This document provides circuit schematic, layout, BOM and typical evaluation board performance for a 5-6 GHz WiFi (WLAN) LNA with bypass.
Revision history

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20160316</td>
<td>Chapter 5 “Thermal info” added</td>
</tr>
<tr>
<td>1</td>
<td>20141003</td>
<td>First publication</td>
</tr>
</tbody>
</table>

Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
1. Introduction

The BGU7258 is a fully integrated MMIC Low Noise Amplifier (LNA) for wireless receiver applications in the 5 GHz to 6 GHz ISM band. Manufactured in NXP’s high performance SiGe:C technology, the BGU7258 couples best-in-class gain, noise figure, linearity and efficiency with the process stability and ruggedness that are the hallmarks of SiGe technology. The BGU7258 features a robust temperature-compensated internal bias network and an integral bypass / shutdown feature that stabilizes the DC operating point over temperature and enables operation in the presence of high input signals, while minimizing current consumption in bypass (standby) mode. The 1.6 mm x 1.6 mm footprint coupled with only two external components, makes the circuit board implementation of the BGU7258 LNA the smallest IEEE 802.11ac LNA with bypass solution on the market, ideal for space sensitive applications.

Key Benefits:

- Fully integrated, high performance LNA with built-in bypass
- Exceptional 1.6 dB noise figure with 13 mA current consumption
- Extremely low bypass current (2 µA)
- Single supply 3.0 V to 3.6 V operation
- Integrated concurrent 2.4 GHz notch filter and temperature stabilized bias network
- High IIP3 and low EVM
- High ESD protection of 2 kV (HBM) on all pins
- Small 0.5 mm pitch, 1.6 x 1.6 x 0.5 mm QFN-style package, MSL 1 at 260°C
- Compliant to Directive 2002/95/EC, regarding Restriction of Hazardous Substances (RoHS) following NXP’s RHF-2006 indicator D (dark green)
2. Design and Application

The overall intent of this application note is to demonstrate the performance of the BGU7258 in a 5 GHz LNA application e.g. 802.11a/n/ac “MIMO” WiFi (WLAN). Key requirements for this type of WLAN application are gain, noise figure, linearity, input and output return loss, and turn on/off time.

The BGU7258 itself is a fully integrated MMIC consisting of an RF Gain block, internal temperature compensated bias network, bypass mode functionality, 2.4 GHz notch filter to suppress jammers from 2.4 GHz ISM Band, ESD protection, internal RF matching, and internal DC blocking. Only two external components, a 4.7 nF DC-decoupling capacitor on the power supply line and an optional shunt 0.3 pF capacitor for matching at RF input is necessary.

On NXP’s Application Board, the BGU7258 can be also used without the matching capacitor at the RF_IN, but in this case, the gain will decrease by ~0.5 dB and the noise figure increases by ~ 0.1 dB at 5.8 GHz.

The 5 GHz WiFi LNA evaluation board simplifies the evaluation of the BGU7258 application. The evaluation board enables testing of the device performance and requires no additional support circuitry. The board is fully assembled with the BGU7258 MMIC, and includes the 4.7 nF DC-decoupling capacitor and the 0.3 pF input matching capacitor. The board is also supplied with two SMA connectors for input and output connection to RF test equipment.

A 50 ohm “through line” is provided at the top of the evaluation board in case the user wishes to verify RF connector and grounded coplanar wave guide losses for de-embedding purposes.
Fig 2. BGU7258 Evaluation Board 5-6 GHz WiFi LNA EVB
2.1 Application Circuit Schematic

![BGU7258 Evaluation Board: Schematic](image)

Note: Figure 3 is the schematic for BGU7258 evaluation board with only two external components (Matching shunt capacitor on RF_IN and DC-decoupling capacitor, placed near the Vcc pin).

The BGU7258 can be also used without the matching capacitor at the RF_IN, but then the gain will be ~0.5 dB less and the noise figure increases ~0.1 dB at 5.8 GHz!

2.2 PCB Layout

- Use controlled impedance lines (50 Ω) for RF_in & RF_out
- Place the decoupling capacitor as close as possible to the device pin 6 (Vcc)
- Proper grounding of the RF GND especially pin 7 (ground pad) is essential for good RF-performance. Connect the GND pins direct to ground plane and use through vias on ground pad (size and amount depends on the technology used)
2.3 Board Layout

Fig 4. BGU7258 Evaluation Board

Fig 5. BGU7258 Stack of the PCB material
2.4 Application Board Bill-Of-Material

Table 1. BGU7258 5-6 GHz WiFi LNA Part List
Customer can choose their preferred vendor but should be aware that the performance could be affected. “0402” case size passives are used on NXP’s evaluation board.

<table>
<thead>
<tr>
<th>Item</th>
<th>Position on Layout</th>
<th>Reference (Fig 2)</th>
<th>Type</th>
<th>Vendor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Z1</td>
<td>BGU7258</td>
<td>BGU7258</td>
<td>NXP SEMICONDUCTORS</td>
<td>BGU7258</td>
</tr>
<tr>
<td>2</td>
<td>Z2</td>
<td>C1</td>
<td>GRM155</td>
<td>Murata</td>
<td>4.7 nF</td>
</tr>
<tr>
<td>3</td>
<td>RF_IN</td>
<td>Shunt Capacitor</td>
<td>GJM155</td>
<td>Murata</td>
<td>0.3 pF</td>
</tr>
<tr>
<td>4</td>
<td>X1, X2</td>
<td>RF_IN, RF_OUT</td>
<td>Emerson Network Power</td>
<td>CON-SMA-1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X3</td>
<td>Vcc/LNA gain/bypass</td>
<td>Molex</td>
<td>CON-3PIN</td>
<td></td>
</tr>
</tbody>
</table>
3. Typical Application Board Test Result

This section presents the results of a typical BGU7258 as used in NXP’s Application Circuit. Unless otherwise noted, all measurement references are at the SMA connectors on the evaluation board.

3.1.1 S-Parameters

Figures 6 and 7 below show the broadband (10 MHz – 10 GHz) and narrowband s-parameters for the BGU7258 respectively. Figure 8 shows the measured stability factor from 1 GHz – 20 GHz.

![BGU7258 Broadband S-Parameters](image)

Fig 6. BGU7258 Broadband S-Parameters \(V_{\text{CC}} = 3.3V \) 25\(^\circ\text{C}\) ambient
Fig 7. BGU7258 Narrowband S-Parameters $V_{CC} = 3.3V$ 25°C ambient
Fig 8. BGU7258 Broadband K Factor (Rollett Stability Factor) \(V_{CC} = 3.3V \) 25°C ambient
3.1.2 S-Parameters in Bypass mode

Figure 9 and 10 below shows the gain, input return loss, and output return loss of the BGU7258 in bypass mode.

Fig 9. BGU7258 Broadband S-Parameters Bypass Mode Vcc = 3.3V 25°C ambient
Fig 10. BGU7258 Narrowband S-Parameters Bypass Mode Vcc = 3.3V 25°C ambient
3.1.3 Noise Figure in Gain mode

The noise figure is physically measured at the SMA connectors of the evaluation board. The total loss of the connectors and the printed circuit board are 0.5dB at 5.5 GHz (RF_IN to RF_OUT). After de-embedding the input portion of connector and PCB losses (0.25dB at 5.5 GHz) to the device pins, the noise figure is around 1.6dB at 5.5 GHz. Figure 11 below shows both the noise figure at the EVB level and the de-embedded noise figure.

![Graph showing noise figure for BGU7258](image)

Fig 11. BGU7258 Noise Figure Vcc = 3.3V 25°C ambient
3.1.4 Small Signal Linearity in Gain mode

Figure 12 shows the input-referred IP3 level for the BGU7258, measured with 5 MHz tone spacing, -25 dBm input power per tone, and a swept center frequency from 5 GHz to 6 GHz.

![Graph showing the input-referred IP3 level for the BGU7258](image)

Fig 12. BGU7258 Swept input-IP3 5MHz Tone Spacing Pin=-25dBm/Tone Vcc = 3.3V 25°C ambient
3.1.5 Large Signal Linearity in Gain mode

Figure 13 shows the input referred P1dB level from 5 GHz to 6 GHz.

![Graph showing input referred P1dB level from 5 GHz to 6 GHz.](image)

Fig 13. BGU7258 input-P1dB vs. frequency \(V_{CC} = 3.3V \) 25°C ambient
Figure 14 shows Error Vector Magnitude (EVM) as a function of output power, with BGU7258 in Gain mode. Specifically, these data are captured using a 256 QAM OFDM waveform MSC9-VHT40. Note that the output power is the average power over the burst.

![Graph showing EVM vs. output power](image)

Fig 14. BGU7258 EVM vs. burst average output power MCS9-VHT40 256 QAM Vcc = 3.3V 25°C ambient
3.1.6 Out-of-band spurious

In order to characterize the BGU7258 under potential jamming conditions, a 5.180 GHz signal is applied to the evaluation board at an RF input power level of -30 dBm. A second tone is applied at 2.462 GHz and swept over a range of input power levels. The 2.462 GHz “leakage” and the second harmonic at 4.924 GHz are measured. The measurement set-up is shown in Figure 15. As a function of the 2.462 GHz jammer input level, Figure 16 reports the 2.462 GHz jammer output level, the 4.924 GHz second harmonics output level, and the 5.180 GHz Gain.

![Diagram showing out-of-band suppression test setup](image)

Fig 15. Out-of-band suppression test setup (if necessary use additional low pass filter at signal generator 2 output)
Fig 16. BGU7258 2462 MHz Jammer Level at Output, 4924 MHz second harmonics and 5180 MHz Gain vs. Jammer Input Power. Vcc = 3.3V, 25°C ambient, 5180 MHz input at -30 dBm.
3.1.7 Harmonics

By applying large RF signals at the input during bypass mode (OFF mode) operation, harmonics can be created by the LNA and then emanate from its RF input. In a real operating environment, these harmonic signals can be re-emitted by the antenna. The measurement set up used for characterizing the harmonics generated by the BGU7258 in bypass mode is shown in Figure 17. A 5.500 GHz signal is used for the measurement results shown in Figure 18.

![Harmonic test setup](image)
Fig 18. BGU7258 (Bypass Mode) 2nd and 3rd Reflected Harmonic Levels 5.5 GHz Fundamental

(1) CW – Continuous Wave (only for test / comparison)
(2) WFM1 - 802.11a 6 Mbps (BPSK) 90% duty cycle (worst case signal)
3.1.8 LNA Turn ON-OFF Time

The following diagram shows the setup to test LNA Turn ON and Turn OFF time.

The waveform generator is set to square wave mode and the output amplitude at 3.3V peak with 50Ω output impedance. The RF signal generator output level is -20dBm at 5.5 GHz. It is very important to minimize or compensate for the time delay skew between the trigger signal and the detector signal. Also note that the scope input impedances are set to 50Ω on both channels.

![Diagram of LNA Turn On and Turn Off time test setup]

Fig 19. LNA Turn On and Turn Off time test setup
3.1.8.1 LNA Turn ON Time

Figure 20 below shows a screen capture from an oscilloscope used to record the turn on time of the BGU7258.

100Hz 0/3.3V Square Wave, applied on V-enable pin, measured from 50% of input pulse to 90% of maximum output power

Fig 20. BGU7258 Turn On Time
3.1.8.2 LNA Turn OFF Time

Figure 21 below shows an oscilloscope screen capture with the turn off time for the BGU7258.

100Hz 0/3.3V Square Wave, applied on Venable pin, measured from 50% of input pulse to 10% of maximum output power

Fig 21. BGU7258 Turn Off Time
4. Summary of the Typical Evaluation Board Test Result

Table 2. Typical results measured on the BGU7258 5-6 GHz WiFi LNA Evaluation Board with 0.3 pF matching capacitor at the RF_IN

Operating frequency 4.9-5.925 GHz, testing at 5.1 GHz and 5.9 GHz in Gain mode unless otherwise specified, Temp = 25°C. Unless noted, all measurements are done with SMA-connectors as reference plane.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Vcc</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Icc</td>
<td>12.5</td>
<td>mA</td>
</tr>
<tr>
<td>ByPass Current</td>
<td>bypass</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>Noise Figure [1]</td>
<td>@ 5.1 GHz NF</td>
<td>1.6</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz NF</td>
<td>1.7</td>
<td>dB</td>
</tr>
<tr>
<td>Power Gain</td>
<td>@ 5.1 GHz Gp</td>
<td>13.8</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz Gp</td>
<td>12.7</td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>@ 5.1 GHz IRL</td>
<td>12.5</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz IRL</td>
<td>23.0</td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>@ 5.1 GHz ORL</td>
<td>20.0</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz ORL</td>
<td>16.0</td>
<td>dB</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>@ 5.1 GHz ISLrev</td>
<td>-21.0</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz ISLrev</td>
<td>-20.0</td>
<td>dB</td>
</tr>
<tr>
<td>Power Gain (bypass mode)</td>
<td>@ 5.1 GHz Gp</td>
<td>-7.7</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz Gp</td>
<td>-7.6</td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss (bypass mode)</td>
<td>@ 5.1 GHz IRL</td>
<td>9.0</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz IRL</td>
<td>10.0</td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss (bypass mode)</td>
<td>@ 5.1 GHz ORL</td>
<td>21.0</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz ORL</td>
<td>16.0</td>
<td>dB</td>
</tr>
<tr>
<td>Input Third Order Intercept Point Two Tones: 5 MHz Tone Spacing Power: -5 dBm/tone (bypass mode)</td>
<td>@ 5.1 GHz IIP3</td>
<td>26.7</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz IIP3</td>
<td>28.1</td>
<td>dBm</td>
</tr>
<tr>
<td>Output Third Order Intercept Point Two Tones: 5 MHz Tone Spacing Power: -5 dBm/tone (bypass mode)</td>
<td>@ 5.1 GHz OIP3</td>
<td>19.0</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz OIP3</td>
<td>20.5</td>
<td>dBm</td>
</tr>
<tr>
<td>Input 1dB Gain Compression Point</td>
<td>@ 5.1 GHz iP1dB</td>
<td>-4.7</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz iP1dB</td>
<td>-4.0</td>
<td>dBm</td>
</tr>
<tr>
<td>Output 1dB Gain Compression Point</td>
<td>@ 5.1 GHz OIP1dB</td>
<td>8.1</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>@ 5.9 GHz OIP1dB</td>
<td>7.7</td>
<td>dBm</td>
</tr>
<tr>
<td>Error Vector Magnitude</td>
<td>@ 5.1 GHz EVM</td>
<td>2.2</td>
<td>%</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Pout = 0dBm (256 QAM, MSC9-VHT-40)</td>
<td>EVM</td>
<td>2.3</td>
<td>%</td>
</tr>
<tr>
<td>Input Third Order Intercept Point</td>
<td>IIP3</td>
<td>7.9</td>
<td>dBm</td>
</tr>
<tr>
<td>Two Tones: 5 MHz Tone Spacing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>power: -25 dBm/tone</td>
<td>@ 5.9 GHz</td>
<td>8.6</td>
<td>dBm</td>
</tr>
<tr>
<td>Output Third Order Intercept Point</td>
<td>OIP3</td>
<td>21.5</td>
<td>dBm</td>
</tr>
<tr>
<td>Two Tones: 5 MHz Tone Spacing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>power: -25 dBm/tone</td>
<td>@ 5.9 GHz</td>
<td>21.2</td>
<td>dBm</td>
</tr>
<tr>
<td>1 dB input/output cross-compression with jammer</td>
<td></td>
<td>-1.0</td>
<td>dBm</td>
</tr>
<tr>
<td>Harmonics generated at RF input</td>
<td>H2</td>
<td>-50</td>
<td>dBm</td>
</tr>
<tr>
<td>Pin = 4 dBm (5.5 GHz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW signal input (bypass mode)</td>
<td>H3</td>
<td><-90</td>
<td>dBm</td>
</tr>
<tr>
<td>Stability (1 - 20 GHz)</td>
<td>K</td>
<td>>1</td>
<td></td>
</tr>
<tr>
<td>LNA Turn ON/OFF Time</td>
<td>Ton</td>
<td>100</td>
<td>nS</td>
</tr>
<tr>
<td></td>
<td>Toff</td>
<td>19</td>
<td>nS</td>
</tr>
</tbody>
</table>

[1] PCB and connector losses excluded.
5. Thermal info

The following temperature simulations are done based on the BGU7258 soldered onto the NXP evaluation board (see Fig. 22) in still air and 85 °C ambient temperature.

<table>
<thead>
<tr>
<th>Part number</th>
<th>$\theta_{jc,bot}$[1]</th>
<th>θ_{ja}[2]</th>
<th>Ψ_{JC}[3]</th>
<th>Maximum Junction Temperature</th>
<th>T_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGU7258</td>
<td>250 K/W</td>
<td>250 K/W</td>
<td>204 K/W</td>
<td>101 °C</td>
<td>85 °C</td>
</tr>
</tbody>
</table>

[1] Thermal resistance from junction to exposed diepad

[2] Thermal resistance from junction to board

[3] Thermal characterization parameter junction to package top

Fig 22. BGU7258 reference position board temperature
6. Legal information

6.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

6.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for any claims made to the contrary.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable for and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out of the use or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

6.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

6.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

<Patent ID> — owned by <Company name>

6.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

<Name> — is a trademark of NXP B.V.
7. List of figures

Fig 1. BGU7258 Block Diagram ... 4
Fig 2. BGU7258 Evaluation Board 5-6 GHz WiFi LNA EVB .. 5
Fig 3. BGU7258 Evaluation Board: Schematic 6
Fig 4. BGU7258 Evaluation Board 7
Fig 5. BGU7258 Stack of the PCB material 7
Fig 6. BGU7258 Broadband S-Parameters Vcc = 3.3V 25°C ambient .. 9
Fig 7. BGU7258 Narrowband S-Parameters Vcc = 3.3V 25°C ambient .. 10
Fig 8. BGU7258 Broadband K Factor (Rollett Stability Factor) Vcc = 3.3V 25°C ambient 11
Fig 9. BGU7258 Broadband S-Parameters Bypass Mode Vcc = 3.3V 25°C ambient 12
Fig 10. BGU7258 Narrowband S-Parameters Bypass Mode Vcc = 3.3V 25°C ambient 13
Fig 11. BGU7258 Noise Figure Vcc = 3.3V 25°C ambient .. 14
Fig 12. BGU7258 Swept input-IP3 5MHz Tone Spacing Pin=-25dBm/Tone Vcc = 3.3V 25°C ambient 15
Fig 13. BGU7258 input-P1dB vs. frequency Vcc = 3.3V 25°C ambient ... 16
Fig 14. BGU7258 EVM vs. burst average output power MCS9-VHT40 256 QAM Vcc = 3.3V 25°C ambient .. 17
Fig 15. Out-of-band suppression test setup (if necessary use additional low pass filter at signal generator 2 output) .. 18
Fig 16. BGU7258 2462 MHz Jammer Level at Output, 4924 MHz second harmonics and 5180 MHz Gain vs. Jammer Input Power Vcc = 3.3V 25°C ambient 5180 MHz input at -30 dBm .. 19
Fig 17. Harmonic test setup .. 20
Fig 18. BGU7258 (Bypass Mode) 2nd and 3rd Reflected Harmonic Levels 5.5 GHz Fundamental 21
Fig 19. LNA Turn On and Turn Off time test setup 22
Fig 20. BGU7258 Turn On Time 23
Fig 21. BGU7258 Turn Off Time 24
Fig 22. BGU7258 reference position board temperature .. 27
8. Contents

1. Introduction ... 3
2. Design and Application....................................... 4
 2.1 Application Circuit Schematic............................. 6
 2.2 PCB Layout.. 6
 2.3 Board Layout.. 7
 2.4 Application Board Bill-Of-Material 8
3. Typical Application Board Test Result 9
 3.1.1 S-Parameters ... 9
 3.1.2 S-Parameters in Bypass mode........................ 12
 3.1.3 Noise Figure in Gain mode.......................... 14
 3.1.4 Small Signal Linearity in Gain mode 15
 3.1.5 Large Signal Linearity in Gain mode 16
 3.1.6 Out-of-band spurious 18
 3.1.7 Harmonics .. 20
 3.1.8 LNA Turn ON-OFF Time 22
 3.1.8.1 LNA Turn ON Time .. 23
 3.1.8.2 LNA Turn OFF Time 24
4. Summary of the Typical Evaluation Board Test Result ... 25
5. Thermal info ... 27
6. Legal information .. 28
 6.1 Definitions .. 28
 6.2 Disclaimers... 28
 6.3 Licenses ... 28
 6.4 Patents ... 28
 6.5 Trademarks .. 28
7. List of figures ... 29
8. Contents ... 30