

 AN11342
How to Scale Down the NXP Reader Library
Rev.1.0 — 11 March 2013
259610

Application note
COMPANY PUBLIC

Document information
Info Content
Keywords NXP Reader Library, LPCXpresso, LPC1227, CLRC663, MIFARE Classic

Abstract This application note is related to the procedure of the NXP Reader
Library reduction. Reduction is the scale down process where application
layer is close to real used hardware.

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

2 of 21

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1.0 20130311 First release

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

3 of 21

1. NXP Reader Library scale down procedure

1.1 Introduction
This document describes the procedure of reducing the size of the NXP Reader Library
source code.

It consists of 3 parts that describe how to reduce the code of application and the NXP
Reader Library.

The first part is about typical user application setup.

The second part focuses on the replacement of calling functions with reference to input
parameters and the input data structures of the replaced functions. It also tells you how
to reach the minimum modules activation in order to reduce the final software package
amount.

The third part is an extended library reduction. It deals with source code reduction. This
means removing unused parts of the called functions to only keep the necessary
required functionality. The part also contains descriptions on how to remove library cross
references.

All in all the reduction could save up to 33% of the FLASH memory occupied by
the library.

2. Application setup

2.1 Components
The procedure of scaling down focuses on MIFARE Classic card operations and the
reader IC CLRC663. The procedure is as follows:

Software setup:

LPCXpresso v4.2.2_275 Installed development environment [2]

RC663-LPC1227-Classic Project example [3]

Hardware setup:

LPC1227 LPCXpresso Board microcontroller development kit [4], [5]

CLEV663B blueboard contactless card reader board [6]

The general URL to the product is to be found here [1]

2.2 Required project setup for the code reduction
The common software example RC663-LPC1227-Classic [3] is based on the
microcontroller LPC1227 and reader IC CLRC663. It supports management
(authentication, read, write operations, etc. …) of MIFARE Classic card compliant with
ISO/IEC 14443 Type A and detection of a wide range of the other MIFARE cards
(MIFARE Ultralight, MIFARE Plus, DESFire EV1, ICODE).The communication interface
between the reader IC and the microcontroller can either be set to SPI or I2C protocol.

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

4 of 21

The reduced example in this document only uses the SPI communication interface. It
supports Low Power Card Detection (LPCD). The card management is reduced to only
the MIFARE Classic, compliant with ISO/IEC 14443 Type A standard.

2.3 Project build setup
The build setup and functionality is set in the …/types/ph_NxpBuild.h file. In this file one
can define which modules to include into the build or exclude from the build.

BAL components have to be defined by:
#define NXPBUILD__PHBAL_REG_STUB /* Stub BAL definition */

HAL components have to be defined by:
#define NXPBUILD__PHHAL_HW_RC663 /* Rc663 HAL definition */

PAL ISO 14443-3A components have to be defined by:
#define NXPBUILD__PHPAL_I14443P3A_SW /* Software PAL ISO 14443-3A definition */

PAL MIFARE components have to be defined by:
#define NXPBUILD__PHPAL_MIFARE_SW /**< Software PAL MIFARE */

AL MIFARE Classic components have to be defined by:
#define NXPBUILD__PHAL_MFC_SW /**< Software MIFARE Classic */

KeyStore components have to be defined by:
#define NXPBUILD__PH_KEYSTORE_RC663 /**< RC663 KeyStore */

This project setup corresponds to the overview by chapter 2.

2.4 General principle of the reduction
In general, when calling hardware dependent functions, the target function is not called
directly, but a stub function is called instead. That stub function decides about what
hardware dependent function needs to be call.

The principle of the reduction is to use functions directly for the reader IC CLRC663,
without the need of the overhead from the stub functions. Because we focus on the
MIFARE Classic card we are using only the ISO/IEC 14443 Type A module.

That means the generic interface functions have to be replaced by specific interface
function. The whole overview is shown in the Fig 1. The software modules of the NXP
Reader Library that are used for the application [3] are highlighted. Any other software
modules are not necessary. The hardware platform (LPC1227, CLRC663) is connected
through BAL and the direction to the application layer is marked by arrows.

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

5 of 21

Fig 1. Structure of the public NXP Reader Library - used blocks are marked

2.5 Interrupt handlers
Remove all the unnecessary interrupt handlers, which are not directly used by the user
application. The compiler doesn’t require interrupt handler definition at all.
For example:

Usually 3 types (SPI, I²C and UART) of communication interfaces between
microcontroller and reader IC are defined. It is only possible to select one single
communication interface at a time at reader IC (usually SPI). The second interrupt
handler has to be removed. The same rule can be applied to the other interrupt handlers.

2.6 Printout
For the final release version of the software it is necessary to remove all printouts. This
can be executed as follows:
For example:

#if DEBUG
#include <stdio.h>
#endif //DEBUG
…..
#if DEBUG
 printf("start\n");

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

6 of 21

#endif //DEBUG

The second possibility is to use the printout by built in functions or functions from the
driver which have integrated conditional compilation.

2.7 Logging
The logging functionality is defined in the …/types/ph_NxpBuild.h file. However it may not
be defined when working in an embedded environment. This can also consume some
substantial flash size.

The usage of the LOG module requires a large RAM.

Main usage of the LOG module is intended for embedded systems based on operating
system or other embedded operating system platforms directly.

LOG components have to be undefined as follow:
//#define NXPBUILD__PH_LOG

3. Library setup

3.1 Generic interface reduction
The NXP Reader Library has a generic interface and specific interfaces for better
readability and better usability. For reducing the overhead of the generic interface, the
following procedure needs to be followed.
For example:

In the phalMfc component, phalMfc.h defines the generic interface and the relevant
parameter data structures. If only software implementation is desired, then the file
phalMfc.h should not have the generic function prototypes (for example phalMfc_Read()).
It should only have the required parameter data structure definition for SW
(phalMfc_Sw_DataParams_t) and the other required #defines.

The above is only an example for an AL component. The same procedures need to be
carried out for PAL, HAL and BALs to scale down the reader library and include the
necessary code for the target application.

In the NXP Reader Library, if generic interfaces are removed for scaling down purposes,
calls to generic interfaces should be replaced by the relevant specific interface call.
For example:

Function phhalHw_SetConfig() should be replaced by phhalHw_Rc663_SetConfig().

3.2 HAL Generic interface reduction - CLRC663 setup
Replace all the functions of the general HAL layer by functions of the applied HAL
module.

The functions in the file phhalHw.c should be replaced by the functions from the following
modules in the RC663 directory:

phhalHw_Rc663.c

phhalHw_Rc663_Int.c

phhalHw_Rc663_Cmd.c

phhalHw_Rc663_Wait.c

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

7 of 21

For example:

These 4 general functions are called very often from the library:
phhalHw_SetConfig()
phhalHw_GetConfig()
phhalHw_WriteRegister()
phhalHw_ReadRegister()

The functions can be replaced by the following prototypes:
phhalHw_Rc663_SetConfig()
phhalHw_Rc663_GetConfig()
phhalHw_Rc663_WriteRegister()
phhalHw_Rc663_ReadRegister()

3.3 BAL Generic interface reduction - CLRC663 setup
Replace all the functions of the general BAL layer by functions of the applied STUB
module.

The functions in the source file phbalReg.c should be replaced by the function of the
following modules in the STUB directory:

phbalReg_Stub.c

For example:

Function phbalReg_SetPort() should be replaced by phbalReg_Stub_SetPort().

3.4 PAL Generic interface reduction - CLRC663 setup
Replace all the functions of the general PAL layer by functions of the applied SW
module.

Generally, MIFARE Classic card operations could use the following modules”

phpalI14443p3a.c

phpalI14443p3b.c

phpalI14443p4.c

phpalI14443p4a.c

phpalMifare.c

Functions in these modules should be replaced by functions of modules in/from the SW
directory for each integrated protocol.

For example:

Function phpalI14443p3a_RequestA() should be replaced by function
phpalI14443p3a_Sw_RequestA().

3.5 AL Generic interface reduction - CLRC663 setup
Replace all the functions of the general AL layer by functions of the applied SW module.

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

8 of 21

The functions in the file phalMfc.c should be replaced by functions from the following
modules in/from the SW directory

phalMfc_Sw.c

For example:

Function phalMfc_Authenticate() should be replaced by phalMfc_Sw_Authenticate().

NOTE:

Module phalMfc.c is special. Functions from this module are called by the AL and call
functions from the PAL and these functions in turn call functions from the HAL. These
cross connections could be removed and called functions from the PAL could be
replaced by HAL functions directly. However, this is an extended reduction and is
described in chapter 4.

3.6 Removing macros
In the library each function returns a result operation value. For this operation in most
cases the macro PH_CHECK_SUCCESS_FCT(status,fct) is used (file
…/types/ph_Status). Each macro PH_CHECK_SUCCESS_FCT also includes one
decision condition that adds another 4 bytes to the code size. For example if the macro is
used for 100 calling functions, the final code size could increase up to additional 400
byte.

Replace macro usage by parametric return value based on the following example:

For example:

Before macro removing:
phStatus_t status;
……
/* Reset the Rf field */
PH_CHECK_SUCCESS_FCT(status, phhalHw_FieldReset(pHal));

After macro removing:
phStatus_t status;
……
/* Reset the Rf field */
status = phhalHw_FieldReset(pHal);

After final correction:
phStatus_t status;
……
/* Reset the Rf field */
status = phhalHw_Rc663_FieldReset(pHal);

3.7 Final compilation and FLASH memory saving
The build setup of the project example (2.3) is set in the file …/intfs/phhalHw.h.

The conditions have to be defined as follows:

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

9 of 21

#define SCALE_DOWN_RC663
#ifdef SCALE_DOWN_RC663
//#define SCALE_DOWN_RC663_EXTENDED
#endif

Another necessary correction in the changed modules is to add the phhalHw.h header
file. (NOTE: this correction is already done for this example.)

Reduction of the code by the use of the changed library setup is
13.67%
The code size has been reduced from 0x4492 (17554 bytes) to 0x3b3e (15166 bytes).

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

10 of 21

4. Extended library reduction

4.1 Introduction
The extended library reduction is based on removing code that is not directly used for the
application. The build setup is set in the file …/intfs/phhalHw.h.

The conditions have to be defined as follows:
#define SCALE_DOWN_RC663
#ifdef SCALE_DOWN_RC663
#define SCALE_DOWN_RC663_EXTENDED
#endif

4.2 Controlled IC reader communication interface
There are 2 functions from the HAL, which directly communicate with the IC reader via
microcontroller. They are:

phhalHw_Rc663_ReadRegister()

phhalHw_Rc663_WriteRegister()

A conditional section has been implemented which chooses the communication interface.
This section is necessary to reduce the code to one specific interface (file
phhalHw_Rc663.c). The chosen interface in this example is SPI.

For example:

If the SPI protocol is generally used, the code reduction could look like the following:
#ifndef SCALE_DOWN_RC663_EXTENDED
 /* RS232 protocol */
 if (pDataParams->bBalConnectionType == PHHAL_HW_BAL_CONNECTION_RS232)
 {
 /* set RD/NWR bit to indicate read operation */
 bTxBuffer[0] = bAddress | 0x80U;
 wTxLength = 1;
 bNumExpBytes = 1;
 }
 /* SPI protocol */
 else if (pDataParams->bBalConnectionType == PHHAL_HW_BAL_CONNECTION_SPI)
 {
 /* set RD/NWR bit to indicate read operation */
 bTxBuffer[0] = (uint8_t)(bAddress << 1) | 0x01U;
#if 0
 bTxBuffer[1] = 0x00;
 wTxLength = 2;
#endif
 wTxLength = 1;
 bNumExpBytes = 2;
 }
 /* I2C protocol */
 else if (pDataParams->bBalConnectionType == PHHAL_HW_BAL_CONNECTION_I2C)
 {

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

11 of 21

 /* nothing to be modified */
 bTxBuffer[0] = bAddress;
 wTxLength = 1;
 bNumExpBytes = 1;
 }
 else
 {
 /* Insert Code for other protocols here */
 wTxLength = 0;
 bNumExpBytes = 0;
 }
#else // SCALE_DOWN_RC663_EXTENDED
 /* SPI protocol */
 /* set RD/NWR bit to indicate read operation */
 bTxBuffer[0] = (uint8_t)(bAddress << 1) | 0x01U;
 wTxLength = 1;
 bNumExpBytes = 2;
#endif // SCALE_DOWN_RC663_EXTENDED

4.3 Controlled IC reader register setting
There are 4 functions in the HAL (module phhalHw_Rc663.c), which are directly needed
for the IC reader setting:

phhalHw_Rc663_SetConfig()

phhalHw_Rc663_GetConfig()

phhalHw_Rc663_SetConfig_Int()

phhalHw_Rc663_ApplyProtocolSettings()

Basically, the functions are big switches and the direct IC reader register setting depends
on the input parameters for internal case - switch conditions. Each case represents one
parameter setting or a group of actions that set one hardware parameter.

It is necessary to remove all cases or parts of the code which are not directly managed
within the setup of the (in our case) MIFARE Classic card and reader IC CLRC663.

For example:

This example shows how the function phhalHw_Rc663_SetConfig() could be reduced.

We focus on the switch - case “PHHAL_HW_CONFIG_RXDATARATE”. Inside this
condition there is a Felica card parameters setting, but Felica is not used in accordance
to the project setup. These parts are excluded from compilation by the
SCALE_DOWN_RC663_EXTENDED define. See the following code correction.

 case PHHAL_HW_CONFIG_RXDATARATE:

#ifndef SCALE_DOWN_RC663_EXTENDED
 /* Felica card -> TxDataRate eqals the new RxDataRate */
 if (pDataParams->bCardType == PHHAL_HW_CARDTYPE_FELICA)
 {
 wDataRate = wValue;
 }
 /* Other Cards -> read TxDataRate from shadow */

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

12 of 21

 else
 {
 wDataRate = pDataParams->wCfgShadow[PHHAL_HW_CONFIG_TXDATARATE];
 }
#else
 wDataRate = pDataParams->wCfgShadow[PHHAL_HW_CONFIG_TXDATARATE];
#endif

 /* Evaluate hardware settings */
#ifdef SCALE_DOWN_RC663
 statusTmp = (phhalHw_Rc663_SetCardMode(
#else
 PH_CHECK_SUCCESS_FCT(statusTmp, phhalHw_Rc663_SetCardMode(
#endif
 pDataParams,
 wDataRate,
 wValue,
 pDataParams->wCfgShadow[PHHAL_HW_CONFIG_SUBCARRIER]));

#ifndef SCALE_DOWN_RC663_EXTENDED
 /* Felica card -> Update TxDataRate in shadow*/
 if (pDataParams->bCardType == PHHAL_HW_CARDTYPE_FELICA)
 {
 pDataParams->wCfgShadow[PHHAL_HW_CONFIG_TXDATARATE] = wDataRate;
 }
#endif

 /* Write config data into shadow */
 pDataParams->wCfgShadow[wConfig] = wValue;
 break;

Example continuation:

We focus on the next switch - case “PHHAL_HW_CONFIG_SERIAL_BITRATE” in the
function phhalHw_Rc663_SetConfig(). This one is focused to set the bit rate of the
UART interface. The UART interface is not used in our example and therefore this switch
- case could be fully excluded from compilation by the
SCALE_DOWN_RC663_EXTENDED define. See the following code correction.

#ifndef SCALE_DOWN_RC663_EXTENDED
 case PHHAL_HW_CONFIG_SERIAL_BITRATE:

 switch (wValue)
 {
 case PHHAL_HW_RS232_BITRATE_7200:
 bRegister = PHHAL_HW_RC663_SERIALSPEED_7200;
 break;
 case PHHAL_HW_RS232_BITRATE_9600:
 bRegister = PHHAL_HW_RC663_SERIALSPEED_9600;
 break;

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

13 of 21

 case PHHAL_HW_RS232_BITRATE_1228800:
 bRegister = PHHAL_HW_RC663_SERIALSPEED_1228800;
 break;
 default:
 return PH_ADD_COMPCODE(PH_ERR_INVALID_PARAMETER,
PH_COMP_HAL);
 }

 /* Set the register value */
#ifdef SCALE_DOWN_RC663
 statusTmp = (phhalHw_Rc663_WriteRegister(pDataParams,
PHHAL_HW_RC663_REG_SERIALSPEED, bRegister));
#else
 PH_CHECK_SUCCESS_FCT(statusTmp, phhalHw_WriteRegister(pDataParams,
PHHAL_HW_RC663_REG_SERIALSPEED, bRegister));
#endif
 break;
#endif

4.4 Reduction of cross connections
After the corrections from above, we continue working with the module phalMfc_Sw.c
instead of the module phalMfc.c. Functions from this module call functions from the PAL
and those call functions from the HAL. These cross connections can be removed and
called functions from the PAL could be replaced by HAL functions directly.

This correction requires a sensitive approach because input parameters of AL functions
cannot respond to input parameters of HAL functions.

For example:

There is a typical function where input parameters change is necessary.

Function phalMfc_Authenticate() is called from the main as follows:
status = phalMfc_Authenticate(&alMfc, 0, PHHAL_HW_MFC_KEYA, 0, 0, bUid, bLength);

This function can be replaced according to3.5 as follows:
status = phalMfc_Sw_Authenticate(&alMfc, 0, PHHAL_HW_MFC_KEYA,0, 0, bUid, bLength);

Internal functions can be changed like this. It is necessary to reconnect input data
structure mapping from application data parameters to protocol data parameters using
temporary pointer pDataParams_temp remapping.

phStatus_t phalMfc_Sw_Authenticate(
 phalMfc_Sw_DataParams_t * pDataParams,
 uint8_t bBlockNo,
 uint8_t bKeyType,
 uint16_t wKeyNo,
 uint16_t wKeyVersion,
 uint8_t * pUid,
 uint8_t bUidLength
)
 {

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

14 of 21

..

 phpalMifare_Sw_DataParams_t * pDataParams_temp;
 pDataParams_temp = (phpalMifare_Sw_DataParams_t *) pDataParams-
>pPalMifareDataParams;

 /* check if software key store is available. */
 if (pDataParams->pKeyStoreDataParams == NULL)
 {
 /* There is no software keystore available. */
// return phpalMifare_MfcAuthenticateKeyNo
// pDataParams->pPalMifareDataParams,
// bBlockNo,
// bKeyType,
// wKeyNo,
// wKeyVersion,
// &pUid[bUidLength - 4]);

 return phhalHw_Rc663_MfcAuthenticateKeyNo(
 pDataParams_temp->pHalDataParams,
 bBlockNo,
 bKeyType,
 wKeyNo,
 wKeyVersion,
 &pUid[bUidLength - 4]);
 }

4.5 Individual corrections
Other corrections can be verified individual and performed very strictly based on real
user application, and hardware usage and its configuration.

Rule 1:

Focus on the biggest code size functions. These could be the following:

phhalHw_Rc663_SetConfig()

phhalHw_Rc663_ApplyProtocolSettings()

phhalHw_Rc663_GetConfig()

phhalHw_Rc663_Exchange()

phhalHw_Rc663_SetConfig_Int()

phhalHw_Rc663_SetCardMode()

phhalHw_Rc663_GetFdt()

phhalHw_Rc663_Command_Int()

phhalHw_Rc663_WaitIrq()

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

15 of 21

In general, the code found in the functions listed above is not necessary for closed user
application. They are either only used for debugging purposes during development, or
can be replaced by hardcoded settings.

For example:

In the function phhalHw_Rc663_Exchange() the initial parameters check can be removed
if the input parameters are filled in by known values. The following source code can be
removed.

phStatus_t phhalHw_Rc663_Exchange(
 phhalHw_Rc663_DataParams_t * pDataParams,
 uint16_t wOption,
 uint8_t * pTxBuffer,
 uint16_t wTxLength,
 uint8_t ** ppRxBuffer,
 uint16_t * pRxLength
)
 {
 phStatus_t PH_MEMLOC_REM status;
 phStatus_t PH_MEMLOC_REM statusTmp;
 uint16_t PH_MEMLOC_REM wNumPrecachedBytes;
 uint16_t PH_MEMLOC_REM wFifoBytes;
 uint8_t PH_MEMLOC_REM bIrq0WaitFor;
 uint8_t PH_MEMLOC_REM bIrq1WaitFor;
 uint8_t PH_MEMLOC_REM bIrq0Reg = 0x00;
 uint8_t PH_MEMLOC_REM bIrq1Reg = 0x00;
 uint8_t PH_MEMLOC_REM bRegister;
 uint8_t PH_MEMLOC_REM bError;
 uint8_t PH_MEMLOC_REM bNoData;
 uint32_t PH_MEMLOC_REM dwTimingSingle;
 uint8_t * PH_MEMLOC_REM pTmpBuffer;
 uint16_t PH_MEMLOC_REM wTmpBufferLen;
 uint16_t PH_MEMLOC_REM wTmpBufferSize;

#ifndef SCALE_DOWN_RC663_EXTENDED
 /* Check options */
 if (wOption & (uint16_t)~(uint16_t)(PH_EXCHANGE_BUFFERED_BIT |
PH_EXCHANGE_LEAVE_BUFFER_BIT))
 {
 return PH_ADD_COMPCODE(PH_ERR_INVALID_PARAMETER, PH_COMP_HAL);
 }
#endif // SCALE_DOWN_RC663_EXTENDED

In the same function the condition of about communication interface could be
reduced to the used type.

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

16 of 21

 /* Fill the global TxBuffer */
 /* Note: We always need to buffer for SPI, else the input buffer would get
overwritten! */
#ifndef SCALE_DOWN_RC663_EXTENDED
 if ((wOption & PH_EXCHANGE_BUFFERED_BIT) ||
 (pDataParams->bBalConnectionType == PHHAL_HW_BAL_CONNECTION_SPI) ||
 (pDataParams->bBalConnectionType == PHHAL_HW_BAL_CONNECTION_I2C))
#else
 if ((wOption & PH_EXCHANGE_BUFFERED_BIT) ||
 (pDataParams->bBalConnectionType == PHHAL_HW_BAL_CONNECTION_SPI))
#endif // SCALE_DOWN_RC663_EXTENDED
 {
 /* retrieve transmit buffer */
#ifdef SCALE_DOWN_RC663
 statusTmp = (phhalHw_Rc663_GetTxBuffer(pDataParams, PH_ON, &pTmpBuffer,
&wTmpBufferLen, &wTmpBufferSize));
#else
 PH_CHECK_SUCCESS_FCT(statusTmp, phhalHw_Rc663_GetTxBuffer(pDataParams,
PH_ON, &pTmpBuffer, &wTmpBufferLen, &wTmpBufferSize));
#endif

 if (wTxLength != 0)

Rule 2:

A similar procedure could apply to the smallest code size functions. The body of the
function could be copied directly to the source code in the applied place. However, the
operation can only be realized if the function is one of those used in the following
application:

Function Fill_Block() is used for fill in data field.
/*==
 * FUNCTION: Fill_Block
 *
 * Description:
 * copy the key to the field for comparation
 *
 ---*/
#ifndef SCALE_DOWN_RC663
static void Fill_Block (uint8_t *pBlock, uint8_t MaxNr)
 {
 uint8_t i;

 for (i = 0; i <= MaxNr; i++)
 {
 *pBlock++ = i;
 }
 }
#endif

The replacement in the main() could be as follows:

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

17 of 21

#ifndef SCALE_DOWN_RC663_EXTENDED
 /* fill block with data */
 Fill_Block(bBufferReader, 15);
#else
 for (i = 0; i <= 15; i++)
 {
 bBufferReader[i] = i;
 }
#endif // SCALE_DOWN_RC663_EXTENDED

4.6 Final compilation and FLASH saving
The build setup of this project example (2.3) is set in the file …/intfs/phhalHw.h.

The conditions have to be defined as follows:
#define SCALE_DOWN_RC663
#ifdef SCALE_DOWN_RC663
#define SCALE_DOWN_RC663_EXTENDED
#endif

Another necessary correction in the changed modules is to add the file phhalHw.h to the
includes. (NOTE: this correction is already done for this project example)

Finally the reduced code size after compiling the example is 33.24%
The code size has been reduced from 0x4492 (17554 bytes) to 0x2dc6 (11718 bytes).

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

18 of 21

5. Build configuration

5.1 Release configuration
The release configuration commonly reduces the application code to the minimum
memory size. The Tool Settings of the IDE are set as follows:

Symbols

NDEBUG - no debug messages

__DISABLE_WATCHDOG - watchdog module is allowed for release configuration and
for the LPC1227.

Basic symbols are commonly added.

Optimization

-O2 this optimization also turns on the –Os which is optimization
for size.

Debugging

None the minimal debug support

-g0 produces no debug information at all

For more configurations see [3] chapters 6.2. and 6.3.

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

19 of 21

6. References
[1] LPCXpresso Code Red website

www.nxp.com/redirect/lpcxpresso.code-red-tech.com/LPCXpresso

[2] LPCXpresso NXP website
www.nxp.com/redirect/lpcware.com/lpcxpresso

[3] software example of RC663-LPC1227-Classic
http://www.nxp.com/demoboard/PREV601.html#documentation

[4] embedded artists – general site
www.nxp.com/redirect/embeddedartists.com/products/lpcxpresso

[5] embedded artists – LPC1227 board description
www.nxp.com/redirect/embeddedartists.com/products/lpcxpresso/lpc1227_xpr.php

[6] blueboard CLEV663B
http://www.nxp.com/demoboard/CLEV663B.html

[7] RC663 data sheet
http://www.nxp.com/documents/data_sheet/CLRC663.pdf

[8] LPC1227 User Manual
http://www.nxp.com/documents/user_manual/UM10441.pdf

http://www.nxp.com/redirect/lpcxpresso.code-red-tech.com/LPCXpresso
http://www.nxp.com/redirect/lpcware.com/lpcxpresso
http://www.nxp.com/demoboard/PREV601.html#documentation
http://www.nxp.com/redirect/embeddedartists.com/products/lpcxpresso
http://www.nxp.com/redirect/embeddedartists.com/products/lpcxpresso/lpc1227_xpr.php
http://www.nxp.com/demoboard/CLEV663B.html
http://www.nxp.com/documents/data_sheet/CLRC663.pdf
http://www.nxp.com/documents/user_manual/UM10441.pdf

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

AN11342 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note
COMPANY PUBLIC

Rev.1.0 — 11 March 2013
259610

20 of 21

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary

testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Licenses
Purchase of NXP ICs with ISO/IEC 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type
B software enabled and is licensed under Innovatron’s
Contactless Card patents license for ISO/IEC 14443 B.

The license includes the right to use the IC in systems
and/or end-user equipment.

RATP/Innovatron
Technology

7.4 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

MIFARE — is a trademark of NXP B.V.

MIFARE DESFire — is a trademark of NXP B.V.

MIFARE Plus — is a trademark of NXP B.V.

MIFARE Ultralight — is a trademark of NXP B.V.

ICODE — is a trademark of NXP B.V.

NXP Semiconductors AN11342
 How to Scale Down the NXP Reader Library

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2013. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11 March 2013
259610

Document identifier: AN11342

8. Contents

1. NXP Reader Library scale down procedure 3
1.1 Introduction .. 3
2. Application setup .. 3
2.1 Components ... 3
2.2 Required project setup for the code reduction.... 3
2.3 Project build setup .. 4
2.4 General principle of the reduction 4
2.5 Interrupt handlers ... 5
2.6 Printout ... 5
2.7 Logging .. 6
3. Library setup .. 6
3.1 Generic interface reduction 6
3.2 HAL Generic interface reduction - CLRC663

setup .. 6
3.3 BAL Generic interface reduction - CLRC663

setup .. 7
3.4 PAL Generic interface reduction - CLRC663

setup .. 7
3.5 AL Generic interface reduction - CLRC663

setup .. 7
3.6 Removing macros .. 8
3.7 Final compilation and FLASH memory saving.... 8
4. Extended library reduction 10
4.1 Introduction .. 10
4.2 Controlled IC reader communication interface . 10
4.3 Controlled IC reader register setting 11
4.4 Reduction of cross connections 13
4.5 Individual corrections 14
4.6 Final compilation and FLASH saving 17
5. Build configuration ... 18
5.1 Release configuration 18
6. References ... 19
7. Legal information .. 20
7.1 Definitions .. 20
7.2 Disclaimers... 20
7.3 Licenses ... 20
7.4 Trademarks .. 20
8. Contents ... 21

	1. NXP Reader Library scale down procedure
	1.1 Introduction

	2. Application setup
	2.1 Components
	2.2 Required project setup for the code reduction
	2.3 Project build setup
	2.4 General principle of the reduction
	2.5 Interrupt handlers
	2.6 Printout
	2.7 Logging

	3. Library setup
	3.1 Generic interface reduction
	3.2 HAL Generic interface reduction - CLRC663 setup
	3.3 BAL Generic interface reduction - CLRC663 setup
	3.4 PAL Generic interface reduction - CLRC663 setup
	3.5 AL Generic interface reduction - CLRC663 setup
	3.6 Removing macros
	3.7 Final compilation and FLASH memory saving

	4. Extended library reduction
	4.1 Introduction
	4.2 Controlled IC reader communication interface
	4.3 Controlled IC reader register setting
	4.4 Reduction of cross connections
	4.5 Individual corrections
	4.6 Final compilation and FLASH saving

	5. Build configuration
	5.1 Release configuration

	6. References
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Licenses
	7.4 Trademarks

	8. Contents

