

 AN11610
LPC5410x I2C SPI Secondary Bootloader
Rev. 1.0 — 8 April 2015 Application note

Document information
Info Content
Keywords LPC5410x, I2C, SPI, Firmware update, Secondary Bootloader

Abstract This application note describes and implements a secondary bootloader
via the I2C/SPI bus of the LPC5410x MCU. This secondary bootloader
allows easy firmware update in an application environment, similar to a
sensor hub, where the application processor can update the LPC5410x’s
firmware via the I2C/SPI secondary bootloader.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20154. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 2 of 43

Contact information
For more information, please visit: http://www.nxp.com

Revision history
Rev Date Description
1.0 20150408 Initial Version

http://www.nxp.com/

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 3 of 43

1. Introduction
The LPC5410x is an ARM Cortex-M4 based microcontroller for embedded applications. It
includes an optional ARM Cortex-M0+ coprocessor, 104 kB of on-chip SRAM, 512 kB on-
chip flash, numerous timers, four USARTs, two SPIs and three Fast-mode plus I2C-bus
interfaces with high-speed slave mode and one 12-bit 4.8 Msamples/sec ADC.

The LPC5410x supports ARM Serial Wire Debug (SWD) mode for Coretx-M4 and, if
present, the Cortex-M0+ core. Device programming can be achieved through the SWD
port. In addition, the LPC5410x contains an on-chip boot ROM that supports In-System
Programming (ISP) when the part resides in the end-user board and In-Application
Programming (IAP) as directed by the end-user application code. The ISP mode is
supported via USART0. The state of the pin P0_31 determines whether to enter ISP
mode at boot time.

Table 1. ISP modes

Boot mode P0_31 Description
No ISP HIGH ISP bypassed. Part attempts to boot from flash

USART0 LOW Part enters ISP via USART0

For some applications, where the LPC5410x is a slave processor to the host processor, it
is often necessary to program the LPC5410x through the host processor because the
programming interface through the SWD and ISP via UART are not provided in the
system. There are a broad range of applications that use the LPC5410x as a slave
processor, for example, the unmanned vehicles, gaming, and Robot to name a few. The
sensor hub application for smart phone products is another example, where the
LPC5410x is used as a sensor hub. In this use case, the flash device must be
programmed through a host interface, which is an interface between the application
processor (AP) and the sensor hub.

The Secondary Bootloader (SBL) described and implemented in this application note
provides a solution for the host processor to program the slave processor. It utilizes the
boot ROM’s IAP functionalities and allows programming the LPC5410x flash through I2C
slave interface or SPI slave interface which are the common interfaces used between the
host processor (referred to as AP in a sensor hub application) and the sensor hub.

Fig 1 shows an example of a system setup where the AP can program the LPC5410x via
I2C/SPI interface assisted by the SBL code.

Application Processor
(AP)

Sensor Hub (LPC5410x)

I2C or SPI

SBL

I2C or SPI

IRQ nHostIRQ

Fig 1. Secondary boot loader for sensor hub application

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 4 of 43

2. SBL Functionalities and Boot Process with SBL
The SBL is located at the first sector of user flash and contains routines to perform the
functionalities described in Table 2.

Table 2. SBL functionalities

Functionalities Description
Host Interface Detection Described in section 2.3

I2C and SPI communication Interface with the host processor

Flash IAP programming Described in section 2.4

Application image CRC checking Verify CRC before booting

For applications using a secondary boot loader, the SBL is the boot strap mechanism
that initializes the user application. With a role this important, it may be necessary to
protect the SBL from accidental or malicious data tampering. The LPC5410x series
features a flash sector locking ability, allowing the user to pick a flash sector to “lock
down” and make the current flash contents permanent. Locking sector 0 after the SBL
has been programmed will guarantee that the SBL is tamper proof while still allowing
other flash sectors to be modified. Note that the CRP level of the chip is determined in
sector 0, so when locking sector 0, the current CRP level will also become permanent.
For more information on flash sector locking, please reference NXP AN 11653.

2.1 Memory map with applications boot with SBL
The SBL assumes that the user application starts from 0x00008000 in the flash region.
Therefore, applications that boot from the SBL must be initially set up with the vector
table at address 0x00008000. The SBL will set the Cortex-M4’s vector table offset
register VTOR to 0x00008000 before passing the control to the application. The SBL
uses the stack pointer at address 0x00008000 and the application entry point at address
0x00008004 to start the application. See Fig 2 for flash memory allocation of the SBL
and the user application. See section 4.11 for details on the application image header
requirement.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 5 of 43

Below is the LPC5410x Flash Sector/Page information (all sector size is 32kB):

Sector
Number

Page Numbers Address Range

0 0-127 0x0000 0000 – 0x0000 7FFF

1 128-255 0x0000 8000 – 0x0000 FFFF

2 256-383 0x0001 0000 – 0x0001 7FFF

3 384-511 0x0001 8000 – 0x0001 FFFF

4 512-639 0x0002 0000 – 0x0002 7FFF

5 640-767 0x0002 8000 – 0x0002 FFFF

6 768-895 0x0003 0000 – 0x0003 7FFF

7 896-1023 0x0003 8000 – 0x0003 FFFF

8 1024-1151 0x0004 0000 – 0x0004 7FFF

9 1152-1279 0x0004 8000 – 0x0004 FFFF

10 1280-1407 0x0005 0000 – 0x0005 7FFF

11 1408-1535 0x0005 8000 – 0x0005 FFFF

12 1536-1663 0x0006 0000 – 0x0006 7FFF

13 1664-1791 0x0006 8000 – 0x0006 FFFF

14 1792-1919 0x0007 0000 – 0x0007 7FFF

15 1920-2047 0x0007 8000 – 0x0007 FFFF

Fig 2. Flash memory map for applications boot with SBL

2.2 Boot process with SBL
All LPC5410x parts with a secondary bootloader flashed will go through the following
boot sequence. See Fig 3.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 6 of 43

BootROM

Secondary Boot Loader
(SBL)

Image header
Present?

Do host I/F
Detection

Wait for
SH_CMD_PROBE

Wait for AP
commands

Image Type?

Check host I/F
nIRQ active?

No

Yes

Image type = IMG_AP_WAIT

Image type = IMG_NORMAL

Yes

CRC Check
Pass?

Boot
Application

Yes

No

Image type = IMG_NO_WAIT
Image type = IMG_NO_CRC

No

Check host I/F
nIRQ active?

Yes

No

Fig 3. Boot flow of LPC5410x with secondary boot loader

 After reset (Power on reset, Watch Dog Reset, external reset, BOD reset or software

system reset), the Boot ROM will run and pass the control to the SBL.
 To allow proper handshaking between the SBL and the application, an image header

is required in the application image at offset 0x100 (0x00008100 absolute flash
address). Before booting the application, the SBL checks for the presence of the
image header. For more details, see section 4.1, Image header construction.

 If the image header is absent, the SBL will start host I/F auto detection. For more
details, see section 2.3, Host interface detection.

 If the image header is present then the SBL checks the image type. For more details,
see section 4.1.1.

 Depending on the image type, the SBL either checks the image integrity and boots
the image automatically or enters an AP command processing loop (where the AP
controls when to boot the application).

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 7 of 43

2.3 Host interface detection
The LPC5410x has three I2C interface ports (I2C0, I2C1, and I2C2) and two SPI
interface ports (SPI0 and SPI1). To talk to the Host Processor, the SBL needs to know
the host interface (I/F) being used to connect the AP to LPC5410x. In this design, the
SBL performs an auto-detection of the host interface by monitoring the interface pins.

Depending on the interface type, the host I/F has the following pins:
 I2C

 SCL: I2C clock pin. Host as an I2C master will drive this pin.

 SDA: I2C data pin.

 nHostIRQ: Active low Host nIRQ pin.

Note that the SBL only supports three I2C addresses and the host application can
choose one of the following addresses: 0x18, 0x1C, and 0x30.

 SPI

 SCK: SPI clock pin. Host as the SPI master drives clock on this pin during
communication. The SBL assumes SPI interface to operate in Mode 0 defined in
LPC54xxx user manual.

 MOSI: SPI Master Output Slave Input pin. Data from master (host) is driven on
this pin.

 MISO: SPI Master Input Slave Output pin. Data to master (host) is provided on
this pin.

 SSEL: SPI select pin. SPI master (host) asserts this pin during communication
with slave. Only SSEL0 pins are supported. The SBL assumes this pin to be
active low (the host should pull this pin low during communication with
LPC5410x).

 For auto detection to work, the host should continuously send SH_CMD_PROBE
(0xA5) command until the nHostIRQ line is asserted by LPC5410x. After detecting
the host I/F, the SBL drives the nHostIRQ line active. For the SBL to know which
GPIO pin is used for nHostIRQ line, the SH_CMD_PROBE packet should be
constructed properly. For SPI, the MISO pin should be set properly to receive data
from LPC5410x.

2.4 SBL flash IAP programming support
The commands described in sections 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.13, 6.14 utilize the
IAP commands described in UM10850, Chapter 31, LPC5410x Flash API. When working
with the SBL, it is not necessary for the user to check the detailed implementation of
these commands. However, users can review this chapter for a background of the SBL
implementation.

2.5 Download SBL to LPC5410x
Downloading of the SBL to LPC5410x can be achieved by many ways depending on the
situation. In production, the SBL can be pre- programmed to the LPC5410x via a
debugger or UART ISP mode whichever is available. In prototyping, the part can most
likely be programmed after fitted on the board assume the SWD or ISP UART port is
accessible.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 8 of 43

The sample applications are built based on NXP’s LPCXpresso54102 development
board as shown in Fig 4. The LPCXpresso54102 development board comes with built in
LPC-Link2 based debug probe, based on NXP LPC43xx MCU. This LPC-Link2 based
debug probe is compatible with LPCXpresso IDE out-of-the-box, and with other
toolchains via optional ARM CMSIS-DAP firmware.

When JP5 is not fitted, connecting a USB cable connected from J6 provides power to the
system. With this configuration, the preprogrammed CMSIS-DAP Link2 and a virtual
communication port (VCOM) UART bridge functionality are active and allows down
loading the firmware with Flash Magic (http://www.flashmagictool.com/). You can verify
the proper enumeration by making sure a CMSIS-DAP Human Interface Device as well
as an LPC-LinkII VCom Port show up under the Device Manager. For more information
regarding using LPCXpresso54102, please visit below web page:

http://www.nxp.com/demoboard/OM13077.html

Fig 4. LPCXpresso54102 development board

When using FlashMagic, following below steps to download the SBL to LPC5410x:
 Put the LPC5410x into ISP mode by pressing down the ISP button and then toggling

the Reset button (Low -> High).
 Choose the SBL hex file from the application note package and allow Flash Magic to

successfully program the SBL.
 After downloading the SBL hex file, press the Reset button on LPCXpresso54102

board to allow the boot ROM and SBL boot.

http://www.nxp.com/redirect/flashmagictool.com/
http://www.nxp.com/demoboard/OM13077.html

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 9 of 43

Fig 5. Download SBL to LPC54102 with Flash Magic

3. Emulated host processor/slave processor communication
A Windows PC application (PC_Android_Emulator.zip) to emulate an Android application
processor is also provided with this application note. This emulator application has
implemented test code for all of the major functionalities of the secondary bootloader.

3.1 System introduction
The windows PC application talks to the SBL through the USB to I2C/SPI Bridge
(implemented with LPC43xx) via NXP’s USBSerialIO library. See Fig 6 for the high level
block diagram of the system. For information on the LPCUSBSIO library, go to:

http://www.lpcware.com/search/gss/libusbsio

http://www.lpcware.com/search/gss/libusbsio

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 10 of 43

Fig 6. Emulated Host Processor communication with Sensor Hub with
LPCXpresso54102 board

3.2 Host commands
As seen from Fig 6, running the Android Emulator from the PC, allows the user to
communicate with the LPC43xx and they together work as the host processor.

After successfully downloading the SBL following instructions in section 2.5 and pressing
the reset button, the user can double click on the Andriod_Emulator.exe to get the
options to communicate with the LPC5410x via I2C or SPI. In this example, the I2C
interface is chosen to communicate with LPC54102 via the I2C interface.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 11 of 43

Fig 7. Android Emulator Host Commands

On receiving the selected communication channel, the Android Emulator presents a
menu of commands supported. The commands are self-explanatory. The Android
Emulator translates these user commands to messages expected by the SBL. See
Chapter 6 for the message communication between the LPC43xx and LPC54102 on the
I2C and SPI port. Note that the LPC43xx implements the USB to I2C/SPI Bridge protocol
as well as LPCLink2 debugging protocol.

The PC might be missing the msvcr110d.dll used in this application. This dll is included
with this application note as msvcr110d.zip. For 64 bit Windows, place this dll in folder
C:\Windows\SysWOW64. For 32 bit Windows, place this dll in folder
C:\Windows\System32.

4. Application implementation
An application that boots from the SBL must meet the following requirements (see
section 2.1):

• Uses no Flash memory in the region of 0x00000000 to 0x00007FFF.

• Requires an image header at address 0x00008100 in Flash.

Within this application note, the LPCXpresso, Keil, and IAR IDE sample projects that
boot from SBL are included. File LPCXpresesso_BlinkySolution.zip contains the
LPCXpresso sample project. File keil_iar_BlinkySolution.zip contains the Keil/IAR sample
projects. Note that all sample projects use I2C as the host interface, but the valid SPI
host interface setting is provided in the image header. The user can easily change the
host interface choice from I2C to SPI to test the SPI host interface functionality.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 12 of 43

4.1 Image header construction
The SBL expects all application images to have an image header at offset 0x100
(absolution address 0x00008100 in Flash).

Table 3. Image Header

Field Offset Size
(bytes)

Value Description

Header Marker 0x0 4 0xFEEDA5A5

imageType 0x4 1 Image type.

0 - IMG_NORMAL

1 - IMG_AP_WAIT

2 - IMG_NO_WAIT
3 - IMG_NO_CRC

ifType 0x5 1 Host interface type and port.

1 – I2C0 port

2 – I2C1 port

3 – I2C2 port

4 – SPI0 port
5 – SPI1 port

irqPortPin 0x6 1 GPIO pin used for Host
interface IRQ function.

Bits 7-5 : GPIO port number
Bits 4-0 : GPIO pin number

misoPortPin 0x7 1 MISO pin used for SPI host
interface.

Bits 7-5 : GPIO port number

Bits 4-0 : GPIO pin number

For applications using I2C
host interface set this field to
0.

sselPortPin 0x9 1 SSEL pin used for SPI host
interface.

Bits 7-5 : GPIO port number

Bits 4-0 : GPIO pin number

For applications using I2C
host interface set this field to
0.

sckPortPin 0xA 1 SCK pin used for SPI host

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 13 of 43

Field Offset Size
(bytes)

Value Description

interface.

Bits 7-5 : GPIO port number

Bits 4-0 : GPIO pin number

For applications using I2C
host interface set this field to
0.

checksum 0xB 1 XOR of all the 7 bytes
above.

CRCLen 0xC 4 Length of the image.

Applications requiring fast
boot time can have partial
CRC check by altering this
length field. Note, the
CRCValue field should be
calculated for the partial
image only.

CRCValue

0x10 4 CRC32 of the image
excluding this field.

4.1.1 Image type
The “Image Type” field influences the boot flow of the secondary boot loader.

4.1.1.1 IMG_NORMAL

IMG_NORMAL (0): For this type of image, the SBL checks the nHostIRQ line before
checking the CRC32 of the image. The SBL gets the information about nHostIRQ pin
from the host I/F pin configuration information embedded in the image header. This is the
recommended image type. The nHostIRQ check provides AP the chance to re-program
the sensor hub if the application image gets corrupted or crashes before reaching a state
to respond to AP commands.

4.1.1.2 IMG_AP_WAIT (1)

For this type of image, the SBL goes straight to the command processing loop. The
host/AP must send SH_CMD_BOOT (0xA3) command to boot the application. Before
issuing boot command the AP can check the integrity of the application image by sending
SH_CMD_CHECK_IMAGE (0xA4) command.

4.1.1.3 IMG_NO_WAIT (2)

For this type of image, the SBL only does CRC32 check on the application image. It the
check passes the SBL passes control to the application image.

4.1.1.4 IMG_NO_CRC (3)

For this type of image, the SBL checks the nHostIRQ line although it does not check the
CRC32 of the image. The SBL gets the information about nHostIRQ pin from the host I/F
pin configuration information embedded in the image header. This mode should be used
only during development and when the user has SWD program access to the part.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 14 of 43

4.1.1.5 Special notes on booting IMG_NORMAL and IMG_NO_CRC images

For IMG_NORMAL and IMG_NO_CRC image boot, the host can use the nHostIRQ line
to stop booting the image and perform reprogram of the part. In this case, the host I/O
line that is connected to the LPC5410x first works as an output and pulls low. The
nHostIRQ line on the LPC5410x first works as an input to sense that the host has pulled
this line low. When the SBL senses this line being pulled low, it stops proceeding to
check the CRC32 of the image. Then the host needs to reconfigure the nHostIRQ line to
be switched to being an input to allow the nHostIRQ line on the LPC5410x to drive it.

With the emulated Android AP/Sensor Hub environment as described in section 3, the
usage of nHostIRQ in IMG_NORMAL image booting can be described as shown in Fig 8.

LPC43xx

Output: GPIO1[2]

LPC54102 SBL

Input: GPIO0[19]

User issues ‘f’ command from Andriod Emulator

LPC43xx pulls LPC54102 nHostIRQ line low

User issues ‘g’ command from Andriod Emulator

LPC54102 reboots and sees nHostIRQ line low and stops proceeding to
CRC check and boot, returns to SBL command processing

LPC43xx

Input: GPIO1[2]

LPC54102 SBL

Output: GPIO0[19]

User issues ‘0’ command (PROBE) from Andriod Emulator

LPC54102 pulls nHostIRQ line low to acknowledge host PROBE

User presses Reset Button SM3 on
LPCXpressoLPC54102 board

LPC43xx

Input: GPIO1[2]

LPC54102 SBL

Output: GPIO0[19]

Fig 8. nHostIRQ line status when host wants to stop IMG_NORMAL image boot

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 15 of 43

With the Android emulator sample project attached with this application note, users
can understand this handshaking process by following the procedure shown in Fig 9:

1. Program the sample application image (any of the Keil/IAR or LPCXpresso version).
2. Press the Reset button to boot the application image.
3. Issue ‘f’ command to pull nHostIRQ low.
4. Press the Reset button to reset the LPCXpresso54102 board.
5. Issue ‘g’ command to program nHostIRQ as input.
6. Now the user can issue ‘0’ command to re-establish the communication with the SBL

and can optionally program a new image as shown in Fig 9.

Fig 9. nHostIRQ line functionality with IMG_NORMAL application image

During the LPC5410x boot time, the SBL responds transparently to Android emulator
commands ‘f’ and ‘g’. No data is sent to the SBL and no response data is received from
the SBL. As shown in Fig 3, pulling the IRQ line from the AP must be done with
IMG_NORMAL application image at LPC5410x boot time, right after the SBL has
identified an IMG_NORMAL image.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 16 of 43

4.1.2 Handling the CRC field in the image header
Fig 3 flow chart illustrates how the SBL supports CRC checking on the application image
before passing control to the application. A CRC generating tool loaderCrcGen.exe utility
(loaderCrcGen.zip) is included with this application note that can generate the CRClen
field and the CRCValue field in the image header.

After generating the normal boot image, the user can run this tool to generate the binary
which automatically inserts the CRClen and CRCValue fields to the new binary.

This application generates the CRC32 image in the application booted by the loader. The
CRC32 length field in bytes is generated at image offset 0x010C. The CRC32 value field
in bytes is generated at image offset 0x0110. This tool will add zero filled padding bytes
to the end of the image to get the alignment to 32-bits, if needed. The generated CRC32
value consists of the start of the image up to the specified CRC32 length. The CRC32
length can be the entire length of the file or the first 0x110 bytes, depending on the
selected option. Generating a CRC32 on only the first 0x110 byte may help with
multi-part binary images.

To run the tool, use the following syntax:

loaderCrcGen.exe <-n1 or -n2> input_file_binary_file output_file_binary_file
 Use option -n1 to generate check CRC32 for the entire file.
 Use option -n2 to generate check CRC32 for just the first 0x110 bytes of the file.

See Fig 10 for the process to generate the binary file containing the CRC field,
xpresso_blinky_crc.bin from periph_blinky.bin.

Fig 10. Using the loaderCrCGen tool

 Fig 11 shows that the resulting xpresso_blinky_crc.bin file has the CRClen field and the
CRCValue file inserted at the correct location. Notice that if CRClen and CRCValue field
generation is skipped, the default sample project has 0x00000000 for CRClen field and
0xFFFFFFFF for CRCValue field, which effectively bypasses the CRC checking steps.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 17 of 43

Fig 11. CRClen filed and CRCValue field inserted

4.2 Embedding SBL image header in application image
4.2.1 Embedding image header in application image with LPCXpresso IDE

To embed the header in an application image startup file based on LPCXpresso IDE, Fig
12 can be used as a reference.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 18 of 43

#define IMAGE_HEADER_MARKER 0xFEEDA5A5

// imageType

#define IMG_NORMAL 0

#define IMG_AP_WAIT 1

#define IMG_NO_WAIT 2

#define IMG_NO_CRC 3

// ifType

#define I2C0_PORT 1

#define I2C1_PORT 2

#define I2C2_PORT 3

#define SPI0_PORT 4

#define SPI1_PORT 5

// irqPortPin

// IRQ port (bits 7:5) and pins (bits 4:0)

#define IRQ_PORT_PIN ((0 << 5) + 19) // P0_19

// misoPortPin

// SPI MISO port (bits 7:5) and pins (bits 4:0)

#define MISO_PORT_PIN ((0 << 5) + 13) // P0_13

// mosiPortPin

// SPI MOSI port (bits 7:5) and pins (bits 4:0)

#define MOSI_PORT_PIN ((0 << 5) + 12) //P0_12

// sselPortPin

// SPI SEL port (bits 7:5) and pins (bits 4:0)

#define SSEL_PORT_PIN ((0 << 5) + 14) //P0_14

// sckPortPin

// SPI SCK port (bits 7:5) and pins (bits 4:0)

#define SCK_PORT_PIN ((1 << 5) + 3) //P1_3

#define CHECKSUM_VAL (IMG_NORMAL ^ I2C2_PORT ^ IRQ_PORT_PIN ^
MISO_PORT_PIN ^ MOSI_PORT_PIN ^ SSEL_PORT_PIN ^ SCK_PORT_PIN)

#define PINCONFIG_WORD0 ((MISO_PORT_PIN << 24) | (IRQ_PORT_PIN <<
16) | (I2C2_PORT << 8) | IMG_NORMAL)

#define PINCONFIG_WORD1 ((CHECKSUM_VAL << 24) | (SCK_PORT_PIN
<< 16) | (SSEL_PORT_PIN << 8) | MOSI_PORT_PIN)

//***

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 19 of 43

// The vector table.

//***

extern void (* const g_pfnVectors[])(void);

__attribute__ ((section(".isr_vector")))

void (* const g_pfnVectors[])(void) = {

 // Core Level – CM4

 &_vStackTop, // The initial stack pointer

 ResetISR, // The reset handler

 NMI_Handler, // The NMI handler

 HardFault_Handler, // The hard fault handler

 MemManage_Handler, // The MPU fault handler

 BusFault_Handler, // The bus fault handler

 UsageFault_Handler, // The usage fault handler

 0, // Reserved

 0, // Reserved

 0, // Reserved

 0, // Reserved

…

 RIT_IRQHandler, // RIT Timer

 Reserved41_IRQHandler, // Reserved

 Reserved42_IRQHandler, // Reserved

 Reserved43_IRQHandler, // Reserved

 Reserved44_IRQHandler, // Reserved

 0,

 0,

 0,

 /* SBL Image header */

 (void*)IMAGE_HEADER_MARKER, //Image header marker

 (void*)PINCONFIG_WORD0, //PINCONFIG word0

 (void*)PINCONFIG_WORD1, //PINCONFIG word1

 (void*)0x00000000, // Image length

 (void*)0xFFFFFFFF, // CRC32 of the image

}; /* End of g_pfnVectors */

Fig 12. Image Header construction with LPCxpresso IDE (cr_startup_lpc5410x.c)

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 20 of 43

4.2.2 Embedding image header in application image with Keil and IAR IDE
To embed the header in the application image, the startup file based on Keil/IAR IDE
can be used as a reference. See Fig 13.

; Select number of reserved 0 fields to force PINCFGTABLEFLASH to align

; at offset 0x100

 DCD 0, 0, 0

; Start of in-FLASH pin configuration table (offset 0x100)

 EXPORT PINCFGTABLEFLASH

PINCFGTABLEFLASH

 DCD 0xFEEDA5A5 ; Image header marker

 ; img_type: 0 = Normal image check IRQ line to halt boot

 ; img_type: 1 = Wait for AP to send SH_CMD_BOOT command

 ; img_type: 2 = Boot image with no AP checks

 ; img_type: 3 = No CRC or AP checks needed. Used during development

 EXPORT PINONLYCFGTABLEFLASH

PINONLYCFGTABLEFLASH

 DCB 0 ; img_type: See img_type values above

 DCB 3 ; ifSel: Interface selection for host (0=AUTODETECT, 1=I2C0,
2=I2C1, 3=I2C2, 4=SPI0, 5=SP1) choice of 0 does not seem to exist in the Xpresso IDE
code???

 DCB ((0 << 5) + 19); hostIrqPortPin: Host IRQ port (bits 7:5) and pins (bits 4:0)

 DCB ((0 << 5) + 13); hostMisoPortPin: SPI MISO port (bits 7:5) and pins (bits
4:0)

 DCB ((0 << 5) + 12); hostMosiPortPin: SPI MOSI port (bits 7:5) and pins (bits
4:0)

 DCB ((0 << 5) + 14); hostSselPortPin: SPI SEL port (bits 7:5) and pins (bits
4:0)

 DCB ((1 << 5) + 3); hostSckPortPin: SPI SCK port (bits 7:5) and pins (bits 4:0)

 DCB 0^3^((0 << 5) + 19)^((0 << 5) + 13)^((0 << 5) + 12)^((0 << 5) + 14)^((1 <<
5) + 3)

 EXPORT CRC32_LEN

 EXPORT CRC32_VAL

CRC32_LEN DCD 0x00000000

CRC32_VAL DCD 0xFFFFFFFF

Fig 13. Image Header Construction with Keil/IAR IDE (reference
keil_startup_lpc5410x.s/iar_startup_lpc5410x.s)

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 21 of 43

4.3 Host interface pins
The SBL checks the pin configuration block (offset 0x4 to 0xB of the image header) using
XOR files. Apart from XOR checking SBL also checks if valid port-pin is set for the
corresponding pins.

The port-pin value is an 8 bit field with the lower 5 bits representing the pin number and
the upper 3 bits representing the port number.

4.4 IDE Handling
This application note includes a blinky project which is implemented with Keil, IAR and
LPCXpresso IDE.

4.4.1 Locate the application to 0x00008000 in flash
The toolchain links the image to run at address 0x00000000 by default. This must be
changed to address 0x00008000.
 LPCXpresso IDE

Adjust the LPCXpresso project MCU settings to locate the application’s RO base at
0x00008000 as shown in Fig 14.

Fig 14. Locate the application to 0x00008000 in flash with LPCXpresso IDE

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 22 of 43

 Keil uVision IDE

Adjust the Keil project MCU settings to locate the application’s RO base at 0x00008000
as shown in Fig 15. This step can alternatively be done with the Keil scatter file.

Fig 15. Locate the application to 0x00008000 in flash with Keil IDE

 IAR EWARM IDE

Included with the sample IAR project is a linker configuration file (ICF file) for correctly
setting up the application address to boot from the SBL. This file is called
“LPC5410x_SBL.icf”.

Open the project options for the IAR project. These can be opened by right clicking on
the project in the project browser and then selecting “Options…”

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 23 of 43

Fig 16. IAR project Option dialog invocation

Select the Linker category and the Config tab. Check the “Override default” box for the
Linker Configuration File. In the file path box below it, click the ‘…’ box and then locate
the copied “LPC5410x_SBL.icf” file. Select this file for the Linker Configuration File.

Fig 17. Select to use LPC5410x_SBL.icf with IAR IDE

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 24 of 43

Fig 18 is the content of the LPC5410x_SBL.icf file.

/*###ICF### Section handled by ICF editor, don't touch! ****/
/*-Editor annotation file-*/
/* IcfEditorFile="$TOOLKIT_DIR$\config\ide\IcfEditor\cortex_v1_0.xml" */
/*-Specials-*/
define symbol __ICFEDIT_intvec_start__ = 0x00008000;
/*-Memory Regions-*/
define symbol __ICFEDIT_region_ROM_start__ = 0x00008000;
define symbol __ICFEDIT_region_ROM_end__ = 0x00078000;
define symbol __ICFEDIT_region_RAM_start__ = 0x02000000;
define symbol __ICFEDIT_region_RAM_end__ = 0x0200FFFF;
/*-Sizes-*/
define symbol __ICFEDIT_size_cstack__ = 0x400;
define symbol __ICFEDIT_size_heap__ = 0x800;
/**** End of ICF editor section. ###ICF###*/
define memory mem with size = 4G;
define region ROM_region = mem:[from __ICFEDIT_region_ROM_start__ to
__ICFEDIT_region_ROM_end__];
define region RAM_region = mem:[from __ICFEDIT_region_RAM_start__ to
__ICFEDIT_region_RAM_end__];

define block CSTACK with alignment = 8, size = __ICFEDIT_size_cstack__ { };
define block HEAP with alignment = 8, size = __ICFEDIT_size_heap__ { };

initialize by copy { readwrite };
//initialize by copy with packing = none { section __DLIB_PERTHREAD }; // Required in a multi-
threaded application
do not initialize { section .noinit };

place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec };

place in ROM_region { readonly };
place in RAM_region { readwrite,
 block CSTACK, block HEAP };

Fig 18. LPC5410x_SBL.icf for IAR IDE

4.5 Generating binary application image to download via SBL
The SBL expects an application binary image to download.

4.5.1 LPCXpresso IDE
Open the Properties dialog of the blinky project, select the Settings option and click the
Build steps tab. Enable the following post build command as shown in Fig 19:

arm-none-eabi-objcopy -v -O binary "${BuildArtifactFileName}"

"${BuildArtifactFileBaseName}.bin"

checksum -p ${TargetChip} -d "${BuildArtifactFileBaseName}.bin"

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 25 of 43

Fig 19. Generating .bin output from LPCXpresso IDE

4.5.2 Keil uVision IDE
Add this user action to instruct the Keil IDE to generate a binary application image as
shown in Fig 20 Run #2:

$K\ARM\ARMCC\bin\fromelf.exe --bin --output=@L.bin !L

Fig 20. Generating .bin output from Keil IDE

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 26 of 43

4.5.3 IAR EWARM IDE
From the IAR project Options dialog, select the Output Converter category. Then check
the “Generate additional output” box and select “binary” for the Output format.

Fig 21. Generating .bin output from IAR IDE

When these settings are adjusted, compile the project to generate periph_blinky.bin that
allows booting from the SBL.

5. Sample projects for firmware update
The host processor should send flash programming commands to update the firmware.
This sequence of commands must be sent to the LPC5410x to program a new
application image at location 0x00008000 onwards in flash:
1. Send SH_CMD_PROBE (0xA5) command with appropriate parameters. Note that

the host I/F pin configuration information passed should match the board.
2. Wait for acknowledgement from LPC5410x. The acknowledgement is indicated by

pulling nHostIRQ line low.
3. Once nHostIRQ line is low, AP should read the response data which is 4 bytes long.
4. Read firmware binary file and start programming to flash at address 0x8000 onwards

by sending SH_CMD_WRITE_BLOCK (0xA6) command.
5. Wait for positive response.
6. Repeat steps 4 and 5 until the whole image is written to flash. During each iteration,

the block number parameter field is incremented. Note that the very first
SH_CMD_WRITE_BLOCK command should have block number parameter set to
64.

This firmware update process can be emulated using the attached Android Emulator
program. As shown in Fig 22, after initiating the Android emulator, the user selects

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 27 of 43

whether to communicate with the SBL through I2C or SPI. In this case the SPI interface
has been chosen.

The following IDEs were used to implement and test the sample projects shipped with
this application note:
 Keil 5.12/5.13
 IAR 7.30
 LPCXpresso 7.62

In the example in Fig 22, command “1” updates the application firmware blinky_IAR.bin
with an image type of IMG_NORMAL. Subsequently, command ‘b’ boots this application.

Fig 22. Running the Android Emulator

5.1 Factory programming
During factory assembly, the LPC5410x part has no application image and therefore
remains in host interface detection mode. Once the part receives the SH_CMD_PROBE
(0xA5), SBL enters command processing loop to receive flash programming commands.

5.2 Invoking SBL from user application
To perform a firmware update the user application can invoke the SBL by calling the
function pointer present at address 0x00007F00. The pin configuration information is
same as the one present in image header. Fig 23 shows a sample code of the invocation
method. Notice that by default the code to invoke SBL from application is commented
out. The user needs to enable these lines to test the invoking functionality.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 28 of 43

/** Structure used to setup host interface for the secondary loader. The SPI port/pin selections
for SSEL, SCK, MOSI, and MISO only need to be configured if ifSel is SL_SPI0 or SL_SPI1. */
typedef struct {
// uint32_t header_marker;
 uint8_t img_type; /*!< Image type (SL_IMAGE_T) */
 uint8_t ifSel; /*!< Interface selection for host (SL_IFSEL_T) */
 uint8_t hostIrqPortPin; /*!< Host IRQ port (bits 7:5) and pins (bits 4:0) */
 uint8_t hostMisoPortPin; /*!< SPI MISO port (bits 7:5) and pins (bits 4:0) */
 uint8_t hostMosiPortPin; /*!< SPI MOSI port (bits 7:5) and pins (bits 4:0) */
 uint8_t hostSselPortPin; /*!< SPI SEL port (bits 7:5) and pins (bits 4:0) */
 uint8_t hostSckPortPin; /*!< SPI SCK port (bits 7:5) and pins (bits 4:0) */
 uint8_t checksum; /*!< Checksum. XOR of the remaining 7 bytes of this structure. */
} SL_PINSETUP_T;

/** Image header structure. All application images should define this structure at of offset 0x100.
 * Adding it to the start-up file is recommended.
 */
typedef struct _IMG_HEADER_T {
 uint32_t header_marker; /*!< Image header marker should always be set to
0xFEEDA5A5 */
 SL_PINSETUP_T hostifPinCfg; /*!< Host interface pin configuration */
 const uint32_t crc_len; /*!< Image length or the length of image CRC check
should be done. For faster boot application could set a smaller length than actual image */
 const uint32_t crc_value; /*!< CRC vale */
} IMG_HEADER_T;

#ifdef WIN32
typedef unsigned char bool;
#define STATIC static
#define INLINE
#endif

typedef bool (*InBootSecondaryLoader)(const SL_PINSETUP_T *pSetup);

/* Address of indtrect boot table */
#define SL_INDIRECT_FUNC_TABLE (0x00007F00)

/* Placement addresses for app call flag and app supplied config daa
 for host interface pins. Note these addresses may be used in the
 startup code source and may need values changed there also. */
#define SL_ADDRESS_APPCALLEDFL (0x02000000)
#define SL_ADDRESS_APPPINDATA (0x02000004)

/* Function for booting the secondary loader from an application. Returns with false if the pSetup
strructure is not valid, or doesn't return if the loader was started successfully. */
STATIC INLINE bool bootSecondaryLoader(const SL_PINSETUP_T *pSetup)
{
 InBootSecondaryLoader SL, *pSL = (InBootSecondaryLoader *)
SL_INDIRECT_FUNC_TABLE;
 SL_PINSETUP_T *pAppPinSetup = (SL_PINSETUP_T *) SL_ADDRESS_APPPINDATA;

 *pAppPinSetup = *pSetup;

 SL = *pSL;
 return SL(pSetup);

}

Fig 23. Sl_protocol.h

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 29 of 43

sl_protocol.h file is included as part of this application note. The function is called via an
indirect function pointer provided in the SBL code. Invocation of the function from the
application is performed using the function below:

bool bootSecondaryLoader(const SL_PINSETUP_T *pSetup);

When called from the application, the loader uses the pin configuration for the host
interface as defined by the application. The bootSecondaryLoader() function does not
return response once the SBL has started. However, if the pin configuration passed to
the function is invalid, the function returns false (0) status.

An example for using I2C2 as the host interface with P0.19 as the host interrupt line are
provided with the sample projects attached with this application note.

#include "board.h"

SL_PINSETUP_T pinSetup;

 pinSetup.img_type = IMG_AP_WAIT;
 pinSetup.ifSel = SL_I2C2; /* Uses I2C2 as the host interface */
 pinSetup.hostIrqPortPin = ((0 << 5) + 19);/* Host IRQ on port0 */
 /* hostMisoPortPin, hostMosiPortPin, hostSselPortPin, hostSckPortPin pins do not matter
when using I2C */
 pinSetup.hostMisoPortPin = ((0 << 5) + 13);
 pinSetup.hostMosiPortPin = ((0 << 5) + 12);
 pinSetup.hostSselPortPin = ((0 << 5) + 14);
 pinSetup.hostSckPortPin = ((1 << 5) + 3);
 pinSetup.checksum = pinSetup.img_type ^ pinSetup.ifSel ^ pinSetup.hostIrqPortPin
^ pinSetup.hostMisoPortPin ^ pinSetup.hostMosiPortPin ^ pinSetup.hostSselPortPin ^

 pinSetup.hostSckPortPin;

/*
 * Notice that by default the code to invoke SBL from application is commented
out. User needs to enable these lines to test invoking SBL from application functionality.
 */
#if 1
 for (i=0; i<30000000; i++);

 __disable_irq();
 /* invoke secondary loader from app. Will not return if successful */
 if (bootSecondaryLoader(&pinSetup) == false) {
 /* Handle error, pin setup table was invalid */
 }
 __enable_irq();

#endif

Fig 24. Invoke SBL from LPCXpresso application

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 30 of 43

#include "sl_protocol.h"

extern SL_PINSETUP_T PINONLYCFGTABLEFLASH;

 /*

 * Notice that by default the code to invoke SBL from application is commented out. User
needs to enable these lines to test invoking SBL from application functionality.

 */

 #if 1

 for (i=0; i<30000000; i++);

 __disable_irq();

 /* invoke secondary loader from app. Will not return if successful */

 if (bootSecondaryLoader(&PINONLYCFGTABLEFLASH) == false) {

 /* Handle error, pin setup table was invalid */

 }

 __enable_irq();

 #endif

Fig 25. Invoke SBL from Keil/IAR application

6. Secondary bootloader message

6.1 SH_CMD_WHO_AM_I (0xA0)
This command is used to identify the presence of SBL. It is recommended that
applications should also handle this command but return response with different Start of
Packet (SoP) value.

6.1.1 Command packet

Table 4. WHO_AM_I_Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA0 Command Identifier

6.1.2 Response packet

Table 5. WHO_AM_I Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of packet identifier

Command 0x1 1 0xA0 Command Identifier

length 0x2 2 0x0004 Length of the response packet

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 31 of 43

6.2 SH_CMD_GET_VERSION (0xA1)
This command is used to get the version information of SBL.

6.2.1 Command packet

Table 6. GET_VERSION Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA1 Command Identifier

6.2.2 Response packet

Table 7. GET_VERSION Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

length 0x2 2 0x0002 Length of the response packet.

Major 0x4 1 version Major version number.

Minor 0x5 1 version Minor version number.

Command 0x1 1 0xA1 Command Identifier.

6.3 SH_CMD_RESET (0xA2)
This command is used to have the AP do software reset on LPC5410x.

6.3.1 Command packet

Table 8. RESET Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA2 Command Identifier

6.3.2 Response packet
None

6.4 SH_CMD_BOOT (0xA3)
This command is used to boot the application image. On receiving this command SBL
cleans resource (disables clocks and IRQs) enabled by SBL and loads the value at
location 0x0008000

6.4.1 Command packet

Table 9. BOOT Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA3 Command Identifier.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 32 of 43

6.4.2 Response packet
None

6.5 SH_CMD_CHECK_IMAGE (0xA4)
This command is used to check if the flash has a valid application image. SBL checks the
presence of “Image header” at offset 0x100 of the application image flashed from
location 0x00008000. This command computes CRC32 checksum of the image
(excluding Checksum field) based on the length field. If checksum matches, the
command returns 0 as response data or else returns computed CRC32.

6.5.1 Command packet

Table 10. CHECK_IMAGE Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA3 Command Identifier.

6.5.2 Response packet

Table 11. CHECK_IMAGE Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xA4 Command Identifier.

length 0x2 2 0x0008 Length of the response packet.

CRC32 0x4 4 CRC32 0 – If checksum value present in image header
matches the computed value.

6.6 SH_CMD_PROBE (0xA5)
This command sends the Host interface type and port, the HOSTint_nirq line
configuration, the SPI pin configuration as well as an XOR checksum byte of this
information to the SBL. The host needs to repeatedly send this command until a proper
response is received from the SBL.

6.6.1 Command packet

Table 12. PROBE Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA5 Command Identifier.

ifType 0x1 1 Host interface type and port.

1 – I2C0 port

2 – I2C1 port

3 – I2C2 port

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 33 of 43

Field Offset Size
(bytes)

Value Description

4 – SPI0 port
5 – SPI1 port

irqPortPin 0x2 1 GPIO pin used for Host interface IRQ function.

Bits 7-5 : GPIO port number
Bits 4-0 : GPIO pin number

misoPortPin 0x3 1 MISO pin used for SPI host interface.

Bits 7-5 : GPIO port number

Bits 4-0 : GPIO pin number
For applications using I2C host interface set
this field to 0.

mosiPortPin 0x4 1 MOSI pin used for SPI host interface.

Bits 7-5 : GPIO port number

Bits 4-0 : GPIO pin number
For applications using I2C host interface set
this field to 0.

sselPortPin 0x5 1 SSEL pin used for SPI host interface.

Bits 7-5 : GPIO port number

Bits 4-0 : GPIO pin number
For applications using I2C host interface set
this field to 0.

sckPortPin 0x6 1 SCK pin used for SPI host interface.

Bits 7-5 : GPIO port number

Bits 4-0 : GPIO pin number
For applications using I2C host interface set
this field to 0.

checksum 0x7 1 XOR of all the 7 bytes above.

6.6.2 Response packet

Table 13. PROBE Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xA5 Command Identifier.

length 0x2 2 0x0000 Length of the response packet.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 34 of 43

6.7 SH_CMD_WRITE_BLOCK (0xA6)
This command allows writing a block of flash. In current version of SBL the flash block
size is 512 bytes.

6.7.1 Command packet

Table 14. WRITE_CLOCK Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA6 Command Identifier.

crcCheck 0x1 1 0 – Do CRC check for this packet.
1 - Ignore CRC field for this packet.

blockNum 0x2 2 Flash block number in which the appended
data to be programmed.
For example to program flash block 0x8000
this parameter should be set to 64.

data 0x4 512 Data to be programmed in flash.
checksum 0x204 4 CRC32 of the packet excluding this field. Set

this field to 0 if crcCheck is set to 1.

6.7.2 Response packet

Table 15. WRITE_CLOCK Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xA6 Command Identifier.

length 0x2 2 0x0000
0x0004

On Success this field is set to 0.
On error this field is set to 4.

errorCode 0x4 4 Error code.

0x0001001: Invalid parameters

6.8 SH_CMD_READ_BLOCK (0xA7)
This command allows reading a block of flash. In current version of SBL the flash block
size is 512 bytes.

6.8.1 Command packet

Table 16. READ_BLOCK Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA7 Command Identifier.

reserved 0x1 1 0x00 Should be zero.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 35 of 43

Field Offset Size
(bytes)

Value Description

blockNum 0x2 2 Flash block number in which the appended data to
be programed.

6.8.2 Response packet

Table 17. READ_BLOCK Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xA7 Command Identifier.

length 0x2 2 0x0208 Length of the response packet.
data 0x4 512 version Flash block content.

checksum 0x204 4 Crc32 CRC32 of the packet excluding this field.

6.9 SH_CMD_SECTOR_ERASE (0xA8)
This command allows erasing sector of flash. On LPC5410x the flash sector size is
32Kbytes.

6.9.1 Command packet

Table 18. SECTOR_ERASE Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA8 Command Identifier.

reserved 0x1 1 0x00 Should be zero.

blockNum 0x2 2 Flash sector number to be erased.

6.9.2 Response packet

Table 19. SECTOR_ERASE Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xA8 Command Identifier.

length 0x2 2 0x0000
0x0004

On Success this field is set to 0.
On error this field is set to 4.

errorCode 0x4 4 Error code.
0x0001001: Invalid parameters

6.10 SH_CMD_PAGE_ERASE (0xA9)
This command allows erasing a flash page. On LPC5410x the flash page size is 256
bytes.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 36 of 43

6.10.1 Command packet

Table 20. PAGE_ERASE Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xA9 Command Identifier.

reserved 0x1 1 0x00 Should be zero.

pageNum 0x2 2 Flash page number to be erased.

6.10.2 Response packet

Table 21. PAGE_ERASE Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xA9 Command Identifier.

length 0x2 2 0x0006 Length of the response packet.

errorCode 0x4 4 Error code.
0x0001001: Invalid parameters

6.11 SH_CMD_PAGE_WRITE (0xAA)
This command allows writing a block of flash. In current version of SBL the flash block
size is 256 bytes.

6.11.1 Command packet

Table 22. PAGE_WRITE Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xAA Command Identifier.

crcCheck 0x1 1 0 – Do CRC check for this packet.
1 - Ignore CRC field for this packet

pageNum 0x2 2 Flash page number in which the appended data
to be programed.
For example to program flash page at 0x8000 this
parameter should be set to 128.

data 0x4 256 Data to be programed in flash.

checksum 0x204 4 CRC32 of the packet excluding this field. Set this field
to 0 if crcCheck is set to 1.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 37 of 43

6.11.2 Response packet

Table 23. PAGE_WRITE Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xAA Command Identifier.

length 0x2 2 0x0000
0x0004

On Success this field is set to 0.
On Error this this field is set to 4.

errorCode 0x4 4 Error code.
0x00010001: Invalid parameters

6.12 SH_CMD_PAGE_READ (0xAB)
This command allows reading a page of flash. On LPC5410x the flash page size is 256
bytes.

6.12.1 Command packet

Table 24. PAGE_READ Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xAB Command Identifier.

reserved 0x1 1 0x00 Should be zero.

pageNum 0x2 2 Flash page number from which the data to be
read.
For example to program flash page at 0x8000 this
parameter should be set to 128.

6.12.2 Response packet

Table 25. PAGE_READ Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xAB Command Identifier.

length 0x2 2 0x0108
0x0004

On Success this field is set to 256.
On error this field is set to 4.

data 0x4 256 version Flash page content.

checksum 0x104 4 Crc32 CRC32 of the packet excluding this field.

6.13 SH_CMD_WRITE_SUBBLOCK (0xAC)
This command allows writing a block of flash but by transferring small chunks of data. In
current version of SBL the flash block size is 512 bytes. But some host processors
cannot send/receive more than 256 bytes in single I2C transaction. Hence this command

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 38 of 43

support is added so that the host can split the block into multiple sub-block packets and
send to LPC5410x.

The LPC5410x collects all sub-blocks before writing to the flash. Hence, the host should
send the sub-blocks in sequential order only. If any other command is sent in between
the sub-block commands the offset in the collection buffer is reset to 0.

If block number offset falls on a sector boundary the SBL will erase the sector (32KB)
first before programming the block.

6.13.1 Command packet

Table 26. WRITE_SUBBLOCK Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xAC Command Identifier.

subBlock 0x1 1 Bit 0: If set CRC check is not done for this
packet. The checksum field should be set
to

Bits [5:1]: Specifies the sub-block number.

Bits [7:6]: Specifies the sub-block size.

 00 – 32 bytes

 01 – 64 bytes

 10 – 128 bytes

 11 – 256 bytes

blockNum 0x2 2 Flash block number in which the appended
data to be programed.
For example to program flash page at 0x8000
this parameter should be set to 64.

data 0x4 Sub-block
size

 Data to be programed in flash.

checksum Sub-block
size + 4

4 CRC32 of the packet excluding this field. Set
this field to 0 if crcCheck is set to 1.

6.13.2 Response packet

Table 27. WRITE_SUBBLOCK Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xAC Command Identifier.

length 0x2 2 0x0000
0x0004

On Success this field is set to 0.
On error this field is set to 4.

ErrorCode 0x4 4 Error code.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 39 of 43

Field Offset Size
(bytes)

Value Description

0x0001001: Invalid parameters

6.14 SH_CMD_READ_SUBBLOCK (0xAD)
This command allows reading of a sub-block of flash. In current version of SBL the flash
block size is 512 bytes. But some host processors cannot send/receive more than 256
bytes in single I2C transaction. To support those host processors these sub-block
commands are added to SBL.

6.14.1 Command packet

Table 28. READ_SUBBLOCK Command packet

Field Offset Size
(bytes)

Value Description

Command 0x0 1 0xAD Command Identifier.

subBlock 0x1 1 Bit 0: If set CRC check is not done for this
packet. The checksum field should be set
to

Bits [5:1]: Specifies the sub-block
number.

Bits [7:6]: Specifies the sub-block size.

 00 – 32 bytes

 01 – 64 bytes

 10 – 128 bytes

 11 – 256 bytes

blockNum 0x2 2 Flash block number in which the
appended data to be programed.
For example to program flash page at 0x8000
this parameter should be set to 64.

6.14.2 Response packet

Table 29. READ_SUBBLOCK Response packet

Field Offset Size
(bytes)

Value Description

SoP 0x0 1 0x55 Start of Packet identifier.

Command 0x1 1 0xAD Command Identifier.

length 0x2 2 (Sub-block

size + 4)
0x0004

On Success this field is set to (Sub-

block size + 4).
On error this field is set to 4.

data 0x4 Sub-block
size

version Flash content.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 40 of 43

Field Offset Size
(bytes)

Value Description

checksum Sub-block
size + 4

4 Crc32 CRC32 of the packet excluding this field.

7. Conclusion
This application note provides a reference design for firmware updating of the LPC5410x
in a host/slave processor environment. The user can reference this application note to
easily customize their own host system and the application.

E
rror!

U
nknow

n docum
e

nt
property
nam

e.

Error! U
nknow

n docum
ent property nam

e.
E

rror! U
nknow

n docum
ent property

nam
e.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20154. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 41 of 43

8. Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

8.3 Licenses
Purchase of NXP <xxx> components

<License statement text>

8.4 Patents
Notice is herewith given that the subject device uses one or more of the
following patents and that each of these patents may have corresponding
patents in other jurisdictions.

<Patent ID> — owned by <Company name>

8.5 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

<Name> — is a trademark of NXP Semiconductors N.V.

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

AN11610 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 8 April 2015 42 of 43

9. List of figures

Fig 1. Secondary boot loader for sensor hub
application ... 3

Fig 2. Flash memory map for applications boot with
SBL ... 5

Fig 3. Boot flow of LPC5410x with secondary boot
loader .. 6

Fig 4. LPCXpresso54102 development board 8
Fig 5. Download SBL to LPC54102 with Flash Magic . 9
Fig 6. Emulated Host Processor communication with

Sensor Hub with LPCXpresso54102 board..... 10
Fig 7. Android Emulator Host Commands 11
Fig 8. nHostIRQ line status when host wants to stop

IMG_NORMAL image boot 14
Fig 9. nHostIRQ line functionality with IMG_NORMAL

application image .. 15
Fig 10. Using the loaderCrCGen tool 16
Fig 11. CRClen filed and CRCValue field inserted 17
Fig 12. Image Header construction with LPCxpresso

IDE (cr_startup_lpc5410x.c)............................ 19
Fig 13. Image Header Construction with Keil/IAR IDE

(reference
keil_startup_lpc5410x.s/iar_startup_lpc5410x.s)
 .. 20

Fig 14. Locate the application to 0x00008000 in flash
with LPCXpresso IDE 21

Fig 15. Locate the application to 0x00008000 in flash
with Keil IDE .. 22

Fig 16. IAR project Option dialog invocation 23
Fig 17. Select to use LPC5410x_SBL.icf with IAR IDE

 .. 23
Fig 18. LPC5410x_SBL.icf for IAR IDE 24
Fig 19. Generating .bin output from LPCXpresso IDE 25
Fig 20. Generating .bin output from Keil IDE 25
Fig 21. Generating .bin output from IAR IDE 26
Fig 22. Running the Android Emulator 27
Fig 23. Sl_protocol.h ... 28
Fig 24. Invoke SBL from LPCXpresso application 29
Fig 25. Invoke SBL from Keil/IAR application 30

NXP Semiconductors AN11610
 LPC5410x I2C SPI Secondary Bootloader

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2015. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 8 April 2015
Document identifier: AN11610

10. Contents

1. Introduction ... 3
2. SBL Functionalities and Boot Process with SBL

 .. 4
2.1 Memory map with applications boot with SBL 4
2.2 Boot process with SBL 5
2.3 Host interface detection 7
2.4 SBL flash IAP programming support 7
2.5 Download SBL to LPC5410x 7
3. Emulated host processor/slave processor

communication .. 9
3.1 System introduction .. 9
3.2 Host commands ... 10
4. Application implementation 11
4.1 Image header construction 12
4.1.1 Image type ... 13
4.1.1.1 IMG_NORMAL ... 13
4.1.1.2 IMG_AP_WAIT (1) ... 13
4.1.1.3 IMG_NO_WAIT (2) ... 13
4.1.1.4 IMG_NO_CRC (3) .. 13
4.1.1.5 Special notes on booting IMG_NORMAL and

IMG_NO_CRC images 14
4.1.2 Handling the CRC field in the image header 16
4.2 Embedding SBL image header in application

image ... 17
4.2.1 Embedding image header in application image

with LPCXpresso IDE 17
4.2.2 Embedding image header in application image

with Keil and IAR IDE 20
4.3 Host interface pins ... 21
4.4 IDE Handling .. 21
4.4.1 Locate the application to 0x00008000 in flash . 21
4.5 Generating binary application image to download

via SBL ... 24
4.5.1 LPCXpresso IDE .. 24
4.5.2 Keil uVision IDE ... 25
4.5.3 IAR EWARM IDE ... 26
5. Sample projects for firmware update 26
5.1 Factory programming 27
5.2 Invoking SBL from user application 27
6. Secondary bootloader message 30
6.1 SH_CMD_WHO_AM_I (0xA0) 30
6.1.1 Command packet ... 30
6.1.2 Response packet ... 30
6.2 SH_CMD_GET_VERSION (0xA1) 31
6.2.1 Command packet ... 31

6.2.2 Response packet .. 31
6.3 SH_CMD_RESET (0xA2) 31
6.3.1 Command packet ... 31
6.3.2 Response packet .. 31
6.4 SH_CMD_BOOT (0xA3)................................... 31
6.4.1 Command packet ... 31
6.4.2 Response packet .. 32
6.5 SH_CMD_CHECK_IMAGE (0xA4) 32
6.5.1 Command packet ... 32
6.5.2 Response packet .. 32
6.6 SH_CMD_PROBE (0xA5) 32
6.6.1 Command packet ... 32
6.6.2 Response packet .. 33
6.7 SH_CMD_WRITE_BLOCK (0xA6) 34
6.7.1 Command packet ... 34
6.7.2 Response packet .. 34
6.8 SH_CMD_READ_BLOCK (0xA7) 34
6.8.1 Command packet ... 34
6.8.2 Response packet .. 35
6.9 SH_CMD_SECTOR_ERASE (0xA8) 35
6.9.1 Command packet ... 35
6.9.2 Response packet .. 35
6.10 SH_CMD_PAGE_ERASE (0xA9) 35
6.10.1 Command packet ... 36
6.10.2 Response packet .. 36
6.11 SH_CMD_PAGE_WRITE (0xAA) 36
6.11.1 Command packet ... 36
6.11.2 Response packet .. 37
6.12 SH_CMD_PAGE_READ (0xAB) 37
6.12.1 Command packet ... 37
6.12.2 Response packet .. 37
6.13 SH_CMD_WRITE_SUBBLOCK (0xAC) 37
6.13.1 Command packet ... 38
6.13.2 Response packet .. 38
6.14 SH_CMD_READ_SUBBLOCK (0xAD) 39
6.14.1 Command packet ... 39
6.14.2 Response packet .. 39
7. Conclusion ... 40
8. Legal information .. 41
8.1 Definitions ... 41
8.2 Disclaimers ... 41
8.3 Licenses ... 41
8.4 Patents ... 41
8.5 Trademarks .. 41
9. List of figures ... 42
10. Contents ... 43

	1. Introduction
	2. SBL Functionalities and Boot Process with SBL
	2.1 Memory map with applications boot with SBL
	2.2 Boot process with SBL
	2.3 Host interface detection
	2.4 SBL flash IAP programming support
	2.5 Download SBL to LPC5410x

	3. Emulated host processor/slave processor communication
	3.1 System introduction
	3.2 Host commands

	4. Application implementation
	4.1 Image header construction
	4.1.1 Image type
	4.1.1.1 IMG_NORMAL
	4.1.1.2 IMG_AP_WAIT (1)
	4.1.1.3 IMG_NO_WAIT (2)
	4.1.1.4 IMG_NO_CRC (3)
	4.1.1.5 Special notes on booting IMG_NORMAL and IMG_NO_CRC images

	4.1.2 Handling the CRC field in the image header

	4.2 Embedding SBL image header in application image
	4.2.1 Embedding image header in application image with LPCXpresso IDE
	4.2.2 Embedding image header in application image with Keil and IAR IDE

	4.3 Host interface pins
	4.4 IDE Handling
	4.4.1 Locate the application to 0x00008000 in flash

	4.5 Generating binary application image to download via SBL
	4.5.1 LPCXpresso IDE
	4.5.2 Keil uVision IDE
	4.5.3 IAR EWARM IDE

	5. Sample projects for firmware update
	5.1 Factory programming
	5.2 Invoking SBL from user application

	6. Secondary bootloader message
	6.1 SH_CMD_WHO_AM_I (0xA0)
	6.1.1 Command packet
	6.1.2 Response packet

	6.2 SH_CMD_GET_VERSION (0xA1)
	6.2.1 Command packet
	6.2.2 Response packet

	6.3 SH_CMD_RESET (0xA2)
	6.3.1 Command packet
	6.3.2 Response packet

	6.4 SH_CMD_BOOT (0xA3)
	6.4.1 Command packet
	6.4.2 Response packet

	6.5 SH_CMD_CHECK_IMAGE (0xA4)
	6.5.1 Command packet
	6.5.2 Response packet

	6.6 SH_CMD_PROBE (0xA5)
	6.6.1 Command packet
	6.6.2 Response packet

	6.7 SH_CMD_WRITE_BLOCK (0xA6)
	6.7.1 Command packet
	6.7.2 Response packet

	6.8 SH_CMD_READ_BLOCK (0xA7)
	6.8.1 Command packet
	6.8.2 Response packet

	6.9 SH_CMD_SECTOR_ERASE (0xA8)
	6.9.1 Command packet
	6.9.2 Response packet

	6.10 SH_CMD_PAGE_ERASE (0xA9)
	6.10.1 Command packet
	6.10.2 Response packet

	6.11 SH_CMD_PAGE_WRITE (0xAA)
	6.11.1 Command packet
	6.11.2 Response packet

	6.12 SH_CMD_PAGE_READ (0xAB)
	6.12.1 Command packet
	6.12.2 Response packet

	6.13 SH_CMD_WRITE_SUBBLOCK (0xAC)
	6.13.1 Command packet
	6.13.2 Response packet

	6.14 SH_CMD_READ_SUBBLOCK (0xAD)
	6.14.1 Command packet
	6.14.2 Response packet

	7. Conclusion
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Licenses
	8.4 Patents
	8.5 Trademarks

	9. List of figures
	10. Contents

