modes and with different bias currents. Fig 109 to Fig 112 show the CSO of

BGU7041, BGU7042, BGU7044, and BGU7045 in different gain modes and with different bias currents.

AN11209

© NXP B.V. 2017. All rights reserved.

AN11209

Application note

© NXP B.V. 2017. All rights reserved.

4.4.3 CTB in Gain Modes of BGU703X and BGU704X

Fig 113 to Fig 116 show the CTB of BGU7031, BGU7032, and BGU7033 in different gain modes and with different bias currents. Fig 117 to Fig 120 show the CTB of BGU7041, BGU7042, BGU7044, and BGU7045 in different gain modes and with different bias currents.

AN11209

AN11209

Application note

© NXP B.V. 2017. All rights reserved.

4.5 NF

The NF measurement results for different bias currents of BGU703X and BGU704X are given in chapter 4.5.1 and chapter 4.5.2 respectively.

4.5.1 NF of BGU703X

Fig 121, Fig 122, and Fig 123 show the NF of BGU7031, BGU7032, and BGU7033 respectively in different modes and with different bias currents.

AN11209

AN11209 Application note

AN11209

4.5.2 NF of BGU704X

Fig 124 to Fig 127 show the NF of BGU7041, BGU7042, BGU7044, and BGU7045 respectively in different modes and with different bias currents.

AN11209

5. Legal information

5.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

5.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the

customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

5.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

5.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

<Patent ID> -- owned by <Company name>

5.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

<Name> — is a trademark of NXP B.V.

6. List of figures

Fig 1.	Application diagram of an active splitter with passive loop-through
Fig 2.	Circuit diagram of universal evaluation board for STB LNAs BGU703X and BGU704X5
Fig 3.	Universal evaluation board for STB LNAs BGU703X and BGU704X5
Fig 4.	Stability improvement on STB LNAs BGU703X and BGU704X9
Fig 5.	Test setup diagram for IM2, and IM3 measurements11
Fig 6.	Test setup diagram for NF measurement12
Fig 7.	IM2 of BGU7031 in 10dB gain mode with Icc=46mA (R_{bias} =39 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 8.	IM2 of BGU7031 in 10dB gain mode with Icc=43mA (R_{bias} =43 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 9.	IM2 of BGU7032 in 10dB gain mode with Icc=46mA (R_{bias} =39 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 10.	IM2 of BGU7032 in Bypass mode with Icc=4mA; R _{bias} =39 Ω ; f ₁ =200MHz, f ₂ =400MHz, f _{IM2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 11.	IM2 of BGU7032 in 10dB gain mode with Icc=43mA (R_{bias} =43 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 12.	IM2 of BGU7032 in Bypass mode with Icc=4mA; R _{bias} =43 Ω ; f ₁ =200MHz, f ₂ =400MHz, f ₁ =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 13.	IM2 of BGU7033 in 10dB gain mode with Icc=46mA (R_{bias} =39 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 14.	IM2 of BGU7033 in 5dB gain mode with Icc=46mA (R_{bias} =39 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 15.	IM2 of BGU7033 in Bypass mode with Icc=4mA; R _{bias} =39 Ω ; f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 16.	IM2 of BGU7033 in 10dB gain mode with Icc=43mA (R_{bias} =43 Ω); f ₁ =200MHz, f ₂ =400MHz,

	f _{IM2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm21
Fig 17.	IM2 of BGU7033 in 5dB gain mode with Icc=43mA (R_{bias} =43 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 18.	IM2 of BGU7033 in Bypass mode with Icc=4mA; R _{bias} =43 Ω ; f ₁ =200MHz, f ₂ =400MHz, f ₁ M2=600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 19.	IM2 of BGU7041 in 10dB gain mode with Icc=39mA (R_{bias} =5.6 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 20.	IM2 of BGU7041 in 10dB gain mode with Icc=35mA (R _{bias} =7.5 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 21.	IM2 of BGU7042 in 10dB gain mode with Icc=39mA (R_{bias} =5.6 Ω); f1=200MHz, f2=400MHz, f1M2=600MHz; Pin per tone swept from -20dBm to 5dBm
Fig 22.	IM2 of BGU7042 in Bypass mode with Icc=3mA; R _{bias} =5.6 Ω ; f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 23.	IM2 of BGU7042 in 10dB gain mode with Icc=35mA (R_{bias} =7.5 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 24.	IM2 of BGU7042 in Bypass mode with Icc=3mA; R _{bias} =7.5 Ω ; f ₁ =200MHz, f ₂ =400MHz, f _{IM2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 25.	IM2 of BGU7044 in 14dB gain mode with Icc=43mA (R_{bias} =10 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 26.	IM2 of BGU7044 in 14dB gain mode with Icc=35mA (R_{bias} =18 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 27.	IM2 of BGU7045 in 14dB gain mode with Icc=43mA (R_{bias} =10 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 28.	IM2 of BGU7045 in Bypass mode with Icc=3mA; R _{bias} =10 Ω ; f ₁ =200MHz, f ₂ =400MHz,

	f _{IM2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm29
Fig 29.	IM2 of BGU7045 in 14dB gain mode with Icc=35mA (R_{bias} =18 Ω); f ₁ =200MHz, f ₂ =400MHz, f _{1M2} =600MHz; P _{in} per tone swept from -20dBm to
	5dBm
Fig 30.	IM2 of BGU7045 in Bypass mode with Icc=3mA; R_{bias} =18 Ω ; f ₁ =200MHz, f ₂ =400MHz,
	f _{IM2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 31.	IM2 of BGU7031 in 10dB gain mode with
	Icc=46mA (R _{bias} =39Ω); f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
	swept from -20dBm to 5dBm32
Fig 32.	IM2 of BGU7031 in 10dB gain mode with Icc=43mA (R_{bias} =43 Ω); f ₁ =97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -20dBm to 5dBm32
Fig 33.	IM2 of BGU7032 in 10dB gain mode with Icc=46mA (R_{bias} =39 Ω); f ₁ =97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 34.	IM2 of BGU7032 in Bypass mode with Icc=4mA;
0	R _{bias} =39Ω; f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -
	20dBm to 5dBm
Fig 35.	IM2 of BGU7032 in 10dB gain mode with Icc=43mA (R_{bias} =43 Ω); f ₁ =97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -20dBm to 5dBm34
Fig 36.	IM2 of BGU7032 in Bypass mode with Icc=4mA;
	R _{bias} =43Ω; f ₁ =97.25MHz, f ₂ =103.25MHz,
	f _{IM2} =200.50MHz; P _{in} per tone swept from - 20dBm to 5dBm35
Fig 37.	IM2 of BGU7033 in 10dB gain mode with
	Icc=46mA (R _{bias} =39Ω); f ₁ =97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 38.	IM2 of BGU7033 in 5dB gain mode with
	Icc=46mA (R_{bias} =39 Ω); f ₁ =97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -20dBm to 5dBm
Fig 39.	IM2 of BGU7033 in Bypass mode with Icc=4mA;
	R _{bias} =39Ω; f ₁ =97.25MHz, f ₂ =103.25MHz,
	f _{IM2} =200.50MHz; P _{in} per tone swept from - 20dBm to 5dBm37
Fig 40.	IM2 of BGU7033 in 10dB gain mode with 1200 ± 1200 if 1200 ± 1200
	Icc=43mA (R _{bias} =43Ω); f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
	swept from -20dBm to 5dBm
Fig 41.	IM2 of BGU7033 in 5dB gain mode with Icc=43mA (R_{bias} =43 Ω); f1=97.25MHz,

	$f_2\mbox{=}103.25\mbox{MHz},\ f_{\mbox{IM2}}\mbox{=}200.50\mbox{MHz};\ P_{\mbox{in}}\ per\ tone$ swept from -20dBm to 5dBm39
Fig 42.	IM2 of BGU7033 in Bypass mode with Icc=4mA; R _{bias} =43 Ω ; f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -
	20dBm to 5dBm
Fig 43.	IM2 of BGU7041 in 10dB gain mode with Icc=39mA (R_{bias} =5.6 Ω); f1=97.25MHz, f2=103.25MHz, fIM2=200.50MHz; Pin per tone
Fig 44.	swept from -20dBm to 5dBm40 IM2 of BGU7041 in 10dB gain mode with
5	Icc=35mA (R _{bias} =7.5Ω); f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -20dBm to 5dBm41
Fig 45.	IM2 of BGU7042 in 10dB gain mode with Icc=39mA (R_{bias} =5.6 Ω); f1=97.25MHz, f2=103.25MHz, f1M2=200.50MHz; Pin per tone
Fig. 40	swept from -20dBm to 5dBm42
Fig 46.	IM2 of BGU7042 in Bypass mode with Icc=3mA; R _{bias} =5.6 Ω ; f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -
Fig 47.	20dBm to 5dBm
Fig 47.	IM2 of BGU7042 in 10dB gain mode with Icc=35mA (R_{bias} =7.5 Ω); f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -20dBm to 5dBm43
Fig 48.	IM2 of BGU7042 in Bypass mode with Icc=3mA; R _{bias} =7.5 Ω ; f ₁ =97.25MHz, f ₂ =103.25MHz,
	f _{IM2} =200.50MHz; P _{in} per tone swept from - 20dBm to 5dBm43
Fig 49.	IM2 of BGU7044 in 14dB gain mode with Icc=43mA (R_{bias} =10 Ω); f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
	swept from -20dBm to 5dBm44
Fig 50.	IM2 of BGU7044 in 14dB gain mode with Icc=35mA (R _{bias} =18Ω); f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
	swept from -20dBm to 5dBm45
Fig 51.	IM2 of BGU7045 in 14dB gain mode with Icc=43mA (R _{bias} =10Ω); f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
	swept from -20dBm to 5dBm
Fig 52.	IM2 of BGU7045 in Bypass mode with Icc=3mA; R_{bias} =10 Ω ; f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -
	20dBm to 5dBm
Fig 53.	IM2 of BGU7045 in 14dB gain mode with Icc=35mA (R _{bias} =18Ω); f ₁ =97.25MHz, f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
	swept from -20dBm to 5dBm47
Fig 54.	IM2 of BGU7045 in Bypass mode with Icc=3mA; R_{bias} =18 Ω ; f ₁ =97.25MHz, f ₂ =103.25MHz,

Fig 55.	$\label{eq:main_state} \begin{array}{l} f_{IM2} = 200.50 MHz; \ P_{in} \ per \ tone \ swept \ from \ - \\ 20dBm \ to \ 5dBm \ \ 48 \\ IM3 \ of \ BGU7031 \ in \ 10dB \ gain \ mode \ with \\ Icc = 46mA \ (R_{bias} = 39\Omega); \ f_1 = 1000 MHz, \end{array}$
Fig 56.	$f_2=f_1\pm 1$ MHz, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm50 IM3 of BGU7031 in 10dB gain mode with Icc=43mA ($R_{bias}=43\Omega$); $f_1=1000$ MHz, $f_2=f_1\pm 1$ MHz, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per
Fig 57.	tone swept from -20dBm to 5dBm
Fig 58.	tone swept from -20dBm to 5dBm
Fig 59.	IM3 of BGU7032 in 10dB gain mode with Icc=43mA (R_{bias} =43 Ω); f ₁ =1000MHz, f ₂ =f ₁ ±1MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm
Fig 60.	IM3 of BGU7032 in Bypass mode with Icc=4mA; R _{bias} =43 Ω ; f ₁ =1000MHz, f ₂ =f ₁ ±1MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to
Fig 61.	5dBm
Fig 62.	tone swept from -20dBm to 5dBm
Fig 63.	tone swept from -20dBm to 5dBm
Fig 64.	5dBm
Fig 65.	IM3 of BGU7033 in 5dB gain mode with Icc=43mA (R _{bias} =43Ω); f ₁ =1000MHz, f ₂ =f ₁ ±1MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per
Fig 66.	tone swept from -20dBm to 5dBm
Fig 67.	5dBm

Fig 68.	$f_2=f_1\pm1MHz$, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm
Fig 69.	$\label{eq:f2=f1+1} \begin{array}{l} f_{1}=f_{1}\pm1 \\ MHz, \ f_{1M3}=2xf_{2}-f_{1} \ (worst \ case); \ P_{in} \ per \\ tone \ swept \ from \ -20 \\ dBm \ to \ 5 \\ dBm \$
Fig 70.	$f_2=f_1\pm 1$ MHz, $f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -20dBm to 5dBm60 IM3 of BGU7042 in Bypass mode with Icc=3mA; $R_{bias}=5.6\Omega$; $f_1=1000$ MHz, $f_2=f_1\pm 1$ MHz, $f_{IM3}=2xf_2$ -
Fig 71.	f1 (worst case); Pin per tone swept from -20dBm to 5dBm60 IM3 of BGU7042 in 10dB gain mode with
Fig 72	Icc=35mA (R_{bias} =7.5 Ω); f ₁ =1000MHz, f ₂ =f ₁ ±1MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm61
Fig 72.	IM3 of BGU7042 in Bypass mode with Icc=3mA; R _{bias} =7.5 Ω ; f ₁ =1000MHz, f ₂ =f ₁ ±1MHz, f _{IM3} =2xf ₂ - f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm
Fig 73.	IM3 of BGU7044 in 14dB gain mode with Icc=43mA (R_{bias} =10 Ω); f1=1000MHz, f2=f1±1MHz, f1M3=2xf2-f1 (worst case); Pin per table quart from 204Bm to 5dBm (2)
Fig 74.	tone swept from -20dBm to 5dBm62 IM3 of BGU7044 in 14dB gain mode with Icc=35mA (R_{bias} =18 Ω); f ₁ =1000MHz, f ₂ =f ₁ ±1MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per
Fig 75.	tone swept from -20dBm to 5dBm63 IM3 of BGU7045 in 14dB gain mode with Icc=43mA (R_{bias} =10 Ω); f ₁ =1000MHz, f ₂ =f ₁ ±1MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per
Fig 76.	tone swept from -20dBm to 5dBm64 IM3 of BGU7045 in Bypass mode with Icc=3mA; R_{bias} =10 Ω ; f ₁ =1000MHz, f ₂ =f ₁ ±1MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to
Fig 77.	5dBm
Fig 78.	tone swept from -20dBm to 5dBm65 IM3 of BGU7045 in Bypass mode with Icc=3mA; R_{bias} =18 Ω ; f ₁ =1000MHz, f ₂ =f ₁ ±1MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to
Fig 79.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Fig 80.	-20dBm to 5dBm67 IM3 of BGU7031 in 10dB gain mode with Icc=43mA (R _{bias} =43Ω); f ₁ =900MHz, f ₂ =910MHz,

f_{IM3}=2xf₂-f₁ (worst case); P_{in} per tone swept from -20dBm to 5dBm67

Fig 81.	IM3 of BGU7032 in 10dB gain mode with Icc=46mA (R_{bias} =39 Ω); f1=900MHz, f2=910MHz, f1M3=2xf2-f1 (worst case); Pin per tone swept from -20dBm to 5dBm
Fig 82.	IM3 of BGU7032 in Bypass mode with Icc=4mA; R _{bias} =39 Ω ; f ₁ =900MHz, f ₂ =910MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm
Fig 83.	IM3 of BGU7032 in 10dB gain mode with Icc=43mA (R_{bias} =43 Ω); f1=900MHz, f2=910MHz, f1M3=2xf2-f1 (worst case); Pin per tone swept from -20dBm to 5dBm70
Fig 84.	IM3 of BGU7032 in Bypass mode with Icc=4mA; R _{bias} =43 Ω ; f ₁ =900MHz, f ₂ =910MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm70
Fig 85.	IM3 of BGU7033 in 10dB gain mode with Icc=46mA (R_{bias} =39 Ω); f1=900MHz, f2=910MHz, f1M3=2xf2-f1 (worst case); Pin per tone swept from -20dBm to 5dBm71
Fig 86.	IM3 of BGU7033 in 5dB gain mode with Icc=46mA (R_{bias} =39 Ω); f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm72
Fig 87.	IM3 of BGU7033 in Bypass mode with Icc=4mA; R _{bias} =39 Ω ; f ₁ =900MHz, f ₂ =910MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm73
Fig 88.	IM3 of BGU7033 in 10dB gain mode with Icc=43mA (R_{bias} =43 Ω); f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm74
Fig 89.	IM3 of BGU7033 in 5dB gain mode with Icc=43mA (R_{bias} =43 Ω); f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm75
Fig 90.	IM3 of BGU7033 in Bypass mode with Icc=4mA; R _{bias} =43 Ω ; f ₁ =900MHz, f ₂ =910MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm
Fig 91.	IM3 of BGU7041 in 10dB gain mode with Icc=39mA (R_{bias} =5.6 Ω); f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm
Fig 92.	IM3 of BGU7041 in 10dB gain mode with Icc=35mA (R_{bias} =7.5 Ω); f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm77
Fig 93.	IM3 of BGU7042 in 10dB gain mode with Icc=39mA (R_{bias} =5.6 Ω); f ₁ =900MHz, f ₂ =910MHz,

	$\label{eq:fim3} \begin{array}{l} f_{IM3} = 2xf_2 \mbox{-} f_1 \mbox{ (worst case); } P_{in} \mbox{ per tone swept from} \\ -20dBm \mbox{ to 5dBm} $
Fig 94.	IM3 of BGU7042 in Bypass mode with Icc=3mA; R _{bias} = 5.6Ω ; f ₁ =900MHz, f ₂ =910MHz, f _{IM3} = $2xf_2-f_1$ (worst case); P _{in} per tone swept from -20dBm to 5dBm78
Fig 95.	IM3 of BGU7042 in 10dB gain mode with Icc=35mA (R_{bias} =7.5 Ω); f1=900MHz, f2=910MHz, fM3=2xf2-f1 (worst case); Pin per tone swept from -20dBm to 5dBm
Fig 96.	IM3 of BGU7042 in Bypass mode with Icc=3mA; R _{bias} = 7.5Ω ; f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm
Fig 97.	IM3 of BGU7044 in 14dB gain mode with Icc=43mA (R_{bias} =10 Ω); f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm80
Fig 98.	IM3 of BGU7044 in 14dB gain mode with Icc=35mA (R_{bias} =18 Ω); f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm80
Fig 99.	IM3 of BGU7045 in 14dB gain mode with Icc=43mA (R_{bias} =10 Ω); f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm81
Fig 100.	IM3 of BGU7045 in Bypass mode with Icc=3mA; R_{bias} =10 Ω ; f ₁ =900MHz, f ₂ =910MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm82
Fig 101.	IM3 of BGU7045 in 14dB gain mode with Icc=35mA (R_{bias} =18 Ω); f ₁ =900MHz, f ₂ =910MHz, f _{1M3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm82
Fig 102.	IM3 of BGU7045 in Bypass mode with Icc=3mA; R_{bias} =18 Ω ; f ₁ =900MHz, f ₂ =910MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from -20dBm to 5dBm83
Fig 103.	CSO of BGU703X and BGU704X in bypass mode
Fig 104.	CTB of BGU703X and BGU704X in bypass mode
Fig 105.	CSO of BGU7031 in 10dB gain mode and different bias currents
Fig 106.	CSO of BGU7032 in 10dB gain mode and different bias currents85
Fig 107.	CSO of BGU7033 in 10dB gain mode and different bias currents
Fig 108.	CSO of BGU7033 in 5dB gain mode and different bias currents
Fig 109.	CSO of BGU7041 in 10dB gain mode and different bias currents

Fig 110.	CSO of BGU7042 in 10dB gain mode and different bias currents87	
Fig 111.	CSO of BGU7044 in 14dB gain mode and different bias currents88	
Fig 112.	CSO of BGU7045 in 14dB gain mode and different bias currents88	
Fig 113.	CTB of BGU7031 in 10dB gain mode and different bias currents89	
Fig 114.	CTB of BGU7032 in 10dB gain mode and different bias currents90	
Fig 115.	CTB of BGU7033 in 10dB gain mode and different bias currents90	
Fig 116.	CTB of BGU7033 in 5dB gain mode and different bias currents91	
Fig 117.	CTB of BGU7041 in 10dB gain mode and different bias currents91	
Fig 118.	CTB of BGU7042 in 10dB gain mode and different bias currents92	
Fig 119.	CTB of BGU7044 in 14dB gain mode and different bias currents92	
Fig 120.	CTB of BGU7045 in 14dB gain mode and different bias currents93	
Fig 121.	NF of BGU7031 in 10dB gain mode and different bias currents94	
Fig 122.	NF of BGU7032 in 10dB gain mode and different bias currents94	
Fig 123.	NF of BGU7033 in 10dB and 5dB gain mode and different bias currents95	
Fig 124.	NF of BGU7041 in 10dB gain mode and different bias currents95	
Fig 125.	NF of BGU7042 in 10dB gain mode and different bias currents96	
Fig 126.	NF of BGU7044 in 14dB gain mode and different bias currents96	
Fig 127.	NF of BGU7045 in 14dB gain mode and different bias currents	

7. List of tables

Table 1.	Overview product types3
Table 2.	Bill of materials BGU70316
Table 3.	Bill of materials BGU70326
Table 4.	Bill of materials BGU70336
Table 5.	Bill of materials BGU70417
Table 6.	Bill of materials BGU70427
Table 7.	Bill of materials BGU70448
Table 8.	Bill of materials BGU70458
Table 9.	Overview resistor values for different bias currents in gain mode of different types10
Table 10.	Equipment list for P1dB, IM2, and IM3 measurements
Table 11.	Equipment list for NF measurement11
Table 12.	Overview of IIP2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz; and P_{in} =-15dBm per tone for BGU703x and BGU704x in different modes13
Table 13.	Overview of IIP2 with $f_1=97.25MHz$, $f_2=103.25MHz$, $f_{IM2}=200.50MHz$; and $P_{in}=-200Bm$ per tone for BGU703x and BGU704x in different modes
Table 14.	Overview of IIP3 with f_1 =1000MHz, f_2 =1001MHz, f_{IM3} =1002MHz; P_{in} = -10dBm per tone for BGU703x and BGU704x in different modes
Table 15.	Overview of IIP3 with f_1 =900MHz, f_2 =910MHz, f_{IM3} =920MHz; P_{in} =-20dBm per tone for BGU703x and BGU704x in different modes66

8. Contents

1.	Introduction3
2.	Application Circuit4
3.	Stability9
4.	RF Performance for Different Bias Currents
	including Default Current10
4.1	RF Test Setup10
4.1.1	IM2, and IM3 measurement setup10
4.1.2	NF measurement setup11
4.2	2 nd Order Intermodulation (IM2)12
4.2.1	IM2 with f_1 =200MHz, f_2 =400MHz, f_{IM2} =600MHz;
	P _{in} per tone swept from -20dBm to 5dBm13
4.2.1.1	BGU7031: IM2 with f ₁ =200MHz, f ₂ =400MHz,
	f _{IM2} =600MHz; P _{in} per tone swept from -20dBm to
	5dBm
4.2.1.2	BGU7032: IM2 with f ₁ =200MHz, f ₂ =400MHz,
	f _{IM2} =600MHz; P _{in} per tone swept from -20dBm to 5dBm15
4.2.1.3	BGU7033: IM2 with f ₁ =200MHz, f ₂ =400MHz,
4.2.1.0	f_{IM2} =600MHz; P_{in} per tone swept from -20dBm to
	5dBm
4.2.1.4	BGU7041: IM2 with f ₁ =200MHz, f ₂ =400MHz,
	f_{IM2} =600MHz; P _{in} per tone swept from -20dBm to
	5dBm
4.2.1.5	BGU7042: IM2 with f1=200MHz, f2=400MHz,
	f _{IM2} =600MHz; Pin per tone swept from -20dBm to
	5dBm24
4.2.1.6	BGU7044: IM2 with f1=200MHz, f2=400MHz,
	fIM2=600MHz; Pin per tone swept from -20dBm to
	5dBm27
4.2.1.7	BGU7045: IM2 with f1=200MHz, f2=400MHz,
	f_{IM2} =600MHz; P_{in} per tone swept from -20dBm to
	5dBm
4.2.2	IM2 with f ₁ =97.25MHz, f ₂ =103.25MHz,
	f_{iM2} =200.50MHz; P_{in} per tone swept from -20dBm
4004	to 5dBm
4.2.2.1	BGU7031: IM2 with f1=97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
4222	swept from -20dBm to 5dBm
4.2.2.2	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
	swept from -20dBm to 5dBm
4.2.2.3	BGU7033: IM2 with f ₁ =97.25MHz,
7.2.2.0	$f_2=103.25MHz$, $f_{IM2}=200.50MHz$; P_{in} per tone
	swept from -20dBm to 5dBm

4.2.2.4	BGU7041: IM2 with f1=97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
	swept from -20dBm to 5dBm40
4.2.2.5	BGU7042: IM2 with f1=97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
	swept from -20dBm to 5dBm41
4.2.2.6	BGU7044: IM2 with f1=97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone
4007	swept from -20dBm to 5dBm
4.2.2.7	BGU7045: IM2 with f1=97.25MHz,
	f ₂ =103.25MHz, f _{IM2} =200.50MHz; P _{in} per tone swept from -20dBm to 5dBm45
4.3	3 rd Order Intermodulation (IM3)48
4.3 4.3.1	IM3 with $f_1=1000$ MHz, $f_2=f_1\pm1$ MHz, $f_{IM3}=2xf_2-f_1$
4.5.1	(worst case); P_{in} per tone swept from -20dBm to
	5dBm
4.3.1.1	BGU7031: IM3 with $f_1=1000$ MHz, $f_2=f_1\pm1$ MHz,
	$f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from
	-20dBm to 5dBm
4.3.1.2	BGU7032: IM3 with $f_1=1000$ MHz, $f_2=f_1\pm1$ MHz,
	$f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from
	-20dBm to 5dBm51
4.3.1.3	BGU7033: IM3 with f1=1000MHz, f2=f1±1MHz,
	f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from
	-20dBm to 5dBm53
4.3.1.4	BGU7041: IM3 with f_1 =1000MHz, f_2 = f_1 ±1MHz,
	$f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from
	-20dBm to 5dBm58
4.3.1.5	BGU7042: IM3 with $f_1=1000MHz$, $f_2=f_1\pm1MHz$,
	fIM3=2xf2-f1 (worst case); Pin per tone swept from
4040	-20dBm to 5dBm
4.3.1.6	BGU7044: IM3 with f_1 =1000MHz, f_2 = f_1 ±1MHz,
	f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from
4047	-20dBm to 5dBm
4.3.1.7	BGU7045: IM3 with $f_1=1000$ MHz, $f_2=f_1\pm1$ MHz,
	$f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from
4.3.2	-20dBm to 5dBm63 IM3 with f1=900MHz, f2=910MHz, f1M3=2xf2-f1
4.3.2	(worst case); P_{in} per tone swept from -20dBm to
	5dBm
4.3.2.1	BGU7031: IM3 with f ₁ =900MHz, f ₂ =910MHz,
7.5.2.1	$f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -
	20dBm to 5dBm
4.3.2.2	BGU7032: IM3 with f ₁ =900MHz, f ₂ =910MHz,
	$f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -
	20dBm to 5dBm

4.3.2.3	BGU7033: IM3 with f ₁ =900MHz, f ₂ =910MHz, f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from - 20dBm to 5dBm71
4.3.2.4	BGU7041: IM3 with f1=900MHz, f2=910MHz,
	$f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -
	20dBm to 5dBm
4.3.2.5	BGU7042: IM3 with f1=900MHz, f2=910MHz,
	f _{IM3} =2xf ₂ -f ₁ (worst case); P _{in} per tone swept from - 20dBm to 5dBm77
4326	BGU7044: IM3 with f_1 =900MHz, f_2 =910MHz,
4.0.2.0	$f_{IM3}=2xf_2-f_1$ (worst case); P_{in} per tone swept from -
	20dBm to 5dBm
4.3.2.7	BGU7045: IM3 with f ₁ =900MHz, f ₂ =910MHz,
	fIM3=2xf2-f1 (worst case); Pin per tone swept from -
	20dBm to 5dBm81
4.4	CSO and CTB83
4.4.1	CSO and CTB in Bypass Mode of BGU703X and
	BGU704X83
4.4.2	CSO in Gain Modes of BGU703X and BGU704X
4.4.3	CTB In Gain Modes of BGU703X and BGU704X
4.5	NF
4.5.1	NF of BGU703X
4.5.2	NF of BGU704X95
5.	Legal information98
5.1	Definitions
5.2	Disclaimers
5.3	Licenses
5.4	Patents
5.5	Trademarks98
6.	List of figures99
7.	List of tables104
8.	Contents105

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP B.V. 2017.

All rights reserved.

For more information, visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: 20 March 2017 Document identifier: AN11209