
 
 
 
 
 
 
 

 

    AN11210 
Using SGPIO to emulate an SPI master interface 
Rev. 1 — 1 June 2012 Application note 

     

Document information 
Info Content 
Keywords SGPIO, SPI , Master, emulation 

Abstract This application note describes an example of SPI master interface 
emulation using SGPIO 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 2 of 18 

Contact information 
For more information, please visit: http://www.nxp.com 
For sales office addresses, please send an email to: salesaddresses@nxp.com 

Revision history 
Rev Date Description 
1 20120601 First release 

 

http://www.nxp.com/�
mailto:salesaddresses@nxp.com�


 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 3 of 18 

1. Introduction 
SGPIO (serial general purpose I/O) is a unique peripheral which can be used to emulate 
communication protocols using either serial or parallel transmission lines. 

The whole peripheral concept is constructed on top of a set of building blocks called 
“slices”. 

A slice is essentially a 32-bit wide shift register, which is used to hold the data to be 
received or transmitted. There are 16 slices within one SGPIO block. 

Slices can be used separately (even in self-loop) or concatenated together when 
handling data bit streams longer than 32. 

Additionally, each slice has several clock options to choose from (external pin, local slice 
counter, or internal slice). 

The user also has additional control over the capture (shift) clock signal, which can be 
“qualified” (gated) by either the level of another slice output, or by an external pin. 

Moreover, slices can also be configured to function as an “output enable” signal for other 
slices, which might be used in case a specific connection line needs to be bidirectional or 
shared with more than one external device (so that the associated SGPIO pin is not 
constantly being driven, but can be tri-stated). 

Slices can also be programmed to raise an interrupt when the amount of programmed 
bits has been transmitted, when a bit has been captured in input, or when a certain bit 
pattern has been received. There are also internal connections available to other on chip 
blocks (timers, adc, sct, dma). 

The information above is just a quick overview of the block’s capabilities, for more details 
the user manual is the most complete source of information. 

The important thing to realize while studying the SGPIO peripheral is that there are 
restrictions in terms of possible configuration options, since there are several levels of 
multiplexing at the input of a slice, at the output of a slice, and within a slice itself. 

In other words, the user has to be aware that not all SGPIO pins will be available to 
realize a specific configuration, so in the process of choosing a specific slice for 
performing a function, the user has to cross check the peripheral configuration for 
feasibility. 

This application note will show how to implement an SPI emulation block by defining the 
system level requirements and applying them to the SGPIO configuration. 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 4 of 18 

2. System level requirements 
An SPI interface is essentially a full duplex serial communication line, which is a point to 
point connection between two devices. 

One of the devices has the master role, and drives the interface by sending data to the 
slave. The other device has a slave role, and responds to the master activities by 
providing data to the master. 

The physical level interface is made of the following signals: 
• Chip select (also called slave select): active low signal defines when a transaction is 

in progress, driven by the master of the interface 
• Clock: provided by the master of the interface 
• MOSI (master output / slave input): data line driven by the master of the interface 
• MISO (master input / slave output): data line driven by the slave of the interface 

 

 

Fig 1. SPI Interface 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 5 of 18 

There is no official standard on SPI, however, all existing implementations in industry 
consistently specify two configuration parameters which define the behavior of the clock 
signal and the shifting / sampling operations. 

The first parameter is often referenced as “clock phase” (or CPHA), and specifies two 
different transmission formats. 

The second parameter is the clock polarity, which determines the level of the clock line 
between transmissions (idle high or active low). 

A general purpose SPI interface needs to support all four combinations of these two 
parameters. 

 

 

Fig 2. CPOL = 0, CHPA = 0 transmission format 

 

 

 

Fig 3. CPOL = 0, CPHA = 1 transmission format 

 

Looking at Fig 2 and Fig 3, the CPHA parameter determines essentially the data 
sampling convention.  

• When CPHA = 0, the first edge of the clock signal is used for sampling the data  

• When CPHA = 1, the second edge of the clock signal is used to sample the data  

In both figures above, the clock polarity is low, which means the clock signal stays at 
level low when idle.  

When CPOL = 1, the clock is active high, but the sampling convention stays the same. 
The only difference is that the first edge of the clock signal is a falling edge. 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 6 of 18 

CPHA = 1 is a format which is sometimes required by certain slave devices which use 
the first clock edge to load the new data item within its shift register. 

In terms of timings, most SPI interfaces typically require a setup time (an idle time) of half 
SPI clock period between the falling edge of the slave select signal and the first edge of 
the SPI clock. Similarly, a hold time of half SPI clock is required between the last SPI 
clock edge and the rising edge of the slave select signal (when a transaction is 
complete). 

The amount of bits being transmitted within each SPI frame is typically limited, so that the 
slave select returns to high state (is de-asserted) after one transmitted data item (one 
item being typically up to 16 or 32 bits).  

For performance reasons, some devices (like SPI flash memories) can support a 
transmission format not requiring the slave select to return idle between each word being 
transmitted. The master device de-asserts the slave select signal at the beginning of the 
transmission, and keeps clocking the interface transferring several consecutive data bits 
(multiple words) per transaction. The slave keeps providing data on the bus (in case of 
memories this data is related to an address location which is auto-incremented) as long 
as the master generates the clock, until the slave select signal is de-asserted again. 

This mode is not directly supported by this SPI emulation configuration. However, it can 
be simulated by using a GPIO line to generate the slave select. This has to be set low at 
the beginning of a multi-item transaction, and driven high again after the desired number 
of data items has been exchanged on the bus. 

 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 7 of 18 

3. Implementation details 

3.1 Peripheral configuration 
This SPI emulation example implementation is able to support: 

• Data size per transfer of 4,8,10,12,14,16, 18, 20, 22, 24, 26, 28, 30 or 32 bits 

• All of the CPHA and CPOL transmission formats  

• Configurable SPI clock frequency  

• Up to two emulated independent SPI interfaces 

The parameter of the configuration can be specified in a structure or type SpiParam. 

This structure is a parameter of the SGPIO_spiOpen function call which is used to 
configure the emulated interface. 

The slices used for the SPI emulation are configured to work in a start / stop fashion, so 
the emulated SPI transmits only one item at the time.  

A transmission can be started by calling the function SGPIO_spiWrite(). 

After transmitting the required amount of bits (one data word), the chip select returns 
high and all the slices stop automatically.  

The slice used to generate the chip select signal is configured to trigger an interrupt to 
the CPU, which is used to determine when one data item has been transmitted (and 
received).  

Until then, the SPI interface is considered busy, and the application queries the status by 
calling the function isSpiReady(). When true, the data transmission is complete. The 
memory location defined while calling SGPIO_spiWrite() holds the received data word.  

At this point, the application can issue another write command, which program the next 
item to be transmitted, and restart the transmission. 

More details on the available APIs are described in section 7. 

The assignment of the slices related to the data transmit and receive is done by the user 
within the file sgpio_spi.c, in the structures defined within the “user slice assignment 
section”. 

In case of changes, the pin multiplexing for the SGPIO pins on the LPC4300 needs to be 
adapted as well. The assignment is done within the function SGPIO_spiOpen in 
sgpio_spi.c module. 

USB_0_IND1 green led on the board shall blink during a successful loopback test. 

  



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 8 of 18 

4. Hardware configuration 
This example has been tested on a Keil MCB4300 board, using a Ulink2 debug probe. 

No specific modifications to the board are required. 

Since the interface is tested in loopback mode, the MOSI output needs to be connected 
externally to the MISO input via an external wire. 

All required SGPIO pins can be found on the MCB4300 prototype connectors.  

4.1 Slave select 
For generating the slave select signal, two approaches are possible: 
• Using a GPIO signal 
• Using a slice to output a pattern to generate the slave select 

The first method is the most simple, although it is difficult to guarantee a precise timing 
relationship between the chip select and the clock.  

Unless a hardware-based timer delay is used, the time between the toggling of the slave 
select line and the start of the transmission of the clock and the data by the SGPIO will 
not be synchronized.  

The overhead and complexity of introducing a sufficiently long delay to ensure the chip 
select setup and hold times are respected might not be negligible when performing 
individual transfers. 

Because of this, the implementation uses a simple bit pattern to generate the slave select 
signal. 

The bit pattern consists of a logic level 1, followed by a number of zeros equal to the 
number of transmitted data bits, followed by a final logic one.  

This implies that to support 32 bit transfers, a total of 34 bits needs to be used, which is 
only possible by concatenating two slices together. The second slice will be used only 
internally, and will not be provided as a physical output. 

Additionally, since the pattern being used has a size which is not a multiple or an integer 
divisor of 32 bit, it will need to be reloaded after each transmission. 

4.2 Clock 
The clock signal can be generated by shifting out a simple pattern based on repeating 
sequences of zeros and ones. The slices can be configured in self loop mode, meaning 
the bit being shifted out for the least significant bit (bit 0) is looped back-in on the most 
significant bit (bit 31).  

To generate an active low or active high clock, the patterns 0x55555555 and 
0xAAAAAAAA are used.  

To avoid the shadow register and the data register being swapped after the amount of 
clock pulses being transmitted, the slice is configured in match mode. Although the bit 
pattern recognition feature is not used, this prevents the two registers from being 
swapped when the bit count (the POS counter) reaches zero. 

This slice can be configured at the beginning and does not need to be reloaded again at 
runtime, since it is connected in self loop. 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 9 of 18 

4.3 Data transmission 
For transmitting the data, one dedicated slice is chosen among those being left over from 
the rest of the configuration. 

The same slice cannot be used simultaneously for receiving data, since the capture clock 
and the shift clock for the slice are related to the same edge, whereas in the SPI protocol 
the data is shifted out on the opposite clock edge of a data capture. 

The slice is configured to use the clock signal generated with the slice mentioned in 
section 4.2

4.4 Data reception 

, provided via an external pin. 

For transmitting the data, one dedicated slice is chosen among those remaining from the 
rest of the configuration. 

The same slice cannot be used simultaneously for sending data, since the capture clock 
and the shift clock for the slice are related to the same edge, whereas in the SPI protocol 
the data is shifted out on the opposite clock edge of a data capture. 

The SPI interface allows receiving data while a transmission is in progress (full-duplex). 
In order to receive an item, something needs to be transmitted (it can be also a dummy 
word, but this is application dependant). The SGPIO_spiWrite() function call allows the 
application to pass a pointer to a memory location where the received data item will be 
stored. 

4.5 CHPA = 1 support 
 
In CHPA mode 1 the LSB on the MOSI line should be valid (shifted out) on the first clock 
edge.  
 
However, in the SGPIO peripheral, the LSB bit of the slice is immediately applied to the 
output when the data register is written, before the first edge.  
 
This implies that by default at the first edge the second LSB would be already shifted.  
 
For this reason, it is necessary to gate (qualify) the clock signal by making sure that the 
first clock edge is ignored by the slice, so that the second LSB gets shifted out only on 
the third edge as required (see Fig 3).  
 
The idea is to re-use the chip select slice (slice A) to act as a clock qualifier for the 
transmitting and receiving slice. In this way it is possible to introduce an offset within the 
slice shift clock, so that it is possible to skip the first edge which on the SGPIO master 
side needs to be ignored 
  



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 10 of 18 

5. Resource allocation 
Table 1 shows the allocation of resources of the SGPIO peripheral in relation to the 
MCB4300 board. 

Table 1. Allocation of SGPIO resources on the MCB4300 board 
Device port SGPIO output pin Function Slice 
P9_0 SGPIO_0 Slave select 0 A 

 SGPIO_1 Internal - Slave select 0 I 

P2_3 SGPIO_12 Clock 0 D 

P9_2 SGPIO_2 MOSI 0 E 

P7_2 SGPIO_6 MISO 0 F 

 SGPIO_14 Internal - Slave select 1 H 

P4_10 SGPIO_15 Slave select 1 P 

PC_14 SGPIO_13 Clock 1 O 

PF_9 SGPIO_3 MOSI 1 J 

PF_6 SGPIO_5 MISO 1 K 

 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 11 of 18 

Table 2 shows the list of used and available slices and input / output pins from the slice 
perspective: 

Table 2. SGPIO IP resources usage example (1 bit mode) 
SGPIO input pin Input Slice Output SGPIO output pin 
SGPIO_0  A MASTER SS 0 SGPIO_0 

SGPIO_8 SLAVE 0 SS B  SGPIO_8 

SGPIO_4  C  SGPIO_4 

SGPIO_12  D MASTER CLK 0 SGPIO_12 

SGPIO_2  E MASTER 0 MOSI  SGPIO_2 

SGPIO_6 MASTER 0 MISO F  SGPIO_6 

SGPIO_10 SLAVE 1 SS G  SGPIO_10 

SGPIO_14  H MASTER SS 1 Internal SGPIO_14 

SGPIO_1  I MASTER SS 0 Internal SGPIO_1 

SGPIO_3  J MASTER 1 MOSI SGPIO_3 

SGPIO_5 MASTER 1 MISO K  SGPIO_5 

SGPIO_7  L  SGPIO_7 

SGPIO_9 SLAVE 0 CLK M  SGPIO_9 

SGPIO_11 SLAVE 1 CLK N  SGPIO_11 

SGPIO_13  O MASTER CLK 1 SGPIO_13 

SGPIO_15  P MASTER SS 1 SGPIO_15 

 

The rows marked in green and orange relate to slices that are reserved for the 
configuration of two SPI master interfaces.  

Any of the free slices might be picked and assigned to transmit or receive data.  

Note: within the peripheral, SGPIO8, SGPIO9, SGPIO10, SGPIO11 are pins capable of 
inputting a signal to be used as a clock or qualifier; these should preferably not be used 
to input / output data, in order to leave this option free if needed. 

For example, the rows marked in blue could be used to implement the Slave Select and 
Clock signal for an SPI slave interface. 

 

 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 12 of 18 

The following table shows the example allocation of resources in relation to the internal 
slice chaining, to highlight the implication of the slice selection vs. the slice concatenation 
options. 

Table 3. SGPIO IP resources from slice chaining perspective (1 bit mode) 
SGPIO slice Function SGPIO slice Function 
A MASTER0 SS B SLAVE0 SS 

I MASTER0_SS M SLAVE0 CLK 

E MASTER0 MOSI G SLAVE1 SS 

J MASTER1 MOSI N SLAVE1 CLK 

C  D MASTER0 CLK 

K MASTER1 MISO O MASTER1 CLK 

F MASTER0 MISO H MASTER1 SS 

L  P MASTER1 SS 

The items in yellow will need to be reserved to the SPI master zero interface, whereas 
the ones in green are reserved to the SPI master one interface. 

As previously mentioned, four SGPIO pins can be used to input an external clock to the 
slices, or as a clock qualifier signal.  

Each implemented slave interface would require one of those SGPIO pins to be used as 
a clock source, and one to input the slave select signal (used as a clock qualifier for the 
input clock). 

This implies there can be a maximum of two slave interfaces emulated on one SGPIO 
block (the pins which will need to be reserved for the slave interface are highlighted in 
blue). 

Any other unreserved slice can be assigned to the master or slave interfaces in order to 
receive and transmit data. 

 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 13 of 18 

6. Project configuration 
The default setting for the SPI emulation interface assumes an SGPIO clock of 12 MHz 
(note: this is related to the SGPIO IP internal clock, not the emulated SPI clock). 

This is defined within the sgpio.h header file. The user has to modify this definition and 
recompile the code in case SGPIO gets clocked by a faster or slower clock source. 

Configuration of slices A, I, D & O, H, P shall not be modified by the user. 

By default slices E, F and J, K are used for master 0 and master 1 data transmission / 
reception. This might be assigned differently by the user. 

The assignment of the slices related to the data transmit and receive is done by the user 
within the file sgpio_spi.c, in the structures defined within the “user slice assignment 
section”. 

In case of changes, the pin multiplexing for the SGPIO pins on the LPC4300 needs to be 
adapted as well. The assignment is done within the function SGPIO_spiOpen in 
sgpio_spi.c module. 

USB_0_IND1 green led on the board shall blink during a successful loopback test. 

7. API interface 
The following is the list of available functions to control the emulated SPI 

Table 4. SGPIO emulation API list 
Function Return type Parameter list 
SGPIO_spiInit void Void 

SGPIO_spiOpen void spiNum_t spiId,  spiParam const *config 

SGPIO_spiWrite void spiNum_t spiId, uint32_t data, uint32_t* 
dataRead 

SGPIO_spiClose void spiNum_t spiId 

isSpiReady bool spiNum_t spiId 

SGPIO_spiEmuCheckErrors spiEmuStatus void 

7.1 SGPIO_spiInit 
This function initializes the SGPIO peripheral, resets the block and zeros out all 
associated software control variables. 

7.2 SGPIO_spiOpen 
This function opens one emulated SPI interface for communication. 

The parameters are the number of the SPI interface (SPI_EMU_0 or SPI_EMU_1) and a 
pointer to a structure of type spiParam which defines the interface characteristics. 

 

typedef struct SpiParam { 

 mode_t   spiMode;    

 wordSize_t  wordLength;    

 clockPhase_t  clockPhase;   



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 14 of 18 

 clockPolarity_t clockPolarity;  

 bitRate_t  bitRateHz;   

 CsPattern  chipSelect; 

 

} SpiParam; 

 

The parameters are the following: 

• spiMode: can be set to MASTER or SLAVE (only master supported at the 
moment) 

• wordLength: can be configured from DBIT_4 to DBIT_32, see sgpio_spi.h 

• clockPhase: CPHA_0 or CPHA_1 

• clockPolarity: IDLE_LOW or IDLE_HIGH 

• chipSelect: always set this to the macro CHIP_SELECT_PATTERN(N) where N 
is the wordLength defined above 

7.3 SGPIO_spiClose 
Used to close one of the interfaces, and reset the register to the values. 

The required parameter is the SPI identifier, SPI_EMU_0 or SPI_EMU_1 

7.4 SGPIO_spiWrite 
This function is called to write a data item to the SPI interface.  

The parameters specify: 

• the SPI identifier (SPI_EMU_0 or SPI_EMU_1) 

• the data item to be written 

• the pointer to the location where the data being read is going to be stored. 

This function returns immediately and is not blocking. 

7.4.1 isSpiReady 
This function can be used to query the emulated peripheral, to check if a transaction has 
been performed.  

The parameter is the SPI identifier (SPI_EMU_0 or SPI_EMU_1), and returns the value 
TRUE or FALSE. 

The return value will be set true when an ongoing transaction is terminated, and the 
emulated SPI is ready to initiate a new transmission  

7.4.2 SGPIO_spiEmuCheckErrors 
This function can be used during development to check if there are any configuration 
errors in terms of parameters.  

Any error will set a global variable of type spiEmuStatus, which can be retrieved with this 
function. 

For a static configuration, this function can be removed from a production system. 



 

 

 

 

  
property 
nam

e. 

 
 

Error! U
nknow

n docum
ent property nam

e. 
Error! U

nknow
n docum

ent property  

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 15 of 18 

8. Legal information

8.1 Definitions 
Draft — The document is a draft version only. The content is still under 
internal review and subject to formal approval, which may result in 
modifications or additions. NXP Semiconductors does not give any 
representations or warranties as to the accuracy or completeness of 
information included herein and shall have no liability for the consequences 
of use of such information. 

8.2 Disclaimers 
Limited warranty and liability — Information in this document is believed to 
be accurate and reliable. However, NXP Semiconductors does not give any 
representations or warranties, expressed or implied, as to the accuracy or 
completeness of such information and shall have no liability for the 
consequences of use of such information. NXP Semiconductors takes no 
responsibility for the content in this document if provided by an information 
source outside of NXP Semiconductors. 

In no event shall NXP Semiconductors be liable for any indirect, incidental, 
punitive, special or consequential damages (including - without limitation - 
lost profits, lost savings, business interruption, costs related to the removal 
or replacement of any products or rework charges) whether or not such 
damages are based on tort (including negligence), warranty, breach of 
contract or any other legal theory.  

Notwithstanding any damages that customer might incur for any reason 
whatsoever, NXP Semiconductors’ aggregate and cumulative liability 
towards customer for the products described herein shall be limited in 
accordance with the Terms and conditions of commercial sale of NXP 
Semiconductors. 

Right to make changes — NXP Semiconductors reserves the right to make 
changes to information published in this document, including without 
limitation specifications and product descriptions, at any time and without 
notice. This document supersedes and replaces all information supplied prior 
to the publication hereof. 

Suitability for use — NXP Semiconductors products are not designed, 
authorized or warranted to be suitable for use in life support, life-critical or 
safety-critical systems or equipment, nor in applications where failure or 
malfunction of an NXP Semiconductors product can reasonably be expected 
to result in personal injury, death or severe property or environmental 
damage. NXP Semiconductors and its suppliers accept no liability for 
inclusion and/or use of NXP Semiconductors products in such equipment or 
applications and therefore such inclusion and/or use is at the customer’s 
own risk. 

Applications — Applications that are described herein for any of these 
products are for illustrative purposes only. NXP Semiconductors makes no 
representation or warranty that such applications will be suitable for the 
specified use without further testing or modification.  

Customers are responsible for the design and operation of their applications 
and products using NXP Semiconductors products, and NXP 

Semiconductors accepts no liability for any assistance with applications or 
customer product design. It is customer’s sole responsibility to determine 
whether the NXP Semiconductors product is suitable and fit for the 
customer’s applications and products planned, as well as for the planned 
application and use of customer’s third party customer(s). Customers should 
provide appropriate design and operating safeguards to minimize the risks 
associated with their applications and products.  

NXP Semiconductors does not accept any liability related to any default, 
damage, costs or problem which is based on any weakness or default in the 
customer’s applications or products, or the application or use by customer’s 
third party customer(s). Customer is responsible for doing all necessary 
testing for the customer’s applications and products using NXP 
Semiconductors products in order to avoid a default of the applications and 
the products or of the application or use by customer’s third party 
customer(s). NXP does not accept any liability in this respect. 

Export control — This document as well as the item(s) described herein 
may be subject to export control regulations. Export might require a prior 
authorization from competent authorities. 

Evaluation products — This product is provided on an “as is” and “with all 
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates 
and their suppliers expressly disclaim all warranties, whether express, 
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire 
risk as to the quality, or arising out of the use or performance, of this product 
remains with customer. 

In no event shall NXP Semiconductors, its affiliates or their suppliers be 
liable to customer for any special, indirect, consequential, punitive or 
incidental damages (including without limitation damages for loss of 
business, business interruption, loss of use, loss of data or information, and 
the like) arising out the use of or inability to use the product, whether or not 
based on tort (including negligence), strict liability, breach of contract, breach 
of warranty or any other theory, even if advised of the possibility of such 
damages.  

Notwithstanding any damages that customer might incur for any reason 
whatsoever (including without limitation, all damages referenced above and 
all direct or general damages), the entire liability of NXP Semiconductors, its 
affiliates and their suppliers and customer’s exclusive remedy for all of the 
foregoing shall be limited to actual damages incurred by customer based on 
reasonable reliance up to the greater of the amount actually paid by 
customer for the product or five dollars (US$5.00). The foregoing limitations, 
exclusions and disclaimers shall apply to the maximum extent permitted by 
applicable law, even if any remedy fails of its essential purpose. 

8.3 Trademarks 
Notice: All referenced brands, product names, service names and 
trademarks are property of their respective owners. 

 

 



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 16 of 18 

9. List of figures

Fig 1. SPI Interface   ..................................................... 4
Fig 2. CPOL = 0, CHPA = 0 transmission format   ........ 5
Fig 3. CPOL = 0, CPHA = 1 transmission format   ........ 5



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

AN11210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved. 

Application note Rev. 1 — 1 June 2012 17 of 18 

10. List of tables

Table 1. Allocation of SGPIO resources on the MCB4300 
board   ............................................................... 10

Table 2. SGPIO IP resources usage example (1 bit 
mode)   .............................................................. 11

Table 3. SGPIO IP resources from slice chaining 
perspective (1 bit mode)   ................................. 12

Table 4. SGPIO emulation API list   ................................ 13



 

 

NXP Semiconductors AN11210 
 SGPIO SPI master emulation 

  Please be aware that important notices concerning this document and the product(s) 
described herein, have been included in the section 'Legal information'. 

   

  

© NXP B.V. 2012.  All rights reserved. 

For more information, visit: http://www.nxp.com 
For sales office addresses, please send an email to: salesaddresses@nxp.com 

Date of release: 1 June 2012 
Document identifier: AN11210 

11. Contents

1. Introduction ......................................................... 3 
2. System level requirements ................................. 4 
3. Implementation details ....................................... 7 
3.1 Peripheral configuration ..................................... 7 
4. Hardware configuration ...................................... 8 
4.1 Slave select ........................................................ 8 
4.2 Clock .................................................................. 8 
4.3 Data transmission .............................................. 9 
4.4 Data reception .................................................... 9 
4.5 CHPA = 1 support .............................................. 9 
5. Resource allocation .......................................... 10 
6. Project configuration ........................................ 13 
7. API interface ...................................................... 13 
7.1 SGPIO_spiInit .................................................. 13 
7.2 SGPIO_spiOpen .............................................. 13 
7.3 SGPIO_spiClose .............................................. 14 
7.4 SGPIO_spiWrite ............................................... 14 
7.4.1 isSpiReady ....................................................... 14 
7.4.2 SGPIO_spiEmuCheckErrors ............................ 14 
8. Legal information .............................................. 15 
8.1 Definitions ........................................................ 15 
8.2 Disclaimers....................................................... 15 
8.3 Trademarks ...................................................... 15 
9. List of figures ..................................................... 16 
10. List of tables ...................................................... 17 
11. Contents ............................................................. 18 
 


	1. Introduction
	2. System level requirements
	3. Implementation details
	3.1 Peripheral configuration

	4. Hardware configuration
	4.1 Slave select
	4.2 Clock
	4.3 Data transmission
	4.4 Data reception
	4.5 CHPA = 1 support

	5. Resource allocation
	6. Project configuration
	7. API interface
	7.1 SGPIO_spiInit
	7.2 SGPIO_spiOpen
	7.3 SGPIO_spiClose
	7.4 SGPIO_spiWrite
	7.4.1 isSpiReady
	7.4.2 SGPIO_spiEmuCheckErrors


	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Trademarks

	9. List of figures
	10. List of tables
	11. Contents

