

AN12132
A71CH for secure connection to OEM cloud

Rev. 1.1 ð 7 March 2018

464211

Application note

COMPANY PUBLIC

Document information

Info Content

Keywords Security IC, IoT, PSP, Cloud authentication, Secure authentication

Abstract This document describes how the A71CH security IC can be used to

establish a secure connection with an OEM cloud.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

2 of 30

Contact information

For more information, please visit: http://www.nxp.com

Revision history

Rev Date Description

1.0 20180219 Initial version

1.1 20180302 Updated sections 3.2, 4.3.1 and 4.3.2

http://www.nxp.com/

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

3 of 30

1. Introduction

This document describes how the A71CH security IC can be used to establish a secure

connection between an IoT device and an OEM cloud. It introduces ECC cryptography

and SSL/TLS protocol fundamentals, it describes the mechanisms and credentials

involved to create a secure TLS connection between an IoT device and the OEM cloud

servers. And finally, for A71CH evaluation and demonstration purposes, it details step by

step, how a TLS/SSL based communication can be initiated using A71CH OpenSSL

Engine example scripts.

2. A71CH overview

The A71CH is a ready-to-use solution enabling ease-of-use security for IoT device

makers. It is a secure element capable of securely storing and provisioning credentials,

securely connecting IoT devices to public or private clouds and performing cryptographic

device authentication.

The A71CH solution provides basic security measures protecting the IC against many

physical and logical attacks. It can be integrated in various host platforms and operating

systems to secure a broad range of applications. In addition, it is complemented by a

comprehensive product support package, offering easy design-in with plug & play host

application code, easy-to-use development kits, documentation and IC samples for

product evaluation.

3. Public key infrastructure and ECC fundamentals

Security is an essential requirement for any IoT design. Thus, security should not be

considered as differentiator option but rather a standard feature for the IoT designers. IoT

devices must follow a secure-by-design approach, ensuring protected storage of

credentials, device authentication, secure code execution and safe connections to

remote servers among others. In this security context, the A71CH security IC is designed

specifically to offer protected access to credentials, secure connection to private or public

clouds and cryptographic device proof-of-origin verification.

Asymmetric cryptography, also known as public key cryptography, is any cryptographic

algorithms based on a pair of keys: a public key and a private key. The private key must

be kept secret, while the public key can be shared.

RSA (River, Shamir and Adleman) and Elliptical-Curve Cryptography (ECC) are two of

the most widely used asymmetric cryptography algorithms. In the case of ECC

cryptography, it is based on the algebraic structure of elliptic curves over finite fields.

Therefore, each key pair (public and private key) is generated from a certain elliptical

curve.

The digital signature, digital certificates, Elliptic Curve Digital Signature Algorithm

(ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithm are briefly

explained in the next sections.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

4 of 30

3.1 Digital signature

A digital signature is used to guarantee the authenticity, the integrity and non-repudiation

of a message. A signing algorithm generates a signature given a message and a private

key. A signature verifying algorithm accepts or rejects a message given the public key

and the signature.

Fig 1 illustrates an example of digital signature. In this case, the message is signed with

the sender private key. The receiver will validate the signature using both the message

and the sender public.

Fig 1. Digital signature diagram

3.2 Digital certificate, Certification Authority (CA) and Certificate Signing
Request (CSR)

Digital certificates are used to prove the authenticity of shared public keys. Digital

certificates are electronic documents that include information about the sender public

key, identity of its owner and the signature of a trusted entity that has verified the

contents of the certificate, normally called Certificate Authority (CA).

A Certificate Authority (CA) is an entity that issues digital certificates. The CA is trusted

by both the certificate sender and the certificate receiver, and it is typically in charge of

receiving a Certificate Signing Request (CSR) and generating a new certificate based

upon information contained in the CSR and signed with the CA private key.

Therefore, a CSR is a request that contains all the necessary information, e.g., sender

public key and relevant information to generate a new digital certificate.

Fig 2 shows digital certificates generation steps. First, the interested device (sender)

creates a Certificate Signing Request. The CSR is then sent to the CA and a new digital

certificate is created and signed with the CA private key. Also, the basic contents of this

new digital certificate are illustrated in the figure.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

5 of 30

Fig 2. Digital certificate generation steps and contents

3.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm uses ECC to provide a

variant of the Digital Signature Algorithm (DSA). A pair of keys (public and private) are

generated from an elliptic curve, and these can be used both for signing or verifying a

messageôs signature. Fig 3 illustrates an example of ECDSA application. In this example,

the sender device generates a signature with its private key. The signed message is sent

together with the sender digital certificate to the receiver. Finally, the receiver retrieves

the sender public key from the digital certificate and uses it to validate the signature of

the received message.

Fig 3. Elliptic Curve Digital Signature Algorithm (ECDSA) example

3.4 Elliptic Curve Diffie-Hellman (ECDH)

Elliptic Curve Diffie-Hellman algorithm (ECDH) is a key-agreement protocol. The goal of

ECDH is to reach a key agreement between two parties, each having an elliptic-curve

key pair generated from the same domain parameters. When the agreement has been

reached, a shared secret key, usually referred to as the ómaster keyô, is derived to obtain

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

6 of 30

session keys. These session keys will be employed to establish a communication using

symmetric-key encryption algorithms.

The sender and the receiver have its own elliptical key pair. Both the sender and receiver

public keys are shared with each other. In this case, the exchange has been represented

with digital certificates. Each party can compute the secret key using their own private

key and the public key obtained from the received certificate. Due to the elliptical curve

properties and the fact that both key pairs have been generated from the same domain

parameters, the computed secret key is the same for both parties. This common secret

key will be further used for establishing a communication and encrypt messages based

on symmetrical cryptography. Fig 4 illustrates the usage of ECDH for a shared secret key

agreement.

Fig 4. Elliptic Curve Diffie-Hellman Key Exchange (ECDH) example

In the Elliptic-curve Diffie-Hellman Ephemeral (ECDHE) algorithm case, a new elliptical

key pair is generated for each key agreement instead of sharing the already existing

public keys.

3.5 A71CH ECC supported functionality

The A71CH security IC supports the following ECC functionality:

¶ Signature generation and verification (ECDSA).

¶ Shared secret calculation using Key Agreement (ECDH or ECDH-E).

¶ Protected storage, generation, insertion or deletion of key pairs (NIST-P256 elliptical

curve).

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

7 of 30

4. A71CH for secure connection to OEM cloud

This section describes the steps and credentials involved so that an IoT device with an

A71CH security IC can establish a secure, end-to-end TLS connection with a server in

the cloud (OEM cloud).

A channel established with TLS protocol guarantees authenticity of the device,

confidentiality and integrity in the communication between the IoT device and the OEM

server. The credentials required to establish this TLS connection are stored, and never

leave, the A71CH security IC.

Fig 5 shows a network composed of an OEM cloud and several IoT devices. Each IoT

device features an A71CH security IC and the communication between these and the

OEM cloud is secured with TLS protocol.

Fig 5. TLS connection between an IoT device and an OEM cloud

4.1 IoT device credentials

Each IoT device stores a unique elliptical key pair (IoT node key pair) and its digital

certificate (IoT certificate) signed by a trusted CA. It should also contain the CA certificate

or CA public key for a Server authentication. The IoT device key pair and digital

certificate will be securely stored in each A71CH respectively. Fig 6 illustrates the

contents of each IoT device in the communication between these and the OEM cloud.

The contents of the A71CH security IC (IoT key pair and digital certificate) have been

painted in different colors to remark that these credentials are unique per device.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

8 of 30

(1) CA certificate could optionally be stored inside A71CH

Fig 6. IoT device certificates

4.2 OEM cloud server credentials

The OEM server in the cloud stores a unique key pair (Server key pair) and a digital

certificate (Server certificate) signed by a trusted CA. The server can either behave as

the CA (thus store the self-signed root CA certificate and root CA key pair) or trust in a

third-party CA. Fig 7 completes Fig 6 by representing the contents of the OEM cloud.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

9 of 30

(1) CA certificate could optionally be stored inside A71CH

Fig 7. OEM cloud server certificates

4.3 Transport Layer Security protocol (TLS)

IoT devices own several connectivity features that allow them to exchange data with the

cloud. Therefore, the network link between these IoT devices and the cloud or server

should be secure. Transport Layer Security protocol (TLS), and its predecessor Secure

Sockets Layer (SSL), are cryptographic protocols that provide communications security

over unsecure networks. These protocols are created from the necessity of establishing

a connection preserving confidentiality, integrity and authenticity.

Fig 8. TLS connection between two IoT devices and OEM cloud

Fig 9 illustrates the protocol stack of a TLS communication over a TCP/IP network. In the

well-known ISO/OSI layer architecture, SSL/TLS would belong to the presentation layer

in charge of encrypting and securing the entire communication. The transport and

network protocol TCP/IP and the medium access control (MAC) would fall in layers from

4 to 2, respectively. Finally, data would be electrically transferred according to ethernet

(or wireless ethernet) protocols.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

10 of 30

Fig 9. Communication stack. ISO/OSI Layers.

4.3.1 Transport Layer Security Handshake protocol

Before the IoT device and the server in the cloud begin exchanging data over TLS, the

tunnel encryption must be negotiated. This negotiation is referred as TLS Handshake.

The TLS Handshake Protocol is responsible for the authentication and key exchange

necessary to establish or resume secure sessions. When establishing a secure session,

the TLS Handshake Protocol manages the following:

¶ Agree on the TLS protocol version to be used.

¶ Select cipher suite.

¶ Authenticate each other by exchanging and validating digital certificates.

¶ Use asymmetric encryption techniques to generate a shared secret key, which

avoids the key distribution problem. SSL or TLS then uses the shared key for the

symmetric encryption of messages, which is faster than asymmetric encryption.

The TLS Handshake Protocol involves the following steps:

¶ Exchange Hello messages to agree on algorithms, exchange random values, and

check for resumption.

¶ Exchange the necessary cryptographic parameters to allow the client and server to

agree on a pre-master secret.

¶ Exchange certifications and cryptographic information to allow the client and server

to authenticate themselves.

¶ Generate a master secret from the pre-master secret and exchanged random value.

¶ Provide security parameters to the record layer.

¶ Allow the client and server to verify that their peer has calculated the same security

parameters and that the handshake occurred without tampering by an attacker.

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

11 of 30

The A71CH security IC supports the TLS Handshake Protocol version 1.2 with the

following options:

¶ Pre-Shared Key Cipher suites for TLS as described in [RFC4279]: A set of cipher

suites for supporting TLS using pre-shared symmetric keys (TLS_PSK_WITH_xxx)

¶ ECDHE_PSK Cipher suites for TLS as described in [RFC5489]: A set of cipher suites

that use a pre-shared key to authenticate an Elliptic Curve Diffie-Hellman exchange

with Ephemeral keys (TLS_ECDHE_PSK_WITH_xxx).

The Fig 10 represents an overview of the TLS 1.2 handshake with ECDSA-ECDHE.

More information about the TLS 1.2 handshake protocol can be obtained from the

standard specifications document [RFC5246] or from [AN_A71CH_HOST_SW].

NXP Semiconductors AN12132
 A71CH for secure connection to OEM cloud

AN12132 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.1 ð 7 March 2018
464211

12 of 30

Fig 10. TLS 1.2 Handshake diagram with ECDHE-ECDSA

