AN12245 Power Consumption and Measurement of i.MX RT1060

Rev. 1 — 25 August 2019

Application Note

1 Introduction

This document discusses about the power consumption of i.MX RT1060. Mainly includes the following contents:

- i.MX RT1060 overview
- · Run mode definition and configuration
- · Low-power mode definition and configuration
- · How to measure power consumption based on MIMXRT1060 EVK board
- · Power consumption under different power modes

The development environment in this application note is IAR Embedded Workbench. Software is based on SDK 2.6.1. The hardware environment is MIMXRT1060 EVK board (Rev A1).

2 i.MX RT chip overview

The i.MX RT chip is a Cortex-M7 based chip that operates at speed up to 600 MHz to provide high CPU performance and best real-time response.

- Cortex-M7 based processor, which can operate at speed up to 600 MHz.
- 1 MB On-Chip SRAM up to 512 KB configurable as Tightly Coupled Memory (TCM).
- Advanced power management module with DCDC and LDO to reduce complexity of external power supply and simplifies power sequencing.
- Various memory interfaces, including SDRAM, Raw NAND FLASH, NOR flash, SD/eMMC, Quad SPI.
- A wide range of other interfaces for connecting peripherals, such as WLAN, Bluetooth[™], GPS, displays, and camera sensors.
- Rich audio & video features, including LCD display, basic 2D graphics, camera interface, S/PDIF, and I2S audio interface.
- Provide rich peripheral modules, such as SPI, I²C, Can, Ethernet, Flex-Timers, and ADC.
- Target at Industrial HMI, Motor Control, and Home Appliance areas.

3 Low power overview

- Power supply
- Run mode
- Low-power mode

3.1 Power supply

Table 1 below shows the power supply rails of i.MX RT1060.

Contents

1 Introduction1
2 i.MX RT chip overview1
3 Low power overview
4 How to measure power consumption on MIMXRT1060 EVK
5 Power consumption results9 5.1 Run mode10 5.2 Low-power mode10
6 Conclusion11
7 Revision history 11
8 References11

Table 1. External power supply rails

Power Rail	Description
DCDC_IN	Power for DCDC.
SOC_IN	Power for SOC.
VDD_HIGH_IN	Power for Analog.
VDD_SNVS_IN	Power for SNVS and RTC.
USB_OTG1_VBUS	Power for USB VBUS.
USB_OTG2_VBUS	
VDDA_ADC_3P3	Power for 12-bit ADC.
NVCC_SD0	Power for GPIO in SDIO1 bank (3.3 V mode).
	Power for GPIO in SDIO1 bank (1.8 V mode).
NVCC_SD1	Power for GPIO in SDIO2 bank (3.3 V mode).
	Power for GPIO in SDIO2 bank (1.8 V mode).
NVCC_GPIO	IO Power for GPIO in GPIO bank.
NVCC_EMC	IO Power for GPIO in EMC bank. (3.3 V mode)
	IO Power for GPIO in EMC bank. (1.8 V mode)

3.2 Run mode

- Run mode definition
- Run mode configuration

3.2.1 Run mode definition

Table 2. Run mode definition

Run Mode	Definition				
Overdrive Run	CPU runs at 600 MHz, overdrive voltage to 1.275 V				
	Bus frequency at 150 MHz				
	All the peripheral is enabled and runs at target frequency				
	All PLLs are enabled				
Full-Speed Run	CPU runs at 528 MHz, full loading, lower voltage to 1.15 V				
	Bus frequency at 132 MHz				
	All the peripheral is enabled and runs at target frequency				
	All PLLs are enabled				

Table continues on the next page...

Table 2.	Run mode	definition	(continued))
----------	----------	------------	-------------	---

Low-Speed Run	CPU runs at 132 MHz, lower voltage to 1.15 V
	Internal bus frequency at 33 MHz
	 All PLL and PFDs are disabled except SYSPLL and SYSPLLPFD2
	• 20 % peripheral are active, others are in low-power mode
Low-Power Run	CPU runs at 24 MHz, lower voltage to 0.95 V
	Internal bus frequency at 12 MHz
	 All PLLs are powered down, OSC24M powered down, RCOSC24 enabled
	High-speed peripherals are power down

3.2.2 Run mode configuration

Table 3. Run mode configuration

CCM LPM Mode	RUN	RUN	RUN	RUN
CPU Core	600 MHz	528 MHz	132 MHz	24 MHz
L1 Cache	ON	ON	ON	ON
IPG CLK	150 MHz	132 MHz	33 MHz	12 MHz
PER CLK	75 MHz	66 MHz	33 MHz	12 MHz
FlexRAM	ON	ON	ON	ON
SOC Voltage	1.275 V	1.15 V	1.15 V	0.95 V
Analog LDO	ON	ON	ON	In Weak Mode
24 MHz XTAL OSC	ON	ON	ON	OFF
24 MHz RC OSC	OFF	OFF	OFF	ON
ARM PLL	ON	ON	Power Down	Power Down
SYS PLL	ON	ON	ON	Power Down
SYS PFD0	ON	ON	Power Down	Power Down
SYS PFD1	ON	ON	Power Down	Power Down
SYS PFD2	ON	ON	ON	Power Down
SYS PFD3	ON	ON	Power Down	Power Down
USB1 PLL	ON	ON	Power Down	Power Down
USB1 PFD0	ON	ON	Power Down	Power Down
USB1 PFD1	ON	ON	Power Down	Power Down
USB1 PFD2	ON	ON	Power Down	Power Down
USB1 PFD3	ON	ON	Power Down	Power Down

Table continues on the next page...

CCM LPM Mode	RUN	RUN	RUN	RUN
USB2 PLL	ON	ON	Power Down	Power Down
Audio PLL	ON	ON	Power Down	Power Down
Video PLL	ON	ON	Power Down	Power Down
ENET PLL	ON	ON	Power Down Power Down	
Module Clock	ON	ON	On as needed	Peripheral clock off
RTC32K	ON	ON	ON	ON

Table 3. Run mode configuration (continued)

3.3 Low-power mode

- Low-power mode definition
- Low-power mode configuration
- Wake-up source

3.3.1 Low-power mode definition

Table 4. Low-power mode definition

Low-Power Mode	Definition
System Idle	CPU can automatically enter this mode when no thread running
	All the peripherals can remain active
	CPU only enters WFI mode, it has its state retained so the interrupt response can be very short
Low-Power Idle	Much lower power than System Idle mode, with longer exit time
	 All PLLs are shut off, analog modules running in low-power mode
	 All high-speed peripherals are power gated, low speed peripherals can remain running at low frequency
Suspend	The most power-saving mode with longest exit time
	 All PLLs are shut off, XTAL are off, all clocks are shut off except 32 K clock
	 All high-speed peripherals are power gated, low speed peripherals are clock gated
SNVS	All SOC digital logic, analog modules are shut off only except SNVS domain
	• 32 KHz RTC is alive
	VDD_HIGH_IN and VDD_DCDC_IN can be powered off

3.3.2 Low-power mode configuration

Table 5. Low-power mode configuration

	System Idle	Low-Power Idle	Suspend	SNVS
CCM LPM Mode	WAIT	WAIT	STOP	-
Arm Core (PDM7)	WFI	WFI	Power Down	OFF
L1 Cache	ON	ON	Power Down	OFF
FlexRAM (PDRET)	ON	ON	ON	OFF
FlexRAM (PDRAM0)	ON	ON	Power Down	OFF
FlexRAM (PDRAM1)	ON/OFF	ON/OFF	Power Down	OFF
VDD_SOC_IN Voltage	1.15 V	0.95 V	0.925 V	OFF
ARM PLL	Power Down	Power Down	Power Down	OFF
SYS PLL	ON	Power Down	Power Down	OFF
SYS PFD0	Power Down	Power Down	Power Down	OFF
SYS PFD1	Power Down	Power Down	Power Down	OFF
SYS PFD2	ON	Power Down	Power Down	OFF
SYS PFD3	Power Down	Power Down	Power Down	OFF
USB1 PLL	Power Down	Power Down	Power Down	OFF
USB1 PFD0	Power Down	Power Down	Power Down	OFF
USB1 PFD1	Power Down	Power Down	Power Down	OFF
USB1 PFD2	Power Down	Power Down	Power Down	OFF
USB1 PFD3	Power Down	Power Down	Power Down	OFF
USB2 PLL	Power Down	Power Down	Power Down	OFF
Audio PLL	Power Down	Power Down	Power Down	OFF
Video PLL	Power Down	Power Down	Power Down	OFF
ENET PLL	Power Down	Power Down	Power Down	OFF
24 MHz XTAL OSC	ON	OFF	OFF	OFF
24 MHz RC OSC	OFF	ON	OFF	OFF
LDO2P5	ON	OFF	OFF	OFF
LDO1P1	ON	OFF	OFF	OFF
WEAK2P5	OFF	ON	OFF	OFF
WEAK1P1	OFF	ON	OFF	OFF
Bandgap	ON	OFF	OFF	OFF
Low-Power Bandgap	ON	ON	ON	OFF
AHB clock	33 MHz	12 MHz	OFF	OFF

Table continues on the next page ...

IPG clock	33 MHz	12 MHz	OFF	OFF
PER clock	33 MHz	12 MHz	OFF	OFF
Module Clocks	ON as needed	ON as needed	OFF	OFF
RTC32K	ON	ON	ON	ON

Table 5. Low-power mode configuration (continued)

3.3.3 Wake-up source

Table 6. Wake-up source

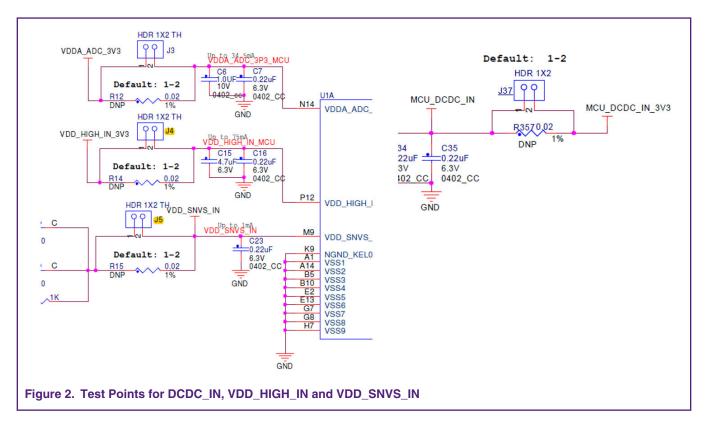
	System Idle	Low Power Idle	Suspend	SNVS	
GPIO wake-up	YES	YES	YES	- YES (1 PIN only)	
RTC wake-up	YES	YES	YES	YES	
USB remote wake-up	SB remote wake-up YES		YES	NO	
Other peripheral wake-up sources	YES	YES	YES	NO	


NOTE

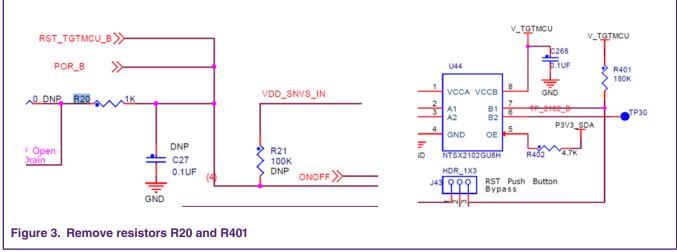
Irrespective of whether the system is in System Idle, Low-Power Idle or Suspend modes, the wake-up interrupt should be enabled in GPC module. The only pin that can wake up the system in SNVS is IOMUXC_SNVS_WAKEUP_GPI05_I000.

NOTE

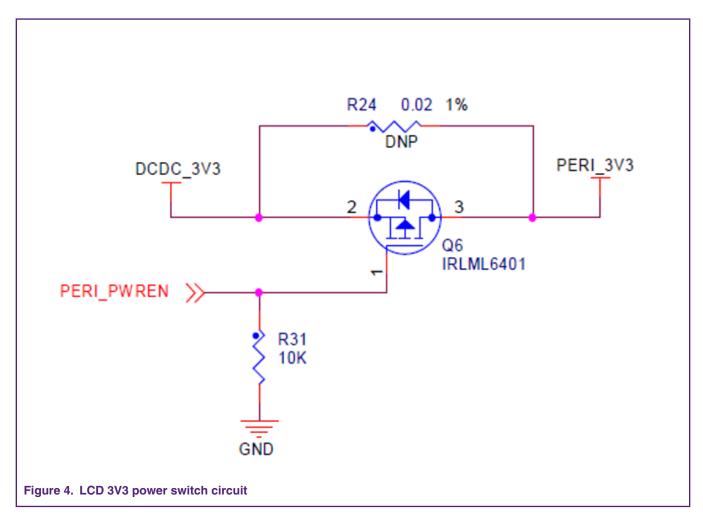
Peripheral wake-up requires that the clock for the peripheral is available in the mode


4 How to measure power consumption on MIMXRT1060 EVK

4.1 MIMXRT1060-EVK (REV A1) board overview


4.1.1 Current measurements on EVK

For this application note, measure the current value of DCDC_IN (J37), VDD_HIGH_IN (J4), and VDD_SNVS_IN (J5).



4.1.2 Hardware rework for the EVK

Because the POR_B pin has an internal pullup, R401 and R20 should be removed. Leaving these resistors populated causes higher SNVS current than what is shown in this application note.

SNVS_PMIC_STBY_REQ_GPIO5_IO02 outputs a high-level signal under Suspend Mode (Stop Mode). On the EVK board, this pin is used to control LCD Power switch and a resistor R31 is connected to this pin. When the chip is under the Suspend Mode, this resistor consumes more current. To fix this issue, SNVS_PMIC_STBY_REQ is configured as a low-level output GPIO pin.

4.1.3 Run IAR-based project demo example – Power mode switch

- 1. The project file is at: boards\evkbmimxrt1060\demo_apps\power_mode_switch_bm\iar\power_mode_switch_bm.eww
- 2. Download the project.
- 3. Select the target power mode on the terminal.

5 Power consumption results

NOTE -

To reduce power consumption, VDD_SNVS_IN is powered by VDD_HIGH_IN in all power modes except the SNVS mode.

All power consumption values are typical silicon at 25 C.

Discontinuous conduction mode (DCM) increases the efficiency of DCDC in case of low current loading and is always recommended.

5.1 Run mode

Table 7. Run mode on RAM

RT1060-EVK Overdrive (600 MHz)		· · ·		Low-speed run (132 MHz)		Low power run (24 MHz)			
Power Rail	Voltage (V)	Current (mA)	Power (mW)	Current (mA)	Power (mW)	Current (mA)	Power (mW)	Current (mA)	Power (mW)
DCDC_IN	3.3	53.1432	175.3726	38.2423	126.1996	12.9733	42.8119	2.7634	9.1192
HIGH_IN	3.3	20.4431	67.4622	20.4244	67.4005	5.2617	17.3636	0.2682	0.8851
SNVS_IN	3.3	0.0250	0.0824	0.0234	0.0771	0.0137	0.0452	0.0173	0.0571

Table 8. Run mode XIP on Flash

RT1060-EVK		Overdrive (600 MHz)		Full-speed run (528 MHz)		Low-speed run (132 MHz)		Low power run (24 MHz)	
Power Rail	Voltage (V)	Current (mA)	Power (mW)	Current (mA)	Power (mW)	Current (mA)	Power (mW)	Current (mA)	Power (mW)
DCDC_IN	3.3	44.5526	147.0236	32.4731	107.1612	11.8486	39.1004	2.4326	8.0276
HIGH_IN	3.3	20.4381	67.4457	20.4542	67.4989	5.2729	17.4006	0.2827	0.9329
SNVS_IN	3.3	0.0257	0.0847	0.0241	0.0796	0.0140	0.0461	0.0178	0.0586

5.2 Low-power mode

The power consumption in Table 9 and Table 10is measured with the power mode switch project.

Table 9. Power consumption results

RT1060-EVK		System Idle		Low power		Suspend		SNVS	
Power Rail	Voltage (V)	Current (mA)	Power (mW)	Current (mA)	Power (mW)	Current (mA)	Power (mW)	Current (mA)	Power (mW)
DCDC_IN	3.3	5.6543	18.6592	1.3263	4.3768	0.2192	0.7234	1	/
HIGH_IN	3.3	5.2542	17.3389	0.2601	0.8583	0.0223	0.0736	1	/
SNVS_IN	3.3	0.0133	0.0438	0.0171	0.0564	0.0109	0.0361	0.0157	0.0518

Table 10. Low power mode XIP on Flash

RT1060-EVK		System Idle		Low power		Suspend		SNVS	
Power Rail	Voltage (V)	Current (mA)	Power (mW)	Current (mA)	Power (mW)	Current (mA)	Power (mW)	Current (mA)	Power (mW)
DCDC_IN	3.3	6.0045	19.8149	1.4586	4.8134	0.2156	0.7115	/	/
HIGH_IN	3.3	5.2568	17.3474	0.2601	0.8583	0.0222	0.0733	/	/
SNVS_IN	3.3	0.0136	0.0450	0.0177	0.0583	0.0114	0.0376	0.0157	0.0518

NOTE

All power consumption values are typical silicon at 25 C.

NOTE

Discontinuous conduction mode (DCM) increases the efficiency of DCDC in case of low current loading and is always recommended.

6 Conclusion

This document mainly describes how to measure power consumption on i.MX RT based on MIMXRT1060 EVK (Rev. A1). For more design details in designing a low-power application, see the application note How to use iMXRT Low Power Feature.

7 Revision history

Table 11. Revision history

Revision number	Date	Substantive changes		
0	09/2018	Initial release		
1	08/2019	Updated the power consumption results		

8 References

- 1. i.MX RT 1060 Reference Manual
- 2. Arm Cortex M7 Reference Manual
- 3. How to use iMXRT Low Power Feature

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

[©] NXP B.V. 2018-2019.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: 25 August 2019 Document identifier: AN12245

arm