AN11449
Low Noise Flat Gain 40M~1GHz DVB-C LNA with BFG425W

Rev.1 — 22 October 2013

Document information

<table>
<thead>
<tr>
<th>Info</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>BFG425W, 40M~1GHz LNA, DVB-C,</td>
</tr>
<tr>
<td>Abstract</td>
<td>This document provides circuit simulation, schematic, layout, BOM and typical EVB performance for a 40M ~ 1GHz DVB-C LNA</td>
</tr>
</tbody>
</table>
Revision history

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2013022</td>
<td>Initial Draft</td>
</tr>
</tbody>
</table>

Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
1. Introduction

With the new NXP silicon bipolar double poly BFG400W series, it is possible to design low noise amplifiers for high frequency applications with a low current and a low supply voltage. These amplifiers are well suited for the new generation low voltage high frequency wireless applications.

In this note a first study of such an amplifier will be given. This amplifier is designed for a wideband working frequency from 40MHz to 1GHz. It is designed for DVB-C application, so the solution need provide a pretty good Gain flatness.

DVB-C stands for "Digital Video Broadcasting - Cable" and it is the DVB European consortium standard for the broadcast transmission of digital television over cable. This system transmits a MPEG-2 or MPEG-4 family digital audio/digital video stream, using a QAM modulation with channel coding. The standard was first published by the ETSI in 1994, and subsequently became the most widely used transmission system for digital cable television in Europe. It is deployed worldwide in systems ranging from the larger cable television networks (CATV) down to smaller satellite master antenna TV (SMATV) systems.

Key Benefits:

• High transition frequency
• Wideband applications, e.g. analog and digital cellular telephones, cordless telephones (PHS, DECT, etc.)
• Lowest current consumption meaning greener products
• SOT343F package for high performance and easy manufacturing

![Fig 1. BFG425W 40M ~ 1GHz DVB-C LNA EVB Demo Board](image-url)
2. Requirements and design of the 40M ~ 1GHz DVB-C LNA

The circuit shown in this application note is intended to demonstrate the performance of the BFG425W in a 40M ~ 1GHz LNA for DVB-C applications.

Key requirements for this application are:

- Frequency Band 40M – 1GHz
- Gain
- Input/output Match
- Linearity
- NF
- Gain Flatness

3. Design and Simulation

The 40M ~ 1GHz DVB-C LNA consists of one stage BFG425W amplifier.

The design has been simulated, and the simulation results are given in the following figures.

The LNA shows excellent match at input/output with greater than 9.0dB return loss from 40MHz to 1GHz and wideband gain around 13.3dB, with good +/-1.1dB gain flatness between whole 960MHz frequency band. Customer also could tune the value of attenuator resistors at output of Demo, to reach the Gain level they want.

In addition, the LNA provide Noise Figure performance below 2.8dB in whole frequency band. With only 18mA it also shows a high input IP2 level of 14dBm @400MHz, as well as high input IP3 of 5.5dBm @400MHz.

Due to frequency limitation of 75-to-50 ohm adaptor, we can't measure K-factor to high frequency band, but simulation result gives out the LNA is unconditionally stable at 10MHz-10GHz.

3.1 BFG425W 40M ~ 1GHz DVB-C LNA Simulation
Fig 2. BFG425W 40M ~ 1GHz DVB-C LNA Simulation: Circuit (Capacitors GRM1555 & Inductors LQG15)
3.2 BFG425W 40M ~ 1GHz DVB-C LNA Simulation Results

3.2.1 Gain and Match in 40M ~ 1GHz Band

Fig 3. BFG425W 40M ~ 1GHz DVB-C LNA Simulation: Gain and Match
3.2.2 Noise Figure in 40M ~ 1GHz Band

![Graph showing noise figure for BFG425W in the 40M ~ 1GHz band.]

Fig 4. BFG425W 40M ~ 1GHz DVB-C LNA Simulation: Noise Figure

- **m8**: freq = 40.00MHz, nf(2) = 2.694
- **m9**: freq = 1.000GHz, nf(2) = 2.775
3.2.3 Stability

Fig 5. BFG425W 40M ~ 1GHz DVB-C LNA Simulation: Stability

4. Application Board

The 40M ~ 1GHz DVB-C LNA evaluation board simplifies the evaluation of the BFG425W application. The evaluation board enables testing of the device performance and requires no additional support circuitry. The board is fully assembled with the BFG425W transistor, including input and output matching components, to optimize performance.

The board is supplied with two F connectors at input and output, in order to keep same performance in real STB (set top box). Please make it clear, in this Demo micro-stripe line and F connector are all design for 75ohm.

4.1 Application Circuit Schematic
4.2 Application Board Bill-Of-Material

Table 1. BFG425W 40M ~ 1GHz DVB-C LNA Part List
Customer can choose their preferred vendor but should be aware that the performance could be affected.

<table>
<thead>
<tr>
<th>Item</th>
<th>Reference (Fig 7)</th>
<th>Type</th>
<th>Vendor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1, C2, C4</td>
<td>GRM1555C1</td>
<td>Murata</td>
<td>10nF</td>
</tr>
<tr>
<td>2</td>
<td>C3</td>
<td>GRM1555C1</td>
<td>Murata</td>
<td>33pF</td>
</tr>
<tr>
<td>3</td>
<td>C5</td>
<td>GRM1555C1</td>
<td>Murata</td>
<td>100nF</td>
</tr>
<tr>
<td>4</td>
<td>L1</td>
<td>LQG15</td>
<td>Murata</td>
<td>15nH</td>
</tr>
<tr>
<td>5</td>
<td>L2</td>
<td>chip ferrite bead</td>
<td>Murata</td>
<td>BLM18HE1S2SN1</td>
</tr>
<tr>
<td>6</td>
<td>R1</td>
<td></td>
<td></td>
<td>22R</td>
</tr>
<tr>
<td>7</td>
<td>R2</td>
<td></td>
<td></td>
<td>680R</td>
</tr>
<tr>
<td>8</td>
<td>R3</td>
<td></td>
<td></td>
<td>7.5k</td>
</tr>
<tr>
<td>7</td>
<td>R4, R5</td>
<td></td>
<td></td>
<td>4.3R</td>
</tr>
<tr>
<td>8</td>
<td>R6, R8</td>
<td></td>
<td></td>
<td>240R</td>
</tr>
<tr>
<td>11</td>
<td>R7</td>
<td></td>
<td></td>
<td>50R</td>
</tr>
</tbody>
</table>
Typical Application Board Test Result

S-Parameter – Gain

![Graph showing S21 parameter for BFG425W from 40 MHz to 1 GHz]

Fig 7. BFG425W 40M ~ 1GHz DVB-C LNA: S-Parameter Gain
4.3.2 S-Parameter – Input Return Loss

![Graph showing S11 LogM 5.000dBV 0.00dB for BFG425W 40M~1GHz DVB-C LNA: S-Parameter Input Return Loss](image)

Fig 8. BFG425W 40M~1GHz DVB-C LNA: S-Parameter Input Return Loss
4.3.3 S-Parameter – Output Return Loss

Fig 9. BFG425W 40M ~ 1GHz DVB-C LNA: S-Parameter Output Return Loss
4.3.4 S-Parameter – Isolation

Fig 10. BFG425W 40M~1GHz DVB-C LNA: S-Parameter Isolation
4.3.5 Linearity/IP2

OIP2 = -21.9dBm + (65.7-22.6)dB + 5.7dB = 26.9dBm
IIP2 = 26.9dBm - 13.1dB = 13.8dBm

Note1, Input Power = -30dBm, f1 = 200MHz, f2 = 500MHz
Note2, 75-to-50 ohm adaptor Insertion Loss = 5.7dB
Note3, Gain @ 500MHz = 13.1dB

Fig 11. BFG425W 40M ~ 1GHz DVB-C LNA: IP2 @ f1=200MHz, f2=500MHz
OIP2 = -21.1dBm + (64.6-23.1)dB + 5.7dB = 26.1dBm
IIP2 = 26.1dBm - 12.6dB = 13.5dBm

Note1, Input Power = -30dBm, f1 = 100MHz, f2 = 800MHz
Note2, 75-to-50 ohm adaptor Insertion Loss = 5.7dB
Note3, Gain @ 800MHz = 12.6dB

Fig 12. BFG425W 40M ~ 1GHz DVB-C LNA: IP2 @ f1=100MHz, f2=800MHz
4.3.6 Linearity/IP3

OIP3 = 13.2dBm + 5.7dB = 18.9dBm
IIP3 = OIP3 - Gain = 18.9 - 13.9 = 5.0dBm

Note1, Two tones: f1: 80MHz, f2: 81MHz, -30dBm each tone, tone spacing: 1MHz
Note2, 75-to-50 ohm adaptor Insertion Loss = 5.7dB
Note3, Gain @ 80MHz = 13.9dB

Fig 13. BFG425W 40M ~ 1GHz DVB-C LNA: IP3 @ f1=80MHz, f1=81MHz
OIP3 = 12.7dBm+5.7dB = 18.4dBm
IIP3 = OIP3 - Gain = 18.9 -13.1 = 5.8dBm
Note1, Two tones: f1: 500MHz, f2: 501MHz, -30dBm each tone, tone spacing: 1MHz
Note2, 75-to-50 ohm adaptor Insertion Loss = 5.7dB
Note3, Gain @ 500MHz = 13.1dB

Fig 14. BFG425W 40M ~ 1GHz DVB-C LNA: IP3 @ f1=500MHz, f1=501MHz
OIP3 = 9.3dBm + 5.7dB = 15.0dBm
IIP3 = OIP3 - Gain = 15.0 - 12.3 = 2.7dBm
Note1, Two tones: f1: 900MHz, f2: 901MHz, -30dBm each tone, tone spacing: 1MHz
Note2, 75-to-50 ohm adaptor Insertion Loss = 5.7dB
Note3, Gain @ 900MHz = 12.3dB

Fig 15. BFG425W 40M ~ 1GHz DVB-C LNA: IP3 @ f1=900MHz, f1=901MHz

4.3.7 Noise Figure Measurement

The noise figure is measured under F-to-SMA adaptors connecting with the evaluation board, this 75-to-50ohm adaptor has 5.7dB insertion loss from 40MHz to 1GHz. The adaptor losses (RF_IN and RF_OUT loss = 5.7dB @ 40M~1GHz) of the connectors are subtracted.
4.3.8 Summary of the Typical Evaluation Board Test Result

Table 2. Typical results measured on the BFG425W 40M ~ 1GHz DVB-C LNA Evaluation Board

Operating frequency 40M ~ 1GHz, testing at 40MHz and 1GHz unless otherwise specified, Temp = 25°C.

All measurements are done with F-to-SMA adaptor connectors as reference plane.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Vcc</td>
<td>3.0</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Icc</td>
<td>18</td>
<td>mA</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>@40MHz</td>
<td>NF</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>@520MHz</td>
<td>NF</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>@1GHz</td>
<td>NF</td>
<td>2.7</td>
</tr>
<tr>
<td>Power Gain</td>
<td>@40MHz</td>
<td>Gp</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>@1GHz</td>
<td>Gp</td>
<td>12.2</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>40M ~ 1GHz</td>
<td>Gf</td>
<td>+/- 1.1</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>@40MHz</td>
<td>IRL</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>@1GHz</td>
<td>IRL</td>
<td>9.0</td>
</tr>
</tbody>
</table>
Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Return Loss</td>
<td>@40MHz</td>
<td>ORL</td>
<td>23.9 dB</td>
</tr>
<tr>
<td></td>
<td>@1GHz</td>
<td>ORL</td>
<td>24.9 dB</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>@40MHz</td>
<td>ISLrev</td>
<td>29.6 dB</td>
</tr>
<tr>
<td></td>
<td>@1GHz</td>
<td>ISLrev</td>
<td>27.3 dB</td>
</tr>
<tr>
<td>Input Second Order Intercept Point</td>
<td>f1: 200MHz, f2: 500MHz,</td>
<td>IIP2</td>
<td>13.8 dBm</td>
</tr>
<tr>
<td></td>
<td>f1: 100MHz, f2: 800MHz,</td>
<td>IIP2</td>
<td>13.5 dBm</td>
</tr>
<tr>
<td>Output Second Order Intercept Point</td>
<td>f1: 200MHz, f2: 500MHz,</td>
<td>OIP2</td>
<td>26.9 dBm</td>
</tr>
<tr>
<td></td>
<td>f1: 100MHz, f2: 800MHz,</td>
<td>OIP2</td>
<td>26.1 dBm</td>
</tr>
<tr>
<td>Input Third Order Intercept Point Two Tones:</td>
<td>f1: 80MHz, f2: 81MHz,</td>
<td>IIP3</td>
<td>5.0 dBm</td>
</tr>
<tr>
<td>Input power: -30dBm</td>
<td>f1: 500MHz, f2: 501MHz,</td>
<td>IIP3</td>
<td>5.8 dBm</td>
</tr>
<tr>
<td></td>
<td>f1: 900MHz, f2: 901MHz,</td>
<td>IIP3</td>
<td>2.7 dBm</td>
</tr>
<tr>
<td>Output Third Order Intercept Point Two Tones:</td>
<td>f1: 80MHz, f2: 81MHz,</td>
<td>OIP3</td>
<td>18.9 dBm</td>
</tr>
<tr>
<td>Input power: -30dBm</td>
<td>f1: 500MHz, f2: 501MHz,</td>
<td>OIP3</td>
<td>18.4 dBm</td>
</tr>
<tr>
<td></td>
<td>f1: 900MHz, f2: 901MHz,</td>
<td>OIP3</td>
<td>15.0 dBm</td>
</tr>
</tbody>
</table>
5. Legal information

5.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

5.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

5.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

5.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

<Patent ID> — owned by <Company name>

5.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

<Name> — is a trademark of NXP B.V.
6. List of figures

- Fig 1. BFG425W 40M ~ 1GHz DVB-C LNA EVB Demo Board ... 3
- Fig 2. BFG425W 40M ~ 1GHz DVB-C LNA Simulation: Circuit (Capacitors GRM1555 & Inductors LQG15) ... 5
- Fig 3. BFG425W 40M ~ 1GHz DVB-C LNA Simulation: Gain and Match ... 6
- Fig 4. BFG425W 40M ~ 1GHz DVB-C LNA Simulation: Noise Figure ... 7
- Fig 5. BFG425W 40M ~ 1GHz DVB-C LNA Simulation: Stability ... 8
- Fig 6. BFG425W 40M ~ 1GHz DVB-C LNA: Schematic .. 9
- Fig 7. BFG425W 40M ~ 1GHz DVB-C LNA: S-Parameter Gain ... 10
- Fig 8. BFG425W 40M ~ 1GHz DVB-C LNA: S-Parameter Input Return Loss 11
- Fig 9. BFG425W 40M ~ 1GHz DVB-C LNA: S-Parameter Output Return Loss 12
- Fig 10. BFG425W 40M ~ 1GHz DVB-C LNA: S-Parameter Isolation .. 13
- Fig 11. BFG425W 40M ~ 1GHz DVB-C LNA: IP2 @ f1=200MHz, f2=500MHz 14
- Fig 12. BFG425W 40M ~ 1GHz DVB-C LNA: IP2 @ f1=100MHz, f2=800MHz 15
- Fig 13. BFG425W 40M ~ 1GHz DVB-C LNA: IP3 @ f1=80MHz, f2=81MHz 16
- Fig 14. BFG425W 40M ~ 1GHz DVB-C LNA: IP3 @ f1=500MHz, f2=501MHz 17
- Fig 15. BFG425W 40M ~ 1GHz DVB-C LNA: IP3 @ f1=900MHz, f2=901MHz 18
- Fig 16. BFG425W 40M ~ 1GHz DVB-C LNA: NF ... 19
7. List of tables

Table 1. BFG425W 40M ~ 1GHz DVB-C LNA Part List..9
Table 2. Typical results measured on the BFG425W 40M ~ 1GHz DVB-C LNA Evaluation Board19
8. Contents

1. Introduction ... 3
2. Requirements and design of the 40M ~ 1GHz DVB-C LNA ... 4
3. Design and Simulation ... 4
 3.1 BFG425W 40M ~ 1GHz DVB-C LNA Simulation 4
 3.2 BFG425W 40M ~ 1GHz DVB-C LNA Simulation Results ... 6
 3.2.1 Gain and Match in 40M ~ 1GHz Band 6
 3.2.2 Noise Figure in 40M ~ 1GHz Band 7
 3.2.3 Stability .. 8
4. Application Board ... 8
 4.1 Application Circuit Schematic 8
 4.2 Application Board Bill-Of-Material 9
 4.3 Typical Application Board Test Result 10
 4.3.1 S-Parameter – Gain 10
 4.3.2 S-Parameter – Input Return Loss 11
 4.3.3 S-Parameter – Output Return Loss 12
 4.3.4 S-Parameter – Isolation 13
 4.3.5 Linearity/IP2 ... 14
 4.3.6 Linearity/IP3 ... 16
 4.3.7 Noise Figure Measurement 18
 4.3.8 Summary of the Typical Evaluation Board Test Result .. 19
5. Legal information .. 21
 5.1 Definitions .. 21
 5.2 Disclaimers .. 21
 5.3 Licenses ... 21
 5.4 Patents ... 21
 5.5 Trademarks .. 21
6. List of figures ... 22
7. List of tables .. 23
8. Contents ... 24