

 AN11388
Using LPC800 In-Application Programming
Rev. 1.1 — 24 September 2013 Application note

Document information
Info Content
Keywords LPC810M021FN8; LPC811M001JDH16; LPC812M101JDH16;

LPC812M101JD20; LPC812M101JDH20, LPC800 IAP

Abstract This application note describes how to use IAP commands of the LPC800
device family.

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 2 of 18

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1.1 20130924 Updated demo code package.

1 20130909 Initial version.

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 3 of 18

1. Introduction
The LPC800 devices have up to 16 kB of flash memory. The smallest operating unit in
the flash memory is called a ‘page’ and the size of each page is 64 bytes.

Users can utilize In-Application Programming (IAP) commands to update flash or to store
information in the on-chip flash. Possible uses of IAP include:

• Field upgradable firmware
• EEPROM emulation
• Application configuration storage
• Data storage

The benefits of using IAP are:
• Capability of the microcontroller to reprogram its own flash memory
• No external circuitry is required
• Uses boot ROM code (less code needed in flash)

IAP does have some limitations. For example, IAP has a slow erase time (100 ms) and
write time (1 ms), regardless of the flash size that is being updated.

2. Flash specifications

2.1 Flash structure
The flash memory is comprised of 16 sectors, with each sector containing 16 pages. The
size of a sector is 1 kB and the size of a page is 64 bytes. Fig 1 shows the flash structure
in the LPC800.

Fig 1. LPC800 flash structure

Most IAP and ISP commands operate on sectors and specific sector numbers. Fig 2
shows the correspondence between page numbers, sector numbers, and memory
addresses.

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 4 of 18

Fig 2. LPC800 flash address mapping

2.2 Flash specifications
The erase time and programming time of the flash is fixed regardless of the number of
sectors and pages. Flash Error Correction Code (ECC) is automatically added during
erase and programming. It is also verified when flash is read.

3. IAP implementation in user code

3.1 IAP parameter passing
In an application, the IAP routines should be called with a word pointer in register r0
pointing to memory (RAM) which contains the command code and parameters. The
result of the IAP command is returned in the ‘result table’. Register r1 contains a pointer
to the result table. The IAP routine resides at address 0x1FFF 1FF0 and it is thumb code.

Fig 3. LPC800 flash specification

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 5 of 18

Fig 4. IAP parameter passing

3.2 IAP command summary
There are 10 IAP commands which are listed below. For example, Erase sector
command is used to perform an erase operation on the entire sector.

Fig 5. IAP command summary

3.3 IAP implementation in user code
3.3.1 Locating the IAP code in Boot ROM

The IAP routines are located in the Boot ROM. To access the IAP routines, the entry
point of the IAP must be defined. For the LPC800, the address is 0x1FFF1FF1.
1 #define IAP_LOCATION 0x1FFF1FF1

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 6 of 18

Fig 6. Locating the IAP code in Boot ROM

3.3.2 IAP parameters
The IAP routines take two unsigned 32-bit integer arrays, the command_param and
status_result, as input. The command_param is a 5 element array and the status_result
is a 4 element array. The arrays can be defined as:
2 unsigned int command_param[5];
3 unsigned int status_result[4];

or they can be defined as:
4 unsigned int * command_param;
5 unsigned int * status_result;
6 command_param = (unsigned int *) <address>
7 status_result = (unsigned int *) <address>

The demo code uses a data structure to define the IAP parameters as shown in Fig 7.

To make a call to the IAP routines, the following code can be used:
8 Iap_entry (command_param, status_result);

Fig 7. IAP parameters as a structure

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 7 of 18

3.3.3 Calling IAP in assembly code
The IAP routine can also be called in assembly language as shown in Fig 8.

Fig 8. Calling IAP in assembly code

3.4 IAP routines
The list of IAP routines is listed below.
IAP Command Code

(base 10)
Functional description Precautions

Prepare sector(s) for
write operation

50 Turns off the write protection
for the specified flash sectors.

This function must be called prior
to executing “Copy RAM to Flash”
or “Erase Sector(s)” commands.

Copy RAM to Flash 51 Performs a write operation from
RAM to flash memory.

A flash sector must be prepared
for write operation before contents
can be written.
Ensure no other flash accesses
are performed during the copy
procedure.
Source data must be located in
RAM.

Erase Sector(s) 52 Erases the contents of the
entire flash sector(s).
Erased flash sector(s) will read
back with all bits set to 1’s.

A flash sector must be prepared
for write operation before it can be
erased.
Ensure no other flash accesses
are performed during the erase
procedure.

Blank check
sector(s)

53 Determines if flash sector(s) is
(are) erased.

None

Read part
identification number

54 Returns the identification
number of a particular part.
See the user manual for the
specific part identification

None

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 8 of 18

IAP Command Code
(base 10)

Functional description Precautions

numbers.

Read boot code
version number

55 Returns the boot ROM version
number.

None

Compare (memory) 56 Compares memory contents at
two locations.

None

Re-invoke ISP 57 This function call will invoke the
ISP routine located on the boot
ROM.

Calling this function will remap the
boot vectors, enable UART0 and
Timer1 and change their PCLK
values to CCLK/4.

Read device serial
number

58 Returns the part’s unique serial
number.

None

Erase Page 59 Erases a page or multiple
pages of on-chip flash memory.

The page has to be prepared for
write operation before it can be
erased.
Ensure no other flash accesses
are performed during the erase
procedure.

3.4.1 Erase page feature
The erase page is a new feature introduced in LPC800. Instead of erasing each and
every sector, this feature helps in erasing a single page (64 bytes) or multiple pages of
the on-chip flash memory. In the demo code, page 160 has been erased.

3.5 IAP precautions
The IAP manipulates the memory during run-time. Therefore, certain precautions must
be taken to ensure proper operations.

3.5.1 Interrupts
When the IAP routines are used any access to the flash memory must be avoided during
the erase and write operations. If the vector interrupt table is located in the flash, all the
interrupts must be disabled prior to erase and write.

The LPC800 also has the ability to remap the interrupt vector table to the RAM by
changing the MAP bits in the SYSMEMREMAP register. This allows interrupts to occur
even during the erase and write operations. But as the flash cannot be accessed during
this time, the interrupt handlers must be executed from the RAM. Hence, all code related
to the interrupt handlers must be copied from Flash into the RAM.

3.5.2 RAM usage
The IAP routines utilize 32 bytes of space in the top portion of the on-chip RAM for
execution and up to 128 bytes of stack space. The user program should not use this
space if IAP flash programming is permitted in the application. Furthermore, if the
interrupt vector table is remapped to the SRAM, the bottom 512 bytes of the memory
map should not be used.

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 9 of 18

4. Software setup

4.1 Interrupt remapping
The system remap register SYSMEMREMAP on NXP’s LPC 8xx MCU families selects
whether the exception vectors are read from boot ROM, flash or SRAM. By default, the
flash memory is mapped to the address 0x0000 0000. When the MAP bits in the
SYSMEMREMAP register are set to 0x0 or 0x1, the boot ROM or RAM respectively are
mapped to the bottom 512 bytes of the memory map (addresses 0x0000 0000 to
0x0000 0200).

Fig 9. SYSMEMREMAP register

So for interrupt handling during IAP on these MCU families, user code should copy the
interrupt vector table from 0x0000 0000 to 0x1000 0000 and then set the MAP bits to be
0x1 to select the exception vector from RAM. The entire lower 512 byte flash block
should be copied to RAM.

In addition to the SYSMEMREMAP register, the LPC8xx family implements a Vector
Table Offset Register (VTOR) which provides more flexibility than the SYSMEMREMAP
register. The vector table contains the reset value of the stack pointer and the start
addresses, also called exception vectors, for all exception handlers. On system reset, the
vector table is located at address 0x0000 0000. The VTOR register allows the interrupt
vector table to be relocated at an address other than the default.

4.2 SRAM memory mapping
The demonstration code relocates the interrupt vector to SRAM and uses the IAP code.
This means that the compiler must be configured such that the bottom 512 bytes and the
top 32 bytes of the memory cannot be touched. In the Keil environment, the IRAM1
section should be specified to be smaller than the actual SRAM size to prevent the
compiler from using these areas.

The SRAM starts at address 0x1000 0000. Since the interrupt vector table uses
512 bytes of the bottom of the SRAM, the start location is now set to 0x1000 0200. The
total SRAM size of LPC800 is 4 kB. With IAP using 32 bytes in the top of the SRAM, this
means the usable SRAM size is 4 kB – 32 bytes i.e. 4064 bytes. But since 512 bytes is
also being used by the interrupt vector table, the SRAM size now becomes:
(4096 – 32 – 512) bytes = 3552 bytes = 0x0DE0.

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 10 of 18

Fig 10. Keil IROM and SRAM remapping

In the LPCXpresso IDE, the same task is accomplished by changing the MCU settings.

Fig 11. LPCXpresso flash and SRAM remapping

In IAR Embedded Workbench, the SRAM remapping is achieved by changing the linker
configuration file settings. The RAM start address is set to 0x1000 0200 and the end
address to 0x1000 0FE0 (0x1000 0200 + 0xDE0).

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 11 of 18

Fig 12. IAR Embedded Workbench ROM and SRAM remapping

4.3 Systick interrupt
The systick is used to create a periodic interrupt while the software is running. On each
interrupt, PIO0_16 is toggled. Since during the IAP call the flash is not accessible to the
software, the SysTick interrupt handler is relocated to the SRAM.

The above operation is done within the Keil environment as opposed to manually editing
the scatter file.

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 12 of 18

Fig 13. SysTick interrupt handler settings in Keil

For the LPCXpresso IDE, the systick handler function is directed to by placed into the
SRAM by the using the .data.ramfunc directive.
9 __attribute__ ((__section__(".data.ramfunc")))
10 void SysTick_Handler(void){
11 LPC_GPIO_PORT->NOT0 = (1<<7);}

In the IAR Embedded Workbench, the systick handler function is placed into the SRAM
by using the compiler directive __ramfunc.
12 __ramfunc void SysTick_Handler(void){
13 LPC_GPIO_PORT->NOT0 = (1<<7);}

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 13 of 18

5. Handling interrupts during IAP
The LPC800’s flash is not accessible when IAP routines are being called. This can be
dealt with by using two methods.

5.1 Method 1: Disable interrupts before calling IAP functions
All interrupts are disabled prior to any IAP operations.

Fig 14. Method 1: Disable interrupts

5.2 Method 2: Relocate the interrupt table to SRAM
The interrupt vector table is moved to the SRAM and the VTOR register is set to the
starting address of the remapped vector table. The MAP bits in the SYSMEMREMAP
register is set to 0x1, indicating the vector table is located in the SRAM, not in the flash
area.

Fig 15. Method 2: Relocate the interrupt table to SRAM

The interrupt vector table is copied to SRAM using the function call
‘CopyInterruptToSRAM() ‘. The function call is hardcoded to copy from flash address
0x00 to SRAM address of 0x1000 0000.

Fig 16. Copy the IRQ handler to SRAM

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 14 of 18

6. Design tips for IAP

6.1 Flash lookup sheet
Fig 17 shows the flash lookup sheet for the IAP command usage.

Fig 17. Flash lookup sheet

The above figure shows the commands to be used to perform various operations. For
example, in order to erase a sector, the sectors should be prepared for a write operation
by the use of ‘Prepare sector for write’ command and the page is erased using the ‘Erase
sector’ command. Every Erase and Write command must be preceded by a Prepare
command.

6.2 Set correct CCLK parameter
The input parameter ‘CCLK’ of an IAP command should be equal to the CPU clock
frequency in kilohertz (kHz). If the CCLK parameter is less than the CPU clock, the flash
operation may be unstable. If the CCLK parameter is higher than the CPU clock, the
flash operation may be slower than expected. If the CCLK is not equal to the CPU clock,
the flash reliability cannot be guaranteed.

7. Conclusion
This application note provides example implementation for In-Application Programming
(IAP) in LPC800 MCU families. The IAP routines available on the LPC800 provide an
easy and simple way for data storage or for program updates. As these routines are
stored on the on-chip ROM, the user application’s code size is minimized.

For additional details on how the IAP routines operation, refer to the LPC800 user
manual.

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 15 of 18

8. Application Example
The demo software sends a menu system to the PC through the UART at 9600, 8, N, 1.
The IAP operations were performed on sector 10 and page 160.

The demo software demonstrates the IAP calls of:

• Reading the part ID of the device

• Reading the Boot version

• Reading the device serial number

• Preparation of a sector

• Erase page

• Write on a page.

The following figure shows the UART menu display using Tera Term on the PC.

Fig 18. UART window on PC

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 16 of 18

9. Legal information

9.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

9.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

9.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

AN11388 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1.1 — 24 September 2013 17 of 18

10. List of figures

Fig 1. LPC800 flash structure 3
Fig 2. LPC800 flash address mapping 4
Fig 3. LPC800 flash specification 4
Fig 4. IAP parameter passing 5
Fig 5. IAP command summary 5
Fig 6. Locating the IAP code in Boot ROM 6
Fig 7. IAP parameters as a structure 6
Fig 8. Calling IAP in assembly code 7
Fig 9. SYSMEMREMAP register 9
Fig 10. Keil IROM and SRAM remapping 10
Fig 11. LPCXpresso flash and SRAM remapping 10
Fig 12. IAR Embedded Workbench ROM and SRAM

remapping ... 11
Fig 13. SysTick interrupt handler settings in Keil 12
Fig 14. Method 1: Disable interrupts 13
Fig 15. Method 2: Relocate the interrupt table to SRAM

 .. 13
Fig 16. Copy the IRQ handler to SRAM 13
Fig 17. Flash lookup sheet .. 14
Fig 18. UART window on PC 15

NXP Semiconductors AN11388
 Using LPC800 In-Application Programming

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2013. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 24 September 2013
Document identifier: AN11388

11. Contents

1. Introduction ... 3
2. Flash specifications .. 3
2.1 Flash structure ... 3
2.2 Flash specifications .. 4
3. IAP implementation in user code 4
3.1 IAP parameter passing 4
3.2 IAP command summary 5
3.3 IAP implementation in user code 5
3.3.1 Locating the IAP code in Boot ROM 5
3.3.2 IAP parameters .. 6
3.3.3 Calling IAP in assembly code 7
3.4 IAP routines .. 7
3.5 IAP precautions .. 8
3.5.1 Interrupts .. 8
3.5.2 RAM Usage .. 8
4. Software setup ... 9
4.1 Interrupt remapping .. 9
4.2 SRAM memory mapping 9
4.3 Systick interrupt .. 11
5. Handling interrupts during IAP 13
5.1 Method 1: Disable interrupts before calling IAP

functions ... 13
5.2 Method 2: Relocate the interrupt table to SRAM

 ... 13
6. Design tips for IAP .. 14
6.1 Flash lookup sheet ... 14
6.2 Set correct CCLK parameter 14
7. Conclusion ... 14
8. Application Example ... 15
9. Legal information .. 16
9.1 Definitions .. 16
9.2 Disclaimers ... 16
9.3 Trademarks .. 16
10. List of figures ... 17
11. Contents ... 18

	1. Introduction
	2. Flash specifications
	2.1 Flash structure
	2.2 Flash specifications

	3. IAP implementation in user code
	3.1 IAP parameter passing
	3.2 IAP command summary
	3.3 IAP implementation in user code
	3.3.1 Locating the IAP code in Boot ROM
	3.3.2 IAP parameters
	3.3.3 Calling IAP in assembly code

	3.4 IAP routines
	3.4.1 Erase page feature

	3.5 IAP precautions
	3.5.1 Interrupts
	3.5.2 RAM usage

	4. Software setup
	4.1 Interrupt remapping
	4.2 SRAM memory mapping
	4.3 Systick interrupt

	5. Handling interrupts during IAP
	5.1 Method 1: Disable interrupts before calling IAP functions
	5.2 Method 2: Relocate the interrupt table to SRAM

	6. Design tips for IAP
	6.1 Flash lookup sheet
	6.2 Set correct CCLK parameter

	7. Conclusion
	8. Application Example
	9. Legal information
	9.1 Definitions
	9.2 Disclaimers
	9.3 Trademarks

	10. List of figures
	11. Contents

