
1 Introductions

1.1 Overview

The LPC55xx/LPC55Sxx is an Arm
®
 Cortex

®
-M33 based microcontroller for

embedded applications. These devices include:

• an Arm Cortex-M33 coprocessor,

• CASPER Crypto/FFT engine,

• PowerQuad hardware accelerator for DSP functions,

• up to 320 KB of on-chip SRAM,

• up to 640 KB on-chip flash,

• PRINCE module for on-the-fly flash encryption/decryption,

• high-speed and full-speed USB host and device interface with crystal-less operation for full-speed,

• SDIO/MMC,

• five general-purpose timers,

• one SCTimer/PWM,

• one RTC/alarm timer,

• one 24-bit Multi-Rate Timer (MRT),

• one Windowed Watchdog Timer (WWDT),

• one high speed SPI (50 Mhz),

• nine flexible serial communication peripherals (which can be configured as a USART, SPI, I2C, or I2S interface),

• Programmable Logic Unit (PLU),

• one 16-bit 1.0 Msamples/sec ADC,

• one comparator,

• one temperature sensor.

The LPC55xx/LPC55Sxx offers two Arm Cortex-M33 cores which have the features as below:

• Arm Cortex-M33 core (CPU0, r0p3)

— Running at a frequency of up to 100 MHz.

— TrustZone, Floating Point Unit (FPU) and Memory Protection Unit (MPU).

— Arm Cortex M33 built-in Nested Vectored Interrupt Controller (NVIC).

— Non-Maskable Interrupt (NMI) input with a selection of sources.

Contents

1 Introductions..1

2 Debug environments........................... 3

3 Dual core project configurations
in MCUXpresso..................................4

4 Dual core project debug in
MCUpresso.. 6

5 Conclusion..11

AN12358
LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso
Rev. 0 — 5 March 2019 Application Note

— Serial Wire Debug with eight breakpoints and four watch points, including Serial Wire Output for enhanced debug
capabilities.

— System tick timer.

• Arm Cortex-M33 co-processor (CPU1, r0p3)

— Running at a frequency of up to 100 MHz.

— The configuration of this instance does not include MPU, FPU, DSP, ETM, and Trustzone.

— System tick timer.

1.2 Dual core basic mechanism

The dual core in the LPC55xx/LPC55Sxx is in the asymmetric architecture, which means that one core (CPU0) is the master core
and the other (CPU1) is the slave one. By default, CPU0 is set as the master and it can work normally, while CPU1 is set as the
slave and it is on hold and its clock is disabled with the chip startup. Release the slave core and enable its clock via a register by
the master core.

With dual core working, they need to communicate with each other, so the LPC55xx/LPC55Sxx provides the Inter-CPU Mailbox
mechanism with the below features.

• Provides the Inter-Processor Communication, allowing multiple CPUs to share resources and communicate with each other
in a simple manner.

• Each CPU can cause up to thirty-two user defined interrupts to its partner.

• Each CPU can claim a shared resource if it is available.

• Provides a mutual exclusion configuration for the communication handshake.

1.3 Related system resources

The Arm Cortex M33 includes three AHB-Lite buses, one system bus and the I-code and D-code buses. One bus is dedicated
for instruction fetch (I-code), and one bus is dedicated for data access (D-code). The use of two core buses allows for simultaneous
operations if concurrent operations target different devices.

Both CPUs share all resources (memories and peripherals) in the LPC55xx/LPC55Sxx. To get better performance on dual core
usage.

The LPC55xx/LPC55Sxx support 320 KB SRAM with separate bus master access for higher throughput and individual power
control for low-power operation. This makes it possible that the code and data of both CPUs can be separated to be stored and
accessed.

LPC55xx/LPC55Sxx uses a multi-layer AHB matrix to connect the CPU buses and other bus masters to peripherals in a flexible
manner that optimizes performance by allowing peripherals that are on different slave ports of the matrix to be accessed
simultaneously by different bus masters.

1.4 Debug system

The debug system on the dual-core of LPC55xx/LPC55Sxx has the following features.

• It supports arm serial wire debug mode for CPU0 and, if present, CPU1.

NXP Semiconductors

Introductions

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 2 / 12

• Trace port provides Cortex-M33 CPU instruction trace capability on both CPU0 and CPU1. Output via a serial wire viewer.

• Direct debug access to all memories, registers, and peripherals.

• No target resources are required for the debugging session.

• Breakpoints: CPU0 and CPU10 include eight instruction breakpoints.

• Watch-points: CPU0 and CPU10 M33 include four data watch-points that can also be used as triggers.

• Supports JTAG boundary scan.

• Instrumentation Trace Macrocell allows additional software controlled trace for CPU0 and CPU1.

The debug system has the following modules.

• JTAG-TAP: Test access port is used by NXP Product & Test Engineering team.

• DAP: Debug access port which has Serial Wire port (SWJ-DP) which interprets the data coming in and routes to
appropriate Access Port (AP).

• CPU0 AP: Debug access port for Cortex-M33 core instantiated as CPU0.

• CPU1 AP: Debug access port for Cortex-M33 core instantiated as CPU1. This instance of CM33 does not have security
extension (TrustZone for Armv8-M).

• DM-AP: Debug Access port for debug mailbox.

— This port is always enabled, and external world can send and receive data to/from ROM.

— This port is used to implement NXP debug authentication protocol version 1.0.

Figure 1. on page 3 shows top-level debug ports and connections.

Figure 1. Serial wire debug internalconnections

2 Debug environments
• Hardware:

— Mini/Macro USB cable.

— LPCXpresso55s69 board.

NXP Semiconductors

Debug environments

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 3 / 12

— Personal computer.

• Toolchain:

— MCUXpresso IDE V10.3.0.

• Software:

— SDK_2.5.0_LPCXpresso55s69_EAR_3.

3 Dual core project configurations in MCUXpresso
Dual core project can be designed in many ways, however within MCUXpresso IDE there is an underlying expectation that one
core (Master) will control the execution (or at least the startup) of code running on other core (Slave). The dual core projects in
MCUXpresso IDE consist of two linked projects – one project containing the Master code and the other containing the Slave code.

After a power-on or Reset, the Master core boots and is then responsible for booting the Slave core. However, this relationship
only applies to the booting process; after boot, the application may treat either of the cores as the Master or the Slave.

MCUXpresso IDE allows for the easy creation of linked projects that support the targeting of Multicore MCUs. This application
note only mentions the project configurations for dual-core based on the dual core mutex example in the LPC5500 SDK (The path
is boards\lpcxpresso55s69\driver_examples\mailbox\mutex.) and does not introduce how to create them (for the information, can
read the MCUXpresso IDE user guide under the folder of MCUXpresso IDE). Concerning the dual-core mode, the Master and
Slave projects contain the following configurations:

1. Memory configurations;

2. Architecture configurations;

3. Multicore configurations.

First of all, launch the MCUXpresso IDE workspace and install the LPC55S69 SDK and import the mailbox mutex examples on
both master and slave core. Then, SDK and examples can be shown in MCUXpresso, as shown in Figure 2. on page 4.

Figure 2. Installed SDK and imported dual-core projects in MCUXpresso

3.1 Memory configurations

The memory configurations must be managed to avoid unintended overlap. In the projects, the Slave application is executed
entirely from a RAM location unused by the Master. Table 1. Address assignment for dual-core images on page 4 shows the
address assignment for dual-core images.

Table 1. Address assignment for dual-core images

CPU Storage address Loading address

Master core 0x0 0x0

Slave core up to compiler (in flash) 0x20033000

NXP Semiconductors

Dual core project configurations in MCUXpresso

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 4 / 12

Correspondingly, Figure 3. on page 5 shows the memory configurations on both projects in MCUXpresso. The highlighted
named as Ram1 (Alias is RAM2 in Master project and RAM in Slave project) is the execution location of the Slave application.
The alias RAM2 is referred in multicore configurations (see Figure 5. on page 6).

Figure 3. Memory configurations in Master and Slave projects

3.2 Architecture configurations

As introduced above, the Master and Slave cores are both based on Arm Cortex-M33 though there are some differences. The
architecture is configured correspondingly in the Master and Slave projects, as shown in Figure 4. on page 5.

Figure 4. Architecture configurations in Master and Slave projects

3.3 Multicore configurations

The multicore configurations show the link between the Master and Slave projects, as shown in Figure 5. on page 6. It indicates
the Slave (named as M33SLAVE) application image is integrated in Master memory region. The alias of the Master memory
region for the Slave image is called as RAM2. This is consistent with the memory configurations (see Figure 3. on page 5).

NXP Semiconductors

Dual core project configurations in MCUXpresso

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 5 / 12

Figure 5. Multicore configurations in Master and Slave projects

4 Dual core project debug in MCUpresso

4.1 Launch debug session

After building both projects successfully, launch the debug session of the Master project first. To do it, click the project name in
the workspace to select the Master project, and then click the Debug in the Quick Panel.

The USB cable should be connected to the USB jack marked with Debug Link on the LPCXpresso55S69 board

for debugging.

 NOTE

For the first launch, select the SWD device – CPU core. The Device 0 should be selected for the Master core/project and the
Device 1 for the Slave one. Figure 6. on page 6 shows the SWD configuration for the Master debug session.

Figure 6. SWD configuration when first launching debug session

After both debug sessions launching is completed, the Master debug thread is suspended (the Master PC pointer stops at main()
in the code based on the breakpoint setup in this project) and the Slave debug thread can not stop for debugging since the Slave
core is on hold and required to be released by the Master. Figure 7. on page 7 shows the states of both debug threads in the
Debug window.

NXP Semiconductors

Dual core project debug in MCUpresso

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 6 / 12

Figure 7. Debug threads for both projects

4.2 Slave debug setup

At this time, the debug operations, such as, step over, run, and so on, can be performed on the Master project.

In Figure 7. on page 7, click the green or red block in the Debug window to select the Master or Slave thread for debugging. After
step over the code line of starting up the slave core in the Master project (see the coded highlighted in green in Figure 8. on page
7), the Slave core will be released to work. The current debug thread will be switched to the Slave and the Slave PC pointer
will be stopped at main() in the Slave code (See Figure 9. on page 8). It means that the debugging control (e.g. step over) can
be performed on the Slave project as well.

Figure 8. Codes of starting up the slave core

NXP Semiconductors

Dual core project debug in MCUpresso

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 7 / 12

Figure 9. Slave core released for debugging

4.3 Dual-core communication debug

With switching to the Slave debug thread, before performing the debugging control on the dual core communication process, add
the shared variable - *g_shared which is the shared data to be communicated between dual core via the Mailbox to Global
Variables window in Slave debug session (g_shared is the pointer to the address of *g_shared). As an initial state, the current
value of the variable is random, and the current address is 0 as defined in the Slave code. It is shown as Figure 10. on page
8.

Figure 10. Initial shared variable in slave debug session

Begin and keep stepping over the Slave codes into the while(1) loop where the implemented functions are to get Mailbox Mutex
control, update the global variable and set Mailbox Mutex control. Figure 11. on page 9 shows the loop codes.

NXP Semiconductors

Dual core project debug in MCUpresso

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 8 / 12

Figure 11. Main loop process on slave core

And it can be observed that the code of getting Mailbox Mutex is stepped over. However, the global variable - *g_shared will not
be updated since the initial address is zero (NULL) and still not transmitted from the Master via Mailbox. The address value of
*g_shared keeps as zero in the Global Variable window, as shown in Figure 10. on page 8.

Click the green block in the Debug window (as shown in Figure 7. on page 7) to go to the Master debug thread. Send the address
of the shared variable - g_shared to the Slave core via Mailbox. Click the mailbox_mutex_core0.c, and it switches to the Master
code window. Before performing the debugging in the Master debug session, add the global variable – g_shared in the Global
Variable window for observation. The initial value is zero and the address is 0x20000024. It is as shown in Figure 12. on page
9 .

Figure 12. Initial shared variable in master debug session

After stepping over the code line to send the address of shared variable – g_shared to the Slave core by Mailbox (see Figure 13.
on page 9), go back to the Slave debug thread by clicking the red block in the Debug window (as shown in Figure 7. on page
7) and return to the main() of the Slave code.

Figure 13. Master code line to send address of shared variable

It can be observed that the shared variable - *g_shared in the Global Variable window has the same value (0) and address
(0x20000024) (see Figure 14. on page 9) synchronized with the Master once the window display is refreshed, e.g. perform the
step over operation. It indicates that the Slave core has received the address of the shared data successfully via Mailbox.

Figure 14. Synchronized shared variable in slave debug session

NXP Semiconductors

Dual core project debug in MCUpresso

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 9 / 12

After stepping over the code (*g_shared)++;, it can be observed that the value of the shared variable *g_shared changes to 1
(see Figure 15. on page 10).

Figure 15. Updated shared variable in slave debug session

After stepping over the code of setting Mutex (MAILBOX_SetMutex(MAILBOX);), it means the access to shared resource is
available to either of the cores. Currently, switch to the Master thread for debugging the Master while(1) loop which has the similar
functions as the Slave: get Mailbox Mutex, update the shared variable g_shared and set Mailbox Mutex (see Figure 16. on page
10). The code of getting Mutex will be stepped over when performing the step over. Meanwhile, the value of the shared variable
g_shared in the Global Variable window will be refreshed to 1 (see Figure 17. on page 10), as it has been changed by the Slave
core.

Figure 16. Main loop process on master

Figure 17. Synchronized shared variable in master debug session

After stepping over the code g_shared++, the value of the shared variable g_shared in the Global Variable window can be
observed to change to 2. Before stepping over the code of setting Mutex (MAILBOX_SetMutex(MAILBOX);) in the Master code,
switch to the Slave debug thread and perform the step over, it will keep stuck at the code of getting Mutex, as the access is still
not released by the Master core. Switch to the Master debug thread and step over the code of setting Mutex for releasing the
Mutex control.

Afterwards, go back to the Slave debug thread and perform the step over. At present, it can be observed that the code is stepped
over as the Mutex control can be obtained. Similarly, the Master debug thread will be stuck at the code of getting Mutex if the
Slave code of setting Mutex is not executed after the code of getting Mutex has been done.

Next, if repeat switching between the Master and Slave debug thread to doing debugging control as the above operations, it will
be observed that the shared variable is being increased in turn by the Master and Slave core. Only the core that gets the Mutex
control successfully can make a change to the shared variable. It means, if keep running one core’s codes during debugging, the
shared variable will be increased by the core only.

NXP Semiconductors

Dual core project debug in MCUpresso

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 10 / 12

5 Conclusion
This application note has a quick look at the dual-core mechanism and debug system in LPC55xx/LPC55Sxx. Then it briefly
introduces some configurations related to dual-core projects and elaborates how to debug dual-core projects in MCUXresso IDE
based on the driver example of mailbox_mutex in LPC5500 SDK.

It is easy and convenient for users to debug dual-core projects in MCUXpresso. The debug sessions of both cores can be launched,
and the debug process can be completed in one workspace. Just clicking the Master thread or Slave thread in the Debug window
will switch either of dual core projects for debug. The debug operations, e.g. set breakpoint, variable view, for each core are same
to a single core.

Run the Master debug thread before the Slave core is started up by the Master.

 NOTE

NXP Semiconductors

Conclusion

LPC55xx/LPC55Sxx Dual-Core Debug in MCUXpresso, Rev. 0, 5 March 2019
Application Note 11 / 12

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 5 March 2019

Document identifier: AN12358

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introductions
	1.1 Overview
	1.2 Dual core basic mechanism
	1.3 Related system resources
	1.4 Debug system

	2 Debug environments
	3 Dual core project configurations in MCUXpresso
	3.1 Memory configurations
	3.2 Architecture configurations
	3.3 Multicore configurations

	4 Dual core project debug in MCUpresso
	4.1 Launch debug session
	4.2 Slave debug setup
	4.3 Dual-core communication debug

	5 Conclusion

